|  | // Copyright 2016 The SwiftShader Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //    http://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include "Blitter.hpp" | 
|  |  | 
|  | #include "Pipeline/ShaderCore.hpp" | 
|  | #include "Reactor/Reactor.hpp" | 
|  | #include "System/CPUID.hpp" | 
|  | #include "System/Debug.hpp" | 
|  | #include "System/Half.hpp" | 
|  | #include "System/Memory.hpp" | 
|  | #include "Vulkan/VkImage.hpp" | 
|  | #include "Vulkan/VkImageView.hpp" | 
|  |  | 
|  | #include <utility> | 
|  |  | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | #	include <xmmintrin.h> | 
|  | #	include <emmintrin.h> | 
|  | #endif | 
|  |  | 
|  | namespace sw { | 
|  |  | 
|  | static rr::RValue<rr::Int> PackFields(const rr::Int4 &ints, const sw::int4 shifts) | 
|  | { | 
|  | return (rr::Int(ints.x) << shifts[0]) | | 
|  | (rr::Int(ints.y) << shifts[1]) | | 
|  | (rr::Int(ints.z) << shifts[2]) | | 
|  | (rr::Int(ints.w) << shifts[3]); | 
|  | } | 
|  |  | 
|  | Blitter::Blitter() | 
|  | : blitMutex() | 
|  | , blitCache(1024) | 
|  | , cornerUpdateMutex() | 
|  | , cornerUpdateCache(64)  // We only need one of these per format | 
|  | { | 
|  | } | 
|  |  | 
|  | Blitter::~Blitter() | 
|  | { | 
|  | } | 
|  |  | 
|  | void Blitter::clear(const void *pixel, vk::Format format, vk::Image *dest, const vk::Format &viewFormat, const VkImageSubresourceRange &subresourceRange, const VkRect2D *renderArea) | 
|  | { | 
|  | VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(subresourceRange.aspectMask); | 
|  | vk::Format dstFormat = viewFormat.getAspectFormat(aspect); | 
|  | if(dstFormat == VK_FORMAT_UNDEFINED) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | VkClearValue clampedPixel; | 
|  | if(viewFormat.isSignedNormalized() || viewFormat.isUnsignedNormalized()) | 
|  | { | 
|  | const float minValue = viewFormat.isSignedNormalized() ? -1.0f : 0.0f; | 
|  |  | 
|  | if(aspect & VK_IMAGE_ASPECT_COLOR_BIT) | 
|  | { | 
|  | memcpy(clampedPixel.color.float32, pixel, sizeof(VkClearColorValue)); | 
|  | clampedPixel.color.float32[0] = sw::clamp(clampedPixel.color.float32[0], minValue, 1.0f); | 
|  | clampedPixel.color.float32[1] = sw::clamp(clampedPixel.color.float32[1], minValue, 1.0f); | 
|  | clampedPixel.color.float32[2] = sw::clamp(clampedPixel.color.float32[2], minValue, 1.0f); | 
|  | clampedPixel.color.float32[3] = sw::clamp(clampedPixel.color.float32[3], minValue, 1.0f); | 
|  | pixel = clampedPixel.color.float32; | 
|  | } | 
|  |  | 
|  | // Stencil never requires clamping, so we can check for Depth only | 
|  | if(aspect & VK_IMAGE_ASPECT_DEPTH_BIT) | 
|  | { | 
|  | memcpy(&(clampedPixel.depthStencil), pixel, sizeof(VkClearDepthStencilValue)); | 
|  | clampedPixel.depthStencil.depth = sw::clamp(clampedPixel.depthStencil.depth, minValue, 1.0f); | 
|  | pixel = &(clampedPixel.depthStencil); | 
|  | } | 
|  | } | 
|  |  | 
|  | if(fastClear(pixel, format, dest, dstFormat, subresourceRange, renderArea)) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | State state(format, dstFormat, 1, dest->getSampleCount(), Options{ 0xF }); | 
|  | auto blitRoutine = getBlitRoutine(state); | 
|  | if(!blitRoutine) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | VkImageSubresource subres = { | 
|  | subresourceRange.aspectMask, | 
|  | subresourceRange.baseMipLevel, | 
|  | subresourceRange.baseArrayLayer | 
|  | }; | 
|  |  | 
|  | uint32_t lastMipLevel = dest->getLastMipLevel(subresourceRange); | 
|  | uint32_t lastLayer = dest->getLastLayerIndex(subresourceRange); | 
|  |  | 
|  | VkRect2D area = { { 0, 0 }, { 0, 0 } }; | 
|  | if(renderArea) | 
|  | { | 
|  | ASSERT(subresourceRange.levelCount == 1); | 
|  | area = *renderArea; | 
|  | } | 
|  |  | 
|  | for(; subres.mipLevel <= lastMipLevel; subres.mipLevel++) | 
|  | { | 
|  | VkExtent3D extent = dest->getMipLevelExtent(aspect, subres.mipLevel); | 
|  | if(!renderArea) | 
|  | { | 
|  | area.extent.width = extent.width; | 
|  | area.extent.height = extent.height; | 
|  | } | 
|  |  | 
|  | BlitData data = { | 
|  | pixel, nullptr,  // source, dest | 
|  |  | 
|  | assert_cast<uint32_t>(format.bytes()),                                  // sPitchB | 
|  | assert_cast<uint32_t>(dest->rowPitchBytes(aspect, subres.mipLevel)),    // dPitchB | 
|  | 0,                                                                      // sSliceB (unused in clear operations) | 
|  | assert_cast<uint32_t>(dest->slicePitchBytes(aspect, subres.mipLevel)),  // dSliceB | 
|  |  | 
|  | 0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 0.0f,  // x0, y0, z0, w, h, d | 
|  |  | 
|  | area.offset.x, static_cast<int>(area.offset.x + area.extent.width),   // x0d, x1d | 
|  | area.offset.y, static_cast<int>(area.offset.y + area.extent.height),  // y0d, y1d | 
|  | 0, 1,                                                                 // z0d, z1d | 
|  |  | 
|  | 0, 0, 0,  // sWidth, sHeight, sDepth | 
|  |  | 
|  | false,  // filter3D | 
|  | }; | 
|  |  | 
|  | if(renderArea && dest->is3DSlice()) | 
|  | { | 
|  | // Reinterpret layers as depth slices | 
|  | subres.arrayLayer = 0; | 
|  | for(uint32_t depth = subresourceRange.baseArrayLayer; depth <= lastLayer; depth++) | 
|  | { | 
|  | data.dest = dest->getTexelPointer({ 0, 0, static_cast<int32_t>(depth) }, subres); | 
|  | blitRoutine(&data); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | for(subres.arrayLayer = subresourceRange.baseArrayLayer; subres.arrayLayer <= lastLayer; subres.arrayLayer++) | 
|  | { | 
|  | for(uint32_t depth = 0; depth < extent.depth; depth++) | 
|  | { | 
|  | data.dest = dest->getTexelPointer({ 0, 0, static_cast<int32_t>(depth) }, subres); | 
|  |  | 
|  | blitRoutine(&data); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | dest->contentsChanged(subresourceRange); | 
|  | } | 
|  |  | 
|  | bool Blitter::fastClear(const void *clearValue, vk::Format clearFormat, vk::Image *dest, const vk::Format &viewFormat, const VkImageSubresourceRange &subresourceRange, const VkRect2D *renderArea) | 
|  | { | 
|  | if(clearFormat != VK_FORMAT_R32G32B32A32_SFLOAT && | 
|  | clearFormat != VK_FORMAT_D32_SFLOAT && | 
|  | clearFormat != VK_FORMAT_S8_UINT) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | union ClearValue | 
|  | { | 
|  | struct | 
|  | { | 
|  | float r; | 
|  | float g; | 
|  | float b; | 
|  | float a; | 
|  | }; | 
|  |  | 
|  | float rgb[3]; | 
|  |  | 
|  | float d; | 
|  | uint32_t d_as_u32; | 
|  |  | 
|  | uint32_t s; | 
|  | }; | 
|  |  | 
|  | const ClearValue &c = *reinterpret_cast<const ClearValue *>(clearValue); | 
|  |  | 
|  | uint32_t packed = 0; | 
|  |  | 
|  | VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(subresourceRange.aspectMask); | 
|  | switch(viewFormat) | 
|  | { | 
|  | case VK_FORMAT_R5G6B5_UNORM_PACK16: | 
|  | packed = ((uint16_t)(31 * c.b + 0.5f) << 0) | | 
|  | ((uint16_t)(63 * c.g + 0.5f) << 5) | | 
|  | ((uint16_t)(31 * c.r + 0.5f) << 11); | 
|  | break; | 
|  | case VK_FORMAT_B5G6R5_UNORM_PACK16: | 
|  | packed = ((uint16_t)(31 * c.r + 0.5f) << 0) | | 
|  | ((uint16_t)(63 * c.g + 0.5f) << 5) | | 
|  | ((uint16_t)(31 * c.b + 0.5f) << 11); | 
|  | break; | 
|  | case VK_FORMAT_A8B8G8R8_UINT_PACK32: | 
|  | case VK_FORMAT_A8B8G8R8_UNORM_PACK32: | 
|  | case VK_FORMAT_R8G8B8A8_UNORM: | 
|  | packed = ((uint32_t)(255 * c.a + 0.5f) << 24) | | 
|  | ((uint32_t)(255 * c.b + 0.5f) << 16) | | 
|  | ((uint32_t)(255 * c.g + 0.5f) << 8) | | 
|  | ((uint32_t)(255 * c.r + 0.5f) << 0); | 
|  | break; | 
|  | case VK_FORMAT_B8G8R8A8_UNORM: | 
|  | packed = ((uint32_t)(255 * c.a + 0.5f) << 24) | | 
|  | ((uint32_t)(255 * c.r + 0.5f) << 16) | | 
|  | ((uint32_t)(255 * c.g + 0.5f) << 8) | | 
|  | ((uint32_t)(255 * c.b + 0.5f) << 0); | 
|  | break; | 
|  | case VK_FORMAT_B10G11R11_UFLOAT_PACK32: | 
|  | packed = R11G11B10F(c.rgb); | 
|  | break; | 
|  | case VK_FORMAT_E5B9G9R9_UFLOAT_PACK32: | 
|  | packed = RGB9E5(c.rgb); | 
|  | break; | 
|  | case VK_FORMAT_D32_SFLOAT: | 
|  | ASSERT(clearFormat == VK_FORMAT_D32_SFLOAT); | 
|  | packed = c.d_as_u32;  // float reinterpreted as uint32 | 
|  | break; | 
|  | case VK_FORMAT_S8_UINT: | 
|  | ASSERT(clearFormat == VK_FORMAT_S8_UINT); | 
|  | packed = static_cast<uint8_t>(c.s); | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | VkImageSubresource subres = { | 
|  | subresourceRange.aspectMask, | 
|  | subresourceRange.baseMipLevel, | 
|  | subresourceRange.baseArrayLayer | 
|  | }; | 
|  | uint32_t lastMipLevel = dest->getLastMipLevel(subresourceRange); | 
|  | uint32_t lastLayer = dest->getLastLayerIndex(subresourceRange); | 
|  |  | 
|  | VkRect2D area = { { 0, 0 }, { 0, 0 } }; | 
|  | if(renderArea) | 
|  | { | 
|  | ASSERT(subresourceRange.levelCount == 1); | 
|  | area = *renderArea; | 
|  | } | 
|  |  | 
|  | for(; subres.mipLevel <= lastMipLevel; subres.mipLevel++) | 
|  | { | 
|  | int rowPitchBytes = dest->rowPitchBytes(aspect, subres.mipLevel); | 
|  | int slicePitchBytes = dest->slicePitchBytes(aspect, subres.mipLevel); | 
|  | VkExtent3D extent = dest->getMipLevelExtent(aspect, subres.mipLevel); | 
|  | if(!renderArea) | 
|  | { | 
|  | area.extent.width = extent.width; | 
|  | area.extent.height = extent.height; | 
|  | } | 
|  | if(dest->is3DSlice()) | 
|  | { | 
|  | extent.depth = 1;  // The 3D image is instead interpreted as a 2D image with layers | 
|  | } | 
|  |  | 
|  | for(subres.arrayLayer = subresourceRange.baseArrayLayer; subres.arrayLayer <= lastLayer; subres.arrayLayer++) | 
|  | { | 
|  | for(uint32_t depth = 0; depth < extent.depth; depth++) | 
|  | { | 
|  | uint8_t *slice = (uint8_t *)dest->getTexelPointer( | 
|  | { area.offset.x, area.offset.y, static_cast<int32_t>(depth) }, subres); | 
|  |  | 
|  | for(int j = 0; j < dest->getSampleCount(); j++) | 
|  | { | 
|  | uint8_t *d = slice; | 
|  |  | 
|  | switch(viewFormat.bytes()) | 
|  | { | 
|  | case 4: | 
|  | for(uint32_t i = 0; i < area.extent.height; i++) | 
|  | { | 
|  | ASSERT(d < dest->end()); | 
|  | sw::clear((uint32_t *)d, packed, area.extent.width); | 
|  | d += rowPitchBytes; | 
|  | } | 
|  | break; | 
|  | case 2: | 
|  | for(uint32_t i = 0; i < area.extent.height; i++) | 
|  | { | 
|  | ASSERT(d < dest->end()); | 
|  | sw::clear((uint16_t *)d, static_cast<uint16_t>(packed), area.extent.width); | 
|  | d += rowPitchBytes; | 
|  | } | 
|  | break; | 
|  | case 1: | 
|  | for(uint32_t i = 0; i < area.extent.height; i++) | 
|  | { | 
|  | ASSERT(d < dest->end()); | 
|  | memset(d, packed, area.extent.width); | 
|  | d += rowPitchBytes; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(false); | 
|  | } | 
|  |  | 
|  | slice += slicePitchBytes; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | dest->contentsChanged(subresourceRange); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Float4 Blitter::readFloat4(Pointer<Byte> element, const State &state) | 
|  | { | 
|  | Float4 c(0.0f, 0.0f, 0.0f, 1.0f); | 
|  |  | 
|  | switch(state.sourceFormat) | 
|  | { | 
|  | case VK_FORMAT_B4G4R4A4_UNORM_PACK16: | 
|  | c.w = Float(Int(*Pointer<Byte>(element)) & Int(0xF)); | 
|  | c.x = Float((Int(*Pointer<Byte>(element)) >> 4) & Int(0xF)); | 
|  | c.y = Float(Int(*Pointer<Byte>(element + 1)) & Int(0xF)); | 
|  | c.z = Float((Int(*Pointer<Byte>(element + 1)) >> 4) & Int(0xF)); | 
|  | break; | 
|  | case VK_FORMAT_R8_SINT: | 
|  | case VK_FORMAT_R8_SNORM: | 
|  | c.x = Float(Int(*Pointer<SByte>(element))); | 
|  | c.w = float(0x7F); | 
|  | break; | 
|  | case VK_FORMAT_R8_UNORM: | 
|  | case VK_FORMAT_R8_UINT: | 
|  | case VK_FORMAT_R8_SRGB: | 
|  | c.x = Float(Int(*Pointer<Byte>(element))); | 
|  | c.w = float(0xFF); | 
|  | break; | 
|  | case VK_FORMAT_R16_SINT: | 
|  | case VK_FORMAT_R16_SNORM: | 
|  | c.x = Float(Int(*Pointer<Short>(element))); | 
|  | c.w = float(0x7FFF); | 
|  | break; | 
|  | case VK_FORMAT_R16_UNORM: | 
|  | case VK_FORMAT_R16_UINT: | 
