blob: 8e41bbb22f6b98b713d99d65ba85414c5571b2b4 [file] [log] [blame]
// Copyright 2018 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "VkCommandBuffer.hpp"
#include "VkFence.hpp"
#include "VkQueue.hpp"
#include "VkSemaphore.hpp"
#include "WSI/VkSwapchainKHR.hpp"
#include "Device/Renderer.hpp"
#include "marl/defer.h"
#include "marl/scheduler.h"
#include "marl/thread.h"
#include "marl/trace.h"
#include <cstring>
namespace
{
VkSubmitInfo* DeepCopySubmitInfo(uint32_t submitCount, const VkSubmitInfo* pSubmits)
{
size_t submitSize = sizeof(VkSubmitInfo) * submitCount;
size_t totalSize = submitSize;
for(uint32_t i = 0; i < submitCount; i++)
{
totalSize += pSubmits[i].waitSemaphoreCount * sizeof(VkSemaphore);
totalSize += pSubmits[i].waitSemaphoreCount * sizeof(VkPipelineStageFlags);
totalSize += pSubmits[i].signalSemaphoreCount * sizeof(VkSemaphore);
totalSize += pSubmits[i].commandBufferCount * sizeof(VkCommandBuffer);
}
uint8_t* mem = static_cast<uint8_t*>(
vk::allocate(totalSize, vk::REQUIRED_MEMORY_ALIGNMENT, vk::DEVICE_MEMORY, vk::Fence::GetAllocationScope()));
auto submits = new (mem) VkSubmitInfo[submitCount];
memcpy(mem, pSubmits, submitSize);
mem += submitSize;
for(uint32_t i = 0; i < submitCount; i++)
{
size_t size = pSubmits[i].waitSemaphoreCount * sizeof(VkSemaphore);
submits[i].pWaitSemaphores = reinterpret_cast<const VkSemaphore*>(mem);
memcpy(mem, pSubmits[i].pWaitSemaphores, size);
mem += size;
size = pSubmits[i].waitSemaphoreCount * sizeof(VkPipelineStageFlags);
submits[i].pWaitDstStageMask = reinterpret_cast<const VkPipelineStageFlags*>(mem);
memcpy(mem, pSubmits[i].pWaitDstStageMask, size);
mem += size;
size = pSubmits[i].signalSemaphoreCount * sizeof(VkSemaphore);
submits[i].pSignalSemaphores = reinterpret_cast<const VkSemaphore*>(mem);
memcpy(mem, pSubmits[i].pSignalSemaphores, size);
mem += size;
size = pSubmits[i].commandBufferCount * sizeof(VkCommandBuffer);
submits[i].pCommandBuffers = reinterpret_cast<const VkCommandBuffer*>(mem);
memcpy(mem, pSubmits[i].pCommandBuffers, size);
mem += size;
}
return submits;
}
} // anonymous namespace
namespace vk
{
Queue::Queue(Device* device, marl::Scheduler *scheduler) : device(device)
{
queueThread = std::thread(&Queue::taskLoop, this, scheduler);
}
Queue::~Queue()
{
Task task;
task.type = Task::KILL_THREAD;
pending.put(task);
queueThread.join();
ASSERT_MSG(pending.count() == 0, "queue has work after worker thread shutdown");
garbageCollect();
}
VkResult Queue::submit(uint32_t submitCount, const VkSubmitInfo* pSubmits, Fence* fence)
{
garbageCollect();
Task task;
task.submitCount = submitCount;
task.pSubmits = DeepCopySubmitInfo(submitCount, pSubmits);
task.events = fence;
if(task.events)
{
task.events->start();
}
pending.put(task);
return VK_SUCCESS;
}
void Queue::submitQueue(const Task& task)
{
if (renderer == nullptr)
{
renderer.reset(new sw::Renderer(device));
}
for(uint32_t i = 0; i < task.submitCount; i++)
{
auto& submitInfo = task.pSubmits[i];
for(uint32_t j = 0; j < submitInfo.waitSemaphoreCount; j++)
{
vk::Cast(submitInfo.pWaitSemaphores[j])->wait(submitInfo.pWaitDstStageMask[j]);
}
{
CommandBuffer::ExecutionState executionState;
executionState.renderer = renderer.get();
executionState.events = task.events;
for(uint32_t j = 0; j < submitInfo.commandBufferCount; j++)
{
vk::Cast(submitInfo.pCommandBuffers[j])->submit(executionState);
}
}
for(uint32_t j = 0; j < submitInfo.signalSemaphoreCount; j++)
{
vk::Cast(submitInfo.pSignalSemaphores[j])->signal();
}
}
if (task.pSubmits)
{
toDelete.put(task.pSubmits);
}
if(task.events)
{
// TODO: fix renderer signaling so that work submitted separately from (but before) a fence
// is guaranteed complete by the time the fence signals.
renderer->synchronize();
task.events->finish();
}
}
void Queue::taskLoop(marl::Scheduler* scheduler)
{
marl::Thread::setName("Queue<%p>", this);
scheduler->bind();
defer(scheduler->unbind());
while(true)
{
Task task = pending.take();
switch(task.type)
{
case Task::KILL_THREAD:
ASSERT_MSG(pending.count() == 0, "queue has remaining work!");
return;
case Task::SUBMIT_QUEUE:
submitQueue(task);
break;
default:
UNIMPLEMENTED("task.type %d", static_cast<int>(task.type));
break;
}
}
}
VkResult Queue::waitIdle()
{
// Wait for task queue to flush.
sw::WaitGroup wg;
wg.add();
Task task;
task.events = &wg;
pending.put(task);
wg.wait();
garbageCollect();
return VK_SUCCESS;
}
void Queue::garbageCollect()
{
while (true)
{
auto v = toDelete.tryTake();
if (!v.second) { break; }
vk::deallocate(v.first, DEVICE_MEMORY);
}
}
#ifndef __ANDROID__
void Queue::present(const VkPresentInfoKHR* presentInfo)
{
// This is a hack to deal with screen tearing for now.
// Need to correctly implement threading using VkSemaphore
// to get rid of it. b/132458423
waitIdle();
for(uint32_t i = 0; i < presentInfo->waitSemaphoreCount; i++)
{
vk::Cast(presentInfo->pWaitSemaphores[i])->wait();
}
for(uint32_t i = 0; i < presentInfo->swapchainCount; i++)
{
vk::Cast(presentInfo->pSwapchains[i])->present(presentInfo->pImageIndices[i]);
}
}
#endif
} // namespace vk