blob: 67a127fe0a2b9c3f5887cf7928485781d4e0ff0b [file] [log] [blame]
//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that X86 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "X86ISelLowering.h"
#include "Utils/X86ShuffleDecode.h"
#include "X86CallingConv.h"
#include "X86FrameLowering.h"
#include "X86InstrBuilder.h"
#include "X86IntrinsicsInfo.h"
#include "X86MachineFunctionInfo.h"
#include "X86ShuffleDecodeConstantPool.h"
#include "X86TargetMachine.h"
#include "X86TargetObjectFile.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <bitset>
#include <cctype>
#include <numeric>
using namespace llvm;
#define DEBUG_TYPE "x86-isel"
STATISTIC(NumTailCalls, "Number of tail calls");
static cl::opt<bool> ExperimentalVectorWideningLegalization(
"x86-experimental-vector-widening-legalization", cl::init(false),
cl::desc("Enable an experimental vector type legalization through widening "
"rather than promotion."),
cl::Hidden);
static cl::opt<int> ExperimentalPrefLoopAlignment(
"x86-experimental-pref-loop-alignment", cl::init(4),
cl::desc("Sets the preferable loop alignment for experiments "
"(the last x86-experimental-pref-loop-alignment bits"
" of the loop header PC will be 0)."),
cl::Hidden);
static cl::opt<bool> MulConstantOptimization(
"mul-constant-optimization", cl::init(true),
cl::desc("Replace 'mul x, Const' with more effective instructions like "
"SHIFT, LEA, etc."),
cl::Hidden);
/// Call this when the user attempts to do something unsupported, like
/// returning a double without SSE2 enabled on x86_64. This is not fatal, unlike
/// report_fatal_error, so calling code should attempt to recover without
/// crashing.
static void errorUnsupported(SelectionDAG &DAG, const SDLoc &dl,
const char *Msg) {
MachineFunction &MF = DAG.getMachineFunction();
DAG.getContext()->diagnose(
DiagnosticInfoUnsupported(MF.getFunction(), Msg, dl.getDebugLoc()));
}
X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
const X86Subtarget &STI)
: TargetLowering(TM), Subtarget(STI) {
bool UseX87 = !Subtarget.useSoftFloat() && Subtarget.hasX87();
X86ScalarSSEf64 = Subtarget.hasSSE2();
X86ScalarSSEf32 = Subtarget.hasSSE1();
MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
// Set up the TargetLowering object.
// X86 is weird. It always uses i8 for shift amounts and setcc results.
setBooleanContents(ZeroOrOneBooleanContent);
// X86-SSE is even stranger. It uses -1 or 0 for vector masks.
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
// For 64-bit, since we have so many registers, use the ILP scheduler.
// For 32-bit, use the register pressure specific scheduling.
// For Atom, always use ILP scheduling.
if (Subtarget.isAtom())
setSchedulingPreference(Sched::ILP);
else if (Subtarget.is64Bit())
setSchedulingPreference(Sched::ILP);
else
setSchedulingPreference(Sched::RegPressure);
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
// Bypass expensive divides and use cheaper ones.
if (TM.getOptLevel() >= CodeGenOpt::Default) {
if (Subtarget.hasSlowDivide32())
addBypassSlowDiv(32, 8);
if (Subtarget.hasSlowDivide64() && Subtarget.is64Bit())
addBypassSlowDiv(64, 32);
}
if (Subtarget.isTargetKnownWindowsMSVC() ||
Subtarget.isTargetWindowsItanium()) {
// Setup Windows compiler runtime calls.
setLibcallName(RTLIB::SDIV_I64, "_alldiv");
setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
setLibcallName(RTLIB::SREM_I64, "_allrem");
setLibcallName(RTLIB::UREM_I64, "_aullrem");
setLibcallName(RTLIB::MUL_I64, "_allmul");
setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
}
if (Subtarget.isTargetDarwin()) {
// Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
setUseUnderscoreSetJmp(false);
setUseUnderscoreLongJmp(false);
} else if (Subtarget.isTargetWindowsGNU()) {
// MS runtime is weird: it exports _setjmp, but longjmp!
setUseUnderscoreSetJmp(true);
setUseUnderscoreLongJmp(false);
} else {
setUseUnderscoreSetJmp(true);
setUseUnderscoreLongJmp(true);
}
// Set up the register classes.
addRegisterClass(MVT::i8, &X86::GR8RegClass);
addRegisterClass(MVT::i16, &X86::GR16RegClass);
addRegisterClass(MVT::i32, &X86::GR32RegClass);
if (Subtarget.is64Bit())
addRegisterClass(MVT::i64, &X86::GR64RegClass);
for (MVT VT : MVT::integer_valuetypes())
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
// We don't accept any truncstore of integer registers.
setTruncStoreAction(MVT::i64, MVT::i32, Expand);
setTruncStoreAction(MVT::i64, MVT::i16, Expand);
setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
setTruncStoreAction(MVT::i32, MVT::i16, Expand);
setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
setTruncStoreAction(MVT::i16, MVT::i8, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
// SETOEQ and SETUNE require checking two conditions.
setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
// Integer absolute.
if (Subtarget.hasCMov()) {
setOperationAction(ISD::ABS , MVT::i16 , Custom);
setOperationAction(ISD::ABS , MVT::i32 , Custom);
if (Subtarget.is64Bit())
setOperationAction(ISD::ABS , MVT::i64 , Custom);
}
// Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
// operation.
setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
if (Subtarget.is64Bit()) {
if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512())
// f32/f64 are legal, f80 is custom.
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
else
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
} else if (!Subtarget.useSoftFloat()) {
// We have an algorithm for SSE2->double, and we turn this into a
// 64-bit FILD followed by conditional FADD for other targets.
setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
// We have an algorithm for SSE2, and we turn this into a 64-bit
// FILD or VCVTUSI2SS/SD for other targets.
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
} else {
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand);
}
// Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
// this operation.
setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
if (!Subtarget.useSoftFloat()) {
// SSE has no i16 to fp conversion, only i32.
if (X86ScalarSSEf32) {
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
// f32 and f64 cases are Legal, f80 case is not
setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
} else {
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
}
} else {
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Expand);
}
// Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
// this operation.
setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
if (!Subtarget.useSoftFloat()) {
// In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
// are Legal, f80 is custom lowered.
setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
if (X86ScalarSSEf32) {
setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
// f32 and f64 cases are Legal, f80 case is not
setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
} else {
setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
}
} else {
setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Expand);
setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Expand);
}
// Handle FP_TO_UINT by promoting the destination to a larger signed
// conversion.
setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
if (Subtarget.is64Bit()) {
if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512()) {
// FP_TO_UINT-i32/i64 is legal for f32/f64, but custom for f80.
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom);
} else {
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
}
} else if (!Subtarget.useSoftFloat()) {
// Since AVX is a superset of SSE3, only check for SSE here.
if (Subtarget.hasSSE1() && !Subtarget.hasSSE3())
// Expand FP_TO_UINT into a select.
// FIXME: We would like to use a Custom expander here eventually to do
// the optimal thing for SSE vs. the default expansion in the legalizer.
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
else
// With AVX512 we can use vcvts[ds]2usi for f32/f64->i32, f80 is custom.
// With SSE3 we can use fisttpll to convert to a signed i64; without
// SSE, we're stuck with a fistpll.
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom);
}
// TODO: when we have SSE, these could be more efficient, by using movd/movq.
if (!X86ScalarSSEf64) {
setOperationAction(ISD::BITCAST , MVT::f32 , Expand);
setOperationAction(ISD::BITCAST , MVT::i32 , Expand);
if (Subtarget.is64Bit()) {
setOperationAction(ISD::BITCAST , MVT::f64 , Expand);
// Without SSE, i64->f64 goes through memory.
setOperationAction(ISD::BITCAST , MVT::i64 , Expand);
}
} else if (!Subtarget.is64Bit())
setOperationAction(ISD::BITCAST , MVT::i64 , Custom);
// Scalar integer divide and remainder are lowered to use operations that
// produce two results, to match the available instructions. This exposes
// the two-result form to trivial CSE, which is able to combine x/y and x%y
// into a single instruction.
//
// Scalar integer multiply-high is also lowered to use two-result
// operations, to match the available instructions. However, plain multiply
// (low) operations are left as Legal, as there are single-result
// instructions for this in x86. Using the two-result multiply instructions
// when both high and low results are needed must be arranged by dagcombine.
for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
setOperationAction(ISD::MULHS, VT, Expand);
setOperationAction(ISD::MULHU, VT, Expand);
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
}
setOperationAction(ISD::BR_JT , MVT::Other, Expand);
setOperationAction(ISD::BRCOND , MVT::Other, Custom);
for (auto VT : { MVT::f32, MVT::f64, MVT::f80, MVT::f128,
MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
setOperationAction(ISD::BR_CC, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
}
if (Subtarget.is64Bit())
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
setOperationAction(ISD::FREM , MVT::f32 , Expand);
setOperationAction(ISD::FREM , MVT::f64 , Expand);
setOperationAction(ISD::FREM , MVT::f80 , Expand);
setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
// Promote the i8 variants and force them on up to i32 which has a shorter
// encoding.
setOperationPromotedToType(ISD::CTTZ , MVT::i8 , MVT::i32);
setOperationPromotedToType(ISD::CTTZ_ZERO_UNDEF, MVT::i8 , MVT::i32);
if (!Subtarget.hasBMI()) {
setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16 , Legal);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32 , Legal);
if (Subtarget.is64Bit()) {
setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Legal);
}
}
if (Subtarget.hasLZCNT()) {
// When promoting the i8 variants, force them to i32 for a shorter
// encoding.
setOperationPromotedToType(ISD::CTLZ , MVT::i8 , MVT::i32);
setOperationPromotedToType(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , MVT::i32);
} else {
setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Custom);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Custom);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Custom);
if (Subtarget.is64Bit()) {
setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
}
}
// Special handling for half-precision floating point conversions.
// If we don't have F16C support, then lower half float conversions
// into library calls.
if (Subtarget.useSoftFloat() || !Subtarget.hasF16C()) {
setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
}
// There's never any support for operations beyond MVT::f32.
setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
setOperationAction(ISD::FP16_TO_FP, MVT::f80, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f80, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f80, MVT::f16, Expand);
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
setTruncStoreAction(MVT::f80, MVT::f16, Expand);
if (Subtarget.hasPOPCNT()) {
setOperationPromotedToType(ISD::CTPOP, MVT::i8, MVT::i32);
} else {
setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
if (Subtarget.is64Bit())
setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
}
setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
if (!Subtarget.hasMOVBE())
setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
// These should be promoted to a larger select which is supported.
setOperationAction(ISD::SELECT , MVT::i1 , Promote);
// X86 wants to expand cmov itself.
for (auto VT : { MVT::f32, MVT::f64, MVT::f80, MVT::f128 }) {
setOperationAction(ISD::SELECT, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
}
for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
if (VT == MVT::i64 && !Subtarget.is64Bit())
continue;
setOperationAction(ISD::SELECT, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
}
// Custom action for SELECT MMX and expand action for SELECT_CC MMX
setOperationAction(ISD::SELECT, MVT::x86mmx, Custom);
setOperationAction(ISD::SELECT_CC, MVT::x86mmx, Expand);
setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
// NOTE: EH_SJLJ_SETJMP/_LONGJMP are not recommended, since
// LLVM/Clang supports zero-cost DWARF and SEH exception handling.
setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
if (TM.Options.ExceptionModel == ExceptionHandling::SjLj)
setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
// Darwin ABI issue.
for (auto VT : { MVT::i32, MVT::i64 }) {
if (VT == MVT::i64 && !Subtarget.is64Bit())
continue;
setOperationAction(ISD::ConstantPool , VT, Custom);
setOperationAction(ISD::JumpTable , VT, Custom);
setOperationAction(ISD::GlobalAddress , VT, Custom);
setOperationAction(ISD::GlobalTLSAddress, VT, Custom);
setOperationAction(ISD::ExternalSymbol , VT, Custom);
setOperationAction(ISD::BlockAddress , VT, Custom);
}
// 64-bit shl, sra, srl (iff 32-bit x86)
for (auto VT : { MVT::i32, MVT::i64 }) {
if (VT == MVT::i64 && !Subtarget.is64Bit())
continue;
setOperationAction(ISD::SHL_PARTS, VT, Custom);
setOperationAction(ISD::SRA_PARTS, VT, Custom);
setOperationAction(ISD::SRL_PARTS, VT, Custom);
}
if (Subtarget.hasSSEPrefetch() || Subtarget.has3DNow())
setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom);
// Expand certain atomics
for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom);
setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Custom);
setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Custom);
setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Custom);
setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Custom);
setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
}
if (Subtarget.hasCmpxchg16b()) {
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
}
// FIXME - use subtarget debug flags
if (!Subtarget.isTargetDarwin() && !Subtarget.isTargetELF() &&
!Subtarget.isTargetCygMing() && !Subtarget.isTargetWin64() &&
TM.Options.ExceptionModel != ExceptionHandling::SjLj) {
setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
}
setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
setOperationAction(ISD::TRAP, MVT::Other, Legal);
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
setOperationAction(ISD::VASTART , MVT::Other, Custom);
setOperationAction(ISD::VAEND , MVT::Other, Expand);
bool Is64Bit = Subtarget.is64Bit();
setOperationAction(ISD::VAARG, MVT::Other, Is64Bit ? Custom : Expand);
setOperationAction(ISD::VACOPY, MVT::Other, Is64Bit ? Custom : Expand);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
// GC_TRANSITION_START and GC_TRANSITION_END need custom lowering.
setOperationAction(ISD::GC_TRANSITION_START, MVT::Other, Custom);
setOperationAction(ISD::GC_TRANSITION_END, MVT::Other, Custom);
if (!Subtarget.useSoftFloat() && X86ScalarSSEf64) {
// f32 and f64 use SSE.
// Set up the FP register classes.
addRegisterClass(MVT::f32, Subtarget.hasAVX512() ? &X86::FR32XRegClass
: &X86::FR32RegClass);
addRegisterClass(MVT::f64, Subtarget.hasAVX512() ? &X86::FR64XRegClass
: &X86::FR64RegClass);
for (auto VT : { MVT::f32, MVT::f64 }) {
// Use ANDPD to simulate FABS.
setOperationAction(ISD::FABS, VT, Custom);
// Use XORP to simulate FNEG.
setOperationAction(ISD::FNEG, VT, Custom);
// Use ANDPD and ORPD to simulate FCOPYSIGN.
setOperationAction(ISD::FCOPYSIGN, VT, Custom);
// We don't support sin/cos/fmod
setOperationAction(ISD::FSIN , VT, Expand);
setOperationAction(ISD::FCOS , VT, Expand);
setOperationAction(ISD::FSINCOS, VT, Expand);
}
// Lower this to MOVMSK plus an AND.
setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
// Expand FP immediates into loads from the stack, except for the special
// cases we handle.
addLegalFPImmediate(APFloat(+0.0)); // xorpd
addLegalFPImmediate(APFloat(+0.0f)); // xorps
} else if (UseX87 && X86ScalarSSEf32) {
// Use SSE for f32, x87 for f64.
// Set up the FP register classes.
addRegisterClass(MVT::f32, &X86::FR32RegClass);
addRegisterClass(MVT::f64, &X86::RFP64RegClass);
// Use ANDPS to simulate FABS.
setOperationAction(ISD::FABS , MVT::f32, Custom);
// Use XORP to simulate FNEG.
setOperationAction(ISD::FNEG , MVT::f32, Custom);
setOperationAction(ISD::UNDEF, MVT::f64, Expand);
// Use ANDPS and ORPS to simulate FCOPYSIGN.
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
// We don't support sin/cos/fmod
setOperationAction(ISD::FSIN , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f32, Expand);
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
// Special cases we handle for FP constants.
addLegalFPImmediate(APFloat(+0.0f)); // xorps
addLegalFPImmediate(APFloat(+0.0)); // FLD0
addLegalFPImmediate(APFloat(+1.0)); // FLD1
addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
// Always expand sin/cos functions even though x87 has an instruction.
setOperationAction(ISD::FSIN , MVT::f64, Expand);
setOperationAction(ISD::FCOS , MVT::f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
} else if (UseX87) {
// f32 and f64 in x87.
// Set up the FP register classes.
addRegisterClass(MVT::f64, &X86::RFP64RegClass);
addRegisterClass(MVT::f32, &X86::RFP32RegClass);
for (auto VT : { MVT::f32, MVT::f64 }) {
setOperationAction(ISD::UNDEF, VT, Expand);
setOperationAction(ISD::FCOPYSIGN, VT, Expand);
// Always expand sin/cos functions even though x87 has an instruction.
setOperationAction(ISD::FSIN , VT, Expand);
setOperationAction(ISD::FCOS , VT, Expand);
setOperationAction(ISD::FSINCOS, VT, Expand);
}
addLegalFPImmediate(APFloat(+0.0)); // FLD0
addLegalFPImmediate(APFloat(+1.0)); // FLD1
addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
addLegalFPImmediate(APFloat(+0.0f)); // FLD0
addLegalFPImmediate(APFloat(+1.0f)); // FLD1
addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
}
// We don't support FMA.
setOperationAction(ISD::FMA, MVT::f64, Expand);
setOperationAction(ISD::FMA, MVT::f32, Expand);
// Long double always uses X87, except f128 in MMX.
if (UseX87) {
if (Subtarget.is64Bit() && Subtarget.hasMMX()) {
addRegisterClass(MVT::f128, &X86::VR128RegClass);
ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
setOperationAction(ISD::FABS , MVT::f128, Custom);
setOperationAction(ISD::FNEG , MVT::f128, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f128, Custom);
}
addRegisterClass(MVT::f80, &X86::RFP80RegClass);
setOperationAction(ISD::UNDEF, MVT::f80, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
{
APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended());
addLegalFPImmediate(TmpFlt); // FLD0
TmpFlt.changeSign();
addLegalFPImmediate(TmpFlt); // FLD0/FCHS
bool ignored;
APFloat TmpFlt2(+1.0);
TmpFlt2.convert(APFloat::x87DoubleExtended(), APFloat::rmNearestTiesToEven,
&ignored);
addLegalFPImmediate(TmpFlt2); // FLD1
TmpFlt2.changeSign();
addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
}
// Always expand sin/cos functions even though x87 has an instruction.
setOperationAction(ISD::FSIN , MVT::f80, Expand);
setOperationAction(ISD::FCOS , MVT::f80, Expand);
setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
setOperationAction(ISD::FCEIL, MVT::f80, Expand);
setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
setOperationAction(ISD::FRINT, MVT::f80, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
setOperationAction(ISD::FMA, MVT::f80, Expand);
}
// Always use a library call for pow.
setOperationAction(ISD::FPOW , MVT::f32 , Expand);
setOperationAction(ISD::FPOW , MVT::f64 , Expand);
setOperationAction(ISD::FPOW , MVT::f80 , Expand);
setOperationAction(ISD::FLOG, MVT::f80, Expand);
setOperationAction(ISD::FLOG2, MVT::f80, Expand);
setOperationAction(ISD::FLOG10, MVT::f80, Expand);
setOperationAction(ISD::FEXP, MVT::f80, Expand);
setOperationAction(ISD::FEXP2, MVT::f80, Expand);
setOperationAction(ISD::FMINNUM, MVT::f80, Expand);
setOperationAction(ISD::FMAXNUM, MVT::f80, Expand);
// Some FP actions are always expanded for vector types.
for (auto VT : { MVT::v4f32, MVT::v8f32, MVT::v16f32,
MVT::v2f64, MVT::v4f64, MVT::v8f64 }) {
setOperationAction(ISD::FSIN, VT, Expand);
setOperationAction(ISD::FSINCOS, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
setOperationAction(ISD::FCOPYSIGN, VT, Expand);
setOperationAction(ISD::FPOW, VT, Expand);
setOperationAction(ISD::FLOG, VT, Expand);
setOperationAction(ISD::FLOG2, VT, Expand);
setOperationAction(ISD::FLOG10, VT, Expand);
setOperationAction(ISD::FEXP, VT, Expand);
setOperationAction(ISD::FEXP2, VT, Expand);
}
// First set operation action for all vector types to either promote
// (for widening) or expand (for scalarization). Then we will selectively
// turn on ones that can be effectively codegen'd.
for (MVT VT : MVT::vector_valuetypes()) {
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
setOperationAction(ISD::FMA, VT, Expand);
setOperationAction(ISD::FFLOOR, VT, Expand);
setOperationAction(ISD::FCEIL, VT, Expand);
setOperationAction(ISD::FTRUNC, VT, Expand);
setOperationAction(ISD::FRINT, VT, Expand);
setOperationAction(ISD::FNEARBYINT, VT, Expand);
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
setOperationAction(ISD::MULHS, VT, Expand);
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
setOperationAction(ISD::MULHU, VT, Expand);
setOperationAction(ISD::SDIVREM, VT, Expand);
setOperationAction(ISD::UDIVREM, VT, Expand);
setOperationAction(ISD::CTPOP, VT, Expand);
setOperationAction(ISD::CTTZ, VT, Expand);
setOperationAction(ISD::CTLZ, VT, Expand);
setOperationAction(ISD::ROTL, VT, Expand);
setOperationAction(ISD::ROTR, VT, Expand);
setOperationAction(ISD::BSWAP, VT, Expand);
setOperationAction(ISD::SETCC, VT, Expand);
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
setOperationAction(ISD::FP_TO_SINT, VT, Expand);
setOperationAction(ISD::UINT_TO_FP, VT, Expand);
setOperationAction(ISD::SINT_TO_FP, VT, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
setOperationAction(ISD::TRUNCATE, VT, Expand);
setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
setOperationAction(ISD::ANY_EXTEND, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
for (MVT InnerVT : MVT::vector_valuetypes()) {
setTruncStoreAction(InnerVT, VT, Expand);
setLoadExtAction(ISD::SEXTLOAD, InnerVT, VT, Expand);
setLoadExtAction(ISD::ZEXTLOAD, InnerVT, VT, Expand);
// N.b. ISD::EXTLOAD legality is basically ignored except for i1-like
// types, we have to deal with them whether we ask for Expansion or not.
// Setting Expand causes its own optimisation problems though, so leave
// them legal.
if (VT.getVectorElementType() == MVT::i1)
setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
// EXTLOAD for MVT::f16 vectors is not legal because f16 vectors are
// split/scalarized right now.
if (VT.getVectorElementType() == MVT::f16)
setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
}
}
// FIXME: In order to prevent SSE instructions being expanded to MMX ones
// with -msoft-float, disable use of MMX as well.
if (!Subtarget.useSoftFloat() && Subtarget.hasMMX()) {
addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
// No operations on x86mmx supported, everything uses intrinsics.
}
if (!Subtarget.useSoftFloat() && Subtarget.hasSSE1()) {
addRegisterClass(MVT::v4f32, Subtarget.hasVLX() ? &X86::VR128XRegClass
: &X86::VR128RegClass);
setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
setOperationAction(ISD::FABS, MVT::v4f32, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
setOperationAction(ISD::VSELECT, MVT::v4f32, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
}
if (!Subtarget.useSoftFloat() && Subtarget.hasSSE2()) {
addRegisterClass(MVT::v2f64, Subtarget.hasVLX() ? &X86::VR128XRegClass
: &X86::VR128RegClass);
// FIXME: Unfortunately, -soft-float and -no-implicit-float mean XMM
// registers cannot be used even for integer operations.
addRegisterClass(MVT::v16i8, Subtarget.hasVLX() ? &X86::VR128XRegClass
: &X86::VR128RegClass);
addRegisterClass(MVT::v8i16, Subtarget.hasVLX() ? &X86::VR128XRegClass
: &X86::VR128RegClass);
addRegisterClass(MVT::v4i32, Subtarget.hasVLX() ? &X86::VR128XRegClass
: &X86::VR128RegClass);
addRegisterClass(MVT::v2i64, Subtarget.hasVLX() ? &X86::VR128XRegClass
: &X86::VR128RegClass);
setOperationAction(ISD::MUL, MVT::v16i8, Custom);
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
setOperationAction(ISD::MUL, MVT::v2i64, Custom);
setOperationAction(ISD::UMUL_LOHI, MVT::v4i32, Custom);
setOperationAction(ISD::SMUL_LOHI, MVT::v4i32, Custom);
setOperationAction(ISD::MULHU, MVT::v16i8, Custom);
setOperationAction(ISD::MULHS, MVT::v16i8, Custom);
setOperationAction(ISD::MULHU, MVT::v8i16, Legal);
setOperationAction(ISD::MULHS, MVT::v8i16, Legal);
setOperationAction(ISD::MUL, MVT::v8i16, Legal);
setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
setOperationAction(ISD::FABS, MVT::v2f64, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Custom);
for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
setOperationAction(ISD::SMAX, VT, VT == MVT::v8i16 ? Legal : Custom);
setOperationAction(ISD::SMIN, VT, VT == MVT::v8i16 ? Legal : Custom);
setOperationAction(ISD::UMAX, VT, VT == MVT::v16i8 ? Legal : Custom);
setOperationAction(ISD::UMIN, VT, VT == MVT::v16i8 ? Legal : Custom);
}
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
// Provide custom widening for v2f32 setcc. This is really for VLX when
// setcc result type returns v2i1/v4i1 vector for v2f32/v4f32 leading to
// type legalization changing the result type to v4i1 during widening.
// It works fine for SSE2 and is probably faster so no need to qualify with
// VLX support.
setOperationAction(ISD::SETCC, MVT::v2i32, Custom);
for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::CTPOP, VT, Custom);
setOperationAction(ISD::CTTZ, VT, Custom);
// The condition codes aren't legal in SSE/AVX and under AVX512 we use
// setcc all the way to isel and prefer SETGT in some isel patterns.
setCondCodeAction(ISD::SETLT, VT, Custom);
setCondCodeAction(ISD::SETLE, VT, Custom);
}
for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::VSELECT, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
}
// We support custom legalizing of sext and anyext loads for specific
// memory vector types which we can load as a scalar (or sequence of
// scalars) and extend in-register to a legal 128-bit vector type. For sext
// loads these must work with a single scalar load.
for (MVT VT : MVT::integer_vector_valuetypes()) {
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Custom);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Custom);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i8, Custom);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Custom);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Custom);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Custom);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Custom);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Custom);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8i8, Custom);
}
for (auto VT : { MVT::v2f64, MVT::v2i64 }) {
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::VSELECT, VT, Custom);
if (VT == MVT::v2i64 && !Subtarget.is64Bit())
continue;
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
}
// Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
setOperationPromotedToType(ISD::AND, VT, MVT::v2i64);
setOperationPromotedToType(ISD::OR, VT, MVT::v2i64);
setOperationPromotedToType(ISD::XOR, VT, MVT::v2i64);
setOperationPromotedToType(ISD::LOAD, VT, MVT::v2i64);
setOperationPromotedToType(ISD::SELECT, VT, MVT::v2i64);
}
// Custom lower v2i64 and v2f64 selects.
setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
setOperationAction(ISD::FP_TO_SINT, MVT::v2i32, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
// Fast v2f32 UINT_TO_FP( v2i32 ) custom conversion.
setOperationAction(ISD::UINT_TO_FP, MVT::v2f32, Custom);
setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
setOperationAction(ISD::FP_ROUND, MVT::v2f32, Custom);
for (MVT VT : MVT::fp_vector_valuetypes())
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2f32, Legal);
setOperationAction(ISD::BITCAST, MVT::v2i32, Custom);
setOperationAction(ISD::BITCAST, MVT::v4i16, Custom);
setOperationAction(ISD::BITCAST, MVT::v8i8, Custom);
if (!Subtarget.hasAVX512())
setOperationAction(ISD::BITCAST, MVT::v16i1, Custom);
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v2i64, Custom);
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v4i32, Custom);
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i16, Custom);
// In the customized shift lowering, the legal v4i32/v2i64 cases
// in AVX2 will be recognized.
for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
}
setOperationAction(ISD::ROTL, MVT::v4i32, Custom);
setOperationAction(ISD::ROTL, MVT::v8i16, Custom);
setOperationAction(ISD::ROTL, MVT::v16i8, Custom);
}
if (!Subtarget.useSoftFloat() && Subtarget.hasSSSE3()) {
setOperationAction(ISD::ABS, MVT::v16i8, Legal);
setOperationAction(ISD::ABS, MVT::v8i16, Legal);
setOperationAction(ISD::ABS, MVT::v4i32, Legal);
setOperationAction(ISD::BITREVERSE, MVT::v16i8, Custom);
setOperationAction(ISD::CTLZ, MVT::v16i8, Custom);
setOperationAction(ISD::CTLZ, MVT::v8i16, Custom);
setOperationAction(ISD::CTLZ, MVT::v4i32, Custom);
setOperationAction(ISD::CTLZ, MVT::v2i64, Custom);
}
if (!Subtarget.useSoftFloat() && Subtarget.hasSSE41()) {
for (MVT RoundedTy : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
setOperationAction(ISD::FFLOOR, RoundedTy, Legal);
setOperationAction(ISD::FCEIL, RoundedTy, Legal);
setOperationAction(ISD::FTRUNC, RoundedTy, Legal);
setOperationAction(ISD::FRINT, RoundedTy, Legal);
setOperationAction(ISD::FNEARBYINT, RoundedTy, Legal);
}
setOperationAction(ISD::SMAX, MVT::v16i8, Legal);
setOperationAction(ISD::SMAX, MVT::v4i32, Legal);
setOperationAction(ISD::UMAX, MVT::v8i16, Legal);
setOperationAction(ISD::UMAX, MVT::v4i32, Legal);
setOperationAction(ISD::SMIN, MVT::v16i8, Legal);
setOperationAction(ISD::SMIN, MVT::v4i32, Legal);
setOperationAction(ISD::UMIN, MVT::v8i16, Legal);
setOperationAction(ISD::UMIN, MVT::v4i32, Legal);
// FIXME: Do we need to handle scalar-to-vector here?
setOperationAction(ISD::MUL, MVT::v4i32, Legal);
// We directly match byte blends in the backend as they match the VSELECT
// condition form.
setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
// SSE41 brings specific instructions for doing vector sign extend even in
// cases where we don't have SRA.
for (auto VT : { MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Legal);
setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Legal);
}
for (MVT VT : MVT::integer_vector_valuetypes()) {
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Custom);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Custom);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Custom);
}
// SSE41 also has vector sign/zero extending loads, PMOV[SZ]X
for (auto LoadExtOp : { ISD::SEXTLOAD, ISD::ZEXTLOAD }) {
setLoadExtAction(LoadExtOp, MVT::v8i16, MVT::v8i8, Legal);
setLoadExtAction(LoadExtOp, MVT::v4i32, MVT::v4i8, Legal);
setLoadExtAction(LoadExtOp, MVT::v2i32, MVT::v2i8, Legal);
setLoadExtAction(LoadExtOp, MVT::v2i64, MVT::v2i8, Legal);
setLoadExtAction(LoadExtOp, MVT::v4i32, MVT::v4i16, Legal);
setLoadExtAction(LoadExtOp, MVT::v2i64, MVT::v2i16, Legal);
setLoadExtAction(LoadExtOp, MVT::v2i64, MVT::v2i32, Legal);
}
// i8 vectors are custom because the source register and source
// source memory operand types are not the same width.
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
}
if (!Subtarget.useSoftFloat() && Subtarget.hasXOP()) {
for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64,
MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 })
setOperationAction(ISD::ROTL, VT, Custom);
// XOP can efficiently perform BITREVERSE with VPPERM.
for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 })
setOperationAction(ISD::BITREVERSE, VT, Custom);
for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64,
MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 })
setOperationAction(ISD::BITREVERSE, VT, Custom);
}
if (!Subtarget.useSoftFloat() && Subtarget.hasAVX()) {
bool HasInt256 = Subtarget.hasInt256();
addRegisterClass(MVT::v32i8, Subtarget.hasVLX() ? &X86::VR256XRegClass
: &X86::VR256RegClass);
addRegisterClass(MVT::v16i16, Subtarget.hasVLX() ? &X86::VR256XRegClass
: &X86::VR256RegClass);
addRegisterClass(MVT::v8i32, Subtarget.hasVLX() ? &X86::VR256XRegClass
: &X86::VR256RegClass);
addRegisterClass(MVT::v8f32, Subtarget.hasVLX() ? &X86::VR256XRegClass
: &X86::VR256RegClass);
addRegisterClass(MVT::v4i64, Subtarget.hasVLX() ? &X86::VR256XRegClass
: &X86::VR256RegClass);
addRegisterClass(MVT::v4f64, Subtarget.hasVLX() ? &X86::VR256XRegClass
: &X86::VR256RegClass);
for (auto VT : { MVT::v8f32, MVT::v4f64 }) {
setOperationAction(ISD::FFLOOR, VT, Legal);
setOperationAction(ISD::FCEIL, VT, Legal);
setOperationAction(ISD::FTRUNC, VT, Legal);
setOperationAction(ISD::FRINT, VT, Legal);
setOperationAction(ISD::FNEARBYINT, VT, Legal);
setOperationAction(ISD::FNEG, VT, Custom);
setOperationAction(ISD::FABS, VT, Custom);
setOperationAction(ISD::FCOPYSIGN, VT, Custom);
}
// (fp_to_int:v8i16 (v8f32 ..)) requires the result type to be promoted
// even though v8i16 is a legal type.
setOperationPromotedToType(ISD::FP_TO_SINT, MVT::v8i16, MVT::v8i32);
setOperationPromotedToType(ISD::FP_TO_UINT, MVT::v8i16, MVT::v8i32);
setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal);
setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal);
if (!Subtarget.hasAVX512())
setOperationAction(ISD::BITCAST, MVT::v32i1, Custom);
for (MVT VT : MVT::fp_vector_valuetypes())
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4f32, Legal);
// In the customized shift lowering, the legal v8i32/v4i64 cases
// in AVX2 will be recognized.
for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) {
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
}
setOperationAction(ISD::ROTL, MVT::v8i32, Custom);
setOperationAction(ISD::ROTL, MVT::v16i16, Custom);
setOperationAction(ISD::ROTL, MVT::v32i8, Custom);
setOperationAction(ISD::SELECT, MVT::v4f64, Custom);
setOperationAction(ISD::SELECT, MVT::v4i64, Custom);
setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
for (auto VT : { MVT::v16i16, MVT::v8i32, MVT::v4i64 }) {
setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
setOperationAction(ISD::ANY_EXTEND, VT, Custom);
}
setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v8i16, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v4i32, Custom);
setOperationAction(ISD::BITREVERSE, MVT::v32i8, Custom);
for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) {
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::CTPOP, VT, Custom);
setOperationAction(ISD::CTTZ, VT, Custom);
setOperationAction(ISD::CTLZ, VT, Custom);
// The condition codes aren't legal in SSE/AVX and under AVX512 we use
// setcc all the way to isel and prefer SETGT in some isel patterns.
setCondCodeAction(ISD::SETLT, VT, Custom);
setCondCodeAction(ISD::SETLE, VT, Custom);
}
if (Subtarget.hasAnyFMA()) {
for (auto VT : { MVT::f32, MVT::f64, MVT::v4f32, MVT::v8f32,
MVT::v2f64, MVT::v4f64 })
setOperationAction(ISD::FMA, VT, Legal);
}
for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) {
setOperationAction(ISD::ADD, VT, HasInt256 ? Legal : Custom);
setOperationAction(ISD::SUB, VT, HasInt256 ? Legal : Custom);
}
setOperationAction(ISD::MUL, MVT::v4i64, Custom);
setOperationAction(ISD::MUL, MVT::v8i32, HasInt256 ? Legal : Custom);
setOperationAction(ISD::MUL, MVT::v16i16, HasInt256 ? Legal : Custom);
setOperationAction(ISD::MUL, MVT::v32i8, Custom);
setOperationAction(ISD::UMUL_LOHI, MVT::v8i32, Custom);
setOperationAction(ISD::SMUL_LOHI, MVT::v8i32, Custom);
setOperationAction(ISD::MULHU, MVT::v16i16, HasInt256 ? Legal : Custom);
setOperationAction(ISD::MULHS, MVT::v16i16, HasInt256 ? Legal : Custom);
setOperationAction(ISD::MULHU, MVT::v32i8, Custom);
setOperationAction(ISD::MULHS, MVT::v32i8, Custom);
setOperationAction(ISD::SMAX, MVT::v4i64, Custom);
setOperationAction(ISD::UMAX, MVT::v4i64, Custom);
setOperationAction(ISD::SMIN, MVT::v4i64, Custom);
setOperationAction(ISD::UMIN, MVT::v4i64, Custom);
for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32 }) {
setOperationAction(ISD::ABS, VT, HasInt256 ? Legal : Custom);
setOperationAction(ISD::SMAX, VT, HasInt256 ? Legal : Custom);
setOperationAction(ISD::UMAX, VT, HasInt256 ? Legal : Custom);
setOperationAction(ISD::SMIN, VT, HasInt256 ? Legal : Custom);
setOperationAction(ISD::UMIN, VT, HasInt256 ? Legal : Custom);
}
if (HasInt256) {
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v4i64, Custom);
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i32, Custom);
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v16i16, Custom);
// The custom lowering for UINT_TO_FP for v8i32 becomes interesting
// when we have a 256bit-wide blend with immediate.
setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Custom);
// AVX2 also has wider vector sign/zero extending loads, VPMOV[SZ]X
for (auto LoadExtOp : { ISD::SEXTLOAD, ISD::ZEXTLOAD }) {
setLoadExtAction(LoadExtOp, MVT::v16i16, MVT::v16i8, Legal);
setLoadExtAction(LoadExtOp, MVT::v8i32, MVT::v8i8, Legal);
setLoadExtAction(LoadExtOp, MVT::v4i64, MVT::v4i8, Legal);
setLoadExtAction(LoadExtOp, MVT::v8i32, MVT::v8i16, Legal);
setLoadExtAction(LoadExtOp, MVT::v4i64, MVT::v4i16, Legal);
setLoadExtAction(LoadExtOp, MVT::v4i64, MVT::v4i32, Legal);
}
}
for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64,
MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64 }) {
setOperationAction(ISD::MLOAD, VT, Legal);
setOperationAction(ISD::MSTORE, VT, Legal);
}
// Extract subvector is special because the value type
// (result) is 128-bit but the source is 256-bit wide.
for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64,
MVT::v4f32, MVT::v2f64 }) {
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
}
// Custom lower several nodes for 256-bit types.
for (MVT VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64,
MVT::v8f32, MVT::v4f64 }) {
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::VSELECT, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Legal);
setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
}
if (HasInt256)
setOperationAction(ISD::VSELECT, MVT::v32i8, Legal);
// Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32 }) {
setOperationPromotedToType(ISD::AND, VT, MVT::v4i64);
setOperationPromotedToType(ISD::OR, VT, MVT::v4i64);
setOperationPromotedToType(ISD::XOR, VT, MVT::v4i64);
setOperationPromotedToType(ISD::LOAD, VT, MVT::v4i64);
setOperationPromotedToType(ISD::SELECT, VT, MVT::v4i64);
}
if (HasInt256) {
// Custom legalize 2x32 to get a little better code.
setOperationAction(ISD::MGATHER, MVT::v2f32, Custom);
setOperationAction(ISD::MGATHER, MVT::v2i32, Custom);
for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64,
MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64 })
setOperationAction(ISD::MGATHER, VT, Custom);
}
}
// This block controls legalization of the mask vector sizes that are
// available with AVX512. 512-bit vectors are in a separate block controlled
// by useAVX512Regs.
if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512()) {
addRegisterClass(MVT::v1i1, &X86::VK1RegClass);
addRegisterClass(MVT::v2i1, &X86::VK2RegClass);
addRegisterClass(MVT::v4i1, &X86::VK4RegClass);
addRegisterClass(MVT::v8i1, &X86::VK8RegClass);
addRegisterClass(MVT::v16i1, &X86::VK16RegClass);
setOperationAction(ISD::SELECT, MVT::v1i1, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v1i1, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v1i1, Custom);
setOperationPromotedToType(ISD::FP_TO_SINT, MVT::v8i1, MVT::v8i32);
setOperationPromotedToType(ISD::FP_TO_UINT, MVT::v8i1, MVT::v8i32);
setOperationPromotedToType(ISD::FP_TO_SINT, MVT::v4i1, MVT::v4i32);
setOperationPromotedToType(ISD::FP_TO_UINT, MVT::v4i1, MVT::v4i32);
setOperationAction(ISD::FP_TO_SINT, MVT::v2i1, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::v2i1, Custom);
// There is no byte sized k-register load or store without AVX512DQ.
if (!Subtarget.hasDQI()) {
setOperationAction(ISD::LOAD, MVT::v1i1, Custom);
setOperationAction(ISD::LOAD, MVT::v2i1, Custom);
setOperationAction(ISD::LOAD, MVT::v4i1, Custom);
setOperationAction(ISD::LOAD, MVT::v8i1, Custom);
setOperationAction(ISD::STORE, MVT::v1i1, Custom);
setOperationAction(ISD::STORE, MVT::v2i1, Custom);
setOperationAction(ISD::STORE, MVT::v4i1, Custom);
setOperationAction(ISD::STORE, MVT::v8i1, Custom);
}
// Extends of v16i1/v8i1/v4i1/v2i1 to 128-bit vectors.
for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
setOperationAction(ISD::ANY_EXTEND, VT, Custom);
}
for (auto VT : { MVT::v2i1, MVT::v4i1, MVT::v8i1, MVT::v16i1 }) {
setOperationAction(ISD::ADD, VT, Custom);
setOperationAction(ISD::SUB, VT, Custom);
setOperationAction(ISD::MUL, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::SELECT, VT, Custom);
setOperationAction(ISD::TRUNCATE, VT, Custom);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::VSELECT, VT, Expand);
}
setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i1, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i1, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i1, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v2i1, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i1, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i1, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v16i1, Custom);
for (auto VT : { MVT::v1i1, MVT::v2i1, MVT::v4i1, MVT::v8i1 })
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
}
// This block controls legalization for 512-bit operations with 32/64 bit
// elements. 512-bits can be disabled based on prefer-vector-width and
// required-vector-width function attributes.
if (!Subtarget.useSoftFloat() && Subtarget.useAVX512Regs()) {
addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
addRegisterClass(MVT::v8i64, &X86::VR512RegClass);
addRegisterClass(MVT::v8f64, &X86::VR512RegClass);
for (MVT VT : MVT::fp_vector_valuetypes())
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8f32, Legal);
for (auto ExtType : {ISD::ZEXTLOAD, ISD::SEXTLOAD}) {
setLoadExtAction(ExtType, MVT::v16i32, MVT::v16i8, Legal);
setLoadExtAction(ExtType, MVT::v16i32, MVT::v16i16, Legal);
setLoadExtAction(ExtType, MVT::v8i64, MVT::v8i8, Legal);
setLoadExtAction(ExtType, MVT::v8i64, MVT::v8i16, Legal);
setLoadExtAction(ExtType, MVT::v8i64, MVT::v8i32, Legal);
}
for (MVT VT : { MVT::v16f32, MVT::v8f64 }) {
setOperationAction(ISD::FNEG, VT, Custom);
setOperationAction(ISD::FABS, VT, Custom);
setOperationAction(ISD::FMA, VT, Legal);
setOperationAction(ISD::FCOPYSIGN, VT, Custom);
}
setOperationAction(ISD::FP_TO_SINT, MVT::v16i32, Legal);
setOperationPromotedToType(ISD::FP_TO_SINT, MVT::v16i16, MVT::v16i32);
setOperationPromotedToType(ISD::FP_TO_SINT, MVT::v16i8, MVT::v16i32);
setOperationPromotedToType(ISD::FP_TO_SINT, MVT::v16i1, MVT::v16i32);
setOperationAction(ISD::FP_TO_UINT, MVT::v16i32, Legal);
setOperationPromotedToType(ISD::FP_TO_UINT, MVT::v16i1, MVT::v16i32);
setOperationPromotedToType(ISD::FP_TO_UINT, MVT::v16i8, MVT::v16i32);
setOperationPromotedToType(ISD::FP_TO_UINT, MVT::v16i16, MVT::v16i32);
setOperationAction(ISD::SINT_TO_FP, MVT::v16i32, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v16i32, Legal);
setTruncStoreAction(MVT::v8i64, MVT::v8i8, Legal);
setTruncStoreAction(MVT::v8i64, MVT::v8i16, Legal);
setTruncStoreAction(MVT::v8i64, MVT::v8i32, Legal);
setTruncStoreAction(MVT::v16i32, MVT::v16i8, Legal);
setTruncStoreAction(MVT::v16i32, MVT::v16i16, Legal);
if (!Subtarget.hasVLX()) {
// With 512-bit vectors and no VLX, we prefer to widen MLOAD/MSTORE
// to 512-bit rather than use the AVX2 instructions so that we can use
// k-masks.
for (auto VT : {MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64,
MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64}) {
setOperationAction(ISD::MLOAD, VT, Custom);
setOperationAction(ISD::MSTORE, VT, Custom);
}
}
setOperationAction(ISD::TRUNCATE, MVT::v8i32, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v16i16, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v8i64, Custom);
setOperationAction(ISD::ANY_EXTEND, MVT::v16i32, Custom);
setOperationAction(ISD::ANY_EXTEND, MVT::v8i64, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v8i64, Custom);
for (auto VT : { MVT::v16f32, MVT::v8f64 }) {
setOperationAction(ISD::FFLOOR, VT, Legal);
setOperationAction(ISD::FCEIL, VT, Legal);
setOperationAction(ISD::FTRUNC, VT, Legal);
setOperationAction(ISD::FRINT, VT, Legal);
setOperationAction(ISD::FNEARBYINT, VT, Legal);
}
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i64, Custom);
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v16i32, Custom);
// Without BWI we need to use custom lowering to handle MVT::v64i8 input.
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v64i8, Custom);
setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, MVT::v64i8, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f64, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i64, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v16f32, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i32, Custom);
setOperationAction(ISD::MUL, MVT::v8i64, Custom);
setOperationAction(ISD::MUL, MVT::v16i32, Legal);
setOperationAction(ISD::UMUL_LOHI, MVT::v16i32, Custom);
setOperationAction(ISD::SMUL_LOHI, MVT::v16i32, Custom);
setOperationAction(ISD::SELECT, MVT::v8f64, Custom);
setOperationAction(ISD::SELECT, MVT::v8i64, Custom);
setOperationAction(ISD::SELECT, MVT::v16f32, Custom);
for (auto VT : { MVT::v16i32, MVT::v8i64 }) {
setOperationAction(ISD::SMAX, VT, Legal);
setOperationAction(ISD::UMAX, VT, Legal);
setOperationAction(ISD::SMIN, VT, Legal);
setOperationAction(ISD::UMIN, VT, Legal);
setOperationAction(ISD::ABS, VT, Legal);
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::CTPOP, VT, Custom);
setOperationAction(ISD::CTTZ, VT, Custom);
setOperationAction(ISD::ROTL, VT, Custom);
setOperationAction(ISD::ROTR, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
// The condition codes aren't legal in SSE/AVX and under AVX512 we use
// setcc all the way to isel and prefer SETGT in some isel patterns.
setCondCodeAction(ISD::SETLT, VT, Custom);
setCondCodeAction(ISD::SETLE, VT, Custom);
}
// Need to promote to 64-bit even though we have 32-bit masked instructions
// because the IR optimizers rearrange bitcasts around logic ops leaving
// too many variations to handle if we don't promote them.
setOperationPromotedToType(ISD::AND, MVT::v16i32, MVT::v8i64);
setOperationPromotedToType(ISD::OR, MVT::v16i32, MVT::v8i64);
setOperationPromotedToType(ISD::XOR, MVT::v16i32, MVT::v8i64);
if (Subtarget.hasDQI()) {
setOperationAction(ISD::SINT_TO_FP, MVT::v8i64, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v8i64, Legal);
setOperationAction(ISD::FP_TO_SINT, MVT::v8i64, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v8i64, Legal);
setOperationAction(ISD::MUL, MVT::v8i64, Legal);
}
if (Subtarget.hasCDI()) {
// NonVLX sub-targets extend 128/256 vectors to use the 512 version.
for (auto VT : { MVT::v16i32, MVT::v8i64} ) {
setOperationAction(ISD::CTLZ, VT, Legal);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
}
} // Subtarget.hasCDI()
if (Subtarget.hasVPOPCNTDQ()) {
for (auto VT : { MVT::v16i32, MVT::v8i64 })
setOperationAction(ISD::CTPOP, VT, Legal);
}
// Extract subvector is special because the value type
// (result) is 256-bit but the source is 512-bit wide.
// 128-bit was made Legal under AVX1.
for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64,
MVT::v8f32, MVT::v4f64 })
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
for (auto VT : { MVT::v16i32, MVT::v8i64, MVT::v16f32, MVT::v8f64 }) {
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VSELECT, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Legal);
setOperationAction(ISD::MLOAD, VT, Legal);
setOperationAction(ISD::MSTORE, VT, Legal);
setOperationAction(ISD::MGATHER, VT, Custom);
setOperationAction(ISD::MSCATTER, VT, Custom);
}
for (auto VT : { MVT::v64i8, MVT::v32i16, MVT::v16i32 }) {
setOperationPromotedToType(ISD::LOAD, VT, MVT::v8i64);
setOperationPromotedToType(ISD::SELECT, VT, MVT::v8i64);
}
// Need to custom split v32i16/v64i8 bitcasts.
if (!Subtarget.hasBWI()) {
setOperationAction(ISD::BITCAST, MVT::v32i16, Custom);
setOperationAction(ISD::BITCAST, MVT::v64i8, Custom);
}
}// has AVX-512
// This block controls legalization for operations that don't have
// pre-AVX512 equivalents. Without VLX we use 512-bit operations for
// narrower widths.
if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512()) {
// These operations are handled on non-VLX by artificially widening in
// isel patterns.
// TODO: Custom widen in lowering on non-VLX and drop the isel patterns?
setOperationAction(ISD::FP_TO_UINT, MVT::v8i32, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v2i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
for (auto VT : { MVT::v2i64, MVT::v4i64 }) {
setOperationAction(ISD::SMAX, VT, Legal);
setOperationAction(ISD::UMAX, VT, Legal);
setOperationAction(ISD::SMIN, VT, Legal);
setOperationAction(ISD::UMIN, VT, Legal);
setOperationAction(ISD::ABS, VT, Legal);
}
for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64 }) {
setOperationAction(ISD::ROTL, VT, Custom);
setOperationAction(ISD::ROTR, VT, Custom);
}
// Custom legalize 2x32 to get a little better code.
setOperationAction(ISD::MSCATTER, MVT::v2f32, Custom);
setOperationAction(ISD::MSCATTER, MVT::v2i32, Custom);
for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64,
MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64 })
setOperationAction(ISD::MSCATTER, VT, Custom);
if (Subtarget.hasDQI()) {
for (auto VT : { MVT::v2i64, MVT::v4i64 }) {
setOperationAction(ISD::SINT_TO_FP, VT, Legal);
setOperationAction(ISD::UINT_TO_FP, VT, Legal);
setOperationAction(ISD::FP_TO_SINT, VT, Legal);
setOperationAction(ISD::FP_TO_UINT, VT, Legal);
setOperationAction(ISD::MUL, VT, Legal);
}
}
if (Subtarget.hasCDI()) {
for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64 }) {
setOperationAction(ISD::CTLZ, VT, Legal);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
}
} // Subtarget.hasCDI()
if (Subtarget.hasVPOPCNTDQ()) {
for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64 })
setOperationAction(ISD::CTPOP, VT, Legal);
}
}
// This block control legalization of v32i1/v64i1 which are available with
// AVX512BW. 512-bit v32i16 and v64i8 vector legalization is controlled with
// useBWIRegs.
if (!Subtarget.useSoftFloat() && Subtarget.hasBWI()) {
addRegisterClass(MVT::v32i1, &X86::VK32RegClass);
addRegisterClass(MVT::v64i1, &X86::VK64RegClass);
for (auto VT : { MVT::v32i1, MVT::v64i1 }) {
setOperationAction(ISD::ADD, VT, Custom);
setOperationAction(ISD::SUB, VT, Custom);
setOperationAction(ISD::MUL, VT, Custom);
setOperationAction(ISD::VSELECT, VT, Expand);
setOperationAction(ISD::TRUNCATE, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::SELECT, VT, Custom);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
}
setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i1, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i1, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v32i1, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v64i1, Custom);
for (auto VT : { MVT::v16i1, MVT::v32i1 })
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
// Extends from v32i1 masks to 256-bit vectors.
setOperationAction(ISD::SIGN_EXTEND, MVT::v32i8, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v32i8, Custom);
setOperationAction(ISD::ANY_EXTEND, MVT::v32i8, Custom);
}
// This block controls legalization for v32i16 and v64i8. 512-bits can be
// disabled based on prefer-vector-width and required-vector-width function
// attributes.
if (!Subtarget.useSoftFloat() && Subtarget.useBWIRegs()) {
addRegisterClass(MVT::v32i16, &X86::VR512RegClass);
addRegisterClass(MVT::v64i8, &X86::VR512RegClass);
// Extends from v64i1 masks to 512-bit vectors.
setOperationAction(ISD::SIGN_EXTEND, MVT::v64i8, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v64i8, Custom);
setOperationAction(ISD::ANY_EXTEND, MVT::v64i8, Custom);
setOperationAction(ISD::MUL, MVT::v32i16, Legal);
setOperationAction(ISD::MUL, MVT::v64i8, Custom);
setOperationAction(ISD::MULHS, MVT::v32i16, Legal);
setOperationAction(ISD::MULHU, MVT::v32i16, Legal);
setOperationAction(ISD::MULHS, MVT::v64i8, Custom);
setOperationAction(ISD::MULHU, MVT::v64i8, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i16, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i8, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v32i16, Legal);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v64i8, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v32i16, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v64i8, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v32i16, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v64i8, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v32i16, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v32i16, Custom);
setOperationAction(ISD::ANY_EXTEND, MVT::v32i16, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v32i16, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v64i8, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v32i16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v64i8, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v32i8, Custom);
setOperationAction(ISD::BITREVERSE, MVT::v64i8, Custom);
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v32i16, Custom);
setTruncStoreAction(MVT::v32i16, MVT::v32i8, Legal);
for (auto VT : { MVT::v64i8, MVT::v32i16 }) {
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VSELECT, VT, Custom);
setOperationAction(ISD::ABS, VT, Legal);
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::MLOAD, VT, Legal);
setOperationAction(ISD::MSTORE, VT, Legal);
setOperationAction(ISD::CTPOP, VT, Custom);
setOperationAction(ISD::CTTZ, VT, Custom);
setOperationAction(ISD::CTLZ, VT, Custom);
setOperationAction(ISD::SMAX, VT, Legal);
setOperationAction(ISD::UMAX, VT, Legal);
setOperationAction(ISD::SMIN, VT, Legal);
setOperationAction(ISD::UMIN, VT, Legal);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationPromotedToType(ISD::AND, VT, MVT::v8i64);
setOperationPromotedToType(ISD::OR, VT, MVT::v8i64);
setOperationPromotedToType(ISD::XOR, VT, MVT::v8i64);
}
for (auto ExtType : {ISD::ZEXTLOAD, ISD::SEXTLOAD}) {
setLoadExtAction(ExtType, MVT::v32i16, MVT::v32i8, Legal);
}
if (Subtarget.hasBITALG()) {
for (auto VT : { MVT::v64i8, MVT::v32i16 })
setOperationAction(ISD::CTPOP, VT, Legal);
}
}
if (!Subtarget.useSoftFloat() && Subtarget.hasBWI()) {
for (auto VT : { MVT::v32i8, MVT::v16i8, MVT::v16i16, MVT::v8i16 }) {
setOperationAction(ISD::MLOAD, VT, Subtarget.hasVLX() ? Legal : Custom);
setOperationAction(ISD::MSTORE, VT, Subtarget.hasVLX() ? Legal : Custom);
}
// These operations are handled on non-VLX by artificially widening in
// isel patterns.
// TODO: Custom widen in lowering on non-VLX and drop the isel patterns?
if (Subtarget.hasBITALG()) {
for (auto VT : { MVT::v16i8, MVT::v32i8, MVT::v8i16, MVT::v16i16 })
setOperationAction(ISD::CTPOP, VT, Legal);
}
}
if (!Subtarget.useSoftFloat() && Subtarget.hasVLX()) {
setTruncStoreAction(MVT::v4i64, MVT::v4i8, Legal);
setTruncStoreAction(MVT::v4i64, MVT::v4i16, Legal);
setTruncStoreAction(MVT::v4i64, MVT::v4i32, Legal);
setTruncStoreAction(MVT::v8i32, MVT::v8i8, Legal);
setTruncStoreAction(MVT::v8i32, MVT::v8i16, Legal);
setTruncStoreAction(MVT::v2i64, MVT::v2i8, Legal);
setTruncStoreAction(MVT::v2i64, MVT::v2i16, Legal);
setTruncStoreAction(MVT::v2i64, MVT::v2i32, Legal);
setTruncStoreAction(MVT::v4i32, MVT::v4i8, Legal);
setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
if (Subtarget.hasDQI()) {
// Fast v2f32 SINT_TO_FP( v2i64 ) custom conversion.
// v2f32 UINT_TO_FP is already custom under SSE2.
setOperationAction(ISD::SINT_TO_FP, MVT::v2f32, Custom);
assert(isOperationCustom(ISD::UINT_TO_FP, MVT::v2f32) &&
"Unexpected operation action!");
// v2i64 FP_TO_S/UINT(v2f32) custom conversion.
setOperationAction(ISD::FP_TO_SINT, MVT::v2f32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::v2f32, Custom);
}
if (Subtarget.hasBWI()) {
setTruncStoreAction(MVT::v16i16, MVT::v16i8, Legal);
setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal);
}
}
// We want to custom lower some of our intrinsics.
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
if (!Subtarget.is64Bit()) {
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
}
// Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
// handle type legalization for these operations here.
//
// FIXME: We really should do custom legalization for addition and
// subtraction on x86-32 once PR3203 is fixed. We really can't do much better
// than generic legalization for 64-bit multiplication-with-overflow, though.
for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
if (VT == MVT::i64 && !Subtarget.is64Bit())
continue;
// Add/Sub/Mul with overflow operations are custom lowered.
setOperationAction(ISD::SADDO, VT, Custom);
setOperationAction(ISD::UADDO, VT, Custom);
setOperationAction(ISD::SSUBO, VT, Custom);
setOperationAction(ISD::USUBO, VT, Custom);
setOperationAction(ISD::SMULO, VT, Custom);
setOperationAction(ISD::UMULO, VT, Custom);
// Support carry in as value rather than glue.
setOperationAction(ISD::ADDCARRY, VT, Custom);
setOperationAction(ISD::SUBCARRY, VT, Custom);
setOperationAction(ISD::SETCCCARRY, VT, Custom);
}
if (!Subtarget.is64Bit()) {
// These libcalls are not available in 32-bit.
setLibcallName(RTLIB::SHL_I128, nullptr);
setLibcallName(RTLIB::SRL_I128, nullptr);
setLibcallName(RTLIB::SRA_I128, nullptr);
setLibcallName(RTLIB::MUL_I128, nullptr);
}
// Combine sin / cos into _sincos_stret if it is available.
if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
}
if (Subtarget.isTargetWin64()) {
setOperationAction(ISD::SDIV, MVT::i128, Custom);
setOperationAction(ISD::UDIV, MVT::i128, Custom);
setOperationAction(ISD::SREM, MVT::i128, Custom);
setOperationAction(ISD::UREM, MVT::i128, Custom);
setOperationAction(ISD::SDIVREM, MVT::i128, Custom);
setOperationAction(ISD::UDIVREM, MVT::i128, Custom);
}
// On 32 bit MSVC, `fmodf(f32)` is not defined - only `fmod(f64)`
// is. We should promote the value to 64-bits to solve this.
// This is what the CRT headers do - `fmodf` is an inline header
// function casting to f64 and calling `fmod`.
if (Subtarget.is32Bit() && (Subtarget.isTargetKnownWindowsMSVC() ||
Subtarget.isTargetWindowsItanium()))
for (ISD::NodeType Op :
{ISD::FCEIL, ISD::FCOS, ISD::FEXP, ISD::FFLOOR, ISD::FREM, ISD::FLOG,
ISD::FLOG10, ISD::FPOW, ISD::FSIN})
if (isOperationExpand(Op, MVT::f32))
setOperationAction(Op, MVT::f32, Promote);
// We have target-specific dag combine patterns for the following nodes:
setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
setTargetDAGCombine(ISD::INSERT_SUBVECTOR);
setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR);
setTargetDAGCombine(ISD::BITCAST);
setTargetDAGCombine(ISD::VSELECT);
setTargetDAGCombine(ISD::SELECT);
setTargetDAGCombine(ISD::SHL);
setTargetDAGCombine(ISD::SRA);
setTargetDAGCombine(ISD::SRL);
setTargetDAGCombine(ISD::OR);
setTargetDAGCombine(ISD::AND);
setTargetDAGCombine(ISD::ADD);
setTargetDAGCombine(ISD::FADD);
setTargetDAGCombine(ISD::FSUB);
setTargetDAGCombine(ISD::FNEG);
setTargetDAGCombine(ISD::FMA);
setTargetDAGCombine(ISD::FMINNUM);
setTargetDAGCombine(ISD::FMAXNUM);
setTargetDAGCombine(ISD::SUB);
setTargetDAGCombine(ISD::LOAD);
setTargetDAGCombine(ISD::MLOAD);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::MSTORE);
setTargetDAGCombine(ISD::TRUNCATE);
setTargetDAGCombine(ISD::ZERO_EXTEND);
setTargetDAGCombine(ISD::ANY_EXTEND);
setTargetDAGCombine(ISD::SIGN_EXTEND);
setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
setTargetDAGCombine(ISD::SIGN_EXTEND_VECTOR_INREG);
setTargetDAGCombine(ISD::ZERO_EXTEND_VECTOR_INREG);
setTargetDAGCombine(ISD::SINT_TO_FP);
setTargetDAGCombine(ISD::UINT_TO_FP);
setTargetDAGCombine(ISD::SETCC);
setTargetDAGCombine(ISD::MUL);
setTargetDAGCombine(ISD::XOR);
setTargetDAGCombine(ISD::MSCATTER);
setTargetDAGCombine(ISD::MGATHER);
computeRegisterProperties(Subtarget.getRegisterInfo());
MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
MaxStoresPerMemsetOptSize = 8;
MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
MaxStoresPerMemcpyOptSize = 4;
MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
MaxStoresPerMemmoveOptSize = 4;
// TODO: These control memcmp expansion in CGP and could be raised higher, but
// that needs to benchmarked and balanced with the potential use of vector
// load/store types (PR33329, PR33914).
MaxLoadsPerMemcmp = 2;
MaxLoadsPerMemcmpOptSize = 2;
// Set loop alignment to 2^ExperimentalPrefLoopAlignment bytes (default: 2^4).
setPrefLoopAlignment(ExperimentalPrefLoopAlignment);
// An out-of-order CPU can speculatively execute past a predictable branch,
// but a conditional move could be stalled by an expensive earlier operation.
PredictableSelectIsExpensive = Subtarget.getSchedModel().isOutOfOrder();
EnableExtLdPromotion = true;
setPrefFunctionAlignment(4); // 2^4 bytes.
verifyIntrinsicTables();
}
// This has so far only been implemented for 64-bit MachO.
bool X86TargetLowering::useLoadStackGuardNode() const {
return Subtarget.isTargetMachO() && Subtarget.is64Bit();
}
bool X86TargetLowering::useStackGuardXorFP() const {
// Currently only MSVC CRTs XOR the frame pointer into the stack guard value.
return Subtarget.getTargetTriple().isOSMSVCRT();
}
SDValue X86TargetLowering::emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
const SDLoc &DL) const {
EVT PtrTy = getPointerTy(DAG.getDataLayout());
unsigned XorOp = Subtarget.is64Bit() ? X86::XOR64_FP : X86::XOR32_FP;
MachineSDNode *Node = DAG.getMachineNode(XorOp, DL, PtrTy, Val);
return SDValue(Node, 0);
}
TargetLoweringBase::LegalizeTypeAction
X86TargetLowering::getPreferredVectorAction(EVT VT) const {
if (VT == MVT::v32i1 && Subtarget.hasAVX512() && !Subtarget.hasBWI())
return TypeSplitVector;
if (ExperimentalVectorWideningLegalization &&
VT.getVectorNumElements() != 1 &&
VT.getVectorElementType().getSimpleVT() != MVT::i1)
return TypeWidenVector;
return TargetLoweringBase::getPreferredVectorAction(VT);
}
MVT X86TargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
CallingConv::ID CC,
EVT VT) const {
if (VT == MVT::v32i1 && Subtarget.hasAVX512() && !Subtarget.hasBWI())
return MVT::v32i8;
return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
}
unsigned X86TargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
CallingConv::ID CC,
EVT VT) const {
if (VT == MVT::v32i1 && Subtarget.hasAVX512() && !Subtarget.hasBWI())
return 1;
return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
}
EVT X86TargetLowering::getSetCCResultType(const DataLayout &DL,
LLVMContext& Context,
EVT VT) const {
if (!VT.isVector())
return MVT::i8;
if (Subtarget.hasAVX512()) {
const unsigned NumElts = VT.getVectorNumElements();
// Figure out what this type will be legalized to.
EVT LegalVT = VT;
while (getTypeAction(Context, LegalVT) != TypeLegal)
LegalVT = getTypeToTransformTo(Context, LegalVT);
// If we got a 512-bit vector then we'll definitely have a vXi1 compare.
if (LegalVT.getSimpleVT().is512BitVector())
return EVT::getVectorVT(Context, MVT::i1, NumElts);
if (LegalVT.getSimpleVT().isVector() && Subtarget.hasVLX()) {
// If we legalized to less than a 512-bit vector, then we will use a vXi1
// compare for vXi32/vXi64 for sure. If we have BWI we will also support
// vXi16/vXi8.
MVT EltVT = LegalVT.getSimpleVT().getVectorElementType();
if (Subtarget.hasBWI() || EltVT.getSizeInBits() >= 32)
return EVT::getVectorVT(Context, MVT::i1, NumElts);
}
}
return VT.changeVectorElementTypeToInteger();
}
/// Helper for getByValTypeAlignment to determine
/// the desired ByVal argument alignment.
static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
if (MaxAlign == 16)
return;
if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
if (VTy->getBitWidth() == 128)
MaxAlign = 16;
} else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
unsigned EltAlign = 0;
getMaxByValAlign(ATy->getElementType(), EltAlign);
if (EltAlign > MaxAlign)
MaxAlign = EltAlign;
} else if (StructType *STy = dyn_cast<StructType>(Ty)) {
for (auto *EltTy : STy->elements()) {
unsigned EltAlign = 0;
getMaxByValAlign(EltTy, EltAlign);
if (EltAlign > MaxAlign)
MaxAlign = EltAlign;
if (MaxAlign == 16)
break;
}
}
}
/// Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area. For X86, aggregates
/// that contain SSE vectors are placed at 16-byte boundaries while the rest
/// are at 4-byte boundaries.
unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty,
const DataLayout &DL) const {
if (Subtarget.is64Bit()) {
// Max of 8 and alignment of type.
unsigned TyAlign = DL.getABITypeAlignment(Ty);
if (TyAlign > 8)
return TyAlign;
return 8;
}
unsigned Align = 4;
if (Subtarget.hasSSE1())
getMaxByValAlign(Ty, Align);
return Align;
}
/// Returns the target specific optimal type for load
/// and store operations as a result of memset, memcpy, and memmove
/// lowering. If DstAlign is zero that means it's safe to destination
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
/// means there isn't a need to check it against alignment requirement,
/// probably because the source does not need to be loaded. If 'IsMemset' is
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
/// source is constant so it does not need to be loaded.
/// It returns EVT::Other if the type should be determined using generic
/// target-independent logic.
EVT
X86TargetLowering::getOptimalMemOpType(uint64_t Size,
unsigned DstAlign, unsigned SrcAlign,
bool IsMemset, bool ZeroMemset,
bool MemcpyStrSrc,
MachineFunction &MF) const {
const Function &F = MF.getFunction();
if (!F.hasFnAttribute(Attribute::NoImplicitFloat)) {
if (Size >= 16 &&
(!Subtarget.isUnalignedMem16Slow() ||
((DstAlign == 0 || DstAlign >= 16) &&
(SrcAlign == 0 || SrcAlign >= 16)))) {
// FIXME: Check if unaligned 32-byte accesses are slow.
if (Size >= 32 && Subtarget.hasAVX()) {
// Although this isn't a well-supported type for AVX1, we'll let
// legalization and shuffle lowering produce the optimal codegen. If we
// choose an optimal type with a vector element larger than a byte,
// getMemsetStores() may create an intermediate splat (using an integer
// multiply) before we splat as a vector.
return MVT::v32i8;
}
if (Subtarget.hasSSE2())
return MVT::v16i8;
// TODO: Can SSE1 handle a byte vector?
if (Subtarget.hasSSE1())
return MVT::v4f32;
} else if ((!IsMemset || ZeroMemset) && !MemcpyStrSrc && Size >= 8 &&
!Subtarget.is64Bit() && Subtarget.hasSSE2()) {
// Do not use f64 to lower memcpy if source is string constant. It's
// better to use i32 to avoid the loads.
// Also, do not use f64 to lower memset unless this is a memset of zeros.
// The gymnastics of splatting a byte value into an XMM register and then
// only using 8-byte stores (because this is a CPU with slow unaligned
// 16-byte accesses) makes that a loser.
return MVT::f64;
}
}
// This is a compromise. If we reach here, unaligned accesses may be slow on
// this target. However, creating smaller, aligned accesses could be even
// slower and would certainly be a lot more code.
if (Subtarget.is64Bit() && Size >= 8)
return MVT::i64;
return MVT::i32;
}
bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
if (VT == MVT::f32)
return X86ScalarSSEf32;
else if (VT == MVT::f64)
return X86ScalarSSEf64;
return true;
}
bool
X86TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
unsigned,
unsigned,
bool *Fast) const {
if (Fast) {
switch (VT.getSizeInBits()) {
default:
// 8-byte and under are always assumed to be fast.
*Fast = true;
break;
case 128:
*Fast = !Subtarget.isUnalignedMem16Slow();
break;
case 256:
*Fast = !Subtarget.isUnalignedMem32Slow();
break;
// TODO: What about AVX-512 (512-bit) accesses?
}
}
// Misaligned accesses of any size are always allowed.
return true;
}
/// Return the entry encoding for a jump table in the
/// current function. The returned value is a member of the
/// MachineJumpTableInfo::JTEntryKind enum.
unsigned X86TargetLowering::getJumpTableEncoding() const {
// In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
// symbol.
if (isPositionIndependent() && Subtarget.isPICStyleGOT())
return MachineJumpTableInfo::EK_Custom32;
// Otherwise, use the normal jump table encoding heuristics.
return TargetLowering::getJumpTableEncoding();
}
bool X86TargetLowering::useSoftFloat() const {
return Subtarget.useSoftFloat();
}
void X86TargetLowering::markLibCallAttributes(MachineFunction *MF, unsigned CC,
ArgListTy &Args) const {
// Only relabel X86-32 for C / Stdcall CCs.
if (Subtarget.is64Bit())
return;
if (CC != CallingConv::C && CC != CallingConv::X86_StdCall)
return;
unsigned ParamRegs = 0;
if (auto *M = MF->getFunction().getParent())
ParamRegs = M->getNumberRegisterParameters();
// Mark the first N int arguments as having reg
for (unsigned Idx = 0; Idx < Args.size(); Idx++) {
Type *T = Args[Idx].Ty;
if (T->isIntOrPtrTy())
if (MF->getDataLayout().getTypeAllocSize(T) <= 8) {
unsigned numRegs = 1;
if (MF->getDataLayout().getTypeAllocSize(T) > 4)
numRegs = 2;
if (ParamRegs < numRegs)
return;
ParamRegs -= numRegs;
Args[Idx].IsInReg = true;
}
}
}
const MCExpr *
X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
const MachineBasicBlock *MBB,
unsigned uid,MCContext &Ctx) const{
assert(isPositionIndependent() && Subtarget.isPICStyleGOT());
// In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
// entries.
return MCSymbolRefExpr::create(MBB->getSymbol(),
MCSymbolRefExpr::VK_GOTOFF, Ctx);
}
/// Returns relocation base for the given PIC jumptable.
SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
SelectionDAG &DAG) const {
if (!Subtarget.is64Bit())
// This doesn't have SDLoc associated with it, but is not really the
// same as a Register.
return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(),
getPointerTy(DAG.getDataLayout()));
return Table;
}
/// This returns the relocation base for the given PIC jumptable,
/// the same as getPICJumpTableRelocBase, but as an MCExpr.
const MCExpr *X86TargetLowering::
getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
MCContext &Ctx) const {
// X86-64 uses RIP relative addressing based on the jump table label.
if (Subtarget.isPICStyleRIPRel())
return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
// Otherwise, the reference is relative to the PIC base.
return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
}
std::pair<const TargetRegisterClass *, uint8_t>
X86TargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
MVT VT) const {
const TargetRegisterClass *RRC = nullptr;
uint8_t Cost = 1;
switch (VT.SimpleTy) {
default:
return TargetLowering::findRepresentativeClass(TRI, VT);
case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
RRC = Subtarget.is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass;
break;
case MVT::x86mmx:
RRC = &X86::VR64RegClass;
break;
case MVT::f32: case MVT::f64:
case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
case MVT::v4f32: case MVT::v2f64:
case MVT::v32i8: case MVT::v16i16: case MVT::v8i32: case MVT::v4i64:
case MVT::v8f32: case MVT::v4f64:
case MVT::v64i8: case MVT::v32i16: case MVT::v16i32: case MVT::v8i64:
case MVT::v16f32: case MVT::v8f64:
RRC = &X86::VR128XRegClass;
break;
}
return std::make_pair(RRC, Cost);
}
unsigned X86TargetLowering::getAddressSpace() const {
if (Subtarget.is64Bit())
return (getTargetMachine().getCodeModel() == CodeModel::Kernel) ? 256 : 257;
return 256;
}
static bool hasStackGuardSlotTLS(const Triple &TargetTriple) {
return TargetTriple.isOSGlibc() || TargetTriple.isOSFuchsia() ||
(TargetTriple.isAndroid() && !TargetTriple.isAndroidVersionLT(17));
}
static Constant* SegmentOffset(IRBuilder<> &IRB,
unsigned Offset, unsigned AddressSpace) {
return ConstantExpr::getIntToPtr(
ConstantInt::get(Type::getInt32Ty(IRB.getContext()), Offset),
Type::getInt8PtrTy(IRB.getContext())->getPointerTo(AddressSpace));
}
Value *X86TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
// glibc, bionic, and Fuchsia have a special slot for the stack guard in
// tcbhead_t; use it instead of the usual global variable (see
// sysdeps/{i386,x86_64}/nptl/tls.h)
if (hasStackGuardSlotTLS(Subtarget.getTargetTriple())) {
if (Subtarget.isTargetFuchsia()) {
// <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
return SegmentOffset(IRB, 0x10, getAddressSpace());
} else {
// %fs:0x28, unless we're using a Kernel code model, in which case
// it's %gs:0x28. gs:0x14 on i386.
unsigned Offset = (Subtarget.is64Bit()) ? 0x28 : 0x14;
return SegmentOffset(IRB, Offset, getAddressSpace());
}
}
return TargetLowering::getIRStackGuard(IRB);
}
void X86TargetLowering::insertSSPDeclarations(Module &M) const {
// MSVC CRT provides functionalities for stack protection.
if (Subtarget.getTargetTriple().isWindowsMSVCEnvironment() ||
Subtarget.getTargetTriple().isWindowsItaniumEnvironment()) {
// MSVC CRT has a global variable holding security cookie.
M.getOrInsertGlobal("__security_cookie",
Type::getInt8PtrTy(M.getContext()));
// MSVC CRT has a function to validate security cookie.
auto *SecurityCheckCookie = cast<Function>(
M.getOrInsertFunction("__security_check_cookie",
Type::getVoidTy(M.getContext()),
Type::getInt8PtrTy(M.getContext())));
SecurityCheckCookie->setCallingConv(CallingConv::X86_FastCall);
SecurityCheckCookie->addAttribute(1, Attribute::AttrKind::InReg);
return;
}
// glibc, bionic, and Fuchsia have a special slot for the stack guard.
if (hasStackGuardSlotTLS(Subtarget.getTargetTriple()))
return;
TargetLowering::insertSSPDeclarations(M);
}
Value *X86TargetLowering::getSDagStackGuard(const Module &M) const {
// MSVC CRT has a global variable holding security cookie.
if (Subtarget.getTargetTriple().isWindowsMSVCEnvironment() ||
Subtarget.getTargetTriple().isWindowsItaniumEnvironment()) {
return M.getGlobalVariable("__security_cookie");
}
return TargetLowering::getSDagStackGuard(M);
}
Value *X86TargetLowering::getSSPStackGuardCheck(const Module &M) const {
// MSVC CRT has a function to validate security cookie.
if (Subtarget.getTargetTriple().isWindowsMSVCEnvironment() ||
Subtarget.getTargetTriple().isWindowsItaniumEnvironment()) {
return M.getFunction("__security_check_cookie");
}
return TargetLowering::getSSPStackGuardCheck(M);
}
Value *X86TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
if (Subtarget.getTargetTriple().isOSContiki())
return getDefaultSafeStackPointerLocation(IRB, false);
// Android provides a fixed TLS slot for the SafeStack pointer. See the
// definition of TLS_SLOT_SAFESTACK in
// https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
if (Subtarget.isTargetAndroid()) {
// %fs:0x48, unless we're using a Kernel code model, in which case it's %gs:
// %gs:0x24 on i386
unsigned Offset = (Subtarget.is64Bit()) ? 0x48 : 0x24;
return SegmentOffset(IRB, Offset, getAddressSpace());
}
// Fuchsia is similar.
if (Subtarget.isTargetFuchsia()) {
// <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
return SegmentOffset(IRB, 0x18, getAddressSpace());
}
return TargetLowering::getSafeStackPointerLocation(IRB);
}
bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
unsigned DestAS) const {
assert(SrcAS != DestAS && "Expected different address spaces!");
return SrcAS < 256 && DestAS < 256;
}
//===----------------------------------------------------------------------===//
// Return Value Calling Convention Implementation
//===----------------------------------------------------------------------===//
#include "X86GenCallingConv.inc"
bool X86TargetLowering::CanLowerReturn(
CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, RetCC_X86);
}
const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const {
static const MCPhysReg ScratchRegs[] = { X86::R11, 0 };
return ScratchRegs;
}
/// Lowers masks values (v*i1) to the local register values
/// \returns DAG node after lowering to register type
static SDValue lowerMasksToReg(const SDValue &ValArg, const EVT &ValLoc,
const SDLoc &Dl, SelectionDAG &DAG) {
EVT ValVT = ValArg.getValueType();
if (ValVT == MVT::v1i1)
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, Dl, ValLoc, ValArg,
DAG.getIntPtrConstant(0, Dl));
if ((ValVT == MVT::v8i1 && (ValLoc == MVT::i8 || ValLoc == MVT::i32)) ||
(ValVT == MVT::v16i1 && (ValLoc == MVT::i16 || ValLoc == MVT::i32))) {
// Two stage lowering might be required
// bitcast: v8i1 -> i8 / v16i1 -> i16
// anyextend: i8 -> i32 / i16 -> i32
EVT TempValLoc = ValVT == MVT::v8i1 ? MVT::i8 : MVT::i16;
SDValue ValToCopy = DAG.getBitcast(TempValLoc, ValArg);
if (ValLoc == MVT::i32)
ValToCopy = DAG.getNode(ISD::ANY_EXTEND, Dl, ValLoc, ValToCopy);
return ValToCopy;
}
if ((ValVT == MVT::v32i1 && ValLoc == MVT::i32) ||
(ValVT == MVT::v64i1 && ValLoc == MVT::i64)) {
// One stage lowering is required
// bitcast: v32i1 -> i32 / v64i1 -> i64
return DAG.getBitcast(ValLoc, ValArg);
}
return DAG.getNode(ISD::ANY_EXTEND, Dl, ValLoc, ValArg);
}
/// Breaks v64i1 value into two registers and adds the new node to the DAG
static void Passv64i1ArgInRegs(
const SDLoc &Dl, SelectionDAG &DAG, SDValue Chain, SDValue &Arg,
SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, CCValAssign &VA,
CCValAssign &NextVA, const X86Subtarget &Subtarget) {
assert(Subtarget.hasBWI() && "Expected AVX512BW target!");
assert(Subtarget.is32Bit() && "Expecting 32 bit target");
assert(Arg.getValueType() == MVT::i64 && "Expecting 64 bit value");
assert(VA.isRegLoc() && NextVA.isRegLoc() &&
"The value should reside in two registers");
// Before splitting the value we cast it to i64
Arg = DAG.getBitcast(MVT::i64, Arg);
// Splitting the value into two i32 types
SDValue Lo, Hi;
Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i32, Arg,
DAG.getConstant(0, Dl, MVT::i32));
Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i32, Arg,
DAG.getConstant(1, Dl, MVT::i32));
// Attach the two i32 types into corresponding registers
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Lo));
RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Hi));
}
SDValue
X86TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &dl, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
// In some cases we need to disable registers from the default CSR list.
// For example, when they are used for argument passing.
bool ShouldDisableCalleeSavedRegister =
CallConv == CallingConv::X86_RegCall ||
MF.getFunction().hasFnAttribute("no_caller_saved_registers");
if (CallConv == CallingConv::X86_INTR && !Outs.empty())
report_fatal_error("X86 interrupts may not return any value");
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext());
CCInfo.AnalyzeReturn(Outs, RetCC_X86);
SDValue Flag;
SmallVector<SDValue, 6> RetOps;
RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
// Operand #1 = Bytes To Pop
RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), dl,
MVT::i32));
// Copy the result values into the output registers.
for (unsigned I = 0, OutsIndex = 0, E = RVLocs.size(); I != E;
++I, ++OutsIndex) {
CCValAssign &VA = RVLocs[I];
assert(VA.isRegLoc() && "Can only return in registers!");
// Add the register to the CalleeSaveDisableRegs list.
if (ShouldDisableCalleeSavedRegister)
MF.getRegInfo().disableCalleeSavedRegister(VA.getLocReg());
SDValue ValToCopy = OutVals[OutsIndex];
EVT ValVT = ValToCopy.getValueType();
// Promote values to the appropriate types.
if (VA.getLocInfo() == CCValAssign::SExt)
ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
else if (VA.getLocInfo() == CCValAssign::ZExt)
ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
else if (VA.getLocInfo() == CCValAssign::AExt) {
if (ValVT.isVector() && ValVT.getVectorElementType() == MVT::i1)
ValToCopy = lowerMasksToReg(ValToCopy, VA.getLocVT(), dl, DAG);
else
ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
}
else if (VA.getLocInfo() == CCValAssign::BCvt)
ValToCopy = DAG.getBitcast(VA.getLocVT(), ValToCopy);
assert(VA.getLocInfo() != CCValAssign::FPExt &&
"Unexpected FP-extend for return value.");
// If this is x86-64, and we disabled SSE, we can't return FP values,
// or SSE or MMX vectors.
if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
(Subtarget.is64Bit() && !Subtarget.hasSSE1())) {
errorUnsupported(DAG, dl, "SSE register return with SSE disabled");
VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts.
} else if (ValVT == MVT::f64 &&
(Subtarget.is64Bit() && !Subtarget.hasSSE2())) {
// Likewise we can't return F64 values with SSE1 only. gcc does so, but
// llvm-gcc has never done it right and no one has noticed, so this
// should be OK for now.
errorUnsupported(DAG, dl, "SSE2 register return with SSE2 disabled");
VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts.
}
// Returns in ST0/ST1 are handled specially: these are pushed as operands to
// the RET instruction and handled by the FP Stackifier.
if (VA.getLocReg() == X86::FP0 ||
VA.getLocReg() == X86::FP1) {
// If this is a copy from an xmm register to ST(0), use an FPExtend to
// change the value to the FP stack register class.
if (isScalarFPTypeInSSEReg(VA.getValVT()))
ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
RetOps.push_back(ValToCopy);
// Don't emit a copytoreg.
continue;
}
// 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
// which is returned in RAX / RDX.
if (Subtarget.is64Bit()) {
if (ValVT == MVT::x86mmx) {
if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
ValToCopy = DAG.getBitcast(MVT::i64, ValToCopy);
ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
ValToCopy);
// If we don't have SSE2 available, convert to v4f32 so the generated
// register is legal.
if (!Subtarget.hasSSE2())
ValToCopy = DAG.getBitcast(MVT::v4f32, ValToCopy);
}
}
}
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
if (VA.needsCustom()) {
assert(VA.getValVT() == MVT::v64i1 &&
"Currently the only custom case is when we split v64i1 to 2 regs");
Passv64i1ArgInRegs(dl, DAG, Chain, ValToCopy, RegsToPass, VA, RVLocs[++I],
Subtarget);
assert(2 == RegsToPass.size() &&
"Expecting two registers after Pass64BitArgInRegs");
// Add the second register to the CalleeSaveDisableRegs list.
if (ShouldDisableCalleeSavedRegister)
MF.getRegInfo().disableCalleeSavedRegister(RVLocs[I].getLocReg());
} else {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), ValToCopy));
}
// Add nodes to the DAG and add the values into the RetOps list
for (auto &Reg : RegsToPass) {
Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
}
}
// Swift calling convention does not require we copy the sret argument
// into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
// All x86 ABIs require that for returning structs by value we copy
// the sret argument into %rax/%eax (depending on ABI) for the return.
// We saved the argument into a virtual register in the entry block,
// so now we copy the value out and into %rax/%eax.
//
// Checking Function.hasStructRetAttr() here is insufficient because the IR
// may not have an explicit sret argument. If FuncInfo.CanLowerReturn is
// false, then an sret argument may be implicitly inserted in the SelDAG. In
// either case FuncInfo->setSRetReturnReg() will have been called.
if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) {
// When we have both sret and another return value, we should use the
// original Chain stored in RetOps[0], instead of the current Chain updated
// in the above loop. If we only have sret, RetOps[0] equals to Chain.
// For the case of sret and another return value, we have
// Chain_0 at the function entry
// Chain_1 = getCopyToReg(Chain_0) in the above loop
// If we use Chain_1 in getCopyFromReg, we will have
// Val = getCopyFromReg(Chain_1)
// Chain_2 = getCopyToReg(Chain_1, Val) from below
// getCopyToReg(Chain_0) will be glued together with
// getCopyToReg(Chain_1, Val) into Unit A, getCopyFromReg(Chain_1) will be
// in Unit B, and we will have cyclic dependency between Unit A and Unit B:
// Data dependency from Unit B to Unit A due to usage of Val in
// getCopyToReg(Chain_1, Val)
// Chain dependency from Unit A to Unit B
// So here, we use RetOps[0] (i.e Chain_0) for getCopyFromReg.
SDValue Val = DAG.getCopyFromReg(RetOps[0], dl, SRetReg,
getPointerTy(MF.getDataLayout()));
unsigned RetValReg
= (Subtarget.is64Bit() && !Subtarget.isTarget64BitILP32()) ?
X86::RAX : X86::EAX;
Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
Flag = Chain.getValue(1);
// RAX/EAX now acts like a return value.