|  | c.x = Float(Int(*Pointer<UShort>(element))); | 
|  | c.w = float(0xFFFF); | 
|  | break; | 
|  | case VK_FORMAT_R32_SINT: | 
|  | c.x = Float(*Pointer<Int>(element)); | 
|  | c.w = float(0x7FFFFFFF); | 
|  | break; | 
|  | case VK_FORMAT_R32_UINT: | 
|  | c.x = Float(*Pointer<UInt>(element)); | 
|  | c.w = float(0xFFFFFFFF); | 
|  | break; | 
|  | case VK_FORMAT_B8G8R8A8_SRGB: | 
|  | case VK_FORMAT_B8G8R8A8_UNORM: | 
|  | c = Float4(*Pointer<Byte4>(element)).zyxw; | 
|  | break; | 
|  | case VK_FORMAT_A8B8G8R8_SINT_PACK32: | 
|  | case VK_FORMAT_R8G8B8A8_SINT: | 
|  | case VK_FORMAT_A8B8G8R8_SNORM_PACK32: | 
|  | case VK_FORMAT_R8G8B8A8_SNORM: | 
|  | c = Float4(*Pointer<SByte4>(element)); | 
|  | break; | 
|  | case VK_FORMAT_A8B8G8R8_UINT_PACK32: | 
|  | case VK_FORMAT_A8B8G8R8_UNORM_PACK32: | 
|  | case VK_FORMAT_R8G8B8A8_UNORM: | 
|  | case VK_FORMAT_R8G8B8A8_UINT: | 
|  | case VK_FORMAT_A8B8G8R8_SRGB_PACK32: | 
|  | case VK_FORMAT_R8G8B8A8_SRGB: | 
|  | c = Float4(*Pointer<Byte4>(element)); | 
|  | break; | 
|  | case VK_FORMAT_R16G16B16A16_SINT: | 
|  | case VK_FORMAT_R16G16B16A16_SNORM: | 
|  | c = Float4(*Pointer<Short4>(element)); | 
|  | break; | 
|  | case VK_FORMAT_R16G16B16A16_UNORM: | 
|  | case VK_FORMAT_R16G16B16A16_UINT: | 
|  | c = Float4(*Pointer<UShort4>(element)); | 
|  | break; | 
|  | case VK_FORMAT_R32G32B32A32_SINT: | 
|  | c = Float4(*Pointer<Int4>(element)); | 
|  | break; | 
|  | case VK_FORMAT_R32G32B32A32_UINT: | 
|  | c = Float4(*Pointer<UInt4>(element)); | 
|  | break; | 
|  | case VK_FORMAT_R8G8_SINT: | 
|  | case VK_FORMAT_R8G8_SNORM: | 
|  | c.x = Float(Int(*Pointer<SByte>(element + 0))); | 
|  | c.y = Float(Int(*Pointer<SByte>(element + 1))); | 
|  | c.w = float(0x7F); | 
|  | break; | 
|  | case VK_FORMAT_R8G8_UNORM: | 
|  | case VK_FORMAT_R8G8_UINT: | 
|  | case VK_FORMAT_R8G8_SRGB: | 
|  | c.x = Float(Int(*Pointer<Byte>(element + 0))); | 
|  | c.y = Float(Int(*Pointer<Byte>(element + 1))); | 
|  | c.w = float(0xFF); | 
|  | break; | 
|  | case VK_FORMAT_R16G16_SINT: | 
|  | case VK_FORMAT_R16G16_SNORM: | 
|  | c.x = Float(Int(*Pointer<Short>(element + 0))); | 
|  | c.y = Float(Int(*Pointer<Short>(element + 2))); | 
|  | c.w = float(0x7FFF); | 
|  | break; | 
|  | case VK_FORMAT_R16G16_UNORM: | 
|  | case VK_FORMAT_R16G16_UINT: | 
|  | c.x = Float(Int(*Pointer<UShort>(element + 0))); | 
|  | c.y = Float(Int(*Pointer<UShort>(element + 2))); | 
|  | c.w = float(0xFFFF); | 
|  | break; | 
|  | case VK_FORMAT_R32G32_SINT: | 
|  | c.x = Float(*Pointer<Int>(element + 0)); | 
|  | c.y = Float(*Pointer<Int>(element + 4)); | 
|  | c.w = float(0x7FFFFFFF); | 
|  | break; | 
|  | case VK_FORMAT_R32G32_UINT: | 
|  | c.x = Float(*Pointer<UInt>(element + 0)); | 
|  | c.y = Float(*Pointer<UInt>(element + 4)); | 
|  | c.w = float(0xFFFFFFFF); | 
|  | break; | 
|  | case VK_FORMAT_R32G32B32A32_SFLOAT: | 
|  | c = *Pointer<Float4>(element); | 
|  | break; | 
|  | case VK_FORMAT_R32G32_SFLOAT: | 
|  | c.x = *Pointer<Float>(element + 0); | 
|  | c.y = *Pointer<Float>(element + 4); | 
|  | break; | 
|  | case VK_FORMAT_R32_SFLOAT: | 
|  | c.x = *Pointer<Float>(element); | 
|  | break; | 
|  | case VK_FORMAT_R16G16B16A16_SFLOAT: | 
|  | c.w = Float(*Pointer<Half>(element + 6)); | 
|  | case VK_FORMAT_R16G16B16_SFLOAT: | 
|  | c.z = Float(*Pointer<Half>(element + 4)); | 
|  | case VK_FORMAT_R16G16_SFLOAT: | 
|  | c.y = Float(*Pointer<Half>(element + 2)); | 
|  | case VK_FORMAT_R16_SFLOAT: | 
|  | c.x = Float(*Pointer<Half>(element)); | 
|  | break; | 
|  | case VK_FORMAT_B10G11R11_UFLOAT_PACK32: | 
|  | c = r11g11b10Unpack(*Pointer<UInt>(element)); | 
|  | break; | 
|  | case VK_FORMAT_E5B9G9R9_UFLOAT_PACK32: | 
|  | // This type contains a common 5 bit exponent (E) and a 9 bit the mantissa for R, G and B. | 
|  | c.x = Float(*Pointer<UInt>(element) & UInt(0x000001FF));          // R's mantissa (bits 0-8) | 
|  | c.y = Float((*Pointer<UInt>(element) & UInt(0x0003FE00)) >> 9);   // G's mantissa (bits 9-17) | 
|  | c.z = Float((*Pointer<UInt>(element) & UInt(0x07FC0000)) >> 18);  // B's mantissa (bits 18-26) | 
|  | c *= Float4( | 
|  | // 2^E, using the exponent (bits 27-31) and treating it as an unsigned integer value | 
|  | Float(UInt(1) << ((*Pointer<UInt>(element) & UInt(0xF8000000)) >> 27)) * | 
|  | // Since the 9 bit mantissa values currently stored in RGB were converted straight | 
|  | // from int to float (in the [0, 1<<9] range instead of the [0, 1] range), they | 
|  | // are (1 << 9) times too high. | 
|  | // Also, the exponent has 5 bits and we compute the exponent bias of floating point | 
|  | // formats using "2^(k-1) - 1", so, in this case, the exponent bias is 2^(5-1)-1 = 15 | 
|  | // Exponent bias (15) + number of mantissa bits per component (9) = 24 | 
|  | Float(1.0f / (1 << 24))); | 
|  | c.w = 1.0f; | 
|  | break; | 
|  | case VK_FORMAT_R4G4B4A4_UNORM_PACK16: | 
|  | c.x = Float(Int((*Pointer<UShort>(element) & UShort(0xF000)) >> UShort(12))); | 
|  | c.y = Float(Int((*Pointer<UShort>(element) & UShort(0x0F00)) >> UShort(8))); | 
|  | c.z = Float(Int((*Pointer<UShort>(element) & UShort(0x00F0)) >> UShort(4))); | 
|  | c.w = Float(Int(*Pointer<UShort>(element) & UShort(0x000F))); | 
|  | break; | 
|  | case VK_FORMAT_A4B4G4R4_UNORM_PACK16: | 
|  | c.w = Float(Int((*Pointer<UShort>(element) & UShort(0xF000)) >> UShort(12))); | 
|  | c.z = Float(Int((*Pointer<UShort>(element) & UShort(0x0F00)) >> UShort(8))); | 
|  | c.y = Float(Int((*Pointer<UShort>(element) & UShort(0x00F0)) >> UShort(4))); | 
|  | c.x = Float(Int(*Pointer<UShort>(element) & UShort(0x000F))); | 
|  | break; | 
|  | case VK_FORMAT_A4R4G4B4_UNORM_PACK16: | 
|  | c.w = Float(Int((*Pointer<UShort>(element) & UShort(0xF000)) >> UShort(12))); | 
|  | c.x = Float(Int((*Pointer<UShort>(element) & UShort(0x0F00)) >> UShort(8))); | 
|  | c.y = Float(Int((*Pointer<UShort>(element) & UShort(0x00F0)) >> UShort(4))); | 
|  | c.z = Float(Int(*Pointer<UShort>(element) & UShort(0x000F))); | 
|  | break; | 
|  | case VK_FORMAT_R5G6B5_UNORM_PACK16: | 
|  | c.x = Float(Int((*Pointer<UShort>(element) & UShort(0xF800)) >> UShort(11))); | 
|  | c.y = Float(Int((*Pointer<UShort>(element) & UShort(0x07E0)) >> UShort(5))); | 
|  | c.z = Float(Int(*Pointer<UShort>(element) & UShort(0x001F))); | 
|  | break; | 
|  | case VK_FORMAT_B5G6R5_UNORM_PACK16: | 
|  | c.z = Float(Int((*Pointer<UShort>(element) & UShort(0xF800)) >> UShort(11))); | 
|  | c.y = Float(Int((*Pointer<UShort>(element) & UShort(0x07E0)) >> UShort(5))); | 
|  | c.x = Float(Int(*Pointer<UShort>(element) & UShort(0x001F))); | 
|  | break; | 
|  | case VK_FORMAT_R5G5B5A1_UNORM_PACK16: | 
|  | c.x = Float(Int((*Pointer<UShort>(element) & UShort(0xF800)) >> UShort(11))); | 
|  | c.y = Float(Int((*Pointer<UShort>(element) & UShort(0x07C0)) >> UShort(6))); | 
|  | c.z = Float(Int((*Pointer<UShort>(element) & UShort(0x003E)) >> UShort(1))); | 
|  | c.w = Float(Int(*Pointer<UShort>(element) & UShort(0x0001))); | 
|  | break; | 
|  | case VK_FORMAT_B5G5R5A1_UNORM_PACK16: | 
|  | c.z = Float(Int((*Pointer<UShort>(element) & UShort(0xF800)) >> UShort(11))); | 
|  | c.y = Float(Int((*Pointer<UShort>(element) & UShort(0x07C0)) >> UShort(6))); | 
|  | c.x = Float(Int((*Pointer<UShort>(element) & UShort(0x003E)) >> UShort(1))); | 
|  | c.w = Float(Int(*Pointer<UShort>(element) & UShort(0x0001))); | 
|  | break; | 
|  | case VK_FORMAT_A1R5G5B5_UNORM_PACK16: | 
|  | c.w = Float(Int((*Pointer<UShort>(element) & UShort(0x8000)) >> UShort(15))); | 
|  | c.x = Float(Int((*Pointer<UShort>(element) & UShort(0x7C00)) >> UShort(10))); | 
|  | c.y = Float(Int((*Pointer<UShort>(element) & UShort(0x03E0)) >> UShort(5))); | 
|  | c.z = Float(Int(*Pointer<UShort>(element) & UShort(0x001F))); | 
|  | break; | 
|  | case VK_FORMAT_A2B10G10R10_UNORM_PACK32: | 
|  | case VK_FORMAT_A2B10G10R10_UINT_PACK32: | 
|  | c.x = Float(Int((*Pointer<UInt>(element) & UInt(0x000003FF)))); | 
|  | c.y = Float(Int((*Pointer<UInt>(element) & UInt(0x000FFC00)) >> 10)); | 
|  | c.z = Float(Int((*Pointer<UInt>(element) & UInt(0x3FF00000)) >> 20)); | 
|  | c.w = Float(Int((*Pointer<UInt>(element) & UInt(0xC0000000)) >> 30)); | 
|  | break; | 
|  | case VK_FORMAT_A2R10G10B10_UNORM_PACK32: | 
|  | case VK_FORMAT_A2R10G10B10_UINT_PACK32: | 
|  | c.z = Float(Int((*Pointer<UInt>(element) & UInt(0x000003FF)))); | 
|  | c.y = Float(Int((*Pointer<UInt>(element) & UInt(0x000FFC00)) >> 10)); | 
|  | c.x = Float(Int((*Pointer<UInt>(element) & UInt(0x3FF00000)) >> 20)); | 
|  | c.w = Float(Int((*Pointer<UInt>(element) & UInt(0xC0000000)) >> 30)); | 
|  | break; | 
|  | case VK_FORMAT_D16_UNORM: | 
|  | c.x = Float(Int((*Pointer<UShort>(element)))); | 
|  | break; | 
|  | case VK_FORMAT_X8_D24_UNORM_PACK32: | 
|  | c.x = Float(Int((*Pointer<UInt>(element) & UInt(0xFFFFFF00)) >> 8)); | 
|  | break; | 
|  | case VK_FORMAT_D32_SFLOAT: | 
|  | c.x = *Pointer<Float>(element); | 
|  | break; | 
|  | case VK_FORMAT_S8_UINT: | 
|  | c.x = Float(Int(*Pointer<Byte>(element))); | 
|  | break; | 
|  | default: | 
|  | UNSUPPORTED("Blitter source format %d", (int)state.sourceFormat); | 
|  | } | 
|  |  | 
|  | return c; | 
|  | } | 
|  |  | 
|  | void Blitter::write(Float4 &c, Pointer<Byte> element, const State &state) | 
|  | { | 
|  | bool writeR = state.writeRed; | 
|  | bool writeG = state.writeGreen; | 
|  | bool writeB = state.writeBlue; | 
|  | bool writeA = state.writeAlpha; | 
|  | bool writeRGBA = writeR && writeG && writeB && writeA; | 
|  |  | 
|  | switch(state.destFormat) | 
|  | { | 
|  | case VK_FORMAT_R4G4_UNORM_PACK8: | 
|  | if(writeR | writeG) | 
|  | { | 
|  | if(!writeR) | 
|  | { | 
|  | *Pointer<Byte>(element) = (Byte(RoundInt(Float(c.y))) & Byte(0xF)) | | 
|  | (*Pointer<Byte>(element) & Byte(0xF0)); | 
|  | } | 
|  | else if(!writeG) | 
|  | { | 
|  | *Pointer<Byte>(element) = (*Pointer<Byte>(element) & Byte(0xF)) | | 
|  | (Byte(RoundInt(Float(c.x))) << Byte(4)); | 
|  | } | 
|  | else | 
|  | { | 
|  | *Pointer<Byte>(element) = (Byte(RoundInt(Float(c.y))) & Byte(0xF)) | | 
|  | (Byte(RoundInt(Float(c.x))) << Byte(4)); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_R4G4B4A4_UNORM_PACK16: | 
|  | if(writeRGBA) | 
|  | { | 
|  | *Pointer<UShort>(element) = UShort(PackFields(RoundInt(c) & Int4(0xF), { 12, 8, 4, 0 })); | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned short mask = (writeA ? 0x000F : 0x0000) | | 
|  | (writeB ? 0x00F0 : 0x0000) | | 
|  | (writeG ? 0x0F00 : 0x0000) | | 
|  | (writeR ? 0xF000 : 0x0000); | 
|  | unsigned short unmask = ~mask; | 
|  | *Pointer<UShort>(element) = (*Pointer<UShort>(element) & UShort(unmask)) | | 
|  | (UShort(PackFields(RoundInt(c) & Int4(0xF), { 12, 8, 4, 0 })) & UShort(mask)); | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_B4G4R4A4_UNORM_PACK16: | 
|  | if(writeRGBA) | 
|  | { | 
|  | *Pointer<UShort>(element) = UShort(PackFields(RoundInt(c) & Int4(0xF), { 4, 8, 12, 0 })); | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned short mask = (writeA ? 0x000F : 0x0000) | | 
|  | (writeR ? 0x00F0 : 0x0000) | | 
|  | (writeG ? 0x0F00 : 0x0000) | | 
|  | (writeB ? 0xF000 : 0x0000); | 
|  | unsigned short unmask = ~mask; | 
|  | *Pointer<UShort>(element) = (*Pointer<UShort>(element) & UShort(unmask)) | | 
|  | (UShort(PackFields(RoundInt(c) & Int4(0xF), { 4, 8, 12, 0 })) & UShort(mask)); | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_A4R4G4B4_UNORM_PACK16: | 
|  | if(writeRGBA) | 
|  | { | 
|  | *Pointer<UShort>(element) = UShort(PackFields(RoundInt(c) & Int4(0xF), { 8, 4, 0, 12 })); | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned short mask = (writeB ? 0x000F : 0x0000) | | 
|  | (writeG ? 0x00F0 : 0x0000) | | 
|  | (writeR ? 0x0F00 : 0x0000) | | 
|  | (writeA ? 0xF000 : 0x0000); | 
|  | unsigned short unmask = ~mask; | 
|  | *Pointer<UShort>(element) = (*Pointer<UShort>(element) & UShort(unmask)) | | 
