| //===- subzero/src/IceTargetLoweringX8632Traits.h - x86-32 traits -*- C++ -*-=// | 
 | // | 
 | //                        The Subzero Code Generator | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | /// | 
 | /// \file | 
 | /// \brief Declares the X8632 Target Lowering Traits. | 
 | /// | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #ifndef SUBZERO_SRC_ICETARGETLOWERINGX8632TRAITS_H | 
 | #define SUBZERO_SRC_ICETARGETLOWERINGX8632TRAITS_H | 
 |  | 
 | #include "IceAssembler.h" | 
 | #include "IceConditionCodesX8632.h" | 
 | #include "IceDefs.h" | 
 | #include "IceInst.h" | 
 | #include "IceInstX8632.def" | 
 | #include "IceOperand.h" | 
 | #include "IceRegistersX8632.h" | 
 | #include "IceTargetLowering.h" | 
 | #include "IceTargetLoweringX8632.def" | 
 | #include "IceTargetLoweringX86RegClass.h" | 
 |  | 
 | #include <array> | 
 |  | 
 | namespace Ice { | 
 |  | 
 | namespace X8632 { | 
 | using namespace ::Ice::X86; | 
 |  | 
 | template <class Machine> struct Insts; | 
 | template <class Machine> class TargetX86Base; | 
 | template <class Machine> class AssemblerX86Base; | 
 |  | 
 | class TargetX8632; | 
 |  | 
 | struct TargetX8632Traits { | 
 |   //---------------------------------------------------------------------------- | 
 |   //     ______  ______  __    __ | 
 |   //    /\  __ \/\  ___\/\ "-./  \ | 
 |   //    \ \  __ \ \___  \ \ \-./\ \ | 
 |   //     \ \_\ \_\/\_____\ \_\ \ \_\ | 
 |   //      \/_/\/_/\/_____/\/_/  \/_/ | 
 |   // | 
 |   //---------------------------------------------------------------------------- | 
 |   static constexpr ::Ice::Assembler::AssemblerKind AsmKind = | 
 |       ::Ice::Assembler::Asm_X8632; | 
 |  | 
 |   static constexpr bool Is64Bit = false; | 
 |   static constexpr bool HasPopa = true; | 
 |   static constexpr bool HasPusha = true; | 
 |   static constexpr bool UsesX87 = true; | 
 |   static constexpr ::Ice::RegX8632::GPRRegister Last8BitGPR = | 
 |       ::Ice::RegX8632::GPRRegister::Encoded_Reg_ebx; | 
 |  | 
 |   enum ScaleFactor { TIMES_1 = 0, TIMES_2 = 1, TIMES_4 = 2, TIMES_8 = 3 }; | 
 |  | 
 |   using GPRRegister = ::Ice::RegX8632::GPRRegister; | 
 |   using ByteRegister = ::Ice::RegX8632::ByteRegister; | 
 |   using XmmRegister = ::Ice::RegX8632::XmmRegister; | 
 |   using X87STRegister = ::Ice::RegX8632::X87STRegister; | 
 |  | 
 |   using Cond = ::Ice::CondX86; | 
 |  | 
 |   using RegisterSet = ::Ice::RegX8632; | 
 |   static constexpr RegisterSet::AllRegisters StackPtr = RegX8632::Reg_esp; | 
 |   static constexpr RegisterSet::AllRegisters FramePtr = RegX8632::Reg_ebp; | 
 |   static constexpr GPRRegister Encoded_Reg_Accumulator = | 
 |       RegX8632::Encoded_Reg_eax; | 
 |   static constexpr GPRRegister Encoded_Reg_Counter = RegX8632::Encoded_Reg_ecx; | 
 |   static constexpr FixupKind FK_PcRel = llvm::ELF::R_386_PC32; | 
 |   static constexpr FixupKind FK_Abs = llvm::ELF::R_386_32; | 
 |   static constexpr FixupKind FK_Gotoff = llvm::ELF::R_386_GOTOFF; | 
 |   static constexpr FixupKind FK_GotPC = llvm::ELF::R_386_GOTPC; | 
 |  | 
 |   class Operand { | 
 |   public: | 
 |     Operand(const Operand &other) | 
 |         : fixup_(other.fixup_), length_(other.length_) { | 
 |       memmove(&encoding_[0], &other.encoding_[0], other.length_); | 
 |     } | 
 |  | 
 |     Operand &operator=(const Operand &other) { | 
 |       length_ = other.length_; | 
 |       fixup_ = other.fixup_; | 
 |       memmove(&encoding_[0], &other.encoding_[0], other.length_); | 
 |       return *this; | 
 |     } | 
 |  | 
 |     uint8_t mod() const { return (encoding_at(0) >> 6) & 3; } | 
 |  | 
 |     GPRRegister rm() const { | 
 |       return static_cast<GPRRegister>(encoding_at(0) & 7); | 
 |     } | 
 |  | 
 |     ScaleFactor scale() const { | 
 |       return static_cast<ScaleFactor>((encoding_at(1) >> 6) & 3); | 
 |     } | 
 |  | 
 |     GPRRegister index() const { | 
 |       return static_cast<GPRRegister>((encoding_at(1) >> 3) & 7); | 
 |     } | 
 |  | 
 |     GPRRegister base() const { | 
 |       return static_cast<GPRRegister>(encoding_at(1) & 7); | 
 |     } | 
 |  | 
 |     int8_t disp8() const { | 
 |       assert(length_ >= 2); | 
 |       return static_cast<int8_t>(encoding_[length_ - 1]); | 
 |     } | 
 |  | 
 |     int32_t disp32() const { | 
 |       assert(length_ >= 5); | 
 |       // TODO(stichnot): This method is not currently used.  Delete it along | 
 |       // with other unused methods, or use a safe version of bitCopy(). | 
 |       llvm::report_fatal_error("Unexpected call to disp32()"); | 
 |       // return Utils::bitCopy<int32_t>(encoding_[length_ - 4]); | 
 |     } | 
 |  | 
 |     AssemblerFixup *fixup() const { return fixup_; } | 
 |  | 
 |   protected: | 
 |     Operand() : fixup_(nullptr), length_(0) {} // Needed by subclass Address. | 
 |  | 
 |     void SetModRM(int mod, GPRRegister rm) { | 
 |       assert((mod & ~3) == 0); | 
 |       encoding_[0] = (mod << 6) | rm; | 
 |       length_ = 1; | 
 |     } | 
 |  | 
 |     void SetSIB(ScaleFactor scale, GPRRegister index, GPRRegister base) { | 
 |       assert(length_ == 1); | 
 |       assert((scale & ~3) == 0); | 
 |       encoding_[1] = (scale << 6) | (index << 3) | base; | 
 |       length_ = 2; | 
 |     } | 
 |  | 
 |     void SetDisp8(int8_t disp) { | 
 |       assert(length_ == 1 || length_ == 2); | 
 |       encoding_[length_++] = static_cast<uint8_t>(disp); | 
 |     } | 
 |  | 
 |     void SetDisp32(int32_t disp) { | 
 |       assert(length_ == 1 || length_ == 2); | 
 |       intptr_t disp_size = sizeof(disp); | 
