blob: a21d4b3d08c3402b49716a33b57dbf98f017a509 [file] [log] [blame]
// Copyright 2018 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "VkDevice.hpp"
#include "VkConfig.hpp"
#include "VkDescriptorSetLayout.hpp"
#include "VkFence.hpp"
#include "VkQueue.hpp"
#include "VkSemaphore.hpp"
#include "VkStringify.hpp"
#include "VkTimelineSemaphore.hpp"
#include "Debug/Context.hpp"
#include "Debug/Server.hpp"
#include "Device/Blitter.hpp"
#include "System/Debug.hpp"
#include <chrono>
#include <climits>
#include <new> // Must #include this to use "placement new"
namespace {
using time_point = std::chrono::time_point<std::chrono::system_clock, std::chrono::nanoseconds>;
time_point now()
{
return std::chrono::time_point_cast<std::chrono::nanoseconds>(std::chrono::system_clock::now());
}
const time_point getEndTimePoint(uint64_t timeout, bool &infiniteTimeout)
{
const time_point start = now();
const uint64_t max_timeout = (LLONG_MAX - start.time_since_epoch().count());
infiniteTimeout = (timeout > max_timeout);
return start + std::chrono::nanoseconds(std::min(max_timeout, timeout));
}
} // anonymous namespace
namespace vk {
void Device::SamplingRoutineCache::updateSnapshot()
{
marl::lock lock(mutex);
if(snapshotNeedsUpdate)
{
snapshot.clear();
for(auto it : cache)
{
snapshot[it.key()] = it.data();
}
snapshotNeedsUpdate = false;
}
}
Device::SamplerIndexer::~SamplerIndexer()
{
ASSERT(map.empty());
}
uint32_t Device::SamplerIndexer::index(const SamplerState &samplerState)
{
marl::lock lock(mutex);
auto it = map.find(samplerState);
if(it != map.end())
{
it->second.count++;
return it->second.id;
}
nextID++;
map.emplace(samplerState, Identifier{ nextID, 1 });
return nextID;
}
void Device::SamplerIndexer::remove(const SamplerState &samplerState)
{
marl::lock lock(mutex);
auto it = map.find(samplerState);
ASSERT(it != map.end());
auto count = --it->second.count;
if(count == 0)
{
map.erase(it);
}
}
const SamplerState *Device::SamplerIndexer::find(uint32_t id)
{
marl::lock lock(mutex);
auto it = std::find_if(std::begin(map), std::end(map),
[&id](auto &&p) { return p.second.id == id; });
return (it != std::end(map)) ? &(it->first) : nullptr;
}
Device::Device(const VkDeviceCreateInfo *pCreateInfo, void *mem, PhysicalDevice *physicalDevice, const VkPhysicalDeviceFeatures *enabledFeatures, const std::shared_ptr<marl::Scheduler> &scheduler)
: physicalDevice(physicalDevice)
, queues(reinterpret_cast<Queue *>(mem))
, enabledExtensionCount(pCreateInfo->enabledExtensionCount)
, enabledFeatures(enabledFeatures ? *enabledFeatures : VkPhysicalDeviceFeatures{}) // "Setting pEnabledFeatures to NULL and not including a VkPhysicalDeviceFeatures2 in the pNext member of VkDeviceCreateInfo is equivalent to setting all members of the structure to VK_FALSE."
, scheduler(scheduler)
{
for(uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++)
{
const VkDeviceQueueCreateInfo &queueCreateInfo = pCreateInfo->pQueueCreateInfos[i];
queueCount += queueCreateInfo.queueCount;
}
uint32_t queueID = 0;
for(uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++)
{
const VkDeviceQueueCreateInfo &queueCreateInfo = pCreateInfo->pQueueCreateInfos[i];
for(uint32_t j = 0; j < queueCreateInfo.queueCount; j++, queueID++)
{
new(&queues[queueID]) Queue(this, scheduler.get());
}
}
extensions = reinterpret_cast<ExtensionName *>(static_cast<uint8_t *>(mem) + (sizeof(Queue) * queueCount));
for(uint32_t i = 0; i < enabledExtensionCount; i++)
{
strncpy(extensions[i], pCreateInfo->ppEnabledExtensionNames[i], VK_MAX_EXTENSION_NAME_SIZE);
}
if(pCreateInfo->enabledLayerCount)
{
// "The ppEnabledLayerNames and enabledLayerCount members of VkDeviceCreateInfo are deprecated and their values must be ignored by implementations."