|  | (UShort(PackFields(RoundInt(c) & Int4(0xF), { 8, 4, 0, 12 })) & UShort(mask)); | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_A4B4G4R4_UNORM_PACK16: | 
|  | if(writeRGBA) | 
|  | { | 
|  | *Pointer<UShort>(element) = UShort(PackFields(RoundInt(c) & Int4(0xF), { 0, 4, 8, 12 })); | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned short mask = (writeR ? 0x000F : 0x0000) | | 
|  | (writeG ? 0x00F0 : 0x0000) | | 
|  | (writeB ? 0x0F00 : 0x0000) | | 
|  | (writeA ? 0xF000 : 0x0000); | 
|  | unsigned short unmask = ~mask; | 
|  | *Pointer<UShort>(element) = (*Pointer<UShort>(element) & UShort(unmask)) | | 
|  | (UShort(PackFields(RoundInt(c) & Int4(0xF), { 0, 4, 8, 12 })) & UShort(mask)); | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_B8G8R8A8_SRGB: | 
|  | case VK_FORMAT_B8G8R8A8_UNORM: | 
|  | if(writeRGBA) | 
|  | { | 
|  | Short4 c0 = RoundShort4(c.zyxw); | 
|  | *Pointer<Byte4>(element) = Byte4(PackUnsigned(c0, c0)); | 
|  | } | 
|  | else | 
|  | { | 
|  | if(writeB) { *Pointer<Byte>(element + 0) = Byte(RoundInt(Float(c.z))); } | 
|  | if(writeG) { *Pointer<Byte>(element + 1) = Byte(RoundInt(Float(c.y))); } | 
|  | if(writeR) { *Pointer<Byte>(element + 2) = Byte(RoundInt(Float(c.x))); } | 
|  | if(writeA) { *Pointer<Byte>(element + 3) = Byte(RoundInt(Float(c.w))); } | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_B8G8R8_SNORM: | 
|  | if(writeB) { *Pointer<SByte>(element + 0) = SByte(RoundInt(Float(c.z))); } | 
|  | if(writeG) { *Pointer<SByte>(element + 1) = SByte(RoundInt(Float(c.y))); } | 
|  | if(writeR) { *Pointer<SByte>(element + 2) = SByte(RoundInt(Float(c.x))); } | 
|  | break; | 
|  | case VK_FORMAT_B8G8R8_UNORM: | 
|  | case VK_FORMAT_B8G8R8_SRGB: | 
|  | if(writeB) { *Pointer<Byte>(element + 0) = Byte(RoundInt(Float(c.z))); } | 
|  | if(writeG) { *Pointer<Byte>(element + 1) = Byte(RoundInt(Float(c.y))); } | 
|  | if(writeR) { *Pointer<Byte>(element + 2) = Byte(RoundInt(Float(c.x))); } | 
|  | break; | 
|  | case VK_FORMAT_A8B8G8R8_UNORM_PACK32: | 
|  | case VK_FORMAT_R8G8B8A8_UNORM: | 
|  | case VK_FORMAT_A8B8G8R8_SRGB_PACK32: | 
|  | case VK_FORMAT_R8G8B8A8_SRGB: | 
|  | case VK_FORMAT_A8B8G8R8_UINT_PACK32: | 
|  | case VK_FORMAT_R8G8B8A8_UINT: | 
|  | case VK_FORMAT_R8G8B8A8_USCALED: | 
|  | case VK_FORMAT_A8B8G8R8_USCALED_PACK32: | 
|  | if(writeRGBA) | 
|  | { | 
|  | Short4 c0 = RoundShort4(c); | 
|  | *Pointer<Byte4>(element) = Byte4(PackUnsigned(c0, c0)); | 
|  | } | 
|  | else | 
|  | { | 
|  | if(writeR) { *Pointer<Byte>(element + 0) = Byte(RoundInt(Float(c.x))); } | 
|  | if(writeG) { *Pointer<Byte>(element + 1) = Byte(RoundInt(Float(c.y))); } | 
|  | if(writeB) { *Pointer<Byte>(element + 2) = Byte(RoundInt(Float(c.z))); } | 
|  | if(writeA) { *Pointer<Byte>(element + 3) = Byte(RoundInt(Float(c.w))); } | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_R32G32B32A32_SFLOAT: | 
|  | if(writeRGBA) | 
|  | { | 
|  | *Pointer<Float4>(element) = c; | 
|  | } | 
|  | else | 
|  | { | 
|  | if(writeR) { *Pointer<Float>(element) = c.x; } | 
|  | if(writeG) { *Pointer<Float>(element + 4) = c.y; } | 
|  | if(writeB) { *Pointer<Float>(element + 8) = c.z; } | 
|  | if(writeA) { *Pointer<Float>(element + 12) = c.w; } | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_R32G32B32_SFLOAT: | 
|  | if(writeR) { *Pointer<Float>(element) = c.x; } | 
|  | if(writeG) { *Pointer<Float>(element + 4) = c.y; } | 
|  | if(writeB) { *Pointer<Float>(element + 8) = c.z; } | 
|  | break; | 
|  | case VK_FORMAT_R32G32_SFLOAT: | 
|  | if(writeR && writeG) | 
|  | { | 
|  | *Pointer<Float2>(element) = Float2(c); | 
|  | } | 
|  | else | 
|  | { | 
|  | if(writeR) { *Pointer<Float>(element) = c.x; } | 
|  | if(writeG) { *Pointer<Float>(element + 4) = c.y; } | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_R32_SFLOAT: | 
|  | if(writeR) { *Pointer<Float>(element) = c.x; } | 
|  | break; | 
|  | case VK_FORMAT_R16G16B16A16_SFLOAT: | 
|  | if(writeA) { *Pointer<Half>(element + 6) = Half(c.w); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R16G16B16_SFLOAT: | 
|  | if(writeB) { *Pointer<Half>(element + 4) = Half(c.z); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R16G16_SFLOAT: | 
|  | if(writeG) { *Pointer<Half>(element + 2) = Half(c.y); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R16_SFLOAT: | 
|  | if(writeR) { *Pointer<Half>(element) = Half(c.x); } | 
|  | break; | 
|  | case VK_FORMAT_B10G11R11_UFLOAT_PACK32: | 
|  | { | 
|  | UInt rgb = r11g11b10Pack(c); | 
|  |  | 
|  | UInt old = *Pointer<UInt>(element); | 
|  |  | 
|  | unsigned int mask = (writeR ? 0x000007FF : 0) | | 
|  | (writeG ? 0x003FF800 : 0) | | 
|  | (writeB ? 0xFFC00000 : 0); | 
|  |  | 
|  | *Pointer<UInt>(element) = (rgb & mask) | (old & ~mask); | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_E5B9G9R9_UFLOAT_PACK32: | 
|  | { | 
|  | ASSERT(writeRGBA);  // Can't sensibly write just part of this format. | 
|  |  | 
|  | // Vulkan 1.1.117 section 15.2.1 RGB to Shared Exponent Conversion | 
|  |  | 
|  | constexpr int N = 9;       // number of mantissa bits per component | 
|  | constexpr int B = 15;      // exponent bias | 
|  | constexpr int E_max = 31;  // maximum possible biased exponent value | 
|  |  | 
|  | // Maximum representable value. | 
|  | constexpr float sharedexp_max = ((static_cast<float>(1 << N) - 1) / static_cast<float>(1 << N)) * static_cast<float>(1 << (E_max - B)); | 
|  |  | 
|  | // Clamp components to valid range. NaN becomes 0. | 
|  | Float red_c = Min(IfThenElse(!(c.x > 0), Float(0), Float(c.x)), sharedexp_max); | 
|  | Float green_c = Min(IfThenElse(!(c.y > 0), Float(0), Float(c.y)), sharedexp_max); | 
|  | Float blue_c = Min(IfThenElse(!(c.z > 0), Float(0), Float(c.z)), sharedexp_max); | 
|  |  | 
|  | // We're reducing the mantissa to 9 bits, so we must round up if the next | 
|  | // bit is 1. In other words add 0.5 to the new mantissa's position and | 
|  | // allow overflow into the exponent so we can scale correctly. | 
|  | constexpr int half = 1 << (23 - N); | 
|  | Float red_r = As<Float>(As<Int>(red_c) + half); | 
|  | Float green_r = As<Float>(As<Int>(green_c) + half); | 
|  | Float blue_r = As<Float>(As<Int>(blue_c) + half); | 
|  |  | 
|  | // The largest component determines the shared exponent. It can't be lower | 
|  | // than 0 (after bias subtraction) so also limit to the mimimum representable. | 
|  | constexpr float min_s = 0.5f / (1 << B); | 
|  | Float max_s = Max(Max(red_r, green_r), Max(blue_r, min_s)); | 
|  |  | 
|  | // Obtain the reciprocal of the shared exponent by inverting the bits, | 
|  | // and scale by the new mantissa's size. Note that the IEEE-754 single-precision | 
|  | // format has an implicit leading 1, but this shared component format does not. | 
|  | Float scale = As<Float>((As<Int>(max_s) & 0x7F800000) ^ 0x7F800000) * (1 << (N - 2)); | 
|  |  | 
|  | UInt R9 = RoundInt(red_c * scale); | 
|  | UInt G9 = UInt(RoundInt(green_c * scale)); | 
|  | UInt B9 = UInt(RoundInt(blue_c * scale)); | 
|  | UInt E5 = (As<UInt>(max_s) >> 23) - 127 + 15 + 1; | 
|  |  | 
|  | UInt E5B9G9R9 = (E5 << 27) | (B9 << 18) | (G9 << 9) | R9; | 
|  |  | 
|  | *Pointer<UInt>(element) = E5B9G9R9; | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_B8G8R8A8_SNORM: | 
|  | if(writeB) { *Pointer<SByte>(element) = SByte(RoundInt(Float(c.z))); } | 
|  | if(writeG) { *Pointer<SByte>(element + 1) = SByte(RoundInt(Float(c.y))); } | 
|  | if(writeR) { *Pointer<SByte>(element + 2) = SByte(RoundInt(Float(c.x))); } | 
|  | if(writeA) { *Pointer<SByte>(element + 3) = SByte(RoundInt(Float(c.w))); } | 
|  | break; | 
|  | case VK_FORMAT_A8B8G8R8_SINT_PACK32: | 
|  | case VK_FORMAT_R8G8B8A8_SINT: | 
|  | case VK_FORMAT_A8B8G8R8_SNORM_PACK32: | 
|  | case VK_FORMAT_R8G8B8A8_SNORM: | 
|  | case VK_FORMAT_R8G8B8A8_SSCALED: | 
|  | case VK_FORMAT_A8B8G8R8_SSCALED_PACK32: | 
|  | if(writeA) { *Pointer<SByte>(element + 3) = SByte(RoundInt(Float(c.w))); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R8G8B8_SINT: | 
|  | case VK_FORMAT_R8G8B8_SNORM: | 
|  | case VK_FORMAT_R8G8B8_SSCALED: | 
|  | if(writeB) { *Pointer<SByte>(element + 2) = SByte(RoundInt(Float(c.z))); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R8G8_SINT: | 
|  | case VK_FORMAT_R8G8_SNORM: | 
|  | case VK_FORMAT_R8G8_SSCALED: | 
|  | if(writeG) { *Pointer<SByte>(element + 1) = SByte(RoundInt(Float(c.y))); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R8_SINT: | 
|  | case VK_FORMAT_R8_SNORM: | 
|  | case VK_FORMAT_R8_SSCALED: | 
|  | if(writeR) { *Pointer<SByte>(element) = SByte(RoundInt(Float(c.x))); } | 
|  | break; | 
|  | case VK_FORMAT_R8G8B8_UINT: | 
|  | case VK_FORMAT_R8G8B8_UNORM: | 
|  | case VK_FORMAT_R8G8B8_USCALED: | 
|  | case VK_FORMAT_R8G8B8_SRGB: | 
|  | if(writeB) { *Pointer<Byte>(element + 2) = Byte(RoundInt(Float(c.z))); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R8G8_UINT: | 
|  | case VK_FORMAT_R8G8_UNORM: | 
|  | case VK_FORMAT_R8G8_USCALED: | 
|  | case VK_FORMAT_R8G8_SRGB: | 
|  | if(writeG) { *Pointer<Byte>(element + 1) = Byte(RoundInt(Float(c.y))); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R8_UINT: | 
|  | case VK_FORMAT_R8_UNORM: | 
|  | case VK_FORMAT_R8_USCALED: | 
|  | case VK_FORMAT_R8_SRGB: | 
|  | if(writeR) { *Pointer<Byte>(element) = Byte(RoundInt(Float(c.x))); } | 
|  | break; | 
|  | case VK_FORMAT_R16G16B16A16_SINT: | 
|  | case VK_FORMAT_R16G16B16A16_SNORM: | 
|  | case VK_FORMAT_R16G16B16A16_SSCALED: | 
|  | if(writeRGBA) | 
|  | { | 
|  | *Pointer<Short4>(element) = Short4(RoundInt(c)); | 
|  | } | 
|  | else | 
|  | { | 
|  | if(writeR) { *Pointer<Short>(element) = Short(RoundInt(Float(c.x))); } | 
|  | if(writeG) { *Pointer<Short>(element + 2) = Short(RoundInt(Float(c.y))); } | 
|  | if(writeB) { *Pointer<Short>(element + 4) = Short(RoundInt(Float(c.z))); } | 
|  | if(writeA) { *Pointer<Short>(element + 6) = Short(RoundInt(Float(c.w))); } | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_R16G16B16_SINT: | 
|  | case VK_FORMAT_R16G16B16_SNORM: | 
|  | case VK_FORMAT_R16G16B16_SSCALED: | 
|  | if(writeR) { *Pointer<Short>(element) = Short(RoundInt(Float(c.x))); } | 
|  | if(writeG) { *Pointer<Short>(element + 2) = Short(RoundInt(Float(c.y))); } | 
|  | if(writeB) { *Pointer<Short>(element + 4) = Short(RoundInt(Float(c.z))); } | 
|  | break; | 
|  | case VK_FORMAT_R16G16_SINT: | 
|  | case VK_FORMAT_R16G16_SNORM: | 
|  | case VK_FORMAT_R16G16_SSCALED: | 
|  | if(writeR && writeG) | 
|  | { | 
|  | *Pointer<Short2>(element) = Short2(Short4(RoundInt(c))); | 
|  | } | 
|  | else | 
|  | { | 
|  | if(writeR) { *Pointer<Short>(element) = Short(RoundInt(Float(c.x))); } | 
|  | if(writeG) { *Pointer<Short>(element + 2) = Short(RoundInt(Float(c.y))); } | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_R16_SINT: | 
|  | case VK_FORMAT_R16_SNORM: | 
|  | case VK_FORMAT_R16_SSCALED: | 
|  | if(writeR) { *Pointer<Short>(element) = Short(RoundInt(Float(c.x))); } | 
|  | break; | 
|  | case VK_FORMAT_R16G16B16A16_UINT: | 
|  | case VK_FORMAT_R16G16B16A16_UNORM: | 
|  | case VK_FORMAT_R16G16B16A16_USCALED: | 
|  | if(writeRGBA) | 
|  | { | 
|  | *Pointer<UShort4>(element) = UShort4(RoundInt(c)); | 
|  | } | 
|  | else | 
|  | { | 
|  | if(writeR) { *Pointer<UShort>(element) = UShort(RoundInt(Float(c.x))); } | 
|  | if(writeG) { *Pointer<UShort>(element + 2) = UShort(RoundInt(Float(c.y))); } | 
|  | if(writeB) { *Pointer<UShort>(element + 4) = UShort(RoundInt(Float(c.z))); } | 
|  | if(writeA) { *Pointer<UShort>(element + 6) = UShort(RoundInt(Float(c.w))); } | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_R16G16B16_UINT: | 
|  | case VK_FORMAT_R16G16B16_UNORM: | 
|  | case VK_FORMAT_R16G16B16_USCALED: | 
|  | if(writeR) { *Pointer<UShort>(element) = UShort(RoundInt(Float(c.x))); } | 
|  | if(writeG) { *Pointer<UShort>(element + 2) = UShort(RoundInt(Float(c.y))); } | 
|  | if(writeB) { *Pointer<UShort>(element + 4) = UShort(RoundInt(Float(c.z))); } | 