 |       memmove(&encoding_[length_], &disp, disp_size); | 
 |       length_ += disp_size; | 
 |     } | 
 |  | 
 |     void SetFixup(AssemblerFixup *fixup) { fixup_ = fixup; } | 
 |  | 
 |   private: | 
 |     AssemblerFixup *fixup_; | 
 |     uint8_t encoding_[6]; | 
 |     uint8_t length_; | 
 |  | 
 |     explicit Operand(GPRRegister reg) : fixup_(nullptr) { SetModRM(3, reg); } | 
 |  | 
 |     /// Get the operand encoding byte at the given index. | 
 |     uint8_t encoding_at(intptr_t index) const { | 
 |       assert(index >= 0 && index < length_); | 
 |       return encoding_[index]; | 
 |     } | 
 |  | 
 |     /// Returns whether or not this operand is really the given register in | 
 |     /// disguise. Used from the assembler to generate better encodings. | 
 |     bool IsRegister(GPRRegister reg) const { | 
 |       return ((encoding_[0] & 0xF8) == | 
 |               0xC0) // Addressing mode is register only. | 
 |              && | 
 |              ((encoding_[0] & 0x07) == reg); // Register codes match. | 
 |     } | 
 |  | 
 |     friend class AssemblerX86Base<TargetX8632Traits>; | 
 |   }; | 
 |  | 
 |   class Address : public Operand { | 
 |     Address() = delete; | 
 |  | 
 |   public: | 
 |     Address(const Address &other) : Operand(other) {} | 
 |  | 
 |     Address &operator=(const Address &other) { | 
 |       Operand::operator=(other); | 
 |       return *this; | 
 |     } | 
 |  | 
 |     Address(GPRRegister Base, int32_t Disp, AssemblerFixup *Fixup) { | 
 |       if (Fixup == nullptr && Disp == 0 && Base != RegX8632::Encoded_Reg_ebp) { | 
 |         SetModRM(0, Base); | 
 |         if (Base == RegX8632::Encoded_Reg_esp) | 
 |           SetSIB(TIMES_1, RegX8632::Encoded_Reg_esp, Base); | 
 |       } else if (Fixup == nullptr && Utils::IsInt(8, Disp)) { | 
 |         SetModRM(1, Base); | 
 |         if (Base == RegX8632::Encoded_Reg_esp) | 
 |           SetSIB(TIMES_1, RegX8632::Encoded_Reg_esp, Base); | 
 |         SetDisp8(Disp); | 
 |       } else { | 
 |         SetModRM(2, Base); | 
 |         if (Base == RegX8632::Encoded_Reg_esp) | 
 |           SetSIB(TIMES_1, RegX8632::Encoded_Reg_esp, Base); | 
 |         SetDisp32(Disp); | 
 |         if (Fixup) | 
 |           SetFixup(Fixup); | 
 |       } | 
 |     } | 
 |  | 
 |     Address(GPRRegister Index, ScaleFactor Scale, int32_t Disp, | 
 |             AssemblerFixup *Fixup) { | 
 |       assert(Index != RegX8632::Encoded_Reg_esp); // Illegal addressing mode. | 
 |       SetModRM(0, RegX8632::Encoded_Reg_esp); | 
 |       SetSIB(Scale, Index, RegX8632::Encoded_Reg_ebp); | 
 |       SetDisp32(Disp); | 
 |       if (Fixup) | 
 |         SetFixup(Fixup); | 
 |     } | 
 |  | 
 |     Address(GPRRegister Base, GPRRegister Index, ScaleFactor Scale, | 
 |             int32_t Disp, AssemblerFixup *Fixup) { | 
 |       assert(Index != RegX8632::Encoded_Reg_esp); // Illegal addressing mode. | 
 |       if (Fixup == nullptr && Disp == 0 && Base != RegX8632::Encoded_Reg_ebp) { | 
 |         SetModRM(0, RegX8632::Encoded_Reg_esp); | 
 |         SetSIB(Scale, Index, Base); | 
 |       } else if (Fixup == nullptr && Utils::IsInt(8, Disp)) { | 
 |         SetModRM(1, RegX8632::Encoded_Reg_esp); | 
 |         SetSIB(Scale, Index, Base); | 
 |         SetDisp8(Disp); | 
 |       } else { | 
 |         SetModRM(2, RegX8632::Encoded_Reg_esp); | 
 |         SetSIB(Scale, Index, Base); | 
 |         SetDisp32(Disp); | 
 |         if (Fixup) | 
 |           SetFixup(Fixup); | 
 |       } | 
 |     } | 
 |  | 
 |     /// Generate an absolute address expression on x86-32. | 
 |     Address(RelocOffsetT Offset, AssemblerFixup *Fixup) { | 
 |       SetModRM(0, RegX8632::Encoded_Reg_ebp); | 
 |       // Use the Offset in the displacement for now. If we decide to process | 
 |       // fixups later, we'll need to patch up the emitted displacement. | 
 |       SetDisp32(Offset); | 
 |       if (Fixup) | 
 |         SetFixup(Fixup); | 
 |     } | 
 |  | 
 |     static Address ofConstPool(Assembler *Asm, const Constant *Imm) { | 
 |       AssemblerFixup *Fixup = Asm->createFixup(llvm::ELF::R_386_32, Imm); | 
 |       const RelocOffsetT Offset = 0; | 
 |       return Address(Offset, Fixup); | 
 |     } | 
 |   }; | 
 |  | 
 |   //---------------------------------------------------------------------------- | 
 |   //     __      ______  __     __  ______  ______  __  __   __  ______ | 
 |   //    /\ \    /\  __ \/\ \  _ \ \/\  ___\/\  == \/\ \/\ "-.\ \/\  ___\ | 
 |   //    \ \ \___\ \ \/\ \ \ \/ ".\ \ \  __\\ \  __<\ \ \ \ \-.  \ \ \__ \ | 
 |   //     \ \_____\ \_____\ \__/".~\_\ \_____\ \_\ \_\ \_\ \_\\"\_\ \_____\ | 
 |   //      \/_____/\/_____/\/_/   \/_/\/_____/\/_/ /_/\/_/\/_/ \/_/\/_____/ | 
 |   // | 
 |   //---------------------------------------------------------------------------- | 
 |   enum InstructionSet { | 
 |     Begin, | 
 |     // SSE2 is the PNaCl baseline instruction set. | 
 |     SSE2 = Begin, | 
 |     SSE4_1, | 
 |     End | 
 |   }; | 
 |  | 
 |   static const char *TargetName; | 
 |   static constexpr Type WordType = IceType_i32; | 
 |  | 
 |   static const char *getRegName(RegNumT RegNum) { | 
 |     static const char *const RegNames[RegisterSet::Reg_NUM] = { | 
 | #define X(val, encode, name, base, scratch, preserved, stackptr, frameptr,     \ | 
 |           isGPR, is64, is32, is16, is8, isXmm, is64To8, is32To8, is16To8,      \ | 
 |           isTrunc8Rcvr, isAhRcvr, aliases)                                     \ | 
 |   name, | 
 |         REGX8632_TABLE | 
 | #undef X | 
 |     }; | 
 |     RegNum.assertIsValid(); | 