UNSUPPORTED("enabledLayerCount");
}
// FIXME (b/119409619): use an allocator here so we can control all memory allocations
blitter.reset(new sw::Blitter());
samplingRoutineCache.reset(new SamplingRoutineCache());
samplerIndexer.reset(new SamplerIndexer());
#ifdef ENABLE_VK_DEBUGGER
static auto port = getenv("VK_DEBUGGER_PORT");
if(port)
{
// Construct the debugger context and server - this may block for a
// debugger connection, allowing breakpoints to be set before they're
// executed.
debugger.context = vk::dbg::Context::create();
debugger.server = vk::dbg::Server::create(debugger.context, atoi(port));
}
#endif // ENABLE_VK_DEBUGGER
#ifdef SWIFTSHADER_DEVICE_MEMORY_REPORT
const auto *deviceMemoryReportCreateInfo = GetExtendedStruct<VkDeviceDeviceMemoryReportCreateInfoEXT>(pCreateInfo->pNext, VK_STRUCTURE_TYPE_DEVICE_DEVICE_MEMORY_REPORT_CREATE_INFO_EXT);
if(deviceMemoryReportCreateInfo && deviceMemoryReportCreateInfo->pfnUserCallback != nullptr)
{
deviceMemoryReportCallbacks.emplace_back(deviceMemoryReportCreateInfo->pfnUserCallback, deviceMemoryReportCreateInfo->pUserData);
}
#endif // SWIFTSHADER_DEVICE_MEMORY_REPORT
}
void Device::destroy(const VkAllocationCallbacks *pAllocator)
{
for(uint32_t i = 0; i < queueCount; i++)
{
queues[i].~Queue();
}
vk::freeHostMemory(queues, pAllocator);
}
size_t Device::ComputeRequiredAllocationSize(const VkDeviceCreateInfo *pCreateInfo)
{
uint32_t queueCount = 0;
for(uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++)
{
queueCount += pCreateInfo->pQueueCreateInfos[i].queueCount;
}
return (sizeof(Queue) * queueCount) + (pCreateInfo->enabledExtensionCount * sizeof(ExtensionName));
}
bool Device::hasExtension(const char *extensionName) const
{
for(uint32_t i = 0; i < enabledExtensionCount; i++)
{
if(strncmp(extensions[i], extensionName, VK_MAX_EXTENSION_NAME_SIZE) == 0)
{
return true;
}
}
return false;
}
VkQueue Device::getQueue(uint32_t queueFamilyIndex, uint32_t queueIndex) const
{
ASSERT(queueFamilyIndex == 0);
return queues[queueIndex];
}
VkResult Device::waitForFences(uint32_t fenceCount, const VkFence *pFences, VkBool32 waitAll, uint64_t timeout)
{
bool infiniteTimeout = false;
const time_point end_ns = getEndTimePoint(timeout, infiniteTimeout);
if(waitAll != VK_FALSE) // All fences must be signaled
{
for(uint32_t i = 0; i < fenceCount; i++)
{
if(timeout == 0)
{
if(Cast(pFences[i])->getStatus() != VK_SUCCESS) // At least one fence is not signaled
{
return VK_TIMEOUT;
}
}
else if(infiniteTimeout)
{
if(Cast(pFences[i])->wait() != VK_SUCCESS) // At least one fence is not signaled
{
return VK_TIMEOUT;
}
}
else
{
if(Cast(pFences[i])->wait(end_ns) != VK_SUCCESS) // At least one fence is not signaled
{
return VK_TIMEOUT;
}
}
}
return VK_SUCCESS;
}
else // At least one fence must be signaled
{
marl::containers::vector<marl::Event, 8> events;
for(uint32_t i = 0; i < fenceCount; i++)
{
events.push_back(Cast(pFences[i])->getCountedEvent()->event());
}
auto any = marl::Event::any(events.begin(), events.end());
if(timeout == 0)
{
return any.isSignalled() ? VK_SUCCESS : VK_TIMEOUT;
}
else if(infiniteTimeout)
{
any.wait();
return VK_SUCCESS;
}
else
{
return any.wait_until(end_ns) ? VK_SUCCESS : VK_TIMEOUT;
}
}
}
VkResult Device::waitForSemaphores(const VkSemaphoreWaitInfo *pWaitInfo, uint64_t timeout)