|  | break; | 
|  | case VK_FORMAT_R16G16_UINT: | 
|  | case VK_FORMAT_R16G16_UNORM: | 
|  | case VK_FORMAT_R16G16_USCALED: | 
|  | if(writeR && writeG) | 
|  | { | 
|  | *Pointer<UShort2>(element) = UShort2(UShort4(RoundInt(c))); | 
|  | } | 
|  | else | 
|  | { | 
|  | if(writeR) { *Pointer<UShort>(element) = UShort(RoundInt(Float(c.x))); } | 
|  | if(writeG) { *Pointer<UShort>(element + 2) = UShort(RoundInt(Float(c.y))); } | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_R16_UINT: | 
|  | case VK_FORMAT_R16_UNORM: | 
|  | case VK_FORMAT_R16_USCALED: | 
|  | if(writeR) { *Pointer<UShort>(element) = UShort(RoundInt(Float(c.x))); } | 
|  | break; | 
|  | case VK_FORMAT_R32G32B32A32_SINT: | 
|  | if(writeRGBA) | 
|  | { | 
|  | *Pointer<Int4>(element) = RoundInt(c); | 
|  | } | 
|  | else | 
|  | { | 
|  | if(writeR) { *Pointer<Int>(element) = RoundInt(Float(c.x)); } | 
|  | if(writeG) { *Pointer<Int>(element + 4) = RoundInt(Float(c.y)); } | 
|  | if(writeB) { *Pointer<Int>(element + 8) = RoundInt(Float(c.z)); } | 
|  | if(writeA) { *Pointer<Int>(element + 12) = RoundInt(Float(c.w)); } | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_R32G32B32_SINT: | 
|  | if(writeB) { *Pointer<Int>(element + 8) = RoundInt(Float(c.z)); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R32G32_SINT: | 
|  | if(writeG) { *Pointer<Int>(element + 4) = RoundInt(Float(c.y)); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R32_SINT: | 
|  | if(writeR) { *Pointer<Int>(element) = RoundInt(Float(c.x)); } | 
|  | break; | 
|  | case VK_FORMAT_R32G32B32A32_UINT: | 
|  | if(writeRGBA) | 
|  | { | 
|  | *Pointer<UInt4>(element) = UInt4(RoundInt(c)); | 
|  | } | 
|  | else | 
|  | { | 
|  | if(writeR) { *Pointer<UInt>(element) = As<UInt>(RoundInt(Float(c.x))); } | 
|  | if(writeG) { *Pointer<UInt>(element + 4) = As<UInt>(RoundInt(Float(c.y))); } | 
|  | if(writeB) { *Pointer<UInt>(element + 8) = As<UInt>(RoundInt(Float(c.z))); } | 
|  | if(writeA) { *Pointer<UInt>(element + 12) = As<UInt>(RoundInt(Float(c.w))); } | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_R32G32B32_UINT: | 
|  | if(writeB) { *Pointer<UInt>(element + 8) = As<UInt>(RoundInt(Float(c.z))); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R32G32_UINT: | 
|  | if(writeG) { *Pointer<UInt>(element + 4) = As<UInt>(RoundInt(Float(c.y))); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R32_UINT: | 
|  | if(writeR) { *Pointer<UInt>(element) = As<UInt>(RoundInt(Float(c.x))); } | 
|  | break; | 
|  | case VK_FORMAT_R5G6B5_UNORM_PACK16: | 
|  | if(writeR && writeG && writeB) | 
|  | { | 
|  | *Pointer<UShort>(element) = UShort(PackFields(RoundInt(c.xyzz), { 11, 5, 0, 0 })); | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned short mask = (writeB ? 0x001F : 0x0000) | (writeG ? 0x07E0 : 0x0000) | (writeR ? 0xF800 : 0x0000); | 
|  | unsigned short unmask = ~mask; | 
|  | *Pointer<UShort>(element) = (*Pointer<UShort>(element) & UShort(unmask)) | | 
|  | (UShort(PackFields(RoundInt(c.xyzz), { 11, 5, 0, 0 })) & | 
|  | UShort(mask)); | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_B5G6R5_UNORM_PACK16: | 
|  | if(writeR && writeG && writeB) | 
|  | { | 
|  | *Pointer<UShort>(element) = UShort(PackFields(RoundInt(c.zyxx), { 11, 5, 0, 0 })); | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned short mask = (writeR ? 0x001F : 0x0000) | (writeG ? 0x07E0 : 0x0000) | (writeB ? 0xF800 : 0x0000); | 
|  | unsigned short unmask = ~mask; | 
|  | *Pointer<UShort>(element) = (*Pointer<UShort>(element) & UShort(unmask)) | | 
|  | (UShort(PackFields(RoundInt(c.zyxx), { 11, 5, 0, 0 })) & | 
|  | UShort(mask)); | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_R5G5B5A1_UNORM_PACK16: | 
|  | if(writeRGBA) | 
|  | { | 
|  | *Pointer<UShort>(element) = UShort(PackFields(RoundInt(c), { 11, 6, 1, 0 })); | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned short mask = (writeA ? 0x8000 : 0x0000) | | 
|  | (writeR ? 0x7C00 : 0x0000) | | 
|  | (writeG ? 0x03E0 : 0x0000) | | 
|  | (writeB ? 0x001F : 0x0000); | 
|  | unsigned short unmask = ~mask; | 
|  | *Pointer<UShort>(element) = (*Pointer<UShort>(element) & UShort(unmask)) | | 
|  | (UShort(PackFields(RoundInt(c), { 11, 6, 1, 0 })) & | 
|  | UShort(mask)); | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_B5G5R5A1_UNORM_PACK16: | 
|  | if(writeRGBA) | 
|  | { | 
|  | *Pointer<UShort>(element) = UShort(PackFields(RoundInt(c), { 1, 6, 11, 0 })); | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned short mask = (writeA ? 0x8000 : 0x0000) | | 
|  | (writeR ? 0x7C00 : 0x0000) | | 
|  | (writeG ? 0x03E0 : 0x0000) | | 
|  | (writeB ? 0x001F : 0x0000); | 
|  | unsigned short unmask = ~mask; | 
|  | *Pointer<UShort>(element) = (*Pointer<UShort>(element) & UShort(unmask)) | | 
|  | (UShort(PackFields(RoundInt(c), { 1, 6, 11, 0 })) & | 
|  | UShort(mask)); | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_A1R5G5B5_UNORM_PACK16: | 
|  | if(writeRGBA) | 
|  | { | 
|  | *Pointer<UShort>(element) = UShort(PackFields(RoundInt(c), { 10, 5, 0, 15 })); | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned short mask = (writeA ? 0x8000 : 0x0000) | | 
|  | (writeR ? 0x7C00 : 0x0000) | | 
|  | (writeG ? 0x03E0 : 0x0000) | | 
|  | (writeB ? 0x001F : 0x0000); | 
|  | unsigned short unmask = ~mask; | 
|  | *Pointer<UShort>(element) = (*Pointer<UShort>(element) & UShort(unmask)) | | 
|  | (UShort(PackFields(RoundInt(c), { 10, 5, 0, 15 })) & | 
|  | UShort(mask)); | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_A2B10G10R10_UNORM_PACK32: | 
|  | case VK_FORMAT_A2B10G10R10_UINT_PACK32: | 
|  | case VK_FORMAT_A2B10G10R10_SNORM_PACK32: | 
|  | if(writeRGBA) | 
|  | { | 
|  | *Pointer<UInt>(element) = As<UInt>(PackFields(RoundInt(c), { 0, 10, 20, 30 })); | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned int mask = (writeA ? 0xC0000000 : 0x0000) | | 
|  | (writeB ? 0x3FF00000 : 0x0000) | | 
|  | (writeG ? 0x000FFC00 : 0x0000) | | 
|  | (writeR ? 0x000003FF : 0x0000); | 
|  | unsigned int unmask = ~mask; | 
|  | *Pointer<UInt>(element) = (*Pointer<UInt>(element) & UInt(unmask)) | | 
|  | (As<UInt>(PackFields(RoundInt(c), { 0, 10, 20, 30 })) & | 
|  | UInt(mask)); | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_A2R10G10B10_UNORM_PACK32: | 
|  | case VK_FORMAT_A2R10G10B10_UINT_PACK32: | 
|  | case VK_FORMAT_A2R10G10B10_SNORM_PACK32: | 
|  | if(writeRGBA) | 
|  | { | 
|  | *Pointer<UInt>(element) = As<UInt>(PackFields(RoundInt(c), { 20, 10, 0, 30 })); | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned int mask = (writeA ? 0xC0000000 : 0x0000) | | 
|  | (writeR ? 0x3FF00000 : 0x0000) | | 
|  | (writeG ? 0x000FFC00 : 0x0000) | | 
|  | (writeB ? 0x000003FF : 0x0000); | 
|  | unsigned int unmask = ~mask; | 
|  | *Pointer<UInt>(element) = (*Pointer<UInt>(element) & UInt(unmask)) | | 
|  | (As<UInt>(PackFields(RoundInt(c), { 20, 10, 0, 30 })) & | 
|  | UInt(mask)); | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_D16_UNORM: | 
|  | *Pointer<UShort>(element) = UShort(RoundInt(Float(c.x))); | 
|  | break; | 
|  | case VK_FORMAT_X8_D24_UNORM_PACK32: | 
|  | *Pointer<UInt>(element) = UInt(RoundInt(Float(c.x)) << 8); | 
|  | break; | 
|  | case VK_FORMAT_D32_SFLOAT: | 
|  | *Pointer<Float>(element) = c.x; | 
|  | break; | 
|  | case VK_FORMAT_S8_UINT: | 
|  | *Pointer<Byte>(element) = Byte(RoundInt(Float(c.x))); | 
|  | break; | 
|  | default: | 
|  | UNSUPPORTED("Blitter destination format %d", (int)state.destFormat); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | Int4 Blitter::readInt4(Pointer<Byte> element, const State &state) | 
|  | { | 
|  | Int4 c(0, 0, 0, 1); | 
|  |  | 
|  | switch(state.sourceFormat) | 
|  | { | 
|  | case VK_FORMAT_A8B8G8R8_SINT_PACK32: | 
|  | case VK_FORMAT_R8G8B8A8_SINT: | 
|  | c = Insert(c, Int(*Pointer<SByte>(element + 3)), 3); | 
|  | c = Insert(c, Int(*Pointer<SByte>(element + 2)), 2); | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R8G8_SINT: | 
|  | c = Insert(c, Int(*Pointer<SByte>(element + 1)), 1); | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R8_SINT: | 
|  | c = Insert(c, Int(*Pointer<SByte>(element)), 0); | 
|  | break; | 
|  | case VK_FORMAT_A2B10G10R10_UINT_PACK32: | 
|  | c = Insert(c, Int((*Pointer<UInt>(element) & UInt(0x000003FF))), 0); | 
|  | c = Insert(c, Int((*Pointer<UInt>(element) & UInt(0x000FFC00)) >> 10), 1); | 
|  | c = Insert(c, Int((*Pointer<UInt>(element) & UInt(0x3FF00000)) >> 20), 2); | 
|  | c = Insert(c, Int((*Pointer<UInt>(element) & UInt(0xC0000000)) >> 30), 3); | 
|  | break; | 
|  | case VK_FORMAT_A2R10G10B10_UINT_PACK32: | 
|  | c = Insert(c, Int((*Pointer<UInt>(element) & UInt(0x000003FF))), 2); | 
|  | c = Insert(c, Int((*Pointer<UInt>(element) & UInt(0x000FFC00)) >> 10), 1); | 
|  | c = Insert(c, Int((*Pointer<UInt>(element) & UInt(0x3FF00000)) >> 20), 0); | 
|  | c = Insert(c, Int((*Pointer<UInt>(element) & UInt(0xC0000000)) >> 30), 3); | 
|  | break; | 
|  | case VK_FORMAT_A8B8G8R8_UINT_PACK32: | 
|  | case VK_FORMAT_R8G8B8A8_UINT: | 
|  | c = Insert(c, Int(*Pointer<Byte>(element + 3)), 3); | 
|  | c = Insert(c, Int(*Pointer<Byte>(element + 2)), 2); | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R8G8_UINT: | 
|  | c = Insert(c, Int(*Pointer<Byte>(element + 1)), 1); | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R8_UINT: | 
|  | case VK_FORMAT_S8_UINT: | 
|  | c = Insert(c, Int(*Pointer<Byte>(element)), 0); | 
|  | break; | 
|  | case VK_FORMAT_R16G16B16A16_SINT: | 
|  | c = Insert(c, Int(*Pointer<Short>(element + 6)), 3); | 
|  | c = Insert(c, Int(*Pointer<Short>(element + 4)), 2); | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R16G16_SINT: | 
|  | c = Insert(c, Int(*Pointer<Short>(element + 2)), 1); | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R16_SINT: | 
|  | c = Insert(c, Int(*Pointer<Short>(element)), 0); | 
|  | break; | 
|  | case VK_FORMAT_R16G16B16A16_UINT: | 
|  | c = Insert(c, Int(*Pointer<UShort>(element + 6)), 3); | 
|  | c = Insert(c, Int(*Pointer<UShort>(element + 4)), 2); | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R16G16_UINT: | 
|  | c = Insert(c, Int(*Pointer<UShort>(element + 2)), 1); | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R16_UINT: | 
|  | c = Insert(c, Int(*Pointer<UShort>(element)), 0); | 
|  | break; | 
|  | case VK_FORMAT_R32G32B32A32_SINT: | 
|  | case VK_FORMAT_R32G32B32A32_UINT: | 
|  | c = *Pointer<Int4>(element); | 
|  | break; | 
|  | case VK_FORMAT_R32G32_SINT: | 
|  | case VK_FORMAT_R32G32_UINT: | 
|  | c = Insert(c, *Pointer<Int>(element + 4), 1); | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R32_SINT: | 
|  | case VK_FORMAT_R32_UINT: | 
|  | c = Insert(c, *Pointer<Int>(element), 0); | 
|  | break; | 
|  | default: | 
|  | UNSUPPORTED("Blitter source format %d", (int)state.sourceFormat); | 
|  | } | 
|  |  | 
|  | return c; | 
|  | } | 
|  |  | 
|  | void Blitter::write(Int4 &c, Pointer<Byte> element, const State &state) | 
|  | { | 
|  | bool writeR = state.writeRed; | 
|  | bool writeG = state.writeGreen; | 
|  | bool writeB = state.writeBlue; | 
|  | bool writeA = state.writeAlpha; | 
|  | bool writeRGBA = writeR && writeG && writeB && writeA; | 
|  |  | 
|  | ASSERT(state.sourceFormat.isUnsigned() == state.destFormat.isUnsigned()); | 
|  |  | 
|  | switch(state.destFormat) | 
|  | { | 
|  | case VK_FORMAT_A2B10G10R10_UINT_PACK32: | 
|  | case VK_FORMAT_A2R10G10B10_UINT_PACK32: | 
|  | c = Min(As<UInt4>(c), UInt4(0x03FF, 0x03FF, 0x03FF, 0x0003)); | 
|  | break; | 
|  | case VK_FORMAT_A8B8G8R8_UINT_PACK32: | 
|  | case VK_FORMAT_R8G8B8A8_UINT: | 
|  | case VK_FORMAT_R8G8B8_UINT: | 
|  | case VK_FORMAT_R8G8_UINT: | 
|  | case VK_FORMAT_R8_UINT: | 
|  | case VK_FORMAT_R8G8B8A8_USCALED: | 
|  | case VK_FORMAT_R8G8B8_USCALED: | 
|  | case VK_FORMAT_R8G8_USCALED: | 
|  | case VK_FORMAT_R8_USCALED: | 
|  | case VK_FORMAT_S8_UINT: | 
|  | c = Min(As<UInt4>(c), UInt4(0xFF)); | 