 |     return RegNames[RegNum]; | 
 |   } | 
 |  | 
 |   static GPRRegister getEncodedGPR(RegNumT RegNum) { | 
 |     static const GPRRegister GPRRegs[RegisterSet::Reg_NUM] = { | 
 | #define X(val, encode, name, base, scratch, preserved, stackptr, frameptr,     \ | 
 |           isGPR, is64, is32, is16, is8, isXmm, is64To8, is32To8, is16To8,      \ | 
 |           isTrunc8Rcvr, isAhRcvr, aliases)                                     \ | 
 |   GPRRegister(isGPR ? encode : GPRRegister::Encoded_Not_GPR), | 
 |         REGX8632_TABLE | 
 | #undef X | 
 |     }; | 
 |     RegNum.assertIsValid(); | 
 |     assert(GPRRegs[RegNum] != GPRRegister::Encoded_Not_GPR); | 
 |     return GPRRegs[RegNum]; | 
 |   } | 
 |  | 
 |   static ByteRegister getEncodedByteReg(RegNumT RegNum) { | 
 |     static const ByteRegister ByteRegs[RegisterSet::Reg_NUM] = { | 
 | #define X(val, encode, name, base, scratch, preserved, stackptr, frameptr,     \ | 
 |           isGPR, is64, is32, is16, is8, isXmm, is64To8, is32To8, is16To8,      \ | 
 |           isTrunc8Rcvr, isAhRcvr, aliases)                                     \ | 
 |   ByteRegister(is8 ? encode : ByteRegister::Encoded_Not_ByteReg), | 
 |         REGX8632_TABLE | 
 | #undef X | 
 |     }; | 
 |     RegNum.assertIsValid(); | 
 |     assert(ByteRegs[RegNum] != ByteRegister::Encoded_Not_ByteReg); | 
 |     return ByteRegs[RegNum]; | 
 |   } | 
 |  | 
 |   static bool isXmm(RegNumT RegNum) { | 
 |     static const bool IsXmm[RegisterSet::Reg_NUM] = { | 
 | #define X(val, encode, name, base, scratch, preserved, stackptr, frameptr,     \ | 
 |           isGPR, is64, is32, is16, is8, isXmm, is64To8, is32To8, is16To8,      \ | 
 |           isTrunc8Rcvr, isAhRcvr, aliases)                                     \ | 
 |   isXmm, | 
 | 		REGX8632_TABLE | 
 | #undef X | 
 |     }; | 
 |     return IsXmm[RegNum]; | 
 |   } | 
 |  | 
 |   static XmmRegister getEncodedXmm(RegNumT RegNum) { | 
 |     static const XmmRegister XmmRegs[RegisterSet::Reg_NUM] = { | 
 | #define X(val, encode, name, base, scratch, preserved, stackptr, frameptr,     \ | 
 |           isGPR, is64, is32, is16, is8, isXmm, is64To8, is32To8, is16To8,      \ | 
 |           isTrunc8Rcvr, isAhRcvr, aliases)                                     \ | 
 |   XmmRegister(isXmm ? encode : XmmRegister::Encoded_Not_Xmm), | 
 |         REGX8632_TABLE | 
 | #undef X | 
 |     }; | 
 |     RegNum.assertIsValid(); | 
 |     assert(XmmRegs[RegNum] != XmmRegister::Encoded_Not_Xmm); | 
 |     return XmmRegs[RegNum]; | 
 |   } | 
 |  | 
 |   static uint32_t getEncoding(RegNumT RegNum) { | 
 |     static const uint32_t Encoding[RegisterSet::Reg_NUM] = { | 
 | #define X(val, encode, name, base, scratch, preserved, stackptr, frameptr,     \ | 
 |           isGPR, is64, is32, is16, is8, isXmm, is64To8, is32To8, is16To8,      \ | 
 |           isTrunc8Rcvr, isAhRcvr, aliases)                                     \ | 
 |   encode, | 
 |         REGX8632_TABLE | 
 | #undef X | 
 |     }; | 
 |     RegNum.assertIsValid(); | 
 |     return Encoding[RegNum]; | 
 |   } | 
 |  | 
 |   static RegNumT getBaseReg(RegNumT RegNum) { | 
 |     static const RegNumT BaseRegs[RegisterSet::Reg_NUM] = { | 
 | #define X(val, encode, name, base, scratch, preserved, stackptr, frameptr,     \ | 
 |           isGPR, is64, is32, is16, is8, isXmm, is64To8, is32To8, is16To8,      \ | 
 |           isTrunc8Rcvr, isAhRcvr, aliases)                                     \ | 
 |   RegisterSet::base, | 
 |         REGX8632_TABLE | 
 | #undef X | 
 |     }; | 
 |     RegNum.assertIsValid(); | 
 |     return BaseRegs[RegNum]; | 
 |   } | 
 |  | 
 | private: | 
 |   static RegisterSet::AllRegisters getFirstGprForType(Type Ty) { | 
 |     switch (Ty) { | 
 |     default: | 
 |       llvm_unreachable("Invalid type for GPR."); | 
 |     case IceType_i1: | 
 |     case IceType_i8: | 
 |       return RegisterSet::Reg_al; | 
 |     case IceType_i16: | 
 |       return RegisterSet::Reg_ax; | 
 |     case IceType_i32: | 
 |       return RegisterSet::Reg_eax; | 
 |     } | 
 |   } | 
 |  | 
 | public: | 
 |   // Return a register in RegNum's alias set that is suitable for Ty. | 
 |   static RegNumT getGprForType(Type Ty, RegNumT RegNum) { | 
 |     assert(RegNum.hasValue()); | 
 |  | 
 |     if (!isScalarIntegerType(Ty)) { | 
 |       return RegNum; | 
 |     } | 
 |  | 
 |     // [abcd]h registers are not convertible to their ?l, ?x, and e?x versions. | 
 |     switch (RegNum) { | 
 |     default: | 
 |       break; | 
 |     case RegisterSet::Reg_ah: | 
 |     case RegisterSet::Reg_bh: | 
 |     case RegisterSet::Reg_ch: | 
 |     case RegisterSet::Reg_dh: | 
 |       assert(isByteSizedType(Ty)); | 
 |       return RegNum; | 
 |     } | 
 |  | 
 |     const RegisterSet::AllRegisters FirstGprForType = getFirstGprForType(Ty); | 
 |  | 
 |     switch (RegNum) { | 
 |     default: | 
 |       llvm::report_fatal_error("Unknown register."); | 
 | #define X(val, encode, name, base, scratch, preserved, stackptr, frameptr,     \ | 
 |           isGPR, is64, is32, is16, is8, isXmm, is64To8, is32To8, is16To8,      \ | 
 |           isTrunc8Rcvr, isAhRcvr, aliases)                                     \ | 
 |   case RegisterSet::val: {                                                     \ | 
 |     if (!isGPR)                                                                \ | 
 |       return RegisterSet::val;                                                 \ | 
 |     assert((is32) || (is16) || (is8) ||                                        \ | 