{
bool infiniteTimeout = false;
const time_point end_ns = getEndTimePoint(timeout, infiniteTimeout);
if(pWaitInfo->flags & VK_SEMAPHORE_WAIT_ANY_BIT)
{
TimelineSemaphore any = TimelineSemaphore();
for(uint32_t i = 0; i < pWaitInfo->semaphoreCount; i++)
{
TimelineSemaphore *semaphore = DynamicCast<TimelineSemaphore>(pWaitInfo->pSemaphores[i]);
uint64_t waitValue = pWaitInfo->pValues[i];
if(semaphore->getCounterValue() == waitValue)
{
return VK_SUCCESS;
}
semaphore->addDependent(any, waitValue);
}
if(infiniteTimeout)
{
any.wait(1ull);
return VK_SUCCESS;
}
else
{
if(any.wait(1, end_ns) == VK_SUCCESS)
{
return VK_SUCCESS;
}
}
return VK_TIMEOUT;
}
else
{
ASSERT(pWaitInfo->flags == 0);
for(uint32_t i = 0; i < pWaitInfo->semaphoreCount; i++)
{
TimelineSemaphore *semaphore = DynamicCast<TimelineSemaphore>(pWaitInfo->pSemaphores[i]);
uint64_t value = pWaitInfo->pValues[i];
if(infiniteTimeout)
{
semaphore->wait(value);
}
else if(semaphore->wait(pWaitInfo->pValues[i], end_ns) != VK_SUCCESS)
{
return VK_TIMEOUT;
}
}
return VK_SUCCESS;
}
}
VkResult Device::waitIdle()
{
for(uint32_t i = 0; i < queueCount; i++)
{
queues[i].waitIdle();
}
return VK_SUCCESS;
}
void Device::getDescriptorSetLayoutSupport(const VkDescriptorSetLayoutCreateInfo *pCreateInfo,
VkDescriptorSetLayoutSupport *pSupport) const
{
// From Vulkan Spec 13.2.1 Descriptor Set Layout, in description of vkGetDescriptorSetLayoutSupport:
// "This command does not consider other limits such as maxPerStageDescriptor*, and so a descriptor
// set layout that is supported according to this command must still satisfy the pipeline layout limits
// such as maxPerStageDescriptor* in order to be used in a pipeline layout."
// We have no "strange" limitations to enforce beyond the device limits, so we can safely always claim support.
pSupport->supported = VK_TRUE;
if(pCreateInfo->bindingCount > 0)
{
bool hasVariableSizedDescriptor = false;
const VkBaseInStructure *layoutInfo = reinterpret_cast<const VkBaseInStructure *>(pCreateInfo->pNext);
while(layoutInfo && !hasVariableSizedDescriptor)
{
if(layoutInfo->sType == VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO)
{
const VkDescriptorSetLayoutBindingFlagsCreateInfo *bindingFlagsCreateInfo =
reinterpret_cast<const VkDescriptorSetLayoutBindingFlagsCreateInfo *>(layoutInfo);
for(uint32_t i = 0; i < bindingFlagsCreateInfo->bindingCount; i++)
{
if(bindingFlagsCreateInfo->pBindingFlags[i] & VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT)
{
hasVariableSizedDescriptor = true;
break;
}
}
}
else
{
UNSUPPORTED("layoutInfo->sType = %s", vk::Stringify(layoutInfo->sType).c_str());
}
layoutInfo = layoutInfo->pNext;
}
const auto &highestNumberedBinding = pCreateInfo->pBindings[pCreateInfo->bindingCount - 1];
VkBaseOutStructure *layoutSupport = reinterpret_cast<VkBaseOutStructure *>(pSupport->pNext);
while(layoutSupport)
{
if(layoutSupport->sType == VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT)
{
VkDescriptorSetVariableDescriptorCountLayoutSupport *variableDescriptorCountLayoutSupport =
reinterpret_cast<VkDescriptorSetVariableDescriptorCountLayoutSupport *>(layoutSupport);
// If the VkDescriptorSetLayoutCreateInfo structure does not include a variable-sized descriptor,
// [...] then maxVariableDescriptorCount is set to zero.