RetOps.push_back(
DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));
// Add the returned register to the CalleeSaveDisableRegs list.
if (ShouldDisableCalleeSavedRegister)
MF.getRegInfo().disableCalleeSavedRegister(RetValReg);
}
const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
const MCPhysReg *I =
TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
if (I) {
for (; *I; ++I) {
if (X86::GR64RegClass.contains(*I))
RetOps.push_back(DAG.getRegister(*I, MVT::i64));
else
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
}
}
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
X86ISD::NodeType opcode = X86ISD::RET_FLAG;
if (CallConv == CallingConv::X86_INTR)
opcode = X86ISD::IRET;
return DAG.getNode(opcode, dl, MVT::Other, RetOps);
}
bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
if (N->getNumValues() != 1 || !N->hasNUsesOfValue(1, 0))
return false;
SDValue TCChain = Chain;
SDNode *Copy = *N->use_begin();
if (Copy->getOpcode() == ISD::CopyToReg) {
// If the copy has a glue operand, we conservatively assume it isn't safe to
// perform a tail call.
if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
return false;
TCChain = Copy->getOperand(0);
} else if (Copy->getOpcode() != ISD::FP_EXTEND)
return false;
bool HasRet = false;
for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
UI != UE; ++UI) {
if (UI->getOpcode() != X86ISD::RET_FLAG)
return false;
// If we are returning more than one value, we can definitely
// not make a tail call see PR19530
if (UI->getNumOperands() > 4)
return false;
if (UI->getNumOperands() == 4 &&
UI->getOperand(UI->getNumOperands()-1).getValueType() != MVT::Glue)
return false;
HasRet = true;
}
if (!HasRet)
return false;
Chain = TCChain;
return true;
}
EVT X86TargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
ISD::NodeType ExtendKind) const {
MVT ReturnMVT = MVT::i32;
bool Darwin = Subtarget.getTargetTriple().isOSDarwin();
if (VT == MVT::i1 || (!Darwin && (VT == MVT::i8 || VT == MVT::i16))) {
// The ABI does not require i1, i8 or i16 to be extended.
//
// On Darwin, there is code in the wild relying on Clang's old behaviour of
// always extending i8/i16 return values, so keep doing that for now.
// (PR26665).
ReturnMVT = MVT::i8;
}
EVT MinVT = getRegisterType(Context, ReturnMVT);
return VT.bitsLT(MinVT) ? MinVT : VT;
}
/// Reads two 32 bit registers and creates a 64 bit mask value.
/// \param VA The current 32 bit value that need to be assigned.
/// \param NextVA The next 32 bit value that need to be assigned.
/// \param Root The parent DAG node.
/// \param [in,out] InFlag Represents SDvalue in the parent DAG node for
/// glue purposes. In the case the DAG is already using
/// physical register instead of virtual, we should glue
/// our new SDValue to InFlag SDvalue.
/// \return a new SDvalue of size 64bit.
static SDValue getv64i1Argument(CCValAssign &VA, CCValAssign &NextVA,
SDValue &Root, SelectionDAG &DAG,
const SDLoc &Dl, const X86Subtarget &Subtarget,
SDValue *InFlag = nullptr) {
assert((Subtarget.hasBWI()) && "Expected AVX512BW target!");
assert(Subtarget.is32Bit() && "Expecting 32 bit target");
assert(VA.getValVT() == MVT::v64i1 &&
"Expecting first location of 64 bit width type");
assert(NextVA.getValVT() == VA.getValVT() &&
"The locations should have the same type");
assert(VA.isRegLoc() && NextVA.isRegLoc() &&
"The values should reside in two registers");
SDValue Lo, Hi;
unsigned Reg;
SDValue ArgValueLo, ArgValueHi;
MachineFunction &MF = DAG.getMachineFunction();
const TargetRegisterClass *RC = &X86::GR32RegClass;
// Read a 32 bit value from the registers.
if (nullptr == InFlag) {
// When no physical register is present,
// create an intermediate virtual register.
Reg = MF.addLiveIn(VA.getLocReg(), RC);
ArgValueLo = DAG.getCopyFromReg(Root, Dl, Reg, MVT::i32);
Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
ArgValueHi = DAG.getCopyFromReg(Root, Dl, Reg, MVT::i32);
} else {
// When a physical register is available read the value from it and glue
// the reads together.
ArgValueLo =
DAG.getCopyFromReg(Root, Dl, VA.getLocReg(), MVT::i32, *InFlag);
*InFlag = ArgValueLo.getValue(2);
ArgValueHi =
DAG.getCopyFromReg(Root, Dl, NextVA.getLocReg(), MVT::i32, *InFlag);
*InFlag = ArgValueHi.getValue(2);
}
// Convert the i32 type into v32i1 type.
Lo = DAG.getBitcast(MVT::v32i1, ArgValueLo);
// Convert the i32 type into v32i1 type.
Hi = DAG.getBitcast(MVT::v32i1, ArgValueHi);
// Concatenate the two values together.
return DAG.getNode(ISD::CONCAT_VECTORS, Dl, MVT::v64i1, Lo, Hi);
}
/// The function will lower a register of various sizes (8/16/32/64)
/// to a mask value of the expected size (v8i1/v16i1/v32i1/v64i1)
/// \returns a DAG node contains the operand after lowering to mask type.
static SDValue lowerRegToMasks(const SDValue &ValArg, const EVT &ValVT,
const EVT &ValLoc, const SDLoc &Dl,
SelectionDAG &DAG) {
SDValue ValReturned = ValArg;
if (ValVT == MVT::v1i1)
return DAG.getNode(ISD::SCALAR_TO_VECTOR, Dl, MVT::v1i1, ValReturned);
if (ValVT == MVT::v64i1) {
// In 32 bit machine, this case is handled by getv64i1Argument
assert(ValLoc == MVT::i64 && "Expecting only i64 locations");
// In 64 bit machine, There is no need to truncate the value only bitcast
} else {
MVT maskLen;
switch (ValVT.getSimpleVT().SimpleTy) {
case MVT::v8i1:
maskLen = MVT::i8;
break;
case MVT::v16i1:
maskLen = MVT::i16;
break;
case MVT::v32i1:
maskLen = MVT::i32;
break;
default:
llvm_unreachable("Expecting a vector of i1 types");
}
ValReturned = DAG.getNode(ISD::TRUNCATE, Dl, maskLen, ValReturned);
}
return DAG.getBitcast(ValVT, ValReturned);
}
/// Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
///
SDValue X86TargetLowering::LowerCallResult(
SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
uint32_t *RegMask) const {
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
bool Is64Bit = Subtarget.is64Bit();
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
// Copy all of the result registers out of their specified physreg.
for (unsigned I = 0, InsIndex = 0, E = RVLocs.size(); I != E;
++I, ++InsIndex) {
CCValAssign &VA = RVLocs[I];
EVT CopyVT = VA.getLocVT();
// In some calling conventions we need to remove the used registers
// from the register mask.
if (RegMask) {
for (MCSubRegIterator SubRegs(VA.getLocReg(), TRI, /*IncludeSelf=*/true);
SubRegs.isValid(); ++SubRegs)
RegMask[*SubRegs / 32] &= ~(1u << (*SubRegs % 32));
}
// If this is x86-64, and we disabled SSE, we can't return FP values
if ((CopyVT == MVT::f32 || CopyVT == MVT::f64 || CopyVT == MVT::f128) &&
((Is64Bit || Ins[InsIndex].Flags.isInReg()) && !Subtarget.hasSSE1())) {
errorUnsupported(DAG, dl, "SSE register return with SSE disabled");
VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts.
}
// If we prefer to use the value in xmm registers, copy it out as f80 and
// use a truncate to move it from fp stack reg to xmm reg.
bool RoundAfterCopy = false;
if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
isScalarFPTypeInSSEReg(VA.getValVT())) {
if (!Subtarget.hasX87())
report_fatal_error("X87 register return with X87 disabled");
CopyVT = MVT::f80;
RoundAfterCopy = (CopyVT != VA.getLocVT());
}
SDValue Val;
if (VA.needsCustom()) {
assert(VA.getValVT() == MVT::v64i1 &&
"Currently the only custom case is when we split v64i1 to 2 regs");
Val =
getv64i1Argument(VA, RVLocs[++I], Chain, DAG, dl, Subtarget, &InFlag);
} else {
Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), CopyVT, InFlag)
.getValue(1);
Val = Chain.getValue(0);
InFlag = Chain.getValue(2);
}
if (RoundAfterCopy)
Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
// This truncation won't change the value.
DAG.getIntPtrConstant(1, dl));
if (VA.isExtInLoc() && (VA.getValVT().getScalarType() == MVT::i1)) {
if (VA.getValVT().isVector() &&
((VA.getLocVT() == MVT::i64) || (VA.getLocVT() == MVT::i32) ||
(VA.getLocVT() == MVT::i16) || (VA.getLocVT() == MVT::i8))) {
// promoting a mask type (v*i1) into a register of type i64/i32/i16/i8
Val = lowerRegToMasks(Val, VA.getValVT(), VA.getLocVT(), dl, DAG);
} else
Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
}
InVals.push_back(Val);
}
return Chain;
}
//===----------------------------------------------------------------------===//
// C & StdCall & Fast Calling Convention implementation
//===----------------------------------------------------------------------===//
// StdCall calling convention seems to be standard for many Windows' API
// routines and around. It differs from C calling convention just a little:
// callee should clean up the stack, not caller. Symbols should be also
// decorated in some fancy way :) It doesn't support any vector arguments.
// For info on fast calling convention see Fast Calling Convention (tail call)
// implementation LowerX86_32FastCCCallTo.
/// CallIsStructReturn - Determines whether a call uses struct return
/// semantics.
enum StructReturnType {
NotStructReturn,
RegStructReturn,
StackStructReturn
};
static StructReturnType
callIsStructReturn(ArrayRef<ISD::OutputArg> Outs, bool IsMCU) {
if (Outs.empty())
return NotStructReturn;
const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
if (!Flags.isSRet())
return NotStructReturn;
if (Flags.isInReg() || IsMCU)
return RegStructReturn;
return StackStructReturn;
}
/// Determines whether a function uses struct return semantics.
static StructReturnType
argsAreStructReturn(ArrayRef<ISD::InputArg> Ins, bool IsMCU) {
if (Ins.empty())
return NotStructReturn;
const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
if (!Flags.isSRet())
return NotStructReturn;
if (Flags.isInReg() || IsMCU)
return RegStructReturn;
return StackStructReturn;
}
/// Make a copy of an aggregate at address specified by "Src" to address
/// "Dst" with size and alignment information specified by the specific
/// parameter attribute. The copy will be passed as a byval function parameter.
static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
SDValue Chain, ISD::ArgFlagsTy Flags,
SelectionDAG &DAG, const SDLoc &dl) {
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
/*isVolatile*/false, /*AlwaysInline=*/true,
/*isTailCall*/false,
MachinePointerInfo(), MachinePointerInfo());
}
/// Return true if the calling convention is one that we can guarantee TCO for.
static bool canGuaranteeTCO(CallingConv::ID CC) {
return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
CC == CallingConv::X86_RegCall || CC == CallingConv::HiPE ||
CC == CallingConv::HHVM);
}
/// Return true if we might ever do TCO for calls with this calling convention.
static bool mayTailCallThisCC(CallingConv::ID CC) {
switch (CC) {
// C calling conventions:
case CallingConv::C:
case CallingConv::Win64:
case CallingConv::X86_64_SysV:
// Callee pop conventions:
case CallingConv::X86_ThisCall:
case CallingConv::X86_StdCall:
case CallingConv::X86_VectorCall:
case CallingConv::X86_FastCall:
return true;
default:
return canGuaranteeTCO(CC);
}
}
/// Return true if the function is being made into a tailcall target by
/// changing its ABI.
static bool shouldGuaranteeTCO(CallingConv::ID CC, bool GuaranteedTailCallOpt) {
return GuaranteedTailCallOpt && canGuaranteeTCO(CC);
}
bool X86TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
auto Attr =
CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
if (!CI->isTailCall() || Attr.getValueAsString() == "true")
return false;
ImmutableCallSite CS(CI);
CallingConv::ID CalleeCC = CS.getCallingConv();
if (!mayTailCallThisCC(CalleeCC))
return false;
return true;
}
SDValue
X86TargetLowering::LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
const SmallVectorImpl<ISD::InputArg> &Ins,
const SDLoc &dl, SelectionDAG &DAG,
const CCValAssign &VA,
MachineFrameInfo &MFI, unsigned i) const {
// Create the nodes corresponding to a load from this parameter slot.
ISD::ArgFlagsTy Flags = Ins[i].Flags;
bool AlwaysUseMutable = shouldGuaranteeTCO(
CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt);
bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
EVT ValVT;
MVT PtrVT = getPointerTy(DAG.getDataLayout());
// If value is passed by pointer we have address passed instead of the value
// itself. No need to extend if the mask value and location share the same
// absolute size.
bool ExtendedInMem =
VA.isExtInLoc() && VA.getValVT().getScalarType() == MVT::i1 &&
VA.getValVT().getSizeInBits() != VA.getLocVT().getSizeInBits();
if (VA.getLocInfo() == CCValAssign::Indirect || ExtendedInMem)
ValVT = VA.getLocVT();
else
ValVT = VA.getValVT();
// Calculate SP offset of interrupt parameter, re-arrange the slot normally
// taken by a return address.
int Offset = 0;
if (CallConv == CallingConv::X86_INTR) {
// X86 interrupts may take one or two arguments.
// On the stack there will be no return address as in regular call.
// Offset of last argument need to be set to -4/-8 bytes.
// Where offset of the first argument out of two, should be set to 0 bytes.
Offset = (Subtarget.is64Bit() ? 8 : 4) * ((i + 1) % Ins.size() - 1);
if (Subtarget.is64Bit() && Ins.size() == 2) {
// The stack pointer needs to be realigned for 64 bit handlers with error
// code, so the argument offset changes by 8 bytes.
Offset += 8;
}
}
// FIXME: For now, all byval parameter objects are marked mutable. This can be
// changed with more analysis.
// In case of tail call optimization mark all arguments mutable. Since they
// could be overwritten by lowering of arguments in case of a tail call.
if (Flags.isByVal()) {
unsigned Bytes = Flags.getByValSize();
if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
// FIXME: For now, all byval parameter objects are marked as aliasing. This
// can be improved with deeper analysis.
int FI = MFI.CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable,
/*isAliased=*/true);
// Adjust SP offset of interrupt parameter.
if (CallConv == CallingConv::X86_INTR) {
MFI.setObjectOffset(FI, Offset);
}
return DAG.getFrameIndex(FI, PtrVT);
}
// This is an argument in memory. We might be able to perform copy elision.
if (Flags.isCopyElisionCandidate()) {
EVT ArgVT = Ins[i].ArgVT;
SDValue PartAddr;
if (Ins[i].PartOffset == 0) {
// If this is a one-part value or the first part of a multi-part value,
// create a stack object for the entire argument value type and return a
// load from our portion of it. This assumes that if the first part of an
// argument is in memory, the rest will also be in memory.
int FI = MFI.CreateFixedObject(ArgVT.getStoreSize(), VA.getLocMemOffset(),
/*Immutable=*/false);
PartAddr = DAG.getFrameIndex(FI, PtrVT);
return DAG.getLoad(
ValVT, dl, Chain, PartAddr,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
} else {
// This is not the first piece of an argument in memory. See if there is
// already a fixed stack object including this offset. If so, assume it
// was created by the PartOffset == 0 branch above and create a load from
// the appropriate offset into it.
int64_t PartBegin = VA.getLocMemOffset();
int64_t PartEnd = PartBegin + ValVT.getSizeInBits() / 8;
int FI = MFI.getObjectIndexBegin();
for (; MFI.isFixedObjectIndex(FI); ++FI) {
int64_t ObjBegin = MFI.getObjectOffset(FI);
int64_t ObjEnd = ObjBegin + MFI.getObjectSize(FI);
if (ObjBegin <= PartBegin && PartEnd <= ObjEnd)
break;
}
if (MFI.isFixedObjectIndex(FI)) {
SDValue Addr =
DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getFrameIndex(FI, PtrVT),
DAG.getIntPtrConstant(Ins[i].PartOffset, dl));
return DAG.getLoad(
ValVT, dl, Chain, Addr,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI,
Ins[i].PartOffset));
}
}
}
int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
VA.getLocMemOffset(), isImmutable);
// Set SExt or ZExt flag.
if (VA.getLocInfo() == CCValAssign::ZExt) {
MFI.setObjectZExt(FI, true);
} else if (VA.getLocInfo() == CCValAssign::SExt) {
MFI.setObjectSExt(FI, true);
}
// Adjust SP offset of interrupt parameter.
if (CallConv == CallingConv::X86_INTR) {
MFI.setObjectOffset(FI, Offset);
}
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
SDValue Val = DAG.getLoad(
ValVT, dl, Chain, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
return ExtendedInMem
? (VA.getValVT().isVector()
? DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VA.getValVT(), Val)
: DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val))
: Val;
}
// FIXME: Get this from tablegen.
static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv,
const X86Subtarget &Subtarget) {
assert(Subtarget.is64Bit());
if (Subtarget.isCallingConvWin64(CallConv)) {
static const MCPhysReg GPR64ArgRegsWin64[] = {
X86::RCX, X86::RDX, X86::R8, X86::R9
};
return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64));
}
static const MCPhysReg GPR64ArgRegs64Bit[] = {
X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
};
return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit));
}
// FIXME: Get this from tablegen.
static ArrayRef<MCPhysReg> get64BitArgumentXMMs(MachineFunction &MF,
CallingConv::ID CallConv,
const X86Subtarget &Subtarget) {
assert(Subtarget.is64Bit());
if (Subtarget.isCallingConvWin64(CallConv)) {
// The XMM registers which might contain var arg parameters are shadowed
// in their paired GPR. So we only need to save the GPR to their home
// slots.
// TODO: __vectorcall will change this.
return None;
}
const Function &F = MF.getFunction();
bool NoImplicitFloatOps = F.hasFnAttribute(Attribute::NoImplicitFloat);
bool isSoftFloat = Subtarget.useSoftFloat();
assert(!(isSoftFloat && NoImplicitFloatOps) &&
"SSE register cannot be used when SSE is disabled!");
if (isSoftFloat || NoImplicitFloatOps || !Subtarget.hasSSE1())
// Kernel mode asks for SSE to be disabled, so there are no XMM argument
// registers.
return None;
static const MCPhysReg XMMArgRegs64Bit[] = {
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
};
return makeArrayRef(std::begin(XMMArgRegs64Bit), std::end(XMMArgRegs64Bit));
}
#ifndef NDEBUG
static bool isSortedByValueNo(ArrayRef<CCValAssign> ArgLocs) {
return std::is_sorted(ArgLocs.begin(), ArgLocs.end(),
[](const CCValAssign &A, const CCValAssign &B) -> bool {
return A.getValNo() < B.getValNo();
});
}
#endif
SDValue X86TargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
const Function &F = MF.getFunction();
if (F.hasExternalLinkage() && Subtarget.isTargetCygMing() &&
F.getName() == "main")
FuncInfo->setForceFramePointer(true);
MachineFrameInfo &MFI = MF.getFrameInfo();
bool Is64Bit = Subtarget.is64Bit();
bool IsWin64 = Subtarget.isCallingConvWin64(CallConv);
assert(
!(isVarArg && canGuaranteeTCO(CallConv)) &&
"Var args not supported with calling conv' regcall, fastcc, ghc or hipe");
if (CallConv == CallingConv::X86_INTR) {
bool isLegal = Ins.size() == 1 ||
(Ins.size() == 2 && ((Is64Bit && Ins[1].VT == MVT::i64) ||
(!Is64Bit && Ins[1].VT == MVT::i32)));
if (!isLegal)
report_fatal_error("X86 interrupts may take one or two arguments");
}
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
// Allocate shadow area for Win64.
if (IsWin64)
CCInfo.AllocateStack(32, 8);
CCInfo.AnalyzeArguments(Ins, CC_X86);
// In vectorcall calling convention a second pass is required for the HVA
// types.
if (CallingConv::X86_VectorCall == CallConv) {
CCInfo.AnalyzeArgumentsSecondPass(Ins, CC_X86);
}
// The next loop assumes that the locations are in the same order of the
// input arguments.
assert(isSortedByValueNo(ArgLocs) &&
"Argument Location list must be sorted before lowering");
SDValue ArgValue;
for (unsigned I = 0, InsIndex = 0, E = ArgLocs.size(); I != E;
++I, ++InsIndex) {
assert(InsIndex < Ins.size() && "Invalid Ins index");
CCValAssign &VA = ArgLocs[I];
if (VA.isRegLoc()) {
EVT RegVT = VA.getLocVT();
if (VA.needsCustom()) {
assert(
VA.getValVT() == MVT::v64i1 &&
"Currently the only custom case is when we split v64i1 to 2 regs");
// v64i1 values, in regcall calling convention, that are
// compiled to 32 bit arch, are split up into two registers.
ArgValue =
getv64i1Argument(VA, ArgLocs[++I], Chain, DAG, dl, Subtarget);
} else {
const TargetRegisterClass *RC;
if (RegVT == MVT::i8)
RC = &X86::GR8RegClass;
else if (RegVT == MVT::i16)
RC = &X86::GR16RegClass;
else if (RegVT == MVT::i32)
RC = &X86::GR32RegClass;
else if (Is64Bit && RegVT == MVT::i64)
RC = &X86::GR64RegClass;
else if (RegVT == MVT::f32)
RC = Subtarget.hasAVX512() ? &X86::FR32XRegClass : &X86::FR32RegClass;
else if (RegVT == MVT::f64)
RC = Subtarget.hasAVX512() ? &X86::FR64XRegClass : &X86::FR64RegClass;
else if (RegVT == MVT::f80)
RC = &X86::RFP80RegClass;
else if (RegVT == MVT::f128)
RC = &X86::VR128RegClass;
else if (RegVT.is512BitVector())
RC = &X86::VR512RegClass;
else if (RegVT.is256BitVector())
RC = Subtarget.hasVLX() ? &X86::VR256XRegClass : &X86::VR256RegClass;
else if (RegVT.is128BitVector())
RC = Subtarget.hasVLX() ? &X86::VR128XRegClass : &X86::VR128RegClass;
else if (RegVT == MVT::x86mmx)
RC = &X86::VR64RegClass;
else if (RegVT == MVT::v1i1)
RC = &X86::VK1RegClass;
else if (RegVT == MVT::v8i1)
RC = &X86::VK8RegClass;
else if (RegVT == MVT::v16i1)
RC = &X86::VK16RegClass;
else if (RegVT == MVT::v32i1)
RC = &X86::VK32RegClass;
else if (RegVT == MVT::v64i1)
RC = &X86::VK64RegClass;
else
llvm_unreachable("Unknown argument type!");
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
}
// If this is an 8 or 16-bit value, it is really passed promoted to 32
// bits. Insert an assert[sz]ext to capture this, then truncate to the
// right size.
if (VA.getLocInfo() == CCValAssign::SExt)
ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
else if (VA.getLocInfo() == CCValAssign::ZExt)
ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
else if (VA.getLocInfo() == CCValAssign::BCvt)
ArgValue = DAG.getBitcast(VA.getValVT(), ArgValue);
if (VA.isExtInLoc()) {
// Handle MMX values passed in XMM regs.
if (RegVT.isVector() && VA.getValVT().getScalarType() != MVT::i1)
ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
else if (VA.getValVT().isVector() &&
VA.getValVT().getScalarType() == MVT::i1 &&
((VA.getLocVT() == MVT::i64) || (VA.getLocVT() == MVT::i32) ||
(VA.getLocVT() == MVT::i16) || (VA.getLocVT() == MVT::i8))) {
// Promoting a mask type (v*i1) into a register of type i64/i32/i16/i8
ArgValue = lowerRegToMasks(ArgValue, VA.getValVT(), RegVT, dl, DAG);
} else
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
}
} else {
assert(VA.isMemLoc());
ArgValue =
LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, InsIndex);
}
// If value is passed via pointer - do a load.
if (VA.getLocInfo() == CCValAssign::Indirect)
ArgValue =
DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, MachinePointerInfo());
InVals.push_back(ArgValue);
}
for (unsigned I = 0, E = Ins.size(); I != E; ++I) {
// Swift calling convention does not require we copy the sret argument
// into %rax/%eax for the return. We don't set SRetReturnReg for Swift.
if (CallConv == CallingConv::Swift)
continue;
// All x86 ABIs require that for returning structs by value we copy the
// sret argument into %rax/%eax (depending on ABI) for the return. Save
// the argument into a virtual register so that we can access it from the
// return points.
if (Ins[I].Flags.isSRet()) {
unsigned Reg = FuncInfo->getSRetReturnReg();
if (!Reg) {
MVT PtrTy = getPointerTy(DAG.getDataLayout());
Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
FuncInfo->setSRetReturnReg(Reg);
}
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[I]);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
break;
}
}
unsigned StackSize = CCInfo.getNextStackOffset();
// Align stack specially for tail calls.
if (shouldGuaranteeTCO(CallConv,
MF.getTarget().Options.GuaranteedTailCallOpt))
StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start. We
// can skip this if there are no va_start calls.
if (MFI.hasVAStart() &&
(Is64Bit || (CallConv != CallingConv::X86_FastCall &&
CallConv != CallingConv::X86_ThisCall))) {
FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
}
// Figure out if XMM registers are in use.
assert(!(Subtarget.useSoftFloat() &&
F.hasFnAttribute(Attribute::NoImplicitFloat)) &&
"SSE register cannot be used when SSE is disabled!");
// 64-bit calling conventions support varargs and register parameters, so we
// have to do extra work to spill them in the prologue.
if (Is64Bit && isVarArg && MFI.hasVAStart()) {
// Find the first unallocated argument registers.
ArrayRef<MCPhysReg> ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget);
ArrayRef<MCPhysReg> ArgXMMs = get64BitArgumentXMMs(MF, CallConv, Subtarget);
unsigned NumIntRegs = CCInfo.getFirstUnallocated(ArgGPRs);
unsigned NumXMMRegs = CCInfo.getFirstUnallocated(ArgXMMs);
assert(!(NumXMMRegs && !Subtarget.hasSSE1()) &&
"SSE register cannot be used when SSE is disabled!");
// Gather all the live in physical registers.
SmallVector<SDValue, 6> LiveGPRs;
SmallVector<SDValue, 8> LiveXMMRegs;
SDValue ALVal;
for (MCPhysReg Reg : ArgGPRs.slice(NumIntRegs)) {
unsigned GPR = MF.addLiveIn(Reg, &X86::GR64RegClass);
LiveGPRs.push_back(
DAG.getCopyFromReg(Chain, dl, GPR, MVT::i64));
}
if (!ArgXMMs.empty()) {
unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
ALVal = DAG.getCopyFromReg(Chain, dl, AL, MVT::i8);
for (MCPhysReg Reg : ArgXMMs.slice(NumXMMRegs)) {
unsigned XMMReg = MF.addLiveIn(Reg, &X86::VR128RegClass);
LiveXMMRegs.push_back(
DAG.getCopyFromReg(Chain, dl, XMMReg, MVT::v4f32));
}
}
if (IsWin64) {
// Get to the caller-allocated home save location. Add 8 to account
// for the return address.
int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
FuncInfo->setRegSaveFrameIndex(
MFI.CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
// Fixup to set vararg frame on shadow area (4 x i64).
if (NumIntRegs < 4)
FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
} else {
// For X86-64, if there are vararg parameters that are passed via
// registers, then we must store them to their spots on the stack so
// they may be loaded by dereferencing the result of va_next.
FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
FuncInfo->setVarArgsFPOffset(ArgGPRs.size() * 8 + NumXMMRegs * 16);
FuncInfo->setRegSaveFrameIndex(MFI.CreateStackObject(
ArgGPRs.size() * 8 + ArgXMMs.size() * 16, 16, false));
}
// Store the integer parameter registers.
SmallVector<SDValue, 8> MemOps;
SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
getPointerTy(DAG.getDataLayout()));
unsigned Offset = FuncInfo->getVarArgsGPOffset();
for (SDValue Val : LiveGPRs) {
SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
RSFIN, DAG.getIntPtrConstant(Offset, dl));
SDValue Store =
DAG.getStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo::getFixedStack(
DAG.getMachineFunction(),
FuncInfo->getRegSaveFrameIndex(), Offset));
MemOps.push_back(Store);
Offset += 8;
}
if (!ArgXMMs.empty() && NumXMMRegs != ArgXMMs.size()) {
// Now store the XMM (fp + vector) parameter registers.
SmallVector<SDValue, 12> SaveXMMOps;
SaveXMMOps.push_back(Chain);
SaveXMMOps.push_back(ALVal);
SaveXMMOps.push_back(DAG.getIntPtrConstant(
FuncInfo->getRegSaveFrameIndex(), dl));
SaveXMMOps.push_back(DAG.getIntPtrConstant(
FuncInfo->getVarArgsFPOffset(), dl));
SaveXMMOps.insert(SaveXMMOps.end(), LiveXMMRegs.begin(),
LiveXMMRegs.end());
MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
MVT::Other, SaveXMMOps));
}
if (!MemOps.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
}
if (isVarArg && MFI.hasMustTailInVarArgFunc()) {
// Find the largest legal vector type.
MVT VecVT = MVT::Other;
// FIXME: Only some x86_32 calling conventions support AVX512.
if (Subtarget.hasAVX512() &&
(Is64Bit || (CallConv == CallingConv::X86_VectorCall ||
CallConv == CallingConv::Intel_OCL_BI)))
VecVT = MVT::v16f32;
else if (Subtarget.hasAVX())
VecVT = MVT::v8f32;
else if (Subtarget.hasSSE2())
VecVT = MVT::v4f32;
// We forward some GPRs and some vector types.
SmallVector<MVT, 2> RegParmTypes;
MVT IntVT = Is64Bit ? MVT::i64 : MVT::i32;
RegParmTypes.push_back(IntVT);
if (VecVT != MVT::Other)
RegParmTypes.push_back(VecVT);
// Compute the set of forwarded registers. The rest are scratch.
SmallVectorImpl<ForwardedRegister> &Forwards =
FuncInfo->getForwardedMustTailRegParms();
CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_X86);
// Conservatively forward AL on x86_64, since it might be used for varargs.
if (Is64Bit && !CCInfo.isAllocated(X86::AL)) {
unsigned ALVReg = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
Forwards.push_back(ForwardedRegister(ALVReg, X86::AL, MVT::i8));
}
// Copy all forwards from physical to virtual registers.
for (ForwardedRegister &F : Forwards) {
// FIXME: Can we use a less constrained schedule?
SDValue RegVal = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
F.VReg = MF.getRegInfo().createVirtualRegister(getRegClassFor(F.VT));
Chain = DAG.getCopyToReg(Chain, dl, F.VReg, RegVal);
}
}
// Some CCs need callee pop.
if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
MF.getTarget().Options.GuaranteedTailCallOpt)) {
FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
} else if (CallConv == CallingConv::X86_INTR && Ins.size() == 2) {
// X86 interrupts must pop the error code (and the alignment padding) if
// present.
FuncInfo->setBytesToPopOnReturn(Is64Bit ? 16 : 4);
} else {
FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
// If this is an sret function, the return should pop the hidden pointer.
if (!Is64Bit && !canGuaranteeTCO(CallConv) &&
!Subtarget.getTargetTriple().isOSMSVCRT() &&
argsAreStructReturn(Ins, Subtarget.isTargetMCU()) == StackStructReturn)
FuncInfo->setBytesToPopOnReturn(4);
}
if (!Is64Bit) {
// RegSaveFrameIndex is X86-64 only.
FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
if (CallConv == CallingConv::X86_FastCall ||
CallConv == CallingConv::X86_ThisCall)
// fastcc functions can't have varargs.
FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
}
FuncInfo->setArgumentStackSize(StackSize);
if (WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo()) {
EHPersonality Personality = classifyEHPersonality(F.getPersonalityFn());
if (Personality == EHPersonality::CoreCLR) {
assert(Is64Bit);
// TODO: Add a mechanism to frame lowering that will allow us to indicate
// that we'd prefer this slot be allocated towards the bottom of the frame
// (i.e. near the stack pointer after allocating the frame). Every
// funclet needs a copy of this slot in its (mostly empty) frame, and the
// offset from the bottom of this and each funclet's frame must be the
// same, so the size of funclets' (mostly empty) frames is dictated by
// how far this slot is from the bottom (since they allocate just enough
// space to accommodate holding this slot at the correct offset).
int PSPSymFI = MFI.CreateStackObject(8, 8, /*isSS=*/false);
EHInfo->PSPSymFrameIdx = PSPSymFI;
}
}
if (CallConv == CallingConv::X86_RegCall ||
F.hasFnAttribute("no_caller_saved_registers")) {
MachineRegisterInfo &MRI = MF.getRegInfo();
for (std::pair<unsigned, unsigned> Pair : MRI.liveins())
MRI.disableCalleeSavedRegister(Pair.first);
}
return Chain;
}
SDValue X86TargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
SDValue Arg, const SDLoc &dl,
SelectionDAG &DAG,
const CCValAssign &VA,
ISD::ArgFlagsTy Flags) const {
unsigned LocMemOffset = VA.getLocMemOffset();
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
StackPtr, PtrOff);
if (Flags.isByVal())
return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
return DAG.getStore(
Chain, dl, Arg, PtrOff,
MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
}
/// Emit a load of return address if tail call
/// optimization is performed and it is required.
SDValue X86TargetLowering::EmitTailCallLoadRetAddr(
SelectionDAG &DAG, SDValue &OutRetAddr, SDValue Chain, bool IsTailCall,
bool Is64Bit, int FPDiff, const SDLoc &dl) const {
// Adjust the Return address stack slot.
EVT VT = getPointerTy(DAG.getDataLayout());
OutRetAddr = getReturnAddressFrameIndex(DAG);
// Load the "old" Return address.
OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo());
return SDValue(OutRetAddr.getNode(), 1);
}
/// Emit a store of the return address if tail call
/// optimization is performed and it is required (FPDiff!=0).
static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF,
SDValue Chain, SDValue RetAddrFrIdx,
EVT PtrVT, unsigned SlotSize,
int FPDiff, const SDLoc &dl) {
// Store the return address to the appropriate stack slot.
if (!FPDiff) return Chain;
// Calculate the new stack slot for the return address.
int NewReturnAddrFI =
MF.getFrameInfo().CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
false);
SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
MachinePointerInfo::getFixedStack(
DAG.getMachineFunction(), NewReturnAddrFI));
return Chain;
}
/// Returns a vector_shuffle mask for an movs{s|d}, movd
/// operation of specified width.
static SDValue getMOVL(SelectionDAG &DAG, const SDLoc &dl, MVT VT, SDValue V1,
SDValue V2) {
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 8> Mask;
Mask.push_back(NumElems);
for (unsigned i = 1; i != NumElems; ++i)
Mask.push_back(i);
return DAG.getVectorShuffle(VT, dl, V1, V2, Mask);
}
SDValue
X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &dl = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
CallingConv::ID CallConv = CLI.CallConv;
bool &isTailCall = CLI.IsTailCall;
bool isVarArg = CLI.IsVarArg;
MachineFunction &MF = DAG.getMachineFunction();
bool Is64Bit = Subtarget.is64Bit();
bool IsWin64 = Subtarget.isCallingConvWin64(CallConv);
StructReturnType SR = callIsStructReturn(Outs, Subtarget.isTargetMCU());
bool IsSibcall = false;
X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
const auto *CI = dyn_cast_or_null<CallInst>(CLI.CS.getInstruction());
const Function *Fn = CI ? CI->getCalledFunction() : nullptr;
bool HasNCSR = (CI && CI->hasFnAttr("no_caller_saved_registers")) ||
(Fn && Fn->hasFnAttribute("no_caller_saved_registers"));
const auto *II = dyn_cast_or_null<InvokeInst>(CLI.CS.getInstruction());
bool HasNoCfCheck =
(CI && CI->doesNoCfCheck()) || (II && II->doesNoCfCheck());
const Module *M = MF.getMMI().getModule();
Metadata *IsCFProtectionSupported = M->getModuleFlag("cf-protection-branch");
if (CallConv == CallingConv::X86_INTR)
report_fatal_error("X86 interrupts may not be called directly");
if (Attr.getValueAsString() == "true")
isTailCall = false;
if (Subtarget.isPICStyleGOT() &&
!MF.getTarget().Options.GuaranteedTailCallOpt) {
// If we are using a GOT, disable tail calls to external symbols with
// default visibility. Tail calling such a symbol requires using a GOT
// relocation, which forces early binding of the symbol. This breaks code
// that require lazy function symbol resolution. Using musttail or
// GuaranteedTailCallOpt will override this.
GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
if (!G || (!G->getGlobal()->hasLocalLinkage() &&
G->getGlobal()->hasDefaultVisibility()))
isTailCall = false;
}
bool IsMustTail = CLI.CS && CLI.CS.isMustTailCall();
if (IsMustTail) {
// Force this to be a tail call. The verifier rules are enough to ensure
// that we can lower this successfully without moving the return address
// around.
isTailCall = true;
} else if (isTailCall) {
// Check if it's really possible to do a tail call.
isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
isVarArg, SR != NotStructReturn,
MF.getFunction().hasStructRetAttr(), CLI.RetTy,
Outs, OutVals, Ins, DAG);
// Sibcalls are automatically detected tailcalls which do not require
// ABI changes.
if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
IsSibcall = true;
if (isTailCall)
++NumTailCalls;
}
assert(!(isVarArg && canGuaranteeTCO(CallConv)) &&
"Var args not supported with calling convention fastcc, ghc or hipe");
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
// Allocate shadow area for Win64.
if (IsWin64)
CCInfo.AllocateStack(32, 8);
CCInfo.AnalyzeArguments(Outs, CC_X86);
// In vectorcall calling convention a second pass is required for the HVA
// types.
if (CallingConv::X86_VectorCall == CallConv) {
CCInfo.AnalyzeArgumentsSecondPass(Outs, CC_X86);
}
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
if (IsSibcall)
// This is a sibcall. The memory operands are available in caller's
// own caller's stack.
NumBytes = 0;
else if (MF.getTarget().Options.GuaranteedTailCallOpt &&
canGuaranteeTCO(CallConv))
NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
int FPDiff = 0;
if (isTailCall && !IsSibcall && !IsMustTail) {
// Lower arguments at fp - stackoffset + fpdiff.
unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
FPDiff = NumBytesCallerPushed - NumBytes;
// Set the delta of movement of the returnaddr stackslot.
// But only set if delta is greater than previous delta.
if (FPDiff < X86Info->getTCReturnAddrDelta())
X86Info->setTCReturnAddrDelta(FPDiff);
}
unsigned NumBytesToPush = NumBytes;
unsigned NumBytesToPop = NumBytes;
// If we have an inalloca argument, all stack space has already been allocated
// for us and be right at the top of the stack. We don't support multiple
// arguments passed in memory when using inalloca.
if (!Outs.empty() && Outs.back().Flags.isInAlloca()) {
NumBytesToPush = 0;
if (!ArgLocs.back().isMemLoc())
report_fatal_error("cannot use inalloca attribute on a register "
"parameter");
if (ArgLocs.back().getLocMemOffset() != 0)
report_fatal_error("any parameter with the inalloca attribute must be "
"the only memory argument");
}
if (!IsSibcall)
Chain = DAG.getCALLSEQ_START(Chain, NumBytesToPush,
NumBytes - NumBytesToPush, dl);
SDValue RetAddrFrIdx;
// Load return address for tail calls.
if (isTailCall && FPDiff)
Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
Is64Bit, FPDiff, dl);
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
SDValue StackPtr;
// The next loop assumes that the locations are in the same order of the
// input arguments.
assert(isSortedByValueNo(ArgLocs) &&
"Argument Location list must be sorted before lowering");
// Walk the register/memloc assignments, inserting copies/loads. In the case
// of tail call optimization arguments are handle later.
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
for (unsigned I = 0, OutIndex = 0, E = ArgLocs.size(); I != E;
++I, ++OutIndex) {
assert(OutIndex < Outs.size() && "Invalid Out index");
// Skip inalloca arguments, they have already been written.
ISD::ArgFlagsTy Flags = Outs[OutIndex].Flags;
if (Flags.isInAlloca())
continue;
CCValAssign &VA = ArgLocs[I];
EVT RegVT = VA.getLocVT();
SDValue Arg = OutVals[OutIndex];
bool isByVal = Flags.isByVal();
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
break;
case CCValAssign::AExt:
if (Arg.getValueType().isVector() &&
Arg.getValueType().getVectorElementType() == MVT::i1)
Arg = lowerMasksToReg(Arg, RegVT, dl, DAG);
else if (RegVT.is128BitVector()) {
// Special case: passing MMX values in XMM registers.
Arg = DAG.getBitcast(MVT::i64, Arg);
Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
} else
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
break;
case CCValAssign::BCvt:
Arg = DAG.getBitcast(RegVT, Arg);
break;
case CCValAssign::Indirect: {
// Store the argument.
SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
Chain = DAG.getStore(
Chain, dl, Arg, SpillSlot,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
Arg = SpillSlot;
break;
}
}
if (VA.needsCustom()) {
assert(VA.getValVT() == MVT::v64i1 &&
"Currently the only custom case is when we split v64i1 to 2 regs");
// Split v64i1 value into two registers
Passv64i1ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++I],
Subtarget);
} else if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
if (isVarArg && IsWin64) {
// Win64 ABI requires argument XMM reg to be copied to the corresponding
// shadow reg if callee is a varargs function.
unsigned ShadowReg = 0;
switch (VA.getLocReg()) {
case X86::XMM0: ShadowReg = X86::RCX; break;
case X86::XMM1: ShadowReg = X86::RDX; break;
case X86::XMM2: ShadowReg = X86::R8; break;
case X86::XMM3: ShadowReg = X86::R9; break;
}
if (ShadowReg)
RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
}
} else if (!IsSibcall && (!isTailCall || isByVal)) {
assert(VA.isMemLoc());
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
getPointerTy(DAG.getDataLayout()));
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
dl, DAG, VA, Flags));
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
if (Subtarget.isPICStyleGOT()) {
// ELF / PIC requires GOT in the EBX register before function calls via PLT
// GOT pointer.
if (!isTailCall) {
RegsToPass.push_back(std::make_pair(
unsigned(X86::EBX), DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(),
getPointerTy(DAG.getDataLayout()))));
} else {
// If we are tail calling and generating PIC/GOT style code load the
// address of the callee into ECX. The value in ecx is used as target of
// the tail jump. This is done to circumvent the ebx/callee-saved problem
// for tail calls on PIC/GOT architectures. Normally we would just put the
// address of GOT into ebx and then call target@PLT. But for tail calls
// ebx would be restored (since ebx is callee saved) before jumping to the
// target@PLT.
// Note: The actual moving to ECX is done further down.
GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
if (G && !G->getGlobal()->hasLocalLinkage() &&
G->getGlobal()->hasDefaultVisibility())
Callee = LowerGlobalAddress(Callee, DAG);
else if (isa<ExternalSymbolSDNode>(Callee))
Callee = LowerExternalSymbol(Callee, DAG);
}
}
if (Is64Bit && isVarArg && !IsWin64 && !IsMustTail) {
// From AMD64 ABI document:
// For calls that may call functions that use varargs or stdargs
// (prototype-less calls or calls to functions containing ellipsis (...) in
// the declaration) %al is used as hidden argument to specify the number
// of SSE registers used. The contents of %al do not need to match exactly
// the number of registers, but must be an ubound on the number of SSE
// registers used and is in the range 0 - 8 inclusive.
// Count the number of XMM registers allocated.
static const MCPhysReg XMMArgRegs[] = {
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
};
unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
assert((Subtarget.hasSSE1() || !NumXMMRegs)
&& "SSE registers cannot be used when SSE is disabled");
RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
DAG.getConstant(NumXMMRegs, dl,
MVT::i8)));
}
if (isVarArg && IsMustTail) {
const auto &Forwards = X86Info->getForwardedMustTailRegParms();
for (const auto &F : Forwards) {
SDValue Val = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val));
}
}
// For tail calls lower the arguments to the 'real' stack slots. Sibcalls
// don't need this because the eligibility check rejects calls that require
// shuffling arguments passed in memory.
if (!IsSibcall && isTailCall) {
// Force all the incoming stack arguments to be loaded from the stack
// before any new outgoing arguments are stored to the stack, because the
// outgoing stack slots may alias the incoming argument stack slots, and
// the alias isn't otherwise explicit. This is slightly more conservative
// than necessary, because it means that each store effectively depends
// on every argument instead of just those arguments it would clobber.
SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
SmallVector<SDValue, 8> MemOpChains2;
SDValue FIN;
int FI = 0;
for (unsigned I = 0, OutsIndex = 0, E = ArgLocs.size(); I != E;
++I, ++OutsIndex) {
CCValAssign &VA = ArgLocs[I];
if (VA.isRegLoc()) {
if (VA.needsCustom()) {
assert((CallConv == CallingConv::X86_RegCall) &&
"Expecting custom case only in regcall calling convention");
// This means that we are in special case where one argument was
// passed through two register locations - Skip the next location
++I;
}
continue;
}
assert(VA.isMemLoc());
SDValue Arg = OutVals[OutsIndex];
ISD::ArgFlagsTy Flags = Outs[OutsIndex].Flags;
// Skip inalloca arguments. They don't require any work.
if (Flags.isInAlloca())
continue;
// Create frame index.
int32_t Offset = VA.getLocMemOffset()+FPDiff;
uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
if (Flags.isByVal()) {
// Copy relative to framepointer.
SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset(), dl);
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
getPointerTy(DAG.getDataLayout()));
Source = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
StackPtr, Source);
MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
ArgChain,
Flags, DAG, dl));
} else {
// Store relative to framepointer.
MemOpChains2.push_back(DAG.getStore(
ArgChain, dl, Arg, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
}
}
if (!MemOpChains2.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
// Store the return address to the appropriate stack slot.
Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
getPointerTy(DAG.getDataLayout()),
RegInfo->getSlotSize(), FPDiff, dl);
}
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into registers.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
if (DAG.getTarget().getCodeModel() == CodeModel::Large) {
assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
// In the 64-bit large code model, we have to make all calls
// through a register, since the call instruction's 32-bit
// pc-relative offset may not be large enough to hold the whole
// address.
} else if (Callee->getOpcode() == ISD::GlobalAddress) {
// If the callee is a GlobalAddress node (quite common, every direct call
// is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
// it.
GlobalAddressSDNode* G = cast<GlobalAddressSDNode>(Callee);
// We should use extra load for direct calls to dllimported functions in
// non-JIT mode.
const GlobalValue *GV = G->getGlobal();
if (!GV->hasDLLImportStorageClass()) {
unsigned char OpFlags = Subtarget.classifyGlobalFunctionReference(GV);
Callee = DAG.getTargetGlobalAddress(
GV, dl, getPointerTy(DAG.getDataLayout()), G->getOffset(), OpFlags);
if (OpFlags == X86II::MO_GOTPCREL) {
// Add a wrapper.
Callee = DAG.getNode(X86ISD::WrapperRIP, dl,
getPointerTy(DAG.getDataLayout()), Callee);
// Add extra indirection
Callee = DAG.getLoad(
getPointerTy(DAG.getDataLayout()), dl, DAG.getEntryNode(), Callee,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
}
}
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
unsigned char OpFlags =
Subtarget.classifyGlobalFunctionReference(nullptr, *Mod);
Callee = DAG.getTargetExternalSymbol(
S->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlags);
if (OpFlags == X86II::MO_GOTPCREL) {
Callee = DAG.getNode(X86ISD::WrapperRIP, dl,
getPointerTy(DAG.getDataLayout()), Callee);
Callee = DAG.getLoad(
getPointerTy(DAG.getDataLayout()), dl, DAG.getEntryNode(), Callee,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
}
} else if (Subtarget.isTarget64BitILP32() &&
Callee->getValueType(0) == MVT::i32) {
// Zero-extend the 32-bit Callee address into a 64-bit according to x32 ABI
Callee = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Callee);
}
// Returns a chain & a flag for retval copy to use.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SmallVector<SDValue, 8> Ops;
if (!IsSibcall && isTailCall) {
Chain = DAG.getCALLSEQ_END(Chain,
DAG.getIntPtrConstant(NumBytesToPop, dl, true),
DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
InFlag = Chain.getValue(1);
}
Ops.push_back(Chain);
Ops.push_back(Callee);
if (isTailCall)
Ops.push_back(DAG.getConstant(FPDiff, dl, MVT::i32));
// Add argument registers to the end of the list so that they are known live
// into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// Add a register mask operand representing the call-preserved registers.
// If HasNCSR is asserted (attribute NoCallerSavedRegisters exists) then we
// set X86_INTR calling convention because it has the same CSR mask
// (same preserved registers).
const uint32_t *Mask = RegInfo->getCallPreservedMask(
MF, HasNCSR ? (CallingConv::ID)CallingConv::X86_INTR : CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
// If this is an invoke in a 32-bit function using a funclet-based
// personality, assume the function clobbers all registers. If an exception
// is thrown, the runtime will not restore CSRs.
// FIXME: Model this more precisely so that we can register allocate across
// the normal edge and spill and fill across the exceptional edge.
if (!Is64Bit && CLI.CS && CLI.CS.isInvoke()) {
const Function &CallerFn = MF.getFunction();
EHPersonality Pers =
CallerFn.hasPersonalityFn()
? classifyEHPersonality(CallerFn.getPersonalityFn())
: EHPersonality::Unknown;
if (isFuncletEHPersonality(Pers))
Mask = RegInfo->getNoPreservedMask();
}
// Define a new register mask from the existing mask.
uint32_t *RegMask = nullptr;
// In some calling conventions we need to remove the used physical registers
// from the reg mask.
if (CallConv == CallingConv::X86_RegCall || HasNCSR) {
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
// Allocate a new Reg Mask and copy Mask.
RegMask = MF.allocateRegMask();
unsigned RegMaskSize = MachineOperand::getRegMaskSize(TRI->getNumRegs());
memcpy(RegMask, Mask, sizeof(RegMask[0]) * RegMaskSize);
// Make sure all sub registers of the argument registers are reset
// in the RegMask.
for (auto const &RegPair : RegsToPass)
for (MCSubRegIterator SubRegs(RegPair.first, TRI, /*IncludeSelf=*/true);
SubRegs.isValid(); ++SubRegs)
RegMask[*SubRegs / 32] &= ~(1u << (*SubRegs % 32));
// Create the RegMask Operand according to our updated mask.
Ops.push_back(DAG.getRegisterMask(RegMask));
} else {
// Create the RegMask Operand according to the static mask.
Ops.push_back(DAG.getRegisterMask(Mask));
}
if (InFlag.getNode())
Ops.push_back(InFlag);
if (isTailCall) {
// We used to do:
//// If this is the first return lowered for this function, add the regs
//// to the liveout set for the function.
// This isn't right, although it's probably harmless on x86; liveouts
// should be computed from returns not tail calls. Consider a void
// function making a tail call to a function returning int.
MF.getFrameInfo().setHasTailCall();
return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops);
}
if (HasNoCfCheck && IsCFProtectionSupported) {
Chain = DAG.getNode(X86ISD::NT_CALL, dl, NodeTys, Ops);
} else {
Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops);
}
InFlag = Chain.getValue(1);
// Create the CALLSEQ_END node.
unsigned NumBytesForCalleeToPop;
if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
DAG.getTarget().Options.GuaranteedTailCallOpt))
NumBytesForCalleeToPop = NumBytes; // Callee pops everything
else if (!Is64Bit && !canGuaranteeTCO(CallConv) &&
!Subtarget.getTargetTriple().isOSMSVCRT() &&
SR == StackStructReturn)
// If this is a call to a struct-return function, the callee
// pops the hidden struct pointer, so we have to push it back.
// This is common for Darwin/X86, Linux & Mingw32 targets.
// For MSVC Win32 targets, the caller pops the hidden struct pointer.
NumBytesForCalleeToPop = 4;
else
NumBytesForCalleeToPop = 0; // Callee pops nothing.
if (CLI.DoesNotReturn && !getTargetMachine().Options.TrapUnreachable) {
// No need to reset the stack after the call if the call doesn't return. To
// make the MI verify, we'll pretend the callee does it for us.
NumBytesForCalleeToPop = NumBytes;
}
// Returns a flag for retval copy to use.
if (!IsSibcall) {
Chain = DAG.getCALLSEQ_END(Chain,
DAG.getIntPtrConstant(NumBytesToPop, dl, true),
DAG.getIntPtrConstant(NumBytesForCalleeToPop, dl,
true),
InFlag, dl);
InFlag = Chain.getValue(1);
}
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
InVals, RegMask);
}
//===----------------------------------------------------------------------===//
// Fast Calling Convention (tail call) implementation
//===----------------------------------------------------------------------===//
// Like std call, callee cleans arguments, convention except that ECX is
// reserved for storing the tail called function address. Only 2 registers are
// free for argument passing (inreg). Tail call optimization is performed
// provided:
// * tailcallopt is enabled
// * caller/callee are fastcc
// On X86_64 architecture with GOT-style position independent code only local
// (within module) calls are supported at the moment.
// To keep the stack aligned according to platform abi the function
// GetAlignedArgumentStackSize ensures that argument delta is always multiples
// of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
// If a tail called function callee has more arguments than the caller the
// caller needs to make sure that there is room to move the RETADDR to. This is
// achieved by reserving an area the size of the argument delta right after the
// original RETADDR, but before the saved framepointer or the spilled registers
// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
// stack layout:
// arg1
// arg2
// RETADDR
// [ new RETADDR
// move area ]
// (possible EBP)
// ESI
// EDI
// local1 ..
/// Make the stack size align e.g 16n + 12 aligned for a 16-byte align
/// requirement.
unsigned
X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
SelectionDAG& DAG) const {
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
unsigned StackAlignment = TFI.getStackAlignment();
uint64_t AlignMask = StackAlignment - 1;
int64_t Offset = StackSize;
unsigned SlotSize = RegInfo->getSlotSize();
if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
// Number smaller than 12 so just add the difference.
Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
} else {
// Mask out lower bits, add stackalignment once plus the 12 bytes.
Offset = ((~AlignMask) & Offset) + StackAlignment +
(StackAlignment-SlotSize);
}
return Offset;
}
/// Return true if the given stack call argument is already available in the
/// same position (relatively) of the caller's incoming argument stack.
static
bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
const X86InstrInfo *TII, const CCValAssign &VA) {
unsigned Bytes = Arg.getValueSizeInBits() / 8;
for (;;) {
// Look through nodes that don't alter the bits of the incoming value.
unsigned Op = Arg.getOpcode();
if (Op == ISD::ZERO_EXTEND || Op == ISD::ANY_EXTEND || Op == ISD::BITCAST) {
Arg = Arg.getOperand(0);
continue;
}
if (Op == ISD::TRUNCATE) {
const SDValue &TruncInput = Arg.getOperand(0);
if (TruncInput.getOpcode() == ISD::AssertZext &&
cast<VTSDNode>(TruncInput.getOperand(1))->getVT() ==
Arg.getValueType()) {
Arg = TruncInput.getOperand(0);
continue;
}
}
break;
}
int FI = INT_MAX;
if (Arg.getOpcode() == ISD::CopyFromReg) {
unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
if (!TargetRegisterInfo::isVirtualRegister(VR))
return false;
MachineInstr *Def = MRI->getVRegDef(VR);
if (!Def)
return false;
if (!Flags.isByVal()) {
if (!TII->isLoadFromStackSlot(*Def, FI))
return false;
} else {
unsigned Opcode = Def->getOpcode();
if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r ||
Opcode == X86::LEA64_32r) &&
Def->getOperand(1).isFI()) {
FI = Def->getOperand(1).getIndex();
Bytes = Flags.getByValSize();
} else
return false;
}
} else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
if (Flags.isByVal())
// ByVal argument is passed in as a pointer but it's now being
// dereferenced. e.g.
// define @foo(%struct.X* %A) {
// tail call @bar(%struct.X* byval %A)
// }
return false;
SDValue Ptr = Ld->getBasePtr();
FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
if (!FINode)
return false;
FI = FINode->getIndex();
} else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
FI = FINode->getIndex();
Bytes = Flags.getByValSize();
} else
return false;
assert(FI != INT_MAX);
if (!MFI.isFixedObjectIndex(FI))
return false;
if (Offset != MFI.getObjectOffset(FI))
return false;
// If this is not byval, check that the argument stack object is immutable.
// inalloca and argument copy elision can create mutable argument stack
// objects. Byval objects can be mutated, but a byval call intends to pass the
// mutated memory.
if (!Flags.isByVal() && !MFI.isImmutableObjectIndex(FI))
return false;
if (VA.getLocVT().getSizeInBits() > Arg.getValueSizeInBits()) {
// If the argument location is wider than the argument type, check that any
// extension flags match.
if (Flags.isZExt() != MFI.isObjectZExt(FI) ||
Flags.isSExt() != MFI.isObjectSExt(FI)) {
return false;
}
}
return Bytes == MFI.getObjectSize(FI);
}
/// Check whether the call is eligible for tail call optimization. Targets
/// that want to do tail call optimization should implement this function.
bool X86TargetLowering::IsEligibleForTailCallOptimization(
SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
bool isCalleeStructRet, bool isCallerStructRet, Type *RetTy,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
if (!mayTailCallThisCC(CalleeCC))
return false;
// If -tailcallopt is specified, make fastcc functions tail-callable.
MachineFunction &MF = DAG.getMachineFunction();
const Function &CallerF = MF.getFunction();
// If the function return type is x86_fp80 and the callee return type is not,
// then the FP_EXTEND of the call result is not a nop. It's not safe to
// perform a tailcall optimization here.
if (CallerF.getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
return false;
CallingConv::ID CallerCC = CallerF.getCallingConv();
bool CCMatch = CallerCC == CalleeCC;
bool IsCalleeWin64 = Subtarget.isCallingConvWin64(CalleeCC);
bool IsCallerWin64 = Subtarget.isCallingConvWin64(CallerCC);
// Win64 functions have extra shadow space for argument homing. Don't do the
// sibcall if the caller and callee have mismatched expectations for this
// space.
if (IsCalleeWin64 != IsCallerWin64)
return false;
if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
if (canGuaranteeTCO(CalleeCC) && CCMatch)
return true;
return false;
}
// Look for obvious safe cases to perform tail call optimization that do not
// require ABI changes. This is what gcc calls sibcall.
// Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
// emit a special epilogue.
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
if (RegInfo->needsStackRealignment(MF))
return false;
// Also avoid sibcall optimization if either caller or callee uses struct
// return semantics.
if (isCalleeStructRet || isCallerStructRet)
return false;
// Do not sibcall optimize vararg calls unless all arguments are passed via
// registers.
LLVMContext &C = *DAG.getContext();
if (isVarArg && !Outs.empty()) {
// Optimizing for varargs on Win64 is unlikely to be safe without
// additional testing.
if (IsCalleeWin64 || IsCallerWin64)
return false;
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
CCInfo.AnalyzeCallOperands(Outs, CC_X86);
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
if (!ArgLocs[i].isRegLoc())
return false;
}
// If the call result is in ST0 / ST1, it needs to be popped off the x87
// stack. Therefore, if it's not used by the call it is not safe to optimize
// this into a sibcall.
bool Unused = false;
for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
if (!Ins[i].Used) {
Unused = true;
break;
}
}
if (Unused) {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CalleeCC, false, MF, RVLocs, C);
CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
CCValAssign &VA = RVLocs[i];
if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
return false;
}
}
// Check that the call results are passed in the same way.
if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
RetCC_X86, RetCC_X86))
return false;
// The callee has to preserve all registers the caller needs to preserve.
const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
if (!CCMatch) {
const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
return false;
}
unsigned StackArgsSize = 0;
// If the callee takes no arguments then go on to check the results of the
// call.
if (!Outs.empty()) {
// Check if stack adjustment is needed. For now, do not do this if any
// argument is passed on the stack.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
// Allocate shadow area for Win64
if (IsCalleeWin64)
CCInfo.AllocateStack(32, 8);
CCInfo.AnalyzeCallOperands(Outs, CC_X86);
StackArgsSize = CCInfo.getNextStackOffset();
if (CCInfo.getNextStackOffset()) {
// Check if the arguments are already laid out in the right way as
// the caller's fixed stack objects.
MachineFrameInfo &MFI = MF.getFrameInfo();
const MachineRegisterInfo *MRI = &MF.getRegInfo();
const X86InstrInfo *TII = Subtarget.getInstrInfo();
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
if (VA.getLocInfo() == CCValAssign::Indirect)
return false;
if (!VA.isRegLoc()) {
if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
MFI, MRI, TII, VA))
return false;
}
}
}
bool PositionIndependent = isPositionIndependent();
// If the tailcall address may be in a register, then make sure it's
// possible to register allocate for it. In 32-bit, the call address can
// only target EAX, EDX, or ECX since the tail call must be scheduled after
// callee-saved registers are restored. These happen to be the same
// registers used to pass 'inreg' arguments so watch out for those.
if (!Subtarget.is64Bit() && ((!isa<GlobalAddressSDNode>(Callee) &&
!isa<ExternalSymbolSDNode>(Callee)) ||
PositionIndependent)) {
unsigned NumInRegs = 0;
// In PIC we need an extra register to formulate the address computation
// for the callee.
unsigned MaxInRegs = PositionIndependent ? 2 : 3;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (!VA.isRegLoc())
continue;
unsigned Reg = VA.getLocReg();
switch (Reg) {
default: break;
case X86::EAX: case X86::EDX: case X86::ECX:
if (++NumInRegs == MaxInRegs)
return false;
break;
}
}
}
const MachineRegisterInfo &MRI = MF.getRegInfo();
if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
return false;
}
bool CalleeWillPop =
X86::isCalleePop(CalleeCC, Subtarget.is64Bit(), isVarArg,
MF.getTarget().Options.GuaranteedTailCallOpt);
if (unsigned BytesToPop =
MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn()) {
// If we have bytes to pop, the callee must pop them.
bool CalleePopMatches = CalleeWillPop && BytesToPop == StackArgsSize;
if (!CalleePopMatches)
return false;
} else if (CalleeWillPop && StackArgsSize > 0) {
// If we don't have bytes to pop, make sure the callee doesn't pop any.
return false;
}
return true;
}
FastISel *
X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) const {
return X86::createFastISel(funcInfo, libInfo);
}
//===----------------------------------------------------------------------===//
// Other Lowering Hooks
//===----------------------------------------------------------------------===//
static bool MayFoldLoad(SDValue Op) {
return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
}
static bool MayFoldIntoStore(SDValue Op) {
return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
}
static bool MayFoldIntoZeroExtend(SDValue Op) {
if (Op.hasOneUse()) {
unsigned Opcode = Op.getNode()->use_begin()->getOpcode();
return (ISD::ZERO_EXTEND == Opcode);
}
return false;
}
static bool isTargetShuffle(unsigned Opcode) {
switch(Opcode) {
default: return false;
case X86ISD::BLENDI:
case X86ISD::PSHUFB:
case X86ISD::PSHUFD:
case X86ISD::PSHUFHW:
case X86ISD::PSHUFLW:
case X86ISD::SHUFP:
case X86ISD::INSERTPS:
case X86ISD::EXTRQI:
case X86ISD::INSERTQI:
case X86ISD::PALIGNR:
case X86ISD::VSHLDQ:
case X86ISD::VSRLDQ:
case X86ISD::MOVLHPS:
case X86ISD::MOVHLPS:
case X86ISD::MOVSHDUP:
case X86ISD::MOVSLDUP:
case X86ISD::MOVDDUP:
case X86ISD::MOVSS:
case X86ISD::MOVSD:
case X86ISD::UNPCKL:
case X86ISD::UNPCKH:
case X86ISD::VBROADCAST:
case X86ISD::VPERMILPI:
case X86ISD::VPERMILPV:
case X86ISD::VPERM2X128:
case X86ISD::SHUF128:
case X86ISD::VPERMIL2:
case X86ISD::VPERMI:
case X86ISD::VPPERM:
case X86ISD::VPERMV:
case X86ISD::VPERMV3:
case X86ISD::VZEXT_MOVL:
return true;
}
}
static bool isTargetShuffleVariableMask(unsigned Opcode) {
switch (Opcode) {
default: return false;
// Target Shuffles.
case X86ISD::PSHUFB:
case X86ISD::VPERMILPV:
case X86ISD::VPERMIL2:
case X86ISD::VPPERM:
case X86ISD::VPERMV:
case X86ISD::VPERMV3:
return true;
// 'Faux' Target Shuffles.
case ISD::AND:
case X86ISD::ANDNP:
return true;
}
}
SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
int ReturnAddrIndex = FuncInfo->getRAIndex();
if (ReturnAddrIndex == 0) {
// Set up a frame object for the return address.
unsigned SlotSize = RegInfo->getSlotSize();
ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject(SlotSize,
-(int64_t)SlotSize,
false);
FuncInfo->setRAIndex(ReturnAddrIndex);
}
return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy(DAG.getDataLayout()));
}
bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
bool hasSymbolicDisplacement) {
// Offset should fit into 32 bit immediate field.
if (!isInt<32>(Offset))
return false;
// If we don't have a symbolic displacement - we don't have any extra
// restrictions.
if (!hasSymbolicDisplacement)
return true;
// FIXME: Some tweaks might be needed for medium code model.
if (M != CodeModel::Small && M != CodeModel::Kernel)
return false;
// For small code model we assume that latest object is 16MB before end of 31
// bits boundary. We may also accept pretty large negative constants knowing
// that all objects are in the positive half of address space.
if (M == CodeModel::Small && Offset < 16*1024*1024)
return true;
// For kernel code model we know that all object resist in the negative half
// of 32bits address space. We may not accept negative offsets, since they may
// be just off and we may accept pretty large positive ones.
if (M == CodeModel::Kernel && Offset >= 0)
return true;
return false;
}
/// Determines whether the callee is required to pop its own arguments.
/// Callee pop is necessary to support tail calls.
bool X86::isCalleePop(CallingConv::ID CallingConv,
bool is64Bit, bool IsVarArg, bool GuaranteeTCO) {
// If GuaranteeTCO is true, we force some calls to be callee pop so that we
// can guarantee TCO.
if (!IsVarArg && shouldGuaranteeTCO(CallingConv, GuaranteeTCO))
return true;
switch (CallingConv) {
default:
return false;
case CallingConv::X86_StdCall:
case CallingConv::X86_FastCall:
case CallingConv::X86_ThisCall:
case CallingConv::X86_VectorCall:
return !is64Bit;
}
}
/// Return true if the condition is an unsigned comparison operation.
static bool isX86CCUnsigned(unsigned X86CC) {
switch (X86CC) {
default:
llvm_unreachable("Invalid integer condition!");
case X86::COND_E:
case X86::COND_NE:
case X86::COND_B:
case X86::COND_A:
case X86::COND_BE:
case X86::COND_AE:
return true;
case X86::COND_G:
case X86::COND_GE:
case X86::COND_L:
case X86::COND_LE:
return false;
}
}
static X86::CondCode TranslateIntegerX86CC(ISD::CondCode SetCCOpcode) {
switch (SetCCOpcode) {
default: llvm_unreachable("Invalid integer condition!");
case ISD::SETEQ: return X86::COND_E;
case ISD::SETGT: return X86::COND_G;
case ISD::SETGE: return X86::COND_GE;
case ISD::SETLT: return X86::COND_L;
case ISD::SETLE: return X86::COND_LE;
case ISD::SETNE: return X86::COND_NE;
case ISD::SETULT: return X86::COND_B;
case ISD::SETUGT: return X86::COND_A;
case ISD::SETULE: return X86::COND_BE;
case ISD::SETUGE: return X86::COND_AE;
}
}
/// Do a one-to-one translation of a ISD::CondCode to the X86-specific
/// condition code, returning the condition code and the LHS/RHS of the
/// comparison to make.
static X86::CondCode TranslateX86CC(ISD::CondCode SetCCOpcode, const SDLoc &DL,
bool isFP, SDValue &LHS, SDValue &RHS,
SelectionDAG &DAG) {
if (!isFP) {
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
// X > -1 -> X == 0, jump !sign.
RHS = DAG.getConstant(0, DL, RHS.getValueType());
return X86::COND_NS;
}
if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
// X < 0 -> X == 0, jump on sign.
return X86::COND_S;
}
if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
// X < 1 -> X <= 0
RHS = DAG.getConstant(0, DL, RHS.getValueType());
return X86::COND_LE;
}
}
return TranslateIntegerX86CC(SetCCOpcode);
}
// First determine if it is required or is profitable to flip the operands.
// If LHS is a foldable load, but RHS is not, flip the condition.
if (ISD::isNON_EXTLoad(LHS.getNode()) &&
!ISD::isNON_EXTLoad(RHS.getNode())) {
SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
std::swap(LHS, RHS);
}
switch (SetCCOpcode) {
default: break;
case ISD::SETOLT:
case ISD::SETOLE:
case ISD::SETUGT:
case ISD::SETUGE:
std::swap(LHS, RHS);
break;
}
// On a floating point condition, the flags are set as follows:
// ZF PF CF op
// 0 | 0 | 0 | X > Y
// 0 | 0 | 1 | X < Y
// 1 | 0 | 0 | X == Y
// 1 | 1 | 1 | unordered
switch (SetCCOpcode) {
default: llvm_unreachable("Condcode should be pre-legalized away");
case ISD::SETUEQ:
case ISD::SETEQ: return X86::COND_E;
case ISD::SETOLT: // flipped
case ISD::SETOGT:
case ISD::SETGT: return X86::COND_A;
case ISD::SETOLE: // flipped
case ISD::SETOGE:
case ISD::SETGE: return X86::COND_AE;
case ISD::SETUGT: // flipped
case ISD::SETULT:
case ISD::SETLT: return X86::COND_B;
case ISD::SETUGE: // flipped
case ISD::SETULE:
case ISD::SETLE: return X86::COND_BE;
case ISD::SETONE:
case ISD::SETNE: return X86::COND_NE;
case ISD::SETUO: return X86::COND_P;
case ISD::SETO: return X86::COND_NP;
case ISD::SETOEQ:
case ISD::SETUNE: return X86::COND_INVALID;
}
}
/// Is there a floating point cmov for the specific X86 condition code?
/// Current x86 isa includes the following FP cmov instructions:
/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
static bool hasFPCMov(unsigned X86CC) {
switch (X86CC) {
default:
return false;
case X86::COND_B:
case X86::COND_BE:
case X86::COND_E:
case X86::COND_P:
case X86::COND_A:
case X86::COND_AE:
case X86::COND_NE:
case X86::COND_NP:
return true;
}
}
bool X86TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &I,
MachineFunction &MF,
unsigned Intrinsic) const {
const IntrinsicData* IntrData = getIntrinsicWithChain(Intrinsic);
if (!IntrData)
return false;
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.flags = MachineMemOperand::MONone;
Info.offset = 0;
switch (IntrData->Type) {
case TRUNCATE_TO_MEM_VI8:
case TRUNCATE_TO_MEM_VI16:
case TRUNCATE_TO_MEM_VI32: {
Info.ptrVal = I.getArgOperand(0);
MVT VT = MVT::getVT(I.getArgOperand(1)->getType());
MVT ScalarVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
if (IntrData->Type == TRUNCATE_TO_MEM_VI8)
ScalarVT = MVT::i8;
else if (IntrData->Type == TRUNCATE_TO_MEM_VI16)
ScalarVT = MVT::i16;
else if (IntrData->Type == TRUNCATE_TO_MEM_VI32)
ScalarVT = MVT::i32;
Info.memVT = MVT::getVectorVT(ScalarVT, VT.getVectorNumElements());
Info.align = 1;
Info.flags |= MachineMemOperand::MOStore;
break;
}
default:
return false;
}
return true;
}
/// Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
return true;
}
return false;
}
bool X86TargetLowering::shouldReduceLoadWidth(SDNode *Load,
ISD::LoadExtType ExtTy,
EVT NewVT) const {
// "ELF Handling for Thread-Local Storage" specifies that R_X86_64_GOTTPOFF
// relocation target a movq or addq instruction: don't let the load shrink.
SDValue BasePtr = cast<LoadSDNode>(Load)->getBasePtr();
if (BasePtr.getOpcode() == X86ISD::WrapperRIP)
if (const auto *GA = dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0)))
return GA->getTargetFlags() != X86II::MO_GOTTPOFF;
return true;
}
/// Returns true if it is beneficial to convert a load of a constant
/// to just the constant itself.
bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
if (BitSize == 0 || BitSize > 64)
return false;
return true;
}
bool X86TargetLowering::convertSelectOfConstantsToMath(EVT VT) const {
// TODO: It might be a win to ease or lift this restriction, but the generic
// folds in DAGCombiner conflict with vector folds for an AVX512 target.
if (VT.isVector() && Subtarget.hasAVX512())
return false;
return true;
}
bool X86TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
unsigned Index) const {
if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
return false;
// Mask vectors support all subregister combinations and operations that
// extract half of vector.
if (ResVT.getVectorElementType() == MVT::i1)
return Index == 0 || ((ResVT.getSizeInBits() == SrcVT.getSizeInBits()*2) &&
(Index == ResVT.getVectorNumElements()));
return (Index % ResVT.getVectorNumElements()) == 0;
}
bool X86TargetLowering::isCheapToSpeculateCttz() const {
// Speculate cttz only if we can directly use TZCNT.
return Subtarget.hasBMI();
}
bool X86TargetLowering::isCheapToSpeculateCtlz() const {
// Speculate ctlz only if we can directly use LZCNT.
return Subtarget.hasLZCNT();
}
bool X86TargetLowering::isLoadBitCastBeneficial(EVT LoadVT,
EVT BitcastVT) const {
if (!Subtarget.hasDQI() && BitcastVT == MVT::v8i1)
return false;
return TargetLowering::isLoadBitCastBeneficial(LoadVT, BitcastVT);
}
bool X86TargetLowering::canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
const SelectionDAG &DAG) const {
// Do not merge to float value size (128 bytes) if no implicit
// float attribute is set.
bool NoFloat = DAG.getMachineFunction().getFunction().hasFnAttribute(
Attribute::NoImplicitFloat);
if (NoFloat) {
unsigned MaxIntSize = Subtarget.is64Bit() ? 64 : 32;
return (MemVT.getSizeInBits() <= MaxIntSize);
}
return true;
}
bool X86TargetLowering::isCtlzFast() const {
return Subtarget.hasFastLZCNT();
}
bool X86TargetLowering::isMaskAndCmp0FoldingBeneficial(
const Instruction &AndI) const {
return true;
}
bool X86TargetLowering::hasAndNotCompare(SDValue Y) const {
EVT VT = Y.getValueType();
if (VT.isVector())
return false;
if (!Subtarget.hasBMI())
return false;
// There are only 32-bit and 64-bit forms for 'andn'.
if (VT != MVT::i32 && VT != MVT::i64)
return false;
// A mask and compare against constant is ok for an 'andn' too
// even though the BMI instruction doesn't have an immediate form.
return true;
}
bool X86TargetLowering::hasAndNot(SDValue Y) const {
EVT VT = Y.getValueType();
if (!VT.isVector()) // x86 can't form 'andn' with an immediate.
return !isa<ConstantSDNode>(Y) && hasAndNotCompare(Y);
// Vector.
if (!Subtarget.hasSSE1() || VT.getSizeInBits() < 128)
return false;
if (VT == MVT::v4i32)
return true;
return Subtarget.hasSSE2();
}
bool X86TargetLowering::preferShiftsToClearExtremeBits(SDValue Y) const {
EVT VT = Y.getValueType();
// For vectors, we don't have a preference, but we probably want a mask.
if (VT.isVector())
return false;
// 64-bit shifts on 32-bit targets produce really bad bloated code.
if (VT == MVT::i64 && !Subtarget.is64Bit())
return false;
return true;
}
MVT X86TargetLowering::hasFastEqualityCompare(unsigned NumBits) const {
MVT VT = MVT::getIntegerVT(NumBits);
if (isTypeLegal(VT))
return VT;
// PMOVMSKB can handle this.
if (NumBits == 128 && isTypeLegal(MVT::v16i8))
return MVT::v16i8;
// VPMOVMSKB can handle this.
if (NumBits == 256 && isTypeLegal(MVT::v32i8))
return MVT::v32i8;
// TODO: Allow 64-bit type for 32-bit target.
// TODO: 512-bit types should be allowed, but make sure that those
// cases are handled in combineVectorSizedSetCCEquality().
return MVT::INVALID_SIMPLE_VALUE_TYPE;
}
/// Val is the undef sentinel value or equal to the specified value.
static bool isUndefOrEqual(int Val, int CmpVal) {
return ((Val == SM_SentinelUndef) || (Val == CmpVal));
}
/// Val is either the undef or zero sentinel value.
static bool isUndefOrZero(int Val) {
return ((Val == SM_SentinelUndef) || (Val == SM_SentinelZero));
}
/// Return true if every element in Mask, beginning
/// from position Pos and ending in Pos+Size is the undef sentinel value.
static bool isUndefInRange(ArrayRef<int> Mask, unsigned Pos, unsigned Size) {
for (unsigned i = Pos, e = Pos + Size; i != e; ++i)
if (Mask[i] != SM_SentinelUndef)
return false;
return true;
}
/// Return true if Val falls within the specified range (L, H].
static bool isInRange(int Val, int Low, int Hi) {
return (Val >= Low && Val < Hi);
}
/// Return true if the value of any element in Mask falls within the specified
/// range (L, H].
static bool isAnyInRange(ArrayRef<int> Mask, int Low, int Hi) {
for (int M : Mask)
if (isInRange(M, Low, Hi))
return true;
return false;
}
/// Return true if Val is undef or if its value falls within the
/// specified range (L, H].
static bool isUndefOrInRange(int Val, int Low, int Hi) {
return (Val == SM_SentinelUndef) || isInRange(Val, Low, Hi);
}
/// Return true if every element in Mask is undef or if its value
/// falls within the specified range (L, H].
static bool isUndefOrInRange(ArrayRef<int> Mask,
int Low, int Hi) {
for (int M : Mask)
if (!isUndefOrInRange(M, Low, Hi))
return false;
return true;
}
/// Return true if Val is undef, zero or if its value falls within the
/// specified range (L, H].
static bool isUndefOrZeroOrInRange(int Val, int Low, int Hi) {
return isUndefOrZero(Val) || isInRange(Val, Low, Hi);
}
/// Return true if every element in Mask is undef, zero or if its value
/// falls within the specified range (L, H].
static bool isUndefOrZeroOrInRange(ArrayRef<int> Mask, int Low, int Hi) {
for (int M : Mask)
if (!isUndefOrZeroOrInRange(M, Low, Hi))
return false;
return true;
}
/// Return true if every element in Mask, beginning
/// from position Pos and ending in Pos + Size, falls within the specified
/// sequence (Low, Low + Step, ..., Low + (Size - 1) * Step) or is undef.
static bool isSequentialOrUndefInRange(ArrayRef<int> Mask, unsigned Pos,
unsigned Size, int Low, int Step = 1) {
for (unsigned i = Pos, e = Pos + Size; i != e; ++i, Low += Step)
if (!isUndefOrEqual(Mask[i], Low))
return false;
return true;
}
/// Return true if every element in Mask, beginning
/// from position Pos and ending in Pos+Size, falls within the specified
/// sequential range (Low, Low+Size], or is undef or is zero.
static bool isSequentialOrUndefOrZeroInRange(ArrayRef<int> Mask, unsigned Pos,
unsigned Size, int Low) {
for (unsigned i = Pos, e = Pos + Size; i != e; ++i, ++Low)
if (!isUndefOrZero(Mask[i]) && Mask[i] != Low)
return false;
return true;
}
/// Return true if every element in Mask, beginning
/// from position Pos and ending in Pos+Size is undef or is zero.
static bool isUndefOrZeroInRange(ArrayRef<int> Mask, unsigned Pos,
unsigned Size) {
for (unsigned i = Pos, e = Pos + Size; i != e; ++i)
if (!isUndefOrZero(Mask[i]))
return false;
return true;
}
/// Helper function to test whether a shuffle mask could be
/// simplified by widening the elements being shuffled.
///
/// Appends the mask for wider elements in WidenedMask if valid. Otherwise
/// leaves it in an unspecified state.
///
/// NOTE: This must handle normal vector shuffle masks and *target* vector
/// shuffle masks. The latter have the special property of a '-2' representing
/// a zero-ed lane of a vector.
static bool canWidenShuffleElements(ArrayRef<int> Mask,
SmallVectorImpl<int> &WidenedMask) {
WidenedMask.assign(Mask.size() / 2, 0);
for (int i = 0, Size = Mask.size(); i < Size; i += 2) {
int M0 = Mask[i];
int M1 = Mask[i + 1];
// If both elements are undef, its trivial.
if (M0 == SM_SentinelUndef && M1 == SM_SentinelUndef) {
WidenedMask[i / 2] = SM_SentinelUndef;
continue;
}
// Check for an undef mask and a mask value properly aligned to fit with
// a pair of values. If we find such a case, use the non-undef mask's value.
if (M0 == SM_SentinelUndef && M1 >= 0 && (M1 % 2) == 1) {
WidenedMask[i / 2] = M1 / 2;
continue;
}
if (M1 == SM_SentinelUndef && M0 >= 0 && (M0 % 2) == 0) {
WidenedMask[i / 2] = M0 / 2;
continue;
}
// When zeroing, we need to spread the zeroing across both lanes to widen.
if (M0 == SM_SentinelZero || M1 == SM_SentinelZero) {
if ((M0 == SM_SentinelZero || M0 == SM_SentinelUndef) &&
(M1 == SM_SentinelZero || M1 == SM_SentinelUndef)) {
WidenedMask[i / 2] = SM_SentinelZero;
continue;
}
return false;
}
// Finally check if the two mask values are adjacent and aligned with
// a pair.
if (M0 != SM_SentinelUndef && (M0 % 2) == 0 && (M0 + 1) == M1) {
WidenedMask[i / 2] = M0 / 2;
continue;
}
// Otherwise we can't safely widen the elements used in this shuffle.
return false;
}
assert(WidenedMask.size() == Mask.size() / 2 &&
"Incorrect size of mask after widening the elements!");
return true;
}
static bool canWidenShuffleElements(ArrayRef<int> Mask,
const APInt &Zeroable,
SmallVectorImpl<int> &WidenedMask) {
SmallVector<int, 32> TargetMask(Mask.begin(), Mask.end());
for (int i = 0, Size = TargetMask.size(); i < Size; ++i) {
if (TargetMask[i] == SM_SentinelUndef)
continue;
if (Zeroable[i])
TargetMask[i] = SM_SentinelZero;
}
return canWidenShuffleElements(TargetMask, WidenedMask);
}
static bool canWidenShuffleElements(ArrayRef<int> Mask) {
SmallVector<int, 32> WidenedMask;
return canWidenShuffleElements(Mask, WidenedMask);
}
/// Returns true if Elt is a constant zero or a floating point constant +0.0.
bool X86::isZeroNode(SDValue Elt) {
return isNullConstant(Elt) || isNullFPConstant(Elt);
}
// Build a vector of constants.
// Use an UNDEF node if MaskElt == -1.
// Split 64-bit constants in the 32-bit mode.
static SDValue getConstVector(ArrayRef<int> Values, MVT VT, SelectionDAG &DAG,
const SDLoc &dl, bool IsMask = false) {
SmallVector<SDValue, 32> Ops;
bool Split = false;
MVT ConstVecVT = VT;
unsigned NumElts = VT.getVectorNumElements();
bool In64BitMode = DAG.getTargetLoweringInfo().isTypeLegal(MVT::i64);
if (!In64BitMode && VT.getVectorElementType() == MVT::i64) {
ConstVecVT = MVT::getVectorVT(MVT::i32, NumElts * 2);
Split = true;
}
MVT EltVT = ConstVecVT.getVectorElementType();
for (unsigned i = 0; i < NumElts; ++i) {
bool IsUndef = Values[i] < 0 && IsMask;
SDValue OpNode = IsUndef ? DAG.getUNDEF(EltVT) :
DAG.getConstant(Values[i], dl, EltVT);
Ops.push_back(OpNode);
if (Split)
Ops.push_back(IsUndef ? DAG.getUNDEF(EltVT) :
DAG.getConstant(0, dl, EltVT));
}
SDValue ConstsNode = DAG.getBuildVector(ConstVecVT, dl, Ops);
if (Split)
ConstsNode = DAG.getBitcast(VT, ConstsNode);
return ConstsNode;
}
static SDValue getConstVector(ArrayRef<APInt> Bits, APInt &Undefs,
MVT VT, SelectionDAG &DAG, const SDLoc &dl) {
assert(Bits.size() == Undefs.getBitWidth() &&
"Unequal constant and undef arrays");
SmallVector<SDValue, 32> Ops;
bool Split = false;
MVT ConstVecVT = VT;
unsigned NumElts = VT.getVectorNumElements();
bool In64BitMode = DAG.getTargetLoweringInfo().isTypeLegal(MVT::i64);
if (!In64BitMode && VT.getVectorElementType() == MVT::i64) {
ConstVecVT = MVT::getVectorVT(MVT::i32, NumElts * 2);
Split = true;
}
MVT EltVT = ConstVecVT.getVectorElementType();
for (unsigned i = 0, e = Bits.size(); i != e; ++i) {
if (Undefs[i]) {
Ops.append(Split ? 2 : 1, DAG.getUNDEF(EltVT));
continue;
}
const APInt &V = Bits[i];
assert(V.getBitWidth() == VT.getScalarSizeInBits() && "Unexpected sizes");
if (Split) {
Ops.push_back(DAG.getConstant(V.trunc(32), dl, EltVT));
Ops.push_back(DAG.getConstant(V.lshr(32).trunc(32), dl, EltVT));
} else if (EltVT == MVT::f32) {
APFloat FV(APFloat::IEEEsingle(), V);
Ops.push_back(DAG.getConstantFP(FV, dl, EltVT));
} else if (EltVT == MVT::f64) {
APFloat FV(APFloat::IEEEdouble(), V);
Ops.push_back(DAG.getConstantFP(FV, dl, EltVT));
} else {
Ops.push_back(DAG.getConstant(V, dl, EltVT));
}
}
SDValue ConstsNode = DAG.getBuildVector(ConstVecVT, dl, Ops);
return DAG.getBitcast(VT, ConstsNode);
}
/// Returns a vector of specified type with all zero elements.
static SDValue getZeroVector(MVT VT, const X86Subtarget &Subtarget,
SelectionDAG &DAG, const SDLoc &dl) {
assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector() ||
VT.getVectorElementType() == MVT::i1) &&
"Unexpected vector type");
// Try to build SSE/AVX zero vectors as <N x i32> bitcasted to their dest
// type. This ensures they get CSE'd. But if the integer type is not
// available, use a floating-point +0.0 instead.