 |            getBaseReg(RegisterSet::val) == RegisterSet::Reg_esp);              \ | 
 |     constexpr RegisterSet::AllRegisters FirstGprWithRegNumSize =               \ | 
 |         (((is32) || RegisterSet::val == RegisterSet::Reg_esp)                  \ | 
 |              ? RegisterSet::Reg_eax                                            \ | 
 |              : (((is16) || RegisterSet::val == RegisterSet::Reg_sp)            \ | 
 |                     ? RegisterSet::Reg_ax                                      \ | 
 |                     : RegisterSet::Reg_al));                                   \ | 
 |     const RegNumT NewRegNum =                                                  \ | 
 |         RegNumT::fixme(RegNum - FirstGprWithRegNumSize + FirstGprForType);     \ | 
 |     assert(getBaseReg(RegNum) == getBaseReg(NewRegNum) &&                      \ | 
 |            "Error involving " #val);                                           \ | 
 |     return NewRegNum;                                                          \ | 
 |   } | 
 |       REGX8632_TABLE | 
 | #undef X | 
 |     } | 
 |   } | 
 |  | 
 | private: | 
 |   /// SizeOf is used to obtain the size of an initializer list as a constexpr | 
 |   /// expression. This is only needed until our C++ library is updated to | 
 |   /// C++ 14 -- which defines constexpr members to std::initializer_list. | 
 |   class SizeOf { | 
 |     SizeOf(const SizeOf &) = delete; | 
 |     SizeOf &operator=(const SizeOf &) = delete; | 
 |  | 
 |   public: | 
 |     constexpr SizeOf() : Size(0) {} | 
 |     template <typename... T> | 
 |     explicit constexpr SizeOf(T...) | 
 |         : Size(__length<T...>::value) {} | 
 |     constexpr SizeT size() const { return Size; } | 
 |  | 
 |   private: | 
 |     template <typename T, typename... U> struct __length { | 
 |       static constexpr std::size_t value = 1 + __length<U...>::value; | 
 |     }; | 
 |  | 
 |     template <typename T> struct __length<T> { | 
 |       static constexpr std::size_t value = 1; | 
 |     }; | 
 |  | 
 |     const std::size_t Size; | 
 |   }; | 
 |  | 
 | public: | 
 |   static void initRegisterSet( | 
 |       const ::Ice::ClFlags & /*Flags*/, | 
 |       std::array<SmallBitVector, RCX86_NUM> *TypeToRegisterSet, | 
 |       std::array<SmallBitVector, RegisterSet::Reg_NUM> *RegisterAliases) { | 
 |     SmallBitVector IntegerRegistersI32(RegisterSet::Reg_NUM); | 
 |     SmallBitVector IntegerRegistersI16(RegisterSet::Reg_NUM); | 
 |     SmallBitVector IntegerRegistersI8(RegisterSet::Reg_NUM); | 
 |     SmallBitVector FloatRegisters(RegisterSet::Reg_NUM); | 
 |     SmallBitVector VectorRegisters(RegisterSet::Reg_NUM); | 
 |     SmallBitVector Trunc64To8Registers(RegisterSet::Reg_NUM); | 
 |     SmallBitVector Trunc32To8Registers(RegisterSet::Reg_NUM); | 
 |     SmallBitVector Trunc16To8Registers(RegisterSet::Reg_NUM); | 
 |     SmallBitVector Trunc8RcvrRegisters(RegisterSet::Reg_NUM); | 
 |     SmallBitVector AhRcvrRegisters(RegisterSet::Reg_NUM); | 
 |     SmallBitVector InvalidRegisters(RegisterSet::Reg_NUM); | 
 |  | 
 |     static constexpr struct { | 
 |       uint16_t Val; | 
 |       unsigned Is64 : 1; | 
 |       unsigned Is32 : 1; | 
 |       unsigned Is16 : 1; | 
 |       unsigned Is8 : 1; | 
 |       unsigned IsXmm : 1; | 
 |       unsigned Is64To8 : 1; | 
 |       unsigned Is32To8 : 1; | 
 |       unsigned Is16To8 : 1; | 
 |       unsigned IsTrunc8Rcvr : 1; | 
 |       unsigned IsAhRcvr : 1; | 
 | #define NUM_ALIASES_BITS 2 | 
 |       SizeT NumAliases : (NUM_ALIASES_BITS + 1); | 
 |       uint16_t Aliases[1 << NUM_ALIASES_BITS]; | 
 | #undef NUM_ALIASES_BITS | 
 |     } X8632RegTable[RegisterSet::Reg_NUM] = { | 
 | #define X(val, encode, name, base, scratch, preserved, stackptr, frameptr,     \ | 
 |           isGPR, is64, is32, is16, is8, isXmm, is64To8, is32To8, is16To8,      \ | 
 |           isTrunc8Rcvr, isAhRcvr, aliases)                                     \ | 
 |   {                                                                            \ | 
 |     RegisterSet::val, is64, is32, is16, is8, isXmm, is64To8, is32To8, is16To8, \ | 
 |         isTrunc8Rcvr, isAhRcvr, (SizeOf aliases).size(), aliases,              \ | 
 |   }                                                                            \ | 
 |   , | 
 |         REGX8632_TABLE | 
 | #undef X | 
 |     }; | 
 |  | 
 |     for (SizeT ii = 0; ii < llvm::array_lengthof(X8632RegTable); ++ii) { | 
 |       const auto &Entry = X8632RegTable[ii]; | 
 |       (IntegerRegistersI32)[Entry.Val] = Entry.Is32; | 
 |       (IntegerRegistersI16)[Entry.Val] = Entry.Is16; | 
 |       (IntegerRegistersI8)[Entry.Val] = Entry.Is8; | 
 |       (FloatRegisters)[Entry.Val] = Entry.IsXmm; | 
 |       (VectorRegisters)[Entry.Val] = Entry.IsXmm; | 
 |       (Trunc64To8Registers)[Entry.Val] = Entry.Is64To8; | 
 |       (Trunc32To8Registers)[Entry.Val] = Entry.Is32To8; | 
 |       (Trunc16To8Registers)[Entry.Val] = Entry.Is16To8; | 
 |       (Trunc8RcvrRegisters)[Entry.Val] = Entry.IsTrunc8Rcvr; | 
 |       (AhRcvrRegisters)[Entry.Val] = Entry.IsAhRcvr; | 
 |       (*RegisterAliases)[Entry.Val].resize(RegisterSet::Reg_NUM); | 
 |       for (SizeT J = 0; J < Entry.NumAliases; J++) { | 
 |         SizeT Alias = Entry.Aliases[J]; | 
 |         assert(!(*RegisterAliases)[Entry.Val][Alias] && "Duplicate alias"); | 
 |         (*RegisterAliases)[Entry.Val].set(Alias); | 
 |       } | 
 |       (*RegisterAliases)[Entry.Val].set(Entry.Val); | 
 |     } | 
 |  | 
 |     (*TypeToRegisterSet)[RC_void] = InvalidRegisters; | 