variableDescriptorCountLayoutSupport->maxVariableDescriptorCount =
hasVariableSizedDescriptor ? ((highestNumberedBinding.descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) ? vk::MAX_INLINE_UNIFORM_BLOCK_SIZE : vk::MAX_UPDATE_AFTER_BIND_DESCRIPTORS) : 0;
}
else
{
UNSUPPORTED("layoutSupport->sType = %s", vk::Stringify(layoutSupport->sType).c_str());
}
layoutSupport = layoutSupport->pNext;
}
}
}
void Device::updateDescriptorSets(uint32_t descriptorWriteCount, const VkWriteDescriptorSet *pDescriptorWrites,
uint32_t descriptorCopyCount, const VkCopyDescriptorSet *pDescriptorCopies)
{
for(uint32_t i = 0; i < descriptorWriteCount; i++)
{
DescriptorSetLayout::WriteDescriptorSet(this, pDescriptorWrites[i]);
}
for(uint32_t i = 0; i < descriptorCopyCount; i++)
{
DescriptorSetLayout::CopyDescriptorSet(pDescriptorCopies[i]);
}
}
void Device::getRequirements(VkMemoryDedicatedRequirements *requirements) const
{
requirements->prefersDedicatedAllocation = VK_FALSE;
requirements->requiresDedicatedAllocation = VK_FALSE;
}
Device::SamplingRoutineCache *Device::getSamplingRoutineCache() const
{
return samplingRoutineCache.get();
}
void Device::updateSamplingRoutineSnapshotCache()
{
samplingRoutineCache->updateSnapshot();
}
uint32_t Device::indexSampler(const SamplerState &samplerState)
{
return samplerIndexer->index(samplerState);
}
void Device::removeSampler(const SamplerState &samplerState)
{
samplerIndexer->remove(samplerState);
}
const SamplerState *Device::findSampler(uint32_t samplerId) const
{
return samplerIndexer->find(samplerId);
}
VkResult Device::setDebugUtilsObjectName(const VkDebugUtilsObjectNameInfoEXT *pNameInfo)
{
// Optionally maps user-friendly name to an object
return VK_SUCCESS;
}
VkResult Device::setDebugUtilsObjectTag(const VkDebugUtilsObjectTagInfoEXT *pTagInfo)
{
// Optionally attach arbitrary data to an object
return VK_SUCCESS;
}
void Device::registerImageView(ImageView *imageView)
{
if(imageView != nullptr)
{
marl::lock lock(imageViewSetMutex);
imageViewSet.insert(imageView);
}
}
void Device::unregisterImageView(ImageView *imageView)
{
if(imageView != nullptr)
{
marl::lock lock(imageViewSetMutex);
auto it = imageViewSet.find(imageView);
if(it != imageViewSet.end())
{
imageViewSet.erase(it);
}
}
}
void Device::prepareForSampling(ImageView *imageView)
{
if(imageView != nullptr)
{
marl::lock lock(imageViewSetMutex);
auto it = imageViewSet.find(imageView);
if(it != imageViewSet.end())
{
imageView->prepareForSampling();
}
}
}
void Device::contentsChanged(ImageView *imageView, Image::ContentsChangedContext context)
{
if(imageView != nullptr)
{
marl::lock lock(imageViewSetMutex);
auto it = imageViewSet.find(imageView);
if(it != imageViewSet.end())
{
imageView->contentsChanged(context);
}
}
}
VkResult Device::setPrivateData(VkObjectType objectType, uint64_t objectHandle, const PrivateData *privateDataSlot, uint64_t data)
{
marl::lock lock(privateDataMutex);
auto &privateDataSlotMap = privateData[privateDataSlot];
const PrivateDataObject privateDataObject = { objectType, objectHandle };
privateDataSlotMap[privateDataObject] = data;
return VK_SUCCESS;
}
void Device::getPrivateData(VkObjectType objectType, uint64_t objectHandle, const PrivateData *privateDataSlot, uint64_t *data)
{
marl::lock lock(privateDataMutex);
*data = 0;
auto it = privateData.find(privateDataSlot);
if(it != privateData.end())
{
auto &privateDataSlotMap = it->second;
const PrivateDataObject privateDataObject = { objectType, objectHandle };
auto it2 = privateDataSlotMap.find(privateDataObject);
if(it2 != privateDataSlotMap.end())
{
*data = it2->second;
}
}
}
void Device::removePrivateDataSlot(const PrivateData *privateDataSlot)
{
marl::lock lock(privateDataMutex);
privateData.erase(privateDataSlot);
}
#ifdef SWIFTSHADER_DEVICE_MEMORY_REPORT
void Device::emitDeviceMemoryReport(VkDeviceMemoryReportEventTypeEXT type, uint64_t memoryObjectId, VkDeviceSize size, VkObjectType objectType, uint64_t objectHandle, uint32_t heapIndex)
{
if(deviceMemoryReportCallbacks.empty()) return;
const VkDeviceMemoryReportCallbackDataEXT callbackData = {
VK_STRUCTURE_TYPE_DEVICE_MEMORY_REPORT_CALLBACK_DATA_EXT, // sType
nullptr, // pNext
0, // flags
type, // type
memoryObjectId, // memoryObjectId
size, // size
objectType, // objectType
objectHandle, // objectHandle
heapIndex, // heapIndex
};
for(const auto &callback : deviceMemoryReportCallbacks)
{
callback.first(&callbackData, callback.second);
}
}
#endif // SWIFTSHADER_DEVICE_MEMORY_REPORT
} // namespace vk