SDValue Vec;
if (!Subtarget.hasSSE2() && VT.is128BitVector()) {
Vec = DAG.getConstantFP(+0.0, dl, MVT::v4f32);
} else if (VT.getVectorElementType() == MVT::i1) {
assert((Subtarget.hasBWI() || VT.getVectorNumElements() <= 16) &&
"Unexpected vector type");
Vec = DAG.getConstant(0, dl, VT);
} else {
unsigned Num32BitElts = VT.getSizeInBits() / 32;
Vec = DAG.getConstant(0, dl, MVT::getVectorVT(MVT::i32, Num32BitElts));
}
return DAG.getBitcast(VT, Vec);
}
static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG,
const SDLoc &dl, unsigned vectorWidth) {
EVT VT = Vec.getValueType();
EVT ElVT = VT.getVectorElementType();
unsigned Factor = VT.getSizeInBits()/vectorWidth;
EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
VT.getVectorNumElements()/Factor);
// Extract the relevant vectorWidth bits. Generate an EXTRACT_SUBVECTOR
unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
// This is the index of the first element of the vectorWidth-bit chunk
// we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
IdxVal &= ~(ElemsPerChunk - 1);
// If the input is a buildvector just emit a smaller one.
if (Vec.getOpcode() == ISD::BUILD_VECTOR)
return DAG.getBuildVector(ResultVT, dl,
Vec->ops().slice(IdxVal, ElemsPerChunk));
SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, VecIdx);
}
/// Generate a DAG to grab 128-bits from a vector > 128 bits. This
/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
/// instructions or a simple subregister reference. Idx is an index in the
/// 128 bits we want. It need not be aligned to a 128-bit boundary. That makes
/// lowering EXTRACT_VECTOR_ELT operations easier.
static SDValue extract128BitVector(SDValue Vec, unsigned IdxVal,
SelectionDAG &DAG, const SDLoc &dl) {
assert((Vec.getValueType().is256BitVector() ||
Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
return extractSubVector(Vec, IdxVal, DAG, dl, 128);
}
/// Generate a DAG to grab 256-bits from a 512-bit vector.
static SDValue extract256BitVector(SDValue Vec, unsigned IdxVal,
SelectionDAG &DAG, const SDLoc &dl) {
assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
return extractSubVector(Vec, IdxVal, DAG, dl, 256);
}
static SDValue insertSubVector(SDValue Result, SDValue Vec, unsigned IdxVal,
SelectionDAG &DAG, const SDLoc &dl,
unsigned vectorWidth) {
assert((vectorWidth == 128 || vectorWidth == 256) &&
"Unsupported vector width");
// Inserting UNDEF is Result
if (Vec.isUndef())
return Result;
EVT VT = Vec.getValueType();
EVT ElVT = VT.getVectorElementType();
EVT ResultVT = Result.getValueType();
// Insert the relevant vectorWidth bits.
unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
// This is the index of the first element of the vectorWidth-bit chunk
// we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
IdxVal &= ~(ElemsPerChunk - 1);
SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl);
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, VecIdx);
}
/// Generate a DAG to put 128-bits into a vector > 128 bits. This
/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
/// simple superregister reference. Idx is an index in the 128 bits
/// we want. It need not be aligned to a 128-bit boundary. That makes
/// lowering INSERT_VECTOR_ELT operations easier.
static SDValue insert128BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
SelectionDAG &DAG, const SDLoc &dl) {
assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
return insertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
}
/// Widen a vector to a larger size with the same scalar type, with the new
/// elements either zero or undef.
static SDValue widenSubVector(MVT VT, SDValue Vec, bool ZeroNewElements,
const X86Subtarget &Subtarget, SelectionDAG &DAG,
const SDLoc &dl) {
assert(Vec.getValueSizeInBits() < VT.getSizeInBits() &&
Vec.getValueType().getScalarType() == VT.getScalarType() &&
"Unsupported vector widening type");
SDValue Res = ZeroNewElements ? getZeroVector(VT, Subtarget, DAG, dl)
: DAG.getUNDEF(VT);
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, Vec,
DAG.getIntPtrConstant(0, dl));
}
// Helper for splitting operands of an operation to legal target size and
// apply a function on each part.
// Useful for operations that are available on SSE2 in 128-bit, on AVX2 in
// 256-bit and on AVX512BW in 512-bit. The argument VT is the type used for
// deciding if/how to split Ops. Ops elements do *not* have to be of type VT.
// The argument Builder is a function that will be applied on each split part:
// SDValue Builder(SelectionDAG&G, SDLoc, ArrayRef<SDValue>)
template <typename F>
SDValue SplitOpsAndApply(SelectionDAG &DAG, const X86Subtarget &Subtarget,
const SDLoc &DL, EVT VT, ArrayRef<SDValue> Ops,
F Builder, bool CheckBWI = true) {
assert(Subtarget.hasSSE2() && "Target assumed to support at least SSE2");
unsigned NumSubs = 1;
if ((CheckBWI && Subtarget.useBWIRegs()) ||
(!CheckBWI && Subtarget.useAVX512Regs())) {
if (VT.getSizeInBits() > 512) {
NumSubs = VT.getSizeInBits() / 512;
assert((VT.getSizeInBits() % 512) == 0 && "Illegal vector size");
}
} else if (Subtarget.hasAVX2()) {
if (VT.getSizeInBits() > 256) {
NumSubs = VT.getSizeInBits() / 256;
assert((VT.getSizeInBits() % 256) == 0 && "Illegal vector size");
}
} else {
if (VT.getSizeInBits() > 128) {
NumSubs = VT.getSizeInBits() / 128;
assert((VT.getSizeInBits() % 128) == 0 && "Illegal vector size");
}
}
if (NumSubs == 1)
return Builder(DAG, DL, Ops);
SmallVector<SDValue, 4> Subs;
for (unsigned i = 0; i != NumSubs; ++i) {
SmallVector<SDValue, 2> SubOps;
for (SDValue Op : Ops) {
EVT OpVT = Op.getValueType();
unsigned NumSubElts = OpVT.getVectorNumElements() / NumSubs;
unsigned SizeSub = OpVT.getSizeInBits() / NumSubs;
SubOps.push_back(extractSubVector(Op, i * NumSubElts, DAG, DL, SizeSub));
}
Subs.push_back(Builder(DAG, DL, SubOps));
}
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Subs);
}
// Return true if the instruction zeroes the unused upper part of the
// destination and accepts mask.
static bool isMaskedZeroUpperBitsvXi1(unsigned int Opcode) {
switch (Opcode) {
default:
return false;
case X86ISD::CMPM:
case X86ISD::CMPM_RND:
case ISD::SETCC:
return true;
}
}
/// Insert i1-subvector to i1-vector.
static SDValue insert1BitVector(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc dl(Op);
SDValue Vec = Op.getOperand(0);
SDValue SubVec = Op.getOperand(1);
SDValue Idx = Op.getOperand(2);
if (!isa<ConstantSDNode>(Idx))
return SDValue();
// Inserting undef is a nop. We can just return the original vector.
if (SubVec.isUndef())
return Vec;
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
if (IdxVal == 0 && Vec.isUndef()) // the operation is legal
return Op;
MVT OpVT = Op.getSimpleValueType();
unsigned NumElems = OpVT.getVectorNumElements();
SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl);
// Extend to natively supported kshift.
MVT WideOpVT = OpVT;
if ((!Subtarget.hasDQI() && NumElems == 8) || NumElems < 8)
WideOpVT = Subtarget.hasDQI() ? MVT::v8i1 : MVT::v16i1;
// Inserting into the lsbs of a zero vector is legal. ISel will insert shifts
// if necessary.
if (IdxVal == 0 && ISD::isBuildVectorAllZeros(Vec.getNode())) {
// May need to promote to a legal type.
Op = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
getZeroVector(WideOpVT, Subtarget, DAG, dl),
SubVec, Idx);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx);
}
MVT SubVecVT = SubVec.getSimpleValueType();
unsigned SubVecNumElems = SubVecVT.getVectorNumElements();
assert(IdxVal + SubVecNumElems <= NumElems &&
IdxVal % SubVecVT.getSizeInBits() == 0 &&
"Unexpected index value in INSERT_SUBVECTOR");
SDValue Undef = DAG.getUNDEF(WideOpVT);
if (IdxVal == 0) {
// Zero lower bits of the Vec
SDValue ShiftBits = DAG.getConstant(SubVecNumElems, dl, MVT::i8);
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, Undef, Vec,
ZeroIdx);
Vec = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Vec, ShiftBits);
Vec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, Vec, ShiftBits);
// Merge them together, SubVec should be zero extended.
SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
getZeroVector(WideOpVT, Subtarget, DAG, dl),
SubVec, ZeroIdx);
Op = DAG.getNode(ISD::OR, dl, WideOpVT, Vec, SubVec);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx);
}
SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
Undef, SubVec, ZeroIdx);
if (Vec.isUndef()) {
assert(IdxVal != 0 && "Unexpected index");
SubVec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, SubVec,
DAG.getConstant(IdxVal, dl, MVT::i8));
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, SubVec, ZeroIdx);
}
if (ISD::isBuildVectorAllZeros(Vec.getNode())) {
assert(IdxVal != 0 && "Unexpected index");
NumElems = WideOpVT.getVectorNumElements();
unsigned ShiftLeft = NumElems - SubVecNumElems;
unsigned ShiftRight = NumElems - SubVecNumElems - IdxVal;
SubVec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, SubVec,
DAG.getConstant(ShiftLeft, dl, MVT::i8));
if (ShiftRight != 0)
SubVec = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, SubVec,
DAG.getConstant(ShiftRight, dl, MVT::i8));
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, SubVec, ZeroIdx);
}
// Simple case when we put subvector in the upper part
if (IdxVal + SubVecNumElems == NumElems) {
SubVec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, SubVec,
DAG.getConstant(IdxVal, dl, MVT::i8));
if (SubVecNumElems * 2 == NumElems) {
// Special case, use legal zero extending insert_subvector. This allows
// isel to opimitize when bits are known zero.
Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVecVT, Vec, ZeroIdx);
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
getZeroVector(WideOpVT, Subtarget, DAG, dl),
Vec, ZeroIdx);
} else {
// Otherwise use explicit shifts to zero the bits.
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
Undef, Vec, ZeroIdx);
NumElems = WideOpVT.getVectorNumElements();
SDValue ShiftBits = DAG.getConstant(NumElems - IdxVal, dl, MVT::i8);
Vec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, Vec, ShiftBits);
Vec = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Vec, ShiftBits);
}
Op = DAG.getNode(ISD::OR, dl, WideOpVT, Vec, SubVec);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx);
}
// Inserting into the middle is more complicated.
NumElems = WideOpVT.getVectorNumElements();
// Widen the vector if needed.
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, Undef, Vec, ZeroIdx);
// Move the current value of the bit to be replace to the lsbs.
Op = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Vec,
DAG.getConstant(IdxVal, dl, MVT::i8));
// Xor with the new bit.
Op = DAG.getNode(ISD::XOR, dl, WideOpVT, Op, SubVec);
// Shift to MSB, filling bottom bits with 0.
unsigned ShiftLeft = NumElems - SubVecNumElems;
Op = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, Op,
DAG.getConstant(ShiftLeft, dl, MVT::i8));
// Shift to the final position, filling upper bits with 0.
unsigned ShiftRight = NumElems - SubVecNumElems - IdxVal;
Op = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Op,
DAG.getConstant(ShiftRight, dl, MVT::i8));
// Xor with original vector leaving the new value.
Op = DAG.getNode(ISD::XOR, dl, WideOpVT, Vec, Op);
// Reduce to original width if needed.
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx);
}
static SDValue concatSubVectors(SDValue V1, SDValue V2, EVT VT,
unsigned NumElems, SelectionDAG &DAG,
const SDLoc &dl, unsigned VectorWidth) {
SDValue V = insertSubVector(DAG.getUNDEF(VT), V1, 0, DAG, dl, VectorWidth);
return insertSubVector(V, V2, NumElems / 2, DAG, dl, VectorWidth);
}
/// Returns a vector of specified type with all bits set.
/// Always build ones vectors as <4 x i32>, <8 x i32> or <16 x i32>.
/// Then bitcast to their original type, ensuring they get CSE'd.
static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
"Expected a 128/256/512-bit vector type");
APInt Ones = APInt::getAllOnesValue(32);
unsigned NumElts = VT.getSizeInBits() / 32;
SDValue Vec = DAG.getConstant(Ones, dl, MVT::getVectorVT(MVT::i32, NumElts));
return DAG.getBitcast(VT, Vec);
}
static SDValue getExtendInVec(unsigned Opc, const SDLoc &DL, EVT VT, SDValue In,
SelectionDAG &DAG) {
EVT InVT = In.getValueType();
assert((X86ISD::VSEXT == Opc || X86ISD::VZEXT == Opc) && "Unexpected opcode");
if (VT.is128BitVector() && InVT.is128BitVector())
return X86ISD::VSEXT == Opc ? DAG.getSignExtendVectorInReg(In, DL, VT)
: DAG.getZeroExtendVectorInReg(In, DL, VT);
// For 256-bit vectors, we only need the lower (128-bit) input half.
// For 512-bit vectors, we only need the lower input half or quarter.
if (VT.getSizeInBits() > 128 && InVT.getSizeInBits() > 128) {
int Scale = VT.getScalarSizeInBits() / InVT.getScalarSizeInBits();
In = extractSubVector(In, 0, DAG, DL,
std::max(128, (int)VT.getSizeInBits() / Scale));
}
return DAG.getNode(Opc, DL, VT, In);
}
/// Returns a vector_shuffle node for an unpackl operation.
static SDValue getUnpackl(SelectionDAG &DAG, const SDLoc &dl, MVT VT,
SDValue V1, SDValue V2) {
SmallVector<int, 8> Mask;
createUnpackShuffleMask(VT, Mask, /* Lo = */ true, /* Unary = */ false);
return DAG.getVectorShuffle(VT, dl, V1, V2, Mask);
}
/// Returns a vector_shuffle node for an unpackh operation.
static SDValue getUnpackh(SelectionDAG &DAG, const SDLoc &dl, MVT VT,
SDValue V1, SDValue V2) {
SmallVector<int, 8> Mask;
createUnpackShuffleMask(VT, Mask, /* Lo = */ false, /* Unary = */ false);
return DAG.getVectorShuffle(VT, dl, V1, V2, Mask);
}
/// Return a vector_shuffle of the specified vector of zero or undef vector.
/// This produces a shuffle where the low element of V2 is swizzled into the
/// zero/undef vector, landing at element Idx.
/// This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
static SDValue getShuffleVectorZeroOrUndef(SDValue V2, int Idx,
bool IsZero,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = V2.getSimpleValueType();
SDValue V1 = IsZero
? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
int NumElems = VT.getVectorNumElements();
SmallVector<int, 16> MaskVec(NumElems);
for (int i = 0; i != NumElems; ++i)
// If this is the insertion idx, put the low elt of V2 here.
MaskVec[i] = (i == Idx) ? NumElems : i;
return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, MaskVec);
}
static SDValue peekThroughBitcasts(SDValue V) {
while (V.getNode() && V.getOpcode() == ISD::BITCAST)
V = V.getOperand(0);
return V;
}
static SDValue peekThroughOneUseBitcasts(SDValue V) {
while (V.getNode() && V.getOpcode() == ISD::BITCAST &&
V.getOperand(0).hasOneUse())
V = V.getOperand(0);
return V;
}
// Peek through EXTRACT_SUBVECTORs - typically used for AVX1 256-bit intops.
static SDValue peekThroughEXTRACT_SUBVECTORs(SDValue V) {
while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
V = V.getOperand(0);
return V;
}
static const Constant *getTargetConstantFromNode(SDValue Op) {
Op = peekThroughBitcasts(Op);
auto *Load = dyn_cast<LoadSDNode>(Op);
if (!Load)
return nullptr;
SDValue Ptr = Load->getBasePtr();
if (Ptr->getOpcode() == X86ISD::Wrapper ||
Ptr->getOpcode() == X86ISD::WrapperRIP)
Ptr = Ptr->getOperand(0);
auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr);
if (!CNode || CNode->isMachineConstantPoolEntry())
return nullptr;
return dyn_cast<Constant>(CNode->getConstVal());
}
// Extract raw constant bits from constant pools.
static bool getTargetConstantBitsFromNode(SDValue Op, unsigned EltSizeInBits,
APInt &UndefElts,
SmallVectorImpl<APInt> &EltBits,
bool AllowWholeUndefs = true,
bool AllowPartialUndefs = true) {
assert(EltBits.empty() && "Expected an empty EltBits vector");
Op = peekThroughBitcasts(Op);
EVT VT = Op.getValueType();
unsigned SizeInBits = VT.getSizeInBits();
assert((SizeInBits % EltSizeInBits) == 0 && "Can't split constant!");
unsigned NumElts = SizeInBits / EltSizeInBits;
// Bitcast a source array of element bits to the target size.
auto CastBitData = [&](APInt &UndefSrcElts, ArrayRef<APInt> SrcEltBits) {
unsigned NumSrcElts = UndefSrcElts.getBitWidth();
unsigned SrcEltSizeInBits = SrcEltBits[0].getBitWidth();
assert((NumSrcElts * SrcEltSizeInBits) == SizeInBits &&
"Constant bit sizes don't match");
// Don't split if we don't allow undef bits.
bool AllowUndefs = AllowWholeUndefs || AllowPartialUndefs;
if (UndefSrcElts.getBoolValue() && !AllowUndefs)
return false;
// If we're already the right size, don't bother bitcasting.
if (NumSrcElts == NumElts) {
UndefElts = UndefSrcElts;
EltBits.assign(SrcEltBits.begin(), SrcEltBits.end());
return true;
}
// Extract all the undef/constant element data and pack into single bitsets.
APInt UndefBits(SizeInBits, 0);
APInt MaskBits(SizeInBits, 0);
for (unsigned i = 0; i != NumSrcElts; ++i) {
unsigned BitOffset = i * SrcEltSizeInBits;
if (UndefSrcElts[i])
UndefBits.setBits(BitOffset, BitOffset + SrcEltSizeInBits);
MaskBits.insertBits(SrcEltBits[i], BitOffset);
}
// Split the undef/constant single bitset data into the target elements.
UndefElts = APInt(NumElts, 0);
EltBits.resize(NumElts, APInt(EltSizeInBits, 0));
for (unsigned i = 0; i != NumElts; ++i) {
unsigned BitOffset = i * EltSizeInBits;
APInt UndefEltBits = UndefBits.extractBits(EltSizeInBits, BitOffset);
// Only treat an element as UNDEF if all bits are UNDEF.
if (UndefEltBits.isAllOnesValue()) {
if (!AllowWholeUndefs)
return false;
UndefElts.setBit(i);
continue;
}
// If only some bits are UNDEF then treat them as zero (or bail if not
// supported).
if (UndefEltBits.getBoolValue() && !AllowPartialUndefs)
return false;
APInt Bits = MaskBits.extractBits(EltSizeInBits, BitOffset);
EltBits[i] = Bits.getZExtValue();
}
return true;
};
// Collect constant bits and insert into mask/undef bit masks.
auto CollectConstantBits = [](const Constant *Cst, APInt &Mask, APInt &Undefs,
unsigned UndefBitIndex) {
if (!Cst)
return false;
if (isa<UndefValue>(Cst)) {
Undefs.setBit(UndefBitIndex);
return true;
}
if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
Mask = CInt->getValue();
return true;
}
if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
Mask = CFP->getValueAPF().bitcastToAPInt();
return true;
}
return false;
};
// Handle UNDEFs.
if (Op.isUndef()) {
APInt UndefSrcElts = APInt::getAllOnesValue(NumElts);
SmallVector<APInt, 64> SrcEltBits(NumElts, APInt(EltSizeInBits, 0));
return CastBitData(UndefSrcElts, SrcEltBits);
}
// Extract scalar constant bits.
if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) {
APInt UndefSrcElts = APInt::getNullValue(1);
SmallVector<APInt, 64> SrcEltBits(1, Cst->getAPIntValue());
return CastBitData(UndefSrcElts, SrcEltBits);
}
if (auto *Cst = dyn_cast<ConstantFPSDNode>(Op)) {
APInt UndefSrcElts = APInt::getNullValue(1);
APInt RawBits = Cst->getValueAPF().bitcastToAPInt();
SmallVector<APInt, 64> SrcEltBits(1, RawBits);
return CastBitData(UndefSrcElts, SrcEltBits);
}
// Extract constant bits from build vector.
if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
unsigned SrcEltSizeInBits = VT.getScalarSizeInBits();
unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits;
APInt UndefSrcElts(NumSrcElts, 0);
SmallVector<APInt, 64> SrcEltBits(NumSrcElts, APInt(SrcEltSizeInBits, 0));
for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
const SDValue &Src = Op.getOperand(i);
if (Src.isUndef()) {
UndefSrcElts.setBit(i);
continue;
}
auto *Cst = cast<ConstantSDNode>(Src);
SrcEltBits[i] = Cst->getAPIntValue().zextOrTrunc(SrcEltSizeInBits);
}
return CastBitData(UndefSrcElts, SrcEltBits);
}
// Extract constant bits from constant pool vector.
if (auto *Cst = getTargetConstantFromNode(Op)) {
Type *CstTy = Cst->getType();
if (!CstTy->isVectorTy() || (SizeInBits != CstTy->getPrimitiveSizeInBits()))
return false;
unsigned SrcEltSizeInBits = CstTy->getScalarSizeInBits();
unsigned NumSrcElts = CstTy->getVectorNumElements();
APInt UndefSrcElts(NumSrcElts, 0);
SmallVector<APInt, 64> SrcEltBits(NumSrcElts, APInt(SrcEltSizeInBits, 0));
for (unsigned i = 0; i != NumSrcElts; ++i)
if (!CollectConstantBits(Cst->getAggregateElement(i), SrcEltBits[i],
UndefSrcElts, i))
return false;
return CastBitData(UndefSrcElts, SrcEltBits);
}
// Extract constant bits from a broadcasted constant pool scalar.
if (Op.getOpcode() == X86ISD::VBROADCAST &&
EltSizeInBits <= VT.getScalarSizeInBits()) {
if (auto *Broadcast = getTargetConstantFromNode(Op.getOperand(0))) {
unsigned SrcEltSizeInBits = Broadcast->getType()->getScalarSizeInBits();
unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits;
APInt UndefSrcElts(NumSrcElts, 0);
SmallVector<APInt, 64> SrcEltBits(1, APInt(SrcEltSizeInBits, 0));
if (CollectConstantBits(Broadcast, SrcEltBits[0], UndefSrcElts, 0)) {
if (UndefSrcElts[0])
UndefSrcElts.setBits(0, NumSrcElts);
SrcEltBits.append(NumSrcElts - 1, SrcEltBits[0]);
return CastBitData(UndefSrcElts, SrcEltBits);
}
}
}
// Extract a rematerialized scalar constant insertion.
if (Op.getOpcode() == X86ISD::VZEXT_MOVL &&
Op.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
isa<ConstantSDNode>(Op.getOperand(0).getOperand(0))) {
unsigned SrcEltSizeInBits = VT.getScalarSizeInBits();
unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits;
APInt UndefSrcElts(NumSrcElts, 0);
SmallVector<APInt, 64> SrcEltBits;
auto *CN = cast<ConstantSDNode>(Op.getOperand(0).getOperand(0));
SrcEltBits.push_back(CN->getAPIntValue().zextOrTrunc(SrcEltSizeInBits));
SrcEltBits.append(NumSrcElts - 1, APInt(SrcEltSizeInBits, 0));
return CastBitData(UndefSrcElts, SrcEltBits);
}
return false;
}
static bool getTargetShuffleMaskIndices(SDValue MaskNode,
unsigned MaskEltSizeInBits,
SmallVectorImpl<uint64_t> &RawMask) {
APInt UndefElts;
SmallVector<APInt, 64> EltBits;
// Extract the raw target constant bits.
// FIXME: We currently don't support UNDEF bits or mask entries.
if (!getTargetConstantBitsFromNode(MaskNode, MaskEltSizeInBits, UndefElts,
EltBits, /* AllowWholeUndefs */ false,
/* AllowPartialUndefs */ false))
return false;
// Insert the extracted elements into the mask.
for (APInt Elt : EltBits)
RawMask.push_back(Elt.getZExtValue());
return true;
}
/// Create a shuffle mask that matches the PACKSS/PACKUS truncation.
/// Note: This ignores saturation, so inputs must be checked first.
static void createPackShuffleMask(MVT VT, SmallVectorImpl<int> &Mask,
bool Unary) {
assert(Mask.empty() && "Expected an empty shuffle mask vector");
unsigned NumElts = VT.getVectorNumElements();
unsigned NumLanes = VT.getSizeInBits() / 128;
unsigned NumEltsPerLane = 128 / VT.getScalarSizeInBits();
unsigned Offset = Unary ? 0 : NumElts;
for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
for (unsigned Elt = 0; Elt != NumEltsPerLane; Elt += 2)
Mask.push_back(Elt + (Lane * NumEltsPerLane));
for (unsigned Elt = 0; Elt != NumEltsPerLane; Elt += 2)
Mask.push_back(Elt + (Lane * NumEltsPerLane) + Offset);
}
}
/// Calculates the shuffle mask corresponding to the target-specific opcode.
/// If the mask could be calculated, returns it in \p Mask, returns the shuffle
/// operands in \p Ops, and returns true.
/// Sets \p IsUnary to true if only one source is used. Note that this will set
/// IsUnary for shuffles which use a single input multiple times, and in those
/// cases it will adjust the mask to only have indices within that single input.
/// It is an error to call this with non-empty Mask/Ops vectors.
static bool getTargetShuffleMask(SDNode *N, MVT VT, bool AllowSentinelZero,
SmallVectorImpl<SDValue> &Ops,
SmallVectorImpl<int> &Mask, bool &IsUnary) {
unsigned NumElems = VT.getVectorNumElements();
SDValue ImmN;
assert(Mask.empty() && "getTargetShuffleMask expects an empty Mask vector");
assert(Ops.empty() && "getTargetShuffleMask expects an empty Ops vector");
IsUnary = false;
bool IsFakeUnary = false;
switch(N->getOpcode()) {
case X86ISD::BLENDI:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands()-1);
DecodeBLENDMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::SHUFP:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands()-1);
DecodeSHUFPMask(NumElems, VT.getScalarSizeInBits(),
cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::INSERTPS:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands()-1);
DecodeINSERTPSMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::EXTRQI:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
if (isa<ConstantSDNode>(N->getOperand(1)) &&
isa<ConstantSDNode>(N->getOperand(2))) {
int BitLen = N->getConstantOperandVal(1);
int BitIdx = N->getConstantOperandVal(2);
DecodeEXTRQIMask(NumElems, VT.getScalarSizeInBits(), BitLen, BitIdx,
Mask);
IsUnary = true;
}
break;
case X86ISD::INSERTQI:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
if (isa<ConstantSDNode>(N->getOperand(2)) &&
isa<ConstantSDNode>(N->getOperand(3))) {
int BitLen = N->getConstantOperandVal(2);
int BitIdx = N->getConstantOperandVal(3);
DecodeINSERTQIMask(NumElems, VT.getScalarSizeInBits(), BitLen, BitIdx,
Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
}
break;
case X86ISD::UNPCKH:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
DecodeUNPCKHMask(NumElems, VT.getScalarSizeInBits(), Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::UNPCKL:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
DecodeUNPCKLMask(NumElems, VT.getScalarSizeInBits(), Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::MOVHLPS:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
DecodeMOVHLPSMask(NumElems, Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::MOVLHPS:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
DecodeMOVLHPSMask(NumElems, Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::PALIGNR:
assert(VT.getScalarType() == MVT::i8 && "Byte vector expected");
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands()-1);
DecodePALIGNRMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(),
Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
Ops.push_back(N->getOperand(1));
Ops.push_back(N->getOperand(0));
break;
case X86ISD::VSHLDQ:
assert(VT.getScalarType() == MVT::i8 && "Byte vector expected");
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands() - 1);
DecodePSLLDQMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(),
Mask);
IsUnary = true;
break;
case X86ISD::VSRLDQ:
assert(VT.getScalarType() == MVT::i8 && "Byte vector expected");
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands() - 1);
DecodePSRLDQMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(),
Mask);
IsUnary = true;
break;
case X86ISD::PSHUFD:
case X86ISD::VPERMILPI:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands()-1);
DecodePSHUFMask(NumElems, VT.getScalarSizeInBits(),
cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = true;
break;
case X86ISD::PSHUFHW:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands()-1);
DecodePSHUFHWMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(),
Mask);
IsUnary = true;
break;
case X86ISD::PSHUFLW:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands()-1);
DecodePSHUFLWMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(),
Mask);
IsUnary = true;
break;
case X86ISD::VZEXT_MOVL:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
DecodeZeroMoveLowMask(NumElems, Mask);
IsUnary = true;
break;
case X86ISD::VBROADCAST: {
SDValue N0 = N->getOperand(0);
// See if we're broadcasting from index 0 of an EXTRACT_SUBVECTOR. If so,
// add the pre-extracted value to the Ops vector.
if (N0.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
N0.getOperand(0).getValueType() == VT &&
N0.getConstantOperandVal(1) == 0)
Ops.push_back(N0.getOperand(0));
// We only decode broadcasts of same-sized vectors, unless the broadcast
// came from an extract from the original width. If we found one, we
// pushed it the Ops vector above.
if (N0.getValueType() == VT || !Ops.empty()) {
DecodeVectorBroadcast(NumElems, Mask);
IsUnary = true;
break;
}
return false;
}
case X86ISD::VPERMILPV: {
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
IsUnary = true;
SDValue MaskNode = N->getOperand(1);
unsigned MaskEltSize = VT.getScalarSizeInBits();
SmallVector<uint64_t, 32> RawMask;
if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask)) {
DecodeVPERMILPMask(NumElems, VT.getScalarSizeInBits(), RawMask, Mask);
break;
}
if (auto *C = getTargetConstantFromNode(MaskNode)) {
DecodeVPERMILPMask(C, MaskEltSize, Mask);
break;
}
return false;
}
case X86ISD::PSHUFB: {
assert(VT.getScalarType() == MVT::i8 && "Byte vector expected");
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
IsUnary = true;
SDValue MaskNode = N->getOperand(1);
SmallVector<uint64_t, 32> RawMask;
if (getTargetShuffleMaskIndices(MaskNode, 8, RawMask)) {
DecodePSHUFBMask(RawMask, Mask);
break;
}
if (auto *C = getTargetConstantFromNode(MaskNode)) {
DecodePSHUFBMask(C, Mask);
break;
}
return false;
}
case X86ISD::VPERMI:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands()-1);
DecodeVPERMMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = true;
break;
case X86ISD::MOVSS:
case X86ISD::MOVSD:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
DecodeScalarMoveMask(NumElems, /* IsLoad */ false, Mask);
break;
case X86ISD::VPERM2X128:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands()-1);
DecodeVPERM2X128Mask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(),
Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::SHUF128:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands()-1);
decodeVSHUF64x2FamilyMask(NumElems, VT.getScalarSizeInBits(),
cast<ConstantSDNode>(ImmN)->getZExtValue(),
Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::MOVSLDUP:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
DecodeMOVSLDUPMask(NumElems, Mask);
IsUnary = true;
break;
case X86ISD::MOVSHDUP:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
DecodeMOVSHDUPMask(NumElems, Mask);
IsUnary = true;
break;
case X86ISD::MOVDDUP:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
DecodeMOVDDUPMask(NumElems, Mask);
IsUnary = true;
break;
case X86ISD::VPERMIL2: {
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
unsigned MaskEltSize = VT.getScalarSizeInBits();
SDValue MaskNode = N->getOperand(2);
SDValue CtrlNode = N->getOperand(3);
if (ConstantSDNode *CtrlOp = dyn_cast<ConstantSDNode>(CtrlNode)) {
unsigned CtrlImm = CtrlOp->getZExtValue();
SmallVector<uint64_t, 32> RawMask;
if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask)) {
DecodeVPERMIL2PMask(NumElems, VT.getScalarSizeInBits(), CtrlImm,
RawMask, Mask);
break;
}
if (auto *C = getTargetConstantFromNode(MaskNode)) {
DecodeVPERMIL2PMask(C, CtrlImm, MaskEltSize, Mask);
break;
}
}
return false;
}
case X86ISD::VPPERM: {
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
SDValue MaskNode = N->getOperand(2);
SmallVector<uint64_t, 32> RawMask;
if (getTargetShuffleMaskIndices(MaskNode, 8, RawMask)) {
DecodeVPPERMMask(RawMask, Mask);
break;
}
if (auto *C = getTargetConstantFromNode(MaskNode)) {
DecodeVPPERMMask(C, Mask);
break;
}
return false;
}
case X86ISD::VPERMV: {
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
IsUnary = true;
// Unlike most shuffle nodes, VPERMV's mask operand is operand 0.
Ops.push_back(N->getOperand(1));
SDValue MaskNode = N->getOperand(0);
SmallVector<uint64_t, 32> RawMask;
unsigned MaskEltSize = VT.getScalarSizeInBits();
if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask)) {
DecodeVPERMVMask(RawMask, Mask);
break;
}
if (auto *C = getTargetConstantFromNode(MaskNode)) {
DecodeVPERMVMask(C, MaskEltSize, Mask);
break;
}
return false;
}
case X86ISD::VPERMV3: {
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(2).getValueType() == VT && "Unexpected value type");
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(2);
// Unlike most shuffle nodes, VPERMV3's mask operand is the middle one.
Ops.push_back(N->getOperand(0));
Ops.push_back(N->getOperand(2));
SDValue MaskNode = N->getOperand(1);
unsigned MaskEltSize = VT.getScalarSizeInBits();
if (auto *C = getTargetConstantFromNode(MaskNode)) {
DecodeVPERMV3Mask(C, MaskEltSize, Mask);
break;
}
return false;
}
default: llvm_unreachable("unknown target shuffle node");
}
// Empty mask indicates the decode failed.
if (Mask.empty())
return false;
// Check if we're getting a shuffle mask with zero'd elements.
if (!AllowSentinelZero)
if (any_of(Mask, [](int M) { return M == SM_SentinelZero; }))
return false;
// If we have a fake unary shuffle, the shuffle mask is spread across two
// inputs that are actually the same node. Re-map the mask to always point
// into the first input.
if (IsFakeUnary)
for (int &M : Mask)
if (M >= (int)Mask.size())
M -= Mask.size();
// If we didn't already add operands in the opcode-specific code, default to
// adding 1 or 2 operands starting at 0.
if (Ops.empty()) {
Ops.push_back(N->getOperand(0));
if (!IsUnary || IsFakeUnary)
Ops.push_back(N->getOperand(1));
}
return true;
}
/// Check a target shuffle mask's inputs to see if we can set any values to
/// SM_SentinelZero - this is for elements that are known to be zero
/// (not just zeroable) from their inputs.
/// Returns true if the target shuffle mask was decoded.
static bool setTargetShuffleZeroElements(SDValue N,
SmallVectorImpl<int> &Mask,
SmallVectorImpl<SDValue> &Ops) {
bool IsUnary;
if (!isTargetShuffle(N.getOpcode()))
return false;
MVT VT = N.getSimpleValueType();
if (!getTargetShuffleMask(N.getNode(), VT, true, Ops, Mask, IsUnary))
return false;
SDValue V1 = Ops[0];
SDValue V2 = IsUnary ? V1 : Ops[1];
V1 = peekThroughBitcasts(V1);
V2 = peekThroughBitcasts(V2);
assert((VT.getSizeInBits() % Mask.size()) == 0 &&
"Illegal split of shuffle value type");
unsigned EltSizeInBits = VT.getSizeInBits() / Mask.size();
// Extract known constant input data.
APInt UndefSrcElts[2];
SmallVector<APInt, 32> SrcEltBits[2];
bool IsSrcConstant[2] = {
getTargetConstantBitsFromNode(V1, EltSizeInBits, UndefSrcElts[0],
SrcEltBits[0], true, false),
getTargetConstantBitsFromNode(V2, EltSizeInBits, UndefSrcElts[1],
SrcEltBits[1], true, false)};
for (int i = 0, Size = Mask.size(); i < Size; ++i) {
int M = Mask[i];
// Already decoded as SM_SentinelZero / SM_SentinelUndef.
if (M < 0)
continue;
// Determine shuffle input and normalize the mask.
unsigned SrcIdx = M / Size;
SDValue V = M < Size ? V1 : V2;
M %= Size;
// We are referencing an UNDEF input.
if (V.isUndef()) {
Mask[i] = SM_SentinelUndef;
continue;
}
// SCALAR_TO_VECTOR - only the first element is defined, and the rest UNDEF.
// TODO: We currently only set UNDEF for integer types - floats use the same
// registers as vectors and many of the scalar folded loads rely on the
// SCALAR_TO_VECTOR pattern.
if (V.getOpcode() == ISD::SCALAR_TO_VECTOR &&
(Size % V.getValueType().getVectorNumElements()) == 0) {
int Scale = Size / V.getValueType().getVectorNumElements();
int Idx = M / Scale;
if (Idx != 0 && !VT.isFloatingPoint())
Mask[i] = SM_SentinelUndef;
else if (Idx == 0 && X86::isZeroNode(V.getOperand(0)))
Mask[i] = SM_SentinelZero;
continue;
}
// Attempt to extract from the source's constant bits.
if (IsSrcConstant[SrcIdx]) {
if (UndefSrcElts[SrcIdx][M])
Mask[i] = SM_SentinelUndef;
else if (SrcEltBits[SrcIdx][M] == 0)
Mask[i] = SM_SentinelZero;
}
}
assert(VT.getVectorNumElements() == Mask.size() &&
"Different mask size from vector size!");
return true;
}
// Attempt to decode ops that could be represented as a shuffle mask.
// The decoded shuffle mask may contain a different number of elements to the
// destination value type.
static bool getFauxShuffleMask(SDValue N, SmallVectorImpl<int> &Mask,
SmallVectorImpl<SDValue> &Ops,
const SelectionDAG &DAG) {
Mask.clear();
Ops.clear();
MVT VT = N.getSimpleValueType();
unsigned NumElts = VT.getVectorNumElements();
unsigned NumSizeInBits = VT.getSizeInBits();
unsigned NumBitsPerElt = VT.getScalarSizeInBits();
assert((NumBitsPerElt % 8) == 0 && (NumSizeInBits % 8) == 0 &&
"Expected byte aligned value types");
unsigned Opcode = N.getOpcode();
switch (Opcode) {
case ISD::VECTOR_SHUFFLE: {
// Don't treat ISD::VECTOR_SHUFFLE as a target shuffle so decode it here.
ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(N)->getMask();
if (isUndefOrInRange(ShuffleMask, 0, 2 * NumElts)) {
Mask.append(ShuffleMask.begin(), ShuffleMask.end());
Ops.push_back(N.getOperand(0));
Ops.push_back(N.getOperand(1));
return true;
}
return false;
}
case ISD::AND:
case X86ISD::ANDNP: {
// Attempt to decode as a per-byte mask.
APInt UndefElts;
SmallVector<APInt, 32> EltBits;
SDValue N0 = N.getOperand(0);
SDValue N1 = N.getOperand(1);
bool IsAndN = (X86ISD::ANDNP == Opcode);
uint64_t ZeroMask = IsAndN ? 255 : 0;
if (!getTargetConstantBitsFromNode(IsAndN ? N0 : N1, 8, UndefElts, EltBits))
return false;
for (int i = 0, e = (int)EltBits.size(); i != e; ++i) {
if (UndefElts[i]) {
Mask.push_back(SM_SentinelUndef);
continue;
}
uint64_t ByteBits = EltBits[i].getZExtValue();
if (ByteBits != 0 && ByteBits != 255)
return false;
Mask.push_back(ByteBits == ZeroMask ? SM_SentinelZero : i);
}
Ops.push_back(IsAndN ? N1 : N0);
return true;
}
case ISD::SCALAR_TO_VECTOR: {
// Match against a scalar_to_vector of an extract from a vector,
// for PEXTRW/PEXTRB we must handle the implicit zext of the scalar.
SDValue N0 = N.getOperand(0);
SDValue SrcExtract;
if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
N0.getOperand(0).getValueType() == VT) ||
(N0.getOpcode() == X86ISD::PEXTRW &&
N0.getOperand(0).getValueType() == MVT::v8i16) ||
(N0.getOpcode() == X86ISD::PEXTRB &&
N0.getOperand(0).getValueType() == MVT::v16i8)) {
SrcExtract = N0;
}
if (!SrcExtract || !isa<ConstantSDNode>(SrcExtract.getOperand(1)))
return false;
SDValue SrcVec = SrcExtract.getOperand(0);
EVT SrcVT = SrcVec.getValueType();
unsigned NumSrcElts = SrcVT.getVectorNumElements();
unsigned NumZeros = (NumBitsPerElt / SrcVT.getScalarSizeInBits()) - 1;
unsigned SrcIdx = SrcExtract.getConstantOperandVal(1);
if (NumSrcElts <= SrcIdx)
return false;
Ops.push_back(SrcVec);
Mask.push_back(SrcIdx);
Mask.append(NumZeros, SM_SentinelZero);
Mask.append(NumSrcElts - Mask.size(), SM_SentinelUndef);
return true;
}
case X86ISD::PINSRB:
case X86ISD::PINSRW: {
SDValue InVec = N.getOperand(0);
SDValue InScl = N.getOperand(1);
SDValue InIndex = N.getOperand(2);
if (!isa<ConstantSDNode>(InIndex) ||
cast<ConstantSDNode>(InIndex)->getAPIntValue().uge(NumElts))
return false;
uint64_t InIdx = N.getConstantOperandVal(2);
// Attempt to recognise a PINSR*(VEC, 0, Idx) shuffle pattern.
if (X86::isZeroNode(InScl)) {
Ops.push_back(InVec);
for (unsigned i = 0; i != NumElts; ++i)
Mask.push_back(i == InIdx ? SM_SentinelZero : (int)i);
return true;
}
// Attempt to recognise a PINSR*(PEXTR*) shuffle pattern.
// TODO: Expand this to support INSERT_VECTOR_ELT/etc.
unsigned ExOp =
(X86ISD::PINSRB == Opcode ? X86ISD::PEXTRB : X86ISD::PEXTRW);
if (InScl.getOpcode() != ExOp)
return false;
SDValue ExVec = InScl.getOperand(0);
SDValue ExIndex = InScl.getOperand(1);
if (!isa<ConstantSDNode>(ExIndex) ||
cast<ConstantSDNode>(ExIndex)->getAPIntValue().uge(NumElts))
return false;
uint64_t ExIdx = InScl.getConstantOperandVal(1);
Ops.push_back(InVec);
Ops.push_back(ExVec);
for (unsigned i = 0; i != NumElts; ++i)
Mask.push_back(i == InIdx ? NumElts + ExIdx : i);
return true;
}
case X86ISD::PACKSS:
case X86ISD::PACKUS: {
SDValue N0 = N.getOperand(0);
SDValue N1 = N.getOperand(1);
assert(N0.getValueType().getVectorNumElements() == (NumElts / 2) &&
N1.getValueType().getVectorNumElements() == (NumElts / 2) &&
"Unexpected input value type");
// If we know input saturation won't happen we can treat this
// as a truncation shuffle.
if (Opcode == X86ISD::PACKSS) {
if ((!N0.isUndef() && DAG.ComputeNumSignBits(N0) <= NumBitsPerElt) ||
(!N1.isUndef() && DAG.ComputeNumSignBits(N1) <= NumBitsPerElt))
return false;
} else {
APInt ZeroMask = APInt::getHighBitsSet(2 * NumBitsPerElt, NumBitsPerElt);
if ((!N0.isUndef() && !DAG.MaskedValueIsZero(N0, ZeroMask)) ||
(!N1.isUndef() && !DAG.MaskedValueIsZero(N1, ZeroMask)))
return false;
}
bool IsUnary = (N0 == N1);
Ops.push_back(N0);
if (!IsUnary)
Ops.push_back(N1);
createPackShuffleMask(VT, Mask, IsUnary);
return true;
}
case X86ISD::VSHLI:
case X86ISD::VSRLI: {
uint64_t ShiftVal = N.getConstantOperandVal(1);
// Out of range bit shifts are guaranteed to be zero.
if (NumBitsPerElt <= ShiftVal) {
Mask.append(NumElts, SM_SentinelZero);
return true;
}
// We can only decode 'whole byte' bit shifts as shuffles.
if ((ShiftVal % 8) != 0)
break;
uint64_t ByteShift = ShiftVal / 8;
unsigned NumBytes = NumSizeInBits / 8;
unsigned NumBytesPerElt = NumBitsPerElt / 8;
Ops.push_back(N.getOperand(0));
// Clear mask to all zeros and insert the shifted byte indices.
Mask.append(NumBytes, SM_SentinelZero);
if (X86ISD::VSHLI == Opcode) {
for (unsigned i = 0; i != NumBytes; i += NumBytesPerElt)
for (unsigned j = ByteShift; j != NumBytesPerElt; ++j)
Mask[i + j] = i + j - ByteShift;
} else {
for (unsigned i = 0; i != NumBytes; i += NumBytesPerElt)
for (unsigned j = ByteShift; j != NumBytesPerElt; ++j)
Mask[i + j - ByteShift] = i + j;
}
return true;
}
case ISD::ZERO_EXTEND_VECTOR_INREG:
case X86ISD::VZEXT: {
// TODO - add support for VPMOVZX with smaller input vector types.
SDValue Src = N.getOperand(0);
MVT SrcVT = Src.getSimpleValueType();
if (NumSizeInBits != SrcVT.getSizeInBits())
break;
DecodeZeroExtendMask(SrcVT.getScalarSizeInBits(), VT.getScalarSizeInBits(),
VT.getVectorNumElements(), Mask);
Ops.push_back(Src);
return true;
}
}
return false;
}
/// Removes unused shuffle source inputs and adjusts the shuffle mask accordingly.
static void resolveTargetShuffleInputsAndMask(SmallVectorImpl<SDValue> &Inputs,
SmallVectorImpl<int> &Mask) {
int MaskWidth = Mask.size();
SmallVector<SDValue, 16> UsedInputs;
for (int i = 0, e = Inputs.size(); i < e; ++i) {
int lo = UsedInputs.size() * MaskWidth;
int hi = lo + MaskWidth;
// Strip UNDEF input usage.
if (Inputs[i].isUndef())
for (int &M : Mask)
if ((lo <= M) && (M < hi))
M = SM_SentinelUndef;
// Check for unused inputs.
if (any_of(Mask, [lo, hi](int i) { return (lo <= i) && (i < hi); })) {
UsedInputs.push_back(Inputs[i]);
continue;
}
for (int &M : Mask)
if (lo <= M)
M -= MaskWidth;
}
Inputs = UsedInputs;
}
/// Calls setTargetShuffleZeroElements to resolve a target shuffle mask's inputs
/// and set the SM_SentinelUndef and SM_SentinelZero values. Then check the
/// remaining input indices in case we now have a unary shuffle and adjust the
/// inputs accordingly.
/// Returns true if the target shuffle mask was decoded.
static bool resolveTargetShuffleInputs(SDValue Op,
SmallVectorImpl<SDValue> &Inputs,
SmallVectorImpl<int> &Mask,
const SelectionDAG &DAG) {
if (!setTargetShuffleZeroElements(Op, Mask, Inputs))
if (!getFauxShuffleMask(Op, Mask, Inputs, DAG))
return false;
resolveTargetShuffleInputsAndMask(Inputs, Mask);
return true;
}
/// Returns the scalar element that will make up the ith
/// element of the result of the vector shuffle.
static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
unsigned Depth) {
if (Depth == 6)
return SDValue(); // Limit search depth.
SDValue V = SDValue(N, 0);
EVT VT = V.getValueType();
unsigned Opcode = V.getOpcode();
// Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
int Elt = SV->getMaskElt(Index);
if (Elt < 0)
return DAG.getUNDEF(VT.getVectorElementType());
unsigned NumElems = VT.getVectorNumElements();
SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
: SV->getOperand(1);
return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
}
// Recurse into target specific vector shuffles to find scalars.
if (isTargetShuffle(Opcode)) {
MVT ShufVT = V.getSimpleValueType();
MVT ShufSVT = ShufVT.getVectorElementType();
int NumElems = (int)ShufVT.getVectorNumElements();
SmallVector<int, 16> ShuffleMask;
SmallVector<SDValue, 16> ShuffleOps;
bool IsUnary;
if (!getTargetShuffleMask(N, ShufVT, true, ShuffleOps, ShuffleMask, IsUnary))
return SDValue();
int Elt = ShuffleMask[Index];
if (Elt == SM_SentinelZero)
return ShufSVT.isInteger() ? DAG.getConstant(0, SDLoc(N), ShufSVT)
: DAG.getConstantFP(+0.0, SDLoc(N), ShufSVT);
if (Elt == SM_SentinelUndef)
return DAG.getUNDEF(ShufSVT);
assert(0 <= Elt && Elt < (2*NumElems) && "Shuffle index out of range");
SDValue NewV = (Elt < NumElems) ? ShuffleOps[0] : ShuffleOps[1];
return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
Depth+1);
}
// Actual nodes that may contain scalar elements
if (Opcode == ISD::BITCAST) {
V = V.getOperand(0);
EVT SrcVT = V.getValueType();
unsigned NumElems = VT.getVectorNumElements();
if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
return SDValue();
}
if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
return (Index == 0) ? V.getOperand(0)
: DAG.getUNDEF(VT.getVectorElementType());
if (V.getOpcode() == ISD::BUILD_VECTOR)
return V.getOperand(Index);
return SDValue();
}
// Use PINSRB/PINSRW/PINSRD to create a build vector.
static SDValue LowerBuildVectorAsInsert(SDValue Op, unsigned NonZeros,
unsigned NumNonZero, unsigned NumZero,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = Op.getSimpleValueType();
unsigned NumElts = VT.getVectorNumElements();
assert(((VT == MVT::v8i16 && Subtarget.hasSSE2()) ||
((VT == MVT::v16i8 || VT == MVT::v4i32) && Subtarget.hasSSE41())) &&
"Illegal vector insertion");
SDLoc dl(Op);
SDValue V;
bool First = true;
for (unsigned i = 0; i < NumElts; ++i) {
bool IsNonZero = (NonZeros & (1 << i)) != 0;
if (!IsNonZero)
continue;
// If the build vector contains zeros or our first insertion is not the
// first index then insert into zero vector to break any register
// dependency else use SCALAR_TO_VECTOR/VZEXT_MOVL.
if (First) {
First = false;
if (NumZero || 0 != i)
V = getZeroVector(VT, Subtarget, DAG, dl);
else {
assert(0 == i && "Expected insertion into zero-index");
V = DAG.getAnyExtOrTrunc(Op.getOperand(i), dl, MVT::i32);
V = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, V);
V = DAG.getNode(X86ISD::VZEXT_MOVL, dl, MVT::v4i32, V);
V = DAG.getBitcast(VT, V);
continue;
}
}
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V, Op.getOperand(i),
DAG.getIntPtrConstant(i, dl));
}
return V;
}
/// Custom lower build_vector of v16i8.
static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
unsigned NumNonZero, unsigned NumZero,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (NumNonZero > 8 && !Subtarget.hasSSE41())
return SDValue();
// SSE4.1 - use PINSRB to insert each byte directly.
if (Subtarget.hasSSE41())
return LowerBuildVectorAsInsert(Op, NonZeros, NumNonZero, NumZero, DAG,
Subtarget);
SDLoc dl(Op);
SDValue V;
bool First = true;
// Pre-SSE4.1 - merge byte pairs and insert with PINSRW.
for (unsigned i = 0; i < 16; ++i) {
bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
if (ThisIsNonZero && First) {
if (NumZero)
V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
else
V = DAG.getUNDEF(MVT::v8i16);
First = false;
}
if ((i & 1) != 0) {
// FIXME: Investigate extending to i32 instead of just i16.
// FIXME: Investigate combining the first 4 bytes as a i32 instead.
SDValue ThisElt, LastElt;
bool LastIsNonZero = (NonZeros & (1 << (i - 1))) != 0;
if (LastIsNonZero) {
LastElt =
DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i - 1));
}
if (ThisIsNonZero) {
ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16, ThisElt,
DAG.getConstant(8, dl, MVT::i8));
if (LastIsNonZero)
ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
} else
ThisElt = LastElt;
if (ThisElt) {
if (1 == i) {
V = NumZero ? DAG.getZExtOrTrunc(ThisElt, dl, MVT::i32)
: DAG.getAnyExtOrTrunc(ThisElt, dl, MVT::i32);
V = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, V);
V = DAG.getNode(X86ISD::VZEXT_MOVL, dl, MVT::v4i32, V);
V = DAG.getBitcast(MVT::v8i16, V);
} else {
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
DAG.getIntPtrConstant(i / 2, dl));
}
}
}
}
return DAG.getBitcast(MVT::v16i8, V);
}
/// Custom lower build_vector of v8i16.
static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
unsigned NumNonZero, unsigned NumZero,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (NumNonZero > 4 && !Subtarget.hasSSE41())
return SDValue();
// Use PINSRW to insert each byte directly.
return LowerBuildVectorAsInsert(Op, NonZeros, NumNonZero, NumZero, DAG,
Subtarget);
}
/// Custom lower build_vector of v4i32 or v4f32.
static SDValue LowerBuildVectorv4x32(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// Find all zeroable elements.
std::bitset<4> Zeroable;
for (int i=0; i < 4; ++i) {
SDValue Elt = Op->getOperand(i);
Zeroable[i] = (Elt.isUndef() || X86::isZeroNode(Elt));
}
assert(Zeroable.size() - Zeroable.count() > 1 &&
"We expect at least two non-zero elements!");
// We only know how to deal with build_vector nodes where elements are either
// zeroable or extract_vector_elt with constant index.
SDValue FirstNonZero;
unsigned FirstNonZeroIdx;
for (unsigned i=0; i < 4; ++i) {
if (Zeroable[i])
continue;
SDValue Elt = Op->getOperand(i);
if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
!isa<ConstantSDNode>(Elt.getOperand(1)))
return SDValue();
// Make sure that this node is extracting from a 128-bit vector.
MVT VT = Elt.getOperand(0).getSimpleValueType();
if (!VT.is128BitVector())
return SDValue();
if (!FirstNonZero.getNode()) {
FirstNonZero = Elt;
FirstNonZeroIdx = i;
}
}
assert(FirstNonZero.getNode() && "Unexpected build vector of all zeros!");
SDValue V1 = FirstNonZero.getOperand(0);
MVT VT = V1.getSimpleValueType();
// See if this build_vector can be lowered as a blend with zero.
SDValue Elt;
unsigned EltMaskIdx, EltIdx;
int Mask[4];
for (EltIdx = 0; EltIdx < 4; ++EltIdx) {
if (Zeroable[EltIdx]) {
// The zero vector will be on the right hand side.
Mask[EltIdx] = EltIdx+4;
continue;
}
Elt = Op->getOperand(EltIdx);
// By construction, Elt is a EXTRACT_VECTOR_ELT with constant index.
EltMaskIdx = Elt.getConstantOperandVal(1);
if (Elt.getOperand(0) != V1 || EltMaskIdx != EltIdx)
break;
Mask[EltIdx] = EltIdx;
}
if (EltIdx == 4) {
// Let the shuffle legalizer deal with blend operations.
SDValue VZero = getZeroVector(VT, Subtarget, DAG, SDLoc(Op));
if (V1.getSimpleValueType() != VT)
V1 = DAG.getBitcast(VT, V1);
return DAG.getVectorShuffle(VT, SDLoc(V1), V1, VZero, Mask);
}
// See if we can lower this build_vector to a INSERTPS.
if (!Subtarget.hasSSE41())
return SDValue();
SDValue V2 = Elt.getOperand(0);
if (Elt == FirstNonZero && EltIdx == FirstNonZeroIdx)
V1 = SDValue();
bool CanFold = true;
for (unsigned i = EltIdx + 1; i < 4 && CanFold; ++i) {
if (Zeroable[i])
continue;
SDValue Current = Op->getOperand(i);
SDValue SrcVector = Current->getOperand(0);
if (!V1.getNode())
V1 = SrcVector;
CanFold = (SrcVector == V1) && (Current.getConstantOperandVal(1) == i);
}
if (!CanFold)
return SDValue();
assert(V1.getNode() && "Expected at least two non-zero elements!");
if (V1.getSimpleValueType() != MVT::v4f32)
V1 = DAG.getBitcast(MVT::v4f32, V1);
if (V2.getSimpleValueType() != MVT::v4f32)
V2 = DAG.getBitcast(MVT::v4f32, V2);
// Ok, we can emit an INSERTPS instruction.
unsigned ZMask = Zeroable.to_ulong();
unsigned InsertPSMask = EltMaskIdx << 6 | EltIdx << 4 | ZMask;
assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
SDLoc DL(Op);
SDValue Result = DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
DAG.getIntPtrConstant(InsertPSMask, DL));
return DAG.getBitcast(VT, Result);
}
/// Return a vector logical shift node.
static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp, unsigned NumBits,
SelectionDAG &DAG, const TargetLowering &TLI,
const SDLoc &dl) {
assert(VT.is128BitVector() && "Unknown type for VShift");
MVT ShVT = MVT::v16i8;
unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
SrcOp = DAG.getBitcast(ShVT, SrcOp);
assert(NumBits % 8 == 0 && "Only support byte sized shifts");
SDValue ShiftVal = DAG.getConstant(NumBits/8, dl, MVT::i8);
return DAG.getBitcast(VT, DAG.getNode(Opc, dl, ShVT, SrcOp, ShiftVal));
}
static SDValue LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, const SDLoc &dl,
SelectionDAG &DAG) {
// Check if the scalar load can be widened into a vector load. And if
// the address is "base + cst" see if the cst can be "absorbed" into
// the shuffle mask.
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
SDValue Ptr = LD->getBasePtr();
if (!ISD::isNormalLoad(LD) || LD->isVolatile())
return SDValue();
EVT PVT = LD->getValueType(0);
if (PVT != MVT::i32 && PVT != MVT::f32)
return SDValue();
int FI = -1;
int64_t Offset = 0;
if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
FI = FINode->getIndex();
Offset = 0;
} else if (DAG.isBaseWithConstantOffset(Ptr) &&
isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
Offset = Ptr.getConstantOperandVal(1);
Ptr = Ptr.getOperand(0);
} else {
return SDValue();
}
// FIXME: 256-bit vector instructions don't require a strict alignment,
// improve this code to support it better.
unsigned RequiredAlign = VT.getSizeInBits()/8;
SDValue Chain = LD->getChain();
// Make sure the stack object alignment is at least 16 or 32.
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
if (MFI.isFixedObjectIndex(FI)) {
// Can't change the alignment. FIXME: It's possible to compute
// the exact stack offset and reference FI + adjust offset instead.
// If someone *really* cares about this. That's the way to implement it.
return SDValue();
} else {
MFI.setObjectAlignment(FI, RequiredAlign);
}
}
// (Offset % 16 or 32) must be multiple of 4. Then address is then
// Ptr + (Offset & ~15).
if (Offset < 0)
return SDValue();
if ((Offset % RequiredAlign) & 3)
return SDValue();
int64_t StartOffset = Offset & ~int64_t(RequiredAlign - 1);
if (StartOffset) {
SDLoc DL(Ptr);
Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
DAG.getConstant(StartOffset, DL, Ptr.getValueType()));
}
int EltNo = (Offset - StartOffset) >> 2;
unsigned NumElems = VT.getVectorNumElements();
EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
LD->getPointerInfo().getWithOffset(StartOffset));
SmallVector<int, 8> Mask(NumElems, EltNo);
return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), Mask);
}
return SDValue();
}
/// Given the initializing elements 'Elts' of a vector of type 'VT', see if the
/// elements can be replaced by a single large load which has the same value as
/// a build_vector or insert_subvector whose loaded operands are 'Elts'.
///
/// Example: <load i32 *a, load i32 *a+4, zero, undef> -> zextload a
static SDValue EltsFromConsecutiveLoads(EVT VT, ArrayRef<SDValue> Elts,
const SDLoc &DL, SelectionDAG &DAG,
const X86Subtarget &Subtarget,
bool isAfterLegalize) {
unsigned NumElems = Elts.size();
int LastLoadedElt = -1;
SmallBitVector LoadMask(NumElems, false);
SmallBitVector ZeroMask(NumElems, false);
SmallBitVector UndefMask(NumElems, false);
// For each element in the initializer, see if we've found a load, zero or an
// undef.
for (unsigned i = 0; i < NumElems; ++i) {
SDValue Elt = peekThroughBitcasts(Elts[i]);
if (!Elt.getNode())
return SDValue();
if (Elt.isUndef())
UndefMask[i] = true;
else if (X86::isZeroNode(Elt) || ISD::isBuildVectorAllZeros(Elt.getNode()))
ZeroMask[i] = true;
else if (ISD::isNON_EXTLoad(Elt.getNode())) {
LoadMask[i] = true;
LastLoadedElt = i;
// Each loaded element must be the correct fractional portion of the
// requested vector load.
if ((NumElems * Elt.getValueSizeInBits()) != VT.getSizeInBits())
return SDValue();
} else
return SDValue();
}
assert((ZeroMask | UndefMask | LoadMask).count() == NumElems &&
"Incomplete element masks");
// Handle Special Cases - all undef or undef/zero.
if (UndefMask.count() == NumElems)
return DAG.getUNDEF(VT);
// FIXME: Should we return this as a BUILD_VECTOR instead?
if ((ZeroMask | UndefMask).count() == NumElems)
return VT.isInteger() ? DAG.getConstant(0, DL, VT)
: DAG.getConstantFP(0.0, DL, VT);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
int FirstLoadedElt = LoadMask.find_first();
SDValue EltBase = peekThroughBitcasts(Elts[FirstLoadedElt]);
LoadSDNode *LDBase = cast<LoadSDNode>(EltBase);
EVT LDBaseVT = EltBase.getValueType();
// Consecutive loads can contain UNDEFS but not ZERO elements.
// Consecutive loads with UNDEFs and ZEROs elements require a
// an additional shuffle stage to clear the ZERO elements.
bool IsConsecutiveLoad = true;
bool IsConsecutiveLoadWithZeros = true;
for (int i = FirstLoadedElt + 1; i <= LastLoadedElt; ++i) {
if (LoadMask[i]) {
SDValue Elt = peekThroughBitcasts(Elts[i]);
LoadSDNode *LD = cast<LoadSDNode>(Elt);
if (!DAG.areNonVolatileConsecutiveLoads(
LD, LDBase, Elt.getValueType().getStoreSizeInBits() / 8,
i - FirstLoadedElt)) {
IsConsecutiveLoad = false;
IsConsecutiveLoadWithZeros = false;
break;
}
} else if (ZeroMask[i]) {
IsConsecutiveLoad = false;
}
}
SmallVector<LoadSDNode *, 8> Loads;
for (int i = FirstLoadedElt; i <= LastLoadedElt; ++i)
if (LoadMask[i])
Loads.push_back(cast<LoadSDNode>(peekThroughBitcasts(Elts[i])));
auto CreateLoad = [&DAG, &DL, &Loads](EVT VT, LoadSDNode *LDBase) {
auto MMOFlags = LDBase->getMemOperand()->getFlags();
assert(!(MMOFlags & MachineMemOperand::MOVolatile) &&
"Cannot merge volatile loads.");
SDValue NewLd =
DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
LDBase->getPointerInfo(), LDBase->getAlignment(), MMOFlags);
for (auto *LD : Loads)
DAG.makeEquivalentMemoryOrdering(LD, NewLd);
return NewLd;
};
// LOAD - all consecutive load/undefs (must start/end with a load).
// If we have found an entire vector of loads and undefs, then return a large
// load of the entire vector width starting at the base pointer.
// If the vector contains zeros, then attempt to shuffle those elements.
if (FirstLoadedElt == 0 && LastLoadedElt == (int)(NumElems - 1) &&
(IsConsecutiveLoad || IsConsecutiveLoadWithZeros)) {
assert(LDBase && "Did not find base load for merging consecutive loads");
EVT EltVT = LDBase->getValueType(0);
// Ensure that the input vector size for the merged loads matches the
// cumulative size of the input elements.
if (VT.getSizeInBits() != EltVT.getSizeInBits() * NumElems)
return SDValue();
if (isAfterLegalize && !TLI.isOperationLegal(ISD::LOAD, VT))
return SDValue();
// Don't create 256-bit non-temporal aligned loads without AVX2 as these
// will lower to regular temporal loads and use the cache.
if (LDBase->isNonTemporal() && LDBase->getAlignment() >= 32 &&
VT.is256BitVector() && !Subtarget.hasInt256())
return SDValue();
if (IsConsecutiveLoad)
return CreateLoad(VT, LDBase);
// IsConsecutiveLoadWithZeros - we need to create a shuffle of the loaded
// vector and a zero vector to clear out the zero elements.
if (!isAfterLegalize && NumElems == VT.getVectorNumElements()) {
SmallVector<int, 4> ClearMask(NumElems, -1);
for (unsigned i = 0; i < NumElems; ++i) {
if (ZeroMask[i])
ClearMask[i] = i + NumElems;
else if (LoadMask[i])
ClearMask[i] = i;
}
SDValue V = CreateLoad(VT, LDBase);
SDValue Z = VT.isInteger() ? DAG.getConstant(0, DL, VT)
: DAG.getConstantFP(0.0, DL, VT);
return DAG.getVectorShuffle(VT, DL, V, Z, ClearMask);
}
}
int LoadSize =
(1 + LastLoadedElt - FirstLoadedElt) * LDBaseVT.getStoreSizeInBits();
// VZEXT_LOAD - consecutive 32/64-bit load/undefs followed by zeros/undefs.
if (IsConsecutiveLoad && FirstLoadedElt == 0 &&
(LoadSize == 32 || LoadSize == 64) &&
((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()))) {
MVT VecSVT = VT.isFloatingPoint() ? MVT::getFloatingPointVT(LoadSize)
: MVT::getIntegerVT(LoadSize);
MVT VecVT = MVT::getVectorVT(VecSVT, VT.getSizeInBits() / LoadSize);
if (TLI.isTypeLegal(VecVT)) {
SDVTList Tys = DAG.getVTList(VecVT, MVT::Other);
SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
SDValue ResNode =
DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, VecSVT,
LDBase->getPointerInfo(),
LDBase->getAlignment(),
MachineMemOperand::MOLoad);
for (auto *LD : Loads)
DAG.makeEquivalentMemoryOrdering(LD, ResNode);
return DAG.getBitcast(VT, ResNode);
}
}
return SDValue();
}
static Constant *getConstantVector(MVT VT, const APInt &SplatValue,
unsigned SplatBitSize, LLVMContext &C) {
unsigned ScalarSize = VT.getScalarSizeInBits();
unsigned NumElm = SplatBitSize / ScalarSize;
SmallVector<Constant *, 32> ConstantVec;
for (unsigned i = 0; i < NumElm; i++) {
APInt Val = SplatValue.extractBits(ScalarSize, ScalarSize * i);
Constant *Const;
if (VT.isFloatingPoint()) {
if (ScalarSize == 32) {
Const = ConstantFP::get(C, APFloat(APFloat::IEEEsingle(), Val));
} else {
assert(ScalarSize == 64 && "Unsupported floating point scalar size");
Const = ConstantFP::get(C, APFloat(APFloat::IEEEdouble(), Val));
}
} else
Const = Constant::getIntegerValue(Type::getIntNTy(C, ScalarSize), Val);
ConstantVec.push_back(Const);
}
return ConstantVector::get(ArrayRef<Constant *>(ConstantVec));
}
static bool isUseOfShuffle(SDNode *N) {
for (auto *U : N->uses()) {
if (isTargetShuffle(U->getOpcode()))
return true;
if (U->getOpcode() == ISD::BITCAST) // Ignore bitcasts
return isUseOfShuffle(U);
}
return false;
}
// Check if the current node of build vector is a zero extended vector.
// // If so, return the value extended.
// // For example: (0,0,0,a,0,0,0,a,0,0,0,a,0,0,0,a) returns a.
// // NumElt - return the number of zero extended identical values.
// // EltType - return the type of the value include the zero extend.
static SDValue isSplatZeroExtended(const BuildVectorSDNode *Op,
unsigned &NumElt, MVT &EltType) {
SDValue ExtValue = Op->getOperand(0);
unsigned NumElts = Op->getNumOperands();
unsigned Delta = NumElts;
for (unsigned i = 1; i < NumElts; i++) {
if (Op->getOperand(i) == ExtValue) {
Delta = i;
break;
}
if (!(Op->getOperand(i).isUndef() || isNullConstant(Op->getOperand(i))))
return SDValue();
}
if (!isPowerOf2_32(Delta) || Delta == 1)
return SDValue();
for (unsigned i = Delta; i < NumElts; i++) {
if (i % Delta == 0) {
if (Op->getOperand(i) != ExtValue)
return SDValue();
} else if (!(isNullConstant(Op->getOperand(i)) ||
Op->getOperand(i).isUndef()))
return SDValue();
}
unsigned EltSize = Op->getSimpleValueType(0).getScalarSizeInBits();
unsigned ExtVTSize = EltSize * Delta;
EltType = MVT::getIntegerVT(ExtVTSize);
NumElt = NumElts / Delta;
return ExtValue;
}
/// Attempt to use the vbroadcast instruction to generate a splat value
/// from a splat BUILD_VECTOR which uses:
/// a. A single scalar load, or a constant.
/// b. Repeated pattern of constants (e.g. <0,1,0,1> or <0,1,2,3,0,1,2,3>).
///
/// The VBROADCAST node is returned when a pattern is found,
/// or SDValue() otherwise.
static SDValue lowerBuildVectorAsBroadcast(BuildVectorSDNode *BVOp,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
// VBROADCAST requires AVX.
// TODO: Splats could be generated for non-AVX CPUs using SSE
// instructions, but there's less potential gain for only 128-bit vectors.
if (!Subtarget.hasAVX())
return SDValue();
MVT VT = BVOp->getSimpleValueType(0);
SDLoc dl(BVOp);
assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
"Unsupported vector type for broadcast.");
BitVector UndefElements;
SDValue Ld = BVOp->getSplatValue(&UndefElements);
// Attempt to use VBROADCASTM
// From this paterrn:
// a. t0 = (zext_i64 (bitcast_i8 v2i1 X))
// b. t1 = (build_vector t0 t0)
//
// Create (VBROADCASTM v2i1 X)
if (Subtarget.hasCDI() && (VT.is512BitVector() || Subtarget.hasVLX())) {
MVT EltType = VT.getScalarType();
unsigned NumElts = VT.getVectorNumElements();
SDValue BOperand;
SDValue ZeroExtended = isSplatZeroExtended(BVOp, NumElts, EltType);
if ((ZeroExtended && ZeroExtended.getOpcode() == ISD::BITCAST) ||
(Ld && Ld.getOpcode() == ISD::ZERO_EXTEND &&
Ld.getOperand(0).getOpcode() == ISD::BITCAST)) {
if (ZeroExtended)
BOperand = ZeroExtended.getOperand(0);
else
BOperand = Ld.getOperand(0).getOperand(0);
MVT MaskVT = BOperand.getSimpleValueType();
if ((EltType == MVT::i64 && MaskVT == MVT::v8i1) || // for broadcastmb2q
(EltType == MVT::i32 && MaskVT == MVT::v16i1)) { // for broadcastmw2d
SDValue Brdcst =
DAG.getNode(X86ISD::VBROADCASTM, dl,
MVT::getVectorVT(EltType, NumElts), BOperand);
return DAG.getBitcast(VT, Brdcst);
}
}
}
// We need a splat of a single value to use broadcast, and it doesn't
// make any sense if the value is only in one element of the vector.
if (!Ld || (VT.getVectorNumElements() - UndefElements.count()) <= 1) {
APInt SplatValue, Undef;
unsigned SplatBitSize;
bool HasUndef;
// Check if this is a repeated constant pattern suitable for broadcasting.
if (BVOp->isConstantSplat(SplatValue, Undef, SplatBitSize, HasUndef) &&
SplatBitSize > VT.getScalarSizeInBits() &&
SplatBitSize < VT.getSizeInBits()) {
// Avoid replacing with broadcast when it's a use of a shuffle
// instruction to preserve the present custom lowering of shuffles.
if (isUseOfShuffle(BVOp) || BVOp->hasOneUse())
return SDValue();
// replace BUILD_VECTOR with broadcast of the repeated constants.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
LLVMContext *Ctx = DAG.getContext();
MVT PVT = TLI.getPointerTy(DAG.getDataLayout());
if (Subtarget.hasAVX()) {
if (SplatBitSize <= 64 && Subtarget.hasAVX2() &&
!(SplatBitSize == 64 && Subtarget.is32Bit())) {
// Splatted value can fit in one INTEGER constant in constant pool.
// Load the constant and broadcast it.
MVT CVT = MVT::getIntegerVT(SplatBitSize);
Type *ScalarTy = Type::getIntNTy(*Ctx, SplatBitSize);
Constant *C = Constant::getIntegerValue(ScalarTy, SplatValue);
SDValue CP = DAG.getConstantPool(C, PVT);
unsigned Repeat = VT.getSizeInBits() / SplatBitSize;
unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
Ld = DAG.getLoad(
CVT, dl, DAG.getEntryNode(), CP,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
Alignment);
SDValue Brdcst = DAG.getNode(X86ISD::VBROADCAST, dl,
MVT::getVectorVT(CVT, Repeat), Ld);
return DAG.getBitcast(VT, Brdcst);
} else if (SplatBitSize == 32 || SplatBitSize == 64) {
// Splatted value can fit in one FLOAT constant in constant pool.
// Load the constant and broadcast it.
// AVX have support for 32 and 64 bit broadcast for floats only.
// No 64bit integer in 32bit subtarget.
MVT CVT = MVT::getFloatingPointVT(SplatBitSize);
// Lower the splat via APFloat directly, to avoid any conversion.
Constant *C =
SplatBitSize == 32
? ConstantFP::get(*Ctx,
APFloat(APFloat::IEEEsingle(), SplatValue))
: ConstantFP::get(*Ctx,
APFloat(APFloat::IEEEdouble(), SplatValue));
SDValue CP = DAG.getConstantPool(C, PVT);
unsigned Repeat = VT.getSizeInBits() / SplatBitSize;
unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
Ld = DAG.getLoad(
CVT, dl, DAG.getEntryNode(), CP,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
Alignment);
SDValue Brdcst = DAG.getNode(X86ISD::VBROADCAST, dl,
MVT::getVectorVT(CVT, Repeat), Ld);
return DAG.getBitcast(VT, Brdcst);
} else if (SplatBitSize > 64) {
// Load the vector of constants and broadcast it.
MVT CVT = VT.getScalarType();
Constant *VecC = getConstantVector(VT, SplatValue, SplatBitSize,
*Ctx);
SDValue VCP = DAG.getConstantPool(VecC, PVT);
unsigned NumElm = SplatBitSize / VT.getScalarSizeInBits();
unsigned Alignment = cast<ConstantPoolSDNode>(VCP)->getAlignment();
Ld = DAG.getLoad(
MVT::getVectorVT(CVT, NumElm), dl, DAG.getEntryNode(), VCP,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
Alignment);
SDValue Brdcst = DAG.getNode(X86ISD::SUBV_BROADCAST, dl, VT, Ld);
return DAG.getBitcast(VT, Brdcst);
}
}
}
return SDValue();
}
bool ConstSplatVal =
(Ld.getOpcode() == ISD::Constant || Ld.getOpcode() == ISD::ConstantFP);
// Make sure that all of the users of a non-constant load are from the
// BUILD_VECTOR node.
if (!ConstSplatVal && !BVOp->isOnlyUserOf(Ld.getNode()))
return SDValue();
unsigned ScalarSize = Ld.getValueSizeInBits();
bool IsGE256 = (VT.getSizeInBits() >= 256);
// When optimizing for size, generate up to 5 extra bytes for a broadcast
// instruction to save 8 or more bytes of constant pool data.
// TODO: If multiple splats are generated to load the same constant,
// it may be detrimental to overall size. There needs to be a way to detect
// that condition to know if this is truly a size win.
bool OptForSize = DAG.getMachineFunction().getFunction().optForSize();
// Handle broadcasting a single constant scalar from the constant pool
// into a vector.
// On Sandybridge (no AVX2), it is still better to load a constant vector
// from the constant pool and not to broadcast it from a scalar.
// But override that restriction when optimizing for size.
// TODO: Check if splatting is recommended for other AVX-capable CPUs.
if (ConstSplatVal && (Subtarget.hasAVX2() || OptForSize)) {
EVT CVT = Ld.getValueType();
assert(!CVT.isVector() && "Must not broadcast a vector type");
// Splat f32, i32, v4f64, v4i64 in all cases with AVX2.
// For size optimization, also splat v2f64 and v2i64, and for size opt
// with AVX2, also splat i8 and i16.
// With pattern matching, the VBROADCAST node may become a VMOVDDUP.
if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
(OptForSize && (ScalarSize == 64 || Subtarget.hasAVX2()))) {
const Constant *C = nullptr;
if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
C = CI->getConstantIntValue();
else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
C = CF->getConstantFPValue();
assert(C && "Invalid constant type");
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue CP =
DAG.getConstantPool(C, TLI.getPointerTy(DAG.getDataLayout()));
unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
Ld = DAG.getLoad(
CVT, dl, DAG.getEntryNode(), CP,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
Alignment);
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
}
}
bool IsLoad = ISD::isNormalLoad(Ld.getNode());
// Handle AVX2 in-register broadcasts.
if (!IsLoad && Subtarget.hasInt256() &&
(ScalarSize == 32 || (IsGE256 && ScalarSize == 64)))
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
// The scalar source must be a normal load.
if (!IsLoad)
return SDValue();
if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
(Subtarget.hasVLX() && ScalarSize == 64))
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
// The integer check is needed for the 64-bit into 128-bit so it doesn't match
// double since there is no vbroadcastsd xmm
if (Subtarget.hasInt256() && Ld.getValueType().isInteger()) {
if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
}
// Unsupported broadcast.
return SDValue();
}
/// For an EXTRACT_VECTOR_ELT with a constant index return the real
/// underlying vector and index.
///
/// Modifies \p ExtractedFromVec to the real vector and returns the real
/// index.
static int getUnderlyingExtractedFromVec(SDValue &ExtractedFromVec,
SDValue ExtIdx) {
int Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
if (!isa<ShuffleVectorSDNode>(ExtractedFromVec))
return Idx;
// For 256-bit vectors, LowerEXTRACT_VECTOR_ELT_SSE4 may have already
// lowered this:
// (extract_vector_elt (v8f32 %1), Constant<6>)
// to:
// (extract_vector_elt (vector_shuffle<2,u,u,u>
// (extract_subvector (v8f32 %0), Constant<4>),
// undef)
// Constant<0>)
// In this case the vector is the extract_subvector expression and the index
// is 2, as specified by the shuffle.
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(ExtractedFromVec);
SDValue ShuffleVec = SVOp->getOperand(0);
MVT ShuffleVecVT = ShuffleVec.getSimpleValueType();
assert(ShuffleVecVT.getVectorElementType() ==
ExtractedFromVec.getSimpleValueType().getVectorElementType());
int ShuffleIdx = SVOp->getMaskElt(Idx);
if (isUndefOrInRange(ShuffleIdx, 0, ShuffleVecVT.getVectorNumElements())) {
ExtractedFromVec = ShuffleVec;
return ShuffleIdx;
}
return Idx;
}
static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
// Skip if insert_vec_elt is not supported.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
return SDValue();
SDLoc DL(Op);
unsigned NumElems = Op.getNumOperands();
SDValue VecIn1;
SDValue VecIn2;
SmallVector<unsigned, 4> InsertIndices;
SmallVector<int, 8> Mask(NumElems, -1);
for (unsigned i = 0; i != NumElems; ++i) {
unsigned Opc = Op.getOperand(i).getOpcode();
if (Opc == ISD::UNDEF)
continue;
if (Opc != ISD::EXTRACT_VECTOR_ELT) {
// Quit if more than 1 elements need inserting.
if (InsertIndices.size() > 1)
return SDValue();
InsertIndices.push_back(i);
continue;
}
SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
SDValue ExtIdx = Op.getOperand(i).getOperand(1);
// Quit if non-constant index.
if (!isa<ConstantSDNode>(ExtIdx))
return SDValue();
int Idx = getUnderlyingExtractedFromVec(ExtractedFromVec, ExtIdx);
// Quit if extracted from vector of different type.
if (ExtractedFromVec.getValueType() != VT)
return SDValue();
if (!VecIn1.getNode())
VecIn1 = ExtractedFromVec;
else if (VecIn1 != ExtractedFromVec) {
if (!VecIn2.getNode())
VecIn2 = ExtractedFromVec;
else if (VecIn2 != ExtractedFromVec)
// Quit if more than 2 vectors to shuffle
return SDValue();
}
if (ExtractedFromVec == VecIn1)
Mask[i] = Idx;
else if (ExtractedFromVec == VecIn2)
Mask[i] = Idx + NumElems;
}
if (!VecIn1.getNode())
return SDValue();
VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, Mask);
for (unsigned Idx : InsertIndices)
NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
DAG.getIntPtrConstant(Idx, DL));
return NV;
}
static SDValue ConvertI1VectorToInteger(SDValue Op, SelectionDAG &DAG) {
assert(ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
Op.getScalarValueSizeInBits() == 1 &&
"Can not convert non-constant vector");
uint64_t Immediate = 0;
for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
SDValue In = Op.getOperand(idx);
if (!In.isUndef())
Immediate |= (cast<ConstantSDNode>(In)->getZExtValue() & 0x1) << idx;
}
SDLoc dl(Op);
MVT VT = MVT::getIntegerVT(std::max((int)Op.getValueSizeInBits(), 8));
return DAG.getConstant(Immediate, dl, VT);
}
// Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
static SDValue LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = Op.getSimpleValueType();
assert((VT.getVectorElementType() == MVT::i1) &&
"Unexpected type in LowerBUILD_VECTORvXi1!");
SDLoc dl(Op);
if (ISD::isBuildVectorAllZeros(Op.getNode()))
return Op;
if (ISD::isBuildVectorAllOnes(Op.getNode()))
return Op;
if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
if (VT == MVT::v64i1 && !Subtarget.is64Bit()) {
// Split the pieces.
SDValue Lower =
DAG.getBuildVector(MVT::v32i1, dl, Op.getNode()->ops().slice(0, 32));
SDValue Upper =
DAG.getBuildVector(MVT::v32i1, dl, Op.getNode()->ops().slice(32, 32));
// We have to manually lower both halves so getNode doesn't try to
// reassemble the build_vector.
Lower = LowerBUILD_VECTORvXi1(Lower, DAG, Subtarget);
Upper = LowerBUILD_VECTORvXi1(Upper, DAG, Subtarget);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v64i1, Lower, Upper);
}
SDValue Imm = ConvertI1VectorToInteger(Op, DAG);
if (Imm.getValueSizeInBits() == VT.getSizeInBits())
return DAG.getBitcast(VT, Imm);
SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec,
DAG.getIntPtrConstant(0, dl));
}
// Vector has one or more non-const elements
uint64_t Immediate = 0;
SmallVector<unsigned, 16> NonConstIdx;
bool IsSplat = true;
bool HasConstElts = false;
int SplatIdx = -1;
for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
SDValue In = Op.getOperand(idx);
if (In.isUndef())
continue;
if (!isa<ConstantSDNode>(In))
NonConstIdx.push_back(idx);
else {
Immediate |= (cast<ConstantSDNode>(In)->getZExtValue() & 0x1) << idx;
HasConstElts = true;
}
if (SplatIdx < 0)
SplatIdx = idx;
else if (In != Op.getOperand(SplatIdx))
IsSplat = false;
}
// for splat use " (select i1 splat_elt, all-ones, all-zeroes)"
if (IsSplat)
return DAG.getSelect(dl, VT, Op.getOperand(SplatIdx),
DAG.getConstant(1, dl, VT),
DAG.getConstant(0, dl, VT));
// insert elements one by one
SDValue DstVec;
SDValue Imm;
if (Immediate) {
MVT ImmVT = MVT::getIntegerVT(std::max((int)VT.getSizeInBits(), 8));
Imm = DAG.getConstant(Immediate, dl, ImmVT);
}
else if (HasConstElts)
Imm = DAG.getConstant(0, dl, VT);
else
Imm = DAG.getUNDEF(VT);
if (Imm.getValueSizeInBits() == VT.getSizeInBits())
DstVec = DAG.getBitcast(VT, Imm);
else {
SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm);
DstVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec,
DAG.getIntPtrConstant(0, dl));
}
for (unsigned i = 0, e = NonConstIdx.size(); i != e; ++i) {
unsigned InsertIdx = NonConstIdx[i];
DstVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
Op.getOperand(InsertIdx),
DAG.getIntPtrConstant(InsertIdx, dl));
}
return DstVec;
}
/// Return true if \p N implements a horizontal binop and return the
/// operands for the horizontal binop into V0 and V1.
///
/// This is a helper function of LowerToHorizontalOp().
/// This function checks that the build_vector \p N in input implements a
/// horizontal operation. Parameter \p Opcode defines the kind of horizontal
/// operation to match.
/// For example, if \p Opcode is equal to ISD::ADD, then this function
/// checks if \p N implements a horizontal arithmetic add; if instead \p Opcode
/// is equal to ISD::SUB, then this function checks if this is a horizontal
/// arithmetic sub.
///
/// This function only analyzes elements of \p N whose indices are
/// in range [BaseIdx, LastIdx).
static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode,
SelectionDAG &DAG,
unsigned BaseIdx, unsigned LastIdx,
SDValue &V0, SDValue &V1) {
EVT VT = N->getValueType(0);
assert(BaseIdx * 2 <= LastIdx && "Invalid Indices in input!");
assert(VT.isVector() && VT.getVectorNumElements() >= LastIdx &&
"Invalid Vector in input!");
bool IsCommutable = (Opcode == ISD::ADD || Opcode == ISD::FADD);
bool CanFold = true;
unsigned ExpectedVExtractIdx = BaseIdx;
unsigned NumElts = LastIdx - BaseIdx;
V0 = DAG.getUNDEF(VT);
V1 = DAG.getUNDEF(VT);
// Check if N implements a horizontal binop.
for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i) {
SDValue Op = N->getOperand(i + BaseIdx);
// Skip UNDEFs.
if (Op->isUndef()) {
// Update the expected vector extract index.
if (i * 2 == NumElts)
ExpectedVExtractIdx = BaseIdx;
ExpectedVExtractIdx += 2;
continue;
}
CanFold = Op->getOpcode() == Opcode && Op->hasOneUse();
if (!CanFold)
break;
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
// Try to match the following pattern:
// (BINOP (extract_vector_elt A, I), (extract_vector_elt A, I+1))
CanFold = (Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Op0.getOperand(0) == Op1.getOperand(0) &&
isa<ConstantSDNode>(Op0.getOperand(1)) &&
isa<ConstantSDNode>(Op1.getOperand(1)));
if (!CanFold)
break;
unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
unsigned I1 = cast<ConstantSDNode>(Op1.getOperand(1))->getZExtValue();
if (i * 2 < NumElts) {
if (V0.isUndef()) {
V0 = Op0.getOperand(0);
if (V0.getValueType() != VT)
return false;
}
} else {
if (V1.isUndef()) {
V1 = Op0.getOperand(0);
if (V1.getValueType() != VT)
return false;
}
if (i * 2 == NumElts)
ExpectedVExtractIdx = BaseIdx;
}
SDValue Expected = (i * 2 < NumElts) ? V0 : V1;
if (I0 == ExpectedVExtractIdx)
CanFold = I1 == I0 + 1 && Op0.getOperand(0) == Expected;
else if (IsCommutable && I1 == ExpectedVExtractIdx) {
// Try to match the following dag sequence:
// (BINOP (extract_vector_elt A, I+1), (extract_vector_elt A, I))
CanFold = I0 == I1 + 1 && Op1.getOperand(0) == Expected;
} else
CanFold = false;
ExpectedVExtractIdx += 2;
}
return CanFold;
}
/// Emit a sequence of two 128-bit horizontal add/sub followed by
/// a concat_vector.
///
/// This is a helper function of LowerToHorizontalOp().
/// This function expects two 256-bit vectors called V0 and V1.
/// At first, each vector is split into two separate 128-bit vectors.
/// Then, the resulting 128-bit vectors are used to implement two
/// horizontal binary operations.
///
/// The kind of horizontal binary operation is defined by \p X86Opcode.
///
/// \p Mode specifies how the 128-bit parts of V0 and V1 are passed in input to
/// the two new horizontal binop.
/// When Mode is set, the first horizontal binop dag node would take as input
/// the lower 128-bit of V0 and the upper 128-bit of V0. The second
/// horizontal binop dag node would take as input the lower 128-bit of V1
/// and the upper 128-bit of V1.
/// Example:
/// HADD V0_LO, V0_HI
/// HADD V1_LO, V1_HI
///
/// Otherwise, the first horizontal binop dag node takes as input the lower
/// 128-bit of V0 and the lower 128-bit of V1, and the second horizontal binop
/// dag node takes the upper 128-bit of V0 and the upper 128-bit of V1.