|  | break; | 
|  | case VK_FORMAT_R16G16B16A16_UINT: | 
|  | case VK_FORMAT_R16G16B16_UINT: | 
|  | case VK_FORMAT_R16G16_UINT: | 
|  | case VK_FORMAT_R16_UINT: | 
|  | case VK_FORMAT_R16G16B16A16_USCALED: | 
|  | case VK_FORMAT_R16G16B16_USCALED: | 
|  | case VK_FORMAT_R16G16_USCALED: | 
|  | case VK_FORMAT_R16_USCALED: | 
|  | c = Min(As<UInt4>(c), UInt4(0xFFFF)); | 
|  | break; | 
|  | case VK_FORMAT_A8B8G8R8_SINT_PACK32: | 
|  | case VK_FORMAT_R8G8B8A8_SINT: | 
|  | case VK_FORMAT_R8G8_SINT: | 
|  | case VK_FORMAT_R8_SINT: | 
|  | case VK_FORMAT_R8G8B8A8_SSCALED: | 
|  | case VK_FORMAT_R8G8B8_SSCALED: | 
|  | case VK_FORMAT_R8G8_SSCALED: | 
|  | case VK_FORMAT_R8_SSCALED: | 
|  | c = Min(Max(c, Int4(-0x80)), Int4(0x7F)); | 
|  | break; | 
|  | case VK_FORMAT_R16G16B16A16_SINT: | 
|  | case VK_FORMAT_R16G16B16_SINT: | 
|  | case VK_FORMAT_R16G16_SINT: | 
|  | case VK_FORMAT_R16_SINT: | 
|  | case VK_FORMAT_R16G16B16A16_SSCALED: | 
|  | case VK_FORMAT_R16G16B16_SSCALED: | 
|  | case VK_FORMAT_R16G16_SSCALED: | 
|  | case VK_FORMAT_R16_SSCALED: | 
|  | c = Min(Max(c, Int4(-0x8000)), Int4(0x7FFF)); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch(state.destFormat) | 
|  | { | 
|  | case VK_FORMAT_B8G8R8A8_SINT: | 
|  | case VK_FORMAT_B8G8R8A8_SSCALED: | 
|  | if(writeA) { *Pointer<SByte>(element + 3) = SByte(Extract(c, 3)); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_B8G8R8_SINT: | 
|  | case VK_FORMAT_B8G8R8_SSCALED: | 
|  | if(writeB) { *Pointer<SByte>(element) = SByte(Extract(c, 2)); } | 
|  | if(writeG) { *Pointer<SByte>(element + 1) = SByte(Extract(c, 1)); } | 
|  | if(writeR) { *Pointer<SByte>(element + 2) = SByte(Extract(c, 0)); } | 
|  | break; | 
|  | case VK_FORMAT_A8B8G8R8_SINT_PACK32: | 
|  | case VK_FORMAT_R8G8B8A8_SINT: | 
|  | case VK_FORMAT_R8G8B8A8_SSCALED: | 
|  | case VK_FORMAT_A8B8G8R8_SSCALED_PACK32: | 
|  | if(writeA) { *Pointer<SByte>(element + 3) = SByte(Extract(c, 3)); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R8G8B8_SINT: | 
|  | case VK_FORMAT_R8G8B8_SSCALED: | 
|  | if(writeB) { *Pointer<SByte>(element + 2) = SByte(Extract(c, 2)); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R8G8_SINT: | 
|  | case VK_FORMAT_R8G8_SSCALED: | 
|  | if(writeG) { *Pointer<SByte>(element + 1) = SByte(Extract(c, 1)); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R8_SINT: | 
|  | case VK_FORMAT_R8_SSCALED: | 
|  | if(writeR) { *Pointer<SByte>(element) = SByte(Extract(c, 0)); } | 
|  | break; | 
|  | case VK_FORMAT_A2B10G10R10_UINT_PACK32: | 
|  | case VK_FORMAT_A2B10G10R10_SINT_PACK32: | 
|  | case VK_FORMAT_A2B10G10R10_USCALED_PACK32: | 
|  | case VK_FORMAT_A2B10G10R10_SSCALED_PACK32: | 
|  | if(writeRGBA) | 
|  | { | 
|  | *Pointer<UInt>(element) = As<UInt>(PackFields(c, { 0, 10, 20, 30 })); | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned int mask = (writeA ? 0xC0000000 : 0x0000) | | 
|  | (writeB ? 0x3FF00000 : 0x0000) | | 
|  | (writeG ? 0x000FFC00 : 0x0000) | | 
|  | (writeR ? 0x000003FF : 0x0000); | 
|  | unsigned int unmask = ~mask; | 
|  | *Pointer<UInt>(element) = (*Pointer<UInt>(element) & UInt(unmask)) | | 
|  | (As<UInt>(PackFields(c, { 0, 10, 20, 30 })) & UInt(mask)); | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_A2R10G10B10_UINT_PACK32: | 
|  | case VK_FORMAT_A2R10G10B10_SINT_PACK32: | 
|  | case VK_FORMAT_A2R10G10B10_USCALED_PACK32: | 
|  | case VK_FORMAT_A2R10G10B10_SSCALED_PACK32: | 
|  | if(writeRGBA) | 
|  | { | 
|  | *Pointer<UInt>(element) = As<UInt>(PackFields(c, { 20, 10, 0, 30 })); | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned int mask = (writeA ? 0xC0000000 : 0x0000) | | 
|  | (writeR ? 0x3FF00000 : 0x0000) | | 
|  | (writeG ? 0x000FFC00 : 0x0000) | | 
|  | (writeB ? 0x000003FF : 0x0000); | 
|  | unsigned int unmask = ~mask; | 
|  | *Pointer<UInt>(element) = (*Pointer<UInt>(element) & UInt(unmask)) | | 
|  | (As<UInt>(PackFields(c, { 20, 10, 0, 30 })) & UInt(mask)); | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_B8G8R8A8_UINT: | 
|  | case VK_FORMAT_B8G8R8A8_USCALED: | 
|  | if(writeA) { *Pointer<Byte>(element + 3) = Byte(Extract(c, 3)); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_B8G8R8_UINT: | 
|  | case VK_FORMAT_B8G8R8_USCALED: | 
|  | case VK_FORMAT_B8G8R8_SRGB: | 
|  | if(writeB) { *Pointer<Byte>(element) = Byte(Extract(c, 2)); } | 
|  | if(writeG) { *Pointer<Byte>(element + 1) = Byte(Extract(c, 1)); } | 
|  | if(writeR) { *Pointer<Byte>(element + 2) = Byte(Extract(c, 0)); } | 
|  | break; | 
|  | case VK_FORMAT_A8B8G8R8_UINT_PACK32: | 
|  | case VK_FORMAT_R8G8B8A8_UINT: | 
|  | case VK_FORMAT_R8G8B8A8_USCALED: | 
|  | case VK_FORMAT_A8B8G8R8_USCALED_PACK32: | 
|  | if(writeA) { *Pointer<Byte>(element + 3) = Byte(Extract(c, 3)); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R8G8B8_UINT: | 
|  | case VK_FORMAT_R8G8B8_USCALED: | 
|  | if(writeB) { *Pointer<Byte>(element + 2) = Byte(Extract(c, 2)); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R8G8_UINT: | 
|  | case VK_FORMAT_R8G8_USCALED: | 
|  | if(writeG) { *Pointer<Byte>(element + 1) = Byte(Extract(c, 1)); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R8_UINT: | 
|  | case VK_FORMAT_R8_USCALED: | 
|  | case VK_FORMAT_S8_UINT: | 
|  | if(writeR) { *Pointer<Byte>(element) = Byte(Extract(c, 0)); } | 
|  | break; | 
|  | case VK_FORMAT_R16G16B16A16_SINT: | 
|  | case VK_FORMAT_R16G16B16A16_SSCALED: | 
|  | if(writeA) { *Pointer<Short>(element + 6) = Short(Extract(c, 3)); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R16G16B16_SINT: | 
|  | case VK_FORMAT_R16G16B16_SSCALED: | 
|  | if(writeB) { *Pointer<Short>(element + 4) = Short(Extract(c, 2)); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R16G16_SINT: | 
|  | case VK_FORMAT_R16G16_SSCALED: | 
|  | if(writeG) { *Pointer<Short>(element + 2) = Short(Extract(c, 1)); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R16_SINT: | 
|  | case VK_FORMAT_R16_SSCALED: | 
|  | if(writeR) { *Pointer<Short>(element) = Short(Extract(c, 0)); } | 
|  | break; | 
|  | case VK_FORMAT_R16G16B16A16_UINT: | 
|  | case VK_FORMAT_R16G16B16A16_USCALED: | 
|  | if(writeA) { *Pointer<UShort>(element + 6) = UShort(Extract(c, 3)); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R16G16B16_UINT: | 
|  | case VK_FORMAT_R16G16B16_USCALED: | 
|  | if(writeB) { *Pointer<UShort>(element + 4) = UShort(Extract(c, 2)); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R16G16_UINT: | 
|  | case VK_FORMAT_R16G16_USCALED: | 
|  | if(writeG) { *Pointer<UShort>(element + 2) = UShort(Extract(c, 1)); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R16_UINT: | 
|  | case VK_FORMAT_R16_USCALED: | 
|  | if(writeR) { *Pointer<UShort>(element) = UShort(Extract(c, 0)); } | 
|  | break; | 
|  | case VK_FORMAT_R32G32B32A32_SINT: | 
|  | if(writeRGBA) | 
|  | { | 
|  | *Pointer<Int4>(element) = c; | 
|  | } | 
|  | else | 
|  | { | 
|  | if(writeR) { *Pointer<Int>(element) = Extract(c, 0); } | 
|  | if(writeG) { *Pointer<Int>(element + 4) = Extract(c, 1); } | 
|  | if(writeB) { *Pointer<Int>(element + 8) = Extract(c, 2); } | 
|  | if(writeA) { *Pointer<Int>(element + 12) = Extract(c, 3); } | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_R32G32B32_SINT: | 
|  | if(writeR) { *Pointer<Int>(element) = Extract(c, 0); } | 
|  | if(writeG) { *Pointer<Int>(element + 4) = Extract(c, 1); } | 
|  | if(writeB) { *Pointer<Int>(element + 8) = Extract(c, 2); } | 
|  | break; | 
|  | case VK_FORMAT_R32G32_SINT: | 
|  | if(writeR) { *Pointer<Int>(element) = Extract(c, 0); } | 
|  | if(writeG) { *Pointer<Int>(element + 4) = Extract(c, 1); } | 
|  | break; | 
|  | case VK_FORMAT_R32_SINT: | 
|  | if(writeR) { *Pointer<Int>(element) = Extract(c, 0); } | 
|  | break; | 
|  | case VK_FORMAT_R32G32B32A32_UINT: | 
|  | if(writeRGBA) | 
|  | { | 
|  | *Pointer<UInt4>(element) = As<UInt4>(c); | 
|  | } | 
|  | else | 
|  | { | 
|  | if(writeR) { *Pointer<UInt>(element) = As<UInt>(Extract(c, 0)); } | 
|  | if(writeG) { *Pointer<UInt>(element + 4) = As<UInt>(Extract(c, 1)); } | 
|  | if(writeB) { *Pointer<UInt>(element + 8) = As<UInt>(Extract(c, 2)); } | 
|  | if(writeA) { *Pointer<UInt>(element + 12) = As<UInt>(Extract(c, 3)); } | 
|  | } | 
|  | break; | 
|  | case VK_FORMAT_R32G32B32_UINT: | 
|  | if(writeB) { *Pointer<UInt>(element + 8) = As<UInt>(Extract(c, 2)); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R32G32_UINT: | 
|  | if(writeG) { *Pointer<UInt>(element + 4) = As<UInt>(Extract(c, 1)); } | 
|  | // [[fallthrough]] | 
|  | case VK_FORMAT_R32_UINT: | 
|  | if(writeR) { *Pointer<UInt>(element) = As<UInt>(Extract(c, 0)); } | 
|  | break; | 
|  | default: | 
|  | UNSUPPORTED("Blitter destination format %d", (int)state.destFormat); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Blitter::ApplyScaleAndClamp(Float4 &value, const State &state, bool preScaled) | 
|  | { | 
|  | float4 scale{}, unscale{}; | 
|  |  | 
|  | if(state.clearOperation && | 
|  | state.sourceFormat.isUnnormalizedInteger() && | 
|  | !state.destFormat.isUnnormalizedInteger()) | 
|  | { | 
|  | // If we're clearing a buffer from an int or uint color into a normalized color, | 
|  | // then the whole range of the int or uint color must be scaled between 0 and 1. | 
|  | switch(state.sourceFormat) | 
|  | { | 
|  | case VK_FORMAT_R32G32B32A32_SINT: | 
|  | unscale = float4(static_cast<float>(0x7FFFFFFF)); | 
|  | break; | 
|  | case VK_FORMAT_R32G32B32A32_UINT: | 
|  | unscale = float4(static_cast<float>(0xFFFFFFFF)); | 
|  | break; | 
|  | default: | 
|  | UNSUPPORTED("Blitter source format %d", (int)state.sourceFormat); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | unscale = state.sourceFormat.getScale(); | 
|  | } | 
|  |  | 
|  | scale = state.destFormat.getScale(); | 
|  |  | 
|  | bool srcSRGB = state.sourceFormat.isSRGBformat(); | 
|  | bool dstSRGB = state.destFormat.isSRGBformat(); | 
|  |  | 
|  | if(state.allowSRGBConversion && ((srcSRGB && !preScaled) || dstSRGB))  // One of the formats is sRGB encoded. | 
|  | { | 
|  | value *= preScaled ? Float4(1.0f / scale.x, 1.0f / scale.y, 1.0f / scale.z, 1.0f / scale.w) :  // Unapply scale | 
|  | Float4(1.0f / unscale.x, 1.0f / unscale.y, 1.0f / unscale.z, 1.0f / unscale.w);   // Apply unscale | 
|  | value.xyz = (srcSRGB && !preScaled) ? sRGBtoLinear(value) : linearToSRGB(value); | 
|  | value *= Float4(scale.x, scale.y, scale.z, scale.w);  // Apply scale | 
|  | } | 
|  | else if(unscale != scale) | 
|  | { | 
|  | value *= Float4(scale.x / unscale.x, scale.y / unscale.y, scale.z / unscale.z, scale.w / unscale.w); | 
|  | } | 
|  |  | 
|  | if(state.sourceFormat.isFloatFormat() && !state.destFormat.isFloatFormat()) | 
|  | { | 
|  | value = Min(value, Float4(scale.x, scale.y, scale.z, scale.w)); | 
|  |  | 
|  | value = Max(value, Float4(state.destFormat.isUnsignedComponent(0) ? 0.0f : -scale.x, | 
|  | state.destFormat.isUnsignedComponent(1) ? 0.0f : -scale.y, | 
|  | state.destFormat.isUnsignedComponent(2) ? 0.0f : -scale.z, | 
|  | state.destFormat.isUnsignedComponent(3) ? 0.0f : -scale.w)); | 
|  | } | 
|  |  | 
|  | if(!state.sourceFormat.isUnsigned() && state.destFormat.isUnsigned()) | 
|  | { | 
|  | value = Max(value, Float4(0.0f)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Int Blitter::ComputeOffset(Int &x, Int &y, Int &pitchB, int bytes) | 
|  | { | 
|  | return y * pitchB + x * bytes; | 
|  | } | 
|  |  | 
|  | Int Blitter::ComputeOffset(Int &x, Int &y, Int &z, Int &sliceB, Int &pitchB, int bytes) | 
|  | { | 
|  | return z * sliceB + y * pitchB + x * bytes; | 
|  | } | 
|  |  | 
|  | Float4 Blitter::sample(Pointer<Byte> &source, Float &x, Float &y, Float &z, | 
|  | Int &sWidth, Int &sHeight, Int &sDepth, | 
|  | Int &sSliceB, Int &sPitchB, const State &state) | 
|  | { | 
|  | bool intSrc = state.sourceFormat.isUnnormalizedInteger(); | 
|  | int srcBytes = state.sourceFormat.bytes(); | 
|  |  | 
|  | Float4 color; | 
|  |  | 