 |     (*TypeToRegisterSet)[RC_i1] = IntegerRegistersI8; | 
 |     (*TypeToRegisterSet)[RC_i8] = IntegerRegistersI8; | 
 |     (*TypeToRegisterSet)[RC_i16] = IntegerRegistersI16; | 
 |     (*TypeToRegisterSet)[RC_i32] = IntegerRegistersI32; | 
 |     (*TypeToRegisterSet)[RC_i64] = InvalidRegisters; | 
 |     (*TypeToRegisterSet)[RC_f32] = FloatRegisters; | 
 |     (*TypeToRegisterSet)[RC_f64] = FloatRegisters; | 
 |     (*TypeToRegisterSet)[RC_v4i1] = VectorRegisters; | 
 |     (*TypeToRegisterSet)[RC_v8i1] = VectorRegisters; | 
 |     (*TypeToRegisterSet)[RC_v16i1] = VectorRegisters; | 
 |     (*TypeToRegisterSet)[RC_v16i8] = VectorRegisters; | 
 |     (*TypeToRegisterSet)[RC_v8i16] = VectorRegisters; | 
 |     (*TypeToRegisterSet)[RC_v4i32] = VectorRegisters; | 
 |     (*TypeToRegisterSet)[RC_v4f32] = VectorRegisters; | 
 |     (*TypeToRegisterSet)[RCX86_Is64To8] = Trunc64To8Registers; | 
 |     (*TypeToRegisterSet)[RCX86_Is32To8] = Trunc32To8Registers; | 
 |     (*TypeToRegisterSet)[RCX86_Is16To8] = Trunc16To8Registers; | 
 |     (*TypeToRegisterSet)[RCX86_IsTrunc8Rcvr] = Trunc8RcvrRegisters; | 
 |     (*TypeToRegisterSet)[RCX86_IsAhRcvr] = AhRcvrRegisters; | 
 |   } | 
 |  | 
 |   static SmallBitVector getRegisterSet(const ::Ice::ClFlags & /*Flags*/, | 
 |                                        TargetLowering::RegSetMask Include, | 
 |                                        TargetLowering::RegSetMask Exclude) { | 
 |     SmallBitVector Registers(RegisterSet::Reg_NUM); | 
 |  | 
 | #define X(val, encode, name, base, scratch, preserved, stackptr, frameptr,     \ | 
 |           isGPR, is64, is32, is16, is8, isXmm, is64To8, is32To8, is16To8,      \ | 
 |           isTrunc8Rcvr, isAhRcvr, aliases)                                     \ | 
 |   if (scratch && (Include & ::Ice::TargetLowering::RegSet_CallerSave))         \ | 
 |     Registers[RegisterSet::val] = true;                                        \ | 
 |   if (preserved && (Include & ::Ice::TargetLowering::RegSet_CalleeSave))       \ | 
 |     Registers[RegisterSet::val] = true;                                        \ | 
 |   if (stackptr && (Include & ::Ice::TargetLowering::RegSet_StackPointer))      \ | 
 |     Registers[RegisterSet::val] = true;                                        \ | 
 |   if (frameptr && (Include & ::Ice::TargetLowering::RegSet_FramePointer))      \ | 
 |     Registers[RegisterSet::val] = true;                                        \ | 
 |   if (scratch && (Exclude & ::Ice::TargetLowering::RegSet_CallerSave))         \ | 
 |     Registers[RegisterSet::val] = false;                                       \ | 
 |   if (preserved && (Exclude & ::Ice::TargetLowering::RegSet_CalleeSave))       \ | 
 |     Registers[RegisterSet::val] = false;                                       \ | 
 |   if (stackptr && (Exclude & ::Ice::TargetLowering::RegSet_StackPointer))      \ | 
 |     Registers[RegisterSet::val] = false;                                       \ | 
 |   if (frameptr && (Exclude & ::Ice::TargetLowering::RegSet_FramePointer))      \ | 
 |     Registers[RegisterSet::val] = false; | 
 |  | 
 |     REGX8632_TABLE | 
 |  | 
 | #undef X | 
 |  | 
 |     return Registers; | 
 |   } | 
 |  | 
 |   static void makeRandomRegisterPermutation( | 
 |       Cfg *Func, llvm::SmallVectorImpl<RegNumT> &Permutation, | 
 |       const SmallBitVector &ExcludeRegisters, uint64_t Salt) { | 
 |     // TODO(stichnot): Declaring Permutation this way loses type/size | 
 |     // information. Fix this in conjunction with the caller-side TODO. | 
 |     assert(Permutation.size() >= RegisterSet::Reg_NUM); | 
 |     // Expected upper bound on the number of registers in a single equivalence | 
 |     // class. For x86-32, this would comprise the 8 XMM registers. This is for | 
 |     // performance, not correctness. | 
 |     static const unsigned MaxEquivalenceClassSize = 8; | 
 |     using RegisterList = llvm::SmallVector<RegNumT, MaxEquivalenceClassSize>; | 
 |     using EquivalenceClassMap = std::map<uint32_t, RegisterList>; | 
 |     EquivalenceClassMap EquivalenceClasses; | 
 |     SizeT NumShuffled = 0, NumPreserved = 0; | 
 |  | 
 | // Build up the equivalence classes of registers by looking at the register | 
 | // properties as well as whether the registers should be explicitly excluded | 
 | // from shuffling. | 
 | #define X(val, encode, name, base, scratch, preserved, stackptr, frameptr,     \ | 
 |           isGPR, is64, is32, is16, is8, isXmm, is64To8, is32To8, is16To8,      \ | 
 |           isTrunc8Rcvr, isAhRcvr, aliases)                                     \ | 
 |   if (ExcludeRegisters[RegisterSet::val]) {                                    \ | 
 |     /* val stays the same in the resulting permutation. */                     \ | 
 |     Permutation[RegisterSet::val] = RegisterSet::val;                          \ | 
 |     ++NumPreserved;                                                            \ | 
 |   } else {                                                                     \ | 
 |     uint32_t AttrKey = 0;                                                      \ | 
 |     uint32_t Index = 0;                                                        \ | 
 |     /* Combine relevant attributes into an equivalence class key. */           \ | 
 |     Index |= (scratch << (AttrKey++));                                         \ | 
 |     Index |= (preserved << (AttrKey++));                                       \ | 
 |     Index |= (is8 << (AttrKey++));                                             \ | 