/// Example:
/// HADD V0_LO, V1_LO
/// HADD V0_HI, V1_HI
///
/// If \p isUndefLO is set, then the algorithm propagates UNDEF to the lower
/// 128-bits of the result. If \p isUndefHI is set, then UNDEF is propagated to
/// the upper 128-bits of the result.
static SDValue ExpandHorizontalBinOp(const SDValue &V0, const SDValue &V1,
const SDLoc &DL, SelectionDAG &DAG,
unsigned X86Opcode, bool Mode,
bool isUndefLO, bool isUndefHI) {
MVT VT = V0.getSimpleValueType();
assert(VT.is256BitVector() && VT == V1.getSimpleValueType() &&
"Invalid nodes in input!");
unsigned NumElts = VT.getVectorNumElements();
SDValue V0_LO = extract128BitVector(V0, 0, DAG, DL);
SDValue V0_HI = extract128BitVector(V0, NumElts/2, DAG, DL);
SDValue V1_LO = extract128BitVector(V1, 0, DAG, DL);
SDValue V1_HI = extract128BitVector(V1, NumElts/2, DAG, DL);
MVT NewVT = V0_LO.getSimpleValueType();
SDValue LO = DAG.getUNDEF(NewVT);
SDValue HI = DAG.getUNDEF(NewVT);
if (Mode) {
// Don't emit a horizontal binop if the result is expected to be UNDEF.
if (!isUndefLO && !V0->isUndef())
LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V0_HI);
if (!isUndefHI && !V1->isUndef())
HI = DAG.getNode(X86Opcode, DL, NewVT, V1_LO, V1_HI);
} else {
// Don't emit a horizontal binop if the result is expected to be UNDEF.
if (!isUndefLO && (!V0_LO->isUndef() || !V1_LO->isUndef()))
LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V1_LO);
if (!isUndefHI && (!V0_HI->isUndef() || !V1_HI->isUndef()))
HI = DAG.getNode(X86Opcode, DL, NewVT, V0_HI, V1_HI);
}
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LO, HI);
}
/// Returns true iff \p BV builds a vector with the result equivalent to
/// the result of ADDSUB/SUBADD operation.
/// If true is returned then the operands of ADDSUB = Opnd0 +- Opnd1
/// (SUBADD = Opnd0 -+ Opnd1) operation are written to the parameters
/// \p Opnd0 and \p Opnd1.
static bool isAddSubOrSubAdd(const BuildVectorSDNode *BV,
const X86Subtarget &Subtarget, SelectionDAG &DAG,
SDValue &Opnd0, SDValue &Opnd1,
unsigned &NumExtracts,
bool &IsSubAdd) {
MVT VT = BV->getSimpleValueType(0);
if (!Subtarget.hasSSE3() || !VT.isFloatingPoint())
return false;
unsigned NumElts = VT.getVectorNumElements();
SDValue InVec0 = DAG.getUNDEF(VT);
SDValue InVec1 = DAG.getUNDEF(VT);
NumExtracts = 0;
// Odd-numbered elements in the input build vector are obtained from
// adding/subtracting two integer/float elements.
// Even-numbered elements in the input build vector are obtained from
// subtracting/adding two integer/float elements.
unsigned Opc[2] {0, 0};
for (unsigned i = 0, e = NumElts; i != e; ++i) {
SDValue Op = BV->getOperand(i);
// Skip 'undef' values.
unsigned Opcode = Op.getOpcode();
if (Opcode == ISD::UNDEF)
continue;
// Early exit if we found an unexpected opcode.
if (Opcode != ISD::FADD && Opcode != ISD::FSUB)
return false;
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
// Try to match the following pattern:
// (BINOP (extract_vector_elt A, i), (extract_vector_elt B, i))
// Early exit if we cannot match that sequence.
if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
!isa<ConstantSDNode>(Op0.getOperand(1)) ||
!isa<ConstantSDNode>(Op1.getOperand(1)) ||
Op0.getOperand(1) != Op1.getOperand(1))
return false;
unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
if (I0 != i)
return false;
// We found a valid add/sub node, make sure its the same opcode as previous
// elements for this parity.
if (Opc[i % 2] != 0 && Opc[i % 2] != Opcode)
return false;
Opc[i % 2] = Opcode;
// Update InVec0 and InVec1.
if (InVec0.isUndef()) {
InVec0 = Op0.getOperand(0);
if (InVec0.getSimpleValueType() != VT)
return false;
}
if (InVec1.isUndef()) {
InVec1 = Op1.getOperand(0);
if (InVec1.getSimpleValueType() != VT)
return false;
}
// Make sure that operands in input to each add/sub node always
// come from a same pair of vectors.
if (InVec0 != Op0.getOperand(0)) {
if (Opcode == ISD::FSUB)
return false;
// FADD is commutable. Try to commute the operands
// and then test again.
std::swap(Op0, Op1);
if (InVec0 != Op0.getOperand(0))
return false;
}
if (InVec1 != Op1.getOperand(0))
return false;
// Increment the number of extractions done.
++NumExtracts;
}
// Ensure we have found an opcode for both parities and that they are
// different. Don't try to fold this build_vector into an ADDSUB/SUBADD if the
// inputs are undef.
if (!Opc[0] || !Opc[1] || Opc[0] == Opc[1] ||
InVec0.isUndef() || InVec1.isUndef())
return false;
IsSubAdd = Opc[0] == ISD::FADD;
Opnd0 = InVec0;
Opnd1 = InVec1;
return true;
}
/// Returns true if is possible to fold MUL and an idiom that has already been
/// recognized as ADDSUB/SUBADD(\p Opnd0, \p Opnd1) into
/// FMADDSUB/FMSUBADD(x, y, \p Opnd1). If (and only if) true is returned, the
/// operands of FMADDSUB/FMSUBADD are written to parameters \p Opnd0, \p Opnd1, \p Opnd2.
///
/// Prior to calling this function it should be known that there is some
/// SDNode that potentially can be replaced with an X86ISD::ADDSUB operation
/// using \p Opnd0 and \p Opnd1 as operands. Also, this method is called
/// before replacement of such SDNode with ADDSUB operation. Thus the number
/// of \p Opnd0 uses is expected to be equal to 2.
/// For example, this function may be called for the following IR:
/// %AB = fmul fast <2 x double> %A, %B
/// %Sub = fsub fast <2 x double> %AB, %C
/// %Add = fadd fast <2 x double> %AB, %C
/// %Addsub = shufflevector <2 x double> %Sub, <2 x double> %Add,
/// <2 x i32> <i32 0, i32 3>
/// There is a def for %Addsub here, which potentially can be replaced by
/// X86ISD::ADDSUB operation:
/// %Addsub = X86ISD::ADDSUB %AB, %C
/// and such ADDSUB can further be replaced with FMADDSUB:
/// %Addsub = FMADDSUB %A, %B, %C.
///
/// The main reason why this method is called before the replacement of the
/// recognized ADDSUB idiom with ADDSUB operation is that such replacement
/// is illegal sometimes. E.g. 512-bit ADDSUB is not available, while 512-bit
/// FMADDSUB is.
static bool isFMAddSubOrFMSubAdd(const X86Subtarget &Subtarget,
SelectionDAG &DAG,
SDValue &Opnd0, SDValue &Opnd1, SDValue &Opnd2,
unsigned ExpectedUses) {
if (Opnd0.getOpcode() != ISD::FMUL ||
!Opnd0->hasNUsesOfValue(ExpectedUses, 0) || !Subtarget.hasAnyFMA())
return false;
// FIXME: These checks must match the similar ones in
// DAGCombiner::visitFADDForFMACombine. It would be good to have one
// function that would answer if it is Ok to fuse MUL + ADD to FMADD
// or MUL + ADDSUB to FMADDSUB.
const TargetOptions &Options = DAG.getTarget().Options;
bool AllowFusion =
(Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath);
if (!AllowFusion)
return false;
Opnd2 = Opnd1;
Opnd1 = Opnd0.getOperand(1);
Opnd0 = Opnd0.getOperand(0);
return true;
}
/// Try to fold a build_vector that performs an 'addsub' or 'fmaddsub' or
/// 'fsubadd' operation accordingly to X86ISD::ADDSUB or X86ISD::FMADDSUB or
/// X86ISD::FMSUBADD node.
static SDValue lowerToAddSubOrFMAddSub(const BuildVectorSDNode *BV,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDValue Opnd0, Opnd1;
unsigned NumExtracts;
bool IsSubAdd;
if (!isAddSubOrSubAdd(BV, Subtarget, DAG, Opnd0, Opnd1, NumExtracts,
IsSubAdd))
return SDValue();
MVT VT = BV->getSimpleValueType(0);
SDLoc DL(BV);
// Try to generate X86ISD::FMADDSUB node here.
SDValue Opnd2;
if (isFMAddSubOrFMSubAdd(Subtarget, DAG, Opnd0, Opnd1, Opnd2, NumExtracts)) {
unsigned Opc = IsSubAdd ? X86ISD::FMSUBADD : X86ISD::FMADDSUB;
return DAG.getNode(Opc, DL, VT, Opnd0, Opnd1, Opnd2);
}
// We only support ADDSUB.
if (IsSubAdd)
return SDValue();
// Do not generate X86ISD::ADDSUB node for 512-bit types even though
// the ADDSUB idiom has been successfully recognized. There are no known
// X86 targets with 512-bit ADDSUB instructions!
// 512-bit ADDSUB idiom recognition was needed only as part of FMADDSUB idiom
// recognition.
if (VT.is512BitVector())
return SDValue();
return DAG.getNode(X86ISD::ADDSUB, DL, VT, Opnd0, Opnd1);
}
/// Lower BUILD_VECTOR to a horizontal add/sub operation if possible.
static SDValue LowerToHorizontalOp(const BuildVectorSDNode *BV,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = BV->getSimpleValueType(0);
unsigned NumElts = VT.getVectorNumElements();
unsigned NumUndefsLO = 0;
unsigned NumUndefsHI = 0;
unsigned Half = NumElts/2;
// Count the number of UNDEF operands in the build_vector in input.
for (unsigned i = 0, e = Half; i != e; ++i)
if (BV->getOperand(i)->isUndef())
NumUndefsLO++;
for (unsigned i = Half, e = NumElts; i != e; ++i)
if (BV->getOperand(i)->isUndef())
NumUndefsHI++;
// Early exit if this is either a build_vector of all UNDEFs or all the
// operands but one are UNDEF.
if (NumUndefsLO + NumUndefsHI + 1 >= NumElts)
return SDValue();
SDLoc DL(BV);
SDValue InVec0, InVec1;
if ((VT == MVT::v4f32 || VT == MVT::v2f64) && Subtarget.hasSSE3()) {
// Try to match an SSE3 float HADD/HSUB.
if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
} else if ((VT == MVT::v4i32 || VT == MVT::v8i16) && Subtarget.hasSSSE3()) {
// Try to match an SSSE3 integer HADD/HSUB.
if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
return DAG.getNode(X86ISD::HADD, DL, VT, InVec0, InVec1);
if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
return DAG.getNode(X86ISD::HSUB, DL, VT, InVec0, InVec1);
}
if (!Subtarget.hasAVX())
return SDValue();
if ((VT == MVT::v8f32 || VT == MVT::v4f64)) {
// Try to match an AVX horizontal add/sub of packed single/double
// precision floating point values from 256-bit vectors.
SDValue InVec2, InVec3;
if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, Half, InVec0, InVec1) &&
isHorizontalBinOp(BV, ISD::FADD, DAG, Half, NumElts, InVec2, InVec3) &&
((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) &&
((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3))
return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, Half, InVec0, InVec1) &&
isHorizontalBinOp(BV, ISD::FSUB, DAG, Half, NumElts, InVec2, InVec3) &&
((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) &&
((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3))
return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
} else if (VT == MVT::v8i32 || VT == MVT::v16i16) {
// Try to match an AVX2 horizontal add/sub of signed integers.
SDValue InVec2, InVec3;
unsigned X86Opcode;
bool CanFold = true;
if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, Half, InVec0, InVec1) &&
isHorizontalBinOp(BV, ISD::ADD, DAG, Half, NumElts, InVec2, InVec3) &&
((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) &&
((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3))
X86Opcode = X86ISD::HADD;
else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, Half, InVec0, InVec1) &&
isHorizontalBinOp(BV, ISD::SUB, DAG, Half, NumElts, InVec2, InVec3) &&
((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) &&
((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3))
X86Opcode = X86ISD::HSUB;
else
CanFold = false;
if (CanFold) {
// Fold this build_vector into a single horizontal add/sub.
// Do this only if the target has AVX2.
if (Subtarget.hasAVX2())
return DAG.getNode(X86Opcode, DL, VT, InVec0, InVec1);
// Do not try to expand this build_vector into a pair of horizontal
// add/sub if we can emit a pair of scalar add/sub.
if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
return SDValue();
// Convert this build_vector into a pair of horizontal binop followed by
// a concat vector.
bool isUndefLO = NumUndefsLO == Half;
bool isUndefHI = NumUndefsHI == Half;
return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, false,
isUndefLO, isUndefHI);
}
}
if ((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v8i32 ||
VT == MVT::v16i16) && Subtarget.hasAVX()) {
unsigned X86Opcode;
if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
X86Opcode = X86ISD::HADD;
else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
X86Opcode = X86ISD::HSUB;
else if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
X86Opcode = X86ISD::FHADD;
else if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
X86Opcode = X86ISD::FHSUB;
else
return SDValue();
// Don't try to expand this build_vector into a pair of horizontal add/sub
// if we can simply emit a pair of scalar add/sub.
if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
return SDValue();
// Convert this build_vector into two horizontal add/sub followed by
// a concat vector.
bool isUndefLO = NumUndefsLO == Half;
bool isUndefHI = NumUndefsHI == Half;
return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, true,
isUndefLO, isUndefHI);
}
return SDValue();
}
/// If a BUILD_VECTOR's source elements all apply the same bit operation and
/// one of their operands is constant, lower to a pair of BUILD_VECTOR and
/// just apply the bit to the vectors.
/// NOTE: Its not in our interest to start make a general purpose vectorizer
/// from this, but enough scalar bit operations are created from the later
/// legalization + scalarization stages to need basic support.
static SDValue lowerBuildVectorToBitOp(BuildVectorSDNode *Op,
SelectionDAG &DAG) {
SDLoc DL(Op);
MVT VT = Op->getSimpleValueType(0);
unsigned NumElems = VT.getVectorNumElements();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// Check that all elements have the same opcode.
// TODO: Should we allow UNDEFS and if so how many?
unsigned Opcode = Op->getOperand(0).getOpcode();
for (unsigned i = 1; i < NumElems; ++i)
if (Opcode != Op->getOperand(i).getOpcode())
return SDValue();
// TODO: We may be able to add support for other Ops (ADD/SUB + shifts).
switch (Opcode) {
default:
return SDValue();
case ISD::AND:
case ISD::XOR:
case ISD::OR:
// Don't do this if the buildvector is a splat - we'd replace one
// constant with an entire vector.
if (Op->getSplatValue())
return SDValue();
if (!TLI.isOperationLegalOrPromote(Opcode, VT))
return SDValue();
break;
}
SmallVector<SDValue, 4> LHSElts, RHSElts;
for (SDValue Elt : Op->ops()) {
SDValue LHS = Elt.getOperand(0);
SDValue RHS = Elt.getOperand(1);
// We expect the canonicalized RHS operand to be the constant.
if (!isa<ConstantSDNode>(RHS))
return SDValue();
LHSElts.push_back(LHS);
RHSElts.push_back(RHS);
}
SDValue LHS = DAG.getBuildVector(VT, DL, LHSElts);
SDValue RHS = DAG.getBuildVector(VT, DL, RHSElts);
return DAG.getNode(Opcode, DL, VT, LHS, RHS);
}
/// Create a vector constant without a load. SSE/AVX provide the bare minimum
/// functionality to do this, so it's all zeros, all ones, or some derivation
/// that is cheap to calculate.
static SDValue materializeVectorConstant(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc DL(Op);
MVT VT = Op.getSimpleValueType();
// Vectors containing all zeros can be matched by pxor and xorps.
if (ISD::isBuildVectorAllZeros(Op.getNode())) {
// Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
// and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32)
return Op;
return getZeroVector(VT, Subtarget, DAG, DL);
}
// Vectors containing all ones can be matched by pcmpeqd on 128-bit width
// vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
// vpcmpeqd on 256-bit vectors.
if (Subtarget.hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
if (VT == MVT::v4i32 || VT == MVT::v16i32 ||
(VT == MVT::v8i32 && Subtarget.hasInt256()))
return Op;
return getOnesVector(VT, DAG, DL);
}
return SDValue();
}
/// Look for opportunities to create a VPERMV/VPERMILPV/PSHUFB variable permute
/// from a vector of source values and a vector of extraction indices.
/// The vectors might be manipulated to match the type of the permute op.
static SDValue createVariablePermute(MVT VT, SDValue SrcVec, SDValue IndicesVec,
SDLoc &DL, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT ShuffleVT = VT;
EVT IndicesVT = EVT(VT).changeVectorElementTypeToInteger();
unsigned NumElts = VT.getVectorNumElements();
unsigned SizeInBits = VT.getSizeInBits();
// Adjust IndicesVec to match VT size.
assert(IndicesVec.getValueType().getVectorNumElements() >= NumElts &&
"Illegal variable permute mask size");
if (IndicesVec.getValueType().getVectorNumElements() > NumElts)
IndicesVec = extractSubVector(IndicesVec, 0, DAG, SDLoc(IndicesVec),
NumElts * VT.getScalarSizeInBits());
IndicesVec = DAG.getZExtOrTrunc(IndicesVec, SDLoc(IndicesVec), IndicesVT);
// Handle SrcVec that don't match VT type.
if (SrcVec.getValueSizeInBits() != SizeInBits) {
if ((SrcVec.getValueSizeInBits() % SizeInBits) == 0) {
// Handle larger SrcVec by treating it as a larger permute.
unsigned Scale = SrcVec.getValueSizeInBits() / SizeInBits;
VT = MVT::getVectorVT(VT.getScalarType(), Scale * NumElts);
IndicesVT = EVT(VT).changeVectorElementTypeToInteger();
IndicesVec = widenSubVector(IndicesVT.getSimpleVT(), IndicesVec, false,
Subtarget, DAG, SDLoc(IndicesVec));
return extractSubVector(
createVariablePermute(VT, SrcVec, IndicesVec, DL, DAG, Subtarget), 0,
DAG, DL, SizeInBits);
} else if (SrcVec.getValueSizeInBits() < SizeInBits) {
// Widen smaller SrcVec to match VT.
SrcVec = widenSubVector(VT, SrcVec, false, Subtarget, DAG, SDLoc(SrcVec));
} else
return SDValue();
}
auto ScaleIndices = [&DAG](SDValue Idx, uint64_t Scale) {
assert(isPowerOf2_64(Scale) && "Illegal variable permute shuffle scale");
EVT SrcVT = Idx.getValueType();
unsigned NumDstBits = SrcVT.getScalarSizeInBits() / Scale;
uint64_t IndexScale = 0;
uint64_t IndexOffset = 0;
// If we're scaling a smaller permute op, then we need to repeat the
// indices, scaling and offsetting them as well.
// e.g. v4i32 -> v16i8 (Scale = 4)
// IndexScale = v4i32 Splat(4 << 24 | 4 << 16 | 4 << 8 | 4)
// IndexOffset = v4i32 Splat(3 << 24 | 2 << 16 | 1 << 8 | 0)
for (uint64_t i = 0; i != Scale; ++i) {
IndexScale |= Scale << (i * NumDstBits);
IndexOffset |= i << (i * NumDstBits);
}
Idx = DAG.getNode(ISD::MUL, SDLoc(Idx), SrcVT, Idx,
DAG.getConstant(IndexScale, SDLoc(Idx), SrcVT));
Idx = DAG.getNode(ISD::ADD, SDLoc(Idx), SrcVT, Idx,
DAG.getConstant(IndexOffset, SDLoc(Idx), SrcVT));
return Idx;
};
unsigned Opcode = 0;
switch (VT.SimpleTy) {
default:
break;
case MVT::v16i8:
if (Subtarget.hasSSSE3())
Opcode = X86ISD::PSHUFB;
break;
case MVT::v8i16:
if (Subtarget.hasVLX() && Subtarget.hasBWI())
Opcode = X86ISD::VPERMV;
else if (Subtarget.hasSSSE3()) {
Opcode = X86ISD::PSHUFB;
ShuffleVT = MVT::v16i8;
}
break;
case MVT::v4f32:
case MVT::v4i32:
if (Subtarget.hasAVX()) {
Opcode = X86ISD::VPERMILPV;
ShuffleVT = MVT::v4f32;
} else if (Subtarget.hasSSSE3()) {
Opcode = X86ISD::PSHUFB;
ShuffleVT = MVT::v16i8;
}
break;
case MVT::v2f64:
case MVT::v2i64:
if (Subtarget.hasAVX()) {
// VPERMILPD selects using bit#1 of the index vector, so scale IndicesVec.
IndicesVec = DAG.getNode(ISD::ADD, DL, IndicesVT, IndicesVec, IndicesVec);
Opcode = X86ISD::VPERMILPV;
ShuffleVT = MVT::v2f64;
} else if (Subtarget.hasSSE41()) {
// SSE41 can compare v2i64 - select between indices 0 and 1.
return DAG.getSelectCC(
DL, IndicesVec,
getZeroVector(IndicesVT.getSimpleVT(), Subtarget, DAG, DL),
DAG.getVectorShuffle(VT, DL, SrcVec, SrcVec, {0, 0}),
DAG.getVectorShuffle(VT, DL, SrcVec, SrcVec, {1, 1}),
ISD::CondCode::SETEQ);
}
break;
case MVT::v32i8:
if (Subtarget.hasVLX() && Subtarget.hasVBMI())
Opcode = X86ISD::VPERMV;
else if (Subtarget.hasXOP()) {
SDValue LoSrc = extract128BitVector(SrcVec, 0, DAG, DL);
SDValue HiSrc = extract128BitVector(SrcVec, 16, DAG, DL);
SDValue LoIdx = extract128BitVector(IndicesVec, 0, DAG, DL);
SDValue HiIdx = extract128BitVector(IndicesVec, 16, DAG, DL);
return DAG.getNode(
ISD::CONCAT_VECTORS, DL, VT,
DAG.getNode(X86ISD::VPPERM, DL, MVT::v16i8, LoSrc, HiSrc, LoIdx),
DAG.getNode(X86ISD::VPPERM, DL, MVT::v16i8, LoSrc, HiSrc, HiIdx));
} else if (Subtarget.hasAVX()) {
SDValue Lo = extract128BitVector(SrcVec, 0, DAG, DL);
SDValue Hi = extract128BitVector(SrcVec, 16, DAG, DL);
SDValue LoLo = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Lo);
SDValue HiHi = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Hi, Hi);
auto PSHUFBBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
// Permute Lo and Hi and then select based on index range.
// This works as SHUFB uses bits[3:0] to permute elements and we don't
// care about the bit[7] as its just an index vector.
SDValue Idx = Ops[2];
EVT VT = Idx.getValueType();
return DAG.getSelectCC(DL, Idx, DAG.getConstant(15, DL, VT),
DAG.getNode(X86ISD::PSHUFB, DL, VT, Ops[1], Idx),
DAG.getNode(X86ISD::PSHUFB, DL, VT, Ops[0], Idx),
ISD::CondCode::SETGT);
};
SDValue Ops[] = {LoLo, HiHi, IndicesVec};
return SplitOpsAndApply(DAG, Subtarget, DL, MVT::v32i8, Ops,
PSHUFBBuilder);
}
break;
case MVT::v16i16:
if (Subtarget.hasVLX() && Subtarget.hasBWI())
Opcode = X86ISD::VPERMV;
else if (Subtarget.hasAVX()) {
// Scale to v32i8 and perform as v32i8.
IndicesVec = ScaleIndices(IndicesVec, 2);
return DAG.getBitcast(
VT, createVariablePermute(
MVT::v32i8, DAG.getBitcast(MVT::v32i8, SrcVec),
DAG.getBitcast(MVT::v32i8, IndicesVec), DL, DAG, Subtarget));
}
break;
case MVT::v8f32:
case MVT::v8i32:
if (Subtarget.hasAVX2())
Opcode = X86ISD::VPERMV;
else if (Subtarget.hasAVX()) {
SrcVec = DAG.getBitcast(MVT::v8f32, SrcVec);
SDValue LoLo = DAG.getVectorShuffle(MVT::v8f32, DL, SrcVec, SrcVec,
{0, 1, 2, 3, 0, 1, 2, 3});
SDValue HiHi = DAG.getVectorShuffle(MVT::v8f32, DL, SrcVec, SrcVec,
{4, 5, 6, 7, 4, 5, 6, 7});
if (Subtarget.hasXOP())
return DAG.getBitcast(VT, DAG.getNode(X86ISD::VPERMIL2, DL, MVT::v8f32,
LoLo, HiHi, IndicesVec,
DAG.getConstant(0, DL, MVT::i8)));
// Permute Lo and Hi and then select based on index range.
// This works as VPERMILPS only uses index bits[0:1] to permute elements.
SDValue Res = DAG.getSelectCC(
DL, IndicesVec, DAG.getConstant(3, DL, MVT::v8i32),
DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v8f32, HiHi, IndicesVec),
DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v8f32, LoLo, IndicesVec),
ISD::CondCode::SETGT);
return DAG.getBitcast(VT, Res);
}
break;
case MVT::v4i64:
case MVT::v4f64:
if (Subtarget.hasAVX512()) {
if (!Subtarget.hasVLX()) {
MVT WidenSrcVT = MVT::getVectorVT(VT.getScalarType(), 8);
SrcVec = widenSubVector(WidenSrcVT, SrcVec, false, Subtarget, DAG,
SDLoc(SrcVec));
IndicesVec = widenSubVector(MVT::v8i64, IndicesVec, false, Subtarget,
DAG, SDLoc(IndicesVec));
SDValue Res = createVariablePermute(WidenSrcVT, SrcVec, IndicesVec, DL,
DAG, Subtarget);
return extract256BitVector(Res, 0, DAG, DL);
}
Opcode = X86ISD::VPERMV;
} else if (Subtarget.hasAVX()) {
SrcVec = DAG.getBitcast(MVT::v4f64, SrcVec);
SDValue LoLo =
DAG.getVectorShuffle(MVT::v4f64, DL, SrcVec, SrcVec, {0, 1, 0, 1});
SDValue HiHi =
DAG.getVectorShuffle(MVT::v4f64, DL, SrcVec, SrcVec, {2, 3, 2, 3});
// VPERMIL2PD selects with bit#1 of the index vector, so scale IndicesVec.
IndicesVec = DAG.getNode(ISD::ADD, DL, IndicesVT, IndicesVec, IndicesVec);
if (Subtarget.hasXOP())
return DAG.getBitcast(VT, DAG.getNode(X86ISD::VPERMIL2, DL, MVT::v4f64,
LoLo, HiHi, IndicesVec,
DAG.getConstant(0, DL, MVT::i8)));
// Permute Lo and Hi and then select based on index range.
// This works as VPERMILPD only uses index bit[1] to permute elements.
SDValue Res = DAG.getSelectCC(
DL, IndicesVec, DAG.getConstant(2, DL, MVT::v4i64),
DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v4f64, HiHi, IndicesVec),
DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v4f64, LoLo, IndicesVec),
ISD::CondCode::SETGT);
return DAG.getBitcast(VT, Res);
}
break;
case MVT::v64i8:
if (Subtarget.hasVBMI())
Opcode = X86ISD::VPERMV;
break;
case MVT::v32i16:
if (Subtarget.hasBWI())
Opcode = X86ISD::VPERMV;
break;
case MVT::v16f32:
case MVT::v16i32:
case MVT::v8f64:
case MVT::v8i64:
if (Subtarget.hasAVX512())
Opcode = X86ISD::VPERMV;
break;
}
if (!Opcode)
return SDValue();
assert((VT.getSizeInBits() == ShuffleVT.getSizeInBits()) &&
(VT.getScalarSizeInBits() % ShuffleVT.getScalarSizeInBits()) == 0 &&
"Illegal variable permute shuffle type");
uint64_t Scale = VT.getScalarSizeInBits() / ShuffleVT.getScalarSizeInBits();
if (Scale > 1)
IndicesVec = ScaleIndices(IndicesVec, Scale);
EVT ShuffleIdxVT = EVT(ShuffleVT).changeVectorElementTypeToInteger();
IndicesVec = DAG.getBitcast(ShuffleIdxVT, IndicesVec);
SrcVec = DAG.getBitcast(ShuffleVT, SrcVec);
SDValue Res = Opcode == X86ISD::VPERMV
? DAG.getNode(Opcode, DL, ShuffleVT, IndicesVec, SrcVec)
: DAG.getNode(Opcode, DL, ShuffleVT, SrcVec, IndicesVec);
return DAG.getBitcast(VT, Res);
}
// Tries to lower a BUILD_VECTOR composed of extract-extract chains that can be
// reasoned to be a permutation of a vector by indices in a non-constant vector.
// (build_vector (extract_elt V, (extract_elt I, 0)),
// (extract_elt V, (extract_elt I, 1)),
// ...
// ->
// (vpermv I, V)
//
// TODO: Handle undefs
// TODO: Utilize pshufb and zero mask blending to support more efficient
// construction of vectors with constant-0 elements.
static SDValue
LowerBUILD_VECTORAsVariablePermute(SDValue V, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDValue SrcVec, IndicesVec;
// Check for a match of the permute source vector and permute index elements.
// This is done by checking that the i-th build_vector operand is of the form:
// (extract_elt SrcVec, (extract_elt IndicesVec, i)).
for (unsigned Idx = 0, E = V.getNumOperands(); Idx != E; ++Idx) {
SDValue Op = V.getOperand(Idx);
if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
// If this is the first extract encountered in V, set the source vector,
// otherwise verify the extract is from the previously defined source
// vector.
if (!SrcVec)
SrcVec = Op.getOperand(0);
else if (SrcVec != Op.getOperand(0))
return SDValue();
SDValue ExtractedIndex = Op->getOperand(1);
// Peek through extends.
if (ExtractedIndex.getOpcode() == ISD::ZERO_EXTEND ||
ExtractedIndex.getOpcode() == ISD::SIGN_EXTEND)
ExtractedIndex = ExtractedIndex.getOperand(0);
if (ExtractedIndex.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
// If this is the first extract from the index vector candidate, set the
// indices vector, otherwise verify the extract is from the previously
// defined indices vector.
if (!IndicesVec)
IndicesVec = ExtractedIndex.getOperand(0);
else if (IndicesVec != ExtractedIndex.getOperand(0))
return SDValue();
auto *PermIdx = dyn_cast<ConstantSDNode>(ExtractedIndex.getOperand(1));
if (!PermIdx || PermIdx->getZExtValue() != Idx)
return SDValue();
}
SDLoc DL(V);
MVT VT = V.getSimpleValueType();
return createVariablePermute(VT, SrcVec, IndicesVec, DL, DAG, Subtarget);
}
SDValue
X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
MVT EltVT = VT.getVectorElementType();
unsigned NumElems = Op.getNumOperands();
// Generate vectors for predicate vectors.
if (VT.getVectorElementType() == MVT::i1 && Subtarget.hasAVX512())
return LowerBUILD_VECTORvXi1(Op, DAG, Subtarget);
if (SDValue VectorConstant = materializeVectorConstant(Op, DAG, Subtarget))
return VectorConstant;
BuildVectorSDNode *BV = cast<BuildVectorSDNode>(Op.getNode());
if (SDValue AddSub = lowerToAddSubOrFMAddSub(BV, Subtarget, DAG))
return AddSub;
if (SDValue HorizontalOp = LowerToHorizontalOp(BV, Subtarget, DAG))
return HorizontalOp;
if (SDValue Broadcast = lowerBuildVectorAsBroadcast(BV, Subtarget, DAG))
return Broadcast;
if (SDValue BitOp = lowerBuildVectorToBitOp(BV, DAG))
return BitOp;
unsigned EVTBits = EltVT.getSizeInBits();
unsigned NumZero = 0;
unsigned NumNonZero = 0;
uint64_t NonZeros = 0;
bool IsAllConstants = true;
SmallSet<SDValue, 8> Values;
unsigned NumConstants = NumElems;
for (unsigned i = 0; i < NumElems; ++i) {
SDValue Elt = Op.getOperand(i);
if (Elt.isUndef())
continue;
Values.insert(Elt);
if (!isa<ConstantSDNode>(Elt) && !isa<ConstantFPSDNode>(Elt)) {
IsAllConstants = false;
NumConstants--;
}
if (X86::isZeroNode(Elt))
NumZero++;
else {
assert(i < sizeof(NonZeros) * 8); // Make sure the shift is within range.
NonZeros |= ((uint64_t)1 << i);
NumNonZero++;
}
}
// All undef vector. Return an UNDEF. All zero vectors were handled above.
if (NumNonZero == 0)
return DAG.getUNDEF(VT);
// If we are inserting one variable into a vector of non-zero constants, try
// to avoid loading each constant element as a scalar. Load the constants as a
// vector and then insert the variable scalar element. If insertion is not
// supported, we assume that we will fall back to a shuffle to get the scalar
// blended with the constants. Insertion into a zero vector is handled as a
// special-case somewhere below here.
if (NumConstants == NumElems - 1 && NumNonZero != 1 &&
(isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT) ||
isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))) {
// Create an all-constant vector. The variable element in the old
// build vector is replaced by undef in the constant vector. Save the
// variable scalar element and its index for use in the insertelement.
LLVMContext &Context = *DAG.getContext();
Type *EltType = Op.getValueType().getScalarType().getTypeForEVT(Context);
SmallVector<Constant *, 16> ConstVecOps(NumElems, UndefValue::get(EltType));
SDValue VarElt;
SDValue InsIndex;
for (unsigned i = 0; i != NumElems; ++i) {
SDValue Elt = Op.getOperand(i);
if (auto *C = dyn_cast<ConstantSDNode>(Elt))
ConstVecOps[i] = ConstantInt::get(Context, C->getAPIntValue());
else if (auto *C = dyn_cast<ConstantFPSDNode>(Elt))
ConstVecOps[i] = ConstantFP::get(Context, C->getValueAPF());
else if (!Elt.isUndef()) {
assert(!VarElt.getNode() && !InsIndex.getNode() &&
"Expected one variable element in this vector");
VarElt = Elt;
InsIndex = DAG.getConstant(i, dl, getVectorIdxTy(DAG.getDataLayout()));
}
}
Constant *CV = ConstantVector::get(ConstVecOps);
SDValue DAGConstVec = DAG.getConstantPool(CV, VT);
// The constants we just created may not be legal (eg, floating point). We
// must lower the vector right here because we can not guarantee that we'll
// legalize it before loading it. This is also why we could not just create
// a new build vector here. If the build vector contains illegal constants,
// it could get split back up into a series of insert elements.
// TODO: Improve this by using shorter loads with broadcast/VZEXT_LOAD.
SDValue LegalDAGConstVec = LowerConstantPool(DAGConstVec, DAG);
MachineFunction &MF = DAG.getMachineFunction();
MachinePointerInfo MPI = MachinePointerInfo::getConstantPool(MF);
SDValue Ld = DAG.getLoad(VT, dl, DAG.getEntryNode(), LegalDAGConstVec, MPI);
return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ld, VarElt, InsIndex);
}
// Special case for single non-zero, non-undef, element.
if (NumNonZero == 1) {
unsigned Idx = countTrailingZeros(NonZeros);
SDValue Item = Op.getOperand(Idx);
// If we have a constant or non-constant insertion into the low element of
// a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
// the rest of the elements. This will be matched as movd/movq/movss/movsd
// depending on what the source datatype is.
if (Idx == 0) {
if (NumZero == 0)
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
if (EltVT == MVT::i32 || EltVT == MVT::f32 || EltVT == MVT::f64 ||
(EltVT == MVT::i64 && Subtarget.is64Bit())) {
assert((VT.is128BitVector() || VT.is256BitVector() ||
VT.is512BitVector()) &&
"Expected an SSE value type!");
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
// Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
}
// We can't directly insert an i8 or i16 into a vector, so zero extend
// it to i32 first.
if (EltVT == MVT::i16 || EltVT == MVT::i8) {
Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
if (VT.getSizeInBits() >= 256) {
MVT ShufVT = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
if (Subtarget.hasAVX()) {
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShufVT, Item);
Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
} else {
// Without AVX, we need to extend to a 128-bit vector and then
// insert into the 256-bit vector.
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
SDValue ZeroVec = getZeroVector(ShufVT, Subtarget, DAG, dl);
Item = insert128BitVector(ZeroVec, Item, 0, DAG, dl);
}
} else {
assert(VT.is128BitVector() && "Expected an SSE value type!");
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
}
return DAG.getBitcast(VT, Item);
}
}
// Is it a vector logical left shift?
if (NumElems == 2 && Idx == 1 &&
X86::isZeroNode(Op.getOperand(0)) &&
!X86::isZeroNode(Op.getOperand(1))) {
unsigned NumBits = VT.getSizeInBits();
return getVShift(true, VT,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
VT, Op.getOperand(1)),
NumBits/2, DAG, *this, dl);
}
if (IsAllConstants) // Otherwise, it's better to do a constpool load.
return SDValue();
// Otherwise, if this is a vector with i32 or f32 elements, and the element
// is a non-constant being inserted into an element other than the low one,
// we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
// movd/movss) to move this into the low element, then shuffle it into
// place.
if (EVTBits == 32) {
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
return getShuffleVectorZeroOrUndef(Item, Idx, NumZero > 0, Subtarget, DAG);
}
}
// Splat is obviously ok. Let legalizer expand it to a shuffle.
if (Values.size() == 1) {
if (EVTBits == 32) {
// Instead of a shuffle like this:
// shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
// Check if it's possible to issue this instead.
// shuffle (vload ptr)), undef, <1, 1, 1, 1>
unsigned Idx = countTrailingZeros(NonZeros);
SDValue Item = Op.getOperand(Idx);
if (Op.getNode()->isOnlyUserOf(Item.getNode()))
return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
}
return SDValue();
}
// A vector full of immediates; various special cases are already
// handled, so this is best done with a single constant-pool load.
if (IsAllConstants)
return SDValue();
if (SDValue V = LowerBUILD_VECTORAsVariablePermute(Op, DAG, Subtarget))
return V;
// See if we can use a vector load to get all of the elements.
{
SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElems);
if (SDValue LD =
EltsFromConsecutiveLoads(VT, Ops, dl, DAG, Subtarget, false))
return LD;
}
// If this is a splat of pairs of 32-bit elements, we can use a narrower
// build_vector and broadcast it.
// TODO: We could probably generalize this more.
if (Subtarget.hasAVX2() && EVTBits == 32 && Values.size() == 2) {
SDValue Ops[4] = { Op.getOperand(0), Op.getOperand(1),
DAG.getUNDEF(EltVT), DAG.getUNDEF(EltVT) };
auto CanSplat = [](SDValue Op, unsigned NumElems, ArrayRef<SDValue> Ops) {
// Make sure all the even/odd operands match.
for (unsigned i = 2; i != NumElems; ++i)
if (Ops[i % 2] != Op.getOperand(i))
return false;
return true;
};
if (CanSplat(Op, NumElems, Ops)) {
MVT WideEltVT = VT.isFloatingPoint() ? MVT::f64 : MVT::i64;
MVT NarrowVT = MVT::getVectorVT(EltVT, 4);
// Create a new build vector and cast to v2i64/v2f64.
SDValue NewBV = DAG.getBitcast(MVT::getVectorVT(WideEltVT, 2),
DAG.getBuildVector(NarrowVT, dl, Ops));
// Broadcast from v2i64/v2f64 and cast to final VT.
MVT BcastVT = MVT::getVectorVT(WideEltVT, NumElems/2);
return DAG.getBitcast(VT, DAG.getNode(X86ISD::VBROADCAST, dl, BcastVT,
NewBV));
}
}
// For AVX-length vectors, build the individual 128-bit pieces and use
// shuffles to put them in place.
if (VT.getSizeInBits() > 128) {
MVT HVT = MVT::getVectorVT(EltVT, NumElems/2);
// Build both the lower and upper subvector.
SDValue Lower =
DAG.getBuildVector(HVT, dl, Op->ops().slice(0, NumElems / 2));
SDValue Upper = DAG.getBuildVector(
HVT, dl, Op->ops().slice(NumElems / 2, NumElems /2));
// Recreate the wider vector with the lower and upper part.
return concatSubVectors(Lower, Upper, VT, NumElems, DAG, dl,
VT.getSizeInBits() / 2);
}
// Let legalizer expand 2-wide build_vectors.
if (EVTBits == 64) {
if (NumNonZero == 1) {
// One half is zero or undef.
unsigned Idx = countTrailingZeros(NonZeros);
SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
Op.getOperand(Idx));
return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
}
return SDValue();
}
// If element VT is < 32 bits, convert it to inserts into a zero vector.
if (EVTBits == 8 && NumElems == 16)
if (SDValue V = LowerBuildVectorv16i8(Op, NonZeros, NumNonZero, NumZero,
DAG, Subtarget))
return V;
if (EVTBits == 16 && NumElems == 8)
if (SDValue V = LowerBuildVectorv8i16(Op, NonZeros, NumNonZero, NumZero,
DAG, Subtarget))
return V;
// If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS
if (EVTBits == 32 && NumElems == 4)
if (SDValue V = LowerBuildVectorv4x32(Op, DAG, Subtarget))
return V;
// If element VT is == 32 bits, turn it into a number of shuffles.
if (NumElems == 4 && NumZero > 0) {
SmallVector<SDValue, 8> Ops(NumElems);
for (unsigned i = 0; i < 4; ++i) {
bool isZero = !(NonZeros & (1ULL << i));
if (isZero)
Ops[i] = getZeroVector(VT, Subtarget, DAG, dl);
else
Ops[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
}
for (unsigned i = 0; i < 2; ++i) {
switch ((NonZeros >> (i*2)) & 0x3) {
default: llvm_unreachable("Unexpected NonZero count");
case 0:
Ops[i] = Ops[i*2]; // Must be a zero vector.
break;
case 1:
Ops[i] = getMOVL(DAG, dl, VT, Ops[i*2+1], Ops[i*2]);
break;
case 2:
Ops[i] = getMOVL(DAG, dl, VT, Ops[i*2], Ops[i*2+1]);
break;
case 3:
Ops[i] = getUnpackl(DAG, dl, VT, Ops[i*2], Ops[i*2+1]);
break;
}
}
bool Reverse1 = (NonZeros & 0x3) == 2;
bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
int MaskVec[] = {
Reverse1 ? 1 : 0,
Reverse1 ? 0 : 1,
static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
static_cast<int>(Reverse2 ? NumElems : NumElems+1)
};
return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], MaskVec);
}
assert(Values.size() > 1 && "Expected non-undef and non-splat vector");
// Check for a build vector from mostly shuffle plus few inserting.
if (SDValue Sh = buildFromShuffleMostly(Op, DAG))
return Sh;
// For SSE 4.1, use insertps to put the high elements into the low element.
if (Subtarget.hasSSE41()) {
SDValue Result;
if (!Op.getOperand(0).isUndef())
Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
else
Result = DAG.getUNDEF(VT);
for (unsigned i = 1; i < NumElems; ++i) {
if (Op.getOperand(i).isUndef()) continue;
Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
Op.getOperand(i), DAG.getIntPtrConstant(i, dl));
}
return Result;
}
// Otherwise, expand into a number of unpckl*, start by extending each of
// our (non-undef) elements to the full vector width with the element in the
// bottom slot of the vector (which generates no code for SSE).
SmallVector<SDValue, 8> Ops(NumElems);
for (unsigned i = 0; i < NumElems; ++i) {
if (!Op.getOperand(i).isUndef())
Ops[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
else
Ops[i] = DAG.getUNDEF(VT);
}
// Next, we iteratively mix elements, e.g. for v4f32:
// Step 1: unpcklps 0, 1 ==> X: <?, ?, 1, 0>
// : unpcklps 2, 3 ==> Y: <?, ?, 3, 2>
// Step 2: unpcklpd X, Y ==> <3, 2, 1, 0>
for (unsigned Scale = 1; Scale < NumElems; Scale *= 2) {
// Generate scaled UNPCKL shuffle mask.
SmallVector<int, 16> Mask;
for(unsigned i = 0; i != Scale; ++i)
Mask.push_back(i);
for (unsigned i = 0; i != Scale; ++i)
Mask.push_back(NumElems+i);
Mask.append(NumElems - Mask.size(), SM_SentinelUndef);
for (unsigned i = 0, e = NumElems / (2 * Scale); i != e; ++i)
Ops[i] = DAG.getVectorShuffle(VT, dl, Ops[2*i], Ops[(2*i)+1], Mask);
}
return Ops[0];
}
// 256-bit AVX can use the vinsertf128 instruction
// to create 256-bit vectors from two other 128-bit ones.
// TODO: Detect subvector broadcast here instead of DAG combine?
static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc dl(Op);
MVT ResVT = Op.getSimpleValueType();
assert((ResVT.is256BitVector() ||
ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide");
unsigned NumOperands = Op.getNumOperands();
unsigned NumZero = 0;
unsigned NumNonZero = 0;
unsigned NonZeros = 0;
for (unsigned i = 0; i != NumOperands; ++i) {
SDValue SubVec = Op.getOperand(i);
if (SubVec.isUndef())
continue;
if (ISD::isBuildVectorAllZeros(SubVec.getNode()))
++NumZero;
else {
assert(i < sizeof(NonZeros) * CHAR_BIT); // Ensure the shift is in range.
NonZeros |= 1 << i;
++NumNonZero;
}
}
// If we have more than 2 non-zeros, build each half separately.
if (NumNonZero > 2) {
MVT HalfVT = MVT::getVectorVT(ResVT.getVectorElementType(),
ResVT.getVectorNumElements()/2);
ArrayRef<SDUse> Ops = Op->ops();
SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT,
Ops.slice(0, NumOperands/2));
SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT,
Ops.slice(NumOperands/2));
return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
}
// Otherwise, build it up through insert_subvectors.
SDValue Vec = NumZero ? getZeroVector(ResVT, Subtarget, DAG, dl)
: DAG.getUNDEF(ResVT);
MVT SubVT = Op.getOperand(0).getSimpleValueType();
unsigned NumSubElems = SubVT.getVectorNumElements();
for (unsigned i = 0; i != NumOperands; ++i) {
if ((NonZeros & (1 << i)) == 0)
continue;
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Vec,
Op.getOperand(i),
DAG.getIntPtrConstant(i * NumSubElems, dl));
}
return Vec;
}
// Return true if all the operands of the given CONCAT_VECTORS node are zeros
// except for the first one. (CONCAT_VECTORS Op, 0, 0,...,0)
static bool isExpandWithZeros(const SDValue &Op) {
assert(Op.getOpcode() == ISD::CONCAT_VECTORS &&
"Expand with zeros only possible in CONCAT_VECTORS nodes!");
for (unsigned i = 1; i < Op.getNumOperands(); i++)
if (!ISD::isBuildVectorAllZeros(Op.getOperand(i).getNode()))
return false;
return true;
}
// Returns true if the given node is a type promotion (by concatenating i1
// zeros) of the result of a node that already zeros all upper bits of
// k-register.
static SDValue isTypePromotionOfi1ZeroUpBits(SDValue Op) {
unsigned Opc = Op.getOpcode();
assert(Opc == ISD::CONCAT_VECTORS &&
Op.getSimpleValueType().getVectorElementType() == MVT::i1 &&
"Unexpected node to check for type promotion!");
// As long as we are concatenating zeros to the upper part of a previous node
// result, climb up the tree until a node with different opcode is
// encountered
while (Opc == ISD::INSERT_SUBVECTOR || Opc == ISD::CONCAT_VECTORS) {
if (Opc == ISD::INSERT_SUBVECTOR) {
if (ISD::isBuildVectorAllZeros(Op.getOperand(0).getNode()) &&
Op.getConstantOperandVal(2) == 0)
Op = Op.getOperand(1);
else
return SDValue();
} else { // Opc == ISD::CONCAT_VECTORS
if (isExpandWithZeros(Op))
Op = Op.getOperand(0);
else
return SDValue();
}
Opc = Op.getOpcode();
}
// Check if the first inserted node zeroes the upper bits, or an 'and' result
// of a node that zeros the upper bits (its masked version).
if (isMaskedZeroUpperBitsvXi1(Op.getOpcode()) ||
(Op.getOpcode() == ISD::AND &&
(isMaskedZeroUpperBitsvXi1(Op.getOperand(0).getOpcode()) ||
isMaskedZeroUpperBitsvXi1(Op.getOperand(1).getOpcode())))) {
return Op;
}
return SDValue();
}
// TODO: Merge this with LowerAVXCONCAT_VECTORS?
static SDValue LowerCONCAT_VECTORSvXi1(SDValue Op,
const X86Subtarget &Subtarget,
SelectionDAG & DAG) {
SDLoc dl(Op);
MVT ResVT = Op.getSimpleValueType();
unsigned NumOperands = Op.getNumOperands();
assert(NumOperands > 1 && isPowerOf2_32(NumOperands) &&
"Unexpected number of operands in CONCAT_VECTORS");
// If this node promotes - by concatenating zeroes - the type of the result
// of a node with instruction that zeroes all upper (irrelevant) bits of the
// output register, mark it as legal and catch the pattern in instruction
// selection to avoid emitting extra instructions (for zeroing upper bits).
if (SDValue Promoted = isTypePromotionOfi1ZeroUpBits(Op))
return widenSubVector(ResVT, Promoted, true, Subtarget, DAG, dl);
unsigned NumZero = 0;
unsigned NumNonZero = 0;
uint64_t NonZeros = 0;
for (unsigned i = 0; i != NumOperands; ++i) {
SDValue SubVec = Op.getOperand(i);
if (SubVec.isUndef())
continue;
if (ISD::isBuildVectorAllZeros(SubVec.getNode()))
++NumZero;
else {
assert(i < sizeof(NonZeros) * CHAR_BIT); // Ensure the shift is in range.
NonZeros |= (uint64_t)1 << i;
++NumNonZero;
}
}
// If there are zero or one non-zeros we can handle this very simply.
if (NumNonZero <= 1) {
SDValue Vec = NumZero ? getZeroVector(ResVT, Subtarget, DAG, dl)
: DAG.getUNDEF(ResVT);
if (!NumNonZero)
return Vec;
unsigned Idx = countTrailingZeros(NonZeros);
SDValue SubVec = Op.getOperand(Idx);
unsigned SubVecNumElts = SubVec.getSimpleValueType().getVectorNumElements();
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Vec, SubVec,
DAG.getIntPtrConstant(Idx * SubVecNumElts, dl));
}
if (NumOperands > 2) {
MVT HalfVT = MVT::getVectorVT(ResVT.getVectorElementType(),
ResVT.getVectorNumElements()/2);
ArrayRef<SDUse> Ops = Op->ops();
SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT,
Ops.slice(0, NumOperands/2));
SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT,
Ops.slice(NumOperands/2));
return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
}
assert(NumNonZero == 2 && "Simple cases not handled?");
if (ResVT.getVectorNumElements() >= 16)
return Op; // The operation is legal with KUNPCK
SDValue Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT,
DAG.getUNDEF(ResVT), Op.getOperand(0),
DAG.getIntPtrConstant(0, dl));
unsigned NumElems = ResVT.getVectorNumElements();
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Vec, Op.getOperand(1),
DAG.getIntPtrConstant(NumElems/2, dl));
}
static SDValue LowerCONCAT_VECTORS(SDValue Op,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
if (VT.getVectorElementType() == MVT::i1)
return LowerCONCAT_VECTORSvXi1(Op, Subtarget, DAG);
assert((VT.is256BitVector() && Op.getNumOperands() == 2) ||
(VT.is512BitVector() && (Op.getNumOperands() == 2 ||
Op.getNumOperands() == 4)));
// AVX can use the vinsertf128 instruction to create 256-bit vectors
// from two other 128-bit ones.
// 512-bit vector may contain 2 256-bit vectors or 4 128-bit vectors
return LowerAVXCONCAT_VECTORS(Op, DAG, Subtarget);
}
//===----------------------------------------------------------------------===//
// Vector shuffle lowering
//
// This is an experimental code path for lowering vector shuffles on x86. It is
// designed to handle arbitrary vector shuffles and blends, gracefully
// degrading performance as necessary. It works hard to recognize idiomatic
// shuffles and lower them to optimal instruction patterns without leaving
// a framework that allows reasonably efficient handling of all vector shuffle
// patterns.
//===----------------------------------------------------------------------===//
/// Tiny helper function to identify a no-op mask.
///
/// This is a somewhat boring predicate function. It checks whether the mask
/// array input, which is assumed to be a single-input shuffle mask of the kind
/// used by the X86 shuffle instructions (not a fully general
/// ShuffleVectorSDNode mask) requires any shuffles to occur. Both undef and an
/// in-place shuffle are 'no-op's.
static bool isNoopShuffleMask(ArrayRef<int> Mask) {
for (int i = 0, Size = Mask.size(); i < Size; ++i) {
assert(Mask[i] >= -1 && "Out of bound mask element!");
if (Mask[i] >= 0 && Mask[i] != i)
return false;
}
return true;
}
/// Test whether there are elements crossing 128-bit lanes in this
/// shuffle mask.
///
/// X86 divides up its shuffles into in-lane and cross-lane shuffle operations
/// and we routinely test for these.
static bool is128BitLaneCrossingShuffleMask(MVT VT, ArrayRef<int> Mask) {
int LaneSize = 128 / VT.getScalarSizeInBits();
int Size = Mask.size();
for (int i = 0; i < Size; ++i)
if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
return true;
return false;
}
/// Test whether a shuffle mask is equivalent within each sub-lane.
///
/// This checks a shuffle mask to see if it is performing the same
/// lane-relative shuffle in each sub-lane. This trivially implies
/// that it is also not lane-crossing. It may however involve a blend from the
/// same lane of a second vector.
///
/// The specific repeated shuffle mask is populated in \p RepeatedMask, as it is
/// non-trivial to compute in the face of undef lanes. The representation is
/// suitable for use with existing 128-bit shuffles as entries from the second
/// vector have been remapped to [LaneSize, 2*LaneSize).
static bool isRepeatedShuffleMask(unsigned LaneSizeInBits, MVT VT,
ArrayRef<int> Mask,
SmallVectorImpl<int> &RepeatedMask) {
auto LaneSize = LaneSizeInBits / VT.getScalarSizeInBits();
RepeatedMask.assign(LaneSize, -1);
int Size = Mask.size();
for (int i = 0; i < Size; ++i) {
assert(Mask[i] == SM_SentinelUndef || Mask[i] >= 0);
if (Mask[i] < 0)
continue;
if ((Mask[i] % Size) / LaneSize != i / LaneSize)
// This entry crosses lanes, so there is no way to model this shuffle.
return false;
// Ok, handle the in-lane shuffles by detecting if and when they repeat.
// Adjust second vector indices to start at LaneSize instead of Size.
int LocalM = Mask[i] < Size ? Mask[i] % LaneSize
: Mask[i] % LaneSize + LaneSize;
if (RepeatedMask[i % LaneSize] < 0)
// This is the first non-undef entry in this slot of a 128-bit lane.
RepeatedMask[i % LaneSize] = LocalM;
else if (RepeatedMask[i % LaneSize] != LocalM)
// Found a mismatch with the repeated mask.
return false;
}
return true;
}
/// Test whether a shuffle mask is equivalent within each 128-bit lane.
static bool
is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask,
SmallVectorImpl<int> &RepeatedMask) {
return isRepeatedShuffleMask(128, VT, Mask, RepeatedMask);
}
static bool
is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask) {
SmallVector<int, 32> RepeatedMask;
return isRepeatedShuffleMask(128, VT, Mask, RepeatedMask);
}
/// Test whether a shuffle mask is equivalent within each 256-bit lane.
static bool
is256BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask,
SmallVectorImpl<int> &RepeatedMask) {
return isRepeatedShuffleMask(256, VT, Mask, RepeatedMask);
}
/// Test whether a target shuffle mask is equivalent within each sub-lane.
/// Unlike isRepeatedShuffleMask we must respect SM_SentinelZero.
static bool isRepeatedTargetShuffleMask(unsigned LaneSizeInBits, MVT VT,
ArrayRef<int> Mask,
SmallVectorImpl<int> &RepeatedMask) {
int LaneSize = LaneSizeInBits / VT.getScalarSizeInBits();
RepeatedMask.assign(LaneSize, SM_SentinelUndef);
int Size = Mask.size();
for (int i = 0; i < Size; ++i) {
assert(isUndefOrZero(Mask[i]) || (Mask[i] >= 0));
if (Mask[i] == SM_SentinelUndef)
continue;
if (Mask[i] == SM_SentinelZero) {
if (!isUndefOrZero(RepeatedMask[i % LaneSize]))
return false;
RepeatedMask[i % LaneSize] = SM_SentinelZero;
continue;
}
if ((Mask[i] % Size) / LaneSize != i / LaneSize)
// This entry crosses lanes, so there is no way to model this shuffle.
return false;
// Ok, handle the in-lane shuffles by detecting if and when they repeat.
// Adjust second vector indices to start at LaneSize instead of Size.
int LocalM =
Mask[i] < Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + LaneSize;
if (RepeatedMask[i % LaneSize] == SM_SentinelUndef)
// This is the first non-undef entry in this slot of a 128-bit lane.
RepeatedMask[i % LaneSize] = LocalM;
else if (RepeatedMask[i % LaneSize] != LocalM)
// Found a mismatch with the repeated mask.
return false;
}
return true;
}
/// Checks whether a shuffle mask is equivalent to an explicit list of
/// arguments.
///
/// This is a fast way to test a shuffle mask against a fixed pattern:
///
/// if (isShuffleEquivalent(Mask, 3, 2, {1, 0})) { ... }
///
/// It returns true if the mask is exactly as wide as the argument list, and
/// each element of the mask is either -1 (signifying undef) or the value given
/// in the argument.
static bool isShuffleEquivalent(SDValue V1, SDValue V2, ArrayRef<int> Mask,
ArrayRef<int> ExpectedMask) {
if (Mask.size() != ExpectedMask.size())
return false;
int Size = Mask.size();
// If the values are build vectors, we can look through them to find
// equivalent inputs that make the shuffles equivalent.
auto *BV1 = dyn_cast<BuildVectorSDNode>(V1);
auto *BV2 = dyn_cast<BuildVectorSDNode>(V2);
for (int i = 0; i < Size; ++i) {
assert(Mask[i] >= -1 && "Out of bound mask element!");
if (Mask[i] >= 0 && Mask[i] != ExpectedMask[i]) {
auto *MaskBV = Mask[i] < Size ? BV1 : BV2;
auto *ExpectedBV = ExpectedMask[i] < Size ? BV1 : BV2;
if (!MaskBV || !ExpectedBV ||
MaskBV->getOperand(Mask[i] % Size) !=
ExpectedBV->getOperand(ExpectedMask[i] % Size))
return false;
}
}
return true;
}
/// Checks whether a target shuffle mask is equivalent to an explicit pattern.
///
/// The masks must be exactly the same width.
///
/// If an element in Mask matches SM_SentinelUndef (-1) then the corresponding
/// value in ExpectedMask is always accepted. Otherwise the indices must match.
///
/// SM_SentinelZero is accepted as a valid negative index but must match in both.
static bool isTargetShuffleEquivalent(ArrayRef<int> Mask,
ArrayRef<int> ExpectedMask) {
int Size = Mask.size();
if (Size != (int)ExpectedMask.size())
return false;
for (int i = 0; i < Size; ++i)
if (Mask[i] == SM_SentinelUndef)
continue;
else if (Mask[i] < 0 && Mask[i] != SM_SentinelZero)
return false;
else if (Mask[i] != ExpectedMask[i])
return false;
return true;
}
// Merges a general DAG shuffle mask and zeroable bit mask into a target shuffle
// mask.
static SmallVector<int, 64> createTargetShuffleMask(ArrayRef<int> Mask,
const APInt &Zeroable) {
int NumElts = Mask.size();
assert(NumElts == (int)Zeroable.getBitWidth() && "Mismatch mask sizes");
SmallVector<int, 64> TargetMask(NumElts, SM_SentinelUndef);
for (int i = 0; i != NumElts; ++i) {
int M = Mask[i];
if (M == SM_SentinelUndef)
continue;
assert(0 <= M && M < (2 * NumElts) && "Out of range shuffle index");
TargetMask[i] = (Zeroable[i] ? SM_SentinelZero : M);
}
return TargetMask;
}
// Check if the shuffle mask is suitable for the AVX vpunpcklwd or vpunpckhwd
// instructions.
static bool isUnpackWdShuffleMask(ArrayRef<int> Mask, MVT VT) {
if (VT != MVT::v8i32 && VT != MVT::v8f32)
return false;
SmallVector<int, 8> Unpcklwd;
createUnpackShuffleMask(MVT::v8i16, Unpcklwd, /* Lo = */ true,
/* Unary = */ false);
SmallVector<int, 8> Unpckhwd;
createUnpackShuffleMask(MVT::v8i16, Unpckhwd, /* Lo = */ false,
/* Unary = */ false);
bool IsUnpackwdMask = (isTargetShuffleEquivalent(Mask, Unpcklwd) ||
isTargetShuffleEquivalent(Mask, Unpckhwd));
return IsUnpackwdMask;
}
/// Get a 4-lane 8-bit shuffle immediate for a mask.
///
/// This helper function produces an 8-bit shuffle immediate corresponding to
/// the ubiquitous shuffle encoding scheme used in x86 instructions for
/// shuffling 4 lanes. It can be used with most of the PSHUF instructions for
/// example.
///
/// NB: We rely heavily on "undef" masks preserving the input lane.
static unsigned getV4X86ShuffleImm(ArrayRef<int> Mask) {
assert(Mask.size() == 4 && "Only 4-lane shuffle masks");
assert(Mask[0] >= -1 && Mask[0] < 4 && "Out of bound mask element!");
assert(Mask[1] >= -1 && Mask[1] < 4 && "Out of bound mask element!");
assert(Mask[2] >= -1 && Mask[2] < 4 && "Out of bound mask element!");
assert(Mask[3] >= -1 && Mask[3] < 4 && "Out of bound mask element!");
unsigned Imm = 0;
Imm |= (Mask[0] < 0 ? 0 : Mask[0]) << 0;
Imm |= (Mask[1] < 0 ? 1 : Mask[1]) << 2;
Imm |= (Mask[2] < 0 ? 2 : Mask[2]) << 4;
Imm |= (Mask[3] < 0 ? 3 : Mask[3]) << 6;
return Imm;
}
static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask, const SDLoc &DL,
SelectionDAG &DAG) {
return DAG.getConstant(getV4X86ShuffleImm(Mask), DL, MVT::i8);
}
/// Compute whether each element of a shuffle is zeroable.
///
/// A "zeroable" vector shuffle element is one which can be lowered to zero.
/// Either it is an undef element in the shuffle mask, the element of the input
/// referenced is undef, or the element of the input referenced is known to be
/// zero. Many x86 shuffles can zero lanes cheaply and we often want to handle
/// as many lanes with this technique as possible to simplify the remaining
/// shuffle.
static APInt computeZeroableShuffleElements(ArrayRef<int> Mask,
SDValue V1, SDValue V2) {
APInt Zeroable(Mask.size(), 0);
V1 = peekThroughBitcasts(V1);
V2 = peekThroughBitcasts(V2);
bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode());
bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode());
int VectorSizeInBits = V1.getValueSizeInBits();
int ScalarSizeInBits = VectorSizeInBits / Mask.size();
assert(!(VectorSizeInBits % ScalarSizeInBits) && "Illegal shuffle mask size");
for (int i = 0, Size = Mask.size(); i < Size; ++i) {
int M = Mask[i];
// Handle the easy cases.
if (M < 0 || (M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) {
Zeroable.setBit(i);
continue;
}
// Determine shuffle input and normalize the mask.
SDValue V = M < Size ? V1 : V2;
M %= Size;
// Currently we can only search BUILD_VECTOR for UNDEF/ZERO elements.
if (V.getOpcode() != ISD::BUILD_VECTOR)
continue;
// If the BUILD_VECTOR has fewer elements then the bitcasted portion of
// the (larger) source element must be UNDEF/ZERO.
if ((Size % V.getNumOperands()) == 0) {
int Scale = Size / V->getNumOperands();
SDValue Op = V.getOperand(M / Scale);
if (Op.isUndef() || X86::isZeroNode(Op))
Zeroable.setBit(i);
else if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
APInt Val = Cst->getAPIntValue();
Val.lshrInPlace((M % Scale) * ScalarSizeInBits);
Val = Val.getLoBits(ScalarSizeInBits);
if (Val == 0)
Zeroable.setBit(i);
} else if (ConstantFPSDNode *Cst = dyn_cast<ConstantFPSDNode>(Op)) {
APInt Val = Cst->getValueAPF().bitcastToAPInt();
Val.lshrInPlace((M % Scale) * ScalarSizeInBits);
Val = Val.getLoBits(ScalarSizeInBits);
if (Val == 0)
Zeroable.setBit(i);
}
continue;
}
// If the BUILD_VECTOR has more elements then all the (smaller) source
// elements must be UNDEF or ZERO.
if ((V.getNumOperands() % Size) == 0) {
int Scale = V->getNumOperands() / Size;
bool AllZeroable = true;
for (int j = 0; j < Scale; ++j) {
SDValue Op = V.getOperand((M * Scale) + j);
AllZeroable &= (Op.isUndef() || X86::isZeroNode(Op));
}
if (AllZeroable)
Zeroable.setBit(i);
continue;
}
}
return Zeroable;
}
// The Shuffle result is as follow:
// 0*a[0]0*a[1]...0*a[n] , n >=0 where a[] elements in a ascending order.
// Each Zeroable's element correspond to a particular Mask's element.
// As described in computeZeroableShuffleElements function.
//
// The function looks for a sub-mask that the nonzero elements are in
// increasing order. If such sub-mask exist. The function returns true.
static bool isNonZeroElementsInOrder(const APInt &Zeroable,
ArrayRef<int> Mask, const EVT &VectorType,
bool &IsZeroSideLeft) {
int NextElement = -1;
// Check if the Mask's nonzero elements are in increasing order.
for (int i = 0, e = Mask.size(); i < e; i++) {
// Checks if the mask's zeros elements are built from only zeros.
assert(Mask[i] >= -1 && "Out of bound mask element!");
if (Mask[i] < 0)
return false;
if (Zeroable[i])
continue;
// Find the lowest non zero element
if (NextElement < 0) {
NextElement = Mask[i] != 0 ? VectorType.getVectorNumElements() : 0;
IsZeroSideLeft = NextElement != 0;
}
// Exit if the mask's non zero elements are not in increasing order.
if (NextElement != Mask[i])
return false;
NextElement++;
}
return true;
}
/// Try to lower a shuffle with a single PSHUFB of V1 or V2.
static SDValue lowerVectorShuffleWithPSHUFB(const SDLoc &DL, MVT VT,
ArrayRef<int> Mask, SDValue V1,
SDValue V2,
const APInt &Zeroable,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
int Size = Mask.size();
int LaneSize = 128 / VT.getScalarSizeInBits();
const int NumBytes = VT.getSizeInBits() / 8;
const int NumEltBytes = VT.getScalarSizeInBits() / 8;
assert((Subtarget.hasSSSE3() && VT.is128BitVector()) ||
(Subtarget.hasAVX2() && VT.is256BitVector()) ||
(Subtarget.hasBWI() && VT.is512BitVector()));
SmallVector<SDValue, 64> PSHUFBMask(NumBytes);
// Sign bit set in i8 mask means zero element.
SDValue ZeroMask = DAG.getConstant(0x80, DL, MVT::i8);
SDValue V;
for (int i = 0; i < NumBytes; ++i) {
int M = Mask[i / NumEltBytes];
if (M < 0) {
PSHUFBMask[i] = DAG.getUNDEF(MVT::i8);
continue;
}
if (Zeroable[i / NumEltBytes]) {
PSHUFBMask[i] = ZeroMask;
continue;
}
// We can only use a single input of V1 or V2.
SDValue SrcV = (M >= Size ? V2 : V1);
if (V && V != SrcV)
return SDValue();
V = SrcV;
M %= Size;
// PSHUFB can't cross lanes, ensure this doesn't happen.
if ((M / LaneSize) != ((i / NumEltBytes) / LaneSize))
return SDValue();
M = M % LaneSize;
M = M * NumEltBytes + (i % NumEltBytes);
PSHUFBMask[i] = DAG.getConstant(M, DL, MVT::i8);
}
assert(V && "Failed to find a source input");
MVT I8VT = MVT::getVectorVT(MVT::i8, NumBytes);
return DAG.getBitcast(
VT, DAG.getNode(X86ISD::PSHUFB, DL, I8VT, DAG.getBitcast(I8VT, V),
DAG.getBuildVector(I8VT, DL, PSHUFBMask)));
}
static SDValue getMaskNode(SDValue Mask, MVT MaskVT,
const X86Subtarget &Subtarget, SelectionDAG &DAG,
const SDLoc &dl);
// X86 has dedicated shuffle that can be lowered to VEXPAND
static SDValue lowerVectorShuffleToEXPAND(const SDLoc &DL, MVT VT,
const APInt &Zeroable,
ArrayRef<int> Mask, SDValue &V1,
SDValue &V2, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
bool IsLeftZeroSide = true;
if (!isNonZeroElementsInOrder(Zeroable, Mask, V1.getValueType(),
IsLeftZeroSide))
return SDValue();
unsigned VEXPANDMask = (~Zeroable).getZExtValue();
MVT IntegerType =
MVT::getIntegerVT(std::max((int)VT.getVectorNumElements(), 8));
SDValue MaskNode = DAG.getConstant(VEXPANDMask, DL, IntegerType);
unsigned NumElts = VT.getVectorNumElements();
assert((NumElts == 4 || NumElts == 8 || NumElts == 16) &&
"Unexpected number of vector elements");
SDValue VMask = getMaskNode(MaskNode, MVT::getVectorVT(MVT::i1, NumElts),
Subtarget, DAG, DL);
SDValue ZeroVector = getZeroVector(VT, Subtarget, DAG, DL);
SDValue ExpandedVector = IsLeftZeroSide ? V2 : V1;
return DAG.getSelect(DL, VT, VMask,
DAG.getNode(X86ISD::EXPAND, DL, VT, ExpandedVector),
ZeroVector);
}
static bool matchVectorShuffleWithUNPCK(MVT VT, SDValue &V1, SDValue &V2,
unsigned &UnpackOpcode, bool IsUnary,
ArrayRef<int> TargetMask,
const SDLoc &DL, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
int NumElts = VT.getVectorNumElements();
bool Undef1 = true, Undef2 = true, Zero1 = true, Zero2 = true;
for (int i = 0; i != NumElts; i += 2) {
int M1 = TargetMask[i + 0];
int M2 = TargetMask[i + 1];
Undef1 &= (SM_SentinelUndef == M1);
Undef2 &= (SM_SentinelUndef == M2);
Zero1 &= isUndefOrZero(M1);
Zero2 &= isUndefOrZero(M2);
}
assert(!((Undef1 || Zero1) && (Undef2 || Zero2)) &&
"Zeroable shuffle detected");
// Attempt to match the target mask against the unpack lo/hi mask patterns.
SmallVector<int, 64> Unpckl, Unpckh;
createUnpackShuffleMask(VT, Unpckl, /* Lo = */ true, IsUnary);
if (isTargetShuffleEquivalent(TargetMask, Unpckl)) {
UnpackOpcode = X86ISD::UNPCKL;
V2 = (Undef2 ? DAG.getUNDEF(VT) : (IsUnary ? V1 : V2));
V1 = (Undef1 ? DAG.getUNDEF(VT) : V1);
return true;
}
createUnpackShuffleMask(VT, Unpckh, /* Lo = */ false, IsUnary);
if (isTargetShuffleEquivalent(TargetMask, Unpckh)) {
UnpackOpcode = X86ISD::UNPCKH;
V2 = (Undef2 ? DAG.getUNDEF(VT) : (IsUnary ? V1 : V2));
V1 = (Undef1 ? DAG.getUNDEF(VT) : V1);
return true;
}
// If an unary shuffle, attempt to match as an unpack lo/hi with zero.
if (IsUnary && (Zero1 || Zero2)) {
// Don't bother if we can blend instead.
if ((Subtarget.hasSSE41() || VT == MVT::v2i64 || VT == MVT::v2f64) &&
isSequentialOrUndefOrZeroInRange(TargetMask, 0, NumElts, 0))
return false;
bool MatchLo = true, MatchHi = true;
for (int i = 0; (i != NumElts) && (MatchLo || MatchHi); ++i) {
int M = TargetMask[i];
// Ignore if the input is known to be zero or the index is undef.
if ((((i & 1) == 0) && Zero1) || (((i & 1) == 1) && Zero2) ||
(M == SM_SentinelUndef))
continue;
MatchLo &= (M == Unpckl[i]);
MatchHi &= (M == Unpckh[i]);
}
if (MatchLo || MatchHi) {
UnpackOpcode = MatchLo ? X86ISD::UNPCKL : X86ISD::UNPCKH;
V2 = Zero2 ? getZeroVector(VT, Subtarget, DAG, DL) : V1;
V1 = Zero1 ? getZeroVector(VT, Subtarget, DAG, DL) : V1;
return true;
}
}
// If a binary shuffle, commute and try again.
if (!IsUnary) {
ShuffleVectorSDNode::commuteMask(Unpckl);
if (isTargetShuffleEquivalent(TargetMask, Unpckl)) {
UnpackOpcode = X86ISD::UNPCKL;
std::swap(V1, V2);
return true;
}
ShuffleVectorSDNode::commuteMask(Unpckh);
if (isTargetShuffleEquivalent(TargetMask, Unpckh)) {
UnpackOpcode = X86ISD::UNPCKH;
std::swap(V1, V2);
return true;
}
}
return false;
}
// X86 has dedicated unpack instructions that can handle specific blend
// operations: UNPCKH and UNPCKL.
static SDValue lowerVectorShuffleWithUNPCK(const SDLoc &DL, MVT VT,
ArrayRef<int> Mask, SDValue V1,
SDValue V2, SelectionDAG &DAG) {
SmallVector<int, 8> Unpckl;
createUnpackShuffleMask(VT, Unpckl, /* Lo = */ true, /* Unary = */ false);
if (isShuffleEquivalent(V1, V2, Mask, Unpckl))
return DAG.getNode(X86ISD::UNPCKL, DL, VT, V1, V2);
SmallVector<int, 8> Unpckh;
createUnpackShuffleMask(VT, Unpckh, /* Lo = */ false, /* Unary = */ false);
if (isShuffleEquivalent(V1, V2, Mask, Unpckh))
return DAG.getNode(X86ISD::UNPCKH, DL, VT, V1, V2);
// Commute and try again.
ShuffleVectorSDNode::commuteMask(Unpckl);
if (isShuffleEquivalent(V1, V2, Mask, Unpckl))
return DAG.getNode(X86ISD::UNPCKL, DL, VT, V2, V1);
ShuffleVectorSDNode::commuteMask(Unpckh);
if (isShuffleEquivalent(V1, V2, Mask, Unpckh))
return DAG.getNode(X86ISD::UNPCKH, DL, VT, V2, V1);
return SDValue();
}
static bool matchVectorShuffleAsVPMOV(ArrayRef<int> Mask, bool SwappedOps,
int Delta) {
int Size = (int)Mask.size();
int Split = Size / Delta;
int TruncatedVectorStart = SwappedOps ? Size : 0;
// Match for mask starting with e.g.: <8, 10, 12, 14,... or <0, 2, 4, 6,...
if (!isSequentialOrUndefInRange(Mask, 0, Split, TruncatedVectorStart, Delta))
return false;
// The rest of the mask should not refer to the truncated vector's elements.
if (isAnyInRange(Mask.slice(Split, Size - Split), TruncatedVectorStart,
TruncatedVectorStart + Size))
return false;
return true;
}
// Try to lower trunc+vector_shuffle to a vpmovdb or a vpmovdw instruction.
//
// An example is the following:
//
// t0: ch = EntryToken
// t2: v4i64,ch = CopyFromReg t0, Register:v4i64 %0
// t25: v4i32 = truncate t2
// t41: v8i16 = bitcast t25
// t21: v8i16 = BUILD_VECTOR undef:i16, undef:i16, undef:i16, undef:i16,
// Constant:i16<0>, Constant:i16<0>, Constant:i16<0>, Constant:i16<0>
// t51: v8i16 = vector_shuffle<0,2,4,6,12,13,14,15> t41, t21
// t18: v2i64 = bitcast t51
//
// Without avx512vl, this is lowered to:
//
// vpmovqd %zmm0, %ymm0
// vpshufb {{.*#+}} xmm0 =
// xmm0[0,1,4,5,8,9,12,13],zero,zero,zero,zero,zero,zero,zero,zero
//
// But when avx512vl is available, one can just use a single vpmovdw
// instruction.
static SDValue lowerVectorShuffleWithVPMOV(const SDLoc &DL, ArrayRef<int> Mask,
MVT VT, SDValue V1, SDValue V2,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (VT != MVT::v16i8 && VT != MVT::v8i16)
return SDValue();
if (Mask.size() != VT.getVectorNumElements())
return SDValue();
bool SwappedOps = false;
if (!ISD::isBuildVectorAllZeros(V2.getNode())) {
if (!ISD::isBuildVectorAllZeros(V1.getNode()))
return SDValue();
std::swap(V1, V2);
SwappedOps = true;
}
// Look for:
//
// bitcast (truncate <8 x i32> %vec to <8 x i16>) to <16 x i8>
// bitcast (truncate <4 x i64> %vec to <4 x i32>) to <8 x i16>
//
// and similar ones.
if (V1.getOpcode() != ISD::BITCAST)
return SDValue();
if (V1.getOperand(0).getOpcode() != ISD::TRUNCATE)
return SDValue();
SDValue Src = V1.getOperand(0).getOperand(0);
MVT SrcVT = Src.getSimpleValueType();
// The vptrunc** instructions truncating 128 bit and 256 bit vectors
// are only available with avx512vl.
if (!SrcVT.is512BitVector() && !Subtarget.hasVLX())
return SDValue();
// Down Convert Word to Byte is only available with avx512bw. The case with
// 256-bit output doesn't contain a shuffle and is therefore not handled here.
if (SrcVT.getVectorElementType() == MVT::i16 && VT == MVT::v16i8 &&
!Subtarget.hasBWI())
return SDValue();
// The first half/quarter of the mask should refer to every second/fourth
// element of the vector truncated and bitcasted.
if (!matchVectorShuffleAsVPMOV(Mask, SwappedOps, 2) &&
!matchVectorShuffleAsVPMOV(Mask, SwappedOps, 4))
return SDValue();
return DAG.getNode(X86ISD::VTRUNC, DL, VT, Src);
}
// X86 has dedicated pack instructions that can handle specific truncation
// operations: PACKSS and PACKUS.
static bool matchVectorShuffleWithPACK(MVT VT, MVT &SrcVT, SDValue &V1,
SDValue &V2, unsigned &PackOpcode,
ArrayRef<int> TargetMask,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
unsigned NumElts = VT.getVectorNumElements();
unsigned BitSize = VT.getScalarSizeInBits();
MVT PackSVT = MVT::getIntegerVT(BitSize * 2);
MVT PackVT = MVT::getVectorVT(PackSVT, NumElts / 2);
auto MatchPACK = [&](SDValue N1, SDValue N2) {
SDValue VV1 = DAG.getBitcast(PackVT, N1);
SDValue VV2 = DAG.getBitcast(PackVT, N2);
if (Subtarget.hasSSE41() || PackSVT == MVT::i16) {
APInt ZeroMask = APInt::getHighBitsSet(BitSize * 2, BitSize);
if ((N1.isUndef() || DAG.MaskedValueIsZero(VV1, ZeroMask)) &&
(N2.isUndef() || DAG.MaskedValueIsZero(VV2, ZeroMask))) {
V1 = VV1;
V2 = VV2;
SrcVT = PackVT;
PackOpcode = X86ISD::PACKUS;
return true;
}
}
if ((N1.isUndef() || DAG.ComputeNumSignBits(VV1) > BitSize) &&
(N2.isUndef() || DAG.ComputeNumSignBits(VV2) > BitSize)) {
V1 = VV1;
V2 = VV2;
SrcVT = PackVT;
PackOpcode = X86ISD::PACKSS;
return true;
}
return false;
};
// Try binary shuffle.
SmallVector<int, 32> BinaryMask;
createPackShuffleMask(VT, BinaryMask, false);
if (isTargetShuffleEquivalent(TargetMask, BinaryMask))
if (MatchPACK(V1, V2))
return true;
// Try unary shuffle.
SmallVector<int, 32> UnaryMask;
createPackShuffleMask(VT, UnaryMask, true);
if (isTargetShuffleEquivalent(TargetMask, UnaryMask))
if (MatchPACK(V1, V1))
return true;
return false;
}
static SDValue lowerVectorShuffleWithPACK(const SDLoc &DL, MVT VT,
ArrayRef<int> Mask, SDValue V1,
SDValue V2, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT PackVT;
unsigned PackOpcode;
if (matchVectorShuffleWithPACK(VT, PackVT, V1, V2, PackOpcode, Mask, DAG,
Subtarget))
return DAG.getNode(PackOpcode, DL, VT, DAG.getBitcast(PackVT, V1),
DAG.getBitcast(PackVT, V2));
return SDValue();
}
/// Try to emit a bitmask instruction for a shuffle.
///
/// This handles cases where we can model a blend exactly as a bitmask due to
/// one of the inputs being zeroable.
static SDValue lowerVectorShuffleAsBitMask(const SDLoc &DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
const APInt &Zeroable,
SelectionDAG &DAG) {
assert(!VT.isFloatingPoint() && "Floating point types are not supported");
MVT EltVT = VT.getVectorElementType();
SDValue Zero = DAG.getConstant(0, DL, EltVT);
SDValue AllOnes = DAG.getAllOnesConstant(DL, EltVT);
SmallVector<SDValue, 16> VMaskOps(Mask.size(), Zero);
SDValue V;
for (int i = 0, Size = Mask.size(); i < Size; ++i) {
if (Zeroable[i])
continue;
if (Mask[i] % Size != i)
return SDValue(); // Not a blend.
if (!V)
V = Mask[i] < Size ? V1 : V2;
else if (V != (Mask[i] < Size ? V1 : V2))
return SDValue(); // Can only let one input through the mask.
VMaskOps[i] = AllOnes;
}
if (!V)
return SDValue(); // No non-zeroable elements!
SDValue VMask = DAG.getBuildVector(VT, DL, VMaskOps);
return DAG.getNode(ISD::AND, DL, VT, V, VMask);
}
/// Try to emit a blend instruction for a shuffle using bit math.
///
/// This is used as a fallback approach when first class blend instructions are
/// unavailable. Currently it is only suitable for integer vectors, but could
/// be generalized for floating point vectors if desirable.
static SDValue lowerVectorShuffleAsBitBlend(const SDLoc &DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
SelectionDAG &DAG) {
assert(VT.isInteger() && "Only supports integer vector types!");
MVT EltVT = VT.getVectorElementType();
SDValue Zero = DAG.getConstant(0, DL, EltVT);
SDValue AllOnes = DAG.getAllOnesConstant(DL, EltVT);
SmallVector<SDValue, 16> MaskOps;
for (int i = 0, Size = Mask.size(); i < Size; ++i) {
if (Mask[i] >= 0 && Mask[i] != i && Mask[i] != i + Size)
return SDValue(); // Shuffled input!
MaskOps.push_back(Mask[i] < Size ? AllOnes : Zero);
}
SDValue V1Mask = DAG.getBuildVector(VT, DL, MaskOps);
V1 = DAG.getNode(ISD::AND, DL, VT, V1, V1Mask);
// We have to cast V2 around.
MVT MaskVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64);
V2 = DAG.getBitcast(VT, DAG.getNode(X86ISD::ANDNP, DL, MaskVT,
DAG.getBitcast(MaskVT, V1Mask),
DAG.getBitcast(MaskVT, V2)));
return DAG.getNode(ISD::OR, DL, VT, V1, V2);
}
static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
SDValue PreservedSrc,
const X86Subtarget &Subtarget,
SelectionDAG &DAG);
static bool matchVectorShuffleAsBlend(SDValue V1, SDValue V2,
MutableArrayRef<int> TargetMask,
bool &ForceV1Zero, bool &ForceV2Zero,
uint64_t &BlendMask) {
bool V1IsZeroOrUndef =
V1.isUndef() || ISD::isBuildVectorAllZeros(V1.getNode());
bool V2IsZeroOrUndef =
V2.isUndef() || ISD::isBuildVectorAllZeros(V2.getNode());
BlendMask = 0;
ForceV1Zero = false, ForceV2Zero = false;
assert(TargetMask.size() <= 64 && "Shuffle mask too big for blend mask");
// Attempt to generate the binary blend mask. If an input is zero then
// we can use any lane.
// TODO: generalize the zero matching to any scalar like isShuffleEquivalent.
for (int i = 0, Size = TargetMask.size(); i < Size; ++i) {
int M = TargetMask[i];
if (M == SM_SentinelUndef)
continue;
if (M == i)
continue;
if (M == i + Size) {
BlendMask |= 1ull << i;
continue;
}
if (M == SM_SentinelZero) {
if (V1IsZeroOrUndef) {
ForceV1Zero = true;
TargetMask[i] = i;
continue;
}
if (V2IsZeroOrUndef) {
ForceV2Zero = true;
BlendMask |= 1ull << i;
TargetMask[i] = i + Size;
continue;
}
}
return false;
}
return true;
}
static uint64_t scaleVectorShuffleBlendMask(uint64_t BlendMask, int Size,
int Scale) {
uint64_t ScaledMask = 0;
for (int i = 0; i != Size; ++i)
if (BlendMask & (1ull << i))
ScaledMask |= ((1ull << Scale) - 1) << (i * Scale);
return ScaledMask;
}
/// Try to emit a blend instruction for a shuffle.
