blob: afedb552fd93ec73d9adc344b593b677869fb457 [file] [log] [blame]
// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "PixelProcessor.hpp"
#include "Primitive.hpp"
#include "Pipeline/Constants.hpp"
#include "Pipeline/PixelProgram.hpp"
#include "System/Debug.hpp"
#include "Vulkan/VkImageView.hpp"
#include "Vulkan/VkPipelineLayout.hpp"
#include <cstring>
namespace sw {
uint32_t PixelProcessor::States::computeHash()
{
uint32_t *state = reinterpret_cast<uint32_t *>(this);
uint32_t hash = 0;
for(unsigned int i = 0; i < sizeof(States) / sizeof(uint32_t); i++)
{
hash ^= state[i];
}
return hash;
}
bool PixelProcessor::State::operator==(const State &state) const
{
if(hash != state.hash)
{
return false;
}
return *static_cast<const States *>(this) == static_cast<const States &>(state);
}
PixelProcessor::PixelProcessor()
{
setRoutineCacheSize(1024);
}
void PixelProcessor::setBlendConstant(const float4 &blendConstant)
{
for(int i = 0; i < 4; i++)
{
factor.blendConstantF[i] = blendConstant[i];
factor.invBlendConstantF[i] = 1.0f - blendConstant[i];
factor.blendConstantU[i] = clamp(blendConstant[i], 0.0f, 1.0f);
factor.invBlendConstantU[i] = 1.0f - clamp(blendConstant[i], 0.0f, 1.0f);
factor.blendConstantS[i] = clamp(blendConstant[i], -1.0f, 1.0f);
factor.invBlendConstantS[i] = 1.0f - clamp(blendConstant[i], -1.0f, 1.0f);
}
}
void PixelProcessor::setRoutineCacheSize(int cacheSize)
{
routineCache = std::make_unique<RoutineCacheType>(clamp(cacheSize, 1, 65536));
}
const PixelProcessor::State PixelProcessor::update(const vk::GraphicsState &pipelineState, const sw::SpirvShader *fragmentShader, const sw::SpirvShader *vertexShader, const vk::Attachments &attachments, bool occlusionEnabled) const
{
const vk::VertexInputInterfaceState &vertexInputInterfaceState = pipelineState.getVertexInputInterfaceState();
const vk::PreRasterizationState &preRasterizationState = pipelineState.getPreRasterizationState();
const vk::FragmentState &fragmentState = pipelineState.getFragmentState();
const vk::FragmentOutputInterfaceState &fragmentOutputInterfaceState = pipelineState.getFragmentOutputInterfaceState();
State state;
state.numClipDistances = vertexShader->getNumOutputClipDistances();
state.numCullDistances = vertexShader->getNumOutputCullDistances();
if(fragmentShader)
{
state.shaderID = fragmentShader->getIdentifier();
state.pipelineLayoutIdentifier = fragmentState.getPipelineLayout()->identifier;
}
else
{
state.shaderID = 0;
state.pipelineLayoutIdentifier = 0;
}
state.alphaToCoverage = fragmentOutputInterfaceState.hasAlphaToCoverage();
state.depthWriteEnable = fragmentState.depthWriteActive(attachments);
if(fragmentState.stencilActive(attachments))
{
state.stencilActive = true;
state.frontStencil = fragmentState.getFrontStencil();
state.backStencil = fragmentState.getBackStencil();
}
state.depthFormat = attachments.depthFormat();
state.depthBoundsTestActive = fragmentState.depthBoundsTestActive(attachments);
state.minDepthBounds = fragmentState.getMinDepthBounds();
state.maxDepthBounds = fragmentState.getMaxDepthBounds();
if(fragmentState.depthTestActive(attachments))
{
state.depthTestActive = true;
state.depthCompareMode = fragmentState.getDepthCompareMode();
state.depthBias = preRasterizationState.getConstantDepthBias() != 0.0f || preRasterizationState.getSlopeDepthBias() != 0.0f;
bool pipelineDepthClamp = preRasterizationState.getDepthClampEnable();
// "For fixed-point depth buffers, fragment depth values are always limited to the range [0,1] by clamping after depth bias addition is performed.