 |     Index |= (is16 << (AttrKey++));                                            \ | 
 |     Index |= (is32 << (AttrKey++));                                            \ | 
 |     Index |= (is64 << (AttrKey++));                                            \ | 
 |     Index |= (isXmm << (AttrKey++));                                           \ | 
 |     Index |= (is16To8 << (AttrKey++));                                         \ | 
 |     Index |= (is32To8 << (AttrKey++));                                         \ | 
 |     Index |= (is64To8 << (AttrKey++));                                         \ | 
 |     Index |= (isTrunc8Rcvr << (AttrKey++));                                    \ | 
 |     /* val is assigned to an equivalence class based on its properties. */     \ | 
 |     EquivalenceClasses[Index].push_back(RegisterSet::val);                     \ | 
 |   } | 
 |     REGX8632_TABLE | 
 | #undef X | 
 |  | 
 |     // Create a random number generator for regalloc randomization. | 
 |     RandomNumberGenerator RNG(getFlags().getRandomSeed(), | 
 |                               RPE_RegAllocRandomization, Salt); | 
 |     RandomNumberGeneratorWrapper RNGW(RNG); | 
 |  | 
 |     // Shuffle the resulting equivalence classes. | 
 |     for (auto I : EquivalenceClasses) { | 
 |       const RegisterList &List = I.second; | 
 |       RegisterList Shuffled(List); | 
 |       RandomShuffle(Shuffled.begin(), Shuffled.end(), RNGW); | 
 |       for (size_t SI = 0, SE = Shuffled.size(); SI < SE; ++SI) { | 
 |         Permutation[List[SI]] = Shuffled[SI]; | 
 |         ++NumShuffled; | 
 |       } | 
 |     } | 
 |  | 
 |     assert(NumShuffled + NumPreserved == RegisterSet::Reg_NUM); | 
 |  | 
 |     if (Func->isVerbose(IceV_Random)) { | 
 |       OstreamLocker L(Func->getContext()); | 
 |       Ostream &Str = Func->getContext()->getStrDump(); | 
 |       Str << "Register equivalence classes:\n"; | 
 |       for (auto I : EquivalenceClasses) { | 
 |         Str << "{"; | 
 |         const RegisterList &List = I.second; | 
 |         bool First = true; | 
 |         for (RegNumT Register : List) { | 
 |           if (!First) | 
 |             Str << " "; | 
 |           First = false; | 
 |           Str << getRegName(Register); | 
 |         } | 
 |         Str << "}\n"; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   static RegNumT getRaxOrDie() { | 
 |     llvm::report_fatal_error("no rax in non-64-bit mode."); | 
 |   } | 
 |  | 
 |   static RegNumT getRdxOrDie() { | 
 |     llvm::report_fatal_error("no rdx in non-64-bit mode."); | 
 |   } | 
 |  | 
 |   // x86-32 calling convention: | 
 |   // | 
 |   // * The first four arguments of vector type, regardless of their position | 
 |   // relative to the other arguments in the argument list, are placed in | 
 |   // registers xmm0 - xmm3. | 
 |   // | 
 |   // This intends to match the section "IA-32 Function Calling Convention" of | 
 |   // the document "OS X ABI Function Call Guide" by Apple. | 
 |  | 
 |   /// The maximum number of arguments to pass in XMM registers | 
 |   static constexpr uint32_t X86_MAX_XMM_ARGS = 4; | 
 |   /// The maximum number of arguments to pass in GPR registers | 
 |   static constexpr uint32_t X86_MAX_GPR_ARGS = 0; | 
 |   /// Whether scalar floating point arguments are passed in XMM registers | 
 |   static constexpr bool X86_PASS_SCALAR_FP_IN_XMM = false; | 
 |   /// Get the register for a given argument slot in the XMM registers. | 
 |   static RegNumT getRegisterForXmmArgNum(uint32_t ArgNum) { | 
 |     // TODO(sehr): Change to use the CCArg technique used in ARM32. | 
 |     static_assert(RegisterSet::Reg_xmm0 + 1 == RegisterSet::Reg_xmm1, | 
 |                   "Inconsistency between XMM register numbers and ordinals"); | 
 |     if (ArgNum >= X86_MAX_XMM_ARGS) { | 
 |       return RegNumT(); | 
 |     } | 
 |     return RegNumT::fixme(RegisterSet::Reg_xmm0 + ArgNum); | 
 |   } | 
 |   /// Get the register for a given argument slot in the GPRs. | 
 |   static RegNumT getRegisterForGprArgNum(Type Ty, uint32_t ArgNum) { | 
 |     assert(Ty == IceType_i64 || Ty == IceType_i32); | 
 |     (void)Ty; | 
 |     (void)ArgNum; | 
 |     return RegNumT(); | 
 |   } | 
 |   // Given the absolute argument position and argument position by type, return | 
 |   // the register index to assign it to. | 
 |   static SizeT getArgIndex(SizeT argPos, SizeT argPosByType) { | 
 |     (void)argPos; | 
 |     return argPosByType; | 
 |   }; | 
 |  | 
 |   /// The number of bits in a byte | 
 |   static constexpr uint32_t X86_CHAR_BIT = 8; | 
 |   /// Stack alignment. This is defined in IceTargetLoweringX8632.cpp because it | 
 |   /// is used as an argument to std::max(), and the default std::less<T> has an | 
 |   /// operator(T const&, T const&) which requires this member to have an | 
 |   /// address. | 
 |   static const uint32_t X86_STACK_ALIGNMENT_BYTES; | 
 |   /// Size of the return address on the stack | 
 |   static constexpr uint32_t X86_RET_IP_SIZE_BYTES = 4; | 
 |   /// The number of different NOP instructions | 
 |   static constexpr uint32_t X86_NUM_NOP_VARIANTS = 5; | 
 |  | 
 |   /// \name Limits for unrolling memory intrinsics. | 
 |   /// @{ | 
 |   static constexpr uint32_t MEMCPY_UNROLL_LIMIT = 8; | 
 |   static constexpr uint32_t MEMMOVE_UNROLL_LIMIT = 8; | 
 |   static constexpr uint32_t MEMSET_UNROLL_LIMIT = 8; | 
 |   /// @} | 
 |  | 
 |   /// Value is in bytes. Return Value adjusted to the next highest multiple of | 
 |   /// the stack alignment. | 
 |   static uint32_t applyStackAlignment(uint32_t Value) { | 