|  | bool preScaled = false; | 
|  | if(!state.filter || intSrc) | 
|  | { | 
|  | Int X = Int(x); | 
|  | Int Y = Int(y); | 
|  | Int Z = Int(z); | 
|  |  | 
|  | if(state.clampToEdge) | 
|  | { | 
|  | X = Clamp(X, 0, sWidth - 1); | 
|  | Y = Clamp(Y, 0, sHeight - 1); | 
|  | Z = Clamp(Z, 0, sDepth - 1); | 
|  | } | 
|  |  | 
|  | Pointer<Byte> s = source + ComputeOffset(X, Y, Z, sSliceB, sPitchB, srcBytes); | 
|  |  | 
|  | color = readFloat4(s, state); | 
|  |  | 
|  | if(state.srcSamples > 1)  // Resolve multisampled source | 
|  | { | 
|  | if(state.allowSRGBConversion && state.sourceFormat.isSRGBformat())  // sRGB -> RGB | 
|  | { | 
|  | ApplyScaleAndClamp(color, state); | 
|  | preScaled = true; | 
|  | } | 
|  | Float4 accum = color; | 
|  | for(int sample = 1; sample < state.srcSamples; sample++) | 
|  | { | 
|  | s += sSliceB; | 
|  | color = readFloat4(s, state); | 
|  |  | 
|  | if(state.allowSRGBConversion && state.sourceFormat.isSRGBformat())  // sRGB -> RGB | 
|  | { | 
|  | ApplyScaleAndClamp(color, state); | 
|  | preScaled = true; | 
|  | } | 
|  | accum += color; | 
|  | } | 
|  | color = accum * Float4(1.0f / static_cast<float>(state.srcSamples)); | 
|  | } | 
|  | } | 
|  | else  // Bilinear filtering | 
|  | { | 
|  | Float X = x; | 
|  | Float Y = y; | 
|  | Float Z = z; | 
|  |  | 
|  | if(state.clampToEdge) | 
|  | { | 
|  | X = Min(Max(x, 0.5f), Float(sWidth) - 0.5f); | 
|  | Y = Min(Max(y, 0.5f), Float(sHeight) - 0.5f); | 
|  | Z = Min(Max(z, 0.5f), Float(sDepth) - 0.5f); | 
|  | } | 
|  |  | 
|  | Float x0 = X - 0.5f; | 
|  | Float y0 = Y - 0.5f; | 
|  | Float z0 = Z - 0.5f; | 
|  |  | 
|  | Int X0 = Max(Int(x0), 0); | 
|  | Int Y0 = Max(Int(y0), 0); | 
|  | Int Z0 = Max(Int(z0), 0); | 
|  |  | 
|  | Int X1 = X0 + 1; | 
|  | Int Y1 = Y0 + 1; | 
|  | X1 = IfThenElse(X1 >= sWidth, X0, X1); | 
|  | Y1 = IfThenElse(Y1 >= sHeight, Y0, Y1); | 
|  |  | 
|  | if(state.filter3D) | 
|  | { | 
|  | Int Z1 = Z0 + 1; | 
|  | Z1 = IfThenElse(Z1 >= sHeight, Z0, Z1); | 
|  |  | 
|  | Pointer<Byte> s000 = source + ComputeOffset(X0, Y0, Z0, sSliceB, sPitchB, srcBytes); | 
|  | Pointer<Byte> s010 = source + ComputeOffset(X1, Y0, Z0, sSliceB, sPitchB, srcBytes); | 
|  | Pointer<Byte> s100 = source + ComputeOffset(X0, Y1, Z0, sSliceB, sPitchB, srcBytes); | 
|  | Pointer<Byte> s110 = source + ComputeOffset(X1, Y1, Z0, sSliceB, sPitchB, srcBytes); | 
|  | Pointer<Byte> s001 = source + ComputeOffset(X0, Y0, Z1, sSliceB, sPitchB, srcBytes); | 
|  | Pointer<Byte> s011 = source + ComputeOffset(X1, Y0, Z1, sSliceB, sPitchB, srcBytes); | 
|  | Pointer<Byte> s101 = source + ComputeOffset(X0, Y1, Z1, sSliceB, sPitchB, srcBytes); | 
|  | Pointer<Byte> s111 = source + ComputeOffset(X1, Y1, Z1, sSliceB, sPitchB, srcBytes); | 
|  |  | 
|  | Float4 c000 = readFloat4(s000, state); | 
|  | Float4 c010 = readFloat4(s010, state); | 
|  | Float4 c100 = readFloat4(s100, state); | 
|  | Float4 c110 = readFloat4(s110, state); | 
|  | Float4 c001 = readFloat4(s001, state); | 
|  | Float4 c011 = readFloat4(s011, state); | 
|  | Float4 c101 = readFloat4(s101, state); | 
|  | Float4 c111 = readFloat4(s111, state); | 
|  |  | 
|  | if(state.allowSRGBConversion && state.sourceFormat.isSRGBformat())  // sRGB -> RGB | 
|  | { | 
|  | ApplyScaleAndClamp(c000, state); | 
|  | ApplyScaleAndClamp(c010, state); | 
|  | ApplyScaleAndClamp(c100, state); | 
|  | ApplyScaleAndClamp(c110, state); | 
|  | ApplyScaleAndClamp(c001, state); | 
|  | ApplyScaleAndClamp(c011, state); | 
|  | ApplyScaleAndClamp(c101, state); | 
|  | ApplyScaleAndClamp(c111, state); | 
|  | preScaled = true; | 
|  | } | 
|  |  | 
|  | Float4 fx = Float4(x0 - Float(X0)); | 
|  | Float4 fy = Float4(y0 - Float(Y0)); | 
|  | Float4 fz = Float4(z0 - Float(Z0)); | 
|  | Float4 ix = Float4(1.0f) - fx; | 
|  | Float4 iy = Float4(1.0f) - fy; | 
|  | Float4 iz = Float4(1.0f) - fz; | 
|  |  | 
|  | color = ((c000 * ix + c010 * fx) * iy + | 
|  | (c100 * ix + c110 * fx) * fy) * | 
|  | iz + | 
|  | ((c001 * ix + c011 * fx) * iy + | 
|  | (c101 * ix + c111 * fx) * fy) * | 
|  | fz; | 
|  | } | 
|  | else | 
|  | { | 
|  | Pointer<Byte> s00 = source + ComputeOffset(X0, Y0, Z0, sSliceB, sPitchB, srcBytes); | 
|  | Pointer<Byte> s01 = source + ComputeOffset(X1, Y0, Z0, sSliceB, sPitchB, srcBytes); | 
|  | Pointer<Byte> s10 = source + ComputeOffset(X0, Y1, Z0, sSliceB, sPitchB, srcBytes); | 
|  | Pointer<Byte> s11 = source + ComputeOffset(X1, Y1, Z0, sSliceB, sPitchB, srcBytes); | 
|  |  | 
|  | Float4 c00 = readFloat4(s00, state); | 
|  | Float4 c01 = readFloat4(s01, state); | 
|  | Float4 c10 = readFloat4(s10, state); | 
|  | Float4 c11 = readFloat4(s11, state); | 
|  |  | 
|  | if(state.allowSRGBConversion && state.sourceFormat.isSRGBformat())  // sRGB -> RGB | 
|  | { | 
|  | ApplyScaleAndClamp(c00, state); | 
|  | ApplyScaleAndClamp(c01, state); | 
|  | ApplyScaleAndClamp(c10, state); | 
|  | ApplyScaleAndClamp(c11, state); | 
|  | preScaled = true; | 
|  | } | 
|  |  | 
|  | Float4 fx = Float4(x0 - Float(X0)); | 
|  | Float4 fy = Float4(y0 - Float(Y0)); | 
|  | Float4 ix = Float4(1.0f) - fx; | 
|  | Float4 iy = Float4(1.0f) - fy; | 
|  |  | 
|  | color = (c00 * ix + c01 * fx) * iy + | 
|  | (c10 * ix + c11 * fx) * fy; | 
|  | } | 
|  | } | 
|  |  | 
|  | ApplyScaleAndClamp(color, state, preScaled); | 
|  |  | 
|  | return color; | 
|  | } | 
|  |  | 
|  | Blitter::BlitRoutineType Blitter::generate(const State &state) | 
|  | { | 
|  | BlitFunction function; | 
|  | { | 
|  | Pointer<Byte> blit(function.Arg<0>()); | 
|  |  | 
|  | Pointer<Byte> source = *Pointer<Pointer<Byte>>(blit + OFFSET(BlitData, source)); | 
|  | Pointer<Byte> dest = *Pointer<Pointer<Byte>>(blit + OFFSET(BlitData, dest)); | 
|  | Int sPitchB = *Pointer<Int>(blit + OFFSET(BlitData, sPitchB)); | 
|  | Int dPitchB = *Pointer<Int>(blit + OFFSET(BlitData, dPitchB)); | 
|  | Int sSliceB = *Pointer<Int>(blit + OFFSET(BlitData, sSliceB)); | 
|  | Int dSliceB = *Pointer<Int>(blit + OFFSET(BlitData, dSliceB)); | 
|  |  | 
|  | Float x0 = *Pointer<Float>(blit + OFFSET(BlitData, x0)); | 
|  | Float y0 = *Pointer<Float>(blit + OFFSET(BlitData, y0)); | 
|  | Float z0 = *Pointer<Float>(blit + OFFSET(BlitData, z0)); | 
|  | Float w = *Pointer<Float>(blit + OFFSET(BlitData, w)); | 
|  | Float h = *Pointer<Float>(blit + OFFSET(BlitData, h)); | 
|  | Float d = *Pointer<Float>(blit + OFFSET(BlitData, d)); | 
|  |  | 
|  | Int x0d = *Pointer<Int>(blit + OFFSET(BlitData, x0d)); | 
|  | Int x1d = *Pointer<Int>(blit + OFFSET(BlitData, x1d)); | 
|  | Int y0d = *Pointer<Int>(blit + OFFSET(BlitData, y0d)); | 
|  | Int y1d = *Pointer<Int>(blit + OFFSET(BlitData, y1d)); | 
|  | Int z0d = *Pointer<Int>(blit + OFFSET(BlitData, z0d)); | 
|  | Int z1d = *Pointer<Int>(blit + OFFSET(BlitData, z1d)); | 
|  |  | 
|  | Int sWidth = *Pointer<Int>(blit + OFFSET(BlitData, sWidth)); | 
|  | Int sHeight = *Pointer<Int>(blit + OFFSET(BlitData, sHeight)); | 
|  | Int sDepth = *Pointer<Int>(blit + OFFSET(BlitData, sDepth)); | 
|  |  | 
|  | bool intSrc = state.sourceFormat.isUnnormalizedInteger(); | 
|  | bool intDst = state.destFormat.isUnnormalizedInteger(); | 
|  | bool intBoth = intSrc && intDst; | 
|  | int srcBytes = state.sourceFormat.bytes(); | 
|  | int dstBytes = state.destFormat.bytes(); | 
|  |  | 
|  | bool hasConstantColorI = false; | 
|  | Int4 constantColorI; | 
|  | bool hasConstantColorF = false; | 
|  | Float4 constantColorF; | 
|  | if(state.clearOperation) | 
|  | { | 
|  | if(intBoth)  // Integer types | 
|  | { | 
|  | constantColorI = readInt4(source, state); | 
|  | hasConstantColorI = true; | 
|  | } | 
|  | else | 
|  | { | 
|  | constantColorF = readFloat4(source, state); | 
|  | hasConstantColorF = true; | 
|  |  | 
|  | ApplyScaleAndClamp(constantColorF, state); | 
|  | } | 
|  | } | 
|  |  | 
|  | For(Int k = z0d, k < z1d, k++) | 
|  | { | 
|  | Float z = state.clearOperation ? RValue<Float>(z0) : z0 + Float(k) * d; | 
|  | Pointer<Byte> destSlice = dest + k * dSliceB; | 
|  |  | 
|  | For(Int j = y0d, j < y1d, j++) | 
|  | { | 
|  | Float y = state.clearOperation ? RValue<Float>(y0) : y0 + Float(j) * h; | 
|  | Pointer<Byte> destLine = destSlice + j * dPitchB; | 
|  |  | 
|  | For(Int i = x0d, i < x1d, i++) | 
|  | { | 
|  | Float x = state.clearOperation ? RValue<Float>(x0) : x0 + Float(i) * w; | 
|  | Pointer<Byte> d = destLine + i * dstBytes; | 
|  |  | 
|  | if(hasConstantColorI) | 
|  | { | 
|  | for(int s = 0; s < state.destSamples; s++) | 
|  | { | 
|  | write(constantColorI, d, state); | 
|  |  | 
|  | d += dSliceB; | 
|  | } | 
|  | } | 
|  | else if(hasConstantColorF) | 
|  | { | 
|  | for(int s = 0; s < state.destSamples; s++) | 
|  | { | 
|  | write(constantColorF, d, state); | 
|  |  | 
|  | d += dSliceB; | 
|  | } | 
|  | } | 
|  | else if(intBoth)  // Integer types do not support filtering | 
|  | { | 
|  | Int X = Int(x); | 
|  | Int Y = Int(y); | 
|  | Int Z = Int(z); | 
|  |  | 
|  | if(state.clampToEdge) | 
|  | { | 
|  | X = Clamp(X, 0, sWidth - 1); | 
|  | Y = Clamp(Y, 0, sHeight - 1); | 
|  | Z = Clamp(Z, 0, sDepth - 1); | 
|  | } | 
|  |  | 
|  | Pointer<Byte> s = source + ComputeOffset(X, Y, Z, sSliceB, sPitchB, srcBytes); | 
|  |  | 
|  | // When both formats are true integer types, we don't go to float to avoid losing precision | 
|  | Int4 color = readInt4(s, state); | 
|  | for(int s = 0; s < state.destSamples; s++) | 
|  | { | 
|  | write(color, d, state); | 
|  |  | 
|  | d += dSliceB; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | Float4 color = sample(source, x, y, z, sWidth, sHeight, sDepth, sSliceB, sPitchB, state); | 
|  |  | 
|  | for(int s = 0; s < state.destSamples; s++) | 
|  | { | 
|  | write(color, d, state); | 
|  |  | 
|  | d += dSliceB; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return function("BlitRoutine"); | 
|  | } | 
|  |  | 
|  | Blitter::BlitRoutineType Blitter::getBlitRoutine(const State &state) | 
|  | { | 
|  | marl::lock lock(blitMutex); | 
|  | auto blitRoutine = blitCache.lookup(state); | 
|  |  | 
|  | if(!blitRoutine) | 
|  | { | 
|  | blitRoutine = generate(state); | 
|  | blitCache.add(state, blitRoutine); | 
|  | } | 
|  |  | 
|  | return blitRoutine; | 
|  | } | 
|  |  | 
|  | Blitter::CornerUpdateRoutineType Blitter::getCornerUpdateRoutine(const State &state) | 
|  | { | 
|  | marl::lock lock(cornerUpdateMutex); | 
|  | auto cornerUpdateRoutine = cornerUpdateCache.lookup(state); | 
|  |  | 
|  | if(!cornerUpdateRoutine) | 
|  | { | 
|  | cornerUpdateRoutine = generateCornerUpdate(state); | 
|  | cornerUpdateCache.add(state, cornerUpdateRoutine); | 
|  | } | 
|  |  | 
|  | return cornerUpdateRoutine; | 
|  | } | 
|  |  | 
|  | void Blitter::blit(const vk::Image *src, vk::Image *dst, VkImageBlit2KHR region, VkFilter filter) | 
|  | { | 
|  | ASSERT(src->getFormat() != VK_FORMAT_UNDEFINED); | 
|  | ASSERT(dst->getFormat() != VK_FORMAT_UNDEFINED); | 
|  |  | 
|  | // Vulkan 1.2 section 18.5. Image Copies with Scaling: | 
|  | // "The layerCount member of srcSubresource and dstSubresource must match" | 
|  | // "The aspectMask member of srcSubresource and dstSubresource must match" | 
|  | ASSERT(region.srcSubresource.layerCount == region.dstSubresource.layerCount); | 
|  | ASSERT(region.srcSubresource.aspectMask == region.dstSubresource.aspectMask); | 
|  |  | 
|  | if(region.dstOffsets[0].x > region.dstOffsets[1].x) | 
|  | { | 
|  | std::swap(region.srcOffsets[0].x, region.srcOffsets[1].x); | 
|  | std::swap(region.dstOffsets[0].x, region.dstOffsets[1].x); | 
|  | } | 
|  |  | 
|  | if(region.dstOffsets[0].y > region.dstOffsets[1].y) | 
|  | { | 
|  | std::swap(region.srcOffsets[0].y, region.srcOffsets[1].y); | 
|  | std::swap(region.dstOffsets[0].y, region.dstOffsets[1].y); | 
|  | } | 
|  |  | 
|  | if(region.dstOffsets[0].z > region.dstOffsets[1].z) | 
|  | { | 
|  | std::swap(region.srcOffsets[0].z, region.srcOffsets[1].z); | 