///
/// This doesn't do any checks for the availability of instructions for blending
/// these values. It relies on the availability of the X86ISD::BLENDI pattern to
/// be matched in the backend with the type given. What it does check for is
/// that the shuffle mask is a blend, or convertible into a blend with zero.
static SDValue lowerVectorShuffleAsBlend(const SDLoc &DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Original,
const APInt &Zeroable,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SmallVector<int, 64> Mask = createTargetShuffleMask(Original, Zeroable);
uint64_t BlendMask = 0;
bool ForceV1Zero = false, ForceV2Zero = false;
if (!matchVectorShuffleAsBlend(V1, V2, Mask, ForceV1Zero, ForceV2Zero,
BlendMask))
return SDValue();
// Create a REAL zero vector - ISD::isBuildVectorAllZeros allows UNDEFs.
if (ForceV1Zero)
V1 = getZeroVector(VT, Subtarget, DAG, DL);
if (ForceV2Zero)
V2 = getZeroVector(VT, Subtarget, DAG, DL);
switch (VT.SimpleTy) {
case MVT::v2f64:
case MVT::v4f32:
case MVT::v4f64:
case MVT::v8f32:
return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V2,
DAG.getConstant(BlendMask, DL, MVT::i8));
case MVT::v4i64:
case MVT::v8i32:
assert(Subtarget.hasAVX2() && "256-bit integer blends require AVX2!");
LLVM_FALLTHROUGH;
case MVT::v2i64:
case MVT::v4i32:
// If we have AVX2 it is faster to use VPBLENDD when the shuffle fits into
// that instruction.
if (Subtarget.hasAVX2()) {
// Scale the blend by the number of 32-bit dwords per element.
int Scale = VT.getScalarSizeInBits() / 32;
BlendMask = scaleVectorShuffleBlendMask(BlendMask, Mask.size(), Scale);
MVT BlendVT = VT.getSizeInBits() > 128 ? MVT::v8i32 : MVT::v4i32;
V1 = DAG.getBitcast(BlendVT, V1);
V2 = DAG.getBitcast(BlendVT, V2);
return DAG.getBitcast(
VT, DAG.getNode(X86ISD::BLENDI, DL, BlendVT, V1, V2,
DAG.getConstant(BlendMask, DL, MVT::i8)));
}
LLVM_FALLTHROUGH;
case MVT::v8i16: {
// For integer shuffles we need to expand the mask and cast the inputs to
// v8i16s prior to blending.
int Scale = 8 / VT.getVectorNumElements();
BlendMask = scaleVectorShuffleBlendMask(BlendMask, Mask.size(), Scale);
V1 = DAG.getBitcast(MVT::v8i16, V1);
V2 = DAG.getBitcast(MVT::v8i16, V2);
return DAG.getBitcast(VT,
DAG.getNode(X86ISD::BLENDI, DL, MVT::v8i16, V1, V2,
DAG.getConstant(BlendMask, DL, MVT::i8)));
}
case MVT::v16i16: {
assert(Subtarget.hasAVX2() && "256-bit integer blends require AVX2!");
SmallVector<int, 8> RepeatedMask;
if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
// We can lower these with PBLENDW which is mirrored across 128-bit lanes.
assert(RepeatedMask.size() == 8 && "Repeated mask size doesn't match!");
BlendMask = 0;
for (int i = 0; i < 8; ++i)
if (RepeatedMask[i] >= 8)
BlendMask |= 1ull << i;
return DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2,
DAG.getConstant(BlendMask, DL, MVT::i8));
}
LLVM_FALLTHROUGH;
}
case MVT::v16i8:
case MVT::v32i8: {
assert((VT.is128BitVector() || Subtarget.hasAVX2()) &&
"256-bit byte-blends require AVX2 support!");
if (Subtarget.hasBWI() && Subtarget.hasVLX()) {
MVT IntegerType =
MVT::getIntegerVT(std::max((int)VT.getVectorNumElements(), 8));
SDValue MaskNode = DAG.getConstant(BlendMask, DL, IntegerType);
return getVectorMaskingNode(V2, MaskNode, V1, Subtarget, DAG);
}
// Attempt to lower to a bitmask if we can. VPAND is faster than VPBLENDVB.
if (SDValue Masked =
lowerVectorShuffleAsBitMask(DL, VT, V1, V2, Mask, Zeroable, DAG))
return Masked;
// Scale the blend by the number of bytes per element.
int Scale = VT.getScalarSizeInBits() / 8;
// This form of blend is always done on bytes. Compute the byte vector
// type.
MVT BlendVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8);
// Compute the VSELECT mask. Note that VSELECT is really confusing in the
// mix of LLVM's code generator and the x86 backend. We tell the code
// generator that boolean values in the elements of an x86 vector register
// are -1 for true and 0 for false. We then use the LLVM semantics of 'true'
// mapping a select to operand #1, and 'false' mapping to operand #2. The
// reality in x86 is that vector masks (pre-AVX-512) use only the high bit
// of the element (the remaining are ignored) and 0 in that high bit would
// mean operand #1 while 1 in the high bit would mean operand #2. So while
// the LLVM model for boolean values in vector elements gets the relevant
// bit set, it is set backwards and over constrained relative to x86's
// actual model.
SmallVector<SDValue, 32> VSELECTMask;
for (int i = 0, Size = Mask.size(); i < Size; ++i)
for (int j = 0; j < Scale; ++j)
VSELECTMask.push_back(
Mask[i] < 0 ? DAG.getUNDEF(MVT::i8)
: DAG.getConstant(Mask[i] < Size ? -1 : 0, DL,
MVT::i8));
V1 = DAG.getBitcast(BlendVT, V1);
V2 = DAG.getBitcast(BlendVT, V2);
return DAG.getBitcast(
VT,
DAG.getSelect(DL, BlendVT, DAG.getBuildVector(BlendVT, DL, VSELECTMask),
V1, V2));
}
case MVT::v16f32:
case MVT::v8f64:
case MVT::v8i64:
case MVT::v16i32:
case MVT::v32i16:
case MVT::v64i8: {
MVT IntegerType =
MVT::getIntegerVT(std::max((int)VT.getVectorNumElements(), 8));
SDValue MaskNode = DAG.getConstant(BlendMask, DL, IntegerType);
return getVectorMaskingNode(V2, MaskNode, V1, Subtarget, DAG);
}
default:
llvm_unreachable("Not a supported integer vector type!");
}
}
/// Try to lower as a blend of elements from two inputs followed by
/// a single-input permutation.
///
/// This matches the pattern where we can blend elements from two inputs and
/// then reduce the shuffle to a single-input permutation.
static SDValue lowerVectorShuffleAsBlendAndPermute(const SDLoc &DL, MVT VT,
SDValue V1, SDValue V2,
ArrayRef<int> Mask,
SelectionDAG &DAG) {
// We build up the blend mask while checking whether a blend is a viable way
// to reduce the shuffle.
SmallVector<int, 32> BlendMask(Mask.size(), -1);
SmallVector<int, 32> PermuteMask(Mask.size(), -1);
for (int i = 0, Size = Mask.size(); i < Size; ++i) {
if (Mask[i] < 0)
continue;
assert(Mask[i] < Size * 2 && "Shuffle input is out of bounds.");
if (BlendMask[Mask[i] % Size] < 0)
BlendMask[Mask[i] % Size] = Mask[i];
else if (BlendMask[Mask[i] % Size] != Mask[i])
return SDValue(); // Can't blend in the needed input!
PermuteMask[i] = Mask[i] % Size;
}
SDValue V = DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), PermuteMask);
}
/// Generic routine to decompose a shuffle and blend into independent
/// blends and permutes.
///
/// This matches the extremely common pattern for handling combined
/// shuffle+blend operations on newer X86 ISAs where we have very fast blend
/// operations. It will try to pick the best arrangement of shuffles and
/// blends.
static SDValue lowerVectorShuffleAsDecomposedShuffleBlend(const SDLoc &DL,
MVT VT, SDValue V1,
SDValue V2,
ArrayRef<int> Mask,
SelectionDAG &DAG) {
// Shuffle the input elements into the desired positions in V1 and V2 and
// blend them together.
SmallVector<int, 32> V1Mask(Mask.size(), -1);
SmallVector<int, 32> V2Mask(Mask.size(), -1);
SmallVector<int, 32> BlendMask(Mask.size(), -1);
for (int i = 0, Size = Mask.size(); i < Size; ++i)
if (Mask[i] >= 0 && Mask[i] < Size) {
V1Mask[i] = Mask[i];
BlendMask[i] = i;
} else if (Mask[i] >= Size) {
V2Mask[i] = Mask[i] - Size;
BlendMask[i] = i + Size;
}
// Try to lower with the simpler initial blend strategy unless one of the
// input shuffles would be a no-op. We prefer to shuffle inputs as the
// shuffle may be able to fold with a load or other benefit. However, when
// we'll have to do 2x as many shuffles in order to achieve this, blending
// first is a better strategy.
if (!isNoopShuffleMask(V1Mask) && !isNoopShuffleMask(V2Mask))
if (SDValue BlendPerm =
lowerVectorShuffleAsBlendAndPermute(DL, VT, V1, V2, Mask, DAG))
return BlendPerm;
V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
return DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
}
/// Try to lower a vector shuffle as a rotation.
///
/// This is used for support PALIGNR for SSSE3 or VALIGND/Q for AVX512.
static int matchVectorShuffleAsRotate(SDValue &V1, SDValue &V2,
ArrayRef<int> Mask) {
int NumElts = Mask.size();
// We need to detect various ways of spelling a rotation:
// [11, 12, 13, 14, 15, 0, 1, 2]
// [-1, 12, 13, 14, -1, -1, 1, -1]
// [-1, -1, -1, -1, -1, -1, 1, 2]
// [ 3, 4, 5, 6, 7, 8, 9, 10]
// [-1, 4, 5, 6, -1, -1, 9, -1]
// [-1, 4, 5, 6, -1, -1, -1, -1]
int Rotation = 0;
SDValue Lo, Hi;
for (int i = 0; i < NumElts; ++i) {
int M = Mask[i];
assert((M == SM_SentinelUndef || (0 <= M && M < (2*NumElts))) &&
"Unexpected mask index.");
if (M < 0)
continue;
// Determine where a rotated vector would have started.
int StartIdx = i - (M % NumElts);
if (StartIdx == 0)
// The identity rotation isn't interesting, stop.
return -1;
// If we found the tail of a vector the rotation must be the missing
// front. If we found the head of a vector, it must be how much of the
// head.
int CandidateRotation = StartIdx < 0 ? -StartIdx : NumElts - StartIdx;
if (Rotation == 0)
Rotation = CandidateRotation;
else if (Rotation != CandidateRotation)
// The rotations don't match, so we can't match this mask.
return -1;
// Compute which value this mask is pointing at.
SDValue MaskV = M < NumElts ? V1 : V2;
// Compute which of the two target values this index should be assigned
// to. This reflects whether the high elements are remaining or the low
// elements are remaining.
SDValue &TargetV = StartIdx < 0 ? Hi : Lo;
// Either set up this value if we've not encountered it before, or check
// that it remains consistent.
if (!TargetV)
TargetV = MaskV;
else if (TargetV != MaskV)
// This may be a rotation, but it pulls from the inputs in some
// unsupported interleaving.
return -1;
}
// Check that we successfully analyzed the mask, and normalize the results.
assert(Rotation != 0 && "Failed to locate a viable rotation!");
assert((Lo || Hi) && "Failed to find a rotated input vector!");
if (!Lo)
Lo = Hi;
else if (!Hi)
Hi = Lo;
V1 = Lo;
V2 = Hi;
return Rotation;
}
/// Try to lower a vector shuffle as a byte rotation.
///
/// SSSE3 has a generic PALIGNR instruction in x86 that will do an arbitrary
/// byte-rotation of the concatenation of two vectors; pre-SSSE3 can use
/// a PSRLDQ/PSLLDQ/POR pattern to get a similar effect. This routine will
/// try to generically lower a vector shuffle through such an pattern. It
/// does not check for the profitability of lowering either as PALIGNR or
/// PSRLDQ/PSLLDQ/POR, only whether the mask is valid to lower in that form.
/// This matches shuffle vectors that look like:
///
/// v8i16 [11, 12, 13, 14, 15, 0, 1, 2]
///
/// Essentially it concatenates V1 and V2, shifts right by some number of
/// elements, and takes the low elements as the result. Note that while this is
/// specified as a *right shift* because x86 is little-endian, it is a *left
/// rotate* of the vector lanes.
static int matchVectorShuffleAsByteRotate(MVT VT, SDValue &V1, SDValue &V2,
ArrayRef<int> Mask) {
// Don't accept any shuffles with zero elements.
if (any_of(Mask, [](int M) { return M == SM_SentinelZero; }))
return -1;
// PALIGNR works on 128-bit lanes.
SmallVector<int, 16> RepeatedMask;
if (!is128BitLaneRepeatedShuffleMask(VT, Mask, RepeatedMask))
return -1;
int Rotation = matchVectorShuffleAsRotate(V1, V2, RepeatedMask);
if (Rotation <= 0)
return -1;
// PALIGNR rotates bytes, so we need to scale the
// rotation based on how many bytes are in the vector lane.
int NumElts = RepeatedMask.size();
int Scale = 16 / NumElts;
return Rotation * Scale;
}
static SDValue lowerVectorShuffleAsByteRotate(const SDLoc &DL, MVT VT,
SDValue V1, SDValue V2,
ArrayRef<int> Mask,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!");
SDValue Lo = V1, Hi = V2;
int ByteRotation = matchVectorShuffleAsByteRotate(VT, Lo, Hi, Mask);
if (ByteRotation <= 0)
return SDValue();
// Cast the inputs to i8 vector of correct length to match PALIGNR or
// PSLLDQ/PSRLDQ.
MVT ByteVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8);
Lo = DAG.getBitcast(ByteVT, Lo);
Hi = DAG.getBitcast(ByteVT, Hi);
// SSSE3 targets can use the palignr instruction.
if (Subtarget.hasSSSE3()) {
assert((!VT.is512BitVector() || Subtarget.hasBWI()) &&
"512-bit PALIGNR requires BWI instructions");
return DAG.getBitcast(
VT, DAG.getNode(X86ISD::PALIGNR, DL, ByteVT, Lo, Hi,
DAG.getConstant(ByteRotation, DL, MVT::i8)));
}
assert(VT.is128BitVector() &&
"Rotate-based lowering only supports 128-bit lowering!");
assert(Mask.size() <= 16 &&
"Can shuffle at most 16 bytes in a 128-bit vector!");
assert(ByteVT == MVT::v16i8 &&
"SSE2 rotate lowering only needed for v16i8!");
// Default SSE2 implementation
int LoByteShift = 16 - ByteRotation;
int HiByteShift = ByteRotation;
SDValue LoShift = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v16i8, Lo,
DAG.getConstant(LoByteShift, DL, MVT::i8));
SDValue HiShift = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v16i8, Hi,
DAG.getConstant(HiByteShift, DL, MVT::i8));
return DAG.getBitcast(VT,
DAG.getNode(ISD::OR, DL, MVT::v16i8, LoShift, HiShift));
}
/// Try to lower a vector shuffle as a dword/qword rotation.
///
/// AVX512 has a VALIGND/VALIGNQ instructions that will do an arbitrary
/// rotation of the concatenation of two vectors; This routine will
/// try to generically lower a vector shuffle through such an pattern.
///
/// Essentially it concatenates V1 and V2, shifts right by some number of
/// elements, and takes the low elements as the result. Note that while this is
/// specified as a *right shift* because x86 is little-endian, it is a *left
/// rotate* of the vector lanes.
static SDValue lowerVectorShuffleAsRotate(const SDLoc &DL, MVT VT,
SDValue V1, SDValue V2,
ArrayRef<int> Mask,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert((VT.getScalarType() == MVT::i32 || VT.getScalarType() == MVT::i64) &&
"Only 32-bit and 64-bit elements are supported!");
// 128/256-bit vectors are only supported with VLX.
assert((Subtarget.hasVLX() || (!VT.is128BitVector() && !VT.is256BitVector()))
&& "VLX required for 128/256-bit vectors");
SDValue Lo = V1, Hi = V2;
int Rotation = matchVectorShuffleAsRotate(Lo, Hi, Mask);
if (Rotation <= 0)
return SDValue();
return DAG.getNode(X86ISD::VALIGN, DL, VT, Lo, Hi,
DAG.getConstant(Rotation, DL, MVT::i8));
}
/// Try to lower a vector shuffle as a bit shift (shifts in zeros).
///
/// Attempts to match a shuffle mask against the PSLL(W/D/Q/DQ) and
/// PSRL(W/D/Q/DQ) SSE2 and AVX2 logical bit-shift instructions. The function
/// matches elements from one of the input vectors shuffled to the left or
/// right with zeroable elements 'shifted in'. It handles both the strictly
/// bit-wise element shifts and the byte shift across an entire 128-bit double
/// quad word lane.
///
/// PSHL : (little-endian) left bit shift.
/// [ zz, 0, zz, 2 ]
/// [ -1, 4, zz, -1 ]
/// PSRL : (little-endian) right bit shift.
/// [ 1, zz, 3, zz]
/// [ -1, -1, 7, zz]
/// PSLLDQ : (little-endian) left byte shift
/// [ zz, 0, 1, 2, 3, 4, 5, 6]
/// [ zz, zz, -1, -1, 2, 3, 4, -1]
/// [ zz, zz, zz, zz, zz, zz, -1, 1]
/// PSRLDQ : (little-endian) right byte shift
/// [ 5, 6, 7, zz, zz, zz, zz, zz]
/// [ -1, 5, 6, 7, zz, zz, zz, zz]
/// [ 1, 2, -1, -1, -1, -1, zz, zz]
static int matchVectorShuffleAsShift(MVT &ShiftVT, unsigned &Opcode,
unsigned ScalarSizeInBits,
ArrayRef<int> Mask, int MaskOffset,
const APInt &Zeroable,
const X86Subtarget &Subtarget) {
int Size = Mask.size();
unsigned SizeInBits = Size * ScalarSizeInBits;
auto CheckZeros = [&](int Shift, int Scale, bool Left) {
for (int i = 0; i < Size; i += Scale)
for (int j = 0; j < Shift; ++j)
if (!Zeroable[i + j + (Left ? 0 : (Scale - Shift))])
return false;
return true;
};
auto MatchShift = [&](int Shift, int Scale, bool Left) {
for (int i = 0; i != Size; i += Scale) {
unsigned Pos = Left ? i + Shift : i;
unsigned Low = Left ? i : i + Shift;
unsigned Len = Scale - Shift;
if (!isSequentialOrUndefInRange(Mask, Pos, Len, Low + MaskOffset))
return -1;
}
int ShiftEltBits = ScalarSizeInBits * Scale;
bool ByteShift = ShiftEltBits > 64;
Opcode = Left ? (ByteShift ? X86ISD::VSHLDQ : X86ISD::VSHLI)
: (ByteShift ? X86ISD::VSRLDQ : X86ISD::VSRLI);
int ShiftAmt = Shift * ScalarSizeInBits / (ByteShift ? 8 : 1);
// Normalize the scale for byte shifts to still produce an i64 element
// type.
Scale = ByteShift ? Scale / 2 : Scale;
// We need to round trip through the appropriate type for the shift.
MVT ShiftSVT = MVT::getIntegerVT(ScalarSizeInBits * Scale);
ShiftVT = ByteShift ? MVT::getVectorVT(MVT::i8, SizeInBits / 8)
: MVT::getVectorVT(ShiftSVT, Size / Scale);
return (int)ShiftAmt;
};
// SSE/AVX supports logical shifts up to 64-bit integers - so we can just
// keep doubling the size of the integer elements up to that. We can
// then shift the elements of the integer vector by whole multiples of
// their width within the elements of the larger integer vector. Test each
// multiple to see if we can find a match with the moved element indices
// and that the shifted in elements are all zeroable.
unsigned MaxWidth = ((SizeInBits == 512) && !Subtarget.hasBWI() ? 64 : 128);
for (int Scale = 2; Scale * ScalarSizeInBits <= MaxWidth; Scale *= 2)
for (int Shift = 1; Shift != Scale; ++Shift)
for (bool Left : {true, false})
if (CheckZeros(Shift, Scale, Left)) {
int ShiftAmt = MatchShift(Shift, Scale, Left);
if (0 < ShiftAmt)
return ShiftAmt;
}
// no match
return -1;
}
static SDValue lowerVectorShuffleAsShift(const SDLoc &DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
const APInt &Zeroable,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
int Size = Mask.size();
assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
MVT ShiftVT;
SDValue V = V1;
unsigned Opcode;
// Try to match shuffle against V1 shift.
int ShiftAmt = matchVectorShuffleAsShift(
ShiftVT, Opcode, VT.getScalarSizeInBits(), Mask, 0, Zeroable, Subtarget);
// If V1 failed, try to match shuffle against V2 shift.
if (ShiftAmt < 0) {
ShiftAmt =
matchVectorShuffleAsShift(ShiftVT, Opcode, VT.getScalarSizeInBits(),
Mask, Size, Zeroable, Subtarget);
V = V2;
}
if (ShiftAmt < 0)
return SDValue();
assert(DAG.getTargetLoweringInfo().isTypeLegal(ShiftVT) &&
"Illegal integer vector type");
V = DAG.getBitcast(ShiftVT, V);
V = DAG.getNode(Opcode, DL, ShiftVT, V,
DAG.getConstant(ShiftAmt, DL, MVT::i8));
return DAG.getBitcast(VT, V);
}
// EXTRQ: Extract Len elements from lower half of source, starting at Idx.
// Remainder of lower half result is zero and upper half is all undef.
static bool matchVectorShuffleAsEXTRQ(MVT VT, SDValue &V1, SDValue &V2,
ArrayRef<int> Mask, uint64_t &BitLen,
uint64_t &BitIdx, const APInt &Zeroable) {
int Size = Mask.size();
int HalfSize = Size / 2;
assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
assert(!Zeroable.isAllOnesValue() && "Fully zeroable shuffle mask");
// Upper half must be undefined.
if (!isUndefInRange(Mask, HalfSize, HalfSize))
return false;
// Determine the extraction length from the part of the
// lower half that isn't zeroable.
int Len = HalfSize;
for (; Len > 0; --Len)
if (!Zeroable[Len - 1])
break;
assert(Len > 0 && "Zeroable shuffle mask");
// Attempt to match first Len sequential elements from the lower half.
SDValue Src;
int Idx = -1;
for (int i = 0; i != Len; ++i) {
int M = Mask[i];
if (M == SM_SentinelUndef)
continue;
SDValue &V = (M < Size ? V1 : V2);
M = M % Size;
// The extracted elements must start at a valid index and all mask
// elements must be in the lower half.
if (i > M || M >= HalfSize)
return false;
if (Idx < 0 || (Src == V && Idx == (M - i))) {
Src = V;
Idx = M - i;
continue;
}
return false;
}
if (!Src || Idx < 0)
return false;
assert((Idx + Len) <= HalfSize && "Illegal extraction mask");
BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f;
BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f;
V1 = Src;
return true;
}
// INSERTQ: Extract lowest Len elements from lower half of second source and
// insert over first source, starting at Idx.
// { A[0], .., A[Idx-1], B[0], .., B[Len-1], A[Idx+Len], .., UNDEF, ... }
static bool matchVectorShuffleAsINSERTQ(MVT VT, SDValue &V1, SDValue &V2,
ArrayRef<int> Mask, uint64_t &BitLen,
uint64_t &BitIdx) {
int Size = Mask.size();
int HalfSize = Size / 2;
assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
// Upper half must be undefined.
if (!isUndefInRange(Mask, HalfSize, HalfSize))
return false;
for (int Idx = 0; Idx != HalfSize; ++Idx) {
SDValue Base;
// Attempt to match first source from mask before insertion point.
if (isUndefInRange(Mask, 0, Idx)) {
/* EMPTY */
} else if (isSequentialOrUndefInRange(Mask, 0, Idx, 0)) {
Base = V1;
} else if (isSequentialOrUndefInRange(Mask, 0, Idx, Size)) {
Base = V2;
} else {
continue;
}
// Extend the extraction length looking to match both the insertion of
// the second source and the remaining elements of the first.
for (int Hi = Idx + 1; Hi <= HalfSize; ++Hi) {
SDValue Insert;
int Len = Hi - Idx;
// Match insertion.
if (isSequentialOrUndefInRange(Mask, Idx, Len, 0)) {
Insert = V1;
} else if (isSequentialOrUndefInRange(Mask, Idx, Len, Size)) {
Insert = V2;
} else {
continue;
}
// Match the remaining elements of the lower half.
if (isUndefInRange(Mask, Hi, HalfSize - Hi)) {
/* EMPTY */
} else if ((!Base || (Base == V1)) &&
isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi, Hi)) {
Base = V1;
} else if ((!Base || (Base == V2)) &&
isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi,
Size + Hi)) {
Base = V2;
} else {
continue;
}
BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f;
BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f;
V1 = Base;
V2 = Insert;
return true;
}
}
return false;
}
/// Try to lower a vector shuffle using SSE4a EXTRQ/INSERTQ.
static SDValue lowerVectorShuffleWithSSE4A(const SDLoc &DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
const APInt &Zeroable,
SelectionDAG &DAG) {
uint64_t BitLen, BitIdx;
if (matchVectorShuffleAsEXTRQ(VT, V1, V2, Mask, BitLen, BitIdx, Zeroable))
return DAG.getNode(X86ISD::EXTRQI, DL, VT, V1,
DAG.getConstant(BitLen, DL, MVT::i8),
DAG.getConstant(BitIdx, DL, MVT::i8));
if (matchVectorShuffleAsINSERTQ(VT, V1, V2, Mask, BitLen, BitIdx))
return DAG.getNode(X86ISD::INSERTQI, DL, VT, V1 ? V1 : DAG.getUNDEF(VT),
V2 ? V2 : DAG.getUNDEF(VT),
DAG.getConstant(BitLen, DL, MVT::i8),
DAG.getConstant(BitIdx, DL, MVT::i8));
return SDValue();
}
/// Lower a vector shuffle as a zero or any extension.
///
/// Given a specific number of elements, element bit width, and extension
/// stride, produce either a zero or any extension based on the available
/// features of the subtarget. The extended elements are consecutive and
/// begin and can start from an offsetted element index in the input; to
/// avoid excess shuffling the offset must either being in the bottom lane
/// or at the start of a higher lane. All extended elements must be from
/// the same lane.
static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend(
const SDLoc &DL, MVT VT, int Scale, int Offset, bool AnyExt, SDValue InputV,
ArrayRef<int> Mask, const X86Subtarget &Subtarget, SelectionDAG &DAG) {
assert(Scale > 1 && "Need a scale to extend.");
int EltBits = VT.getScalarSizeInBits();
int NumElements = VT.getVectorNumElements();
int NumEltsPerLane = 128 / EltBits;
int OffsetLane = Offset / NumEltsPerLane;
assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
"Only 8, 16, and 32 bit elements can be extended.");
assert(Scale * EltBits <= 64 && "Cannot zero extend past 64 bits.");
assert(0 <= Offset && "Extension offset must be positive.");
assert((Offset < NumEltsPerLane || Offset % NumEltsPerLane == 0) &&
"Extension offset must be in the first lane or start an upper lane.");
// Check that an index is in same lane as the base offset.
auto SafeOffset = [&](int Idx) {
return OffsetLane == (Idx / NumEltsPerLane);
};
// Shift along an input so that the offset base moves to the first element.
auto ShuffleOffset = [&](SDValue V) {
if (!Offset)
return V;
SmallVector<int, 8> ShMask((unsigned)NumElements, -1);
for (int i = 0; i * Scale < NumElements; ++i) {
int SrcIdx = i + Offset;
ShMask[i] = SafeOffset(SrcIdx) ? SrcIdx : -1;
}
return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), ShMask);
};
// Found a valid zext mask! Try various lowering strategies based on the
// input type and available ISA extensions.
if (Subtarget.hasSSE41()) {
// Not worth offsetting 128-bit vectors if scale == 2, a pattern using
// PUNPCK will catch this in a later shuffle match.
if (Offset && Scale == 2 && VT.is128BitVector())
return SDValue();
MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Scale),
NumElements / Scale);
InputV = ShuffleOffset(InputV);
InputV = getExtendInVec(X86ISD::VZEXT, DL, ExtVT, InputV, DAG);
return DAG.getBitcast(VT, InputV);
}
assert(VT.is128BitVector() && "Only 128-bit vectors can be extended.");
// For any extends we can cheat for larger element sizes and use shuffle
// instructions that can fold with a load and/or copy.
if (AnyExt && EltBits == 32) {
int PSHUFDMask[4] = {Offset, -1, SafeOffset(Offset + 1) ? Offset + 1 : -1,
-1};
return DAG.getBitcast(
VT, DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
DAG.getBitcast(MVT::v4i32, InputV),
getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
}
if (AnyExt && EltBits == 16 && Scale > 2) {
int PSHUFDMask[4] = {Offset / 2, -1,
SafeOffset(Offset + 1) ? (Offset + 1) / 2 : -1, -1};
InputV = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
DAG.getBitcast(MVT::v4i32, InputV),
getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG));
int PSHUFWMask[4] = {1, -1, -1, -1};
unsigned OddEvenOp = (Offset & 1 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW);
return DAG.getBitcast(
VT, DAG.getNode(OddEvenOp, DL, MVT::v8i16,
DAG.getBitcast(MVT::v8i16, InputV),
getV4X86ShuffleImm8ForMask(PSHUFWMask, DL, DAG)));
}
// The SSE4A EXTRQ instruction can efficiently extend the first 2 lanes
// to 64-bits.
if ((Scale * EltBits) == 64 && EltBits < 32 && Subtarget.hasSSE4A()) {
assert(NumElements == (int)Mask.size() && "Unexpected shuffle mask size!");
assert(VT.is128BitVector() && "Unexpected vector width!");
int LoIdx = Offset * EltBits;
SDValue Lo = DAG.getBitcast(
MVT::v2i64, DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV,
DAG.getConstant(EltBits, DL, MVT::i8),
DAG.getConstant(LoIdx, DL, MVT::i8)));
if (isUndefInRange(Mask, NumElements / 2, NumElements / 2) ||
!SafeOffset(Offset + 1))
return DAG.getBitcast(VT, Lo);
int HiIdx = (Offset + 1) * EltBits;
SDValue Hi = DAG.getBitcast(
MVT::v2i64, DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV,
DAG.getConstant(EltBits, DL, MVT::i8),
DAG.getConstant(HiIdx, DL, MVT::i8)));
return DAG.getBitcast(VT,
DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, Lo, Hi));
}
// If this would require more than 2 unpack instructions to expand, use
// pshufb when available. We can only use more than 2 unpack instructions
// when zero extending i8 elements which also makes it easier to use pshufb.
if (Scale > 4 && EltBits == 8 && Subtarget.hasSSSE3()) {
assert(NumElements == 16 && "Unexpected byte vector width!");
SDValue PSHUFBMask[16];
for (int i = 0; i < 16; ++i) {
int Idx = Offset + (i / Scale);
PSHUFBMask[i] = DAG.getConstant(
(i % Scale == 0 && SafeOffset(Idx)) ? Idx : 0x80, DL, MVT::i8);
}
InputV = DAG.getBitcast(MVT::v16i8, InputV);
return DAG.getBitcast(
VT, DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV,
DAG.getBuildVector(MVT::v16i8, DL, PSHUFBMask)));
}
// If we are extending from an offset, ensure we start on a boundary that
// we can unpack from.
int AlignToUnpack = Offset % (NumElements / Scale);
if (AlignToUnpack) {
SmallVector<int, 8> ShMask((unsigned)NumElements, -1);
for (int i = AlignToUnpack; i < NumElements; ++i)
ShMask[i - AlignToUnpack] = i;
InputV = DAG.getVectorShuffle(VT, DL, InputV, DAG.getUNDEF(VT), ShMask);
Offset -= AlignToUnpack;
}
// Otherwise emit a sequence of unpacks.
do {
unsigned UnpackLoHi = X86ISD::UNPCKL;
if (Offset >= (NumElements / 2)) {
UnpackLoHi = X86ISD::UNPCKH;
Offset -= (NumElements / 2);
}
MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements);
SDValue Ext = AnyExt ? DAG.getUNDEF(InputVT)
: getZeroVector(InputVT, Subtarget, DAG, DL);
InputV = DAG.getBitcast(InputVT, InputV);
InputV = DAG.getNode(UnpackLoHi, DL, InputVT, InputV, Ext);
Scale /= 2;
EltBits *= 2;
NumElements /= 2;
} while (Scale > 1);
return DAG.getBitcast(VT, InputV);
}
/// Try to lower a vector shuffle as a zero extension on any microarch.
///
/// This routine will try to do everything in its power to cleverly lower
/// a shuffle which happens to match the pattern of a zero extend. It doesn't
/// check for the profitability of this lowering, it tries to aggressively
/// match this pattern. It will use all of the micro-architectural details it
/// can to emit an efficient lowering. It handles both blends with all-zero
/// inputs to explicitly zero-extend and undef-lanes (sometimes undef due to
/// masking out later).
///
/// The reason we have dedicated lowering for zext-style shuffles is that they
/// are both incredibly common and often quite performance sensitive.
static SDValue lowerVectorShuffleAsZeroOrAnyExtend(
const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
const APInt &Zeroable, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
int Bits = VT.getSizeInBits();
int NumLanes = Bits / 128;
int NumElements = VT.getVectorNumElements();
int NumEltsPerLane = NumElements / NumLanes;
assert(VT.getScalarSizeInBits() <= 32 &&
"Exceeds 32-bit integer zero extension limit");
assert((int)Mask.size() == NumElements && "Unexpected shuffle mask size");
// Define a helper function to check a particular ext-scale and lower to it if
// valid.
auto Lower = [&](int Scale) -> SDValue {
SDValue InputV;
bool AnyExt = true;
int Offset = 0;
int Matches = 0;
for (int i = 0; i < NumElements; ++i) {
int M = Mask[i];
if (M < 0)
continue; // Valid anywhere but doesn't tell us anything.
if (i % Scale != 0) {
// Each of the extended elements need to be zeroable.
if (!Zeroable[i])
return SDValue();
// We no longer are in the anyext case.
AnyExt = false;
continue;
}
// Each of the base elements needs to be consecutive indices into the
// same input vector.
SDValue V = M < NumElements ? V1 : V2;
M = M % NumElements;
if (!InputV) {
InputV = V;
Offset = M - (i / Scale);
} else if (InputV != V)
return SDValue(); // Flip-flopping inputs.
// Offset must start in the lowest 128-bit lane or at the start of an
// upper lane.
// FIXME: Is it ever worth allowing a negative base offset?
if (!((0 <= Offset && Offset < NumEltsPerLane) ||
(Offset % NumEltsPerLane) == 0))
return SDValue();
// If we are offsetting, all referenced entries must come from the same
// lane.
if (Offset && (Offset / NumEltsPerLane) != (M / NumEltsPerLane))
return SDValue();
if ((M % NumElements) != (Offset + (i / Scale)))
return SDValue(); // Non-consecutive strided elements.
Matches++;
}
// If we fail to find an input, we have a zero-shuffle which should always
// have already been handled.
// FIXME: Maybe handle this here in case during blending we end up with one?
if (!InputV)
return SDValue();
// If we are offsetting, don't extend if we only match a single input, we
// can always do better by using a basic PSHUF or PUNPCK.
if (Offset != 0 && Matches < 2)
return SDValue();
return lowerVectorShuffleAsSpecificZeroOrAnyExtend(
DL, VT, Scale, Offset, AnyExt, InputV, Mask, Subtarget, DAG);
};
// The widest scale possible for extending is to a 64-bit integer.
assert(Bits % 64 == 0 &&
"The number of bits in a vector must be divisible by 64 on x86!");
int NumExtElements = Bits / 64;
// Each iteration, try extending the elements half as much, but into twice as
// many elements.
for (; NumExtElements < NumElements; NumExtElements *= 2) {
assert(NumElements % NumExtElements == 0 &&
"The input vector size must be divisible by the extended size.");
if (SDValue V = Lower(NumElements / NumExtElements))
return V;
}
// General extends failed, but 128-bit vectors may be able to use MOVQ.
if (Bits != 128)
return SDValue();
// Returns one of the source operands if the shuffle can be reduced to a
// MOVQ, copying the lower 64-bits and zero-extending to the upper 64-bits.
auto CanZExtLowHalf = [&]() {
for (int i = NumElements / 2; i != NumElements; ++i)
if (!Zeroable[i])
return SDValue();
if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, 0))
return V1;
if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, NumElements))
return V2;
return SDValue();
};
if (SDValue V = CanZExtLowHalf()) {
V = DAG.getBitcast(MVT::v2i64, V);
V = DAG.getNode(X86ISD::VZEXT_MOVL, DL, MVT::v2i64, V);
return DAG.getBitcast(VT, V);
}
// No viable ext lowering found.
return SDValue();
}
/// Try to get a scalar value for a specific element of a vector.
///
/// Looks through BUILD_VECTOR and SCALAR_TO_VECTOR nodes to find a scalar.
static SDValue getScalarValueForVectorElement(SDValue V, int Idx,
SelectionDAG &DAG) {
MVT VT = V.getSimpleValueType();
MVT EltVT = VT.getVectorElementType();
V = peekThroughBitcasts(V);
// If the bitcasts shift the element size, we can't extract an equivalent
// element from it.
MVT NewVT = V.getSimpleValueType();
if (!NewVT.isVector() || NewVT.getScalarSizeInBits() != VT.getScalarSizeInBits())
return SDValue();
if (V.getOpcode() == ISD::BUILD_VECTOR ||
(Idx == 0 && V.getOpcode() == ISD::SCALAR_TO_VECTOR)) {
// Ensure the scalar operand is the same size as the destination.
// FIXME: Add support for scalar truncation where possible.
SDValue S = V.getOperand(Idx);
if (EltVT.getSizeInBits() == S.getSimpleValueType().getSizeInBits())
return DAG.getBitcast(EltVT, S);
}
return SDValue();
}
/// Helper to test for a load that can be folded with x86 shuffles.
///
/// This is particularly important because the set of instructions varies
/// significantly based on whether the operand is a load or not.
static bool isShuffleFoldableLoad(SDValue V) {
V = peekThroughBitcasts(V);
return ISD::isNON_EXTLoad(V.getNode());
}
/// Try to lower insertion of a single element into a zero vector.
///
/// This is a common pattern that we have especially efficient patterns to lower
/// across all subtarget feature sets.
static SDValue lowerVectorShuffleAsElementInsertion(
const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
const APInt &Zeroable, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT ExtVT = VT;
MVT EltVT = VT.getVectorElementType();
int V2Index =
find_if(Mask, [&Mask](int M) { return M >= (int)Mask.size(); }) -
Mask.begin();
bool IsV1Zeroable = true;
for (int i = 0, Size = Mask.size(); i < Size; ++i)
if (i != V2Index && !Zeroable[i]) {
IsV1Zeroable = false;
break;
}
// Check for a single input from a SCALAR_TO_VECTOR node.
// FIXME: All of this should be canonicalized into INSERT_VECTOR_ELT and
// all the smarts here sunk into that routine. However, the current
// lowering of BUILD_VECTOR makes that nearly impossible until the old
// vector shuffle lowering is dead.
SDValue V2S = getScalarValueForVectorElement(V2, Mask[V2Index] - Mask.size(),
DAG);
if (V2S && DAG.getTargetLoweringInfo().isTypeLegal(V2S.getValueType())) {
// We need to zext the scalar if it is smaller than an i32.
V2S = DAG.getBitcast(EltVT, V2S);
if (EltVT == MVT::i8 || EltVT == MVT::i16) {
// Using zext to expand a narrow element won't work for non-zero
// insertions.
if (!IsV1Zeroable)
return SDValue();
// Zero-extend directly to i32.
ExtVT = MVT::getVectorVT(MVT::i32, ExtVT.getSizeInBits() / 32);
V2S = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, V2S);
}
V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, ExtVT, V2S);
} else if (Mask[V2Index] != (int)Mask.size() || EltVT == MVT::i8 ||
EltVT == MVT::i16) {
// Either not inserting from the low element of the input or the input
// element size is too small to use VZEXT_MOVL to clear the high bits.
return SDValue();
}
if (!IsV1Zeroable) {
// If V1 can't be treated as a zero vector we have fewer options to lower
// this. We can't support integer vectors or non-zero targets cheaply, and
// the V1 elements can't be permuted in any way.
assert(VT == ExtVT && "Cannot change extended type when non-zeroable!");
if (!VT.isFloatingPoint() || V2Index != 0)
return SDValue();
SmallVector<int, 8> V1Mask(Mask.begin(), Mask.end());
V1Mask[V2Index] = -1;
if (!isNoopShuffleMask(V1Mask))
return SDValue();
if (!VT.is128BitVector())
return SDValue();
// Otherwise, use MOVSD or MOVSS.
assert((EltVT == MVT::f32 || EltVT == MVT::f64) &&
"Only two types of floating point element types to handle!");
return DAG.getNode(EltVT == MVT::f32 ? X86ISD::MOVSS : X86ISD::MOVSD, DL,
ExtVT, V1, V2);
}
// This lowering only works for the low element with floating point vectors.
if (VT.isFloatingPoint() && V2Index != 0)
return SDValue();
V2 = DAG.getNode(X86ISD::VZEXT_MOVL, DL, ExtVT, V2);
if (ExtVT != VT)
V2 = DAG.getBitcast(VT, V2);
if (V2Index != 0) {
// If we have 4 or fewer lanes we can cheaply shuffle the element into
// the desired position. Otherwise it is more efficient to do a vector
// shift left. We know that we can do a vector shift left because all
// the inputs are zero.
if (VT.isFloatingPoint() || VT.getVectorNumElements() <= 4) {
SmallVector<int, 4> V2Shuffle(Mask.size(), 1);
V2Shuffle[V2Index] = 0;
V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Shuffle);
} else {
V2 = DAG.getBitcast(MVT::v16i8, V2);
V2 = DAG.getNode(
X86ISD::VSHLDQ, DL, MVT::v16i8, V2,
DAG.getConstant(V2Index * EltVT.getSizeInBits() / 8, DL, MVT::i8));
V2 = DAG.getBitcast(VT, V2);
}
}
return V2;
}
/// Try to lower broadcast of a single - truncated - integer element,
/// coming from a scalar_to_vector/build_vector node \p V0 with larger elements.
///
/// This assumes we have AVX2.
static SDValue lowerVectorShuffleAsTruncBroadcast(const SDLoc &DL, MVT VT,
SDValue V0, int BroadcastIdx,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Subtarget.hasAVX2() &&
"We can only lower integer broadcasts with AVX2!");
EVT EltVT = VT.getVectorElementType();
EVT V0VT = V0.getValueType();
assert(VT.isInteger() && "Unexpected non-integer trunc broadcast!");
assert(V0VT.isVector() && "Unexpected non-vector vector-sized value!");
EVT V0EltVT = V0VT.getVectorElementType();
if (!V0EltVT.isInteger())
return SDValue();
const unsigned EltSize = EltVT.getSizeInBits();
const unsigned V0EltSize = V0EltVT.getSizeInBits();
// This is only a truncation if the original element type is larger.
if (V0EltSize <= EltSize)
return SDValue();
assert(((V0EltSize % EltSize) == 0) &&
"Scalar type sizes must all be powers of 2 on x86!");
const unsigned V0Opc = V0.getOpcode();
const unsigned Scale = V0EltSize / EltSize;
const unsigned V0BroadcastIdx = BroadcastIdx / Scale;
if ((V0Opc != ISD::SCALAR_TO_VECTOR || V0BroadcastIdx != 0) &&
V0Opc != ISD::BUILD_VECTOR)
return SDValue();
SDValue Scalar = V0.getOperand(V0BroadcastIdx);
// If we're extracting non-least-significant bits, shift so we can truncate.
// Hopefully, we can fold away the trunc/srl/load into the broadcast.
// Even if we can't (and !isShuffleFoldableLoad(Scalar)), prefer
// vpbroadcast+vmovd+shr to vpshufb(m)+vmovd.
if (const int OffsetIdx = BroadcastIdx % Scale)
Scalar = DAG.getNode(ISD::SRL, DL, Scalar.getValueType(), Scalar,
DAG.getConstant(OffsetIdx * EltSize, DL, MVT::i8));
return DAG.getNode(X86ISD::VBROADCAST, DL, VT,
DAG.getNode(ISD::TRUNCATE, DL, EltVT, Scalar));
}
/// Try to lower broadcast of a single element.
///
/// For convenience, this code also bundles all of the subtarget feature set
/// filtering. While a little annoying to re-dispatch on type here, there isn't
/// a convenient way to factor it out.
static SDValue lowerVectorShuffleAsBroadcast(const SDLoc &DL, MVT VT,
SDValue V1, SDValue V2,
ArrayRef<int> Mask,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
if (!((Subtarget.hasSSE3() && VT == MVT::v2f64) ||
(Subtarget.hasAVX() && VT.isFloatingPoint()) ||
(Subtarget.hasAVX2() && VT.isInteger())))
return SDValue();
// With MOVDDUP (v2f64) we can broadcast from a register or a load, otherwise
// we can only broadcast from a register with AVX2.
unsigned NumElts = Mask.size();
unsigned Opcode = (VT == MVT::v2f64 && !Subtarget.hasAVX2())
? X86ISD::MOVDDUP
: X86ISD::VBROADCAST;
bool BroadcastFromReg = (Opcode == X86ISD::MOVDDUP) || Subtarget.hasAVX2();
// Check that the mask is a broadcast.
int BroadcastIdx = -1;
for (int i = 0; i != (int)NumElts; ++i) {
SmallVector<int, 8> BroadcastMask(NumElts, i);
if (isShuffleEquivalent(V1, V2, Mask, BroadcastMask)) {
BroadcastIdx = i;
break;
}
}
if (BroadcastIdx < 0)
return SDValue();
assert(BroadcastIdx < (int)Mask.size() && "We only expect to be called with "
"a sorted mask where the broadcast "
"comes from V1.");
// Go up the chain of (vector) values to find a scalar load that we can
// combine with the broadcast.
SDValue V = V1;
for (;;) {
switch (V.getOpcode()) {
case ISD::BITCAST: {
// Peek through bitcasts as long as BroadcastIdx can be adjusted.
SDValue VSrc = V.getOperand(0);
unsigned NumEltBits = V.getScalarValueSizeInBits();
unsigned NumSrcBits = VSrc.getScalarValueSizeInBits();
if ((NumEltBits % NumSrcBits) == 0)
BroadcastIdx *= (NumEltBits / NumSrcBits);
else if ((NumSrcBits % NumEltBits) == 0 &&
(BroadcastIdx % (NumSrcBits / NumEltBits)) == 0)
BroadcastIdx /= (NumSrcBits / NumEltBits);
else
break;
V = VSrc;
continue;
}
case ISD::CONCAT_VECTORS: {
int OperandSize = Mask.size() / V.getNumOperands();
V = V.getOperand(BroadcastIdx / OperandSize);
BroadcastIdx %= OperandSize;
continue;
}
case ISD::INSERT_SUBVECTOR: {
SDValue VOuter = V.getOperand(0), VInner = V.getOperand(1);
auto ConstantIdx = dyn_cast<ConstantSDNode>(V.getOperand(2));
if (!ConstantIdx)
break;
int BeginIdx = (int)ConstantIdx->getZExtValue();
int EndIdx =
BeginIdx + (int)VInner.getSimpleValueType().getVectorNumElements();
if (BroadcastIdx >= BeginIdx && BroadcastIdx < EndIdx) {
BroadcastIdx -= BeginIdx;
V = VInner;
} else {
V = VOuter;
}
continue;
}
}
break;
}
// Ensure the source vector and BroadcastIdx are for a suitable type.
if (VT.getScalarSizeInBits() != V.getScalarValueSizeInBits()) {
unsigned NumEltBits = VT.getScalarSizeInBits();
unsigned NumSrcBits = V.getScalarValueSizeInBits();
if ((NumSrcBits % NumEltBits) == 0)
BroadcastIdx *= (NumSrcBits / NumEltBits);
else if ((NumEltBits % NumSrcBits) == 0 &&
(BroadcastIdx % (NumEltBits / NumSrcBits)) == 0)
BroadcastIdx /= (NumEltBits / NumSrcBits);
else
return SDValue();
unsigned NumSrcElts = V.getValueSizeInBits() / NumEltBits;
MVT SrcVT = MVT::getVectorVT(VT.getScalarType(), NumSrcElts);
V = DAG.getBitcast(SrcVT, V);
}
// Check if this is a broadcast of a scalar. We special case lowering
// for scalars so that we can more effectively fold with loads.
// First, look through bitcast: if the original value has a larger element
// type than the shuffle, the broadcast element is in essence truncated.
// Make that explicit to ease folding.
if (V.getOpcode() == ISD::BITCAST && VT.isInteger())
if (SDValue TruncBroadcast = lowerVectorShuffleAsTruncBroadcast(
DL, VT, V.getOperand(0), BroadcastIdx, Subtarget, DAG))
return TruncBroadcast;
MVT BroadcastVT = VT;
// Peek through any bitcast (only useful for loads).
SDValue BC = peekThroughBitcasts(V);
// Also check the simpler case, where we can directly reuse the scalar.
if (V.getOpcode() == ISD::BUILD_VECTOR ||
(V.getOpcode() == ISD::SCALAR_TO_VECTOR && BroadcastIdx == 0)) {
V = V.getOperand(BroadcastIdx);
// If we can't broadcast from a register, check that the input is a load.
if (!BroadcastFromReg && !isShuffleFoldableLoad(V))
return SDValue();
} else if (MayFoldLoad(BC) && !cast<LoadSDNode>(BC)->isVolatile()) {
// 32-bit targets need to load i64 as a f64 and then bitcast the result.
if (!Subtarget.is64Bit() && VT.getScalarType() == MVT::i64) {
BroadcastVT = MVT::getVectorVT(MVT::f64, VT.getVectorNumElements());
Opcode = (BroadcastVT.is128BitVector() && !Subtarget.hasAVX2())
? X86ISD::MOVDDUP
: Opcode;
}
// If we are broadcasting a load that is only used by the shuffle
// then we can reduce the vector load to the broadcasted scalar load.
LoadSDNode *Ld = cast<LoadSDNode>(BC);
SDValue BaseAddr = Ld->getOperand(1);
EVT SVT = BroadcastVT.getScalarType();
unsigned Offset = BroadcastIdx * SVT.getStoreSize();
SDValue NewAddr = DAG.getMemBasePlusOffset(BaseAddr, Offset, DL);
V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
DAG.getMachineFunction().getMachineMemOperand(
Ld->getMemOperand(), Offset, SVT.getStoreSize()));
DAG.makeEquivalentMemoryOrdering(Ld, V);
} else if (!BroadcastFromReg) {
// We can't broadcast from a vector register.
return SDValue();
} else if (BroadcastIdx != 0) {
// We can only broadcast from the zero-element of a vector register,
// but it can be advantageous to broadcast from the zero-element of a
// subvector.
if (!VT.is256BitVector() && !VT.is512BitVector())
return SDValue();
// VPERMQ/VPERMPD can perform the cross-lane shuffle directly.
if (VT == MVT::v4f64 || VT == MVT::v4i64)
return SDValue();
// Only broadcast the zero-element of a 128-bit subvector.
unsigned EltSize = VT.getScalarSizeInBits();
if (((BroadcastIdx * EltSize) % 128) != 0)
return SDValue();
// The shuffle input might have been a bitcast we looked through; look at
// the original input vector. Emit an EXTRACT_SUBVECTOR of that type; we'll
// later bitcast it to BroadcastVT.
assert(V.getScalarValueSizeInBits() == BroadcastVT.getScalarSizeInBits() &&
"Unexpected vector element size");
assert((V.getValueSizeInBits() == 256 || V.getValueSizeInBits() == 512) &&
"Unexpected vector size");
V = extract128BitVector(V, BroadcastIdx, DAG, DL);
}
if (Opcode == X86ISD::MOVDDUP && !V.getValueType().isVector())
V = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64,
DAG.getBitcast(MVT::f64, V));
// Bitcast back to the same scalar type as BroadcastVT.
MVT SrcVT = V.getSimpleValueType();
if (SrcVT.getScalarType() != BroadcastVT.getScalarType()) {
assert(SrcVT.getScalarSizeInBits() == BroadcastVT.getScalarSizeInBits() &&
"Unexpected vector element size");
if (SrcVT.isVector()) {
unsigned NumSrcElts = SrcVT.getVectorNumElements();
SrcVT = MVT::getVectorVT(BroadcastVT.getScalarType(), NumSrcElts);
} else {
SrcVT = BroadcastVT.getScalarType();
}
V = DAG.getBitcast(SrcVT, V);
}
// 32-bit targets need to load i64 as a f64 and then bitcast the result.
if (!Subtarget.is64Bit() && SrcVT == MVT::i64) {
V = DAG.getBitcast(MVT::f64, V);
unsigned NumBroadcastElts = BroadcastVT.getVectorNumElements();
BroadcastVT = MVT::getVectorVT(MVT::f64, NumBroadcastElts);
}
// We only support broadcasting from 128-bit vectors to minimize the
// number of patterns we need to deal with in isel. So extract down to
// 128-bits, removing as many bitcasts as possible.
if (SrcVT.getSizeInBits() > 128) {
MVT ExtVT = MVT::getVectorVT(SrcVT.getScalarType(),
128 / SrcVT.getScalarSizeInBits());
V = extract128BitVector(peekThroughBitcasts(V), 0, DAG, DL);
V = DAG.getBitcast(ExtVT, V);
}
return DAG.getBitcast(VT, DAG.getNode(Opcode, DL, BroadcastVT, V));
}
// Check for whether we can use INSERTPS to perform the shuffle. We only use
// INSERTPS when the V1 elements are already in the correct locations
// because otherwise we can just always use two SHUFPS instructions which
// are much smaller to encode than a SHUFPS and an INSERTPS. We can also
// perform INSERTPS if a single V1 element is out of place and all V2
// elements are zeroable.
static bool matchVectorShuffleAsInsertPS(SDValue &V1, SDValue &V2,
unsigned &InsertPSMask,
const APInt &Zeroable,
ArrayRef<int> Mask,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType().is128BitVector() && "Bad operand type!");
assert(V2.getSimpleValueType().is128BitVector() && "Bad operand type!");
assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
// Attempt to match INSERTPS with one element from VA or VB being
// inserted into VA (or undef). If successful, V1, V2 and InsertPSMask
// are updated.
auto matchAsInsertPS = [&](SDValue VA, SDValue VB,
ArrayRef<int> CandidateMask) {
unsigned ZMask = 0;
int VADstIndex = -1;
int VBDstIndex = -1;
bool VAUsedInPlace = false;
for (int i = 0; i < 4; ++i) {
// Synthesize a zero mask from the zeroable elements (includes undefs).
if (Zeroable[i]) {
ZMask |= 1 << i;
continue;
}
// Flag if we use any VA inputs in place.
if (i == CandidateMask[i]) {
VAUsedInPlace = true;
continue;
}
// We can only insert a single non-zeroable element.
if (VADstIndex >= 0 || VBDstIndex >= 0)
return false;
if (CandidateMask[i] < 4) {
// VA input out of place for insertion.
VADstIndex = i;
} else {
// VB input for insertion.
VBDstIndex = i;
}
}
// Don't bother if we have no (non-zeroable) element for insertion.
if (VADstIndex < 0 && VBDstIndex < 0)
return false;
// Determine element insertion src/dst indices. The src index is from the
// start of the inserted vector, not the start of the concatenated vector.
unsigned VBSrcIndex = 0;
if (VADstIndex >= 0) {
// If we have a VA input out of place, we use VA as the V2 element
// insertion and don't use the original V2 at all.
VBSrcIndex = CandidateMask[VADstIndex];
VBDstIndex = VADstIndex;
VB = VA;
} else {
VBSrcIndex = CandidateMask[VBDstIndex] - 4;
}
// If no V1 inputs are used in place, then the result is created only from
// the zero mask and the V2 insertion - so remove V1 dependency.
if (!VAUsedInPlace)
VA = DAG.getUNDEF(MVT::v4f32);
// Update V1, V2 and InsertPSMask accordingly.
V1 = VA;
V2 = VB;
// Insert the V2 element into the desired position.
InsertPSMask = VBSrcIndex << 6 | VBDstIndex << 4 | ZMask;
assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
return true;
};
if (matchAsInsertPS(V1, V2, Mask))
return true;
// Commute and try again.
SmallVector<int, 4> CommutedMask(Mask.begin(), Mask.end());
ShuffleVectorSDNode::commuteMask(CommutedMask);
if (matchAsInsertPS(V2, V1, CommutedMask))
return true;
return false;
}
static SDValue lowerVectorShuffleAsInsertPS(const SDLoc &DL, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
const APInt &Zeroable,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
// Attempt to match the insertps pattern.
unsigned InsertPSMask;
if (!matchVectorShuffleAsInsertPS(V1, V2, InsertPSMask, Zeroable, Mask, DAG))
return SDValue();
// Insert the V2 element into the desired position.
return DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
DAG.getConstant(InsertPSMask, DL, MVT::i8));
}
/// Try to lower a shuffle as a permute of the inputs followed by an
/// UNPCK instruction.
///
/// This specifically targets cases where we end up with alternating between
/// the two inputs, and so can permute them into something that feeds a single
/// UNPCK instruction. Note that this routine only targets integer vectors
/// because for floating point vectors we have a generalized SHUFPS lowering
/// strategy that handles everything that doesn't *exactly* match an unpack,
/// making this clever lowering unnecessary.
static SDValue lowerVectorShuffleAsPermuteAndUnpack(const SDLoc &DL, MVT VT,
SDValue V1, SDValue V2,
ArrayRef<int> Mask,
SelectionDAG &DAG) {
assert(!VT.isFloatingPoint() &&
"This routine only supports integer vectors.");
assert(VT.is128BitVector() &&
"This routine only works on 128-bit vectors.");
assert(!V2.isUndef() &&
"This routine should only be used when blending two inputs.");
assert(Mask.size() >= 2 && "Single element masks are invalid.");
int Size = Mask.size();
int NumLoInputs =
count_if(Mask, [Size](int M) { return M >= 0 && M % Size < Size / 2; });
int NumHiInputs =
count_if(Mask, [Size](int M) { return M % Size >= Size / 2; });
bool UnpackLo = NumLoInputs >= NumHiInputs;
auto TryUnpack = [&](int ScalarSize, int Scale) {
SmallVector<int, 16> V1Mask((unsigned)Size, -1);
SmallVector<int, 16> V2Mask((unsigned)Size, -1);
for (int i = 0; i < Size; ++i) {
if (Mask[i] < 0)
continue;
// Each element of the unpack contains Scale elements from this mask.
int UnpackIdx = i / Scale;
// We only handle the case where V1 feeds the first slots of the unpack.
// We rely on canonicalization to ensure this is the case.
if ((UnpackIdx % 2 == 0) != (Mask[i] < Size))
return SDValue();
// Setup the mask for this input. The indexing is tricky as we have to
// handle the unpack stride.
SmallVectorImpl<int> &VMask = (UnpackIdx % 2 == 0) ? V1Mask : V2Mask;
VMask[(UnpackIdx / 2) * Scale + i % Scale + (UnpackLo ? 0 : Size / 2)] =
Mask[i] % Size;
}
// If we will have to shuffle both inputs to use the unpack, check whether
// we can just unpack first and shuffle the result. If so, skip this unpack.
if ((NumLoInputs == 0 || NumHiInputs == 0) && !isNoopShuffleMask(V1Mask) &&
!isNoopShuffleMask(V2Mask))
return SDValue();
// Shuffle the inputs into place.
V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
// Cast the inputs to the type we will use to unpack them.
MVT UnpackVT = MVT::getVectorVT(MVT::getIntegerVT(ScalarSize), Size / Scale);
V1 = DAG.getBitcast(UnpackVT, V1);
V2 = DAG.getBitcast(UnpackVT, V2);
// Unpack the inputs and cast the result back to the desired type.
return DAG.getBitcast(
VT, DAG.getNode(UnpackLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
UnpackVT, V1, V2));
};
// We try each unpack from the largest to the smallest to try and find one
// that fits this mask.
int OrigScalarSize = VT.getScalarSizeInBits();
for (int ScalarSize = 64; ScalarSize >= OrigScalarSize; ScalarSize /= 2)
if (SDValue Unpack = TryUnpack(ScalarSize, ScalarSize / OrigScalarSize))
return Unpack;
// If none of the unpack-rooted lowerings worked (or were profitable) try an
// initial unpack.
if (NumLoInputs == 0 || NumHiInputs == 0) {
assert((NumLoInputs > 0 || NumHiInputs > 0) &&
"We have to have *some* inputs!");
int HalfOffset = NumLoInputs == 0 ? Size / 2 : 0;
// FIXME: We could consider the total complexity of the permute of each
// possible unpacking. Or at the least we should consider how many
// half-crossings are created.
// FIXME: We could consider commuting the unpacks.
SmallVector<int, 32> PermMask((unsigned)Size, -1);
for (int i = 0; i < Size; ++i) {
if (Mask[i] < 0)
continue;
assert(Mask[i] % Size >= HalfOffset && "Found input from wrong half!");
PermMask[i] =
2 * ((Mask[i] % Size) - HalfOffset) + (Mask[i] < Size ? 0 : 1);
}
return DAG.getVectorShuffle(
VT, DL, DAG.getNode(NumLoInputs == 0 ? X86ISD::UNPCKH : X86ISD::UNPCKL,
DL, VT, V1, V2),
DAG.getUNDEF(VT), PermMask);
}
return SDValue();
}
/// Handle lowering of 2-lane 64-bit floating point shuffles.
///
/// This is the basis function for the 2-lane 64-bit shuffles as we have full
/// support for floating point shuffles but not integer shuffles. These
/// instructions will incur a domain crossing penalty on some chips though so
/// it is better to avoid lowering through this for integer vectors where
/// possible.
static SDValue lowerV2F64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable,
SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
if (V2.isUndef()) {
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
DL, MVT::v2f64, V1, V2, Mask, Subtarget, DAG))
return Broadcast;
// Straight shuffle of a single input vector. Simulate this by using the
// single input as both of the "inputs" to this instruction..
unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1);
if (Subtarget.hasAVX()) {
// If we have AVX, we can use VPERMILPS which will allow folding a load
// into the shuffle.
return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v2f64, V1,
DAG.getConstant(SHUFPDMask, DL, MVT::i8));
}
return DAG.getNode(
X86ISD::SHUFP, DL, MVT::v2f64,
Mask[0] == SM_SentinelUndef ? DAG.getUNDEF(MVT::v2f64) : V1,
Mask[1] == SM_SentinelUndef ? DAG.getUNDEF(MVT::v2f64) : V1,
DAG.getConstant(SHUFPDMask, DL, MVT::i8));
}
assert(Mask[0] >= 0 && "No undef lanes in multi-input v2 shuffles!");
assert(Mask[1] >= 0 && "No undef lanes in multi-input v2 shuffles!");
assert(Mask[0] < 2 && "We sort V1 to be the first input.");
assert(Mask[1] >= 2 && "We sort V2 to be the second input.");
// When loading a scalar and then shuffling it into a vector we can often do
// the insertion cheaply.
if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
DL, MVT::v2f64, V1, V2, Mask, Zeroable, Subtarget, DAG))
return Insertion;
// Try inverting the insertion since for v2 masks it is easy to do and we
// can't reliably sort the mask one way or the other.
int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2),
Mask[1] < 0 ? -1 : (Mask[1] ^ 2)};
if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
DL, MVT::v2f64, V2, V1, InverseMask, Zeroable, Subtarget, DAG))
return Insertion;
// Try to use one of the special instruction patterns to handle two common
// blend patterns if a zero-blend above didn't work.
if (isShuffleEquivalent(V1, V2, Mask, {0, 3}) ||
isShuffleEquivalent(V1, V2, Mask, {1, 3}))
if (SDValue V1S = getScalarValueForVectorElement(V1, Mask[0], DAG))
// We can either use a special instruction to load over the low double or
// to move just the low double.
return DAG.getNode(
X86ISD::MOVSD, DL, MVT::v2f64, V2,
DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, V1S));
if (Subtarget.hasSSE41())
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2f64, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v2f64, Mask, V1, V2, DAG))
return V;
unsigned SHUFPDMask = (Mask[0] == 1) | (((Mask[1] - 2) == 1) << 1);
return DAG.getNode(X86ISD::SHUFP, DL, MVT::v2f64, V1, V2,
DAG.getConstant(SHUFPDMask, DL, MVT::i8));
}
/// Handle lowering of 2-lane 64-bit integer shuffles.
///
/// Tries to lower a 2-lane 64-bit shuffle using shuffle operations provided by
/// the integer unit to minimize domain crossing penalties. However, for blends
/// it falls back to the floating point shuffle operation with appropriate bit
/// casting.
static SDValue lowerV2I64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable,
SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
if (V2.isUndef()) {
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG))
return Broadcast;
// Straight shuffle of a single input vector. For everything from SSE2
// onward this has a single fast instruction with no scary immediates.
// We have to map the mask as it is actually a v4i32 shuffle instruction.
V1 = DAG.getBitcast(MVT::v4i32, V1);
int WidenedMask[4] = {
std::max(Mask[0], 0) * 2, std::max(Mask[0], 0) * 2 + 1,
std::max(Mask[1], 0) * 2, std::max(Mask[1], 0) * 2 + 1};
return DAG.getBitcast(
MVT::v2i64,
DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
getV4X86ShuffleImm8ForMask(WidenedMask, DL, DAG)));
}
assert(Mask[0] != -1 && "No undef lanes in multi-input v2 shuffles!");
assert(Mask[1] != -1 && "No undef lanes in multi-input v2 shuffles!");
assert(Mask[0] < 2 && "We sort V1 to be the first input.");
assert(Mask[1] >= 2 && "We sort V2 to be the second input.");
// Try to use shift instructions.
if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v2i64, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// When loading a scalar and then shuffling it into a vector we can often do
// the insertion cheaply.
if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
DL, MVT::v2i64, V1, V2, Mask, Zeroable, Subtarget, DAG))
return Insertion;
// Try inverting the insertion since for v2 masks it is easy to do and we
// can't reliably sort the mask one way or the other.
int InverseMask[2] = {Mask[0] ^ 2, Mask[1] ^ 2};
if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
DL, MVT::v2i64, V2, V1, InverseMask, Zeroable, Subtarget, DAG))
return Insertion;
// We have different paths for blend lowering, but they all must use the
// *exact* same predicate.
bool IsBlendSupported = Subtarget.hasSSE41();
if (IsBlendSupported)
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2i64, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v2i64, Mask, V1, V2, DAG))
return V;
// Try to use byte rotation instructions.
// Its more profitable for pre-SSSE3 to use shuffles/unpacks.
if (Subtarget.hasSSSE3()) {
if (Subtarget.hasVLX())
if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v2i64, V1, V2,
Mask, Subtarget, DAG))
return Rotate;
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG))
return Rotate;
}
// If we have direct support for blends, we should lower by decomposing into
// a permute. That will be faster than the domain cross.
if (IsBlendSupported)
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v2i64, V1, V2,
Mask, DAG);
// We implement this with SHUFPD which is pretty lame because it will likely
// incur 2 cycles of stall for integer vectors on Nehalem and older chips.
// However, all the alternatives are still more cycles and newer chips don't
// have this problem. It would be really nice if x86 had better shuffles here.
V1 = DAG.getBitcast(MVT::v2f64, V1);
V2 = DAG.getBitcast(MVT::v2f64, V2);
return DAG.getBitcast(MVT::v2i64,
DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask));
}
/// Test whether this can be lowered with a single SHUFPS instruction.
///
/// This is used to disable more specialized lowerings when the shufps lowering
/// will happen to be efficient.
static bool isSingleSHUFPSMask(ArrayRef<int> Mask) {
// This routine only handles 128-bit shufps.
assert(Mask.size() == 4 && "Unsupported mask size!");
assert(Mask[0] >= -1 && Mask[0] < 8 && "Out of bound mask element!");
assert(Mask[1] >= -1 && Mask[1] < 8 && "Out of bound mask element!");
assert(Mask[2] >= -1 && Mask[2] < 8 && "Out of bound mask element!");
assert(Mask[3] >= -1 && Mask[3] < 8 && "Out of bound mask element!");
// To lower with a single SHUFPS we need to have the low half and high half
// each requiring a single input.
if (Mask[0] >= 0 && Mask[1] >= 0 && (Mask[0] < 4) != (Mask[1] < 4))
return false;
if (Mask[2] >= 0 && Mask[3] >= 0 && (Mask[2] < 4) != (Mask[3] < 4))
return false;
return true;
}
/// Lower a vector shuffle using the SHUFPS instruction.
///
/// This is a helper routine dedicated to lowering vector shuffles using SHUFPS.
/// It makes no assumptions about whether this is the *best* lowering, it simply
/// uses it.
static SDValue lowerVectorShuffleWithSHUFPS(const SDLoc &DL, MVT VT,
ArrayRef<int> Mask, SDValue V1,
SDValue V2, SelectionDAG &DAG) {
SDValue LowV = V1, HighV = V2;
int NewMask[4] = {Mask[0], Mask[1], Mask[2], Mask[3]};
int NumV2Elements = count_if(Mask, [](int M) { return M >= 4; });
if (NumV2Elements == 1) {
int V2Index = find_if(Mask, [](int M) { return M >= 4; }) - Mask.begin();
// Compute the index adjacent to V2Index and in the same half by toggling
// the low bit.
int V2AdjIndex = V2Index ^ 1;
if (Mask[V2AdjIndex] < 0) {
// Handles all the cases where we have a single V2 element and an undef.
// This will only ever happen in the high lanes because we commute the
// vector otherwise.
if (V2Index < 2)
std::swap(LowV, HighV);
NewMask[V2Index] -= 4;
} else {
// Handle the case where the V2 element ends up adjacent to a V1 element.
// To make this work, blend them together as the first step.
int V1Index = V2AdjIndex;
int BlendMask[4] = {Mask[V2Index] - 4, 0, Mask[V1Index], 0};
V2 = DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1,
getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG));
// Now proceed to reconstruct the final blend as we have the necessary
// high or low half formed.
if (V2Index < 2) {
LowV = V2;
HighV = V1;
} else {
HighV = V2;
}
NewMask[V1Index] = 2; // We put the V1 element in V2[2].
NewMask[V2Index] = 0; // We shifted the V2 element into V2[0].
}
} else if (NumV2Elements == 2) {
if (Mask[0] < 4 && Mask[1] < 4) {
// Handle the easy case where we have V1 in the low lanes and V2 in the
// high lanes.
NewMask[2] -= 4;
NewMask[3] -= 4;
} else if (Mask[2] < 4 && Mask[3] < 4) {
// We also handle the reversed case because this utility may get called
// when we detect a SHUFPS pattern but can't easily commute the shuffle to
// arrange things in the right direction.
NewMask[0] -= 4;
NewMask[1] -= 4;
HighV = V1;
LowV = V2;
} else {
// We have a mixture of V1 and V2 in both low and high lanes. Rather than
// trying to place elements directly, just blend them and set up the final
// shuffle to place them.
// The first two blend mask elements are for V1, the second two are for
// V2.
int BlendMask[4] = {Mask[0] < 4 ? Mask[0] : Mask[1],
Mask[2] < 4 ? Mask[2] : Mask[3],
(Mask[0] >= 4 ? Mask[0] : Mask[1]) - 4,
(Mask[2] >= 4 ? Mask[2] : Mask[3]) - 4};
V1 = DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG));
// Now we do a normal shuffle of V1 by giving V1 as both operands to
// a blend.
LowV = HighV = V1;
NewMask[0] = Mask[0] < 4 ? 0 : 2;
NewMask[1] = Mask[0] < 4 ? 2 : 0;
NewMask[2] = Mask[2] < 4 ? 1 : 3;
NewMask[3] = Mask[2] < 4 ? 3 : 1;
}
}
return DAG.getNode(X86ISD::SHUFP, DL, VT, LowV, HighV,
getV4X86ShuffleImm8ForMask(NewMask, DL, DAG));
}
/// Lower 4-lane 32-bit floating point shuffles.
///
/// Uses instructions exclusively from the floating point unit to minimize
/// domain crossing penalties, as these are sufficient to implement all v4f32
/// shuffles.
static SDValue lowerV4F32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable,
SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
int NumV2Elements = count_if(Mask, [](int M) { return M >= 4; });
if (NumV2Elements == 0) {
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
DL, MVT::v4f32, V1, V2, Mask, Subtarget, DAG))
return Broadcast;
// Use even/odd duplicate instructions for masks that match their pattern.
if (Subtarget.hasSSE3()) {
if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2}))
return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v4f32, V1);
if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3}))
return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v4f32, V1);
}
if (Subtarget.hasAVX()) {
// If we have AVX, we can use VPERMILPS which will allow folding a load
// into the shuffle.
return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f32, V1,
getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
}
// Use MOVLHPS/MOVHLPS to simulate unary shuffles. These are only valid
// in SSE1 because otherwise they are widened to v2f64 and never get here.
if (!Subtarget.hasSSE2()) {
if (isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1}))
return DAG.getNode(X86ISD::MOVLHPS, DL, MVT::v4f32, V1, V1);
if (isShuffleEquivalent(V1, V2, Mask, {2, 3, 2, 3}))
return DAG.getNode(X86ISD::MOVHLPS, DL, MVT::v4f32, V1, V1);
}
// Otherwise, use a straight shuffle of a single input vector. We pass the
// input vector to both operands to simulate this with a SHUFPS.
return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1,
getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
}
// There are special ways we can lower some single-element blends. However, we
// have custom ways we can lower more complex single-element blends below that
// we defer to if both this and BLENDPS fail to match, so restrict this to
// when the V2 input is targeting element 0 of the mask -- that is the fast
// case here.
if (NumV2Elements == 1 && Mask[0] >= 4)
if (SDValue V = lowerVectorShuffleAsElementInsertion(
DL, MVT::v4f32, V1, V2, Mask, Zeroable, Subtarget, DAG))
return V;
if (Subtarget.hasSSE41()) {
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f32, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// Use INSERTPS if we can complete the shuffle efficiently.
if (SDValue V =
lowerVectorShuffleAsInsertPS(DL, V1, V2, Mask, Zeroable, DAG))
return V;
if (!isSingleSHUFPSMask(Mask))
if (SDValue BlendPerm = lowerVectorShuffleAsBlendAndPermute(
DL, MVT::v4f32, V1, V2, Mask, DAG))
return BlendPerm;
}
// Use low/high mov instructions. These are only valid in SSE1 because
// otherwise they are widened to v2f64 and never get here.
if (!Subtarget.hasSSE2()) {
if (isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5}))
return DAG.getNode(X86ISD::MOVLHPS, DL, MVT::v4f32, V1, V2);
if (isShuffleEquivalent(V1, V2, Mask, {2, 3, 6, 7}))
return DAG.getNode(X86ISD::MOVHLPS, DL, MVT::v4f32, V2, V1);
}
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v4f32, Mask, V1, V2, DAG))
return V;
// Otherwise fall back to a SHUFPS lowering strategy.
return lowerVectorShuffleWithSHUFPS(DL, MVT::v4f32, Mask, V1, V2, DAG);
}
/// Lower 4-lane i32 vector shuffles.
///
/// We try to handle these with integer-domain shuffles where we can, but for
/// blends we use the floating point domain blend instructions.
static SDValue lowerV4I32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable,
SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
// Whenever we can lower this as a zext, that instruction is strictly faster
// than any alternative. It also allows us to fold memory operands into the
// shuffle in many cases.
if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
DL, MVT::v4i32, V1, V2, Mask, Zeroable, Subtarget, DAG))
return ZExt;
int NumV2Elements = count_if(Mask, [](int M) { return M >= 4; });
if (NumV2Elements == 0) {
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG))
return Broadcast;
// Straight shuffle of a single input vector. For everything from SSE2
// onward this has a single fast instruction with no scary immediates.
// We coerce the shuffle pattern to be compatible with UNPCK instructions
// but we aren't actually going to use the UNPCK instruction because doing
// so prevents folding a load into this instruction or making a copy.
const int UnpackLoMask[] = {0, 0, 1, 1};
const int UnpackHiMask[] = {2, 2, 3, 3};
if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 1, 1}))
Mask = UnpackLoMask;
else if (isShuffleEquivalent(V1, V2, Mask, {2, 2, 3, 3}))
Mask = UnpackHiMask;
return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
}
// Try to use shift instructions.
if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v4i32, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// There are special ways we can lower some single-element blends.
if (NumV2Elements == 1)
if (SDValue V = lowerVectorShuffleAsElementInsertion(
DL, MVT::v4i32, V1, V2, Mask, Zeroable, Subtarget, DAG))
return V;
// We have different paths for blend lowering, but they all must use the
// *exact* same predicate.
bool IsBlendSupported = Subtarget.hasSSE41();
if (IsBlendSupported)
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i32, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, MVT::v4i32, V1, V2, Mask,
Zeroable, DAG))
return Masked;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v4i32, Mask, V1, V2, DAG))
return V;
// Try to use byte rotation instructions.
// Its more profitable for pre-SSSE3 to use shuffles/unpacks.
if (Subtarget.hasSSSE3()) {
if (Subtarget.hasVLX())
if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v4i32, V1, V2,
Mask, Subtarget, DAG))
return Rotate;
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG))
return Rotate;
}
// Assume that a single SHUFPS is faster than an alternative sequence of
// multiple instructions (even if the CPU has a domain penalty).
// If some CPU is harmed by the domain switch, we can fix it in a later pass.
if (!isSingleSHUFPSMask(Mask)) {
// If we have direct support for blends, we should lower by decomposing into
// a permute. That will be faster than the domain cross.
if (IsBlendSupported)
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i32, V1, V2,
Mask, DAG);
// Try to lower by permuting the inputs into an unpack instruction.
if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(
DL, MVT::v4i32, V1, V2, Mask, DAG))
return Unpack;
}
// We implement this with SHUFPS because it can blend from two vectors.
// Because we're going to eventually use SHUFPS, we use SHUFPS even to build
// up the inputs, bypassing domain shift penalties that we would incur if we
// directly used PSHUFD on Nehalem and older. For newer chips, this isn't
// relevant.
SDValue CastV1 = DAG.getBitcast(MVT::v4f32, V1);
SDValue CastV2 = DAG.getBitcast(MVT::v4f32, V2);
SDValue ShufPS = DAG.getVectorShuffle(MVT::v4f32, DL, CastV1, CastV2, Mask);
return DAG.getBitcast(MVT::v4i32, ShufPS);
}
/// Lowering of single-input v8i16 shuffles is the cornerstone of SSE2
/// shuffle lowering, and the most complex part.
///
/// The lowering strategy is to try to form pairs of input lanes which are
/// targeted at the same half of the final vector, and then use a dword shuffle
/// to place them onto the right half, and finally unpack the paired lanes into
/// their final position.
///
/// The exact breakdown of how to form these dword pairs and align them on the
/// correct sides is really tricky. See the comments within the function for
/// more of the details.
///
/// This code also handles repeated 128-bit lanes of v8i16 shuffles, but each
/// lane must shuffle the *exact* same way. In fact, you must pass a v8 Mask to
/// this routine for it to work correctly. To shuffle a 256-bit or 512-bit i16
/// vector, form the analogous 128-bit 8-element Mask.
static SDValue lowerV8I16GeneralSingleInputVectorShuffle(
const SDLoc &DL, MVT VT, SDValue V, MutableArrayRef<int> Mask,
const X86Subtarget &Subtarget, SelectionDAG &DAG) {
assert(VT.getVectorElementType() == MVT::i16 && "Bad input type!");
MVT PSHUFDVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
assert(Mask.size() == 8 && "Shuffle mask length doesn't match!");
MutableArrayRef<int> LoMask = Mask.slice(0, 4);
MutableArrayRef<int> HiMask = Mask.slice(4, 4);
// Attempt to directly match PSHUFLW or PSHUFHW.
if (isUndefOrInRange(LoMask, 0, 4) &&
isSequentialOrUndefInRange(HiMask, 0, 4, 4)) {
return DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
getV4X86ShuffleImm8ForMask(LoMask, DL, DAG));
}
if (isUndefOrInRange(HiMask, 4, 8) &&
isSequentialOrUndefInRange(LoMask, 0, 4, 0)) {
for (int i = 0; i != 4; ++i)
HiMask[i] = (HiMask[i] < 0 ? HiMask[i] : (HiMask[i] - 4));
return DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
getV4X86ShuffleImm8ForMask(HiMask, DL, DAG));
}
SmallVector<int, 4> LoInputs;
copy_if(LoMask, std::back_inserter(LoInputs), [](int M) { return M >= 0; });
array_pod_sort(LoInputs.begin(), LoInputs.end());
LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), LoInputs.end());
SmallVector<int, 4> HiInputs;
copy_if(HiMask, std::back_inserter(HiInputs), [](int M) { return M >= 0; });
array_pod_sort(HiInputs.begin(), HiInputs.end());
HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), HiInputs.end());
int NumLToL =
std::lower_bound(LoInputs.begin(), LoInputs.end(), 4) - LoInputs.begin();
int NumHToL = LoInputs.size() - NumLToL;
int NumLToH =
std::lower_bound(HiInputs.begin(), HiInputs.end(), 4) - HiInputs.begin();
int NumHToH = HiInputs.size() - NumLToH;
MutableArrayRef<int> LToLInputs(LoInputs.data(), NumLToL);
MutableArrayRef<int> LToHInputs(HiInputs.data(), NumLToH);
MutableArrayRef<int> HToLInputs(LoInputs.data() + NumLToL, NumHToL);
MutableArrayRef<int> HToHInputs(HiInputs.data() + NumLToH, NumHToH);
// If we are shuffling values from one half - check how many different DWORD
// pairs we need to create. If only 1 or 2 then we can perform this as a
// PSHUFLW/PSHUFHW + PSHUFD instead of the PSHUFD+PSHUFLW+PSHUFHW chain below.
auto ShuffleDWordPairs = [&](ArrayRef<int> PSHUFHalfMask,
ArrayRef<int> PSHUFDMask, unsigned ShufWOp) {
V = DAG.getNode(ShufWOp, DL, VT, V,
getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DL, DAG));
V = DAG.getBitcast(PSHUFDVT, V);
V = DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, V,
getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG));
return DAG.getBitcast(VT, V);
};
if ((NumHToL + NumHToH) == 0 || (NumLToL + NumLToH) == 0) {
int PSHUFDMask[4] = { -1, -1, -1, -1 };
SmallVector<std::pair<int, int>, 4> DWordPairs;
int DOffset = ((NumHToL + NumHToH) == 0 ? 0 : 2);
// Collect the different DWORD pairs.
for (int DWord = 0; DWord != 4; ++DWord) {
int M0 = Mask[2 * DWord + 0];
int M1 = Mask[2 * DWord + 1];
M0 = (M0 >= 0 ? M0 % 4 : M0);
M1 = (M1 >= 0 ? M1 % 4 : M1);
if (M0 < 0 && M1 < 0)
continue;
bool Match = false;
for (int j = 0, e = DWordPairs.size(); j < e; ++j) {
auto &DWordPair = DWordPairs[j];
if ((M0 < 0 || isUndefOrEqual(DWordPair.first, M0)) &&
(M1 < 0 || isUndefOrEqual(DWordPair.second, M1))) {
DWordPair.first = (M0 >= 0 ? M0 : DWordPair.first);
DWordPair.second = (M1 >= 0 ? M1 : DWordPair.second);
PSHUFDMask[DWord] = DOffset + j;
Match = true;
break;
}
}
if (!Match) {
PSHUFDMask[DWord] = DOffset + DWordPairs.size();
DWordPairs.push_back(std::make_pair(M0, M1));
}
}
if (DWordPairs.size() <= 2) {
DWordPairs.resize(2, std::make_pair(-1, -1));
int PSHUFHalfMask[4] = {DWordPairs[0].first, DWordPairs[0].second,
DWordPairs[1].first, DWordPairs[1].second};
if ((NumHToL + NumHToH) == 0)
return ShuffleDWordPairs(PSHUFHalfMask, PSHUFDMask, X86ISD::PSHUFLW);
if ((NumLToL + NumLToH) == 0)
return ShuffleDWordPairs(PSHUFHalfMask, PSHUFDMask, X86ISD::PSHUFHW);
}
}
// Simplify the 1-into-3 and 3-into-1 cases with a single pshufd. For all
// such inputs we can swap two of the dwords across the half mark and end up
// with <=2 inputs to each half in each half. Once there, we can fall through
// to the generic code below. For example:
//
// Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
// Mask: [0, 1, 2, 7, 4, 5, 6, 3] -----------------> [0, 1, 4, 7, 2, 3, 6, 5]
//
// However in some very rare cases we have a 1-into-3 or 3-into-1 on one half
// and an existing 2-into-2 on the other half. In this case we may have to
// pre-shuffle the 2-into-2 half to avoid turning it into a 3-into-1 or
// 1-into-3 which could cause us to cycle endlessly fixing each side in turn.
// Fortunately, we don't have to handle anything but a 2-into-2 pattern
// because any other situation (including a 3-into-1 or 1-into-3 in the other
// half than the one we target for fixing) will be fixed when we re-enter this
// path. We will also combine away any sequence of PSHUFD instructions that
// result into a single instruction. Here is an example of the tricky case:
//
// Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
// Mask: [3, 7, 1, 0, 2, 7, 3, 5] -THIS-IS-BAD!!!!-> [5, 7, 1, 0, 4, 7, 5, 3]
//
// This now has a 1-into-3 in the high half! Instead, we do two shuffles:
//
// Input: [a, b, c, d, e, f, g, h] PSHUFHW[0,2,1,3]-> [a, b, c, d, e, g, f, h]
// Mask: [3, 7, 1, 0, 2, 7, 3, 5] -----------------> [3, 7, 1, 0, 2, 7, 3, 6]
//
// Input: [a, b, c, d, e, g, f, h] -PSHUFD[0,2,1,3]-> [a, b, e, g, c, d, f, h]
// Mask: [3, 7, 1, 0, 2, 7, 3, 6] -----------------> [5, 7, 1, 0, 4, 7, 5, 6]
//
// The result is fine to be handled by the generic logic.
auto balanceSides = [&](ArrayRef<int> AToAInputs, ArrayRef<int> BToAInputs,
ArrayRef<int> BToBInputs, ArrayRef<int> AToBInputs,
int AOffset, int BOffset) {
assert((AToAInputs.size() == 3 || AToAInputs.size() == 1) &&
"Must call this with A having 3 or 1 inputs from the A half.");
assert((BToAInputs.size() == 1 || BToAInputs.size() == 3) &&
"Must call this with B having 1 or 3 inputs from the B half.");
assert(AToAInputs.size() + BToAInputs.size() == 4 &&
"Must call this with either 3:1 or 1:3 inputs (summing to 4).");
bool ThreeAInputs = AToAInputs.size() == 3;
// Compute the index of dword with only one word among the three inputs in
// a half by taking the sum of the half with three inputs and subtracting
// the sum of the actual three inputs. The difference is the remaining
// slot.
int ADWord, BDWord;
int &TripleDWord = ThreeAInputs ? ADWord : BDWord;
int &OneInputDWord = ThreeAInputs ? BDWord : ADWord;
int TripleInputOffset = ThreeAInputs ? AOffset : BOffset;
ArrayRef<int> TripleInputs = ThreeAInputs ? AToAInputs : BToAInputs;
int OneInput = ThreeAInputs ? BToAInputs[0] : AToAInputs[0];
int TripleInputSum = 0 + 1 + 2 + 3 + (4 * TripleInputOffset);
int TripleNonInputIdx =
TripleInputSum - std::accumulate(TripleInputs.begin(), TripleInputs.end(), 0);
TripleDWord = TripleNonInputIdx / 2;
// We use xor with one to compute the adjacent DWord to whichever one the
// OneInput is in.