 |     return Utils::applyAlignment(Value, X86_STACK_ALIGNMENT_BYTES); | 
 |   } | 
 |  | 
 |   /// Return the type which the elements of the vector have in the X86 | 
 |   /// representation of the vector. | 
 |   static Type getInVectorElementType(Type Ty) { | 
 |     assert(isVectorType(Ty)); | 
 |     assert(static_cast<size_t>(Ty) < TableTypeX8632AttributesSize); | 
 |     return TableTypeX8632Attributes[Ty].InVectorElementType; | 
 |   } | 
 |  | 
 |   // Note: The following data structures are defined in | 
 |   // IceTargetLoweringX8632.cpp. | 
 |  | 
 |   /// The following table summarizes the logic for lowering the fcmp | 
 |   /// instruction. There is one table entry for each of the 16 conditions. | 
 |   /// | 
 |   /// The first four columns describe the case when the operands are floating | 
 |   /// point scalar values. A comment in lowerFcmp() describes the lowering | 
 |   /// template. In the most general case, there is a compare followed by two | 
 |   /// conditional branches, because some fcmp conditions don't map to a single | 
 |   /// x86 conditional branch. However, in many cases it is possible to swap the | 
 |   /// operands in the comparison and have a single conditional branch. Since | 
 |   /// it's quite tedious to validate the table by hand, good execution tests are | 
 |   /// helpful. | 
 |   /// | 
 |   /// The last two columns describe the case when the operands are vectors of | 
 |   /// floating point values. For most fcmp conditions, there is a clear mapping | 
 |   /// to a single x86 cmpps instruction variant. Some fcmp conditions require | 
 |   /// special code to handle and these are marked in the table with a | 
 |   /// Cmpps_Invalid predicate. | 
 |   /// {@ | 
 |   static const struct TableFcmpType { | 
 |     uint32_t Default; | 
 |     bool SwapScalarOperands; | 
 |     Cond::BrCond C1, C2; | 
 |     bool SwapVectorOperands; | 
 |     Cond::CmppsCond Predicate; | 
 |   } TableFcmp[]; | 
 |   static const size_t TableFcmpSize; | 
 |   /// @} | 
 |  | 
 |   /// The following table summarizes the logic for lowering the icmp instruction | 
 |   /// for i32 and narrower types. Each icmp condition has a clear mapping to an | 
 |   /// x86 conditional branch instruction. | 
 |   /// {@ | 
 |   static const struct TableIcmp32Type { Cond::BrCond Mapping; } TableIcmp32[]; | 
 |   static const size_t TableIcmp32Size; | 
 |   /// @} | 
 |  | 
 |   /// The following table summarizes the logic for lowering the icmp instruction | 
 |   /// for the i64 type. For Eq and Ne, two separate 32-bit comparisons and | 
 |   /// conditional branches are needed. For the other conditions, three separate | 
 |   /// conditional branches are needed. | 
 |   /// {@ | 
 |   static const struct TableIcmp64Type { | 
 |     Cond::BrCond C1, C2, C3; | 
 |   } TableIcmp64[]; | 
 |   static const size_t TableIcmp64Size; | 
 |   /// @} | 
 |  | 
 |   static Cond::BrCond getIcmp32Mapping(InstIcmp::ICond Cond) { | 
 |     assert(static_cast<size_t>(Cond) < TableIcmp32Size); | 
 |     return TableIcmp32[Cond].Mapping; | 
 |   } | 
 |  | 
 |   static const struct TableTypeX8632AttributesType { | 
 |     Type InVectorElementType; | 
 |   } TableTypeX8632Attributes[]; | 
 |   static const size_t TableTypeX8632AttributesSize; | 
 |  | 
 |   //---------------------------------------------------------------------------- | 
 |   //      __  __   __  ______  ______ | 
 |   //    /\ \/\ "-.\ \/\  ___\/\__  _\ | 
 |   //    \ \ \ \ \-.  \ \___  \/_/\ \/ | 
 |   //     \ \_\ \_\\"\_\/\_____\ \ \_\ | 
 |   //      \/_/\/_/ \/_/\/_____/  \/_/ | 
 |   // | 
 |   //---------------------------------------------------------------------------- | 
 |   using Traits = TargetX8632Traits; | 
 |   using Insts = ::Ice::X8632::Insts<Traits>; | 
 |  | 
 |   using TargetLowering = ::Ice::X8632::TargetX86Base<Traits>; | 
 |   using ConcreteTarget = ::Ice::X8632::TargetX8632; | 
 |   using Assembler = ::Ice::X8632::AssemblerX86Base<Traits>; | 
 |  | 
 |   /// X86Operand extends the Operand hierarchy. Its subclasses are X86OperandMem | 
 |   /// and VariableSplit. | 
 |   class X86Operand : public ::Ice::Operand { | 
 |     X86Operand() = delete; | 
 |     X86Operand(const X86Operand &) = delete; | 
 |     X86Operand &operator=(const X86Operand &) = delete; | 
 |  | 
 |   public: | 
 |     enum OperandKindX8632 { k__Start = ::Ice::Operand::kTarget, kMem, kSplit }; | 
 |     using ::Ice::Operand::dump; | 
 |  | 
 |     void dump(const Cfg *, Ostream &Str) const override; | 
 |  | 
 |   protected: | 
 |     X86Operand(OperandKindX8632 Kind, Type Ty) | 
 |         : Operand(static_cast<::Ice::Operand::OperandKind>(Kind), Ty) {} | 
 |   }; | 
 |  | 
 |   /// X86OperandMem represents the m32 addressing mode, with optional base and | 
 |   /// index registers, a constant offset, and a fixed shift value for the index | 
 |   /// register. | 
 |   class X86OperandMem : public X86Operand { | 
 |     X86OperandMem() = delete; | 
 |     X86OperandMem(const X86OperandMem &) = delete; | 
 |     X86OperandMem &operator=(const X86OperandMem &) = delete; | 
 |  | 
 |   public: | 
 |     enum SegmentRegisters { | 
 |       DefaultSegment = -1, | 
 | #define X(val, name, prefix) val, | 
 |       SEG_REGX8632_TABLE | 
 | #undef X | 
 |           SegReg_NUM | 
 |     }; | 
 |     static X86OperandMem *create(Cfg *Func, Type Ty, Variable *Base, | 
 |                                  Constant *Offset, Variable *Index = nullptr, | 
 |                                  uint16_t Shift = 0, | 
 |                                  SegmentRegisters SegmentReg = DefaultSegment, | 