|  | std::swap(region.dstOffsets[0].z, region.dstOffsets[1].z); | 
|  | } | 
|  |  | 
|  | VkImageAspectFlagBits srcAspect = static_cast<VkImageAspectFlagBits>(region.srcSubresource.aspectMask); | 
|  | VkImageAspectFlagBits dstAspect = static_cast<VkImageAspectFlagBits>(region.dstSubresource.aspectMask); | 
|  | VkExtent3D srcExtent = src->getMipLevelExtent(srcAspect, region.srcSubresource.mipLevel); | 
|  |  | 
|  | float widthRatio = static_cast<float>(region.srcOffsets[1].x - region.srcOffsets[0].x) / | 
|  | static_cast<float>(region.dstOffsets[1].x - region.dstOffsets[0].x); | 
|  | float heightRatio = static_cast<float>(region.srcOffsets[1].y - region.srcOffsets[0].y) / | 
|  | static_cast<float>(region.dstOffsets[1].y - region.dstOffsets[0].y); | 
|  | float depthRatio = static_cast<float>(region.srcOffsets[1].z - region.srcOffsets[0].z) / | 
|  | static_cast<float>(region.dstOffsets[1].z - region.dstOffsets[0].z); | 
|  | float x0 = region.srcOffsets[0].x + (0.5f - region.dstOffsets[0].x) * widthRatio; | 
|  | float y0 = region.srcOffsets[0].y + (0.5f - region.dstOffsets[0].y) * heightRatio; | 
|  | float z0 = region.srcOffsets[0].z + (0.5f - region.dstOffsets[0].z) * depthRatio; | 
|  |  | 
|  | auto srcFormat = src->getFormat(srcAspect); | 
|  | auto dstFormat = dst->getFormat(dstAspect); | 
|  |  | 
|  | bool doFilter = (filter != VK_FILTER_NEAREST); | 
|  | bool allowSRGBConversion = | 
|  | doFilter || | 
|  | (src->getSampleCount() > 1) || | 
|  | (srcFormat.isSRGBformat() != dstFormat.isSRGBformat()); | 
|  |  | 
|  | State state(srcFormat, dstFormat, src->getSampleCount(), dst->getSampleCount(), | 
|  | Options{ doFilter, allowSRGBConversion }); | 
|  | state.clampToEdge = (region.srcOffsets[0].x < 0) || | 
|  | (region.srcOffsets[0].y < 0) || | 
|  | (static_cast<uint32_t>(region.srcOffsets[1].x) > srcExtent.width) || | 
|  | (static_cast<uint32_t>(region.srcOffsets[1].y) > srcExtent.height) || | 
|  | (doFilter && ((x0 < 0.5f) || (y0 < 0.5f))); | 
|  | state.filter3D = (region.srcOffsets[1].z - region.srcOffsets[0].z) != | 
|  | (region.dstOffsets[1].z - region.dstOffsets[0].z); | 
|  |  | 
|  | auto blitRoutine = getBlitRoutine(state); | 
|  | if(!blitRoutine) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | BlitData data = { | 
|  | nullptr,                                                                                 // source | 
|  | nullptr,                                                                                 // dest | 
|  | assert_cast<uint32_t>(src->rowPitchBytes(srcAspect, region.srcSubresource.mipLevel)),    // sPitchB | 
|  | assert_cast<uint32_t>(dst->rowPitchBytes(dstAspect, region.dstSubresource.mipLevel)),    // dPitchB | 
|  | assert_cast<uint32_t>(src->slicePitchBytes(srcAspect, region.srcSubresource.mipLevel)),  // sSliceB | 
|  | assert_cast<uint32_t>(dst->slicePitchBytes(dstAspect, region.dstSubresource.mipLevel)),  // dSliceB | 
|  |  | 
|  | x0, | 
|  | y0, | 
|  | z0, | 
|  | widthRatio, | 
|  | heightRatio, | 
|  | depthRatio, | 
|  |  | 
|  | region.dstOffsets[0].x,  // x0d | 
|  | region.dstOffsets[1].x,  // x1d | 
|  | region.dstOffsets[0].y,  // y0d | 
|  | region.dstOffsets[1].y,  // y1d | 
|  | region.dstOffsets[0].z,  // z0d | 
|  | region.dstOffsets[1].z,  // z1d | 
|  |  | 
|  | static_cast<int>(srcExtent.width),   // sWidth | 
|  | static_cast<int>(srcExtent.height),  // sHeight | 
|  | static_cast<int>(srcExtent.depth),   // sDepth | 
|  |  | 
|  | false,  // filter3D | 
|  | }; | 
|  |  | 
|  | VkImageSubresource srcSubres = { | 
|  | region.srcSubresource.aspectMask, | 
|  | region.srcSubresource.mipLevel, | 
|  | region.srcSubresource.baseArrayLayer | 
|  | }; | 
|  |  | 
|  | VkImageSubresource dstSubres = { | 
|  | region.dstSubresource.aspectMask, | 
|  | region.dstSubresource.mipLevel, | 
|  | region.dstSubresource.baseArrayLayer | 
|  | }; | 
|  |  | 
|  | VkImageSubresourceRange dstSubresRange = { | 
|  | region.dstSubresource.aspectMask, | 
|  | region.dstSubresource.mipLevel, | 
|  | 1,  // levelCount | 
|  | region.dstSubresource.baseArrayLayer, | 
|  | region.dstSubresource.layerCount | 
|  | }; | 
|  |  | 
|  | uint32_t lastLayer = src->getLastLayerIndex(dstSubresRange); | 
|  |  | 
|  | for(; dstSubres.arrayLayer <= lastLayer; srcSubres.arrayLayer++, dstSubres.arrayLayer++) | 
|  | { | 
|  | data.source = src->getTexelPointer({ 0, 0, 0 }, srcSubres); | 
|  | data.dest = dst->getTexelPointer({ 0, 0, 0 }, dstSubres); | 
|  |  | 
|  | ASSERT(data.source < src->end()); | 
|  | ASSERT(data.dest < dst->end()); | 
|  |  | 
|  | blitRoutine(&data); | 
|  | } | 
|  |  | 
|  | dst->contentsChanged(dstSubresRange); | 
|  | } | 
|  |  | 
|  | static void resolveDepth(const vk::ImageView *src, vk::ImageView *dst, const VkResolveModeFlagBits depthResolveMode) | 
|  | { | 
|  | if(depthResolveMode == VK_RESOLVE_MODE_NONE) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | vk::Format format = src->getFormat(VK_IMAGE_ASPECT_DEPTH_BIT); | 
|  | VkExtent2D extent = src->getMipLevelExtent(0, VK_IMAGE_ASPECT_DEPTH_BIT); | 
|  | int width = extent.width; | 
|  | int height = extent.height; | 
|  | int pitch = src->rowPitchBytes(VK_IMAGE_ASPECT_DEPTH_BIT, 0); | 
|  |  | 
|  | // To support other resolve modes, get the slice bytes and get a pointer to each sample plane. | 
|  | // Then modify the loop below to include logic for handling each new mode. | 
|  | uint8_t *source = (uint8_t *)src->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_DEPTH_BIT, 0, 0); | 
|  | uint8_t *dest = (uint8_t *)dst->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_DEPTH_BIT, 0, 0); | 
|  |  | 
|  | size_t formatSize = format.bytes(); | 
|  | // TODO(b/167558951) support other resolve modes. | 
|  | ASSERT(depthResolveMode == VK_RESOLVE_MODE_SAMPLE_ZERO_BIT); | 
|  | for(int y = 0; y < height; y++) | 
|  | { | 
|  | memcpy(dest, source, formatSize * width); | 
|  |  | 
|  | source += pitch; | 
|  | dest += pitch; | 
|  | } | 
|  |  | 
|  | dst->contentsChanged(vk::Image::DIRECT_MEMORY_ACCESS); | 
|  | } | 
|  |  | 
|  | static void resolveStencil(const vk::ImageView *src, vk::ImageView *dst, const VkResolveModeFlagBits stencilResolveMode) | 
|  | { | 
|  | if(stencilResolveMode == VK_RESOLVE_MODE_NONE) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | VkExtent2D extent = src->getMipLevelExtent(0, VK_IMAGE_ASPECT_STENCIL_BIT); | 
|  | int width = extent.width; | 
|  | int height = extent.height; | 
|  | int pitch = src->rowPitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT, 0); | 
|  |  | 
|  | // To support other resolve modes, use src->slicePitchBytes() and get a pointer to each sample's slice. | 
|  | // Then modify the loop below to include logic for handling each new mode. | 
|  | uint8_t *source = reinterpret_cast<uint8_t *>(src->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_STENCIL_BIT, 0, 0)); | 
|  | uint8_t *dest = reinterpret_cast<uint8_t *>(dst->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_STENCIL_BIT, 0, 0)); | 
|  |  | 
|  | // TODO(b/167558951) support other resolve modes. | 
|  | ASSERT(stencilResolveMode == VK_RESOLVE_MODE_SAMPLE_ZERO_BIT); | 
|  | for(int y = 0; y < height; y++) | 
|  | { | 
|  | // Stencil is always 8 bits, so the width of the resource we're resolving is | 
|  | // the number of bytes in each row we need to copy during for SAMPLE_ZERO | 
|  | memcpy(dest, source, width); | 
|  |  | 
|  | source += pitch; | 
|  | dest += pitch; | 
|  | } | 
|  |  | 
|  | dst->contentsChanged(vk::Image::DIRECT_MEMORY_ACCESS); | 
|  | } | 
|  |  | 
|  | void Blitter::resolveDepthStencil(const vk::ImageView *src, vk::ImageView *dst, VkResolveModeFlagBits depthResolveMode, VkResolveModeFlagBits stencilResolveMode) | 
|  | { | 
|  | VkImageSubresourceRange srcRange = src->getSubresourceRange(); | 
|  | VkImageSubresourceRange dstRange = src->getSubresourceRange(); | 
|  | ASSERT(src->getFormat() == dst->getFormat()); | 
|  | ASSERT(srcRange.layerCount == 1 && dstRange.layerCount == 1); | 
|  | ASSERT(srcRange.aspectMask == dstRange.aspectMask); | 
|  |  | 
|  | if(srcRange.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) | 
|  | { | 
|  | resolveDepth(src, dst, depthResolveMode); | 
|  | } | 
|  | if(srcRange.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) | 
|  | { | 
|  | resolveStencil(src, dst, stencilResolveMode); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Blitter::resolve(const vk::Image *src, vk::Image *dst, VkImageResolve2KHR region) | 
|  | { | 
|  | // "The aspectMask member of srcSubresource and dstSubresource must only contain VK_IMAGE_ASPECT_COLOR_BIT" | 
|  | ASSERT(region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT); | 
|  | ASSERT(region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT); | 
|  | // "The layerCount member of srcSubresource and dstSubresource must match" | 
|  | ASSERT(region.srcSubresource.layerCount == region.dstSubresource.layerCount); | 
|  |  | 
|  | // We use this method both for explicit resolves from vkCmdResolveImage, and implicit ones for resolve attachments. | 
|  | // - vkCmdResolveImage: "srcImage and dstImage must have been created with the same image format." | 
|  | // - VkSubpassDescription: "each resolve attachment that is not VK_ATTACHMENT_UNUSED must have the same VkFormat as its corresponding color attachment." | 
|  | ASSERT(src->getFormat() == dst->getFormat()); | 
|  |  | 
|  | if(fastResolve(src, dst, region)) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Fall back to a generic blit which performs the resolve. | 
|  | VkImageBlit2KHR blitRegion; | 
|  | blitRegion.sType = VK_STRUCTURE_TYPE_IMAGE_BLIT_2_KHR; | 
|  | blitRegion.pNext = nullptr; | 
|  |  | 
|  | blitRegion.srcOffsets[0] = blitRegion.srcOffsets[1] = region.srcOffset; | 
|  | blitRegion.srcOffsets[1].x += region.extent.width; | 
|  | blitRegion.srcOffsets[1].y += region.extent.height; | 
|  | blitRegion.srcOffsets[1].z += region.extent.depth; | 
|  |  | 
|  | blitRegion.dstOffsets[0] = blitRegion.dstOffsets[1] = region.dstOffset; | 
|  | blitRegion.dstOffsets[1].x += region.extent.width; | 
|  | blitRegion.dstOffsets[1].y += region.extent.height; | 
|  | blitRegion.dstOffsets[1].z += region.extent.depth; | 
|  |  | 
|  | blitRegion.srcSubresource = region.srcSubresource; | 
|  | blitRegion.dstSubresource = region.dstSubresource; | 
|  |  | 
|  | blit(src, dst, blitRegion, VK_FILTER_NEAREST); | 
|  | } | 
|  |  | 
|  | static inline uint32_t averageByte4(uint32_t x, uint32_t y) | 
|  | { | 
|  | return (x & y) + (((x ^ y) >> 1) & 0x7F7F7F7F) + ((x ^ y) & 0x01010101); | 
|  | } | 
|  |  | 
|  | bool Blitter::fastResolve(const vk::Image *src, vk::Image *dst, VkImageResolve2KHR region) | 
|  | { | 
|  | if(region.dstOffset != VkOffset3D{ 0, 0, 0 }) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if(region.srcOffset != VkOffset3D{ 0, 0, 0 }) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if(region.srcSubresource.layerCount != 1) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if(region.extent != src->getExtent() || | 
|  | region.extent != dst->getExtent() || | 
|  | region.extent.depth != 1) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | VkImageSubresource srcSubresource = { | 
|  | region.srcSubresource.aspectMask, | 
|  | region.srcSubresource.mipLevel, | 
|  | region.srcSubresource.baseArrayLayer | 
|  | }; | 
|  |  | 
|  | VkImageSubresource dstSubresource = { | 
|  | region.dstSubresource.aspectMask, | 
|  | region.dstSubresource.mipLevel, | 
|  | region.dstSubresource.baseArrayLayer | 
|  | }; | 
|  |  | 
|  | VkImageSubresourceRange dstSubresourceRange = { | 
|  | region.dstSubresource.aspectMask, | 
|  | region.dstSubresource.mipLevel, | 
|  | 1,  // levelCount | 
|  | region.dstSubresource.baseArrayLayer, | 
|  | region.dstSubresource.layerCount | 
|  | }; | 
|  |  | 
|  | void *source = src->getTexelPointer({ 0, 0, 0 }, srcSubresource); | 