OneInputDWord = (OneInput / 2) ^ 1;
// Check for one tricky case: We're fixing a 3<-1 or a 1<-3 shuffle for AToA
// and BToA inputs. If there is also such a problem with the BToB and AToB
// inputs, we don't try to fix it necessarily -- we'll recurse and see it in
// the next pass. However, if we have a 2<-2 in the BToB and AToB inputs, it
// is essential that we don't *create* a 3<-1 as then we might oscillate.
if (BToBInputs.size() == 2 && AToBInputs.size() == 2) {
// Compute how many inputs will be flipped by swapping these DWords. We
// need
// to balance this to ensure we don't form a 3-1 shuffle in the other
// half.
int NumFlippedAToBInputs =
std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord) +
std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord + 1);
int NumFlippedBToBInputs =
std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord) +
std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord + 1);
if ((NumFlippedAToBInputs == 1 &&
(NumFlippedBToBInputs == 0 || NumFlippedBToBInputs == 2)) ||
(NumFlippedBToBInputs == 1 &&
(NumFlippedAToBInputs == 0 || NumFlippedAToBInputs == 2))) {
// We choose whether to fix the A half or B half based on whether that
// half has zero flipped inputs. At zero, we may not be able to fix it
// with that half. We also bias towards fixing the B half because that
// will more commonly be the high half, and we have to bias one way.
auto FixFlippedInputs = [&V, &DL, &Mask, &DAG](int PinnedIdx, int DWord,
ArrayRef<int> Inputs) {
int FixIdx = PinnedIdx ^ 1; // The adjacent slot to the pinned slot.
bool IsFixIdxInput = is_contained(Inputs, PinnedIdx ^ 1);
// Determine whether the free index is in the flipped dword or the
// unflipped dword based on where the pinned index is. We use this bit
// in an xor to conditionally select the adjacent dword.
int FixFreeIdx = 2 * (DWord ^ (PinnedIdx / 2 == DWord));
bool IsFixFreeIdxInput = is_contained(Inputs, FixFreeIdx);
if (IsFixIdxInput == IsFixFreeIdxInput)
FixFreeIdx += 1;
IsFixFreeIdxInput = is_contained(Inputs, FixFreeIdx);
assert(IsFixIdxInput != IsFixFreeIdxInput &&
"We need to be changing the number of flipped inputs!");
int PSHUFHalfMask[] = {0, 1, 2, 3};
std::swap(PSHUFHalfMask[FixFreeIdx % 4], PSHUFHalfMask[FixIdx % 4]);
V = DAG.getNode(
FixIdx < 4 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW, DL,
MVT::getVectorVT(MVT::i16, V.getValueSizeInBits() / 16), V,
getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DL, DAG));
for (int &M : Mask)
if (M >= 0 && M == FixIdx)
M = FixFreeIdx;
else if (M >= 0 && M == FixFreeIdx)
M = FixIdx;
};
if (NumFlippedBToBInputs != 0) {
int BPinnedIdx =
BToAInputs.size() == 3 ? TripleNonInputIdx : OneInput;
FixFlippedInputs(BPinnedIdx, BDWord, BToBInputs);
} else {
assert(NumFlippedAToBInputs != 0 && "Impossible given predicates!");
int APinnedIdx = ThreeAInputs ? TripleNonInputIdx : OneInput;
FixFlippedInputs(APinnedIdx, ADWord, AToBInputs);
}
}
}
int PSHUFDMask[] = {0, 1, 2, 3};
PSHUFDMask[ADWord] = BDWord;
PSHUFDMask[BDWord] = ADWord;
V = DAG.getBitcast(
VT,
DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V),
getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
// Adjust the mask to match the new locations of A and B.
for (int &M : Mask)
if (M >= 0 && M/2 == ADWord)
M = 2 * BDWord + M % 2;
else if (M >= 0 && M/2 == BDWord)
M = 2 * ADWord + M % 2;
// Recurse back into this routine to re-compute state now that this isn't
// a 3 and 1 problem.
return lowerV8I16GeneralSingleInputVectorShuffle(DL, VT, V, Mask, Subtarget,
DAG);
};
if ((NumLToL == 3 && NumHToL == 1) || (NumLToL == 1 && NumHToL == 3))
return balanceSides(LToLInputs, HToLInputs, HToHInputs, LToHInputs, 0, 4);
if ((NumHToH == 3 && NumLToH == 1) || (NumHToH == 1 && NumLToH == 3))
return balanceSides(HToHInputs, LToHInputs, LToLInputs, HToLInputs, 4, 0);
// At this point there are at most two inputs to the low and high halves from
// each half. That means the inputs can always be grouped into dwords and
// those dwords can then be moved to the correct half with a dword shuffle.
// We use at most one low and one high word shuffle to collect these paired
// inputs into dwords, and finally a dword shuffle to place them.
int PSHUFLMask[4] = {-1, -1, -1, -1};
int PSHUFHMask[4] = {-1, -1, -1, -1};
int PSHUFDMask[4] = {-1, -1, -1, -1};
// First fix the masks for all the inputs that are staying in their
// original halves. This will then dictate the targets of the cross-half
// shuffles.
auto fixInPlaceInputs =
[&PSHUFDMask](ArrayRef<int> InPlaceInputs, ArrayRef<int> IncomingInputs,
MutableArrayRef<int> SourceHalfMask,
MutableArrayRef<int> HalfMask, int HalfOffset) {
if (InPlaceInputs.empty())
return;
if (InPlaceInputs.size() == 1) {
SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
InPlaceInputs[0] - HalfOffset;
PSHUFDMask[InPlaceInputs[0] / 2] = InPlaceInputs[0] / 2;
return;
}
if (IncomingInputs.empty()) {
// Just fix all of the in place inputs.
for (int Input : InPlaceInputs) {
SourceHalfMask[Input - HalfOffset] = Input - HalfOffset;
PSHUFDMask[Input / 2] = Input / 2;
}
return;
}
assert(InPlaceInputs.size() == 2 && "Cannot handle 3 or 4 inputs!");
SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
InPlaceInputs[0] - HalfOffset;
// Put the second input next to the first so that they are packed into
// a dword. We find the adjacent index by toggling the low bit.
int AdjIndex = InPlaceInputs[0] ^ 1;
SourceHalfMask[AdjIndex - HalfOffset] = InPlaceInputs[1] - HalfOffset;
std::replace(HalfMask.begin(), HalfMask.end(), InPlaceInputs[1], AdjIndex);
PSHUFDMask[AdjIndex / 2] = AdjIndex / 2;
};
fixInPlaceInputs(LToLInputs, HToLInputs, PSHUFLMask, LoMask, 0);
fixInPlaceInputs(HToHInputs, LToHInputs, PSHUFHMask, HiMask, 4);
// Now gather the cross-half inputs and place them into a free dword of
// their target half.
// FIXME: This operation could almost certainly be simplified dramatically to
// look more like the 3-1 fixing operation.
auto moveInputsToRightHalf = [&PSHUFDMask](
MutableArrayRef<int> IncomingInputs, ArrayRef<int> ExistingInputs,
MutableArrayRef<int> SourceHalfMask, MutableArrayRef<int> HalfMask,
MutableArrayRef<int> FinalSourceHalfMask, int SourceOffset,
int DestOffset) {
auto isWordClobbered = [](ArrayRef<int> SourceHalfMask, int Word) {
return SourceHalfMask[Word] >= 0 && SourceHalfMask[Word] != Word;
};
auto isDWordClobbered = [&isWordClobbered](ArrayRef<int> SourceHalfMask,
int Word) {
int LowWord = Word & ~1;
int HighWord = Word | 1;
return isWordClobbered(SourceHalfMask, LowWord) ||
isWordClobbered(SourceHalfMask, HighWord);
};
if (IncomingInputs.empty())
return;
if (ExistingInputs.empty()) {
// Map any dwords with inputs from them into the right half.
for (int Input : IncomingInputs) {
// If the source half mask maps over the inputs, turn those into
// swaps and use the swapped lane.
if (isWordClobbered(SourceHalfMask, Input - SourceOffset)) {
if (SourceHalfMask[SourceHalfMask[Input - SourceOffset]] < 0) {
SourceHalfMask[SourceHalfMask[Input - SourceOffset]] =
Input - SourceOffset;
// We have to swap the uses in our half mask in one sweep.
for (int &M : HalfMask)
if (M == SourceHalfMask[Input - SourceOffset] + SourceOffset)
M = Input;
else if (M == Input)
M = SourceHalfMask[Input - SourceOffset] + SourceOffset;
} else {
assert(SourceHalfMask[SourceHalfMask[Input - SourceOffset]] ==
Input - SourceOffset &&
"Previous placement doesn't match!");
}
// Note that this correctly re-maps both when we do a swap and when
// we observe the other side of the swap above. We rely on that to
// avoid swapping the members of the input list directly.
Input = SourceHalfMask[Input - SourceOffset] + SourceOffset;
}
// Map the input's dword into the correct half.
if (PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] < 0)
PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] = Input / 2;
else
assert(PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] ==
Input / 2 &&
"Previous placement doesn't match!");
}
// And just directly shift any other-half mask elements to be same-half
// as we will have mirrored the dword containing the element into the
// same position within that half.
for (int &M : HalfMask)
if (M >= SourceOffset && M < SourceOffset + 4) {
M = M - SourceOffset + DestOffset;
assert(M >= 0 && "This should never wrap below zero!");
}
return;
}
// Ensure we have the input in a viable dword of its current half. This
// is particularly tricky because the original position may be clobbered
// by inputs being moved and *staying* in that half.
if (IncomingInputs.size() == 1) {
if (isWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
int InputFixed = find(SourceHalfMask, -1) - std::begin(SourceHalfMask) +
SourceOffset;
SourceHalfMask[InputFixed - SourceOffset] =
IncomingInputs[0] - SourceOffset;
std::replace(HalfMask.begin(), HalfMask.end(), IncomingInputs[0],
InputFixed);
IncomingInputs[0] = InputFixed;
}
} else if (IncomingInputs.size() == 2) {
if (IncomingInputs[0] / 2 != IncomingInputs[1] / 2 ||
isDWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
// We have two non-adjacent or clobbered inputs we need to extract from
// the source half. To do this, we need to map them into some adjacent
// dword slot in the source mask.
int InputsFixed[2] = {IncomingInputs[0] - SourceOffset,
IncomingInputs[1] - SourceOffset};
// If there is a free slot in the source half mask adjacent to one of
// the inputs, place the other input in it. We use (Index XOR 1) to
// compute an adjacent index.
if (!isWordClobbered(SourceHalfMask, InputsFixed[0]) &&
SourceHalfMask[InputsFixed[0] ^ 1] < 0) {
SourceHalfMask[InputsFixed[0]] = InputsFixed[0];
SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
InputsFixed[1] = InputsFixed[0] ^ 1;
} else if (!isWordClobbered(SourceHalfMask, InputsFixed[1]) &&
SourceHalfMask[InputsFixed[1] ^ 1] < 0) {
SourceHalfMask[InputsFixed[1]] = InputsFixed[1];
SourceHalfMask[InputsFixed[1] ^ 1] = InputsFixed[0];
InputsFixed[0] = InputsFixed[1] ^ 1;
} else if (SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] < 0 &&
SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] < 0) {
// The two inputs are in the same DWord but it is clobbered and the
// adjacent DWord isn't used at all. Move both inputs to the free
// slot.
SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] = InputsFixed[0];
SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] = InputsFixed[1];
InputsFixed[0] = 2 * ((InputsFixed[0] / 2) ^ 1);
InputsFixed[1] = 2 * ((InputsFixed[0] / 2) ^ 1) + 1;
} else {
// The only way we hit this point is if there is no clobbering
// (because there are no off-half inputs to this half) and there is no
// free slot adjacent to one of the inputs. In this case, we have to
// swap an input with a non-input.
for (int i = 0; i < 4; ++i)
assert((SourceHalfMask[i] < 0 || SourceHalfMask[i] == i) &&
"We can't handle any clobbers here!");
assert(InputsFixed[1] != (InputsFixed[0] ^ 1) &&
"Cannot have adjacent inputs here!");
SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
SourceHalfMask[InputsFixed[1]] = InputsFixed[0] ^ 1;
// We also have to update the final source mask in this case because
// it may need to undo the above swap.
for (int &M : FinalSourceHalfMask)
if (M == (InputsFixed[0] ^ 1) + SourceOffset)
M = InputsFixed[1] + SourceOffset;
else if (M == InputsFixed[1] + SourceOffset)
M = (InputsFixed[0] ^ 1) + SourceOffset;
InputsFixed[1] = InputsFixed[0] ^ 1;
}
// Point everything at the fixed inputs.
for (int &M : HalfMask)
if (M == IncomingInputs[0])
M = InputsFixed[0] + SourceOffset;
else if (M == IncomingInputs[1])
M = InputsFixed[1] + SourceOffset;
IncomingInputs[0] = InputsFixed[0] + SourceOffset;
IncomingInputs[1] = InputsFixed[1] + SourceOffset;
}
} else {
llvm_unreachable("Unhandled input size!");
}
// Now hoist the DWord down to the right half.
int FreeDWord = (PSHUFDMask[DestOffset / 2] < 0 ? 0 : 1) + DestOffset / 2;
assert(PSHUFDMask[FreeDWord] < 0 && "DWord not free");
PSHUFDMask[FreeDWord] = IncomingInputs[0] / 2;
for (int &M : HalfMask)
for (int Input : IncomingInputs)
if (M == Input)
M = FreeDWord * 2 + Input % 2;
};
moveInputsToRightHalf(HToLInputs, LToLInputs, PSHUFHMask, LoMask, HiMask,
/*SourceOffset*/ 4, /*DestOffset*/ 0);
moveInputsToRightHalf(LToHInputs, HToHInputs, PSHUFLMask, HiMask, LoMask,
/*SourceOffset*/ 0, /*DestOffset*/ 4);
// Now enact all the shuffles we've computed to move the inputs into their
// target half.
if (!isNoopShuffleMask(PSHUFLMask))
V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
getV4X86ShuffleImm8ForMask(PSHUFLMask, DL, DAG));
if (!isNoopShuffleMask(PSHUFHMask))
V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
getV4X86ShuffleImm8ForMask(PSHUFHMask, DL, DAG));
if (!isNoopShuffleMask(PSHUFDMask))
V = DAG.getBitcast(
VT,
DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V),
getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
// At this point, each half should contain all its inputs, and we can then
// just shuffle them into their final position.
assert(count_if(LoMask, [](int M) { return M >= 4; }) == 0 &&
"Failed to lift all the high half inputs to the low mask!");
assert(count_if(HiMask, [](int M) { return M >= 0 && M < 4; }) == 0 &&
"Failed to lift all the low half inputs to the high mask!");
// Do a half shuffle for the low mask.
if (!isNoopShuffleMask(LoMask))
V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
getV4X86ShuffleImm8ForMask(LoMask, DL, DAG));
// Do a half shuffle with the high mask after shifting its values down.
for (int &M : HiMask)
if (M >= 0)
M -= 4;
if (!isNoopShuffleMask(HiMask))
V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
getV4X86ShuffleImm8ForMask(HiMask, DL, DAG));
return V;
}
/// Helper to form a PSHUFB-based shuffle+blend, opportunistically avoiding the
/// blend if only one input is used.
static SDValue lowerVectorShuffleAsBlendOfPSHUFBs(
const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
const APInt &Zeroable, SelectionDAG &DAG, bool &V1InUse,
bool &V2InUse) {
SDValue V1Mask[16];
SDValue V2Mask[16];
V1InUse = false;
V2InUse = false;
int Size = Mask.size();
int Scale = 16 / Size;
for (int i = 0; i < 16; ++i) {
if (Mask[i / Scale] < 0) {
V1Mask[i] = V2Mask[i] = DAG.getUNDEF(MVT::i8);
} else {
const int ZeroMask = 0x80;
int V1Idx = Mask[i / Scale] < Size ? Mask[i / Scale] * Scale + i % Scale
: ZeroMask;
int V2Idx = Mask[i / Scale] < Size
? ZeroMask
: (Mask[i / Scale] - Size) * Scale + i % Scale;
if (Zeroable[i / Scale])
V1Idx = V2Idx = ZeroMask;
V1Mask[i] = DAG.getConstant(V1Idx, DL, MVT::i8);
V2Mask[i] = DAG.getConstant(V2Idx, DL, MVT::i8);
V1InUse |= (ZeroMask != V1Idx);
V2InUse |= (ZeroMask != V2Idx);
}
}
if (V1InUse)
V1 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8,
DAG.getBitcast(MVT::v16i8, V1),
DAG.getBuildVector(MVT::v16i8, DL, V1Mask));
if (V2InUse)
V2 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8,
DAG.getBitcast(MVT::v16i8, V2),
DAG.getBuildVector(MVT::v16i8, DL, V2Mask));
// If we need shuffled inputs from both, blend the two.
SDValue V;
if (V1InUse && V2InUse)
V = DAG.getNode(ISD::OR, DL, MVT::v16i8, V1, V2);
else
V = V1InUse ? V1 : V2;
// Cast the result back to the correct type.
return DAG.getBitcast(VT, V);
}
/// Generic lowering of 8-lane i16 shuffles.
///
/// This handles both single-input shuffles and combined shuffle/blends with
/// two inputs. The single input shuffles are immediately delegated to
/// a dedicated lowering routine.
///
/// The blends are lowered in one of three fundamental ways. If there are few
/// enough inputs, it delegates to a basic UNPCK-based strategy. If the shuffle
/// of the input is significantly cheaper when lowered as an interleaving of
/// the two inputs, try to interleave them. Otherwise, blend the low and high
/// halves of the inputs separately (making them have relatively few inputs)
/// and then concatenate them.
static SDValue lowerV8I16VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable,
SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
// Whenever we can lower this as a zext, that instruction is strictly faster
// than any alternative.
if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
DL, MVT::v8i16, V1, V2, Mask, Zeroable, Subtarget, DAG))
return ZExt;
int NumV2Inputs = count_if(Mask, [](int M) { return M >= 8; });
if (NumV2Inputs == 0) {
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG))
return Broadcast;
// Try to use shift instructions.
if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V1, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG))
return V;
// Use dedicated pack instructions for masks that match their pattern.
if (SDValue V = lowerVectorShuffleWithPACK(DL, MVT::v8i16, Mask, V1, V2,
DAG, Subtarget))
return V;
// Try to use byte rotation instructions.
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v8i16, V1, V1,
Mask, Subtarget, DAG))
return Rotate;
// Make a copy of the mask so it can be modified.
SmallVector<int, 8> MutableMask(Mask.begin(), Mask.end());
return lowerV8I16GeneralSingleInputVectorShuffle(DL, MVT::v8i16, V1,
MutableMask, Subtarget,
DAG);
}
assert(llvm::any_of(Mask, [](int M) { return M >= 0 && M < 8; }) &&
"All single-input shuffles should be canonicalized to be V1-input "
"shuffles.");
// Try to use shift instructions.
if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// See if we can use SSE4A Extraction / Insertion.
if (Subtarget.hasSSE4A())
if (SDValue V = lowerVectorShuffleWithSSE4A(DL, MVT::v8i16, V1, V2, Mask,
Zeroable, DAG))
return V;
// There are special ways we can lower some single-element blends.
if (NumV2Inputs == 1)
if (SDValue V = lowerVectorShuffleAsElementInsertion(
DL, MVT::v8i16, V1, V2, Mask, Zeroable, Subtarget, DAG))
return V;
// We have different paths for blend lowering, but they all must use the
// *exact* same predicate.
bool IsBlendSupported = Subtarget.hasSSE41();
if (IsBlendSupported)
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i16, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, MVT::v8i16, V1, V2, Mask,
Zeroable, DAG))
return Masked;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG))
return V;
// Use dedicated pack instructions for masks that match their pattern.
if (SDValue V = lowerVectorShuffleWithPACK(DL, MVT::v8i16, Mask, V1, V2, DAG,
Subtarget))
return V;
// Try to use byte rotation instructions.
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG))
return Rotate;
if (SDValue BitBlend =
lowerVectorShuffleAsBitBlend(DL, MVT::v8i16, V1, V2, Mask, DAG))
return BitBlend;
// Try to lower by permuting the inputs into an unpack instruction.
if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(DL, MVT::v8i16, V1,
V2, Mask, DAG))
return Unpack;
// If we can't directly blend but can use PSHUFB, that will be better as it
// can both shuffle and set up the inefficient blend.
if (!IsBlendSupported && Subtarget.hasSSSE3()) {
bool V1InUse, V2InUse;
return lowerVectorShuffleAsBlendOfPSHUFBs(DL, MVT::v8i16, V1, V2, Mask,
Zeroable, DAG, V1InUse, V2InUse);
}
// We can always bit-blend if we have to so the fallback strategy is to
// decompose into single-input permutes and blends.
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i16, V1, V2,
Mask, DAG);
}
/// Check whether a compaction lowering can be done by dropping even
/// elements and compute how many times even elements must be dropped.
///
/// This handles shuffles which take every Nth element where N is a power of
/// two. Example shuffle masks:
///
/// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 0, 2, 4, 6, 8, 10, 12, 14
/// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30
/// N = 2: 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12
/// N = 2: 0, 4, 8, 12, 16, 20, 24, 28, 0, 4, 8, 12, 16, 20, 24, 28
/// N = 3: 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8
/// N = 3: 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24
///
/// Any of these lanes can of course be undef.
///
/// This routine only supports N <= 3.
/// FIXME: Evaluate whether either AVX or AVX-512 have any opportunities here
/// for larger N.
///
/// \returns N above, or the number of times even elements must be dropped if
/// there is such a number. Otherwise returns zero.
static int canLowerByDroppingEvenElements(ArrayRef<int> Mask,
bool IsSingleInput) {
// The modulus for the shuffle vector entries is based on whether this is
// a single input or not.
int ShuffleModulus = Mask.size() * (IsSingleInput ? 1 : 2);
assert(isPowerOf2_32((uint32_t)ShuffleModulus) &&
"We should only be called with masks with a power-of-2 size!");
uint64_t ModMask = (uint64_t)ShuffleModulus - 1;
// We track whether the input is viable for all power-of-2 strides 2^1, 2^2,
// and 2^3 simultaneously. This is because we may have ambiguity with
// partially undef inputs.
bool ViableForN[3] = {true, true, true};
for (int i = 0, e = Mask.size(); i < e; ++i) {
// Ignore undef lanes, we'll optimistically collapse them to the pattern we
// want.
if (Mask[i] < 0)
continue;
bool IsAnyViable = false;
for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
if (ViableForN[j]) {
uint64_t N = j + 1;
// The shuffle mask must be equal to (i * 2^N) % M.
if ((uint64_t)Mask[i] == (((uint64_t)i << N) & ModMask))
IsAnyViable = true;
else
ViableForN[j] = false;
}
// Early exit if we exhaust the possible powers of two.
if (!IsAnyViable)
break;
}
for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
if (ViableForN[j])
return j + 1;
// Return 0 as there is no viable power of two.
return 0;
}
static SDValue lowerVectorShuffleWithPERMV(const SDLoc &DL, MVT VT,
ArrayRef<int> Mask, SDValue V1,
SDValue V2, SelectionDAG &DAG) {
MVT MaskEltVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
MVT MaskVecVT = MVT::getVectorVT(MaskEltVT, VT.getVectorNumElements());
SDValue MaskNode = getConstVector(Mask, MaskVecVT, DAG, DL, true);
if (V2.isUndef())
return DAG.getNode(X86ISD::VPERMV, DL, VT, MaskNode, V1);
return DAG.getNode(X86ISD::VPERMV3, DL, VT, V1, MaskNode, V2);
}
/// Generic lowering of v16i8 shuffles.
///
/// This is a hybrid strategy to lower v16i8 vectors. It first attempts to
/// detect any complexity reducing interleaving. If that doesn't help, it uses
/// UNPCK to spread the i8 elements across two i16-element vectors, and uses
/// the existing lowering for v8i16 blends on each half, finally PACK-ing them
/// back together.
static SDValue lowerV16I8VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable,
SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
// Try to use shift instructions.
if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v16i8, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// Try to use byte rotation instructions.
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG))
return Rotate;
// Use dedicated pack instructions for masks that match their pattern.
if (SDValue V = lowerVectorShuffleWithPACK(DL, MVT::v16i8, Mask, V1, V2, DAG,
Subtarget))
return V;
// Try to use a zext lowering.
if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
DL, MVT::v16i8, V1, V2, Mask, Zeroable, Subtarget, DAG))
return ZExt;
// See if we can use SSE4A Extraction / Insertion.
if (Subtarget.hasSSE4A())
if (SDValue V = lowerVectorShuffleWithSSE4A(DL, MVT::v16i8, V1, V2, Mask,
Zeroable, DAG))
return V;
int NumV2Elements = count_if(Mask, [](int M) { return M >= 16; });
// For single-input shuffles, there are some nicer lowering tricks we can use.
if (NumV2Elements == 0) {
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG))
return Broadcast;
// Check whether we can widen this to an i16 shuffle by duplicating bytes.
// Notably, this handles splat and partial-splat shuffles more efficiently.
// However, it only makes sense if the pre-duplication shuffle simplifies
// things significantly. Currently, this means we need to be able to
// express the pre-duplication shuffle as an i16 shuffle.
//
// FIXME: We should check for other patterns which can be widened into an
// i16 shuffle as well.
auto canWidenViaDuplication = [](ArrayRef<int> Mask) {
for (int i = 0; i < 16; i += 2)
if (Mask[i] >= 0 && Mask[i + 1] >= 0 && Mask[i] != Mask[i + 1])
return false;
return true;
};
auto tryToWidenViaDuplication = [&]() -> SDValue {
if (!canWidenViaDuplication(Mask))
return SDValue();
SmallVector<int, 4> LoInputs;
copy_if(Mask, std::back_inserter(LoInputs),
[](int M) { return M >= 0 && M < 8; });
array_pod_sort(LoInputs.begin(), LoInputs.end());
LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()),
LoInputs.end());
SmallVector<int, 4> HiInputs;
copy_if(Mask, std::back_inserter(HiInputs), [](int M) { return M >= 8; });
array_pod_sort(HiInputs.begin(), HiInputs.end());
HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()),
HiInputs.end());
bool TargetLo = LoInputs.size() >= HiInputs.size();
ArrayRef<int> InPlaceInputs = TargetLo ? LoInputs : HiInputs;
ArrayRef<int> MovingInputs = TargetLo ? HiInputs : LoInputs;
int PreDupI16Shuffle[] = {-1, -1, -1, -1, -1, -1, -1, -1};
SmallDenseMap<int, int, 8> LaneMap;
for (int I : InPlaceInputs) {
PreDupI16Shuffle[I/2] = I/2;
LaneMap[I] = I;
}
int j = TargetLo ? 0 : 4, je = j + 4;
for (int i = 0, ie = MovingInputs.size(); i < ie; ++i) {
// Check if j is already a shuffle of this input. This happens when
// there are two adjacent bytes after we move the low one.
if (PreDupI16Shuffle[j] != MovingInputs[i] / 2) {
// If we haven't yet mapped the input, search for a slot into which
// we can map it.
while (j < je && PreDupI16Shuffle[j] >= 0)
++j;
if (j == je)
// We can't place the inputs into a single half with a simple i16 shuffle, so bail.
return SDValue();
// Map this input with the i16 shuffle.
PreDupI16Shuffle[j] = MovingInputs[i] / 2;
}
// Update the lane map based on the mapping we ended up with.
LaneMap[MovingInputs[i]] = 2 * j + MovingInputs[i] % 2;
}
V1 = DAG.getBitcast(
MVT::v16i8,
DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1),
DAG.getUNDEF(MVT::v8i16), PreDupI16Shuffle));
// Unpack the bytes to form the i16s that will be shuffled into place.
V1 = DAG.getNode(TargetLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
MVT::v16i8, V1, V1);
int PostDupI16Shuffle[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
for (int i = 0; i < 16; ++i)
if (Mask[i] >= 0) {
int MappedMask = LaneMap[Mask[i]] - (TargetLo ? 0 : 8);
assert(MappedMask < 8 && "Invalid v8 shuffle mask!");
if (PostDupI16Shuffle[i / 2] < 0)
PostDupI16Shuffle[i / 2] = MappedMask;
else
assert(PostDupI16Shuffle[i / 2] == MappedMask &&
"Conflicting entries in the original shuffle!");
}
return DAG.getBitcast(
MVT::v16i8,
DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1),
DAG.getUNDEF(MVT::v8i16), PostDupI16Shuffle));
};
if (SDValue V = tryToWidenViaDuplication())
return V;
}
if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, MVT::v16i8, V1, V2, Mask,
Zeroable, DAG))
return Masked;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v16i8, Mask, V1, V2, DAG))
return V;
// Check for SSSE3 which lets us lower all v16i8 shuffles much more directly
// with PSHUFB. It is important to do this before we attempt to generate any
// blends but after all of the single-input lowerings. If the single input
// lowerings can find an instruction sequence that is faster than a PSHUFB, we
// want to preserve that and we can DAG combine any longer sequences into
// a PSHUFB in the end. But once we start blending from multiple inputs,
// the complexity of DAG combining bad patterns back into PSHUFB is too high,
// and there are *very* few patterns that would actually be faster than the
// PSHUFB approach because of its ability to zero lanes.
//
// FIXME: The only exceptions to the above are blends which are exact
// interleavings with direct instructions supporting them. We currently don't
// handle those well here.
if (Subtarget.hasSSSE3()) {
bool V1InUse = false;
bool V2InUse = false;
SDValue PSHUFB = lowerVectorShuffleAsBlendOfPSHUFBs(
DL, MVT::v16i8, V1, V2, Mask, Zeroable, DAG, V1InUse, V2InUse);
// If both V1 and V2 are in use and we can use a direct blend or an unpack,
// do so. This avoids using them to handle blends-with-zero which is
// important as a single pshufb is significantly faster for that.
if (V1InUse && V2InUse) {
if (Subtarget.hasSSE41())
if (SDValue Blend = lowerVectorShuffleAsBlend(
DL, MVT::v16i8, V1, V2, Mask, Zeroable, Subtarget, DAG))
return Blend;
// We can use an unpack to do the blending rather than an or in some
// cases. Even though the or may be (very minorly) more efficient, we
// preference this lowering because there are common cases where part of
// the complexity of the shuffles goes away when we do the final blend as
// an unpack.
// FIXME: It might be worth trying to detect if the unpack-feeding
// shuffles will both be pshufb, in which case we shouldn't bother with
// this.
if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(
DL, MVT::v16i8, V1, V2, Mask, DAG))
return Unpack;
// If we have VBMI we can use one VPERM instead of multiple PSHUFBs.
if (Subtarget.hasVBMI() && Subtarget.hasVLX())
return lowerVectorShuffleWithPERMV(DL, MVT::v16i8, Mask, V1, V2, DAG);
}
return PSHUFB;
}
// There are special ways we can lower some single-element blends.
if (NumV2Elements == 1)
if (SDValue V = lowerVectorShuffleAsElementInsertion(
DL, MVT::v16i8, V1, V2, Mask, Zeroable, Subtarget, DAG))
return V;
if (SDValue BitBlend =
lowerVectorShuffleAsBitBlend(DL, MVT::v16i8, V1, V2, Mask, DAG))
return BitBlend;
// Check whether a compaction lowering can be done. This handles shuffles
// which take every Nth element for some even N. See the helper function for
// details.
//
// We special case these as they can be particularly efficiently handled with
// the PACKUSB instruction on x86 and they show up in common patterns of
// rearranging bytes to truncate wide elements.
bool IsSingleInput = V2.isUndef();
if (int NumEvenDrops = canLowerByDroppingEvenElements(Mask, IsSingleInput)) {
// NumEvenDrops is the power of two stride of the elements. Another way of
// thinking about it is that we need to drop the even elements this many
// times to get the original input.
// First we need to zero all the dropped bytes.
assert(NumEvenDrops <= 3 &&
"No support for dropping even elements more than 3 times.");
// We use the mask type to pick which bytes are preserved based on how many
// elements are dropped.
MVT MaskVTs[] = { MVT::v8i16, MVT::v4i32, MVT::v2i64 };
SDValue ByteClearMask = DAG.getBitcast(
MVT::v16i8, DAG.getConstant(0xFF, DL, MaskVTs[NumEvenDrops - 1]));
V1 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V1, ByteClearMask);
if (!IsSingleInput)
V2 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V2, ByteClearMask);
// Now pack things back together.
V1 = DAG.getBitcast(MVT::v8i16, V1);
V2 = IsSingleInput ? V1 : DAG.getBitcast(MVT::v8i16, V2);
SDValue Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, V1, V2);
for (int i = 1; i < NumEvenDrops; ++i) {
Result = DAG.getBitcast(MVT::v8i16, Result);
Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, Result, Result);
}
return Result;
}
// Handle multi-input cases by blending single-input shuffles.
if (NumV2Elements > 0)
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v16i8, V1, V2,
Mask, DAG);
// The fallback path for single-input shuffles widens this into two v8i16
// vectors with unpacks, shuffles those, and then pulls them back together
// with a pack.
SDValue V = V1;
std::array<int, 8> LoBlendMask = {{-1, -1, -1, -1, -1, -1, -1, -1}};
std::array<int, 8> HiBlendMask = {{-1, -1, -1, -1, -1, -1, -1, -1}};
for (int i = 0; i < 16; ++i)
if (Mask[i] >= 0)
(i < 8 ? LoBlendMask[i] : HiBlendMask[i % 8]) = Mask[i];
SDValue VLoHalf, VHiHalf;
// Check if any of the odd lanes in the v16i8 are used. If not, we can mask
// them out and avoid using UNPCK{L,H} to extract the elements of V as
// i16s.
if (none_of(LoBlendMask, [](int M) { return M >= 0 && M % 2 == 1; }) &&
none_of(HiBlendMask, [](int M) { return M >= 0 && M % 2 == 1; })) {
// Use a mask to drop the high bytes.
VLoHalf = DAG.getBitcast(MVT::v8i16, V);
VLoHalf = DAG.getNode(ISD::AND, DL, MVT::v8i16, VLoHalf,
DAG.getConstant(0x00FF, DL, MVT::v8i16));
// This will be a single vector shuffle instead of a blend so nuke VHiHalf.
VHiHalf = DAG.getUNDEF(MVT::v8i16);
// Squash the masks to point directly into VLoHalf.
for (int &M : LoBlendMask)
if (M >= 0)
M /= 2;
for (int &M : HiBlendMask)
if (M >= 0)
M /= 2;
} else {
// Otherwise just unpack the low half of V into VLoHalf and the high half into
// VHiHalf so that we can blend them as i16s.
SDValue Zero = getZeroVector(MVT::v16i8, Subtarget, DAG, DL);
VLoHalf = DAG.getBitcast(
MVT::v8i16, DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero));
VHiHalf = DAG.getBitcast(
MVT::v8i16, DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero));
}
SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, LoBlendMask);
SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, HiBlendMask);
return DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, LoV, HiV);
}
/// Dispatching routine to lower various 128-bit x86 vector shuffles.
///
/// This routine breaks down the specific type of 128-bit shuffle and
/// dispatches to the lowering routines accordingly.
static SDValue lower128BitVectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
MVT VT, SDValue V1, SDValue V2,
const APInt &Zeroable,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
switch (VT.SimpleTy) {
case MVT::v2i64:
return lowerV2I64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v2f64:
return lowerV2F64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v4i32:
return lowerV4I32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v4f32:
return lowerV4F32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v8i16:
return lowerV8I16VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v16i8:
return lowerV16I8VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
default:
llvm_unreachable("Unimplemented!");
}
}
/// Generic routine to split vector shuffle into half-sized shuffles.
///
/// This routine just extracts two subvectors, shuffles them independently, and
/// then concatenates them back together. This should work effectively with all
/// AVX vector shuffle types.
static SDValue splitAndLowerVectorShuffle(const SDLoc &DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
SelectionDAG &DAG) {
assert(VT.getSizeInBits() >= 256 &&
"Only for 256-bit or wider vector shuffles!");
assert(V1.getSimpleValueType() == VT && "Bad operand type!");
assert(V2.getSimpleValueType() == VT && "Bad operand type!");
ArrayRef<int> LoMask = Mask.slice(0, Mask.size() / 2);
ArrayRef<int> HiMask = Mask.slice(Mask.size() / 2);
int NumElements = VT.getVectorNumElements();
int SplitNumElements = NumElements / 2;
MVT ScalarVT = VT.getVectorElementType();
MVT SplitVT = MVT::getVectorVT(ScalarVT, NumElements / 2);
// Rather than splitting build-vectors, just build two narrower build
// vectors. This helps shuffling with splats and zeros.
auto SplitVector = [&](SDValue V) {
V = peekThroughBitcasts(V);
MVT OrigVT = V.getSimpleValueType();
int OrigNumElements = OrigVT.getVectorNumElements();
int OrigSplitNumElements = OrigNumElements / 2;
MVT OrigScalarVT = OrigVT.getVectorElementType();
MVT OrigSplitVT = MVT::getVectorVT(OrigScalarVT, OrigNumElements / 2);
SDValue LoV, HiV;
auto *BV = dyn_cast<BuildVectorSDNode>(V);
if (!BV) {
LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V,
DAG.getIntPtrConstant(0, DL));
HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V,
DAG.getIntPtrConstant(OrigSplitNumElements, DL));
} else {
SmallVector<SDValue, 16> LoOps, HiOps;
for (int i = 0; i < OrigSplitNumElements; ++i) {
LoOps.push_back(BV->getOperand(i));
HiOps.push_back(BV->getOperand(i + OrigSplitNumElements));
}
LoV = DAG.getBuildVector(OrigSplitVT, DL, LoOps);
HiV = DAG.getBuildVector(OrigSplitVT, DL, HiOps);
}
return std::make_pair(DAG.getBitcast(SplitVT, LoV),
DAG.getBitcast(SplitVT, HiV));
};
SDValue LoV1, HiV1, LoV2, HiV2;
std::tie(LoV1, HiV1) = SplitVector(V1);
std::tie(LoV2, HiV2) = SplitVector(V2);
// Now create two 4-way blends of these half-width vectors.
auto HalfBlend = [&](ArrayRef<int> HalfMask) {
bool UseLoV1 = false, UseHiV1 = false, UseLoV2 = false, UseHiV2 = false;
SmallVector<int, 32> V1BlendMask((unsigned)SplitNumElements, -1);
SmallVector<int, 32> V2BlendMask((unsigned)SplitNumElements, -1);
SmallVector<int, 32> BlendMask((unsigned)SplitNumElements, -1);
for (int i = 0; i < SplitNumElements; ++i) {
int M = HalfMask[i];
if (M >= NumElements) {
if (M >= NumElements + SplitNumElements)
UseHiV2 = true;
else
UseLoV2 = true;
V2BlendMask[i] = M - NumElements;
BlendMask[i] = SplitNumElements + i;
} else if (M >= 0) {
if (M >= SplitNumElements)
UseHiV1 = true;
else
UseLoV1 = true;
V1BlendMask[i] = M;
BlendMask[i] = i;
}
}
// Because the lowering happens after all combining takes place, we need to
// manually combine these blend masks as much as possible so that we create
// a minimal number of high-level vector shuffle nodes.
// First try just blending the halves of V1 or V2.
if (!UseLoV1 && !UseHiV1 && !UseLoV2 && !UseHiV2)
return DAG.getUNDEF(SplitVT);
if (!UseLoV2 && !UseHiV2)
return DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
if (!UseLoV1 && !UseHiV1)
return DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
SDValue V1Blend, V2Blend;
if (UseLoV1 && UseHiV1) {
V1Blend =
DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
} else {
// We only use half of V1 so map the usage down into the final blend mask.
V1Blend = UseLoV1 ? LoV1 : HiV1;
for (int i = 0; i < SplitNumElements; ++i)
if (BlendMask[i] >= 0 && BlendMask[i] < SplitNumElements)
BlendMask[i] = V1BlendMask[i] - (UseLoV1 ? 0 : SplitNumElements);
}
if (UseLoV2 && UseHiV2) {
V2Blend =
DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
} else {
// We only use half of V2 so map the usage down into the final blend mask.
V2Blend = UseLoV2 ? LoV2 : HiV2;
for (int i = 0; i < SplitNumElements; ++i)
if (BlendMask[i] >= SplitNumElements)
BlendMask[i] = V2BlendMask[i] + (UseLoV2 ? SplitNumElements : 0);
}
return DAG.getVectorShuffle(SplitVT, DL, V1Blend, V2Blend, BlendMask);
};
SDValue Lo = HalfBlend(LoMask);
SDValue Hi = HalfBlend(HiMask);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
}
/// Either split a vector in halves or decompose the shuffles and the
/// blend.
///
/// This is provided as a good fallback for many lowerings of non-single-input
/// shuffles with more than one 128-bit lane. In those cases, we want to select
/// between splitting the shuffle into 128-bit components and stitching those
/// back together vs. extracting the single-input shuffles and blending those
/// results.
static SDValue lowerVectorShuffleAsSplitOrBlend(const SDLoc &DL, MVT VT,
SDValue V1, SDValue V2,
ArrayRef<int> Mask,
SelectionDAG &DAG) {
assert(!V2.isUndef() && "This routine must not be used to lower single-input "
"shuffles as it could then recurse on itself.");
int Size = Mask.size();
// If this can be modeled as a broadcast of two elements followed by a blend,
// prefer that lowering. This is especially important because broadcasts can
// often fold with memory operands.
auto DoBothBroadcast = [&] {
int V1BroadcastIdx = -1, V2BroadcastIdx = -1;
for (int M : Mask)
if (M >= Size) {
if (V2BroadcastIdx < 0)
V2BroadcastIdx = M - Size;
else if (M - Size != V2BroadcastIdx)
return false;
} else if (M >= 0) {
if (V1BroadcastIdx < 0)
V1BroadcastIdx = M;
else if (M != V1BroadcastIdx)
return false;
}
return true;
};
if (DoBothBroadcast())
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask,
DAG);
// If the inputs all stem from a single 128-bit lane of each input, then we
// split them rather than blending because the split will decompose to
// unusually few instructions.
int LaneCount = VT.getSizeInBits() / 128;
int LaneSize = Size / LaneCount;
SmallBitVector LaneInputs[2];
LaneInputs[0].resize(LaneCount, false);
LaneInputs[1].resize(LaneCount, false);
for (int i = 0; i < Size; ++i)
if (Mask[i] >= 0)
LaneInputs[Mask[i] / Size][(Mask[i] % Size) / LaneSize] = true;
if (LaneInputs[0].count() <= 1 && LaneInputs[1].count() <= 1)
return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
// Otherwise, just fall back to decomposed shuffles and a blend. This requires
// that the decomposed single-input shuffles don't end up here.
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG);
}
/// Lower a vector shuffle crossing multiple 128-bit lanes as
/// a permutation and blend of those lanes.
///
/// This essentially blends the out-of-lane inputs to each lane into the lane
/// from a permuted copy of the vector. This lowering strategy results in four
/// instructions in the worst case for a single-input cross lane shuffle which
/// is lower than any other fully general cross-lane shuffle strategy I'm aware
/// of. Special cases for each particular shuffle pattern should be handled
/// prior to trying this lowering.
static SDValue lowerVectorShuffleAsLanePermuteAndBlend(const SDLoc &DL, MVT VT,
SDValue V1, SDValue V2,
ArrayRef<int> Mask,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// FIXME: This should probably be generalized for 512-bit vectors as well.
assert(VT.is256BitVector() && "Only for 256-bit vector shuffles!");
int Size = Mask.size();
int LaneSize = Size / 2;
// If there are only inputs from one 128-bit lane, splitting will in fact be
// less expensive. The flags track whether the given lane contains an element
// that crosses to another lane.
if (!Subtarget.hasAVX2()) {
bool LaneCrossing[2] = {false, false};
for (int i = 0; i < Size; ++i)
if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
LaneCrossing[(Mask[i] % Size) / LaneSize] = true;
if (!LaneCrossing[0] || !LaneCrossing[1])
return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
} else {
bool LaneUsed[2] = {false, false};
for (int i = 0; i < Size; ++i)
if (Mask[i] >= 0)
LaneUsed[(Mask[i] / LaneSize)] = true;
if (!LaneUsed[0] || !LaneUsed[1])
return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
}
assert(V2.isUndef() &&
"This last part of this routine only works on single input shuffles");
SmallVector<int, 32> FlippedBlendMask(Size);
for (int i = 0; i < Size; ++i)
FlippedBlendMask[i] =
Mask[i] < 0 ? -1 : (((Mask[i] % Size) / LaneSize == i / LaneSize)
? Mask[i]
: Mask[i] % LaneSize +
(i / LaneSize) * LaneSize + Size);
// Flip the vector, and blend the results which should now be in-lane.
MVT PVT = VT.isFloatingPoint() ? MVT::v4f64 : MVT::v4i64;
SDValue Flipped = DAG.getBitcast(PVT, V1);
Flipped = DAG.getVectorShuffle(PVT, DL, Flipped, DAG.getUNDEF(PVT),
{ 2, 3, 0, 1 });
Flipped = DAG.getBitcast(VT, Flipped);
return DAG.getVectorShuffle(VT, DL, V1, Flipped, FlippedBlendMask);
}
/// Handle lowering 2-lane 128-bit shuffles.
static SDValue lowerV2X128VectorShuffle(const SDLoc &DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
const APInt &Zeroable,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
// With AVX2, use VPERMQ/VPERMPD for unary shuffles to allow memory folding.
if (Subtarget.hasAVX2() && V2.isUndef())
return SDValue();
SmallVector<int, 4> WidenedMask;
if (!canWidenShuffleElements(Mask, Zeroable, WidenedMask))
return SDValue();
bool IsLowZero = (Zeroable & 0x3) == 0x3;
bool IsHighZero = (Zeroable & 0xc) == 0xc;
// Try to use an insert into a zero vector.
if (WidenedMask[0] == 0 && IsHighZero) {
MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), 2);
SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
DAG.getIntPtrConstant(0, DL));
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
getZeroVector(VT, Subtarget, DAG, DL), LoV,
DAG.getIntPtrConstant(0, DL));
}
// TODO: If minimizing size and one of the inputs is a zero vector and the
// the zero vector has only one use, we could use a VPERM2X128 to save the
// instruction bytes needed to explicitly generate the zero vector.
// Blends are faster and handle all the non-lane-crossing cases.
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, VT, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// If either input operand is a zero vector, use VPERM2X128 because its mask
// allows us to replace the zero input with an implicit zero.
if (!IsLowZero && !IsHighZero) {
// Check for patterns which can be matched with a single insert of a 128-bit
// subvector.
bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1});
if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5})) {
// With AVX1, use vperm2f128 (below) to allow load folding. Otherwise,
// this will likely become vinsertf128 which can't fold a 256-bit memop.
if (!isa<LoadSDNode>(peekThroughBitcasts(V1))) {
MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), 2);
SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT,
OnlyUsesV1 ? V1 : V2,
DAG.getIntPtrConstant(0, DL));
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, V1, SubVec,
DAG.getIntPtrConstant(2, DL));
}
}
// Try to use SHUF128 if possible.
if (Subtarget.hasVLX()) {
if (WidenedMask[0] < 2 && WidenedMask[1] >= 2) {
unsigned PermMask = ((WidenedMask[0] % 2) << 0) |
((WidenedMask[1] % 2) << 1);
return DAG.getNode(X86ISD::SHUF128, DL, VT, V1, V2,
DAG.getConstant(PermMask, DL, MVT::i8));
}
}
}
// Otherwise form a 128-bit permutation. After accounting for undefs,
// convert the 64-bit shuffle mask selection values into 128-bit
// selection bits by dividing the indexes by 2 and shifting into positions
// defined by a vperm2*128 instruction's immediate control byte.
// The immediate permute control byte looks like this:
// [1:0] - select 128 bits from sources for low half of destination
// [2] - ignore
// [3] - zero low half of destination
// [5:4] - select 128 bits from sources for high half of destination
// [6] - ignore
// [7] - zero high half of destination
assert((WidenedMask[0] >= 0 || IsLowZero) &&
(WidenedMask[1] >= 0 || IsHighZero) && "Undef half?");
unsigned PermMask = 0;
PermMask |= IsLowZero ? 0x08 : (WidenedMask[0] << 0);
PermMask |= IsHighZero ? 0x80 : (WidenedMask[1] << 4);
// Check the immediate mask and replace unused sources with undef.
if ((PermMask & 0x0a) != 0x00 && (PermMask & 0xa0) != 0x00)
V1 = DAG.getUNDEF(VT);
if ((PermMask & 0x0a) != 0x02 && (PermMask & 0xa0) != 0x20)
V2 = DAG.getUNDEF(VT);
return DAG.getNode(X86ISD::VPERM2X128, DL, VT, V1, V2,
DAG.getConstant(PermMask, DL, MVT::i8));
}
/// Lower a vector shuffle by first fixing the 128-bit lanes and then
/// shuffling each lane.
///
/// This will only succeed when the result of fixing the 128-bit lanes results
/// in a single-input non-lane-crossing shuffle with a repeating shuffle mask in
/// each 128-bit lanes. This handles many cases where we can quickly blend away
/// the lane crosses early and then use simpler shuffles within each lane.
///
/// FIXME: It might be worthwhile at some point to support this without
/// requiring the 128-bit lane-relative shuffles to be repeating, but currently
/// in x86 only floating point has interesting non-repeating shuffles, and even
/// those are still *marginally* more expensive.
static SDValue lowerVectorShuffleByMerging128BitLanes(
const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
const X86Subtarget &Subtarget, SelectionDAG &DAG) {
assert(!V2.isUndef() && "This is only useful with multiple inputs.");
int Size = Mask.size();
int LaneSize = 128 / VT.getScalarSizeInBits();
int NumLanes = Size / LaneSize;
assert(NumLanes > 1 && "Only handles 256-bit and wider shuffles.");
// See if we can build a hypothetical 128-bit lane-fixing shuffle mask. Also
// check whether the in-128-bit lane shuffles share a repeating pattern.
SmallVector<int, 4> Lanes((unsigned)NumLanes, -1);
SmallVector<int, 4> InLaneMask((unsigned)LaneSize, -1);
for (int i = 0; i < Size; ++i) {
if (Mask[i] < 0)
continue;
int j = i / LaneSize;
if (Lanes[j] < 0) {
// First entry we've seen for this lane.
Lanes[j] = Mask[i] / LaneSize;
} else if (Lanes[j] != Mask[i] / LaneSize) {
// This doesn't match the lane selected previously!
return SDValue();
}
// Check that within each lane we have a consistent shuffle mask.
int k = i % LaneSize;
if (InLaneMask[k] < 0) {
InLaneMask[k] = Mask[i] % LaneSize;
} else if (InLaneMask[k] != Mask[i] % LaneSize) {
// This doesn't fit a repeating in-lane mask.
return SDValue();
}
}
// First shuffle the lanes into place.
MVT LaneVT = MVT::getVectorVT(VT.isFloatingPoint() ? MVT::f64 : MVT::i64,
VT.getSizeInBits() / 64);
SmallVector<int, 8> LaneMask((unsigned)NumLanes * 2, -1);
for (int i = 0; i < NumLanes; ++i)
if (Lanes[i] >= 0) {
LaneMask[2 * i + 0] = 2*Lanes[i] + 0;
LaneMask[2 * i + 1] = 2*Lanes[i] + 1;
}
V1 = DAG.getBitcast(LaneVT, V1);
V2 = DAG.getBitcast(LaneVT, V2);
SDValue LaneShuffle = DAG.getVectorShuffle(LaneVT, DL, V1, V2, LaneMask);
// Cast it back to the type we actually want.
LaneShuffle = DAG.getBitcast(VT, LaneShuffle);
// Now do a simple shuffle that isn't lane crossing.
SmallVector<int, 8> NewMask((unsigned)Size, -1);
for (int i = 0; i < Size; ++i)
if (Mask[i] >= 0)
NewMask[i] = (i / LaneSize) * LaneSize + Mask[i] % LaneSize;
assert(!is128BitLaneCrossingShuffleMask(VT, NewMask) &&
"Must not introduce lane crosses at this point!");
return DAG.getVectorShuffle(VT, DL, LaneShuffle, DAG.getUNDEF(VT), NewMask);
}
/// Lower shuffles where an entire half of a 256 or 512-bit vector is UNDEF.
/// This allows for fast cases such as subvector extraction/insertion
/// or shuffling smaller vector types which can lower more efficiently.
static SDValue lowerVectorShuffleWithUndefHalf(const SDLoc &DL, MVT VT,
SDValue V1, SDValue V2,
ArrayRef<int> Mask,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert((VT.is256BitVector() || VT.is512BitVector()) &&
"Expected 256-bit or 512-bit vector");
unsigned NumElts = VT.getVectorNumElements();
unsigned HalfNumElts = NumElts / 2;
MVT HalfVT = MVT::getVectorVT(VT.getVectorElementType(), HalfNumElts);
bool UndefLower = isUndefInRange(Mask, 0, HalfNumElts);
bool UndefUpper = isUndefInRange(Mask, HalfNumElts, HalfNumElts);
if (!UndefLower && !UndefUpper)
return SDValue();
// Upper half is undef and lower half is whole upper subvector.
// e.g. vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
if (UndefUpper &&
isSequentialOrUndefInRange(Mask, 0, HalfNumElts, HalfNumElts)) {
SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
DAG.getIntPtrConstant(HalfNumElts, DL));
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), Hi,
DAG.getIntPtrConstant(0, DL));
}
// Lower half is undef and upper half is whole lower subvector.
// e.g. vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
if (UndefLower &&
isSequentialOrUndefInRange(Mask, HalfNumElts, HalfNumElts, 0)) {
SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
DAG.getIntPtrConstant(0, DL));
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), Hi,
DAG.getIntPtrConstant(HalfNumElts, DL));
}
// If the shuffle only uses two of the four halves of the input operands,
// then extract them and perform the 'half' shuffle at half width.
// e.g. vector_shuffle <X, X, X, X, u, u, u, u> or <X, X, u, u>
int HalfIdx1 = -1, HalfIdx2 = -1;
SmallVector<int, 8> HalfMask(HalfNumElts);
unsigned Offset = UndefLower ? HalfNumElts : 0;
for (unsigned i = 0; i != HalfNumElts; ++i) {
int M = Mask[i + Offset];
if (M < 0) {
HalfMask[i] = M;
continue;
}
// Determine which of the 4 half vectors this element is from.
// i.e. 0 = Lower V1, 1 = Upper V1, 2 = Lower V2, 3 = Upper V2.
int HalfIdx = M / HalfNumElts;
// Determine the element index into its half vector source.
int HalfElt = M % HalfNumElts;
// We can shuffle with up to 2 half vectors, set the new 'half'
// shuffle mask accordingly.
if (HalfIdx1 < 0 || HalfIdx1 == HalfIdx) {
HalfMask[i] = HalfElt;
HalfIdx1 = HalfIdx;
continue;
}
if (HalfIdx2 < 0 || HalfIdx2 == HalfIdx) {
HalfMask[i] = HalfElt + HalfNumElts;
HalfIdx2 = HalfIdx;
continue;
}
// Too many half vectors referenced.
return SDValue();
}
assert(HalfMask.size() == HalfNumElts && "Unexpected shuffle mask length");
// Only shuffle the halves of the inputs when useful.
int NumLowerHalves =
(HalfIdx1 == 0 || HalfIdx1 == 2) + (HalfIdx2 == 0 || HalfIdx2 == 2);
int NumUpperHalves =
(HalfIdx1 == 1 || HalfIdx1 == 3) + (HalfIdx2 == 1 || HalfIdx2 == 3);
// uuuuXXXX - don't extract uppers just to insert again.
if (UndefLower && NumUpperHalves != 0)
return SDValue();
// XXXXuuuu - don't extract both uppers, instead shuffle and then extract.
if (UndefUpper && NumUpperHalves == 2)
return SDValue();
// AVX2 - XXXXuuuu - always extract lowers.
if (Subtarget.hasAVX2() && !(UndefUpper && NumUpperHalves == 0)) {
// AVX2 supports efficient immediate 64-bit element cross-lane shuffles.
if (VT == MVT::v4f64 || VT == MVT::v4i64)
return SDValue();
// AVX2 supports variable 32-bit element cross-lane shuffles.
if (VT == MVT::v8f32 || VT == MVT::v8i32) {
// XXXXuuuu - don't extract lowers and uppers.
if (UndefUpper && NumLowerHalves != 0 && NumUpperHalves != 0)
return SDValue();
}
}
// AVX512 - XXXXuuuu - always extract lowers.
if (VT.is512BitVector() && !(UndefUpper && NumUpperHalves == 0))
return SDValue();
auto GetHalfVector = [&](int HalfIdx) {
if (HalfIdx < 0)
return DAG.getUNDEF(HalfVT);
SDValue V = (HalfIdx < 2 ? V1 : V2);
HalfIdx = (HalfIdx % 2) * HalfNumElts;
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V,
DAG.getIntPtrConstant(HalfIdx, DL));
};
SDValue Half1 = GetHalfVector(HalfIdx1);
SDValue Half2 = GetHalfVector(HalfIdx2);
SDValue V = DAG.getVectorShuffle(HalfVT, DL, Half1, Half2, HalfMask);
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V,
DAG.getIntPtrConstant(Offset, DL));
}
/// Test whether the specified input (0 or 1) is in-place blended by the
/// given mask.
///
/// This returns true if the elements from a particular input are already in the
/// slot required by the given mask and require no permutation.
static bool isShuffleMaskInputInPlace(int Input, ArrayRef<int> Mask) {
assert((Input == 0 || Input == 1) && "Only two inputs to shuffles.");
int Size = Mask.size();
for (int i = 0; i < Size; ++i)
if (Mask[i] >= 0 && Mask[i] / Size == Input && Mask[i] % Size != i)
return false;
return true;
}
/// Handle case where shuffle sources are coming from the same 128-bit lane and
/// every lane can be represented as the same repeating mask - allowing us to
/// shuffle the sources with the repeating shuffle and then permute the result
/// to the destination lanes.
static SDValue lowerShuffleAsRepeatedMaskAndLanePermute(
const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
const X86Subtarget &Subtarget, SelectionDAG &DAG) {
int NumElts = VT.getVectorNumElements();
int NumLanes = VT.getSizeInBits() / 128;
int NumLaneElts = NumElts / NumLanes;
// On AVX2 we may be able to just shuffle the lowest elements and then
// broadcast the result.
if (Subtarget.hasAVX2()) {
for (unsigned BroadcastSize : {16, 32, 64}) {
if (BroadcastSize <= VT.getScalarSizeInBits())
continue;
int NumBroadcastElts = BroadcastSize / VT.getScalarSizeInBits();
// Attempt to match a repeating pattern every NumBroadcastElts,
// accounting for UNDEFs but only references the lowest 128-bit
// lane of the inputs.
auto FindRepeatingBroadcastMask = [&](SmallVectorImpl<int> &RepeatMask) {
for (int i = 0; i != NumElts; i += NumBroadcastElts)
for (int j = 0; j != NumBroadcastElts; ++j) {
int M = Mask[i + j];
if (M < 0)
continue;
int &R = RepeatMask[j];
if (0 != ((M % NumElts) / NumLaneElts))
return false;
if (0 <= R && R != M)
return false;
R = M;
}
return true;
};
SmallVector<int, 8> RepeatMask((unsigned)NumElts, -1);
if (!FindRepeatingBroadcastMask(RepeatMask))
continue;
// Shuffle the (lowest) repeated elements in place for broadcast.
SDValue RepeatShuf = DAG.getVectorShuffle(VT, DL, V1, V2, RepeatMask);
// Shuffle the actual broadcast.
SmallVector<int, 8> BroadcastMask((unsigned)NumElts, -1);
for (int i = 0; i != NumElts; i += NumBroadcastElts)
for (int j = 0; j != NumBroadcastElts; ++j)
BroadcastMask[i + j] = j;
return DAG.getVectorShuffle(VT, DL, RepeatShuf, DAG.getUNDEF(VT),
BroadcastMask);
}
}
// Bail if the shuffle mask doesn't cross 128-bit lanes.
if (!is128BitLaneCrossingShuffleMask(VT, Mask))
return SDValue();
// Bail if we already have a repeated lane shuffle mask.
SmallVector<int, 8> RepeatedShuffleMask;
if (is128BitLaneRepeatedShuffleMask(VT, Mask, RepeatedShuffleMask))
return SDValue();
// On AVX2 targets we can permute 256-bit vectors as 64-bit sub-lanes
// (with PERMQ/PERMPD), otherwise we can only permute whole 128-bit lanes.
int SubLaneScale = Subtarget.hasAVX2() && VT.is256BitVector() ? 2 : 1;
int NumSubLanes = NumLanes * SubLaneScale;
int NumSubLaneElts = NumLaneElts / SubLaneScale;
// Check that all the sources are coming from the same lane and see if we can
// form a repeating shuffle mask (local to each sub-lane). At the same time,
// determine the source sub-lane for each destination sub-lane.
int TopSrcSubLane = -1;
SmallVector<int, 8> Dst2SrcSubLanes((unsigned)NumSubLanes, -1);
SmallVector<int, 8> RepeatedSubLaneMasks[2] = {
SmallVector<int, 8>((unsigned)NumSubLaneElts, SM_SentinelUndef),
SmallVector<int, 8>((unsigned)NumSubLaneElts, SM_SentinelUndef)};
for (int DstSubLane = 0; DstSubLane != NumSubLanes; ++DstSubLane) {
// Extract the sub-lane mask, check that it all comes from the same lane
// and normalize the mask entries to come from the first lane.
int SrcLane = -1;
SmallVector<int, 8> SubLaneMask((unsigned)NumSubLaneElts, -1);
for (int Elt = 0; Elt != NumSubLaneElts; ++Elt) {
int M = Mask[(DstSubLane * NumSubLaneElts) + Elt];
if (M < 0)
continue;
int Lane = (M % NumElts) / NumLaneElts;
if ((0 <= SrcLane) && (SrcLane != Lane))
return SDValue();
SrcLane = Lane;
int LocalM = (M % NumLaneElts) + (M < NumElts ? 0 : NumElts);
SubLaneMask[Elt] = LocalM;
}
// Whole sub-lane is UNDEF.
if (SrcLane < 0)
continue;
// Attempt to match against the candidate repeated sub-lane masks.
for (int SubLane = 0; SubLane != SubLaneScale; ++SubLane) {
auto MatchMasks = [NumSubLaneElts](ArrayRef<int> M1, ArrayRef<int> M2) {
for (int i = 0; i != NumSubLaneElts; ++i) {
if (M1[i] < 0 || M2[i] < 0)
continue;
if (M1[i] != M2[i])
return false;
}
return true;
};
auto &RepeatedSubLaneMask = RepeatedSubLaneMasks[SubLane];
if (!MatchMasks(SubLaneMask, RepeatedSubLaneMask))
continue;
// Merge the sub-lane mask into the matching repeated sub-lane mask.
for (int i = 0; i != NumSubLaneElts; ++i) {
int M = SubLaneMask[i];
if (M < 0)
continue;
assert((RepeatedSubLaneMask[i] < 0 || RepeatedSubLaneMask[i] == M) &&
"Unexpected mask element");
RepeatedSubLaneMask[i] = M;
}
// Track the top most source sub-lane - by setting the remaining to UNDEF
// we can greatly simplify shuffle matching.
int SrcSubLane = (SrcLane * SubLaneScale) + SubLane;
TopSrcSubLane = std::max(TopSrcSubLane, SrcSubLane);
Dst2SrcSubLanes[DstSubLane] = SrcSubLane;
break;
}
// Bail if we failed to find a matching repeated sub-lane mask.
if (Dst2SrcSubLanes[DstSubLane] < 0)
return SDValue();
}
assert(0 <= TopSrcSubLane && TopSrcSubLane < NumSubLanes &&
"Unexpected source lane");
// Create a repeating shuffle mask for the entire vector.
SmallVector<int, 8> RepeatedMask((unsigned)NumElts, -1);
for (int SubLane = 0; SubLane <= TopSrcSubLane; ++SubLane) {
int Lane = SubLane / SubLaneScale;
auto &RepeatedSubLaneMask = RepeatedSubLaneMasks[SubLane % SubLaneScale];
for (int Elt = 0; Elt != NumSubLaneElts; ++Elt) {
int M = RepeatedSubLaneMask[Elt];
if (M < 0)
continue;
int Idx = (SubLane * NumSubLaneElts) + Elt;
RepeatedMask[Idx] = M + (Lane * NumLaneElts);
}
}
SDValue RepeatedShuffle = DAG.getVectorShuffle(VT, DL, V1, V2, RepeatedMask);
// Shuffle each source sub-lane to its destination.
SmallVector<int, 8> SubLaneMask((unsigned)NumElts, -1);
for (int i = 0; i != NumElts; i += NumSubLaneElts) {
int SrcSubLane = Dst2SrcSubLanes[i / NumSubLaneElts];
if (SrcSubLane < 0)
continue;
for (int j = 0; j != NumSubLaneElts; ++j)
SubLaneMask[i + j] = j + (SrcSubLane * NumSubLaneElts);
}
return DAG.getVectorShuffle(VT, DL, RepeatedShuffle, DAG.getUNDEF(VT),
SubLaneMask);
}
static bool matchVectorShuffleWithSHUFPD(MVT VT, SDValue &V1, SDValue &V2,
unsigned &ShuffleImm,
ArrayRef<int> Mask) {
int NumElts = VT.getVectorNumElements();
assert(VT.getScalarSizeInBits() == 64 &&
(NumElts == 2 || NumElts == 4 || NumElts == 8) &&
"Unexpected data type for VSHUFPD");
// Mask for V8F64: 0/1, 8/9, 2/3, 10/11, 4/5, ..
// Mask for V4F64; 0/1, 4/5, 2/3, 6/7..
ShuffleImm = 0;
bool ShufpdMask = true;
bool CommutableMask = true;
for (int i = 0; i < NumElts; ++i) {
if (Mask[i] == SM_SentinelUndef)
continue;
if (Mask[i] < 0)
return false;
int Val = (i & 6) + NumElts * (i & 1);
int CommutVal = (i & 0xe) + NumElts * ((i & 1) ^ 1);
if (Mask[i] < Val || Mask[i] > Val + 1)
ShufpdMask = false;
if (Mask[i] < CommutVal || Mask[i] > CommutVal + 1)
CommutableMask = false;
ShuffleImm |= (Mask[i] % 2) << i;
}
if (ShufpdMask)
return true;
if (CommutableMask) {
std::swap(V1, V2);
return true;
}
return false;
}
static SDValue lowerVectorShuffleWithSHUFPD(const SDLoc &DL, MVT VT,
ArrayRef<int> Mask, SDValue V1,
SDValue V2, SelectionDAG &DAG) {
assert((VT == MVT::v2f64 || VT == MVT::v4f64 || VT == MVT::v8f64)&&
"Unexpected data type for VSHUFPD");
unsigned Immediate = 0;
if (!matchVectorShuffleWithSHUFPD(VT, V1, V2, Immediate, Mask))
return SDValue();
return DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
DAG.getConstant(Immediate, DL, MVT::i8));
}
/// Handle lowering of 4-lane 64-bit floating point shuffles.
///
/// Also ends up handling lowering of 4-lane 64-bit integer shuffles when AVX2
/// isn't available.
static SDValue lowerV4F64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable,
SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
if (SDValue V = lowerV2X128VectorShuffle(DL, MVT::v4f64, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return V;
if (V2.isUndef()) {
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
return Broadcast;
// Use low duplicate instructions for masks that match their pattern.
if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2}))
return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v4f64, V1);
if (!is128BitLaneCrossingShuffleMask(MVT::v4f64, Mask)) {
// Non-half-crossing single input shuffles can be lowered with an
// interleaved permutation.
unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) |
((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3);
return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f64, V1,
DAG.getConstant(VPERMILPMask, DL, MVT::i8));
}
// With AVX2 we have direct support for this permutation.
if (Subtarget.hasAVX2())
return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4f64, V1,
getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
// Try to create an in-lane repeating shuffle mask and then shuffle the
// results into the target lanes.
if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
return V;
// Otherwise, fall back.
return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v4f64, V1, V2, Mask,
DAG, Subtarget);
}
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v4f64, Mask, V1, V2, DAG))
return V;
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f64, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// Check if the blend happens to exactly fit that of SHUFPD.
if (SDValue Op =
lowerVectorShuffleWithSHUFPD(DL, MVT::v4f64, Mask, V1, V2, DAG))
return Op;
// Try to create an in-lane repeating shuffle mask and then shuffle the
// results into the target lanes.
if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
return V;
// Try to simplify this by merging 128-bit lanes to enable a lane-based
// shuffle. However, if we have AVX2 and either inputs are already in place,
// we will be able to shuffle even across lanes the other input in a single
// instruction so skip this pattern.
if (!(Subtarget.hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) ||
isShuffleMaskInputInPlace(1, Mask))))
if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
return Result;
// If we have VLX support, we can use VEXPAND.
if (Subtarget.hasVLX())
if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v4f64, Zeroable, Mask,
V1, V2, DAG, Subtarget))
return V;
// If we have AVX2 then we always want to lower with a blend because an v4 we
// can fully permute the elements.
if (Subtarget.hasAVX2())
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4f64, V1, V2,
Mask, DAG);
// Otherwise fall back on generic lowering.
return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v4f64, V1, V2, Mask, DAG);
}
/// Handle lowering of 4-lane 64-bit integer shuffles.
///
/// This routine is only called when we have AVX2 and thus a reasonable
/// instruction set for v4i64 shuffling..
static SDValue lowerV4I64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable,
SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
assert(Subtarget.hasAVX2() && "We can only lower v4i64 with AVX2!");
if (SDValue V = lowerV2X128VectorShuffle(DL, MVT::v4i64, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return V;
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i64, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4i64, V1, V2,
Mask, Subtarget, DAG))
return Broadcast;
if (V2.isUndef()) {
// When the shuffle is mirrored between the 128-bit lanes of the unit, we
// can use lower latency instructions that will operate on both lanes.
SmallVector<int, 2> RepeatedMask;
if (is128BitLaneRepeatedShuffleMask(MVT::v4i64, Mask, RepeatedMask)) {
SmallVector<int, 4> PSHUFDMask;
scaleShuffleMask<int>(2, RepeatedMask, PSHUFDMask);
return DAG.getBitcast(
MVT::v4i64,
DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32,
DAG.getBitcast(MVT::v8i32, V1),
getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
}
// AVX2 provides a direct instruction for permuting a single input across
// lanes.
return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4i64, V1,
getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
}
// Try to use shift instructions.
if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v4i64, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// If we have VLX support, we can use VALIGN or VEXPAND.
if (Subtarget.hasVLX()) {
if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v4i64, V1, V2,
Mask, Subtarget, DAG))
return Rotate;
if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v4i64, Zeroable, Mask,
V1, V2, DAG, Subtarget))
return V;
}
// Try to use PALIGNR.
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v4i64, V1, V2,
Mask, Subtarget, DAG))
return Rotate;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v4i64, Mask, V1, V2, DAG))
return V;
// Try to create an in-lane repeating shuffle mask and then shuffle the
// results into the target lanes.
if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG))
return V;
// Try to simplify this by merging 128-bit lanes to enable a lane-based
// shuffle. However, if we have AVX2 and either inputs are already in place,
// we will be able to shuffle even across lanes the other input in a single
// instruction so skip this pattern.
if (!isShuffleMaskInputInPlace(0, Mask) &&
!isShuffleMaskInputInPlace(1, Mask))
if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG))
return Result;
// Otherwise fall back on generic blend lowering.
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i64, V1, V2,
Mask, DAG);
}
/// Handle lowering of 8-lane 32-bit floating point shuffles.
///
/// Also ends up handling lowering of 8-lane 32-bit integer shuffles when AVX2
/// isn't available.
static SDValue lowerV8F32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable,
SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8f32, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8f32, V1, V2,
Mask, Subtarget, DAG))
return Broadcast;
// If the shuffle mask is repeated in each 128-bit lane, we have many more
// options to efficiently lower the shuffle.
SmallVector<int, 4> RepeatedMask;
if (is128BitLaneRepeatedShuffleMask(MVT::v8f32, Mask, RepeatedMask)) {
assert(RepeatedMask.size() == 4 &&
"Repeated masks must be half the mask width!");
// Use even/odd duplicate instructions for masks that match their pattern.
if (isShuffleEquivalent(V1, V2, RepeatedMask, {0, 0, 2, 2}))
return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v8f32, V1);
if (isShuffleEquivalent(V1, V2, RepeatedMask, {1, 1, 3, 3}))
return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v8f32, V1);
if (V2.isUndef())
return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f32, V1,
getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v8f32, Mask, V1, V2, DAG))
return V;
// Otherwise, fall back to a SHUFPS sequence. Here it is important that we
// have already handled any direct blends.
return lowerVectorShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask, V1, V2, DAG);
}
// Try to create an in-lane repeating shuffle mask and then shuffle the
// results into the target lanes.
if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG))
return V;
// If we have a single input shuffle with different shuffle patterns in the
// two 128-bit lanes use the variable mask to VPERMILPS.
if (V2.isUndef()) {
SDValue VPermMask = getConstVector(Mask, MVT::v8i32, DAG, DL, true);
if (!is128BitLaneCrossingShuffleMask(MVT::v8f32, Mask))
return DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v8f32, V1, VPermMask);
if (Subtarget.hasAVX2())
return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8f32, VPermMask, V1);
// Otherwise, fall back.
return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v8f32, V1, V2, Mask,
DAG, Subtarget);
}
// Try to simplify this by merging 128-bit lanes to enable a lane-based
// shuffle.
if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG))
return Result;
// If we have VLX support, we can use VEXPAND.
if (Subtarget.hasVLX())
if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v8f32, Zeroable, Mask,
V1, V2, DAG, Subtarget))
return V;
// For non-AVX512 if the Mask is of 16bit elements in lane then try to split
// since after split we get a more efficient code using vpunpcklwd and
// vpunpckhwd instrs than vblend.
if (!Subtarget.hasAVX512() && isUnpackWdShuffleMask(Mask, MVT::v8f32))
if (SDValue V = lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2,
Mask, DAG))
return V;
// If we have AVX2 then we always want to lower with a blend because at v8 we
// can fully permute the elements.
if (Subtarget.hasAVX2())
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8f32, V1, V2,
Mask, DAG);
// Otherwise fall back on generic lowering.
return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2, Mask, DAG);
}
/// Handle lowering of 8-lane 32-bit integer shuffles.
///
/// This routine is only called when we have AVX2 and thus a reasonable
/// instruction set for v8i32 shuffling..
static SDValue lowerV8I32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable,
SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
assert(Subtarget.hasAVX2() && "We can only lower v8i32 with AVX2!");
// Whenever we can lower this as a zext, that instruction is strictly faster
// than any alternative. It also allows us to fold memory operands into the
// shuffle in many cases.
if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
DL, MVT::v8i32, V1, V2, Mask, Zeroable, Subtarget, DAG))
return ZExt;
// For non-AVX512 if the Mask is of 16bit elements in lane then try to split
// since after split we get a more efficient code than vblend by using
// vpunpcklwd and vpunpckhwd instrs.
if (isUnpackWdShuffleMask(Mask, MVT::v8i32) && !V2.isUndef() &&
!Subtarget.hasAVX512())
if (SDValue V =
lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8i32, V1, V2, Mask, DAG))
return V;
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i32, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8i32, V1, V2,
Mask, Subtarget, DAG))
return Broadcast;
// If the shuffle mask is repeated in each 128-bit lane we can use more
// efficient instructions that mirror the shuffles across the two 128-bit
// lanes.
SmallVector<int, 4> RepeatedMask;
bool Is128BitLaneRepeatedShuffle =
is128BitLaneRepeatedShuffleMask(MVT::v8i32, Mask, RepeatedMask);
if (Is128BitLaneRepeatedShuffle) {
assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
if (V2.isUndef())
return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, V1,
getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v8i32, Mask, V1, V2, DAG))
return V;
}
// Try to use shift instructions.
if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i32, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// If we have VLX support, we can use VALIGN or EXPAND.
if (Subtarget.hasVLX()) {
if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v8i32, V1, V2,
Mask, Subtarget, DAG))
return Rotate;
if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v8i32, Zeroable, Mask,
V1, V2, DAG, Subtarget))
return V;
}
// Try to use byte rotation instructions.
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
return Rotate;
// Try to create an in-lane repeating shuffle mask and then shuffle the
// results into the target lanes.
if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
return V;
// If the shuffle patterns aren't repeated but it is a single input, directly
// generate a cross-lane VPERMD instruction.
if (V2.isUndef()) {
SDValue VPermMask = getConstVector(Mask, MVT::v8i32, DAG, DL, true);
return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8i32, VPermMask, V1);
}
// Assume that a single SHUFPS is faster than an alternative sequence of
// multiple instructions (even if the CPU has a domain penalty).
// If some CPU is harmed by the domain switch, we can fix it in a later pass.
if (Is128BitLaneRepeatedShuffle && isSingleSHUFPSMask(RepeatedMask)) {
SDValue CastV1 = DAG.getBitcast(MVT::v8f32, V1);
SDValue CastV2 = DAG.getBitcast(MVT::v8f32, V2);
SDValue ShufPS = lowerVectorShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask,
CastV1, CastV2, DAG);
return DAG.getBitcast(MVT::v8i32, ShufPS);
}
// Try to simplify this by merging 128-bit lanes to enable a lane-based
// shuffle.
if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
return Result;
// Otherwise fall back on generic blend lowering.
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i32, V1, V2,
Mask, DAG);
}
/// Handle lowering of 16-lane 16-bit integer shuffles.
///
/// This routine is only called when we have AVX2 and thus a reasonable
/// instruction set for v16i16 shuffling..
static SDValue lowerV16I16VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable,
SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
assert(Subtarget.hasAVX2() && "We can only lower v16i16 with AVX2!");
// Whenever we can lower this as a zext, that instruction is strictly faster
// than any alternative. It also allows us to fold memory operands into the
// shuffle in many cases.
if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
DL, MVT::v16i16, V1, V2, Mask, Zeroable, Subtarget, DAG))
return ZExt;
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v16i16, V1, V2,
Mask, Subtarget, DAG))
return Broadcast;
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i16, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v16i16, Mask, V1, V2, DAG))
return V;
// Use dedicated pack instructions for masks that match their pattern.
if (SDValue V = lowerVectorShuffleWithPACK(DL, MVT::v16i16, Mask, V1, V2, DAG,
Subtarget))
return V;
// Try to use shift instructions.
if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v16i16, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// Try to use byte rotation instructions.
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
return Rotate;
// Try to create an in-lane repeating shuffle mask and then shuffle the
// results into the target lanes.
if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
return V;
if (V2.isUndef()) {
// There are no generalized cross-lane shuffle operations available on i16
// element types.
if (is128BitLaneCrossingShuffleMask(MVT::v16i16, Mask))
return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v16i16, V1, V2,
Mask, DAG, Subtarget);
SmallVector<int, 8> RepeatedMask;
if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
// As this is a single-input shuffle, the repeated mask should be
// a strictly valid v8i16 mask that we can pass through to the v8i16
// lowering to handle even the v16 case.
return lowerV8I16GeneralSingleInputVectorShuffle(
DL, MVT::v16i16, V1, RepeatedMask, Subtarget, DAG);
}
}
if (SDValue PSHUFB = lowerVectorShuffleWithPSHUFB(
DL, MVT::v16i16, Mask, V1, V2, Zeroable, Subtarget, DAG))
return PSHUFB;
// AVX512BWVL can lower to VPERMW.
if (Subtarget.hasBWI() && Subtarget.hasVLX())
return lowerVectorShuffleWithPERMV(DL, MVT::v16i16, Mask, V1, V2, DAG);
// Try to simplify this by merging 128-bit lanes to enable a lane-based
// shuffle.
if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
return Result;
// Otherwise fall back on generic lowering.
return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v16i16, V1, V2, Mask, DAG);
}
/// Handle lowering of 32-lane 8-bit integer shuffles.
///
/// This routine is only called when we have AVX2 and thus a reasonable
/// instruction set for v32i8 shuffling..
static SDValue lowerV32I8VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable,
SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
assert(Subtarget.hasAVX2() && "We can only lower v32i8 with AVX2!");
// Whenever we can lower this as a zext, that instruction is strictly faster
// than any alternative. It also allows us to fold memory operands into the
// shuffle in many cases.
if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
DL, MVT::v32i8, V1, V2, Mask, Zeroable, Subtarget, DAG))
return ZExt;
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v32i8, V1, V2,
Mask, Subtarget, DAG))
return Broadcast;
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v32i8, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v32i8, Mask, V1, V2, DAG))
return V;
// Use dedicated pack instructions for masks that match their pattern.
if (SDValue V = lowerVectorShuffleWithPACK(DL, MVT::v32i8, Mask, V1, V2, DAG,
Subtarget))
return V;
// Try to use shift instructions.
if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v32i8, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// Try to use byte rotation instructions.
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
return Rotate;
// Try to create an in-lane repeating shuffle mask and then shuffle the
// results into the target lanes.
if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
return V;
// There are no generalized cross-lane shuffle operations available on i8
// element types.
if (V2.isUndef() && is128BitLaneCrossingShuffleMask(MVT::v32i8, Mask))
return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v32i8, V1, V2, Mask,
DAG, Subtarget);
if (SDValue PSHUFB = lowerVectorShuffleWithPSHUFB(
DL, MVT::v32i8, Mask, V1, V2, Zeroable, Subtarget, DAG))
return PSHUFB;
// AVX512VBMIVL can lower to VPERMB.
if (Subtarget.hasVBMI() && Subtarget.hasVLX())
return lowerVectorShuffleWithPERMV(DL, MVT::v32i8, Mask, V1, V2, DAG);
// Try to simplify this by merging 128-bit lanes to enable a lane-based
// shuffle.
if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
return Result;
// Otherwise fall back on generic lowering.
return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v32i8, V1, V2, Mask, DAG);
}
/// High-level routine to lower various 256-bit x86 vector shuffles.
///
/// This routine either breaks down the specific type of a 256-bit x86 vector
/// shuffle or splits it into two 128-bit shuffles and fuses the results back
/// together based on the available instructions.
static SDValue lower256BitVectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
MVT VT, SDValue V1, SDValue V2,
const APInt &Zeroable,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
// If we have a single input to the zero element, insert that into V1 if we
// can do so cheaply.
int NumElts = VT.getVectorNumElements();
int NumV2Elements = count_if(Mask, [NumElts](int M) { return M >= NumElts; });
if (NumV2Elements == 1 && Mask[0] >= NumElts)
if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
DL, VT, V1, V2, Mask, Zeroable, Subtarget, DAG))
return Insertion;
// Handle special cases where the lower or upper half is UNDEF.
if (SDValue V =
lowerVectorShuffleWithUndefHalf(DL, VT, V1, V2, Mask, Subtarget, DAG))
return V;
// There is a really nice hard cut-over between AVX1 and AVX2 that means we
// can check for those subtargets here and avoid much of the subtarget
// querying in the per-vector-type lowering routines. With AVX1 we have
// essentially *zero* ability to manipulate a 256-bit vector with integer
// types. Since we'll use floating point types there eventually, just
// immediately cast everything to a float and operate entirely in that domain.
if (VT.isInteger() && !Subtarget.hasAVX2()) {
int ElementBits = VT.getScalarSizeInBits();
if (ElementBits < 32) {
// No floating point type available, if we can't use the bit operations
// for masking/blending then decompose into 128-bit vectors.
if (SDValue V =
lowerVectorShuffleAsBitMask(DL, VT, V1, V2, Mask, Zeroable, DAG))
return V;
if (SDValue V = lowerVectorShuffleAsBitBlend(DL, VT, V1, V2, Mask, DAG))
return V;
return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
}
MVT FpVT = MVT::getVectorVT(MVT::getFloatingPointVT(ElementBits),
VT.getVectorNumElements());
V1 = DAG.getBitcast(FpVT, V1);
V2 = DAG.getBitcast(FpVT, V2);
return DAG.getBitcast(VT, DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask));
}
switch (VT.SimpleTy) {
case MVT::v4f64:
return lowerV4F64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v4i64:
return lowerV4I64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v8f32:
return lowerV8F32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v8i32:
return lowerV8I32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v16i16:
return lowerV16I16VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v32i8:
return lowerV32I8VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
default:
llvm_unreachable("Not a valid 256-bit x86 vector type!");
}
}
/// Try to lower a vector shuffle as a 128-bit shuffles.
static SDValue lowerV4X128VectorShuffle(const SDLoc &DL, MVT VT,
ArrayRef<int> Mask,
const APInt &Zeroable,
SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(VT.getScalarSizeInBits() == 64 &&
"Unexpected element type size for 128bit shuffle.");
// To handle 256 bit vector requires VLX and most probably
// function lowerV2X128VectorShuffle() is better solution.
assert(VT.is512BitVector() && "Unexpected vector size for 512bit shuffle.");
// TODO - use Zeroable like we do for lowerV2X128VectorShuffle?
SmallVector<int, 4> WidenedMask;
if (!canWidenShuffleElements(Mask, WidenedMask))
return SDValue();
// Try to use an insert into a zero vector.
if (WidenedMask[0] == 0 && (Zeroable & 0xf0) == 0xf0 &&
(WidenedMask[1] == 1 || (Zeroable & 0x0c) == 0x0c)) {
unsigned NumElts = ((Zeroable & 0x0c) == 0x0c) ? 2 : 4;
MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), NumElts);
SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
DAG.getIntPtrConstant(0, DL));
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
getZeroVector(VT, Subtarget, DAG, DL), LoV,
DAG.getIntPtrConstant(0, DL));
}
// Check for patterns which can be matched with a single insert of a 256-bit
// subvector.
bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask,
{0, 1, 2, 3, 0, 1, 2, 3});
if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask,
{0, 1, 2, 3, 8, 9, 10, 11})) {
MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), 4);
SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT,
OnlyUsesV1 ? V1 : V2,
DAG.getIntPtrConstant(0, DL));
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, V1, SubVec,
DAG.getIntPtrConstant(4, DL));
}
assert(WidenedMask.size() == 4);
// See if this is an insertion of the lower 128-bits of V2 into V1.
bool IsInsert = true;
int V2Index = -1;
for (int i = 0; i < 4; ++i) {
assert(WidenedMask[i] >= -1);
if (WidenedMask[i] < 0)
continue;
// Make sure all V1 subvectors are in place.
if (WidenedMask[i] < 4) {
if (WidenedMask[i] != i) {
IsInsert = false;
break;
}
} else {
// Make sure we only have a single V2 index and its the lowest 128-bits.
if (V2Index >= 0 || WidenedMask[i] != 4) {
IsInsert = false;
break;
}
V2Index = i;
}
}
if (IsInsert && V2Index >= 0) {
MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), 2);
SDValue Subvec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V2,
DAG.getIntPtrConstant(0, DL));
return insert128BitVector(V1, Subvec, V2Index * 2, DAG, DL);
}
// Try to lower to vshuf64x2/vshuf32x4.
SDValue Ops[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT)};
unsigned PermMask = 0;
// Insure elements came from the same Op.
for (int i = 0; i < 4; ++i) {
assert(WidenedMask[i] >= -1);
if (WidenedMask[i] < 0)
continue;
SDValue Op = WidenedMask[i] >= 4 ? V2 : V1;
unsigned OpIndex = i / 2;
if (Ops[OpIndex].isUndef())
Ops[OpIndex] = Op;
else if (Ops[OpIndex] != Op)
return SDValue();
// Convert the 128-bit shuffle mask selection values into 128-bit selection
// bits defined by a vshuf64x2 instruction's immediate control byte.
PermMask |= (WidenedMask[i] % 4) << (i * 2);
}
return DAG.getNode(X86ISD::SHUF128, DL, VT, Ops[0], Ops[1],
DAG.getConstant(PermMask, DL, MVT::i8));
}
/// Handle lowering of 8-lane 64-bit floating point shuffles.
static SDValue lowerV8F64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable,
SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
if (V2.isUndef()) {
// Use low duplicate instructions for masks that match their pattern.
if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2, 4, 4, 6, 6}))
return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v8f64, V1);
if (!is128BitLaneCrossingShuffleMask(MVT::v8f64, Mask)) {
// Non-half-crossing single input shuffles can be lowered with an
// interleaved permutation.
unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) |
((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3) |
((Mask[4] == 5) << 4) | ((Mask[5] == 5) << 5) |
((Mask[6] == 7) << 6) | ((Mask[7] == 7) << 7);
return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f64, V1,
DAG.getConstant(VPERMILPMask, DL, MVT::i8));
}
SmallVector<int, 4> RepeatedMask;
if (is256BitLaneRepeatedShuffleMask(MVT::v8f64, Mask, RepeatedMask))
return DAG.getNode(X86ISD::VPERMI, DL, MVT::v8f64, V1,
getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
}
if (SDValue Shuf128 =
lowerV4X128VectorShuffle(DL, MVT::v8f64, Mask, Zeroable, V1, V2,
Subtarget, DAG))
return Shuf128;
if (SDValue Unpck =
lowerVectorShuffleWithUNPCK(DL, MVT::v8f64, Mask, V1, V2, DAG))
return Unpck;
// Check if the blend happens to exactly fit that of SHUFPD.
if (SDValue Op =
lowerVectorShuffleWithSHUFPD(DL, MVT::v8f64, Mask, V1, V2, DAG))
return Op;
if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v8f64, Zeroable, Mask, V1,
V2, DAG, Subtarget))
return V;
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8f64, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
return lowerVectorShuffleWithPERMV(DL, MVT::v8f64, Mask, V1, V2, DAG);
}
/// Handle lowering of 16-lane 32-bit floating point shuffles.
static SDValue lowerV16F32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable,
SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
// If the shuffle mask is repeated in each 128-bit lane, we have many more
// options to efficiently lower the shuffle.