 |                                  bool IsRebased = false) { | 
 |       return new (Func->allocate<X86OperandMem>()) X86OperandMem( | 
 |           Func, Ty, Base, Offset, Index, Shift, SegmentReg, IsRebased); | 
 |     } | 
 |     static X86OperandMem *create(Cfg *Func, Type Ty, Variable *Base, | 
 |                                  Constant *Offset, bool IsRebased) { | 
 |       constexpr Variable *NoIndex = nullptr; | 
 |       constexpr uint16_t NoShift = 0; | 
 |       return new (Func->allocate<X86OperandMem>()) X86OperandMem( | 
 |           Func, Ty, Base, Offset, NoIndex, NoShift, DefaultSegment, IsRebased); | 
 |     } | 
 |     Variable *getBase() const { return Base; } | 
 |     Constant *getOffset() const { return Offset; } | 
 |     Variable *getIndex() const { return Index; } | 
 |     uint16_t getShift() const { return Shift; } | 
 |     SegmentRegisters getSegmentRegister() const { return SegmentReg; } | 
 |     void emitSegmentOverride(Assembler *Asm) const; | 
 |     bool getIsRebased() const { return IsRebased; } | 
 |     Address toAsmAddress(Assembler *Asm, const Ice::TargetLowering *Target, | 
 |                          bool LeaAddr = false) const; | 
 |  | 
 |     void emit(const Cfg *Func) const override; | 
 |     using X86Operand::dump; | 
 |     void dump(const Cfg *Func, Ostream &Str) const override; | 
 |  | 
 |     static bool classof(const Operand *Operand) { | 
 |       return Operand->getKind() == static_cast<OperandKind>(kMem); | 
 |     } | 
 |  | 
 |     void setRandomized(bool R) { Randomized = R; } | 
 |  | 
 |     bool getRandomized() const { return Randomized; } | 
 |  | 
 |   private: | 
 |     X86OperandMem(Cfg *Func, Type Ty, Variable *Base, Constant *Offset, | 
 |                   Variable *Index, uint16_t Shift, SegmentRegisters SegmentReg, | 
 |                   bool IsRebased); | 
 |  | 
 |     Variable *const Base; | 
 |     Constant *const Offset; | 
 |     Variable *const Index; | 
 |     const uint16_t Shift; | 
 |     const SegmentRegisters SegmentReg : 16; | 
 |     const bool IsRebased; | 
 |     /// A flag to show if this memory operand is a randomized one. Randomized | 
 |     /// memory operands are generated in | 
 |     /// TargetX86Base::randomizeOrPoolImmediate() | 
 |     bool Randomized = false; | 
 |   }; | 
 |  | 
 |   /// VariableSplit is a way to treat an f64 memory location as a pair of i32 | 
 |   /// locations (Low and High). This is needed for some cases of the Bitcast | 
 |   /// instruction. Since it's not possible for integer registers to access the | 
 |   /// XMM registers and vice versa, the lowering forces the f64 to be spilled to | 
 |   /// the stack and then accesses through the VariableSplit. | 
 |   // TODO(jpp): remove references to VariableSplit from IceInstX86Base as 64bit | 
 |   // targets can natively handle these. | 
 |   class VariableSplit : public X86Operand { | 
 |     VariableSplit() = delete; | 
 |     VariableSplit(const VariableSplit &) = delete; | 
 |     VariableSplit &operator=(const VariableSplit &) = delete; | 
 |  | 
 |   public: | 
 |     enum Portion { Low, High }; | 
 |     static VariableSplit *create(Cfg *Func, Variable *Var, Portion Part) { | 
 |       return new (Func->allocate<VariableSplit>()) | 
 |           VariableSplit(Func, Var, Part); | 
 |     } | 
 |     int32_t getOffset() const { return Part == High ? 4 : 0; } | 
 |  | 
 |     Address toAsmAddress(const Cfg *Func) const; | 
 |     void emit(const Cfg *Func) const override; | 
 |     using X86Operand::dump; | 
 |     void dump(const Cfg *Func, Ostream &Str) const override; | 
 |  | 
 |     static bool classof(const Operand *Operand) { | 
 |       return Operand->getKind() == static_cast<OperandKind>(kSplit); | 
 |     } | 
 |  | 
 |   private: | 
 |     VariableSplit(Cfg *Func, Variable *Var, Portion Part) | 
 |         : X86Operand(kSplit, IceType_i32), Var(Var), Part(Part) { | 
 |       assert(Var->getType() == IceType_f64); | 
 |       Vars = Func->allocateArrayOf<Variable *>(1); | 
 |       Vars[0] = Var; | 
 |       NumVars = 1; | 
 |     } | 
 |  | 
 |     Variable *Var; | 
 |     Portion Part; | 
 |   }; | 
 |  | 
 |   // Note: The following data structures are defined in IceInstX8632.cpp. | 
 |  | 
 |   static const struct InstBrAttributesType { | 
 |     Cond::BrCond Opposite; | 
 |     const char *DisplayString; | 
 |     const char *EmitString; | 
 |   } InstBrAttributes[]; | 
 |  | 
 |   static const struct InstCmppsAttributesType { | 
 |     const char *EmitString; | 
 |   } InstCmppsAttributes[]; | 
 |  | 
 |   static const struct TypeAttributesType { | 
 |     const char *CvtString;      // i (integer), s (single FP), d (double FP) | 
 |     const char *SdSsString;     // ss, sd, or <blank> | 
 |     const char *PdPsString;     // ps, pd, or <blank> | 
 |     const char *SpSdString;     // ss, sd, ps, pd, or <blank> | 
 |     const char *IntegralString; // b, w, d, or <blank> | 
 |     const char *UnpackString;   // bw, wd, dq, or <blank> | 
 |     const char *PackString;     // wb, dw, or <blank> | 
 |     const char *WidthString;    // b, w, l, q, or <blank> | 
 |     const char *FldString;      // s, l, or <blank> | 
 |   } TypeAttributes[]; | 
 |  | 
 |   static const char *InstSegmentRegNames[]; | 
 |  | 
 |   static uint8_t InstSegmentPrefixes[]; | 
 | }; | 
 |  | 
 | using Traits = ::Ice::X8632::TargetX8632Traits; | 
 | } // end of namespace X8632 | 
 |  | 
 | } // end of namespace Ice | 
 |  | 
 | #endif // SUBZERO_SRC_ICETARGETLOWERINGX8632TRAITS_H |