|  | uint8_t *dest = reinterpret_cast<uint8_t *>(dst->getTexelPointer({ 0, 0, 0 }, dstSubresource)); | 
|  |  | 
|  | auto format = src->getFormat(); | 
|  | auto samples = src->getSampleCount(); | 
|  | auto extent = src->getExtent(); | 
|  |  | 
|  | int width = extent.width; | 
|  | int height = extent.height; | 
|  | int pitch = src->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, region.srcSubresource.mipLevel); | 
|  | int slice = src->slicePitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, region.srcSubresource.mipLevel); | 
|  |  | 
|  | uint8_t *source0 = (uint8_t *)source; | 
|  | uint8_t *source1 = source0 + slice; | 
|  | uint8_t *source2 = source1 + slice; | 
|  | uint8_t *source3 = source2 + slice; | 
|  |  | 
|  | [[maybe_unused]] const bool SSE2 = CPUID::supportsSSE2(); | 
|  |  | 
|  | if(format == VK_FORMAT_R8G8B8A8_UNORM || format == VK_FORMAT_B8G8R8A8_UNORM || format == VK_FORMAT_A8B8G8R8_UNORM_PACK32) | 
|  | { | 
|  | if(samples == 4) | 
|  | { | 
|  | for(int y = 0; y < height; y++) | 
|  | { | 
|  | int x = 0; | 
|  |  | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | if(SSE2) | 
|  | { | 
|  | for(; (x + 3) < width; x += 4) | 
|  | { | 
|  | __m128i c0 = _mm_loadu_si128((__m128i *)(source0 + 4 * x)); | 
|  | __m128i c1 = _mm_loadu_si128((__m128i *)(source1 + 4 * x)); | 
|  | __m128i c2 = _mm_loadu_si128((__m128i *)(source2 + 4 * x)); | 
|  | __m128i c3 = _mm_loadu_si128((__m128i *)(source3 + 4 * x)); | 
|  |  | 
|  | c0 = _mm_avg_epu8(c0, c1); | 
|  | c2 = _mm_avg_epu8(c2, c3); | 
|  | c0 = _mm_avg_epu8(c0, c2); | 
|  |  | 
|  | _mm_storeu_si128((__m128i *)(dest + 4 * x), c0); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | for(; x < width; x++) | 
|  | { | 
|  | uint32_t c0 = *(uint32_t *)(source0 + 4 * x); | 
|  | uint32_t c1 = *(uint32_t *)(source1 + 4 * x); | 
|  | uint32_t c2 = *(uint32_t *)(source2 + 4 * x); | 
|  | uint32_t c3 = *(uint32_t *)(source3 + 4 * x); | 
|  |  | 
|  | uint32_t c01 = averageByte4(c0, c1); | 
|  | uint32_t c23 = averageByte4(c2, c3); | 
|  | uint32_t c03 = averageByte4(c01, c23); | 
|  |  | 
|  | *(uint32_t *)(dest + 4 * x) = c03; | 
|  | } | 
|  |  | 
|  | source0 += pitch; | 
|  | source1 += pitch; | 
|  | source2 += pitch; | 
|  | source3 += pitch; | 
|  | dest += pitch; | 
|  |  | 
|  | ASSERT(source0 < src->end()); | 
|  | ASSERT(source3 < src->end()); | 
|  | ASSERT(dest < dst->end()); | 
|  | } | 
|  | } | 
|  | else | 
|  | UNSUPPORTED("Samples: %d", samples); | 
|  | } | 
|  | else | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | dst->contentsChanged(dstSubresourceRange); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void Blitter::copy(const vk::Image *src, uint8_t *dst, unsigned int dstPitch) | 
|  | { | 
|  | VkExtent3D extent = src->getExtent(); | 
|  | size_t rowBytes = src->getFormat(VK_IMAGE_ASPECT_COLOR_BIT).bytes() * extent.width; | 
|  | unsigned int srcPitch = src->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0); | 
|  | ASSERT(dstPitch >= rowBytes && srcPitch >= rowBytes && src->getMipLevelExtent(VK_IMAGE_ASPECT_COLOR_BIT, 0).height >= extent.height); | 
|  |  | 
|  | const uint8_t *s = (uint8_t *)src->getTexelPointer({ 0, 0, 0 }, { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0 }); | 
|  | uint8_t *d = dst; | 
|  |  | 
|  | for(uint32_t y = 0; y < extent.height; y++) | 
|  | { | 
|  | memcpy(d, s, rowBytes); | 
|  |  | 
|  | s += srcPitch; | 
|  | d += dstPitch; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Blitter::computeCubeCorner(Pointer<Byte> &layer, Int &x0, Int &x1, Int &y0, Int &y1, Int &pitchB, const State &state) | 
|  | { | 
|  | int bytes = state.sourceFormat.bytes(); | 
|  |  | 
|  | Float4 c = readFloat4(layer + ComputeOffset(x0, y1, pitchB, bytes), state) + | 
|  | readFloat4(layer + ComputeOffset(x1, y0, pitchB, bytes), state) + | 
|  | readFloat4(layer + ComputeOffset(x1, y1, pitchB, bytes), state); | 
|  |  | 
|  | c *= Float4(1.0f / 3.0f); | 
|  |  | 
|  | write(c, layer + ComputeOffset(x0, y0, pitchB, bytes), state); | 
|  | } | 
|  |  | 
|  | Blitter::CornerUpdateRoutineType Blitter::generateCornerUpdate(const State &state) | 
|  | { | 
|  | // Reading and writing from/to the same image | 
|  | ASSERT(state.sourceFormat == state.destFormat); | 
|  | ASSERT(state.srcSamples == state.destSamples); | 
|  |  | 
|  | // Vulkan 1.2: "If samples is not VK_SAMPLE_COUNT_1_BIT, then imageType must be | 
|  | // VK_IMAGE_TYPE_2D, flags must not contain VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT" | 
|  | ASSERT(state.srcSamples == 1); | 
|  |  | 
|  | CornerUpdateFunction function; | 
|  | { | 
|  | Pointer<Byte> blit(function.Arg<0>()); | 
|  |  | 
|  | Pointer<Byte> layers = *Pointer<Pointer<Byte>>(blit + OFFSET(CubeBorderData, layers)); | 
|  | Int pitchB = *Pointer<Int>(blit + OFFSET(CubeBorderData, pitchB)); | 
|  | UInt layerSize = *Pointer<Int>(blit + OFFSET(CubeBorderData, layerSize)); | 
|  | UInt dim = *Pointer<Int>(blit + OFFSET(CubeBorderData, dim)); | 
|  |  | 
|  | // Low Border, Low Pixel, High Border, High Pixel | 
|  | Int LB(-1), LP(0), HB(dim), HP(dim - 1); | 
|  |  | 
|  | for(int face = 0; face < 6; face++) | 
|  | { | 
|  | computeCubeCorner(layers, LB, LP, LB, LP, pitchB, state); | 
|  | computeCubeCorner(layers, LB, LP, HB, HP, pitchB, state); | 
|  | computeCubeCorner(layers, HB, HP, LB, LP, pitchB, state); | 
|  | computeCubeCorner(layers, HB, HP, HB, HP, pitchB, state); | 
|  | layers = layers + layerSize; | 
|  | } | 
|  | } | 
|  |  | 
|  | return function("BlitRoutine"); | 
|  | } | 
|  |  | 
|  | void Blitter::updateBorders(const vk::Image *image, const VkImageSubresource &subresource) | 
|  | { | 
|  | ASSERT(image->getArrayLayers() >= (subresource.arrayLayer + 6)); | 
|  |  | 
|  | // From Vulkan 1.1 spec, section 11.5. Image Views: | 
|  | // "For cube and cube array image views, the layers of the image view starting | 
|  | //  at baseArrayLayer correspond to faces in the order +X, -X, +Y, -Y, +Z, -Z." | 
|  | VkImageSubresource posX = subresource; | 
|  | VkImageSubresource negX = posX; | 
|  | negX.arrayLayer++; | 
|  | VkImageSubresource posY = negX; | 
|  | posY.arrayLayer++; | 
|  | VkImageSubresource negY = posY; | 
|  | negY.arrayLayer++; | 
|  | VkImageSubresource posZ = negY; | 
|  | posZ.arrayLayer++; | 
|  | VkImageSubresource negZ = posZ; | 
|  | negZ.arrayLayer++; | 
|  |  | 
|  | // Copy top / bottom | 
|  | copyCubeEdge(image, posX, BOTTOM, negY, RIGHT); | 
|  | copyCubeEdge(image, posY, BOTTOM, posZ, TOP); | 
|  | copyCubeEdge(image, posZ, BOTTOM, negY, TOP); | 
|  | copyCubeEdge(image, negX, BOTTOM, negY, LEFT); | 
|  | copyCubeEdge(image, negY, BOTTOM, negZ, BOTTOM); | 
|  | copyCubeEdge(image, negZ, BOTTOM, negY, BOTTOM); | 
|  |  | 
|  | copyCubeEdge(image, posX, TOP, posY, RIGHT); | 
|  | copyCubeEdge(image, posY, TOP, negZ, TOP); | 
|  | copyCubeEdge(image, posZ, TOP, posY, BOTTOM); | 
|  | copyCubeEdge(image, negX, TOP, posY, LEFT); | 
|  | copyCubeEdge(image, negY, TOP, posZ, BOTTOM); | 
|  | copyCubeEdge(image, negZ, TOP, posY, TOP); | 
|  |  | 
|  | // Copy left / right | 
|  | copyCubeEdge(image, posX, RIGHT, negZ, LEFT); | 
|  | copyCubeEdge(image, posY, RIGHT, posX, TOP); | 
|  | copyCubeEdge(image, posZ, RIGHT, posX, LEFT); | 
|  | copyCubeEdge(image, negX, RIGHT, posZ, LEFT); | 
|  | copyCubeEdge(image, negY, RIGHT, posX, BOTTOM); | 
|  | copyCubeEdge(image, negZ, RIGHT, negX, LEFT); | 
|  |  | 
|  | copyCubeEdge(image, posX, LEFT, posZ, RIGHT); | 
|  | copyCubeEdge(image, posY, LEFT, negX, TOP); | 
|  | copyCubeEdge(image, posZ, LEFT, negX, RIGHT); | 
|  | copyCubeEdge(image, negX, LEFT, negZ, RIGHT); | 
|  | copyCubeEdge(image, negY, LEFT, negX, BOTTOM); | 
|  | copyCubeEdge(image, negZ, LEFT, posX, RIGHT); | 
|  |  | 
|  | // Compute corner colors | 
|  | VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(subresource.aspectMask); | 
|  | vk::Format format = image->getFormat(aspect); | 
|  | VkSampleCountFlagBits samples = image->getSampleCount(); | 
|  | State state(format, format, samples, samples, Options{ 0xF }); | 
|  |  | 
|  | // Vulkan 1.2: "If samples is not VK_SAMPLE_COUNT_1_BIT, then imageType must be | 
|  | // VK_IMAGE_TYPE_2D, flags must not contain VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT" | 
|  | ASSERT(samples == VK_SAMPLE_COUNT_1_BIT); | 
|  |  | 
|  | auto cornerUpdateRoutine = getCornerUpdateRoutine(state); | 
|  | if(!cornerUpdateRoutine) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | VkExtent3D extent = image->getMipLevelExtent(aspect, subresource.mipLevel); | 
|  | CubeBorderData data = { | 
|  | image->getTexelPointer({ 0, 0, 0 }, posX), | 
|  | assert_cast<uint32_t>(image->rowPitchBytes(aspect, subresource.mipLevel)), | 
|  | assert_cast<uint32_t>(image->getLayerSize(aspect)), | 
|  | extent.width | 
|  | }; | 
|  | cornerUpdateRoutine(&data); | 
|  | } | 
|  |  | 
|  | void Blitter::copyCubeEdge(const vk::Image *image, | 
|  | const VkImageSubresource &dstSubresource, Edge dstEdge, | 
|  | const VkImageSubresource &srcSubresource, Edge srcEdge) | 
|  | { | 
|  | ASSERT(srcSubresource.aspectMask == dstSubresource.aspectMask); | 
|  | ASSERT(srcSubresource.mipLevel == dstSubresource.mipLevel); | 
|  | ASSERT(srcSubresource.arrayLayer != dstSubresource.arrayLayer); | 
|  |  | 
|  | // Figure out if the edges to be copied in reverse order respectively from one another | 
|  | // The copy should be reversed whenever the same edges are contiguous or if we're | 
|  | // copying top <-> right or bottom <-> left. This is explained by the layout, which is: | 
|  | // | 
|  | //      | +y | | 
|  | // | -x | +z | +x | -z | | 
|  | //      | -y | | 
|  |  | 
|  | bool reverse = (srcEdge == dstEdge) || | 
|  | ((srcEdge == TOP) && (dstEdge == RIGHT)) || | 
|  | ((srcEdge == RIGHT) && (dstEdge == TOP)) || | 
|  | ((srcEdge == BOTTOM) && (dstEdge == LEFT)) || | 
|  | ((srcEdge == LEFT) && (dstEdge == BOTTOM)); | 
|  |  | 
|  | VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(srcSubresource.aspectMask); | 
|  | int bytes = image->getFormat(aspect).bytes(); | 
|  | int pitchB = image->rowPitchBytes(aspect, srcSubresource.mipLevel); | 
|  |  | 
|  | VkExtent3D extent = image->getMipLevelExtent(aspect, srcSubresource.mipLevel); | 
|  | int w = extent.width; | 
|  | int h = extent.height; | 
|  | if(w != h) | 
|  | { | 
|  | UNSUPPORTED("Cube doesn't have square faces : (%d, %d)", w, h); | 
|  | } | 
|  |  | 
|  | // Src is expressed in the regular [0, width-1], [0, height-1] space | 
|  | bool srcHorizontal = ((srcEdge == TOP) || (srcEdge == BOTTOM)); | 
|  | int srcDelta = srcHorizontal ? bytes : pitchB; | 
|  | VkOffset3D srcOffset = { (srcEdge == RIGHT) ? (w - 1) : 0, (srcEdge == BOTTOM) ? (h - 1) : 0, 0 }; | 
|  |  | 
|  | // Dst contains borders, so it is expressed in the [-1, width], [-1, height] space | 
|  | bool dstHorizontal = ((dstEdge == TOP) || (dstEdge == BOTTOM)); | 
|  | int dstDelta = (dstHorizontal ? bytes : pitchB) * (reverse ? -1 : 1); | 
|  | VkOffset3D dstOffset = { (dstEdge == RIGHT) ? w : -1, (dstEdge == BOTTOM) ? h : -1, 0 }; | 
|  |  | 
|  | // Don't write in the corners | 
|  | if(dstHorizontal) | 
|  | { | 
|  | dstOffset.x += reverse ? w : 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | dstOffset.y += reverse ? h : 1; | 
|  | } | 
|  |  | 
|  | const uint8_t *src = static_cast<const uint8_t *>(image->getTexelPointer(srcOffset, srcSubresource)); | 
|  | uint8_t *dst = static_cast<uint8_t *>(image->getTexelPointer(dstOffset, dstSubresource)); | 
|  | ASSERT((src < image->end()) && ((src + (w * srcDelta)) < image->end())); | 
|  | ASSERT((dst < image->end()) && ((dst + (w * dstDelta)) < image->end())); | 
|  |  | 
|  | for(int i = 0; i < w; ++i, dst += dstDelta, src += srcDelta) | 
|  | { | 
|  | memcpy(dst, src, bytes); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace sw |