SmallVector<int, 4> RepeatedMask;
if (is128BitLaneRepeatedShuffleMask(MVT::v16f32, Mask, RepeatedMask)) {
assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
// Use even/odd duplicate instructions for masks that match their pattern.
if (isShuffleEquivalent(V1, V2, RepeatedMask, {0, 0, 2, 2}))
return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v16f32, V1);
if (isShuffleEquivalent(V1, V2, RepeatedMask, {1, 1, 3, 3}))
return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v16f32, V1);
if (V2.isUndef())
return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v16f32, V1,
getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue Unpck =
lowerVectorShuffleWithUNPCK(DL, MVT::v16f32, Mask, V1, V2, DAG))
return Unpck;
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16f32, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// Otherwise, fall back to a SHUFPS sequence.
return lowerVectorShuffleWithSHUFPS(DL, MVT::v16f32, RepeatedMask, V1, V2, DAG);
}
// If we have a single input shuffle with different shuffle patterns in the
// 128-bit lanes and don't lane cross, use variable mask VPERMILPS.
if (V2.isUndef() &&
!is128BitLaneCrossingShuffleMask(MVT::v16f32, Mask)) {
SDValue VPermMask = getConstVector(Mask, MVT::v16i32, DAG, DL, true);
return DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v16f32, V1, VPermMask);
}
// If we have AVX512F support, we can use VEXPAND.
if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v16f32, Zeroable, Mask,
V1, V2, DAG, Subtarget))
return V;
return lowerVectorShuffleWithPERMV(DL, MVT::v16f32, Mask, V1, V2, DAG);
}
/// Handle lowering of 8-lane 64-bit integer shuffles.
static SDValue lowerV8I64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable,
SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
if (V2.isUndef()) {
// When the shuffle is mirrored between the 128-bit lanes of the unit, we
// can use lower latency instructions that will operate on all four
// 128-bit lanes.
SmallVector<int, 2> Repeated128Mask;
if (is128BitLaneRepeatedShuffleMask(MVT::v8i64, Mask, Repeated128Mask)) {
SmallVector<int, 4> PSHUFDMask;
scaleShuffleMask<int>(2, Repeated128Mask, PSHUFDMask);
return DAG.getBitcast(
MVT::v8i64,
DAG.getNode(X86ISD::PSHUFD, DL, MVT::v16i32,
DAG.getBitcast(MVT::v16i32, V1),
getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
}
SmallVector<int, 4> Repeated256Mask;
if (is256BitLaneRepeatedShuffleMask(MVT::v8i64, Mask, Repeated256Mask))
return DAG.getNode(X86ISD::VPERMI, DL, MVT::v8i64, V1,
getV4X86ShuffleImm8ForMask(Repeated256Mask, DL, DAG));
}
if (SDValue Shuf128 =
lowerV4X128VectorShuffle(DL, MVT::v8i64, Mask, Zeroable,
V1, V2, Subtarget, DAG))
return Shuf128;
// Try to use shift instructions.
if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i64, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// Try to use VALIGN.
if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v8i64, V1, V2,
Mask, Subtarget, DAG))
return Rotate;
// Try to use PALIGNR.
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v8i64, V1, V2,
Mask, Subtarget, DAG))
return Rotate;
if (SDValue Unpck =
lowerVectorShuffleWithUNPCK(DL, MVT::v8i64, Mask, V1, V2, DAG))
return Unpck;
// If we have AVX512F support, we can use VEXPAND.
if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v8i64, Zeroable, Mask, V1,
V2, DAG, Subtarget))
return V;
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i64, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
return lowerVectorShuffleWithPERMV(DL, MVT::v8i64, Mask, V1, V2, DAG);
}
/// Handle lowering of 16-lane 32-bit integer shuffles.
static SDValue lowerV16I32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable,
SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
// Whenever we can lower this as a zext, that instruction is strictly faster
// than any alternative. It also allows us to fold memory operands into the
// shuffle in many cases.
if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
DL, MVT::v16i32, V1, V2, Mask, Zeroable, Subtarget, DAG))
return ZExt;
// If the shuffle mask is repeated in each 128-bit lane we can use more
// efficient instructions that mirror the shuffles across the four 128-bit
// lanes.
SmallVector<int, 4> RepeatedMask;
bool Is128BitLaneRepeatedShuffle =
is128BitLaneRepeatedShuffleMask(MVT::v16i32, Mask, RepeatedMask);
if (Is128BitLaneRepeatedShuffle) {
assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
if (V2.isUndef())
return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v16i32, V1,
getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v16i32, Mask, V1, V2, DAG))
return V;
}
// Try to use shift instructions.
if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v16i32, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// Try to use VALIGN.
if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v16i32, V1, V2,
Mask, Subtarget, DAG))
return Rotate;
// Try to use byte rotation instructions.
if (Subtarget.hasBWI())
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
DL, MVT::v16i32, V1, V2, Mask, Subtarget, DAG))
return Rotate;
// Assume that a single SHUFPS is faster than using a permv shuffle.
// If some CPU is harmed by the domain switch, we can fix it in a later pass.
if (Is128BitLaneRepeatedShuffle && isSingleSHUFPSMask(RepeatedMask)) {
SDValue CastV1 = DAG.getBitcast(MVT::v16f32, V1);
SDValue CastV2 = DAG.getBitcast(MVT::v16f32, V2);
SDValue ShufPS = lowerVectorShuffleWithSHUFPS(DL, MVT::v16f32, RepeatedMask,
CastV1, CastV2, DAG);
return DAG.getBitcast(MVT::v16i32, ShufPS);
}
// If we have AVX512F support, we can use VEXPAND.
if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v16i32, Zeroable, Mask,
V1, V2, DAG, Subtarget))
return V;
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i32, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
return lowerVectorShuffleWithPERMV(DL, MVT::v16i32, Mask, V1, V2, DAG);
}
/// Handle lowering of 32-lane 16-bit integer shuffles.
static SDValue lowerV32I16VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable,
SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
assert(Subtarget.hasBWI() && "We can only lower v32i16 with AVX-512-BWI!");
// Whenever we can lower this as a zext, that instruction is strictly faster
// than any alternative. It also allows us to fold memory operands into the
// shuffle in many cases.
if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
DL, MVT::v32i16, V1, V2, Mask, Zeroable, Subtarget, DAG))
return ZExt;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v32i16, Mask, V1, V2, DAG))
return V;
// Try to use shift instructions.
if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v32i16, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// Try to use byte rotation instructions.
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
DL, MVT::v32i16, V1, V2, Mask, Subtarget, DAG))
return Rotate;
if (V2.isUndef()) {
SmallVector<int, 8> RepeatedMask;
if (is128BitLaneRepeatedShuffleMask(MVT::v32i16, Mask, RepeatedMask)) {
// As this is a single-input shuffle, the repeated mask should be
// a strictly valid v8i16 mask that we can pass through to the v8i16
// lowering to handle even the v32 case.
return lowerV8I16GeneralSingleInputVectorShuffle(
DL, MVT::v32i16, V1, RepeatedMask, Subtarget, DAG);
}
}
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v32i16, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
if (SDValue PSHUFB = lowerVectorShuffleWithPSHUFB(
DL, MVT::v32i16, Mask, V1, V2, Zeroable, Subtarget, DAG))
return PSHUFB;
return lowerVectorShuffleWithPERMV(DL, MVT::v32i16, Mask, V1, V2, DAG);
}
/// Handle lowering of 64-lane 8-bit integer shuffles.
static SDValue lowerV64I8VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable,
SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
assert(Mask.size() == 64 && "Unexpected mask size for v64 shuffle!");
assert(Subtarget.hasBWI() && "We can only lower v64i8 with AVX-512-BWI!");
// Whenever we can lower this as a zext, that instruction is strictly faster
// than any alternative. It also allows us to fold memory operands into the
// shuffle in many cases.
if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
DL, MVT::v64i8, V1, V2, Mask, Zeroable, Subtarget, DAG))
return ZExt;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v64i8, Mask, V1, V2, DAG))
return V;
// Try to use shift instructions.
if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v64i8, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// Try to use byte rotation instructions.
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
DL, MVT::v64i8, V1, V2, Mask, Subtarget, DAG))
return Rotate;
if (SDValue PSHUFB = lowerVectorShuffleWithPSHUFB(
DL, MVT::v64i8, Mask, V1, V2, Zeroable, Subtarget, DAG))
return PSHUFB;
// VBMI can use VPERMV/VPERMV3 byte shuffles.
if (Subtarget.hasVBMI())
return lowerVectorShuffleWithPERMV(DL, MVT::v64i8, Mask, V1, V2, DAG);
// Try to create an in-lane repeating shuffle mask and then shuffle the
// results into the target lanes.
if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
DL, MVT::v64i8, V1, V2, Mask, Subtarget, DAG))
return V;
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v64i8, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// FIXME: Implement direct support for this type!
return splitAndLowerVectorShuffle(DL, MVT::v64i8, V1, V2, Mask, DAG);
}
/// High-level routine to lower various 512-bit x86 vector shuffles.
///
/// This routine either breaks down the specific type of a 512-bit x86 vector
/// shuffle or splits it into two 256-bit shuffles and fuses the results back
/// together based on the available instructions.
static SDValue lower512BitVectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
MVT VT, SDValue V1, SDValue V2,
const APInt &Zeroable,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Subtarget.hasAVX512() &&
"Cannot lower 512-bit vectors w/ basic ISA!");
// If we have a single input to the zero element, insert that into V1 if we
// can do so cheaply.
int NumElts = Mask.size();
int NumV2Elements = count_if(Mask, [NumElts](int M) { return M >= NumElts; });
if (NumV2Elements == 1 && Mask[0] >= NumElts)
if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
DL, VT, V1, V2, Mask, Zeroable, Subtarget, DAG))
return Insertion;
// Handle special cases where the lower or upper half is UNDEF.
if (SDValue V =
lowerVectorShuffleWithUndefHalf(DL, VT, V1, V2, Mask, Subtarget, DAG))
return V;
// Check for being able to broadcast a single element.
if (SDValue Broadcast =
lowerVectorShuffleAsBroadcast(DL, VT, V1, V2, Mask, Subtarget, DAG))
return Broadcast;
// Dispatch to each element type for lowering. If we don't have support for
// specific element type shuffles at 512 bits, immediately split them and
// lower them. Each lowering routine of a given type is allowed to assume that
// the requisite ISA extensions for that element type are available.
switch (VT.SimpleTy) {
case MVT::v8f64:
return lowerV8F64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v16f32:
return lowerV16F32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v8i64:
return lowerV8I64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v16i32:
return lowerV16I32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v32i16:
return lowerV32I16VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v64i8:
return lowerV64I8VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
default:
llvm_unreachable("Not a valid 512-bit x86 vector type!");
}
}
// Lower vXi1 vector shuffles.
// There is no a dedicated instruction on AVX-512 that shuffles the masks.
// The only way to shuffle bits is to sign-extend the mask vector to SIMD
// vector, shuffle and then truncate it back.
static SDValue lower1BitVectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
MVT VT, SDValue V1, SDValue V2,
const APInt &Zeroable,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
unsigned NumElts = Mask.size();
// Try to recognize shuffles that are just padding a subvector with zeros.
unsigned SubvecElts = 0;
for (int i = 0; i != (int)NumElts; ++i) {
if (Mask[i] >= 0 && Mask[i] != i)
break;
++SubvecElts;
}
assert(SubvecElts != NumElts && "Identity shuffle?");
// Clip to a power 2.
SubvecElts = PowerOf2Floor(SubvecElts);
// Make sure the number of zeroable bits in the top at least covers the bits
// not covered by the subvector.
if (Zeroable.countLeadingOnes() >= (NumElts - SubvecElts)) {
MVT ExtractVT = MVT::getVectorVT(MVT::i1, SubvecElts);
SDValue Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtractVT,
V1, DAG.getIntPtrConstant(0, DL));
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
getZeroVector(VT, Subtarget, DAG, DL),
Extract, DAG.getIntPtrConstant(0, DL));
}
assert(Subtarget.hasAVX512() &&
"Cannot lower 512-bit vectors w/o basic ISA!");
MVT ExtVT;
switch (VT.SimpleTy) {
default:
llvm_unreachable("Expected a vector of i1 elements");
case MVT::v2i1:
ExtVT = MVT::v2i64;
break;
case MVT::v4i1:
ExtVT = MVT::v4i32;
break;
case MVT::v8i1:
// Take 512-bit type, more shuffles on KNL. If we have VLX use a 256-bit
// shuffle.
ExtVT = Subtarget.hasVLX() ? MVT::v8i32 : MVT::v8i64;
break;
case MVT::v16i1:
// Take 512-bit type, unless we are avoiding 512-bit types and have the
// 256-bit operation available.
ExtVT = Subtarget.canExtendTo512DQ() ? MVT::v16i32 : MVT::v16i16;
break;
case MVT::v32i1:
// Take 512-bit type, unless we are avoiding 512-bit types and have the
// 256-bit operation available.
assert(Subtarget.hasBWI() && "Expected AVX512BW support");
ExtVT = Subtarget.canExtendTo512BW() ? MVT::v32i16 : MVT::v32i8;
break;
case MVT::v64i1:
ExtVT = MVT::v64i8;
break;
}
V1 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V1);
V2 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V2);
SDValue Shuffle = DAG.getVectorShuffle(ExtVT, DL, V1, V2, Mask);
// i1 was sign extended we can use X86ISD::CVT2MASK.
int NumElems = VT.getVectorNumElements();
if ((Subtarget.hasBWI() && (NumElems >= 32)) ||
(Subtarget.hasDQI() && (NumElems < 32)))
return DAG.getSetCC(DL, VT, DAG.getConstant(0, DL, ExtVT),
Shuffle, ISD::SETGT);
return DAG.getNode(ISD::TRUNCATE, DL, VT, Shuffle);
}
/// Helper function that returns true if the shuffle mask should be
/// commuted to improve canonicalization.
static bool canonicalizeShuffleMaskWithCommute(ArrayRef<int> Mask) {
int NumElements = Mask.size();
int NumV1Elements = 0, NumV2Elements = 0;
for (int M : Mask)
if (M < 0)
continue;
else if (M < NumElements)
++NumV1Elements;
else
++NumV2Elements;
// Commute the shuffle as needed such that more elements come from V1 than
// V2. This allows us to match the shuffle pattern strictly on how many
// elements come from V1 without handling the symmetric cases.
if (NumV2Elements > NumV1Elements)
return true;
assert(NumV1Elements > 0 && "No V1 indices");
if (NumV2Elements == 0)
return false;
// When the number of V1 and V2 elements are the same, try to minimize the
// number of uses of V2 in the low half of the vector. When that is tied,
// ensure that the sum of indices for V1 is equal to or lower than the sum
// indices for V2. When those are equal, try to ensure that the number of odd
// indices for V1 is lower than the number of odd indices for V2.
if (NumV1Elements == NumV2Elements) {
int LowV1Elements = 0, LowV2Elements = 0;
for (int M : Mask.slice(0, NumElements / 2))
if (M >= NumElements)
++LowV2Elements;
else if (M >= 0)
++LowV1Elements;
if (LowV2Elements > LowV1Elements)
return true;
if (LowV2Elements == LowV1Elements) {
int SumV1Indices = 0, SumV2Indices = 0;
for (int i = 0, Size = Mask.size(); i < Size; ++i)
if (Mask[i] >= NumElements)
SumV2Indices += i;
else if (Mask[i] >= 0)
SumV1Indices += i;
if (SumV2Indices < SumV1Indices)
return true;
if (SumV2Indices == SumV1Indices) {
int NumV1OddIndices = 0, NumV2OddIndices = 0;
for (int i = 0, Size = Mask.size(); i < Size; ++i)
if (Mask[i] >= NumElements)
NumV2OddIndices += i % 2;
else if (Mask[i] >= 0)
NumV1OddIndices += i % 2;
if (NumV2OddIndices < NumV1OddIndices)
return true;
}
}
}
return false;
}
/// Top-level lowering for x86 vector shuffles.
///
/// This handles decomposition, canonicalization, and lowering of all x86
/// vector shuffles. Most of the specific lowering strategies are encapsulated
/// above in helper routines. The canonicalization attempts to widen shuffles
/// to involve fewer lanes of wider elements, consolidate symmetric patterns
/// s.t. only one of the two inputs needs to be tested, etc.
static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
MVT VT = Op.getSimpleValueType();
int NumElements = VT.getVectorNumElements();
SDLoc DL(Op);
bool Is1BitVector = (VT.getVectorElementType() == MVT::i1);
assert((VT.getSizeInBits() != 64 || Is1BitVector) &&
"Can't lower MMX shuffles");
bool V1IsUndef = V1.isUndef();
bool V2IsUndef = V2.isUndef();
if (V1IsUndef && V2IsUndef)
return DAG.getUNDEF(VT);
// When we create a shuffle node we put the UNDEF node to second operand,
// but in some cases the first operand may be transformed to UNDEF.
// In this case we should just commute the node.
if (V1IsUndef)
return DAG.getCommutedVectorShuffle(*SVOp);
// Check for non-undef masks pointing at an undef vector and make the masks
// undef as well. This makes it easier to match the shuffle based solely on
// the mask.
if (V2IsUndef)
for (int M : Mask)
if (M >= NumElements) {
SmallVector<int, 8> NewMask(Mask.begin(), Mask.end());
for (int &M : NewMask)
if (M >= NumElements)
M = -1;
return DAG.getVectorShuffle(VT, DL, V1, V2, NewMask);
}
// Check for illegal shuffle mask element index values.
int MaskUpperLimit = Mask.size() * (V2IsUndef ? 1 : 2); (void)MaskUpperLimit;
assert(llvm::all_of(Mask,
[&](int M) { return -1 <= M && M < MaskUpperLimit; }) &&
"Out of bounds shuffle index");
// We actually see shuffles that are entirely re-arrangements of a set of
// zero inputs. This mostly happens while decomposing complex shuffles into
// simple ones. Directly lower these as a buildvector of zeros.
APInt Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
if (Zeroable.isAllOnesValue())
return getZeroVector(VT, Subtarget, DAG, DL);
bool V2IsZero = !V2IsUndef && ISD::isBuildVectorAllZeros(V2.getNode());
// Create an alternative mask with info about zeroable elements.
// Here we do not set undef elements as zeroable.
SmallVector<int, 64> ZeroableMask(Mask.begin(), Mask.end());
if (V2IsZero) {
assert(!Zeroable.isNullValue() && "V2's non-undef elements are used?!");
for (int i = 0; i != NumElements; ++i)
if (Mask[i] != SM_SentinelUndef && Zeroable[i])
ZeroableMask[i] = SM_SentinelZero;
}
// Try to collapse shuffles into using a vector type with fewer elements but
// wider element types. We cap this to not form integers or floating point
// elements wider than 64 bits, but it might be interesting to form i128
// integers to handle flipping the low and high halves of AVX 256-bit vectors.
SmallVector<int, 16> WidenedMask;
if (VT.getScalarSizeInBits() < 64 && !Is1BitVector &&
canWidenShuffleElements(ZeroableMask, WidenedMask)) {
MVT NewEltVT = VT.isFloatingPoint()
? MVT::getFloatingPointVT(VT.getScalarSizeInBits() * 2)
: MVT::getIntegerVT(VT.getScalarSizeInBits() * 2);
int NewNumElts = NumElements / 2;
MVT NewVT = MVT::getVectorVT(NewEltVT, NewNumElts);
// Make sure that the new vector type is legal. For example, v2f64 isn't
// legal on SSE1.
if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) {
if (V2IsZero) {
// Modify the new Mask to take all zeros from the all-zero vector.
// Choose indices that are blend-friendly.
bool UsedZeroVector = false;
assert(find(WidenedMask, SM_SentinelZero) != WidenedMask.end() &&
"V2's non-undef elements are used?!");
for (int i = 0; i != NewNumElts; ++i)
if (WidenedMask[i] == SM_SentinelZero) {
WidenedMask[i] = i + NewNumElts;
UsedZeroVector = true;
}
// Ensure all elements of V2 are zero - isBuildVectorAllZeros permits
// some elements to be undef.
if (UsedZeroVector)
V2 = getZeroVector(NewVT, Subtarget, DAG, DL);
}
V1 = DAG.getBitcast(NewVT, V1);
V2 = DAG.getBitcast(NewVT, V2);
return DAG.getBitcast(
VT, DAG.getVectorShuffle(NewVT, DL, V1, V2, WidenedMask));
}
}
// Commute the shuffle if it will improve canonicalization.
if (canonicalizeShuffleMaskWithCommute(Mask))
return DAG.getCommutedVectorShuffle(*SVOp);
if (SDValue V =
lowerVectorShuffleWithVPMOV(DL, Mask, VT, V1, V2, DAG, Subtarget))
return V;
// For each vector width, delegate to a specialized lowering routine.
if (VT.is128BitVector())
return lower128BitVectorShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget,
DAG);
if (VT.is256BitVector())
return lower256BitVectorShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget,
DAG);
if (VT.is512BitVector())
return lower512BitVectorShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget,
DAG);
if (Is1BitVector)
return lower1BitVectorShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget,
DAG);
llvm_unreachable("Unimplemented!");
}
/// Try to lower a VSELECT instruction to a vector shuffle.
static SDValue lowerVSELECTtoVectorShuffle(SDValue Op,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDValue Cond = Op.getOperand(0);
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
return SDValue();
auto *CondBV = cast<BuildVectorSDNode>(Cond);
// Only non-legal VSELECTs reach this lowering, convert those into generic
// shuffles and re-use the shuffle lowering path for blends.
SmallVector<int, 32> Mask;
for (int i = 0, Size = VT.getVectorNumElements(); i < Size; ++i) {
SDValue CondElt = CondBV->getOperand(i);
int M = i;
// We can't map undef to undef here. They have different meanings. Treat
// as the same as zero.
if (CondElt.isUndef() || isNullConstant(CondElt))
M += Size;
Mask.push_back(M);
}
return DAG.getVectorShuffle(VT, dl, LHS, RHS, Mask);
}
SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
// A vselect where all conditions and data are constants can be optimized into
// a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR().
if (ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(0).getNode()) &&
ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(1).getNode()) &&
ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(2).getNode()))
return SDValue();
// Try to lower this to a blend-style vector shuffle. This can handle all
// constant condition cases.
if (SDValue BlendOp = lowerVSELECTtoVectorShuffle(Op, Subtarget, DAG))
return BlendOp;
// If this VSELECT has a vector if i1 as a mask, it will be directly matched
// with patterns on the mask registers on AVX-512.
if (Op->getOperand(0).getValueType().getScalarSizeInBits() == 1)
return Op;
// Variable blends are only legal from SSE4.1 onward.
if (!Subtarget.hasSSE41())
return SDValue();
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
// If the VSELECT is on a 512-bit type, we have to convert a non-i1 condition
// into an i1 condition so that we can use the mask-based 512-bit blend
// instructions.
if (VT.getSizeInBits() == 512) {
SDValue Cond = Op.getOperand(0);
// The vNi1 condition case should be handled above as it can be trivially
// lowered.
assert(Cond.getValueType().getScalarSizeInBits() ==
VT.getScalarSizeInBits() &&
"Should have a size-matched integer condition!");
// Build a mask by testing the condition against zero.
MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
SDValue Mask = DAG.getSetCC(dl, MaskVT, Cond,
getZeroVector(VT, Subtarget, DAG, dl),
ISD::SETNE);
// Now return a new VSELECT using the mask.
return DAG.getSelect(dl, VT, Mask, Op.getOperand(1), Op.getOperand(2));
}
// Only some types will be legal on some subtargets. If we can emit a legal
// VSELECT-matching blend, return Op, and but if we need to expand, return
// a null value.
switch (VT.SimpleTy) {
default:
// Most of the vector types have blends past SSE4.1.
return Op;
case MVT::v32i8:
// The byte blends for AVX vectors were introduced only in AVX2.
if (Subtarget.hasAVX2())
return Op;
return SDValue();
case MVT::v8i16:
case MVT::v16i16: {
// Bitcast everything to the vXi8 type and use a vXi8 vselect.
MVT CastVT = MVT::getVectorVT(MVT::i8, VT.getVectorNumElements() * 2);
SDValue Cond = DAG.getBitcast(CastVT, Op->getOperand(0));
SDValue LHS = DAG.getBitcast(CastVT, Op->getOperand(1));
SDValue RHS = DAG.getBitcast(CastVT, Op->getOperand(2));
SDValue Select = DAG.getNode(ISD::VSELECT, dl, CastVT, Cond, LHS, RHS);
return DAG.getBitcast(VT, Select);
}
}
}
static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
if (!Op.getOperand(0).getSimpleValueType().is128BitVector())
return SDValue();
if (VT.getSizeInBits() == 8) {
SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
Op.getOperand(0), Op.getOperand(1));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Extract);
}
if (VT == MVT::f32) {
// EXTRACTPS outputs to a GPR32 register which will require a movd to copy
// the result back to FR32 register. It's only worth matching if the
// result has a single use which is a store or a bitcast to i32. And in
// the case of a store, it's not worth it if the index is a constant 0,
// because a MOVSSmr can be used instead, which is smaller and faster.
if (!Op.hasOneUse())
return SDValue();
SDNode *User = *Op.getNode()->use_begin();
if ((User->getOpcode() != ISD::STORE ||
isNullConstant(Op.getOperand(1))) &&
(User->getOpcode() != ISD::BITCAST ||
User->getValueType(0) != MVT::i32))
return SDValue();
SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
DAG.getBitcast(MVT::v4i32, Op.getOperand(0)),
Op.getOperand(1));
return DAG.getBitcast(MVT::f32, Extract);
}
if (VT == MVT::i32 || VT == MVT::i64) {
// ExtractPS/pextrq works with constant index.
if (isa<ConstantSDNode>(Op.getOperand(1)))
return Op;
}
return SDValue();
}
/// Extract one bit from mask vector, like v16i1 or v8i1.
/// AVX-512 feature.
static SDValue ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDValue Vec = Op.getOperand(0);
SDLoc dl(Vec);
MVT VecVT = Vec.getSimpleValueType();
SDValue Idx = Op.getOperand(1);
MVT EltVT = Op.getSimpleValueType();
assert((VecVT.getVectorNumElements() <= 16 || Subtarget.hasBWI()) &&
"Unexpected vector type in ExtractBitFromMaskVector");
// variable index can't be handled in mask registers,
// extend vector to VR512/128
if (!isa<ConstantSDNode>(Idx)) {
unsigned NumElts = VecVT.getVectorNumElements();
// Extending v8i1/v16i1 to 512-bit get better performance on KNL
// than extending to 128/256bit.
MVT ExtEltVT = (NumElts <= 8) ? MVT::getIntegerVT(128 / NumElts) : MVT::i8;
MVT ExtVecVT = MVT::getVectorVT(ExtEltVT, NumElts);
SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, dl, ExtVecVT, Vec);
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ExtEltVT, Ext, Idx);
return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
}
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
// If the kshift instructions of the correct width aren't natively supported
// then we need to promote the vector to the native size to get the correct
// zeroing behavior.
if (VecVT.getVectorNumElements() < 16) {
VecVT = MVT::v16i1;
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v16i1,
DAG.getUNDEF(VecVT), Vec,
DAG.getIntPtrConstant(0, dl));
}
// Extracts from element 0 are always allowed.
if (IdxVal != 0) {
// Use kshiftr instruction to move to the lower element.
Vec = DAG.getNode(X86ISD::KSHIFTR, dl, VecVT, Vec,
DAG.getConstant(IdxVal, dl, MVT::i8));
}
// Shrink to v16i1 since that's always legal.
if (VecVT.getVectorNumElements() > 16) {
VecVT = MVT::v16i1;
Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VecVT, Vec,
DAG.getIntPtrConstant(0, dl));
}
// Convert to a bitcast+aext/trunc.
MVT CastVT = MVT::getIntegerVT(VecVT.getVectorNumElements());
return DAG.getAnyExtOrTrunc(DAG.getBitcast(CastVT, Vec), dl, EltVT);
}
SDValue
X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
SDValue Vec = Op.getOperand(0);
MVT VecVT = Vec.getSimpleValueType();
SDValue Idx = Op.getOperand(1);
if (VecVT.getVectorElementType() == MVT::i1)
return ExtractBitFromMaskVector(Op, DAG, Subtarget);
if (!isa<ConstantSDNode>(Idx)) {
// Its more profitable to go through memory (1 cycles throughput)
// than using VMOVD + VPERMV/PSHUFB sequence ( 2/3 cycles throughput)
// IACA tool was used to get performance estimation
// (https://software.intel.com/en-us/articles/intel-architecture-code-analyzer)
//
// example : extractelement <16 x i8> %a, i32 %i
//
// Block Throughput: 3.00 Cycles
// Throughput Bottleneck: Port5
//
// | Num Of | Ports pressure in cycles | |
// | Uops | 0 - DV | 5 | 6 | 7 | |
// ---------------------------------------------
// | 1 | | 1.0 | | | CP | vmovd xmm1, edi
// | 1 | | 1.0 | | | CP | vpshufb xmm0, xmm0, xmm1
// | 2 | 1.0 | 1.0 | | | CP | vpextrb eax, xmm0, 0x0
// Total Num Of Uops: 4
//
//
// Block Throughput: 1.00 Cycles
// Throughput Bottleneck: PORT2_AGU, PORT3_AGU, Port4
//
// | | Ports pressure in cycles | |
// |Uops| 1 | 2 - D |3 - D | 4 | 5 | |
// ---------------------------------------------------------
// |2^ | | 0.5 | 0.5 |1.0| |CP| vmovaps xmmword ptr [rsp-0x18], xmm0
// |1 |0.5| | | |0.5| | lea rax, ptr [rsp-0x18]
// |1 | |0.5, 0.5|0.5, 0.5| | |CP| mov al, byte ptr [rdi+rax*1]
// Total Num Of Uops: 4
return SDValue();
}
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
// If this is a 256-bit vector result, first extract the 128-bit vector and
// then extract the element from the 128-bit vector.
if (VecVT.is256BitVector() || VecVT.is512BitVector()) {
// Get the 128-bit vector.
Vec = extract128BitVector(Vec, IdxVal, DAG, dl);
MVT EltVT = VecVT.getVectorElementType();
unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits();
assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
// Find IdxVal modulo ElemsPerChunk. Since ElemsPerChunk is a power of 2
// this can be done with a mask.
IdxVal &= ElemsPerChunk - 1;
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
DAG.getConstant(IdxVal, dl, MVT::i32));
}
assert(VecVT.is128BitVector() && "Unexpected vector length");
MVT VT = Op.getSimpleValueType();
if (VT.getSizeInBits() == 16) {
// If IdxVal is 0, it's cheaper to do a move instead of a pextrw, unless
// we're going to zero extend the register or fold the store (SSE41 only).
if (IdxVal == 0 && !MayFoldIntoZeroExtend(Op) &&
!(Subtarget.hasSSE41() && MayFoldIntoStore(Op)))
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
DAG.getBitcast(MVT::v4i32, Vec), Idx));
// Transform it so it match pextrw which produces a 32-bit result.
SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
Op.getOperand(0), Op.getOperand(1));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Extract);
}
if (Subtarget.hasSSE41())
if (SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG))
return Res;
// TODO: We only extract a single element from v16i8, we can probably afford
// to be more aggressive here before using the default approach of spilling to
// stack.
if (VT.getSizeInBits() == 8 && Op->isOnlyUserOf(Vec.getNode())) {
// Extract either the lowest i32 or any i16, and extract the sub-byte.
int DWordIdx = IdxVal / 4;
if (DWordIdx == 0) {
SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
DAG.getBitcast(MVT::v4i32, Vec),
DAG.getIntPtrConstant(DWordIdx, dl));
int ShiftVal = (IdxVal % 4) * 8;
if (ShiftVal != 0)
Res = DAG.getNode(ISD::SRL, dl, MVT::i32, Res,
DAG.getConstant(ShiftVal, dl, MVT::i8));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
}
int WordIdx = IdxVal / 2;
SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
DAG.getBitcast(MVT::v8i16, Vec),
DAG.getIntPtrConstant(WordIdx, dl));
int ShiftVal = (IdxVal % 2) * 8;
if (ShiftVal != 0)
Res = DAG.getNode(ISD::SRL, dl, MVT::i16, Res,
DAG.getConstant(ShiftVal, dl, MVT::i8));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
}
if (VT.getSizeInBits() == 32) {
if (IdxVal == 0)
return Op;
// SHUFPS the element to the lowest double word, then movss.
int Mask[4] = { static_cast<int>(IdxVal), -1, -1, -1 };
Vec = DAG.getVectorShuffle(VecVT, dl, Vec, DAG.getUNDEF(VecVT), Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
DAG.getIntPtrConstant(0, dl));
}
if (VT.getSizeInBits() == 64) {
// FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
// FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
// to match extract_elt for f64.
if (IdxVal == 0)
return Op;
// UNPCKHPD the element to the lowest double word, then movsd.
// Note if the lower 64 bits of the result of the UNPCKHPD is then stored
// to a f64mem, the whole operation is folded into a single MOVHPDmr.
int Mask[2] = { 1, -1 };
Vec = DAG.getVectorShuffle(VecVT, dl, Vec, DAG.getUNDEF(VecVT), Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
DAG.getIntPtrConstant(0, dl));
}
return SDValue();
}
/// Insert one bit to mask vector, like v16i1 or v8i1.
/// AVX-512 feature.
static SDValue InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc dl(Op);
SDValue Vec = Op.getOperand(0);
SDValue Elt = Op.getOperand(1);
SDValue Idx = Op.getOperand(2);
MVT VecVT = Vec.getSimpleValueType();
if (!isa<ConstantSDNode>(Idx)) {
// Non constant index. Extend source and destination,
// insert element and then truncate the result.
unsigned NumElts = VecVT.getVectorNumElements();
MVT ExtEltVT = (NumElts <= 8) ? MVT::getIntegerVT(128 / NumElts) : MVT::i8;
MVT ExtVecVT = MVT::getVectorVT(ExtEltVT, NumElts);
SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT,
DAG.getNode(ISD::SIGN_EXTEND, dl, ExtVecVT, Vec),
DAG.getNode(ISD::SIGN_EXTEND, dl, ExtEltVT, Elt), Idx);
return DAG.getNode(ISD::TRUNCATE, dl, VecVT, ExtOp);
}
// Copy into a k-register, extract to v1i1 and insert_subvector.
SDValue EltInVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i1, Elt);
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VecVT, Vec, EltInVec,
Op.getOperand(2));
}
SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
MVT VT = Op.getSimpleValueType();
MVT EltVT = VT.getVectorElementType();
unsigned NumElts = VT.getVectorNumElements();
if (EltVT == MVT::i1)
return InsertBitToMaskVector(Op, DAG, Subtarget);
SDLoc dl(Op);
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2 = Op.getOperand(2);
if (!isa<ConstantSDNode>(N2))
return SDValue();
auto *N2C = cast<ConstantSDNode>(N2);
unsigned IdxVal = N2C->getZExtValue();
bool IsZeroElt = X86::isZeroNode(N1);
bool IsAllOnesElt = VT.isInteger() && llvm::isAllOnesConstant(N1);
// If we are inserting a element, see if we can do this more efficiently with
// a blend shuffle with a rematerializable vector than a costly integer
// insertion.
if ((IsZeroElt || IsAllOnesElt) && Subtarget.hasSSE41() &&
16 <= EltVT.getSizeInBits()) {
SmallVector<int, 8> BlendMask;
for (unsigned i = 0; i != NumElts; ++i)
BlendMask.push_back(i == IdxVal ? i + NumElts : i);
SDValue CstVector = IsZeroElt ? getZeroVector(VT, Subtarget, DAG, dl)
: getOnesVector(VT, DAG, dl);
return DAG.getVectorShuffle(VT, dl, N0, CstVector, BlendMask);
}
// If the vector is wider than 128 bits, extract the 128-bit subvector, insert
// into that, and then insert the subvector back into the result.
if (VT.is256BitVector() || VT.is512BitVector()) {
// With a 256-bit vector, we can insert into the zero element efficiently
// using a blend if we have AVX or AVX2 and the right data type.
if (VT.is256BitVector() && IdxVal == 0) {
// TODO: It is worthwhile to cast integer to floating point and back
// and incur a domain crossing penalty if that's what we'll end up
// doing anyway after extracting to a 128-bit vector.
if ((Subtarget.hasAVX() && (EltVT == MVT::f64 || EltVT == MVT::f32)) ||
(Subtarget.hasAVX2() && EltVT == MVT::i32)) {
SDValue N1Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, N1);
N2 = DAG.getIntPtrConstant(1, dl);
return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1Vec, N2);
}
}
// Get the desired 128-bit vector chunk.
SDValue V = extract128BitVector(N0, IdxVal, DAG, dl);
// Insert the element into the desired chunk.
unsigned NumEltsIn128 = 128 / EltVT.getSizeInBits();
assert(isPowerOf2_32(NumEltsIn128));
// Since NumEltsIn128 is a power of 2 we can use mask instead of modulo.
unsigned IdxIn128 = IdxVal & (NumEltsIn128 - 1);
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
DAG.getConstant(IdxIn128, dl, MVT::i32));
// Insert the changed part back into the bigger vector
return insert128BitVector(N0, V, IdxVal, DAG, dl);
}
assert(VT.is128BitVector() && "Only 128-bit vector types should be left!");
// Transform it so it match pinsr{b,w} which expects a GR32 as its second
// argument. SSE41 required for pinsrb.
if (VT == MVT::v8i16 || (VT == MVT::v16i8 && Subtarget.hasSSE41())) {
unsigned Opc;
if (VT == MVT::v8i16) {
assert(Subtarget.hasSSE2() && "SSE2 required for PINSRW");
Opc = X86ISD::PINSRW;
} else {
assert(VT == MVT::v16i8 && "PINSRB requires v16i8 vector");
assert(Subtarget.hasSSE41() && "SSE41 required for PINSRB");
Opc = X86ISD::PINSRB;
}
if (N1.getValueType() != MVT::i32)
N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
if (N2.getValueType() != MVT::i32)
N2 = DAG.getIntPtrConstant(IdxVal, dl);
return DAG.getNode(Opc, dl, VT, N0, N1, N2);
}
if (Subtarget.hasSSE41()) {
if (EltVT == MVT::f32) {
// Bits [7:6] of the constant are the source select. This will always be
// zero here. The DAG Combiner may combine an extract_elt index into
// these bits. For example (insert (extract, 3), 2) could be matched by
// putting the '3' into bits [7:6] of X86ISD::INSERTPS.
// Bits [5:4] of the constant are the destination select. This is the
// value of the incoming immediate.
// Bits [3:0] of the constant are the zero mask. The DAG Combiner may
// combine either bitwise AND or insert of float 0.0 to set these bits.
bool MinSize = DAG.getMachineFunction().getFunction().optForMinSize();
if (IdxVal == 0 && (!MinSize || !MayFoldLoad(N1))) {
// If this is an insertion of 32-bits into the low 32-bits of
// a vector, we prefer to generate a blend with immediate rather
// than an insertps. Blends are simpler operations in hardware and so
// will always have equal or better performance than insertps.
// But if optimizing for size and there's a load folding opportunity,
// generate insertps because blendps does not have a 32-bit memory
// operand form.
N2 = DAG.getIntPtrConstant(1, dl);
N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1, N2);
}
N2 = DAG.getIntPtrConstant(IdxVal << 4, dl);
// Create this as a scalar to vector..
N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
}
// PINSR* works with constant index.
if (EltVT == MVT::i32 || EltVT == MVT::i64)
return Op;
}
return SDValue();
}
static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc dl(Op);
MVT OpVT = Op.getSimpleValueType();
// It's always cheaper to replace a xor+movd with xorps and simplifies further
// combines.
if (X86::isZeroNode(Op.getOperand(0)))
return getZeroVector(OpVT, Subtarget, DAG, dl);
// If this is a 256-bit vector result, first insert into a 128-bit
// vector and then insert into the 256-bit vector.
if (!OpVT.is128BitVector()) {
// Insert into a 128-bit vector.
unsigned SizeFactor = OpVT.getSizeInBits() / 128;
MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(),
OpVT.getVectorNumElements() / SizeFactor);
Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
// Insert the 128-bit vector.
return insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
}
assert(OpVT.is128BitVector() && "Expected an SSE type!");
// Pass through a v4i32 SCALAR_TO_VECTOR as that's what we use in tblgen.
if (OpVT == MVT::v4i32)
return Op;
SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
return DAG.getBitcast(
OpVT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, AnyExt));
}
// Lower a node with an INSERT_SUBVECTOR opcode. This may result in a
// simple superregister reference or explicit instructions to insert
// the upper bits of a vector.
static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Op.getSimpleValueType().getVectorElementType() == MVT::i1);
return insert1BitVector(Op, DAG, Subtarget);
}
static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Op.getSimpleValueType().getVectorElementType() == MVT::i1 &&
"Only vXi1 extract_subvectors need custom lowering");
SDLoc dl(Op);
SDValue Vec = Op.getOperand(0);
SDValue Idx = Op.getOperand(1);
if (!isa<ConstantSDNode>(Idx))
return SDValue();
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
if (IdxVal == 0) // the operation is legal
return Op;
MVT VecVT = Vec.getSimpleValueType();
unsigned NumElems = VecVT.getVectorNumElements();
// Extend to natively supported kshift.
MVT WideVecVT = VecVT;
if ((!Subtarget.hasDQI() && NumElems == 8) || NumElems < 8) {
WideVecVT = Subtarget.hasDQI() ? MVT::v8i1 : MVT::v16i1;
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideVecVT,
DAG.getUNDEF(WideVecVT), Vec,
DAG.getIntPtrConstant(0, dl));
}
// Shift to the LSB.
Vec = DAG.getNode(X86ISD::KSHIFTR, dl, WideVecVT, Vec,
DAG.getConstant(IdxVal, dl, MVT::i8));
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, Op.getValueType(), Vec,
DAG.getIntPtrConstant(0, dl));
}
// Returns the appropriate wrapper opcode for a global reference.
unsigned X86TargetLowering::getGlobalWrapperKind(
const GlobalValue *GV, const unsigned char OpFlags) const {
// References to absolute symbols are never PC-relative.
if (GV && GV->isAbsoluteSymbolRef())
return X86ISD::Wrapper;
CodeModel::Model M = getTargetMachine().getCodeModel();
if (Subtarget.isPICStyleRIPRel() &&
(M == CodeModel::Small || M == CodeModel::Kernel))
return X86ISD::WrapperRIP;
// GOTPCREL references must always use RIP.
if (OpFlags == X86II::MO_GOTPCREL)
return X86ISD::WrapperRIP;
return X86ISD::Wrapper;
}
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
// their target counterpart wrapped in the X86ISD::Wrapper node. Suppose N is
// one of the above mentioned nodes. It has to be wrapped because otherwise
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
// be used to form addressing mode. These wrapped nodes will be selected
// into MOV32ri.
SDValue
X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
// global base reg.
unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr);
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result = DAG.getTargetConstantPool(
CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), OpFlag);
SDLoc DL(CP);
Result = DAG.getNode(getGlobalWrapperKind(), DL, PtrVT, Result);
// With PIC, the address is actually $g + Offset.
if (OpFlag) {
Result =
DAG.getNode(ISD::ADD, DL, PtrVT,
DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result);
}
return Result;
}
SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
// global base reg.
unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr);
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag);
SDLoc DL(JT);
Result = DAG.getNode(getGlobalWrapperKind(), DL, PtrVT, Result);
// With PIC, the address is actually $g + Offset.
if (OpFlag)
Result =
DAG.getNode(ISD::ADD, DL, PtrVT,
DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result);
return Result;
}
SDValue
X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
// global base reg.
const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
unsigned char OpFlag = Subtarget.classifyGlobalReference(nullptr, *Mod);
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT, OpFlag);
SDLoc DL(Op);
Result = DAG.getNode(getGlobalWrapperKind(), DL, PtrVT, Result);
// With PIC, the address is actually $g + Offset.
if (isPositionIndependent() && !Subtarget.is64Bit()) {
Result =
DAG.getNode(ISD::ADD, DL, PtrVT,
DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result);
}
// For symbols that require a load from a stub to get the address, emit the
// load.
if (isGlobalStubReference(OpFlag))
Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
return Result;
}
SDValue
X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
// Create the TargetBlockAddressAddress node.
unsigned char OpFlags =
Subtarget.classifyBlockAddressReference();
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
SDLoc dl(Op);
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset, OpFlags);
Result = DAG.getNode(getGlobalWrapperKind(), dl, PtrVT, Result);
// With PIC, the address is actually $g + Offset.
if (isGlobalRelativeToPICBase(OpFlags)) {
Result = DAG.getNode(ISD::ADD, dl, PtrVT,
DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result);
}
return Result;
}
SDValue X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV,
const SDLoc &dl, int64_t Offset,
SelectionDAG &DAG) const {
// Create the TargetGlobalAddress node, folding in the constant
// offset if it is legal.
unsigned char OpFlags = Subtarget.classifyGlobalReference(GV);
CodeModel::Model M = DAG.getTarget().getCodeModel();
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result;
if (OpFlags == X86II::MO_NO_FLAG &&
X86::isOffsetSuitableForCodeModel(Offset, M)) {
// A direct static reference to a global.
Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
Offset = 0;
} else {
Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, OpFlags);
}
Result = DAG.getNode(getGlobalWrapperKind(GV, OpFlags), dl, PtrVT, Result);
// With PIC, the address is actually $g + Offset.
if (isGlobalRelativeToPICBase(OpFlags)) {
Result = DAG.getNode(ISD::ADD, dl, PtrVT,
DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result);
}
// For globals that require a load from a stub to get the address, emit the
// load.
if (isGlobalStubReference(OpFlags))
Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
// If there was a non-zero offset that we didn't fold, create an explicit
// addition for it.
if (Offset != 0)
Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result,
DAG.getConstant(Offset, dl, PtrVT));
return Result;
}
SDValue
X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
}
static SDValue
GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
unsigned char OperandFlags, bool LocalDynamic = false) {
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SDLoc dl(GA);
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
GA->getValueType(0),
GA->getOffset(),
OperandFlags);
X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
: X86ISD::TLSADDR;
if (InFlag) {
SDValue Ops[] = { Chain, TGA, *InFlag };
Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
} else {
SDValue Ops[] = { Chain, TGA };
Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
}
// TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
MFI.setAdjustsStack(true);
MFI.setHasCalls(true);
SDValue Flag = Chain.getValue(1);
return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
}
// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
static SDValue
LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
const EVT PtrVT) {
SDValue InFlag;
SDLoc dl(GA); // ? function entry point might be better
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
DAG.getNode(X86ISD::GlobalBaseReg,
SDLoc(), PtrVT), InFlag);
InFlag = Chain.getValue(1);
return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
}
// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
static SDValue
LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
const EVT PtrVT) {
return GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT,
X86::RAX, X86II::MO_TLSGD);
}
static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
SelectionDAG &DAG,
const EVT PtrVT,
bool is64Bit) {
SDLoc dl(GA);
// Get the start address of the TLS block for this module.
X86MachineFunctionInfo *MFI = DAG.getMachineFunction()
.getInfo<X86MachineFunctionInfo>();
MFI->incNumLocalDynamicTLSAccesses();
SDValue Base;
if (is64Bit) {
Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX,
X86II::MO_TLSLD, /*LocalDynamic=*/true);
} else {
SDValue InFlag;
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
InFlag = Chain.getValue(1);
Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
X86II::MO_TLSLDM, /*LocalDynamic=*/true);
}
// Note: the CleanupLocalDynamicTLSPass will remove redundant computations
// of Base.
// Build x@dtpoff.
unsigned char OperandFlags = X86II::MO_DTPOFF;
unsigned WrapperKind = X86ISD::Wrapper;
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
GA->getValueType(0),
GA->getOffset(), OperandFlags);
SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
// Add x@dtpoff with the base.
return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
}
// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
const EVT PtrVT, TLSModel::Model model,
bool is64Bit, bool isPIC) {
SDLoc dl(GA);
// Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
is64Bit ? 257 : 256));
SDValue ThreadPointer =
DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0, dl),
MachinePointerInfo(Ptr));
unsigned char OperandFlags = 0;
// Most TLS accesses are not RIP relative, even on x86-64. One exception is
// initialexec.
unsigned WrapperKind = X86ISD::Wrapper;
if (model == TLSModel::LocalExec) {
OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
} else if (model == TLSModel::InitialExec) {
if (is64Bit) {
OperandFlags = X86II::MO_GOTTPOFF;
WrapperKind = X86ISD::WrapperRIP;
} else {
OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
}
} else {
llvm_unreachable("Unexpected model");
}
// emit "addl x@ntpoff,%eax" (local exec)
// or "addl x@indntpoff,%eax" (initial exec)
// or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
SDValue TGA =
DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0),
GA->getOffset(), OperandFlags);
SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
if (model == TLSModel::InitialExec) {
if (isPIC && !is64Bit) {
Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
Offset);
}
Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
}
// The address of the thread local variable is the add of the thread
// pointer with the offset of the variable.
return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
}
SDValue
X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
if (DAG.getTarget().useEmulatedTLS())
return LowerToTLSEmulatedModel(GA, DAG);
const GlobalValue *GV = GA->getGlobal();
auto PtrVT = getPointerTy(DAG.getDataLayout());
bool PositionIndependent = isPositionIndependent();
if (Subtarget.isTargetELF()) {
TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
switch (model) {
case TLSModel::GeneralDynamic:
if (Subtarget.is64Bit())
return LowerToTLSGeneralDynamicModel64(GA, DAG, PtrVT);
return LowerToTLSGeneralDynamicModel32(GA, DAG, PtrVT);
case TLSModel::LocalDynamic:
return LowerToTLSLocalDynamicModel(GA, DAG, PtrVT,
Subtarget.is64Bit());
case TLSModel::InitialExec:
case TLSModel::LocalExec:
return LowerToTLSExecModel(GA, DAG, PtrVT, model, Subtarget.is64Bit(),
PositionIndependent);
}
llvm_unreachable("Unknown TLS model.");
}
if (Subtarget.isTargetDarwin()) {
// Darwin only has one model of TLS. Lower to that.
unsigned char OpFlag = 0;
unsigned WrapperKind = Subtarget.isPICStyleRIPRel() ?
X86ISD::WrapperRIP : X86ISD::Wrapper;
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
// global base reg.
bool PIC32 = PositionIndependent && !Subtarget.is64Bit();
if (PIC32)
OpFlag = X86II::MO_TLVP_PIC_BASE;
else
OpFlag = X86II::MO_TLVP;
SDLoc DL(Op);
SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
GA->getValueType(0),
GA->getOffset(), OpFlag);
SDValue Offset = DAG.getNode(WrapperKind, DL, PtrVT, Result);
// With PIC32, the address is actually $g + Offset.
if (PIC32)
Offset = DAG.getNode(ISD::ADD, DL, PtrVT,
DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
Offset);
// Lowering the machine isd will make sure everything is in the right
// location.
SDValue Chain = DAG.getEntryNode();
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
SDValue Args[] = { Chain, Offset };
Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args);
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, DL, true),
DAG.getIntPtrConstant(0, DL, true),
Chain.getValue(1), DL);
// TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
MFI.setAdjustsStack(true);
// And our return value (tls address) is in the standard call return value
// location.
unsigned Reg = Subtarget.is64Bit() ? X86::RAX : X86::EAX;
return DAG.getCopyFromReg(Chain, DL, Reg, PtrVT, Chain.getValue(1));
}
if (Subtarget.isTargetKnownWindowsMSVC() ||
Subtarget.isTargetWindowsItanium() ||
Subtarget.isTargetWindowsGNU()) {
// Just use the implicit TLS architecture
// Need to generate something similar to:
// mov rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
// ; from TEB
// mov ecx, dword [rel _tls_index]: Load index (from C runtime)
// mov rcx, qword [rdx+rcx*8]
// mov eax, .tls$:tlsvar
// [rax+rcx] contains the address
// Windows 64bit: gs:0x58
// Windows 32bit: fs:__tls_array
SDLoc dl(GA);
SDValue Chain = DAG.getEntryNode();
// Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
// %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
// use its literal value of 0x2C.
Value *Ptr = Constant::getNullValue(Subtarget.is64Bit()
? Type::getInt8PtrTy(*DAG.getContext(),
256)
: Type::getInt32PtrTy(*DAG.getContext(),
257));
SDValue TlsArray = Subtarget.is64Bit()
? DAG.getIntPtrConstant(0x58, dl)
: (Subtarget.isTargetWindowsGNU()
? DAG.getIntPtrConstant(0x2C, dl)
: DAG.getExternalSymbol("_tls_array", PtrVT));
SDValue ThreadPointer =
DAG.getLoad(PtrVT, dl, Chain, TlsArray, MachinePointerInfo(Ptr));
SDValue res;
if (GV->getThreadLocalMode() == GlobalVariable::LocalExecTLSModel) {
res = ThreadPointer;
} else {
// Load the _tls_index variable
SDValue IDX = DAG.getExternalSymbol("_tls_index", PtrVT);
if (Subtarget.is64Bit())
IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, IDX,
MachinePointerInfo(), MVT::i32);
else
IDX = DAG.getLoad(PtrVT, dl, Chain, IDX, MachinePointerInfo());
auto &DL = DAG.getDataLayout();
SDValue Scale =
DAG.getConstant(Log2_64_Ceil(DL.getPointerSize()), dl, MVT::i8);
IDX = DAG.getNode(ISD::SHL, dl, PtrVT, IDX, Scale);
res = DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, IDX);
}
res = DAG.getLoad(PtrVT, dl, Chain, res, MachinePointerInfo());
// Get the offset of start of .tls section
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
GA->getValueType(0),
GA->getOffset(), X86II::MO_SECREL);
SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, TGA);
// The address of the thread local variable is the add of the thread
// pointer with the offset of the variable.
return DAG.getNode(ISD::ADD, dl, PtrVT, res, Offset);
}
llvm_unreachable("TLS not implemented for this target.");
}
/// Lower SRA_PARTS and friends, which return two i32 values
/// and take a 2 x i32 value to shift plus a shift amount.
static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) {
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
MVT VT = Op.getSimpleValueType();
unsigned VTBits = VT.getSizeInBits();
SDLoc dl(Op);
bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
// X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the
// generic ISD nodes haven't. Insert an AND to be safe, it's optimized away
// during isel.
SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
DAG.getConstant(VTBits - 1, dl, MVT::i8));
SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
DAG.getConstant(VTBits - 1, dl, MVT::i8))
: DAG.getConstant(0, dl, VT);
SDValue Tmp2, Tmp3;
if (Op.getOpcode() == ISD::SHL_PARTS) {
Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
} else {
Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
}
// If the shift amount is larger or equal than the width of a part we can't
// rely on the results of shld/shrd. Insert a test and select the appropriate
// values for large shift amounts.
SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
DAG.getConstant(VTBits, dl, MVT::i8));
SDValue Cond = DAG.getSetCC(dl, MVT::i8, AndNode,
DAG.getConstant(0, dl, MVT::i8), ISD::SETNE);
SDValue Hi, Lo;
if (Op.getOpcode() == ISD::SHL_PARTS) {
Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
} else {
Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
}
return DAG.getMergeValues({ Lo, Hi }, dl);
}
// Try to use a packed vector operation to handle i64 on 32-bit targets when
// AVX512DQ is enabled.
static SDValue LowerI64IntToFP_AVX512DQ(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
assert((Op.getOpcode() == ISD::SINT_TO_FP ||
Op.getOpcode() == ISD::UINT_TO_FP) && "Unexpected opcode!");
SDValue Src = Op.getOperand(0);
MVT SrcVT = Src.getSimpleValueType();
MVT VT = Op.getSimpleValueType();
if (!Subtarget.hasDQI() || SrcVT != MVT::i64 || Subtarget.is64Bit() ||
(VT != MVT::f32 && VT != MVT::f64))
return SDValue();
// Pack the i64 into a vector, do the operation and extract.
// Using 256-bit to ensure result is 128-bits for f32 case.
unsigned NumElts = Subtarget.hasVLX() ? 4 : 8;
MVT VecInVT = MVT::getVectorVT(MVT::i64, NumElts);
MVT VecVT = MVT::getVectorVT(VT, NumElts);
SDLoc dl(Op);
SDValue InVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecInVT, Src);
SDValue CvtVec = DAG.getNode(Op.getOpcode(), dl, VecVT, InVec);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, CvtVec,
DAG.getIntPtrConstant(0, dl));
}
SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
SDValue Src = Op.getOperand(0);
MVT SrcVT = Src.getSimpleValueType();
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
if (SrcVT.isVector()) {
if (SrcVT == MVT::v2i32 && VT == MVT::v2f64) {
return DAG.getNode(X86ISD::CVTSI2P, dl, VT,
DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32, Src,
DAG.getUNDEF(SrcVT)));
}
return SDValue();
}
assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 &&
"Unknown SINT_TO_FP to lower!");
// These are really Legal; return the operand so the caller accepts it as
// Legal.
if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(VT))
return Op;
if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(VT) && Subtarget.is64Bit()) {
return Op;
}
if (SDValue V = LowerI64IntToFP_AVX512DQ(Op, DAG, Subtarget))
return V;
SDValue ValueToStore = Op.getOperand(0);
if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(VT) &&
!Subtarget.is64Bit())
// Bitcasting to f64 here allows us to do a single 64-bit store from
// an SSE register, avoiding the store forwarding penalty that would come
// with two 32-bit stores.
ValueToStore = DAG.getBitcast(MVT::f64, ValueToStore);
unsigned Size = SrcVT.getSizeInBits()/8;
MachineFunction &MF = DAG.getMachineFunction();
auto PtrVT = getPointerTy(MF.getDataLayout());
int SSFI = MF.getFrameInfo().CreateStackObject(Size, Size, false);
SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
SDValue Chain = DAG.getStore(
DAG.getEntryNode(), dl, ValueToStore, StackSlot,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI));
return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
}
SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
SDValue StackSlot,
SelectionDAG &DAG) const {
// Build the FILD
SDLoc DL(Op);
SDVTList Tys;
bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
if (useSSE)
Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
else
Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
unsigned ByteSize = SrcVT.getSizeInBits()/8;
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
MachineMemOperand *MMO;
if (FI) {
int SSFI = FI->getIndex();
MMO = DAG.getMachineFunction().getMachineMemOperand(
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
MachineMemOperand::MOLoad, ByteSize, ByteSize);
} else {
MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
StackSlot = StackSlot.getOperand(1);
}
SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
X86ISD::FILD, DL,
Tys, Ops, SrcVT, MMO);
if (useSSE) {
Chain = Result.getValue(1);
SDValue InFlag = Result.getValue(2);
// FIXME: Currently the FST is flagged to the FILD_FLAG. This
// shouldn't be necessary except that RFP cannot be live across
// multiple blocks. When stackifier is fixed, they can be uncoupled.
MachineFunction &MF = DAG.getMachineFunction();
unsigned SSFISize = Op.getValueSizeInBits()/8;
int SSFI = MF.getFrameInfo().CreateStackObject(SSFISize, SSFISize, false);
auto PtrVT = getPointerTy(MF.getDataLayout());
SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
Tys = DAG.getVTList(MVT::Other);
SDValue Ops[] = {
Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
};
MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
MachineMemOperand::MOStore, SSFISize, SSFISize);
Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
Ops, Op.getValueType(), MMO);
Result = DAG.getLoad(
Op.getValueType(), DL, Chain, StackSlot,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI));
}
return Result;
}
/// 64-bit unsigned integer to double expansion.
static SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// This algorithm is not obvious. Here it is what we're trying to output:
/*
movq %rax, %xmm0
punpckldq (c0), %xmm0 // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
subpd (c1), %xmm0 // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
#ifdef __SSE3__
haddpd %xmm0, %xmm0
#else
pshufd $0x4e, %xmm0, %xmm1
addpd %xmm1, %xmm0
#endif
*/
SDLoc dl(Op);
LLVMContext *Context = DAG.getContext();
// Build some magic constants.
static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
Constant *C0 = ConstantDataVector::get(*Context, CV0);
auto PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
SDValue CPIdx0 = DAG.getConstantPool(C0, PtrVT, 16);
SmallVector<Constant*,2> CV1;
CV1.push_back(
ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble(),
APInt(64, 0x4330000000000000ULL))));
CV1.push_back(
ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble(),
APInt(64, 0x4530000000000000ULL))));
Constant *C1 = ConstantVector::get(CV1);
SDValue CPIdx1 = DAG.getConstantPool(C1, PtrVT, 16);
// Load the 64-bit value into an XMM register.
SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
Op.getOperand(0));
SDValue CLod0 =
DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
/* Alignment = */ 16);
SDValue Unpck1 =
getUnpackl(DAG, dl, MVT::v4i32, DAG.getBitcast(MVT::v4i32, XR1), CLod0);
SDValue CLod1 =
DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
/* Alignment = */ 16);
SDValue XR2F = DAG.getBitcast(MVT::v2f64, Unpck1);
// TODO: Are there any fast-math-flags to propagate here?
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
SDValue Result;
if (Subtarget.hasSSE3()) {
// FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
} else {
SDValue S2F = DAG.getBitcast(MVT::v4i32, Sub);
SDValue Shuffle = DAG.getVectorShuffle(MVT::v4i32, dl, S2F, S2F, {2,3,0,1});
Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
DAG.getBitcast(MVT::v2f64, Shuffle), Sub);
}
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
DAG.getIntPtrConstant(0, dl));
}
/// 32-bit unsigned integer to float expansion.
static SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc dl(Op);
// FP constant to bias correct the final result.
SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl,
MVT::f64);
// Load the 32-bit value into an XMM register.
SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
Op.getOperand(0));
// Zero out the upper parts of the register.
Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
DAG.getBitcast(MVT::v2f64, Load),
DAG.getIntPtrConstant(0, dl));
// Or the load with the bias.
SDValue Or = DAG.getNode(
ISD::OR, dl, MVT::v2i64,
DAG.getBitcast(MVT::v2i64,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Load)),
DAG.getBitcast(MVT::v2i64,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Bias)));
Or =
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
DAG.getBitcast(MVT::v2f64, Or), DAG.getIntPtrConstant(0, dl));
// Subtract the bias.
// TODO: Are there any fast-math-flags to propagate here?
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
// Handle final rounding.
return DAG.getFPExtendOrRound(Sub, dl, Op.getSimpleValueType());
}
static SDValue lowerUINT_TO_FP_v2i32(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget,
const SDLoc &DL) {
if (Op.getSimpleValueType() != MVT::v2f64)
return SDValue();
SDValue N0 = Op.getOperand(0);
assert(N0.getSimpleValueType() == MVT::v2i32 && "Unexpected input type");
// Legalize to v4i32 type.
N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4i32, N0,
DAG.getUNDEF(MVT::v2i32));
if (Subtarget.hasAVX512())
return DAG.getNode(X86ISD::CVTUI2P, DL, MVT::v2f64, N0);
// Same implementation as VectorLegalizer::ExpandUINT_TO_FLOAT,
// but using v2i32 to v2f64 with X86ISD::CVTSI2P.
SDValue HalfWord = DAG.getConstant(16, DL, MVT::v4i32);
SDValue HalfWordMask = DAG.getConstant(0x0000FFFF, DL, MVT::v4i32);
// Two to the power of half-word-size.
SDValue TWOHW = DAG.getConstantFP(1 << 16, DL, MVT::v2f64);
// Clear upper part of LO, lower HI.
SDValue HI = DAG.getNode(ISD::SRL, DL, MVT::v4i32, N0, HalfWord);
SDValue LO = DAG.getNode(ISD::AND, DL, MVT::v4i32, N0, HalfWordMask);
SDValue fHI = DAG.getNode(X86ISD::CVTSI2P, DL, MVT::v2f64, HI);
fHI = DAG.getNode(ISD::FMUL, DL, MVT::v2f64, fHI, TWOHW);
SDValue fLO = DAG.getNode(X86ISD::CVTSI2P, DL, MVT::v2f64, LO);
// Add the two halves.
return DAG.getNode(ISD::FADD, DL, MVT::v2f64, fHI, fLO);
}
static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// The algorithm is the following:
// #ifdef __SSE4_1__
// uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
// uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
// (uint4) 0x53000000, 0xaa);
// #else
// uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
// uint4 hi = (v >> 16) | (uint4) 0x53000000;
// #endif
// float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
// return (float4) lo + fhi;
// We shouldn't use it when unsafe-fp-math is enabled though: we might later
// reassociate the two FADDs, and if we do that, the algorithm fails
// spectacularly (PR24512).
// FIXME: If we ever have some kind of Machine FMF, this should be marked
// as non-fast and always be enabled. Why isn't SDAG FMF enough? Because
// there's also the MachineCombiner reassociations happening on Machine IR.
if (DAG.getTarget().Options.UnsafeFPMath)
return SDValue();
SDLoc DL(Op);
SDValue V = Op->getOperand(0);
MVT VecIntVT = V.getSimpleValueType();
bool Is128 = VecIntVT == MVT::v4i32;
MVT VecFloatVT = Is128 ? MVT::v4f32 : MVT::v8f32;
// If we convert to something else than the supported type, e.g., to v4f64,
// abort early.
if (VecFloatVT != Op->getSimpleValueType(0))
return SDValue();
assert((VecIntVT == MVT::v4i32 || VecIntVT == MVT::v8i32) &&
"Unsupported custom type");
// In the #idef/#else code, we have in common:
// - The vector of constants:
// -- 0x4b000000
// -- 0x53000000
// - A shift:
// -- v >> 16
// Create the splat vector for 0x4b000000.
SDValue VecCstLow = DAG.getConstant(0x4b000000, DL, VecIntVT);
// Create the splat vector for 0x53000000.
SDValue VecCstHigh = DAG.getConstant(0x53000000, DL, VecIntVT);
// Create the right shift.
SDValue VecCstShift = DAG.getConstant(16, DL, VecIntVT);
SDValue HighShift = DAG.getNode(ISD::SRL, DL, VecIntVT, V, VecCstShift);
SDValue Low, High;
if (Subtarget.hasSSE41()) {
MVT VecI16VT = Is128 ? MVT::v8i16 : MVT::v16i16;
// uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
SDValue VecCstLowBitcast = DAG.getBitcast(VecI16VT, VecCstLow);
SDValue VecBitcast = DAG.getBitcast(VecI16VT, V);
// Low will be bitcasted right away, so do not bother bitcasting back to its
// original type.
Low = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecBitcast,
VecCstLowBitcast, DAG.getConstant(0xaa, DL, MVT::i32));
// uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
// (uint4) 0x53000000, 0xaa);
SDValue VecCstHighBitcast = DAG.getBitcast(VecI16VT, VecCstHigh);
SDValue VecShiftBitcast = DAG.getBitcast(VecI16VT, HighShift);
// High will be bitcasted right away, so do not bother bitcasting back to
// its original type.
High = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecShiftBitcast,
VecCstHighBitcast, DAG.getConstant(0xaa, DL, MVT::i32));
} else {
SDValue VecCstMask = DAG.getConstant(0xffff, DL, VecIntVT);
// uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
SDValue LowAnd = DAG.getNode(ISD::AND, DL, VecIntVT, V, VecCstMask);
Low = DAG.getNode(ISD::OR, DL, VecIntVT, LowAnd, VecCstLow);
// uint4 hi = (v >> 16) | (uint4) 0x53000000;
High = DAG.getNode(ISD::OR, DL, VecIntVT, HighShift, VecCstHigh);
}
// Create the vector constant for -(0x1.0p39f + 0x1.0p23f).
SDValue VecCstFAdd = DAG.getConstantFP(
APFloat(APFloat::IEEEsingle(), APInt(32, 0xD3000080)), DL, VecFloatVT);
// float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
SDValue HighBitcast = DAG.getBitcast(VecFloatVT, High);
// TODO: Are there any fast-math-flags to propagate here?
SDValue FHigh =
DAG.getNode(ISD::FADD, DL, VecFloatVT, HighBitcast, VecCstFAdd);
// return (float4) lo + fhi;
SDValue LowBitcast = DAG.getBitcast(VecFloatVT, Low);
return DAG.getNode(ISD::FADD, DL, VecFloatVT, LowBitcast, FHigh);
}
static SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDValue N0 = Op.getOperand(0);
MVT SrcVT = N0.getSimpleValueType();
SDLoc dl(Op);
switch (SrcVT.SimpleTy) {
default:
llvm_unreachable("Custom UINT_TO_FP is not supported!");
case MVT::v2i32:
return lowerUINT_TO_FP_v2i32(Op, DAG, Subtarget, dl);
case MVT::v4i32:
case MVT::v8i32:
assert(!Subtarget.hasAVX512());
return lowerUINT_TO_FP_vXi32(Op, DAG, Subtarget);
}
}
SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
SDValue N0 = Op.getOperand(0);
SDLoc dl(Op);
auto PtrVT = getPointerTy(DAG.getDataLayout());
if (Op.getSimpleValueType().isVector())
return lowerUINT_TO_FP_vec(Op, DAG, Subtarget);
MVT SrcVT = N0.getSimpleValueType();
MVT DstVT = Op.getSimpleValueType();
if (Subtarget.hasAVX512() && isScalarFPTypeInSSEReg(DstVT) &&
(SrcVT == MVT::i32 || (SrcVT == MVT::i64 && Subtarget.is64Bit()))) {
// Conversions from unsigned i32 to f32/f64 are legal,
// using VCVTUSI2SS/SD. Same for i64 in 64-bit mode.
return Op;
}
if (SDValue V = LowerI64IntToFP_AVX512DQ(Op, DAG, Subtarget))
return V;
if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
return LowerUINT_TO_FP_i64(Op, DAG, Subtarget);
if (SrcVT == MVT::i32 && X86ScalarSSEf64)
return LowerUINT_TO_FP_i32(Op, DAG, Subtarget);
if (Subtarget.is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
return SDValue();
// Make a 64-bit buffer, and use it to build an FILD.
SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
if (SrcVT == MVT::i32) {
SDValue OffsetSlot = DAG.getMemBasePlusOffset(StackSlot, 4, dl);
SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
StackSlot, MachinePointerInfo());
SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, dl, MVT::i32),
OffsetSlot, MachinePointerInfo());
SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
return Fild;
}
assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
SDValue ValueToStore = Op.getOperand(0);
if (isScalarFPTypeInSSEReg(Op.getValueType()) && !Subtarget.is64Bit())
// Bitcasting to f64 here allows us to do a single 64-bit store from
// an SSE register, avoiding the store forwarding penalty that would come
// with two 32-bit stores.
ValueToStore = DAG.getBitcast(MVT::f64, ValueToStore);
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, ValueToStore, StackSlot,
MachinePointerInfo());
// For i64 source, we need to add the appropriate power of 2 if the input
// was negative. This is the same as the optimization in
// DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
// we must be careful to do the computation in x87 extended precision, not
// in SSE. (The generic code can't know it's OK to do this, or how to.)
int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
MachineMemOperand::MOLoad, 8, 8);
SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
MVT::i64, MMO);
APInt FF(32, 0x5F800000ULL);
// Check whether the sign bit is set.
SDValue SignSet = DAG.getSetCC(
dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
Op.getOperand(0), DAG.getConstant(0, dl, MVT::i64), ISD::SETLT);
// Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
SDValue FudgePtr = DAG.getConstantPool(
ConstantInt::get(*DAG.getContext(), FF.zext(64)), PtrVT);
// Get a pointer to FF if the sign bit was set, or to 0 otherwise.
SDValue Zero = DAG.getIntPtrConstant(0, dl);
SDValue Four = DAG.getIntPtrConstant(4, dl);
SDValue Offset = DAG.getSelect(dl, Zero.getValueType(), SignSet, Zero, Four);
FudgePtr = DAG.getNode(ISD::ADD, dl, PtrVT, FudgePtr, Offset);
// Load the value out, extending it from f32 to f80.
// FIXME: Avoid the extend by constructing the right constant pool?
SDValue Fudge = DAG.getExtLoad(
ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(), FudgePtr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
/* Alignment = */ 4);
// Extend everything to 80 bits to force it to be done on x87.
// TODO: Are there any fast-math-flags to propagate here?
SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add,
DAG.getIntPtrConstant(0, dl));
}
// If the given FP_TO_SINT (IsSigned) or FP_TO_UINT (!IsSigned) operation
// is legal, or has an fp128 or f16 source (which needs to be promoted to f32),
// just return an <SDValue(), SDValue()> pair.
// Otherwise it is assumed to be a conversion from one of f32, f64 or f80
// to i16, i32 or i64, and we lower it to a legal sequence.
// If lowered to the final integer result we return a <result, SDValue()> pair.
// Otherwise we lower it to a sequence ending with a FIST, return a
// <FIST, StackSlot> pair, and the caller is responsible for loading
// the final integer result from StackSlot.
std::pair<SDValue,SDValue>
X86TargetLowering::FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
bool IsSigned, bool IsReplace) const {
SDLoc DL(Op);
EVT DstTy = Op.getValueType();
EVT TheVT = Op.getOperand(0).getValueType();
auto PtrVT = getPointerTy(DAG.getDataLayout());
if (TheVT != MVT::f32 && TheVT != MVT::f64 && TheVT != MVT::f80) {
// f16 must be promoted before using the lowering in this routine.
// fp128 does not use this lowering.
return std::make_pair(SDValue(), SDValue());
}
// If using FIST to compute an unsigned i64, we'll need some fixup
// to handle values above the maximum signed i64. A FIST is always
// used for the 32-bit subtarget, but also for f80 on a 64-bit target.
bool UnsignedFixup = !IsSigned &&
DstTy == MVT::i64 &&
(!Subtarget.is64Bit() ||
!isScalarFPTypeInSSEReg(TheVT));
if (!IsSigned && DstTy != MVT::i64 && !Subtarget.hasAVX512()) {
// Replace the fp-to-uint32 operation with an fp-to-sint64 FIST.
// The low 32 bits of the fist result will have the correct uint32 result.
assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
DstTy = MVT::i64;
}
assert(DstTy.getSimpleVT() <= MVT::i64 &&
DstTy.getSimpleVT() >= MVT::i16 &&
"Unknown FP_TO_INT to lower!");
// These are really Legal.
if (DstTy == MVT::i32 &&
isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
return std::make_pair(SDValue(), SDValue());
if (Subtarget.is64Bit() &&
DstTy == MVT::i64 &&
isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
return std::make_pair(SDValue(), SDValue());
// We lower FP->int64 into FISTP64 followed by a load from a temporary
// stack slot.
MachineFunction &MF = DAG.getMachineFunction();
unsigned MemSize = DstTy.getSizeInBits()/8;
int SSFI = MF.getFrameInfo().CreateStackObject(MemSize, MemSize, false);
SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
unsigned Opc;
switch (DstTy.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
}
SDValue Chain = DAG.getEntryNode();
SDValue Value = Op.getOperand(0);
SDValue Adjust; // 0x0 or 0x80000000, for result sign bit adjustment.
if (UnsignedFixup) {
//
// Conversion to unsigned i64 is implemented with a select,
// depending on whether the source value fits in the range
// of a signed i64. Let Thresh be the FP equivalent of
// 0x8000000000000000ULL.
//
// Adjust i32 = (Value < Thresh) ? 0 : 0x80000000;
// FistSrc = (Value < Thresh) ? Value : (Value - Thresh);
// Fist-to-mem64 FistSrc
// Add 0 or 0x800...0ULL to the 64-bit result, which is equivalent
// to XOR'ing the high 32 bits with Adjust.
//
// Being a power of 2, Thresh is exactly representable in all FP formats.
// For X87 we'd like to use the smallest FP type for this constant, but
// for DAG type consistency we have to match the FP operand type.
APFloat Thresh(APFloat::IEEEsingle(), APInt(32, 0x5f000000));
LLVM_ATTRIBUTE_UNUSED APFloat::opStatus Status = APFloat::opOK;
bool LosesInfo = false;
if (TheVT == MVT::f64)
// The rounding mode is irrelevant as the conversion should be exact.
Status = Thresh.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
&LosesInfo);
else if (TheVT == MVT::f80)
Status = Thresh.convert(APFloat::x87DoubleExtended(),
APFloat::rmNearestTiesToEven, &LosesInfo);
assert(Status == APFloat::opOK && !LosesInfo &&
"FP conversion should have been exact");
SDValue ThreshVal = DAG.getConstantFP(Thresh, DL, TheVT);
SDValue Cmp = DAG.getSetCC(DL,
getSetCCResultType(DAG.getDataLayout(),
*DAG.getContext(), TheVT),
Value, ThreshVal, ISD::SETLT);
Adjust = DAG.getSelect(DL, MVT::i32, Cmp,
DAG.getConstant(0, DL, MVT::i32),
DAG.getConstant(0x80000000, DL, MVT::i32));
SDValue Sub = DAG.getNode(ISD::FSUB, DL, TheVT, Value, ThreshVal);
Cmp = DAG.getSetCC(DL, getSetCCResultType(DAG.getDataLayout(),
*DAG.getContext(), TheVT),
Value, ThreshVal, ISD::SETLT);
Value = DAG.getSelect(DL, TheVT, Cmp, Value, Sub);
}
// FIXME This causes a redundant load/store if the SSE-class value is already
// in memory, such as if it is on the callstack.
if (isScalarFPTypeInSSEReg(TheVT)) {
assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
Chain = DAG.getStore(Chain, DL, Value, StackSlot,
MachinePointerInfo::getFixedStack(MF, SSFI));
SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
SDValue Ops[] = {
Chain, StackSlot, DAG.getValueType(TheVT)
};
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
MachineMemOperand::MOLoad, MemSize, MemSize);
Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, DstTy, MMO);
Chain = Value.getValue(1);
SSFI = MF.getFrameInfo().CreateStackObject(MemSize, MemSize, false);
StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
}
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
MachineMemOperand::MOStore, MemSize, MemSize);
if (UnsignedFixup) {
// Insert the FIST, load its result as two i32's,
// and XOR the high i32 with Adjust.
SDValue FistOps[] = { Chain, Value, StackSlot };
SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
FistOps, DstTy, MMO);
SDValue Low32 =
DAG.getLoad(MVT::i32, DL, FIST, StackSlot, MachinePointerInfo());
SDValue HighAddr = DAG.getMemBasePlusOffset(StackSlot, 4, DL);
SDValue High32 =
DAG.getLoad(MVT::i32, DL, FIST, HighAddr, MachinePointerInfo());
High32 = DAG.getNode(ISD::XOR, DL, MVT::i32, High32, Adjust);
if (Subtarget.is64Bit()) {
// Join High32 and Low32 into a 64-bit result.
// (High32 << 32) | Low32
Low32 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Low32);
High32 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, High32);
High32 = DAG.getNode(ISD::SHL, DL, MVT::i64, High32,
DAG.getConstant(32, DL, MVT::i8));
SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i64, High32, Low32);
return std::make_pair(Result, SDValue());
}
SDValue ResultOps[] = { Low32, High32 };
SDValue pair = IsReplace
? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResultOps)
: DAG.getMergeValues(ResultOps, DL);
return std::make_pair(pair, SDValue());
} else {
// Build the FP_TO_INT*_IN_MEM
SDValue Ops[] = { Chain, Value, StackSlot };
SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
Ops, DstTy, MMO);
return std::make_pair(FIST, StackSlot);
}
}
static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = Op->getSimpleValueType(0);
SDValue In = Op->getOperand(0);
MVT InVT = In.getSimpleValueType();
SDLoc dl(Op);
assert(VT.isVector() && InVT.isVector() && "Expected vector type");
assert(VT.getVectorNumElements() == VT.getVectorNumElements() &&
"Expected same number of elements");
assert((VT.getVectorElementType() == MVT::i16 ||
VT.getVectorElementType() == MVT::i32 ||
VT.getVectorElementType() == MVT::i64) &&
"Unexpected element type");
assert((InVT.getVectorElementType() == MVT::i8 ||
InVT.getVectorElementType() == MVT::i16 ||
InVT.getVectorElementType() == MVT::i32) &&
"Unexpected element type");
if (Subtarget.hasInt256())
return DAG.getNode(X86ISD::VZEXT, dl, VT, In);
// Optimize vectors in AVX mode:
//
// v8i16 -> v8i32
// Use vpunpcklwd for 4 lower elements v8i16 -> v4i32.
// Use vpunpckhwd for 4 upper elements v8i16 -> v4i32.
// Concat upper and lower parts.
//
// v4i32 -> v4i64
// Use vpunpckldq for 4 lower elements v4i32 -> v2i64.
// Use vpunpckhdq for 4 upper elements v4i32 -> v2i64.
// Concat upper and lower parts.
//
SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
SDValue Undef = DAG.getUNDEF(InVT);
bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
VT.getVectorNumElements()/2);
OpLo = DAG.getBitcast(HVT, OpLo);
OpHi = DAG.getBitcast(HVT, OpHi);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
}
// Helper to split and extend a v16i1 mask to v16i8 or v16i16.
static SDValue SplitAndExtendv16i1(unsigned ExtOpc, MVT VT, SDValue In,
const SDLoc &dl, SelectionDAG &DAG) {
assert((VT == MVT::v16i8 || VT == MVT::v16i16) && "Unexpected VT.");
SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v8i1, In,
DAG.getIntPtrConstant(0, dl));
SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v8i1, In,
DAG.getIntPtrConstant(8, dl));
Lo = DAG.getNode(ExtOpc, dl, MVT::v8i16, Lo);
Hi = DAG.getNode(ExtOpc, dl, MVT::v8i16, Hi);
SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v16i16, Lo, Hi);
return DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
}
static SDValue LowerZERO_EXTEND_Mask(SDValue Op,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op->getSimpleValueType(0);
SDValue In = Op->getOperand(0);
MVT InVT = In.getSimpleValueType();
assert(InVT.getVectorElementType() == MVT::i1 && "Unexpected input type!");
SDLoc DL(Op);
unsigned NumElts = VT.getVectorNumElements();
// For all vectors, but vXi8 we can just emit a sign_extend a shift. This
// avoids a constant pool load.
if (VT.getVectorElementType() != MVT::i8) {
SDValue Extend = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, In);
return DAG.getNode(ISD::SRL, DL, VT, Extend,
DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT));
}
// Extend VT if BWI is not supported.
MVT ExtVT = VT;
if (!Subtarget.hasBWI()) {
// If v16i32 is to be avoided, we'll need to split and concatenate.
if (NumElts == 16 && !Subtarget.canExtendTo512DQ())
return SplitAndExtendv16i1(ISD::ZERO_EXTEND, VT, In, DL, DAG);
ExtVT = MVT::getVectorVT(MVT::i32, NumElts);
}
// Widen to 512-bits if VLX is not supported.
MVT WideVT = ExtVT;
if (!ExtVT.is512BitVector() && !Subtarget.hasVLX()) {
NumElts *= 512 / ExtVT.getSizeInBits();
InVT = MVT::getVectorVT(MVT::i1, NumElts);
In = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT, DAG.getUNDEF(InVT),
In, DAG.getIntPtrConstant(0, DL));
WideVT = MVT::getVectorVT(ExtVT.getVectorElementType(),
NumElts);
}
SDValue One = DAG.getConstant(1, DL, WideVT);
SDValue Zero = getZeroVector(WideVT, Subtarget, DAG, DL);
SDValue SelectedVal = DAG.getSelect(DL, WideVT, In, One, Zero);
// Truncate if we had to extend above.
if (VT != ExtVT) {
WideVT = MVT::getVectorVT(MVT::i8, NumElts);
SelectedVal = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SelectedVal);
}
// Extract back to 128/256-bit if we widened.
if (WideVT != VT)
SelectedVal = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SelectedVal,
DAG.getIntPtrConstant(0, DL));
return SelectedVal;
}
static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDValue In = Op.getOperand(0);
MVT SVT = In.getSimpleValueType();
if (SVT.getVectorElementType() == MVT::i1)
return LowerZERO_EXTEND_Mask(Op, Subtarget, DAG);
assert(Subtarget.hasAVX() && "Expected AVX support");
return LowerAVXExtend(Op, DAG, Subtarget);
}
/// Helper to recursively truncate vector elements in half with PACKSS/PACKUS.
/// It makes use of the fact that vectors with enough leading sign/zero bits
/// prevent the PACKSS/PACKUS from saturating the results.
/// AVX2 (Int256) sub-targets require extra shuffling as the PACK*S operates
/// within each 128-bit lane.
static SDValue truncateVectorWithPACK(unsigned Opcode, EVT DstVT, SDValue In,
const SDLoc &DL, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
assert((Opcode == X86ISD::PACKSS || Opcode == X86ISD::PACKUS) &&
"Unexpected PACK opcode");
// Requires SSE2 but AVX512 has fast vector truncate.
if (!Subtarget.hasSSE2() || Subtarget.hasAVX512() || !DstVT.isVector())
return SDValue();
EVT SrcVT = In.getValueType();
// No truncation required, we might get here due to recursive calls.
if (SrcVT == DstVT)
return In;
// We only support vector truncation to 64bits or greater from a
// 128bits or greater source.
unsigned DstSizeInBits = DstVT.getSizeInBits();
unsigned SrcSizeInBits = SrcVT.getSizeInBits();
if ((DstSizeInBits % 64) != 0 || (SrcSizeInBits % 128) != 0)
return SDValue();
unsigned NumElems = SrcVT.getVectorNumElements();
if (!isPowerOf2_32(NumElems))
return SDValue();
LLVMContext &Ctx = *DAG.getContext();
assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation");
assert(SrcSizeInBits > DstSizeInBits && "Illegal truncation");
EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2);
// Pack to the largest type possible:
// vXi64/vXi32 -> PACK*SDW and vXi16 -> PACK*SWB.
EVT InVT = MVT::i16, OutVT = MVT::i8;
if (SrcVT.getScalarSizeInBits() > 16 &&
(Opcode == X86ISD::PACKSS || Subtarget.hasSSE41())) {
InVT = MVT::i32;
OutVT = MVT::i16;
}
// 128bit -> 64bit truncate - PACK 128-bit src in the lower subvector.
if (SrcVT.is128BitVector()) {
InVT = EVT::getVectorVT(Ctx, InVT, 128 / InVT.getSizeInBits());
OutVT = EVT::getVectorVT(Ctx, OutVT, 128 / OutVT.getSizeInBits());
In = DAG.getBitcast(InVT, In);
SDValue Res = DAG.getNode(Opcode, DL, OutVT, In, In);
Res = extractSubVector(Res, 0, DAG, DL, 64);
return DAG.getBitcast(DstVT, Res);
}
// Extract lower/upper subvectors.
unsigned NumSubElts = NumElems / 2;
SDValue Lo = extractSubVector(In, 0 * NumSubElts, DAG, DL, SrcSizeInBits / 2);
SDValue Hi = extractSubVector(In, 1 * NumSubElts, DAG, DL, SrcSizeInBits / 2);
unsigned SubSizeInBits = SrcSizeInBits / 2;
InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits());
OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits());
// 256bit -> 128bit truncate - PACK lower/upper 128-bit subvectors.
if (SrcVT.is256BitVector() && DstVT.is128BitVector()) {
Lo = DAG.getBitcast(InVT, Lo);
Hi = DAG.getBitcast(InVT, Hi);
SDValue Res = DAG.getNode(Opcode, DL, OutVT, Lo, Hi);
return DAG.getBitcast(DstVT, Res);
}
// AVX2: 512bit -> 256bit truncate - PACK lower/upper 256-bit subvectors.