// Unless the VK_EXT_depth_range_unrestricted extension is enabled, fragment depth values are clamped even when the depth buffer uses a floating-point representation."
state.depthClamp = pipelineDepthClamp || !state.depthFormat.isFloatFormat() || !preRasterizationState.hasDepthRangeUnrestricted();
if(pipelineDepthClamp)
{
const VkViewport viewport = preRasterizationState.getViewport();
state.minDepthClamp = min(viewport.minDepth, viewport.maxDepth);
state.maxDepthClamp = max(viewport.minDepth, viewport.maxDepth);
}
else if(state.depthClamp)
{
state.minDepthClamp = 0.0f;
state.maxDepthClamp = 1.0f;
}
}
state.occlusionEnabled = occlusionEnabled;
bool fragmentContainsDiscard = (fragmentShader && fragmentShader->getAnalysis().ContainsDiscard);
for(int i = 0; i < MAX_COLOR_BUFFERS; i++)
{
state.colorWriteMask |= fragmentOutputInterfaceState.colorWriteActive(i, attachments) << (4 * i);
state.colorFormat[i] = attachments.colorFormat(i);
state.blendState[i] = fragmentOutputInterfaceState.getBlendState(i, attachments, fragmentContainsDiscard);
}
const bool isBresenhamLine = vertexInputInterfaceState.isDrawLine(true, preRasterizationState.getPolygonMode()) &&
preRasterizationState.getLineRasterizationMode() == VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT;
state.multiSampleCount = static_cast<unsigned int>(fragmentOutputInterfaceState.getSampleCount());
state.multiSampleMask = fragmentOutputInterfaceState.getMultiSampleMask();
state.enableMultiSampling = state.multiSampleCount > 1 && !isBresenhamLine;
// SampleId and SamplePosition require per-sample fragment shader invocations, so the Vulkan spec
// requires turning on sample shading if either of them is present in the shader:
// "If a fragment shader entry point's interface includes an input variable decorated with SampleId,
// Sample Shading is considered enabled with a minSampleShading value of 1.0."
// "If a fragment shader entry point's interface includes an input variable decorated with SamplePosition,
// Sample Shading is considered enabled with a minSampleShading value of 1.0."
bool shaderContainsSampleDecoration = fragmentShader && (fragmentShader->hasBuiltinInput(spv::BuiltInSampleId) ||
fragmentShader->hasBuiltinInput(spv::BuiltInSamplePosition));
if(shaderContainsSampleDecoration)
{
state.sampleShadingEnabled = true;
state.minSampleShading = 1.0f;
}
else
{
state.sampleShadingEnabled = fragmentOutputInterfaceState.hasSampleShadingEnabled();
state.minSampleShading = fragmentOutputInterfaceState.getMinSampleShading();
}
if(state.enableMultiSampling && fragmentShader)
{
state.centroid = fragmentShader->getAnalysis().NeedsCentroid;
}
state.frontFace = preRasterizationState.getFrontFace();
state.hash = state.computeHash();
return state;
}
PixelProcessor::RoutineType PixelProcessor::routine(const State &state,
const vk::PipelineLayout *pipelineLayout,
const SpirvShader *pixelShader,
const vk::DescriptorSet::Bindings &descriptorSets)
{
auto routine = routineCache->lookup(state);
if(!routine)
{
QuadRasterizer *generator = new PixelProgram(state, pipelineLayout, pixelShader, descriptorSets);
generator->generate();
routine = (*generator)("PixelRoutine_%0.8X", state.shaderID);
delete generator;
routineCache->add(state, routine);
}
return routine;
}
} // namespace sw