// AVX2: 512bit -> 128bit truncate - PACK(PACK, PACK).
if (SrcVT.is512BitVector() && Subtarget.hasInt256()) {
Lo = DAG.getBitcast(InVT, Lo);
Hi = DAG.getBitcast(InVT, Hi);
SDValue Res = DAG.getNode(Opcode, DL, OutVT, Lo, Hi);
// 256-bit PACK(ARG0, ARG1) leaves us with ((LO0,LO1),(HI0,HI1)),
// so we need to shuffle to get ((LO0,HI0),(LO1,HI1)).
Res = DAG.getBitcast(MVT::v4i64, Res);
Res = DAG.getVectorShuffle(MVT::v4i64, DL, Res, Res, {0, 2, 1, 3});
if (DstVT.is256BitVector())
return DAG.getBitcast(DstVT, Res);
// If 512bit -> 128bit truncate another stage.
EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems);
Res = DAG.getBitcast(PackedVT, Res);
return truncateVectorWithPACK(Opcode, DstVT, Res, DL, DAG, Subtarget);
}
// Recursively pack lower/upper subvectors, concat result and pack again.
assert(SrcSizeInBits >= 256 && "Expected 256-bit vector or greater");
EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumSubElts);
Lo = truncateVectorWithPACK(Opcode, PackedVT, Lo, DL, DAG, Subtarget);
Hi = truncateVectorWithPACK(Opcode, PackedVT, Hi, DL, DAG, Subtarget);
PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems);
SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi);
return truncateVectorWithPACK(Opcode, DstVT, Res, DL, DAG, Subtarget);
}
static SDValue LowerTruncateVecI1(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc DL(Op);
MVT VT = Op.getSimpleValueType();
SDValue In = Op.getOperand(0);
MVT InVT = In.getSimpleValueType();
assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type.");
// Shift LSB to MSB and use VPMOVB/W2M or TESTD/Q.
unsigned ShiftInx = InVT.getScalarSizeInBits() - 1;
if (InVT.getScalarSizeInBits() <= 16) {
if (Subtarget.hasBWI()) {
// legal, will go to VPMOVB2M, VPMOVW2M
if (DAG.ComputeNumSignBits(In) < InVT.getScalarSizeInBits()) {
// We need to shift to get the lsb into sign position.
// Shift packed bytes not supported natively, bitcast to word
MVT ExtVT = MVT::getVectorVT(MVT::i16, InVT.getSizeInBits()/16);
In = DAG.getNode(ISD::SHL, DL, ExtVT,
DAG.getBitcast(ExtVT, In),
DAG.getConstant(ShiftInx, DL, ExtVT));
In = DAG.getBitcast(InVT, In);
}
return DAG.getSetCC(DL, VT, DAG.getConstant(0, DL, InVT),
In, ISD::SETGT);
}
// Use TESTD/Q, extended vector to packed dword/qword.
assert((InVT.is256BitVector() || InVT.is128BitVector()) &&
"Unexpected vector type.");
unsigned NumElts = InVT.getVectorNumElements();
assert((NumElts == 8 || NumElts == 16) && "Unexpected number of elements");
// We need to change to a wider element type that we have support for.
// For 8 element vectors this is easy, we either extend to v8i32 or v8i64.
// For 16 element vectors we extend to v16i32 unless we are explicitly
// trying to avoid 512-bit vectors. If we are avoiding 512-bit vectors
// we need to split into two 8 element vectors which we can extend to v8i32,
// truncate and concat the results. There's an additional complication if
// the original type is v16i8. In that case we can't split the v16i8 so
// first we pre-extend it to v16i16 which we can split to v8i16, then extend
// to v8i32, truncate that to v8i1 and concat the two halves.
if (NumElts == 16 && !Subtarget.canExtendTo512DQ()) {
if (InVT == MVT::v16i8) {
// First we need to sign extend up to 256-bits so we can split that.
InVT = MVT::v16i16;
In = DAG.getNode(ISD::SIGN_EXTEND, DL, InVT, In);
}
SDValue Lo = extract128BitVector(In, 0, DAG, DL);
SDValue Hi = extract128BitVector(In, 8, DAG, DL);
// We're split now, just emit two truncates and a concat. The two
// truncates will trigger legalization to come back to this function.
Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i1, Lo);
Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i1, Hi);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
}
// We either have 8 elements or we're allowed to use 512-bit vectors.
// If we have VLX, we want to use the narrowest vector that can get the
// job done so we use vXi32.
MVT EltVT = Subtarget.hasVLX() ? MVT::i32 : MVT::getIntegerVT(512/NumElts);
MVT ExtVT = MVT::getVectorVT(EltVT, NumElts);
In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In);
InVT = ExtVT;
ShiftInx = InVT.getScalarSizeInBits() - 1;
}
if (DAG.ComputeNumSignBits(In) < InVT.getScalarSizeInBits()) {
// We need to shift to get the lsb into sign position.
In = DAG.getNode(ISD::SHL, DL, InVT, In,
DAG.getConstant(ShiftInx, DL, InVT));
}
// If we have DQI, emit a pattern that will be iseled as vpmovq2m/vpmovd2m.
if (Subtarget.hasDQI())
return DAG.getSetCC(DL, VT, DAG.getConstant(0, DL, InVT),
In, ISD::SETGT);
return DAG.getSetCC(DL, VT, In, getZeroVector(InVT, Subtarget, DAG, DL),
ISD::SETNE);
}
SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
MVT VT = Op.getSimpleValueType();
SDValue In = Op.getOperand(0);
MVT InVT = In.getSimpleValueType();
unsigned InNumEltBits = InVT.getScalarSizeInBits();
assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
"Invalid TRUNCATE operation");
if (VT.getVectorElementType() == MVT::i1)
return LowerTruncateVecI1(Op, DAG, Subtarget);
// vpmovqb/w/d, vpmovdb/w, vpmovwb
if (Subtarget.hasAVX512()) {
// word to byte only under BWI
if (InVT == MVT::v16i16 && !Subtarget.hasBWI()) { // v16i16 -> v16i8
// Make sure we're allowed to promote 512-bits.
if (Subtarget.canExtendTo512DQ())
return DAG.getNode(ISD::TRUNCATE, DL, VT,
DAG.getNode(X86ISD::VSEXT, DL, MVT::v16i32, In));
} else {
return Op;
}
}
unsigned NumPackedSignBits = std::min<unsigned>(VT.getScalarSizeInBits(), 16);
unsigned NumPackedZeroBits = Subtarget.hasSSE41() ? NumPackedSignBits : 8;
// Truncate with PACKUS if we are truncating a vector with leading zero bits
// that extend all the way to the packed/truncated value.
// Pre-SSE41 we can only use PACKUSWB.
KnownBits Known;
DAG.computeKnownBits(In, Known);
if ((InNumEltBits - NumPackedZeroBits) <= Known.countMinLeadingZeros())
if (SDValue V =
truncateVectorWithPACK(X86ISD::PACKUS, VT, In, DL, DAG, Subtarget))
return V;
// Truncate with PACKSS if we are truncating a vector with sign-bits that
// extend all the way to the packed/truncated value.
if ((InNumEltBits - NumPackedSignBits) < DAG.ComputeNumSignBits(In))
if (SDValue V =
truncateVectorWithPACK(X86ISD::PACKSS, VT, In, DL, DAG, Subtarget))
return V;
if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) {
// On AVX2, v4i64 -> v4i32 becomes VPERMD.
if (Subtarget.hasInt256()) {
static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
In = DAG.getBitcast(MVT::v8i32, In);
In = DAG.getVectorShuffle(MVT::v8i32, DL, In, In, ShufMask);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
DAG.getIntPtrConstant(0, DL));
}
SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
DAG.getIntPtrConstant(0, DL));
SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
DAG.getIntPtrConstant(2, DL));
OpLo = DAG.getBitcast(MVT::v4i32, OpLo);
OpHi = DAG.getBitcast(MVT::v4i32, OpHi);
static const int ShufMask[] = {0, 2, 4, 6};
return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask);
}
if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
// On AVX2, v8i32 -> v8i16 becomes PSHUFB.
if (Subtarget.hasInt256()) {
In = DAG.getBitcast(MVT::v32i8, In);
// The PSHUFB mask:
static const int ShufMask1[] = { 0, 1, 4, 5, 8, 9, 12, 13,
-1, -1, -1, -1, -1, -1, -1, -1,
16, 17, 20, 21, 24, 25, 28, 29,
-1, -1, -1, -1, -1, -1, -1, -1 };
In = DAG.getVectorShuffle(MVT::v32i8, DL, In, In, ShufMask1);
In = DAG.getBitcast(MVT::v4i64, In);
static const int ShufMask2[] = {0, 2, -1, -1};
In = DAG.getVectorShuffle(MVT::v4i64, DL, In, In, ShufMask2);
In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
DAG.getIntPtrConstant(0, DL));
return DAG.getBitcast(VT, In);
}
SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
DAG.getIntPtrConstant(0, DL));
SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
DAG.getIntPtrConstant(4, DL));
OpLo = DAG.getBitcast(MVT::v16i8, OpLo);
OpHi = DAG.getBitcast(MVT::v16i8, OpHi);
// The PSHUFB mask:
static const int ShufMask1[] = {0, 1, 4, 5, 8, 9, 12, 13,
-1, -1, -1, -1, -1, -1, -1, -1};
OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, OpLo, ShufMask1);
OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, OpHi, ShufMask1);
OpLo = DAG.getBitcast(MVT::v4i32, OpLo);
OpHi = DAG.getBitcast(MVT::v4i32, OpHi);
// The MOVLHPS Mask:
static const int ShufMask2[] = {0, 1, 4, 5};
SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
return DAG.getBitcast(MVT::v8i16, res);
}
// Handle truncation of V256 to V128 using shuffles.
assert(VT.is128BitVector() && InVT.is256BitVector() && "Unexpected types!");
assert(Subtarget.hasAVX() && "256-bit vector without AVX!");
unsigned NumElems = VT.getVectorNumElements();
MVT NVT = MVT::getVectorVT(VT.getVectorElementType(), NumElems * 2);
SmallVector<int, 16> MaskVec(NumElems * 2, -1);
// Prepare truncation shuffle mask
for (unsigned i = 0; i != NumElems; ++i)
MaskVec[i] = i * 2;
In = DAG.getBitcast(NVT, In);
SDValue V = DAG.getVectorShuffle(NVT, DL, In, In, MaskVec);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
DAG.getIntPtrConstant(0, DL));
}
SDValue X86TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT;
MVT VT = Op.getSimpleValueType();
if (VT.isVector()) {
SDValue Src = Op.getOperand(0);
SDLoc dl(Op);
if (VT == MVT::v2i1 && Src.getSimpleValueType() == MVT::v2f64) {
MVT ResVT = MVT::v4i32;
MVT TruncVT = MVT::v4i1;
unsigned Opc = IsSigned ? X86ISD::CVTTP2SI : X86ISD::CVTTP2UI;
if (!IsSigned && !Subtarget.hasVLX()) {
// Widen to 512-bits.
ResVT = MVT::v8i32;
TruncVT = MVT::v8i1;
Opc = ISD::FP_TO_UINT;
Src = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v8f64,
DAG.getUNDEF(MVT::v8f64),
Src, DAG.getIntPtrConstant(0, dl));
}
SDValue Res = DAG.getNode(Opc, dl, ResVT, Src);
Res = DAG.getNode(ISD::TRUNCATE, dl, TruncVT, Res);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i1, Res,
DAG.getIntPtrConstant(0, dl));
}
assert(Subtarget.hasDQI() && Subtarget.hasVLX() && "Requires AVX512DQVL!");
if (VT == MVT::v2i64 && Src.getSimpleValueType() == MVT::v2f32) {
return DAG.getNode(IsSigned ? X86ISD::CVTTP2SI : X86ISD::CVTTP2UI, dl, VT,
DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, Src,
DAG.getUNDEF(MVT::v2f32)));
}
return SDValue();
}
assert(!VT.isVector());
std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
IsSigned, /*IsReplace=*/ false);
SDValue FIST = Vals.first, StackSlot = Vals.second;
// If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
if (!FIST.getNode())
return Op;
if (StackSlot.getNode())
// Load the result.
return DAG.getLoad(VT, SDLoc(Op), FIST, StackSlot, MachinePointerInfo());
// The node is the result.
return FIST;
}
static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
SDLoc DL(Op);
MVT VT = Op.getSimpleValueType();
SDValue In = Op.getOperand(0);
MVT SVT = In.getSimpleValueType();
assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
return DAG.getNode(X86ISD::VFPEXT, DL, VT,
DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
In, DAG.getUNDEF(SVT)));
}
/// The only differences between FABS and FNEG are the mask and the logic op.
/// FNEG also has a folding opportunity for FNEG(FABS(x)).
static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) {
assert((Op.getOpcode() == ISD::FABS || Op.getOpcode() == ISD::FNEG) &&
"Wrong opcode for lowering FABS or FNEG.");
bool IsFABS = (Op.getOpcode() == ISD::FABS);
// If this is a FABS and it has an FNEG user, bail out to fold the combination
// into an FNABS. We'll lower the FABS after that if it is still in use.
if (IsFABS)
for (SDNode *User : Op->uses())
if (User->getOpcode() == ISD::FNEG)
return Op;
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
bool IsF128 = (VT == MVT::f128);
// FIXME: Use function attribute "OptimizeForSize" and/or CodeGenOpt::Level to
// decide if we should generate a 16-byte constant mask when we only need 4 or
// 8 bytes for the scalar case.
MVT LogicVT;
MVT EltVT;
if (VT.isVector()) {
LogicVT = VT;
EltVT = VT.getVectorElementType();
} else if (IsF128) {
// SSE instructions are used for optimized f128 logical operations.
LogicVT = MVT::f128;
EltVT = VT;
} else {
// There are no scalar bitwise logical SSE/AVX instructions, so we
// generate a 16-byte vector constant and logic op even for the scalar case.
// Using a 16-byte mask allows folding the load of the mask with
// the logic op, so it can save (~4 bytes) on code size.
LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32;
EltVT = VT;
}
unsigned EltBits = EltVT.getSizeInBits();
// For FABS, mask is 0x7f...; for FNEG, mask is 0x80...
APInt MaskElt =
IsFABS ? APInt::getSignedMaxValue(EltBits) : APInt::getSignMask(EltBits);
const fltSemantics &Sem =
EltVT == MVT::f64 ? APFloat::IEEEdouble() :
(IsF128 ? APFloat::IEEEquad() : APFloat::IEEEsingle());
SDValue Mask = DAG.getConstantFP(APFloat(Sem, MaskElt), dl, LogicVT);
SDValue Op0 = Op.getOperand(0);
bool IsFNABS = !IsFABS && (Op0.getOpcode() == ISD::FABS);
unsigned LogicOp =
IsFABS ? X86ISD::FAND : IsFNABS ? X86ISD::FOR : X86ISD::FXOR;
SDValue Operand = IsFNABS ? Op0.getOperand(0) : Op0;
if (VT.isVector() || IsF128)
return DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask);
// For the scalar case extend to a 128-bit vector, perform the logic op,
// and extract the scalar result back out.
Operand = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Operand);
SDValue LogicNode = DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, LogicNode,
DAG.getIntPtrConstant(0, dl));
}
static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
SDValue Mag = Op.getOperand(0);
SDValue Sign = Op.getOperand(1);
SDLoc dl(Op);
// If the sign operand is smaller, extend it first.
MVT VT = Op.getSimpleValueType();
if (Sign.getSimpleValueType().bitsLT(VT))
Sign = DAG.getNode(ISD::FP_EXTEND, dl, VT, Sign);
// And if it is bigger, shrink it first.
if (Sign.getSimpleValueType().bitsGT(VT))
Sign = DAG.getNode(ISD::FP_ROUND, dl, VT, Sign, DAG.getIntPtrConstant(1, dl));
// At this point the operands and the result should have the same
// type, and that won't be f80 since that is not custom lowered.
bool IsF128 = (VT == MVT::f128);
assert((VT == MVT::f64 || VT == MVT::f32 || VT == MVT::f128 ||
VT == MVT::v2f64 || VT == MVT::v4f64 || VT == MVT::v4f32 ||
VT == MVT::v8f32 || VT == MVT::v8f64 || VT == MVT::v16f32) &&
"Unexpected type in LowerFCOPYSIGN");
MVT EltVT = VT.getScalarType();
const fltSemantics &Sem =
EltVT == MVT::f64 ? APFloat::IEEEdouble()
: (IsF128 ? APFloat::IEEEquad() : APFloat::IEEEsingle());
// Perform all scalar logic operations as 16-byte vectors because there are no
// scalar FP logic instructions in SSE.
// TODO: This isn't necessary. If we used scalar types, we might avoid some
// unnecessary splats, but we might miss load folding opportunities. Should
// this decision be based on OptimizeForSize?
bool IsFakeVector = !VT.isVector() && !IsF128;
MVT LogicVT = VT;
if (IsFakeVector)
LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32;
// The mask constants are automatically splatted for vector types.
unsigned EltSizeInBits = VT.getScalarSizeInBits();
SDValue SignMask = DAG.getConstantFP(
APFloat(Sem, APInt::getSignMask(EltSizeInBits)), dl, LogicVT);
SDValue MagMask = DAG.getConstantFP(
APFloat(Sem, ~APInt::getSignMask(EltSizeInBits)), dl, LogicVT);
// First, clear all bits but the sign bit from the second operand (sign).
if (IsFakeVector)
Sign = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Sign);
SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, LogicVT, Sign, SignMask);
// Next, clear the sign bit from the first operand (magnitude).
// TODO: If we had general constant folding for FP logic ops, this check
// wouldn't be necessary.
SDValue MagBits;
if (ConstantFPSDNode *Op0CN = dyn_cast<ConstantFPSDNode>(Mag)) {
APFloat APF = Op0CN->getValueAPF();
APF.clearSign();
MagBits = DAG.getConstantFP(APF, dl, LogicVT);
} else {
// If the magnitude operand wasn't a constant, we need to AND out the sign.
if (IsFakeVector)
Mag = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Mag);
MagBits = DAG.getNode(X86ISD::FAND, dl, LogicVT, Mag, MagMask);
}
// OR the magnitude value with the sign bit.
SDValue Or = DAG.getNode(X86ISD::FOR, dl, LogicVT, MagBits, SignBit);
return !IsFakeVector ? Or : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Or,
DAG.getIntPtrConstant(0, dl));
}
static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
SDValue N0 = Op.getOperand(0);
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
MVT OpVT = N0.getSimpleValueType();
assert((OpVT == MVT::f32 || OpVT == MVT::f64) &&
"Unexpected type for FGETSIGN");
// Lower ISD::FGETSIGN to (AND (X86ISD::MOVMSK ...) 1).
MVT VecVT = (OpVT == MVT::f32 ? MVT::v4f32 : MVT::v2f64);
SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, N0);
Res = DAG.getNode(X86ISD::MOVMSK, dl, MVT::i32, Res);
Res = DAG.getZExtOrTrunc(Res, dl, VT);
Res = DAG.getNode(ISD::AND, dl, VT, Res, DAG.getConstant(1, dl, VT));
return Res;
}
/// Helper for creating a X86ISD::SETCC node.
static SDValue getSETCC(X86::CondCode Cond, SDValue EFLAGS, const SDLoc &dl,
SelectionDAG &DAG) {
return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getConstant(Cond, dl, MVT::i8), EFLAGS);
}
// Check whether an OR'd tree is PTEST-able.
static SDValue LowerVectorAllZeroTest(SDValue Op, ISD::CondCode CC,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
if (!Subtarget.hasSSE41())
return SDValue();
if (!Op->hasOneUse())
return SDValue();
SDNode *N = Op.getNode();
SDLoc DL(N);
SmallVector<SDValue, 8> Opnds;
DenseMap<SDValue, unsigned> VecInMap;
SmallVector<SDValue, 8> VecIns;
EVT VT = MVT::Other;
// Recognize a special case where a vector is casted into wide integer to
// test all 0s.
Opnds.push_back(N->getOperand(0));
Opnds.push_back(N->getOperand(1));
for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
// BFS traverse all OR'd operands.
if (I->getOpcode() == ISD::OR) {
Opnds.push_back(I->getOperand(0));
Opnds.push_back(I->getOperand(1));
// Re-evaluate the number of nodes to be traversed.
e += 2; // 2 more nodes (LHS and RHS) are pushed.
continue;
}
// Quit if a non-EXTRACT_VECTOR_ELT
if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
// Quit if without a constant index.
SDValue Idx = I->getOperand(1);
if (!isa<ConstantSDNode>(Idx))
return SDValue();
SDValue ExtractedFromVec = I->getOperand(0);
DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
if (M == VecInMap.end()) {
VT = ExtractedFromVec.getValueType();
// Quit if not 128/256-bit vector.
if (!VT.is128BitVector() && !VT.is256BitVector())
return SDValue();
// Quit if not the same type.
if (VecInMap.begin() != VecInMap.end() &&
VT != VecInMap.begin()->first.getValueType())
return SDValue();
M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
VecIns.push_back(ExtractedFromVec);
}
M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
}
assert((VT.is128BitVector() || VT.is256BitVector()) &&
"Not extracted from 128-/256-bit vector.");
unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
for (DenseMap<SDValue, unsigned>::const_iterator
I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
// Quit if not all elements are used.
if (I->second != FullMask)
return SDValue();
}
MVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
// Cast all vectors into TestVT for PTEST.
for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
VecIns[i] = DAG.getBitcast(TestVT, VecIns[i]);
// If more than one full vector is evaluated, OR them first before PTEST.
for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
// Each iteration will OR 2 nodes and append the result until there is only
// 1 node left, i.e. the final OR'd value of all vectors.
SDValue LHS = VecIns[Slot];
SDValue RHS = VecIns[Slot + 1];
VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
}
SDValue Res = DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
VecIns.back(), VecIns.back());
return getSETCC(CC == ISD::SETEQ ? X86::COND_E : X86::COND_NE, Res, DL, DAG);
}
/// return true if \c Op has a use that doesn't just read flags.
static bool hasNonFlagsUse(SDValue Op) {
for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE;
++UI) {
SDNode *User = *UI;
unsigned UOpNo = UI.getOperandNo();
if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
// Look pass truncate.
UOpNo = User->use_begin().getOperandNo();
User = *User->use_begin();
}
if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC &&
!(User->getOpcode() == ISD::SELECT && UOpNo == 0))
return true;
}
return false;
}
/// Emit nodes that will be selected as "test Op0,Op0", or something
/// equivalent.
SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, const SDLoc &dl,
SelectionDAG &DAG) const {
// CF and OF aren't always set the way we want. Determine which
// of these we need.
bool NeedCF = false;
bool NeedOF = false;
switch (X86CC) {
default: break;
case X86::COND_A: case X86::COND_AE:
case X86::COND_B: case X86::COND_BE:
NeedCF = true;
break;
case X86::COND_G: case X86::COND_GE:
case X86::COND_L: case X86::COND_LE:
case X86::COND_O: case X86::COND_NO: {
// Check if we really need to set the
// Overflow flag. If NoSignedWrap is present
// that is not actually needed.
switch (Op->getOpcode()) {
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::SHL:
if (Op.getNode()->getFlags().hasNoSignedWrap())
break;
LLVM_FALLTHROUGH;
default:
NeedOF = true;
break;
}
break;
}
}
// See if we can use the EFLAGS value from the operand instead of
// doing a separate TEST. TEST always sets OF and CF to 0, so unless
// we prove that the arithmetic won't overflow, we can't use OF or CF.
if (Op.getResNo() != 0 || NeedOF || NeedCF) {
// Emit a CMP with 0, which is the TEST pattern.
return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
DAG.getConstant(0, dl, Op.getValueType()));
}
unsigned Opcode = 0;
unsigned NumOperands = 0;
// Truncate operations may prevent the merge of the SETCC instruction
// and the arithmetic instruction before it. Attempt to truncate the operands
// of the arithmetic instruction and use a reduced bit-width instruction.
bool NeedTruncation = false;
SDValue ArithOp = Op;
if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
SDValue Arith = Op->getOperand(0);
// Both the trunc and the arithmetic op need to have one user each.
if (Arith->hasOneUse())
switch (Arith.getOpcode()) {
default: break;
case ISD::ADD:
case ISD::SUB:
case ISD::AND:
case ISD::OR:
case ISD::XOR: {
NeedTruncation = true;
ArithOp = Arith;
}
}
}
// Sometimes flags can be set either with an AND or with an SRL/SHL
// instruction. SRL/SHL variant should be preferred for masks longer than this
// number of bits.
const int ShiftToAndMaxMaskWidth = 32;
const bool ZeroCheck = (X86CC == X86::COND_E || X86CC == X86::COND_NE);
// NOTICE: In the code below we use ArithOp to hold the arithmetic operation
// which may be the result of a CAST. We use the variable 'Op', which is the
// non-casted variable when we check for possible users.
switch (ArithOp.getOpcode()) {
case ISD::ADD:
// We only want to rewrite this as a target-specific node with attached
// flags if there is a reasonable chance of either using that to do custom
// instructions selection that can fold some of the memory operands, or if
// only the flags are used. If there are other uses, leave the node alone
// and emit a test instruction.
for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
UE = Op.getNode()->use_end(); UI != UE; ++UI)
if (UI->getOpcode() != ISD::CopyToReg &&
UI->getOpcode() != ISD::SETCC &&
UI->getOpcode() != ISD::STORE)
goto default_case;
if (auto *C = dyn_cast<ConstantSDNode>(ArithOp.getOperand(1))) {
// An add of one will be selected as an INC.
if (C->isOne() &&
(!Subtarget.slowIncDec() ||
DAG.getMachineFunction().getFunction().optForSize())) {
Opcode = X86ISD::INC;
NumOperands = 1;
break;
}
// An add of negative one (subtract of one) will be selected as a DEC.
if (C->isAllOnesValue() &&
(!Subtarget.slowIncDec() ||
DAG.getMachineFunction().getFunction().optForSize())) {
Opcode = X86ISD::DEC;
NumOperands = 1;
break;
}
}
// Otherwise use a regular EFLAGS-setting add.
Opcode = X86ISD::ADD;
NumOperands = 2;
break;
case ISD::SHL:
case ISD::SRL:
// If we have a constant logical shift that's only used in a comparison
// against zero turn it into an equivalent AND. This allows turning it into
// a TEST instruction later.
if (ZeroCheck && Op->hasOneUse() &&
isa<ConstantSDNode>(Op->getOperand(1)) && !hasNonFlagsUse(Op)) {
EVT VT = Op.getValueType();
unsigned BitWidth = VT.getSizeInBits();
unsigned ShAmt = Op->getConstantOperandVal(1);
if (ShAmt >= BitWidth) // Avoid undefined shifts.
break;
APInt Mask = ArithOp.getOpcode() == ISD::SRL
? APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt)
: APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt);
if (!Mask.isSignedIntN(ShiftToAndMaxMaskWidth))
break;
Op = DAG.getNode(ISD::AND, dl, VT, Op->getOperand(0),
DAG.getConstant(Mask, dl, VT));
}
break;
case ISD::AND:
// If the primary 'and' result isn't used, don't bother using X86ISD::AND,
// because a TEST instruction will be better. However, AND should be
// preferred if the instruction can be combined into ANDN.
if (!hasNonFlagsUse(Op)) {
SDValue Op0 = ArithOp->getOperand(0);
SDValue Op1 = ArithOp->getOperand(1);
EVT VT = ArithOp.getValueType();
bool isAndn = isBitwiseNot(Op0) || isBitwiseNot(Op1);
bool isLegalAndnType = VT == MVT::i32 || VT == MVT::i64;
bool isProperAndn = isAndn && isLegalAndnType && Subtarget.hasBMI();
// If we cannot select an ANDN instruction, check if we can replace
// AND+IMM64 with a shift before giving up. This is possible for masks
// like 0xFF000000 or 0x00FFFFFF and if we care only about the zero flag.
if (!isProperAndn) {
if (!ZeroCheck)
break;
assert(!isa<ConstantSDNode>(Op0) && "AND node isn't canonicalized");
auto *CN = dyn_cast<ConstantSDNode>(Op1);
if (!CN)
break;
const APInt &Mask = CN->getAPIntValue();
if (Mask.isSignedIntN(ShiftToAndMaxMaskWidth))
break; // Prefer TEST instruction.
unsigned BitWidth = Mask.getBitWidth();
unsigned LeadingOnes = Mask.countLeadingOnes();
unsigned TrailingZeros = Mask.countTrailingZeros();
if (LeadingOnes + TrailingZeros == BitWidth) {
assert(TrailingZeros < VT.getSizeInBits() &&
"Shift amount should be less than the type width");
MVT ShTy = getScalarShiftAmountTy(DAG.getDataLayout(), VT);
SDValue ShAmt = DAG.getConstant(TrailingZeros, dl, ShTy);
Op = DAG.getNode(ISD::SRL, dl, VT, Op0, ShAmt);
break;
}
unsigned LeadingZeros = Mask.countLeadingZeros();
unsigned TrailingOnes = Mask.countTrailingOnes();
if (LeadingZeros + TrailingOnes == BitWidth) {
assert(LeadingZeros < VT.getSizeInBits() &&
"Shift amount should be less than the type width");
MVT ShTy = getScalarShiftAmountTy(DAG.getDataLayout(), VT);
SDValue ShAmt = DAG.getConstant(LeadingZeros, dl, ShTy);
Op = DAG.getNode(ISD::SHL, dl, VT, Op0, ShAmt);
break;
}
break;
}
}
LLVM_FALLTHROUGH;
case ISD::SUB:
case ISD::OR:
case ISD::XOR:
// Similar to ISD::ADD above, check if the uses will preclude useful
// lowering of the target-specific node.
for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
UE = Op.getNode()->use_end(); UI != UE; ++UI)
if (UI->getOpcode() != ISD::CopyToReg &&
UI->getOpcode() != ISD::SETCC &&
UI->getOpcode() != ISD::STORE)
goto default_case;
// Otherwise use a regular EFLAGS-setting instruction.
switch (ArithOp.getOpcode()) {
default: llvm_unreachable("unexpected operator!");
case ISD::SUB: Opcode = X86ISD::SUB; break;
case ISD::XOR: Opcode = X86ISD::XOR; break;
case ISD::AND: Opcode = X86ISD::AND; break;
case ISD::OR: Opcode = X86ISD::OR; break;
}
NumOperands = 2;
break;
case X86ISD::ADD:
case X86ISD::SUB:
case X86ISD::INC:
case X86ISD::DEC:
case X86ISD::OR:
case X86ISD::XOR:
case X86ISD::AND:
return SDValue(Op.getNode(), 1);
default:
default_case:
break;
}
// If we found that truncation is beneficial, perform the truncation and
// update 'Op'.
if (NeedTruncation) {
EVT VT = Op.getValueType();
SDValue WideVal = Op->getOperand(0);
EVT WideVT = WideVal.getValueType();
unsigned ConvertedOp = 0;
// Use a target machine opcode to prevent further DAGCombine
// optimizations that may separate the arithmetic operations
// from the setcc node.
switch (WideVal.getOpcode()) {
default: break;
case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
case ISD::AND: ConvertedOp = X86ISD::AND; break;
case ISD::OR: ConvertedOp = X86ISD::OR; break;
case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
}
if (ConvertedOp) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
Op = DAG.getNode(ConvertedOp, dl, VTs, V0, V1);
}
}
}
if (Opcode == 0) {
// Emit a CMP with 0, which is the TEST pattern.
return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
DAG.getConstant(0, dl, Op.getValueType()));
}
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
SmallVector<SDValue, 4> Ops(Op->op_begin(), Op->op_begin() + NumOperands);
SDValue New = DAG.getNode(Opcode, dl, VTs, Ops);
DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), New);
return SDValue(New.getNode(), 1);
}
/// Emit nodes that will be selected as "cmp Op0,Op1", or something
/// equivalent.
SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
const SDLoc &dl, SelectionDAG &DAG) const {
if (isNullConstant(Op1))
return EmitTest(Op0, X86CC, dl, DAG);
assert(!(isa<ConstantSDNode>(Op1) && Op0.getValueType() == MVT::i1) &&
"Unexpected comparison operation for MVT::i1 operands");
if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
// Only promote the compare up to I32 if it is a 16 bit operation
// with an immediate. 16 bit immediates are to be avoided.
if ((Op0.getValueType() == MVT::i16 &&
(isa<ConstantSDNode>(Op0) || isa<ConstantSDNode>(Op1))) &&
!DAG.getMachineFunction().getFunction().optForMinSize() &&
!Subtarget.isAtom()) {
unsigned ExtendOp =
isX86CCUnsigned(X86CC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
Op0 = DAG.getNode(ExtendOp, dl, MVT::i32, Op0);
Op1 = DAG.getNode(ExtendOp, dl, MVT::i32, Op1);
}
// Use SUB instead of CMP to enable CSE between SUB and CMP.
SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs, Op0, Op1);
return SDValue(Sub.getNode(), 1);
}
return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
}
/// Convert a comparison if required by the subtarget.
SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
SelectionDAG &DAG) const {
// If the subtarget does not support the FUCOMI instruction, floating-point
// comparisons have to be converted.
if (Subtarget.hasCMov() ||
Cmp.getOpcode() != X86ISD::CMP ||
!Cmp.getOperand(0).getValueType().isFloatingPoint() ||
!Cmp.getOperand(1).getValueType().isFloatingPoint())
return Cmp;
// The instruction selector will select an FUCOM instruction instead of
// FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
// build an SDNode sequence that transfers the result from FPSW into EFLAGS:
// (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
SDLoc dl(Cmp);
SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
DAG.getConstant(8, dl, MVT::i8));
SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
// Some 64-bit targets lack SAHF support, but they do support FCOMI.
assert(Subtarget.hasLAHFSAHF() && "Target doesn't support SAHF or FCOMI?");
return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
}
/// Check if replacement of SQRT with RSQRT should be disabled.
bool X86TargetLowering::isFsqrtCheap(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
// We never want to use both SQRT and RSQRT instructions for the same input.
if (DAG.getNodeIfExists(X86ISD::FRSQRT, DAG.getVTList(VT), Op))
return false;
if (VT.isVector())
return Subtarget.hasFastVectorFSQRT();
return Subtarget.hasFastScalarFSQRT();
}
/// The minimum architected relative accuracy is 2^-12. We need one
/// Newton-Raphson step to have a good float result (24 bits of precision).
SDValue X86TargetLowering::getSqrtEstimate(SDValue Op,
SelectionDAG &DAG, int Enabled,
int &RefinementSteps,
bool &UseOneConstNR,
bool Reciprocal) const {
EVT VT = Op.getValueType();
// SSE1 has rsqrtss and rsqrtps. AVX adds a 256-bit variant for rsqrtps.
// It is likely not profitable to do this for f64 because a double-precision
// rsqrt estimate with refinement on x86 prior to FMA requires at least 16
// instructions: convert to single, rsqrtss, convert back to double, refine
// (3 steps = at least 13 insts). If an 'rsqrtsd' variant was added to the ISA
// along with FMA, this could be a throughput win.
// TODO: SQRT requires SSE2 to prevent the introduction of an illegal v4i32
// after legalize types.
if ((VT == MVT::f32 && Subtarget.hasSSE1()) ||
(VT == MVT::v4f32 && Subtarget.hasSSE1() && Reciprocal) ||
(VT == MVT::v4f32 && Subtarget.hasSSE2() && !Reciprocal) ||
(VT == MVT::v8f32 && Subtarget.hasAVX()) ||
(VT == MVT::v16f32 && Subtarget.useAVX512Regs())) {
if (RefinementSteps == ReciprocalEstimate::Unspecified)
RefinementSteps = 1;
UseOneConstNR = false;
// There is no FSQRT for 512-bits, but there is RSQRT14.
unsigned Opcode = VT == MVT::v16f32 ? X86ISD::RSQRT14 : X86ISD::FRSQRT;
return DAG.getNode(Opcode, SDLoc(Op), VT, Op);
}
return SDValue();
}
/// The minimum architected relative accuracy is 2^-12. We need one
/// Newton-Raphson step to have a good float result (24 bits of precision).
SDValue X86TargetLowering::getRecipEstimate(SDValue Op, SelectionDAG &DAG,
int Enabled,
int &RefinementSteps) const {
EVT VT = Op.getValueType();
// SSE1 has rcpss and rcpps. AVX adds a 256-bit variant for rcpps.
// It is likely not profitable to do this for f64 because a double-precision
// reciprocal estimate with refinement on x86 prior to FMA requires
// 15 instructions: convert to single, rcpss, convert back to double, refine
// (3 steps = 12 insts). If an 'rcpsd' variant was added to the ISA
// along with FMA, this could be a throughput win.
if ((VT == MVT::f32 && Subtarget.hasSSE1()) ||
(VT == MVT::v4f32 && Subtarget.hasSSE1()) ||
(VT == MVT::v8f32 && Subtarget.hasAVX()) ||
(VT == MVT::v16f32 && Subtarget.useAVX512Regs())) {
// Enable estimate codegen with 1 refinement step for vector division.
// Scalar division estimates are disabled because they break too much
// real-world code. These defaults are intended to match GCC behavior.
if (VT == MVT::f32 && Enabled == ReciprocalEstimate::Unspecified)
return SDValue();
if (RefinementSteps == ReciprocalEstimate::Unspecified)
RefinementSteps = 1;
// There is no FSQRT for 512-bits, but there is RCP14.
unsigned Opcode = VT == MVT::v16f32 ? X86ISD::RCP14 : X86ISD::FRCP;
return DAG.getNode(Opcode, SDLoc(Op), VT, Op);
}
return SDValue();
}
/// If we have at least two divisions that use the same divisor, convert to
/// multiplication by a reciprocal. This may need to be adjusted for a given
/// CPU if a division's cost is not at least twice the cost of a multiplication.
/// This is because we still need one division to calculate the reciprocal and
/// then we need two multiplies by that reciprocal as replacements for the
/// original divisions.
unsigned X86TargetLowering::combineRepeatedFPDivisors() const {
return 2;
}
/// Create a BT (Bit Test) node - Test bit \p BitNo in \p Src and set condition
/// according to equal/not-equal condition code \p CC.
static SDValue getBitTestCondition(SDValue Src, SDValue BitNo, ISD::CondCode CC,
const SDLoc &dl, SelectionDAG &DAG) {
// If Src is i8, promote it to i32 with any_extend. There is no i8 BT
// instruction. Since the shift amount is in-range-or-undefined, we know
// that doing a bittest on the i32 value is ok. We extend to i32 because
// the encoding for the i16 version is larger than the i32 version.
// Also promote i16 to i32 for performance / code size reason.
if (Src.getValueType() == MVT::i8 || Src.getValueType() == MVT::i16)
Src = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Src);
// See if we can use the 32-bit instruction instead of the 64-bit one for a
// shorter encoding. Since the former takes the modulo 32 of BitNo and the
// latter takes the modulo 64, this is only valid if the 5th bit of BitNo is
// known to be zero.
if (Src.getValueType() == MVT::i64 &&
DAG.MaskedValueIsZero(BitNo, APInt(BitNo.getValueSizeInBits(), 32)))
Src = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
// If the operand types disagree, extend the shift amount to match. Since
// BT ignores high bits (like shifts) we can use anyextend.
if (Src.getValueType() != BitNo.getValueType())
BitNo = DAG.getNode(ISD::ANY_EXTEND, dl, Src.getValueType(), BitNo);
SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, Src, BitNo);
X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
return getSETCC(Cond, BT, dl , DAG);
}
/// Result of 'and' is compared against zero. Change to a BT node if possible.
static SDValue LowerAndToBT(SDValue And, ISD::CondCode CC,
const SDLoc &dl, SelectionDAG &DAG) {
assert(And.getOpcode() == ISD::AND && "Expected AND node!");
SDValue Op0 = And.getOperand(0);
SDValue Op1 = And.getOperand(1);
if (Op0.getOpcode() == ISD::TRUNCATE)
Op0 = Op0.getOperand(0);
if (Op1.getOpcode() == ISD::TRUNCATE)
Op1 = Op1.getOperand(0);
SDValue LHS, RHS;
if (Op1.getOpcode() == ISD::SHL)
std::swap(Op0, Op1);
if (Op0.getOpcode() == ISD::SHL) {
if (isOneConstant(Op0.getOperand(0))) {
// If we looked past a truncate, check that it's only truncating away
// known zeros.
unsigned BitWidth = Op0.getValueSizeInBits();
unsigned AndBitWidth = And.getValueSizeInBits();
if (BitWidth > AndBitWidth) {
KnownBits Known;
DAG.computeKnownBits(Op0, Known);
if (Known.countMinLeadingZeros() < BitWidth - AndBitWidth)
return SDValue();
}
LHS = Op1;
RHS = Op0.getOperand(1);
}
} else if (Op1.getOpcode() == ISD::Constant) {
ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
uint64_t AndRHSVal = AndRHS->getZExtValue();
SDValue AndLHS = Op0;
if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
LHS = AndLHS.getOperand(0);
RHS = AndLHS.getOperand(1);
} else {
// Use BT if the immediate can't be encoded in a TEST instruction or we
// are optimizing for size and the immedaite won't fit in a byte.
bool OptForSize = DAG.getMachineFunction().getFunction().optForSize();
if ((!isUInt<32>(AndRHSVal) || (OptForSize && !isUInt<8>(AndRHSVal))) &&
isPowerOf2_64(AndRHSVal)) {
LHS = AndLHS;
RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), dl, LHS.getValueType());
}
}
}
if (LHS.getNode())
return getBitTestCondition(LHS, RHS, CC, dl, DAG);
return SDValue();
}
/// Turns an ISD::CondCode into a value suitable for SSE floating-point mask
/// CMPs.
static unsigned translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0,
SDValue &Op1) {
unsigned SSECC;
bool Swap = false;
// SSE Condition code mapping:
// 0 - EQ
// 1 - LT
// 2 - LE
// 3 - UNORD
// 4 - NEQ
// 5 - NLT
// 6 - NLE
// 7 - ORD
switch (SetCCOpcode) {
default: llvm_unreachable("Unexpected SETCC condition");
case ISD::SETOEQ:
case ISD::SETEQ: SSECC = 0; break;
case ISD::SETOGT:
case ISD::SETGT: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETLT:
case ISD::SETOLT: SSECC = 1; break;
case ISD::SETOGE:
case ISD::SETGE: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETLE:
case ISD::SETOLE: SSECC = 2; break;
case ISD::SETUO: SSECC = 3; break;
case ISD::SETUNE:
case ISD::SETNE: SSECC = 4; break;
case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETUGE: SSECC = 5; break;
case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETUGT: SSECC = 6; break;
case ISD::SETO: SSECC = 7; break;
case ISD::SETUEQ: SSECC = 8; break;
case ISD::SETONE: SSECC = 12; break;
}
if (Swap)
std::swap(Op0, Op1);
return SSECC;
}
/// Break a VSETCC 256-bit integer VSETCC into two new 128 ones and then
/// concatenate the result back.
static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
"Unsupported value type for operation");
unsigned NumElems = VT.getVectorNumElements();
SDLoc dl(Op);
SDValue CC = Op.getOperand(2);
// Extract the LHS vectors
SDValue LHS = Op.getOperand(0);
SDValue LHS1 = extract128BitVector(LHS, 0, DAG, dl);
SDValue LHS2 = extract128BitVector(LHS, NumElems / 2, DAG, dl);
// Extract the RHS vectors
SDValue RHS = Op.getOperand(1);
SDValue RHS1 = extract128BitVector(RHS, 0, DAG, dl);
SDValue RHS2 = extract128BitVector(RHS, NumElems / 2, DAG, dl);
// Issue the operation on the smaller types and concatenate the result back
MVT EltVT = VT.getVectorElementType();
MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
}
static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) {
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue CC = Op.getOperand(2);
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
assert(VT.getVectorElementType() == MVT::i1 &&
"Cannot set masked compare for this operation");
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
// If this is a seteq make sure any build vectors of all zeros are on the RHS.
// This helps with vptestm matching.
// TODO: Should we just canonicalize the setcc during DAG combine?
if ((SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE) &&
ISD::isBuildVectorAllZeros(Op0.getNode()))
std::swap(Op0, Op1);
// Prefer SETGT over SETLT.
if (SetCCOpcode == ISD::SETLT) {
SetCCOpcode = ISD::getSetCCSwappedOperands(SetCCOpcode);
std::swap(Op0, Op1);
}
return DAG.getSetCC(dl, VT, Op0, Op1, SetCCOpcode);
}
/// Try to turn a VSETULT into a VSETULE by modifying its second
/// operand \p Op1. If non-trivial (for example because it's not constant)
/// return an empty value.
static SDValue ChangeVSETULTtoVSETULE(const SDLoc &dl, SDValue Op1,
SelectionDAG &DAG) {
BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1.getNode());
if (!BV)
return SDValue();
MVT VT = Op1.getSimpleValueType();
MVT EVT = VT.getVectorElementType();
unsigned n = VT.getVectorNumElements();
SmallVector<SDValue, 8> ULTOp1;
for (unsigned i = 0; i < n; ++i) {
ConstantSDNode *Elt = dyn_cast<ConstantSDNode>(BV->getOperand(i));
if (!Elt || Elt->isOpaque() || Elt->getSimpleValueType(0) != EVT)
return SDValue();
// Avoid underflow.
APInt Val = Elt->getAPIntValue();
if (Val == 0)
return SDValue();
ULTOp1.push_back(DAG.getConstant(Val - 1, dl, EVT));
}
return DAG.getBuildVector(VT, dl, ULTOp1);
}
/// As another special case, use PSUBUS[BW] when it's profitable. E.g. for
/// Op0 u<= Op1:
/// t = psubus Op0, Op1
/// pcmpeq t, <0..0>
static SDValue LowerVSETCCWithSUBUS(SDValue Op0, SDValue Op1, MVT VT,
ISD::CondCode Cond, const SDLoc &dl,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
if (!Subtarget.hasSSE2())
return SDValue();
MVT VET = VT.getVectorElementType();
if (VET != MVT::i8 && VET != MVT::i16)
return SDValue();
switch (Cond) {
default:
return SDValue();
case ISD::SETULT: {
// If the comparison is against a constant we can turn this into a
// setule. With psubus, setule does not require a swap. This is
// beneficial because the constant in the register is no longer
// destructed as the destination so it can be hoisted out of a loop.
// Only do this pre-AVX since vpcmp* is no longer destructive.
if (Subtarget.hasAVX())
return SDValue();
SDValue ULEOp1 = ChangeVSETULTtoVSETULE(dl, Op1, DAG);
if (!ULEOp1)
return SDValue();
Op1 = ULEOp1;
break;
}
// Psubus is better than flip-sign because it requires no inversion.
case ISD::SETUGE:
std::swap(Op0, Op1);
break;
case ISD::SETULE:
break;
}
SDValue Result = DAG.getNode(X86ISD::SUBUS, dl, VT, Op0, Op1);
return DAG.getNode(X86ISD::PCMPEQ, dl, VT, Result,
getZeroVector(VT, Subtarget, DAG, dl));
}
static SDValue LowerVSETCC(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue CC = Op.getOperand(2);
MVT VT = Op.getSimpleValueType();
ISD::CondCode Cond = cast<CondCodeSDNode>(CC)->get();
bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint();
SDLoc dl(Op);
if (isFP) {
#ifndef NDEBUG
MVT EltVT = Op0.getSimpleValueType().getVectorElementType();
assert(EltVT == MVT::f32 || EltVT == MVT::f64);
#endif
unsigned Opc;
if (Subtarget.hasAVX512() && VT.getVectorElementType() == MVT::i1) {
assert(VT.getVectorNumElements() <= 16);
Opc = X86ISD::CMPM;
} else {
Opc = X86ISD::CMPP;
// The SSE/AVX packed FP comparison nodes are defined with a
// floating-point vector result that matches the operand type. This allows
// them to work with an SSE1 target (integer vector types are not legal).
VT = Op0.getSimpleValueType();
}
// In the two cases not handled by SSE compare predicates (SETUEQ/SETONE),
// emit two comparisons and a logic op to tie them together.
SDValue Cmp;
unsigned SSECC = translateX86FSETCC(Cond, Op0, Op1);
if (SSECC >= 8 && !Subtarget.hasAVX()) {
// LLVM predicate is SETUEQ or SETONE.
unsigned CC0, CC1;
unsigned CombineOpc;
if (Cond == ISD::SETUEQ) {
CC0 = 3; // UNORD
CC1 = 0; // EQ
CombineOpc = X86ISD::FOR;
} else {
assert(Cond == ISD::SETONE);
CC0 = 7; // ORD
CC1 = 4; // NEQ
CombineOpc = X86ISD::FAND;
}
SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1,
DAG.getConstant(CC0, dl, MVT::i8));
SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1,
DAG.getConstant(CC1, dl, MVT::i8));
Cmp = DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
} else {
// Handle all other FP comparisons here.
Cmp = DAG.getNode(Opc, dl, VT, Op0, Op1,
DAG.getConstant(SSECC, dl, MVT::i8));
}
// If this is SSE/AVX CMPP, bitcast the result back to integer to match the
// result type of SETCC. The bitcast is expected to be optimized away
// during combining/isel.
if (Opc == X86ISD::CMPP)
Cmp = DAG.getBitcast(Op.getSimpleValueType(), Cmp);
return Cmp;
}
MVT VTOp0 = Op0.getSimpleValueType();
assert(VTOp0 == Op1.getSimpleValueType() &&
"Expected operands with same type!");
assert(VT.getVectorNumElements() == VTOp0.getVectorNumElements() &&
"Invalid number of packed elements for source and destination!");
// This is being called by type legalization because v2i32 is marked custom
// for result type legalization for v2f32.
if (VTOp0 == MVT::v2i32)
return SDValue();
// The non-AVX512 code below works under the assumption that source and
// destination types are the same.
assert((Subtarget.hasAVX512() || (VT == VTOp0)) &&
"Value types for source and destination must be the same!");
// Break 256-bit integer vector compare into smaller ones.
if (VT.is256BitVector() && !Subtarget.hasInt256())
return Lower256IntVSETCC(Op, DAG);
// The result is boolean, but operands are int/float
if (VT.getVectorElementType() == MVT::i1) {
// In AVX-512 architecture setcc returns mask with i1 elements,
// But there is no compare instruction for i8 and i16 elements in KNL.
assert((VTOp0.getScalarSizeInBits() >= 32 || Subtarget.hasBWI()) &&
"Unexpected operand type");
return LowerIntVSETCC_AVX512(Op, DAG);
}
// Lower using XOP integer comparisons.
if (VT.is128BitVector() && Subtarget.hasXOP()) {
// Translate compare code to XOP PCOM compare mode.
unsigned CmpMode = 0;
switch (Cond) {
default: llvm_unreachable("Unexpected SETCC condition");
case ISD::SETULT:
case ISD::SETLT: CmpMode = 0x00; break;
case ISD::SETULE:
case ISD::SETLE: CmpMode = 0x01; break;
case ISD::SETUGT:
case ISD::SETGT: CmpMode = 0x02; break;
case ISD::SETUGE:
case ISD::SETGE: CmpMode = 0x03; break;
case ISD::SETEQ: CmpMode = 0x04; break;
case ISD::SETNE: CmpMode = 0x05; break;
}
// Are we comparing unsigned or signed integers?
unsigned Opc =
ISD::isUnsignedIntSetCC(Cond) ? X86ISD::VPCOMU : X86ISD::VPCOM;
return DAG.getNode(Opc, dl, VT, Op0, Op1,
DAG.getConstant(CmpMode, dl, MVT::i8));
}
// (X & Y) != 0 --> (X & Y) == Y iff Y is power-of-2.
// Revert part of the simplifySetCCWithAnd combine, to avoid an invert.
if (Cond == ISD::SETNE && ISD::isBuildVectorAllZeros(Op1.getNode())) {
SDValue BC0 = peekThroughBitcasts(Op0);
if (BC0.getOpcode() == ISD::AND) {
APInt UndefElts;
SmallVector<APInt, 64> EltBits;
if (getTargetConstantBitsFromNode(BC0.getOperand(1),
VT.getScalarSizeInBits(), UndefElts,
EltBits, false, false)) {
if (llvm::all_of(EltBits, [](APInt &V) { return V.isPowerOf2(); })) {
Cond = ISD::SETEQ;
Op1 = DAG.getBitcast(VT, BC0.getOperand(1));
}
}
}
}
// If this is a SETNE against the signed minimum value, change it to SETGT.
// If this is a SETNE against the signed maximum value, change it to SETLT.
// which will be swapped to SETGT.
// Otherwise we use PCMPEQ+invert.
APInt ConstValue;
if (Cond == ISD::SETNE &&
ISD::isConstantSplatVector(Op1.getNode(), ConstValue)) {
if (ConstValue.isMinSignedValue())
Cond = ISD::SETGT;
else if (ConstValue.isMaxSignedValue())
Cond = ISD::SETLT;
}
// If both operands are known non-negative, then an unsigned compare is the
// same as a signed compare and there's no need to flip signbits.
// TODO: We could check for more general simplifications here since we're
// computing known bits.
bool FlipSigns = ISD::isUnsignedIntSetCC(Cond) &&
!(DAG.SignBitIsZero(Op0) && DAG.SignBitIsZero(Op1));
// Special case: Use min/max operations for unsigned compares. We only want
// to do this for unsigned compares if we need to flip signs or if it allows
// use to avoid an invert.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (ISD::isUnsignedIntSetCC(Cond) &&
(FlipSigns || ISD::isTrueWhenEqual(Cond)) &&
TLI.isOperationLegal(ISD::UMIN, VT)) {
bool Invert = false;
unsigned Opc;
switch (Cond) {
default: llvm_unreachable("Unexpected condition code");
case ISD::SETUGT: Invert = true; LLVM_FALLTHROUGH;
case ISD::SETULE: Opc = ISD::UMIN; break;
case ISD::SETULT: Invert = true; LLVM_FALLTHROUGH;
case ISD::SETUGE: Opc = ISD::UMAX; break;
}
SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
// If the logical-not of the result is required, perform that now.
if (Invert)
Result = DAG.getNOT(dl, Result, VT);
return Result;
}
// Try to use SUBUS and PCMPEQ.
if (SDValue V = LowerVSETCCWithSUBUS(Op0, Op1, VT, Cond, dl, Subtarget, DAG))
return V;
// We are handling one of the integer comparisons here. Since SSE only has
// GT and EQ comparisons for integer, swapping operands and multiple
// operations may be required for some comparisons.
unsigned Opc = (Cond == ISD::SETEQ || Cond == ISD::SETNE) ? X86ISD::PCMPEQ
: X86ISD::PCMPGT;
bool Swap = Cond == ISD::SETLT || Cond == ISD::SETULT ||
Cond == ISD::SETGE || Cond == ISD::SETUGE;
bool Invert = Cond == ISD::SETNE ||
(Cond != ISD::SETEQ && ISD::isTrueWhenEqual(Cond));
if (Swap)
std::swap(Op0, Op1);
// Check that the operation in question is available (most are plain SSE2,
// but PCMPGTQ and PCMPEQQ have different requirements).
if (VT == MVT::v2i64) {
if (Opc == X86ISD::PCMPGT && !Subtarget.hasSSE42()) {
assert(Subtarget.hasSSE2() && "Don't know how to lower!");
// First cast everything to the right type.
Op0 = DAG.getBitcast(MVT::v4i32, Op0);
Op1 = DAG.getBitcast(MVT::v4i32, Op1);
// Since SSE has no unsigned integer comparisons, we need to flip the sign
// bits of the inputs before performing those operations. The lower
// compare is always unsigned.
SDValue SB;
if (FlipSigns) {
SB = DAG.getConstant(0x80000000U, dl, MVT::v4i32);
} else {
SDValue Sign = DAG.getConstant(0x80000000U, dl, MVT::i32);
SDValue Zero = DAG.getConstant(0x00000000U, dl, MVT::i32);
SB = DAG.getBuildVector(MVT::v4i32, dl, {Sign, Zero, Sign, Zero});
}
Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB);
Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB);
// Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
// Create masks for only the low parts/high parts of the 64 bit integers.
static const int MaskHi[] = { 1, 1, 3, 3 };
static const int MaskLo[] = { 0, 0, 2, 2 };
SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
if (Invert)
Result = DAG.getNOT(dl, Result, MVT::v4i32);
return DAG.getBitcast(VT, Result);
}
if (Opc == X86ISD::PCMPEQ && !Subtarget.hasSSE41()) {
// If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
// pcmpeqd + pshufd + pand.
assert(Subtarget.hasSSE2() && !FlipSigns && "Don't know how to lower!");
// First cast everything to the right type.
Op0 = DAG.getBitcast(MVT::v4i32, Op0);
Op1 = DAG.getBitcast(MVT::v4i32, Op1);
// Do the compare.
SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
// Make sure the lower and upper halves are both all-ones.
static const int Mask[] = { 1, 0, 3, 2 };
SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
if (Invert)
Result = DAG.getNOT(dl, Result, MVT::v4i32);
return DAG.getBitcast(VT, Result);
}
}
// Since SSE has no unsigned integer comparisons, we need to flip the sign
// bits of the inputs before performing those operations.
if (FlipSigns) {
MVT EltVT = VT.getVectorElementType();
SDValue SM = DAG.getConstant(APInt::getSignMask(EltVT.getSizeInBits()), dl,
VT);
Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SM);
Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SM);
}
SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
// If the logical-not of the result is required, perform that now.
if (Invert)
Result = DAG.getNOT(dl, Result, VT);
return Result;
}
// Try to select this as a KTEST+SETCC if possible.
static SDValue EmitKTEST(SDValue Op0, SDValue Op1, ISD::CondCode CC,
const SDLoc &dl, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// Only support equality comparisons.
if (CC != ISD::SETEQ && CC != ISD::SETNE)
return SDValue();
// Must be a bitcast from vXi1.
if (Op0.getOpcode() != ISD::BITCAST)
return SDValue();
Op0 = Op0.getOperand(0);
MVT VT = Op0.getSimpleValueType();
if (!(Subtarget.hasAVX512() && VT == MVT::v16i1) &&
!(Subtarget.hasDQI() && VT == MVT::v8i1) &&
!(Subtarget.hasBWI() && (VT == MVT::v32i1 || VT == MVT::v64i1)))
return SDValue();
X86::CondCode X86CC;
if (isNullConstant(Op1)) {
X86CC = CC == ISD::SETEQ ? X86::COND_E : X86::COND_NE;
} else if (isAllOnesConstant(Op1)) {
// C flag is set for all ones.
X86CC = CC == ISD::SETEQ ? X86::COND_B : X86::COND_AE;
} else
return SDValue();
// If the input is an OR, we can combine it's operands into the KORTEST.
SDValue LHS = Op0;
SDValue RHS = Op0;
if (Op0.getOpcode() == ISD::OR && Op0.hasOneUse()) {
LHS = Op0.getOperand(0);
RHS = Op0.getOperand(1);
}
SDValue KORTEST = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
return getSETCC(X86CC, KORTEST, dl, DAG);
}
SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
MVT VT = Op.getSimpleValueType();
if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
assert(VT == MVT::i8 && "SetCC type must be 8-bit integer");
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDLoc dl(Op);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
// Optimize to BT if possible.
// Lower (X & (1 << N)) == 0 to BT(X, N).
// Lower ((X >>u N) & 1) != 0 to BT(X, N).
// Lower ((X >>s N) & 1) != 0 to BT(X, N).
if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() && isNullConstant(Op1) &&
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
if (SDValue NewSetCC = LowerAndToBT(Op0, CC, dl, DAG))
return NewSetCC;
}
// Try to use PTEST for a tree ORs equality compared with 0.
// TODO: We could do AND tree with all 1s as well by using the C flag.
if (Op0.getOpcode() == ISD::OR && isNullConstant(Op1) &&
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
if (SDValue NewSetCC = LowerVectorAllZeroTest(Op0, CC, Subtarget, DAG))
return NewSetCC;
}
// Try to lower using KTEST.
if (SDValue NewSetCC = EmitKTEST(Op0, Op1, CC, dl, DAG, Subtarget))
return NewSetCC;
// Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of
// these.
if ((isOneConstant(Op1) || isNullConstant(Op1)) &&
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
// If the input is a setcc, then reuse the input setcc or use a new one with
// the inverted condition.
if (Op0.getOpcode() == X86ISD::SETCC) {
X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
bool Invert = (CC == ISD::SETNE) ^ isNullConstant(Op1);
if (!Invert)
return Op0;
CCode = X86::GetOppositeBranchCondition(CCode);
return getSETCC(CCode, Op0.getOperand(1), dl, DAG);
}
}
bool IsFP = Op1.getSimpleValueType().isFloatingPoint();
X86::CondCode X86CC = TranslateX86CC(CC, dl, IsFP, Op0, Op1, DAG);
if (X86CC == X86::COND_INVALID)
return SDValue();
SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, dl, DAG);
EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
return getSETCC(X86CC, EFLAGS, dl, DAG);
}
SDValue X86TargetLowering::LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const {
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue Carry = Op.getOperand(2);
SDValue Cond = Op.getOperand(3);
SDLoc DL(Op);
assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
X86::CondCode CC = TranslateIntegerX86CC(cast<CondCodeSDNode>(Cond)->get());
// Recreate the carry if needed.
EVT CarryVT = Carry.getValueType();
APInt NegOne = APInt::getAllOnesValue(CarryVT.getScalarSizeInBits());
Carry = DAG.getNode(X86ISD::ADD, DL, DAG.getVTList(CarryVT, MVT::i32),
Carry, DAG.getConstant(NegOne, DL, CarryVT));
SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
SDValue Cmp = DAG.getNode(X86ISD::SBB, DL, VTs, LHS, RHS, Carry.getValue(1));
return getSETCC(CC, Cmp.getValue(1), DL, DAG);
}
/// Return true if opcode is a X86 logical comparison.
static bool isX86LogicalCmp(SDValue Op) {
unsigned Opc = Op.getOpcode();
if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
Opc == X86ISD::SAHF)
return true;
if (Op.getResNo() == 1 &&
(Opc == X86ISD::ADD || Opc == X86ISD::SUB || Opc == X86ISD::ADC ||
Opc == X86ISD::SBB || Opc == X86ISD::SMUL ||
Opc == X86ISD::INC || Opc == X86ISD::DEC || Opc == X86ISD::OR ||
Opc == X86ISD::XOR || Opc == X86ISD::AND))
return true;
if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
return true;
return false;
}
static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
if (V.getOpcode() != ISD::TRUNCATE)
return false;
SDValue VOp0 = V.getOperand(0);
unsigned InBits = VOp0.getValueSizeInBits();
unsigned Bits = V.getValueSizeInBits();
return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
}
SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
bool AddTest = true;
SDValue Cond = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue Op2 = Op.getOperand(2);
SDLoc DL(Op);
MVT VT = Op1.getSimpleValueType();
SDValue CC;
// Lower FP selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
// are available or VBLENDV if AVX is available.
// Otherwise FP cmovs get lowered into a less efficient branch sequence later.
if (Cond.getOpcode() == ISD::SETCC &&
((Subtarget.hasSSE2() && VT == MVT::f64) ||
(Subtarget.hasSSE1() && VT == MVT::f32)) &&
VT == Cond.getOperand(0).getSimpleValueType() && Cond->hasOneUse()) {
SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1);
unsigned SSECC = translateX86FSETCC(
cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1);
if (Subtarget.hasAVX512()) {
SDValue Cmp = DAG.getNode(X86ISD::FSETCCM, DL, MVT::v1i1, CondOp0,
CondOp1, DAG.getConstant(SSECC, DL, MVT::i8));
assert(!VT.isVector() && "Not a scalar type?");
return DAG.getNode(X86ISD::SELECTS, DL, VT, Cmp, Op1, Op2);
}
if (SSECC < 8 || Subtarget.hasAVX()) {
SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1,
DAG.getConstant(SSECC, DL, MVT::i8));
// If we have AVX, we can use a variable vector select (VBLENDV) instead
// of 3 logic instructions for size savings and potentially speed.
// Unfortunately, there is no scalar form of VBLENDV.
// If either operand is a constant, don't try this. We can expect to
// optimize away at least one of the logic instructions later in that
// case, so that sequence would be faster than a variable blend.
// BLENDV was introduced with SSE 4.1, but the 2 register form implicitly
// uses XMM0 as the selection register. That may need just as many
// instructions as the AND/ANDN/OR sequence due to register moves, so
// don't bother.
if (Subtarget.hasAVX() &&
!isa<ConstantFPSDNode>(Op1) && !isa<ConstantFPSDNode>(Op2)) {
// Convert to vectors, do a VSELECT, and convert back to scalar.
// All of the conversions should be optimized away.
MVT VecVT = VT == MVT::f32 ? MVT::v4f32 : MVT::v2f64;
SDValue VOp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op1);
SDValue VOp2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op2);
SDValue VCmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Cmp);
MVT VCmpVT = VT == MVT::f32 ? MVT::v4i32 : MVT::v2i64;
VCmp = DAG.getBitcast(VCmpVT, VCmp);
SDValue VSel = DAG.getSelect(DL, VecVT, VCmp, VOp1, VOp2);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
VSel, DAG.getIntPtrConstant(0, DL));
}
SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
}
}
// AVX512 fallback is to lower selects of scalar floats to masked moves.
if ((VT == MVT::f64 || VT == MVT::f32) && Subtarget.hasAVX512()) {
SDValue Cmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v1i1, Cond);
return DAG.getNode(X86ISD::SELECTS, DL, VT, Cmp, Op1, Op2);
}
// For v64i1 without 64-bit support we need to split and rejoin.
if (VT == MVT::v64i1 && !Subtarget.is64Bit()) {
assert(Subtarget.hasBWI() && "Expected BWI to be legal");
SDValue Op1Lo = extractSubVector(Op1, 0, DAG, DL, 32);
SDValue Op2Lo = extractSubVector(Op2, 0, DAG, DL, 32);
SDValue Op1Hi = extractSubVector(Op1, 32, DAG, DL, 32);
SDValue Op2Hi = extractSubVector(Op2, 32, DAG, DL, 32);
SDValue Lo = DAG.getSelect(DL, MVT::v32i1, Cond, Op1Lo, Op2Lo);
SDValue Hi = DAG.getSelect(DL, MVT::v32i1, Cond, Op1Hi, Op2Hi);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
}
if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
SDValue Op1Scalar;
if (ISD::isBuildVectorOfConstantSDNodes(Op1.getNode()))
Op1Scalar = ConvertI1VectorToInteger(Op1, DAG);
else if (Op1.getOpcode() == ISD::BITCAST && Op1.getOperand(0))
Op1Scalar = Op1.getOperand(0);
SDValue Op2Scalar;
if (ISD::isBuildVectorOfConstantSDNodes(Op2.getNode()))
Op2Scalar = ConvertI1VectorToInteger(Op2, DAG);
else if (Op2.getOpcode() == ISD::BITCAST && Op2.getOperand(0))
Op2Scalar = Op2.getOperand(0);
if (Op1Scalar.getNode() && Op2Scalar.getNode()) {
SDValue newSelect = DAG.getSelect(DL, Op1Scalar.getValueType(), Cond,
Op1Scalar, Op2Scalar);
if (newSelect.getValueSizeInBits() == VT.getSizeInBits())
return DAG.getBitcast(VT, newSelect);
SDValue ExtVec = DAG.getBitcast(MVT::v8i1, newSelect);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, ExtVec,
DAG.getIntPtrConstant(0, DL));
}
}
if (VT == MVT::v4i1 || VT == MVT::v2i1) {
SDValue zeroConst = DAG.getIntPtrConstant(0, DL);
Op1 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1,
DAG.getUNDEF(MVT::v8i1), Op1, zeroConst);
Op2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1,
DAG.getUNDEF(MVT::v8i1), Op2, zeroConst);
SDValue newSelect = DAG.getSelect(DL, MVT::v8i1, Cond, Op1, Op2);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, newSelect, zeroConst);
}
if (Cond.getOpcode() == ISD::SETCC) {
if (SDValue NewCond = LowerSETCC(Cond, DAG)) {
Cond = NewCond;
// If the condition was updated, it's possible that the operands of the
// select were also updated (for example, EmitTest has a RAUW). Refresh
// the local references to the select operands in case they got stale.
Op1 = Op.getOperand(1);
Op2 = Op.getOperand(2);
}
}
// (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
// (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
// (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
// (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
// (select (and (x , 0x1) == 0), y, (z ^ y) ) -> (-(and (x , 0x1)) & z ) ^ y
// (select (and (x , 0x1) == 0), y, (z | y) ) -> (-(and (x , 0x1)) & z ) | y
if (Cond.getOpcode() == X86ISD::SETCC &&
Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
isNullConstant(Cond.getOperand(1).getOperand(1))) {
SDValue Cmp = Cond.getOperand(1);
unsigned CondCode =
cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
if ((isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) &&
(CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
SDValue Y = isAllOnesConstant(Op2) ? Op1 : Op2;
SDValue CmpOp0 = Cmp.getOperand(0);
// Apply further optimizations for special cases
// (select (x != 0), -1, 0) -> neg & sbb
// (select (x == 0), 0, -1) -> neg & sbb
if (isNullConstant(Y) &&
(isAllOnesConstant(Op1) == (CondCode == X86::COND_NE))) {
SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
SDValue Zero = DAG.getConstant(0, DL, CmpOp0.getValueType());
SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs, Zero, CmpOp0);
SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
DAG.getConstant(X86::COND_B, DL, MVT::i8),
SDValue(Neg.getNode(), 1));
return Res;
}
Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
CmpOp0, DAG.getConstant(1, DL, CmpOp0.getValueType()));
Cmp = ConvertCmpIfNecessary(Cmp, DAG);
SDValue Res = // Res = 0 or -1.
DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
DAG.getConstant(X86::COND_B, DL, MVT::i8), Cmp);
if (isAllOnesConstant(Op1) != (CondCode == X86::COND_E))
Res = DAG.getNOT(DL, Res, Res.getValueType());
if (!isNullConstant(Op2))
Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
return Res;
} else if (!Subtarget.hasCMov() && CondCode == X86::COND_E &&
Cmp.getOperand(0).getOpcode() == ISD::AND &&
isOneConstant(Cmp.getOperand(0).getOperand(1))) {
SDValue CmpOp0 = Cmp.getOperand(0);
SDValue Src1, Src2;
// true if Op2 is XOR or OR operator and one of its operands
// is equal to Op1
// ( a , a op b) || ( b , a op b)
auto isOrXorPattern = [&]() {
if ((Op2.getOpcode() == ISD::XOR || Op2.getOpcode() == ISD::OR) &&
(Op2.getOperand(0) == Op1 || Op2.getOperand(1) == Op1)) {
Src1 =
Op2.getOperand(0) == Op1 ? Op2.getOperand(1) : Op2.getOperand(0);
Src2 = Op1;
return true;
}
return false;
};
if (isOrXorPattern()) {
SDValue Neg;
unsigned int CmpSz = CmpOp0.getSimpleValueType().getSizeInBits();
// we need mask of all zeros or ones with same size of the other
// operands.
if (CmpSz > VT.getSizeInBits())
Neg = DAG.getNode(ISD::TRUNCATE, DL, VT, CmpOp0);
else if (CmpSz < VT.getSizeInBits())
Neg = DAG.getNode(ISD::AND, DL, VT,
DAG.getNode(ISD::ANY_EXTEND, DL, VT, CmpOp0.getOperand(0)),
DAG.getConstant(1, DL, VT));
else
Neg = CmpOp0;
SDValue Mask = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
Neg); // -(and (x, 0x1))
SDValue And = DAG.getNode(ISD::AND, DL, VT, Mask, Src1); // Mask & z
return DAG.getNode(Op2.getOpcode(), DL, VT, And, Src2); // And Op y
}
}
}
// Look past (and (setcc_carry (cmp ...)), 1).
if (Cond.getOpcode() == ISD::AND &&
Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY &&
isOneConstant(Cond.getOperand(1)))
Cond = Cond.getOperand(0);
// If condition flag is set by a X86ISD::CMP, then use it as the condition
// setting operand in place of the X86ISD::SETCC.
unsigned CondOpcode = Cond.getOpcode();
if (CondOpcode == X86ISD::SETCC ||
CondOpcode == X86ISD::SETCC_CARRY) {
CC = Cond.getOperand(0);
SDValue Cmp = Cond.getOperand(1);
unsigned Opc = Cmp.getOpcode();
MVT VT = Op.getSimpleValueType();
bool IllegalFPCMov = false;
if (VT.isFloatingPoint() && !VT.isVector() &&
!isScalarFPTypeInSSEReg(VT)) // FPStack?
IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
Opc == X86ISD::BT) { // FIXME
Cond = Cmp;
AddTest = false;
}
} else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
Cond.getOperand(0).getValueType() != MVT::i8)) {
SDValue LHS = Cond.getOperand(0);
SDValue RHS = Cond.getOperand(1);
unsigned X86Opcode;
unsigned X86Cond;
SDVTList VTs;
switch (CondOpcode) {
case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
default: llvm_unreachable("unexpected overflowing operator");
}
if (CondOpcode == ISD::UMULO)
VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
MVT::i32);
else
VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
if (CondOpcode == ISD::UMULO)
Cond = X86Op.getValue(2);
else
Cond = X86Op.getValue(1);
CC = DAG.getConstant(X86Cond, DL, MVT::i8);
AddTest = false;
}
if (AddTest) {
// Look past the truncate if the high bits are known zero.
if (isTruncWithZeroHighBitsInput(Cond, DAG))
Cond = Cond.getOperand(0);
// We know the result of AND is compared against zero. Try to match
// it to BT.
if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
if (SDValue NewSetCC = LowerAndToBT(Cond, ISD::SETNE, DL, DAG)) {
CC = NewSetCC.getOperand(0);
Cond = NewSetCC.getOperand(1);
AddTest = false;
}
}
}
if (AddTest) {
CC = DAG.getConstant(X86::COND_NE, DL, MVT::i8);
Cond = EmitTest(Cond, X86::COND_NE, DL, DAG);
}
// a < b ? -1 : 0 -> RES = ~setcc_carry
// a < b ? 0 : -1 -> RES = setcc_carry
// a >= b ? -1 : 0 -> RES = setcc_carry
// a >= b ? 0 : -1 -> RES = ~setcc_carry
if (Cond.getOpcode() == X86ISD::SUB) {
Cond = ConvertCmpIfNecessary(Cond, DAG);
unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
(isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) &&
(isNullConstant(Op1) || isNullConstant(Op2))) {
SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
DAG.getConstant(X86::COND_B, DL, MVT::i8),
Cond);
if (isAllOnesConstant(Op1) != (CondCode == X86::COND_B))
return DAG.getNOT(DL, Res, Res.getValueType());
return Res;
}
}
// X86 doesn't have an i8 cmov. If both operands are the result of a truncate
// widen the cmov and push the truncate through. This avoids introducing a new
// branch during isel and doesn't add any extensions.
if (Op.getValueType() == MVT::i8 &&
Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
if (T1.getValueType() == T2.getValueType() &&
// Blacklist CopyFromReg to avoid partial register stalls.
T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, T1.getValueType(), T2, T1,
CC, Cond);
return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
}
}
// Promote i16 cmovs if it won't prevent folding a load.
if (Op.getValueType() == MVT::i16 && !MayFoldLoad(Op1) && !MayFoldLoad(Op2)) {
Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1);
Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2);
SDValue Ops[] = { Op2, Op1, CC, Cond };
SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, MVT::i32, Ops);
return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
}
// X86ISD::CMOV means set the result (which is operand 1) to the RHS if
// condition is true.
SDValue Ops[] = { Op2, Op1, CC, Cond };
return DAG.getNode(X86ISD::CMOV, DL, Op.getValueType(), Ops);
}
static SDValue LowerSIGN_EXTEND_Mask(SDValue Op,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op->getSimpleValueType(0);
SDValue In = Op->getOperand(0);
MVT InVT = In.getSimpleValueType();
assert(InVT.getVectorElementType() == MVT::i1 && "Unexpected input type!");
MVT VTElt = VT.getVectorElementType();
SDLoc dl(Op);
unsigned NumElts = VT.getVectorNumElements();
// Extend VT if the scalar type is v8/v16 and BWI is not supported.
MVT ExtVT = VT;
if (!Subtarget.hasBWI() && VTElt.getSizeInBits() <= 16) {
// If v16i32 is to be avoided, we'll need to split and concatenate.
if (NumElts == 16 && !Subtarget.canExtendTo512DQ())
return SplitAndExtendv16i1(ISD::SIGN_EXTEND, VT, In, dl, DAG);
ExtVT = MVT::getVectorVT(MVT::i32, NumElts);
}
// Widen to 512-bits if VLX is not supported.
MVT WideVT = ExtVT;
if (!ExtVT.is512BitVector() && !Subtarget.hasVLX()) {
NumElts *= 512 / ExtVT.getSizeInBits();
InVT = MVT::getVectorVT(MVT::i1, NumElts);
In = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, InVT, DAG.getUNDEF(InVT),
In, DAG.getIntPtrConstant(0, dl));
WideVT = MVT::getVectorVT(ExtVT.getVectorElementType(), NumElts);
}
SDValue V;
MVT WideEltVT = WideVT.getVectorElementType();
if ((Subtarget.hasDQI() && WideEltVT.getSizeInBits() >= 32) ||
(Subtarget.hasBWI() && WideEltVT.getSizeInBits() <= 16)) {
V = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, In);
} else {
SDValue NegOne = getOnesVector(WideVT, DAG, dl);
SDValue Zero = getZeroVector(WideVT, Subtarget, DAG, dl);
V = DAG.getSelect(dl, WideVT, In, NegOne, Zero);
}
// Truncate if we had to extend i16/i8 above.
if (VT != ExtVT) {
WideVT = MVT::getVectorVT(VTElt, NumElts);
V = DAG.getNode(ISD::TRUNCATE, dl, WideVT, V);
}
// Extract back to 128/256-bit if we widened.
if (WideVT != VT)
V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, V,
DAG.getIntPtrConstant(0, dl));
return V;
}
static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDValue In = Op->getOperand(0);
MVT InVT = In.getSimpleValueType();
if (InVT.getVectorElementType() == MVT::i1)
return LowerSIGN_EXTEND_Mask(Op, Subtarget, DAG);
assert(Subtarget.hasAVX() && "Expected AVX support");
return LowerAVXExtend(Op, DAG, Subtarget);
}
// Lowering for SIGN_EXTEND_VECTOR_INREG and ZERO_EXTEND_VECTOR_INREG.
// For sign extend this needs to handle all vector sizes and SSE4.1 and
// non-SSE4.1 targets. For zero extend this should only handle inputs of
// MVT::v64i8 when BWI is not supported, but AVX512 is.
static SDValue LowerEXTEND_VECTOR_INREG(SDValue Op,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDValue In = Op->getOperand(0);
MVT VT = Op->getSimpleValueType(0);
MVT InVT = In.getSimpleValueType();
assert(VT.getSizeInBits() == InVT.getSizeInBits());
MVT SVT = VT.getVectorElementType();
MVT InSVT = InVT.getVectorElementType();
assert(SVT.getSizeInBits() > InSVT.getSizeInBits());
if (SVT != MVT::i64 && SVT != MVT::i32 && SVT != MVT::i16)
return SDValue();
if (InSVT != MVT::i32 && InSVT != MVT::i16 && InSVT != MVT::i8)
return SDValue();
if (!(VT.is128BitVector() && Subtarget.hasSSE2()) &&
!(VT.is256BitVector() && Subtarget.hasInt256()) &&
!(VT.is512BitVector() && Subtarget.hasAVX512()))
return SDValue();
SDLoc dl(Op);
// For 256-bit vectors, we only need the lower (128-bit) half of the input.
// For 512-bit vectors, we need 128-bits or 256-bits.
if (VT.getSizeInBits() > 128) {
// Input needs to be at least the same number of elements as output, and
// at least 128-bits.
int InSize = InSVT.getSizeInBits() * VT.getVectorNumElements();
In = extractSubVector(In, 0, DAG, dl, std::max(InSize, 128));
}
assert((Op.getOpcode() != ISD::ZERO_EXTEND_VECTOR_INREG ||
InVT == MVT::v64i8) && "Zero extend only for v64i8 input!");
// SSE41 targets can use the pmovsx* instructions directly for 128-bit results,
// so are legal and shouldn't occur here. AVX2/AVX512 pmovsx* instructions still
// need to be handled here for 256/512-bit results.
if (Subtarget.hasInt256()) {
assert(VT.getSizeInBits() > 128 && "Unexpected 128-bit vector extension");
unsigned ExtOpc = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG ?
X86ISD::VSEXT : X86ISD::VZEXT;
return DAG.getNode(ExtOpc, dl, VT, In);
}
// We should only get here for sign extend.
assert(Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG &&
"Unexpected opcode!");
// pre-SSE41 targets unpack lower lanes and then sign-extend using SRAI.
SDValue Curr = In;
MVT CurrVT = InVT;
// As SRAI is only available on i16/i32 types, we expand only up to i32
// and handle i64 separately.
while (CurrVT != VT && CurrVT.getVectorElementType() != MVT::i32) {
Curr = DAG.getNode(X86ISD::UNPCKL, dl, CurrVT, DAG.getUNDEF(CurrVT), Curr);
MVT CurrSVT = MVT::getIntegerVT(CurrVT.getScalarSizeInBits() * 2);
CurrVT = MVT::getVectorVT(CurrSVT, CurrVT.getVectorNumElements() / 2);
Curr = DAG.getBitcast(CurrVT, Curr);
}
SDValue SignExt = Curr;
if (CurrVT != InVT) {
unsigned SignExtShift =
CurrVT.getScalarSizeInBits() - InSVT.getSizeInBits();
SignExt = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr,
DAG.getConstant(SignExtShift, dl, MVT::i8));
}
if (CurrVT == VT)
return SignExt;
if (VT == MVT::v2i64 && CurrVT == MVT::v4i32) {
SDValue Sign = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr,
DAG.getConstant(31, dl, MVT::i8));
SDValue Ext = DAG.getVectorShuffle(CurrVT, dl, SignExt, Sign, {0, 4, 1, 5});
return DAG.getBitcast(VT, Ext);
}
return SDValue();
}
static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op->getSimpleValueType(0);
SDValue In = Op->getOperand(0);
MVT InVT = In.getSimpleValueType();
SDLoc dl(Op);
if (InVT.getVectorElementType() == MVT::i1)
return LowerSIGN_EXTEND_Mask(Op, Subtarget, DAG);
assert(VT.isVector() && InVT.isVector() && "Expected vector type");
assert(VT.getVectorNumElements() == VT.getVectorNumElements() &&
"Expected same number of elements");
assert((VT.getVectorElementType() == MVT::i16 ||
VT.getVectorElementType() == MVT::i32 ||
VT.getVectorElementType() == MVT::i64) &&
"Unexpected element type");
assert((InVT.getVectorElementType() == MVT::i8 ||
InVT.getVectorElementType() == MVT::i16 ||
InVT.getVectorElementType() == MVT::i32) &&
"Unexpected element type");
if (Subtarget.hasInt256())
return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
// Optimize vectors in AVX mode
// Sign extend v8i16 to v8i32 and
// v4i32 to v4i64
//
// Divide input vector into two parts
// for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
// use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
// concat the vectors to original VT
unsigned NumElems = InVT.getVectorNumElements();
SDValue Undef = DAG.getUNDEF(InVT);
SmallVector<int,8> ShufMask1(NumElems, -1);
for (unsigned i = 0; i != NumElems/2; ++i)
ShufMask1[i] = i;
SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, ShufMask1);
SmallVector<int,8> ShufMask2(NumElems, -1);
for (unsigned i = 0; i != NumElems/2; ++i)
ShufMask2[i] = i + NumElems/2;
SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, ShufMask2);
MVT HalfVT = MVT::getVectorVT(VT.getVectorElementType(),
VT.getVectorNumElements() / 2);
OpLo = DAG.getSignExtendVectorInReg(OpLo, dl, HalfVT);
OpHi = DAG.getSignExtendVectorInReg(OpHi, dl, HalfVT);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
}
static SDValue LowerStore(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
StoreSDNode *St = cast<StoreSDNode>(Op.getNode());
SDLoc dl(St);
SDValue StoredVal = St->getValue();
// Without AVX512DQ, we need to use a scalar type for v2i1/v4i1/v8i1 loads.
assert(StoredVal.getValueType().isVector() &&
StoredVal.getValueType().getVectorElementType() == MVT::i1 &&
StoredVal.getValueType().getVectorNumElements() <= 8 &&
"Unexpected VT");
assert(!St->isTruncatingStore() && "Expected non-truncating store");
assert(Subtarget.hasAVX512() && !Subtarget.hasDQI() &&
"Expected AVX512F without AVX512DQI");
StoredVal = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v8i1,
DAG.getUNDEF(MVT::v8i1), StoredVal,
DAG.getIntPtrConstant(0, dl));
StoredVal = DAG.getBitcast(MVT::i8, StoredVal);
return DAG.getStore(St->getChain(), dl, StoredVal, St->getBasePtr(),
St->getPointerInfo(), St->getAlignment(),
St->getMemOperand()->getFlags());
}
// Lower vector extended loads using a shuffle. If SSSE3 is not available we
// may emit an illegal shuffle but the expansion is still better than scalar
// code. We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise
// we'll emit a shuffle and a arithmetic shift.
// FIXME: Is the expansion actually better than scalar code? It doesn't seem so.
// TODO: It is possible to support ZExt by zeroing the undef values during
// the shuffle phase or after the shuffle.
static SDValue LowerLoad(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT RegVT = Op.getSimpleValueType();
assert(RegVT.isVector() && "We only custom lower vector sext loads.");
assert(RegVT.isInteger() &&
"We only custom lower integer vector sext loads.");
LoadSDNode *Ld = cast<LoadSDNode>(Op.getNode());
SDLoc dl(Ld);
EVT MemVT = Ld->getMemoryVT();
// Without AVX512DQ, we need to use a scalar type for v2i1/v4i1/v8i1 loads.
if (RegVT.isVector() && RegVT.getVectorElementType() == MVT::i1) {
assert(EVT(RegVT) == MemVT && "Expected non-extending load");
assert(RegVT.getVectorNumElements() <= 8 && "Unexpected VT");
assert(Subtarget.hasAVX512() && !Subtarget.hasDQI() &&
"Expected AVX512F without AVX512DQI");
SDValue NewLd = DAG.getLoad(MVT::i8, dl, Ld->getChain(), Ld->getBasePtr(),
Ld->getPointerInfo(), Ld->getAlignment(),
Ld->getMemOperand()->getFlags());
// Replace chain users with the new chain.
assert(NewLd->getNumValues() == 2 && "Loads must carry a chain!");
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewLd.getValue(1));
SDValue Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, RegVT,
DAG.getBitcast(MVT::v8i1, NewLd),
DAG.getIntPtrConstant(0, dl));
return DAG.getMergeValues({Extract, NewLd.getValue(1)}, dl);
}
// Nothing useful we can do without SSE2 shuffles.
assert(Subtarget.hasSSE2() && "We only custom lower sext loads with SSE2.");
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
unsigned RegSz = RegVT.getSizeInBits();
ISD::LoadExtType Ext = Ld->getExtensionType();
assert((Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)
&& "Only anyext and sext are currently implemented.");
assert(MemVT != RegVT && "Cannot extend to the same type");
assert(MemVT.isVector() && "Must load a vector from memory");
unsigned NumElems = RegVT.getVectorNumElements();
unsigned MemSz = MemVT.getSizeInBits();
assert(RegSz > MemSz && "Register size must be greater than the mem size");
if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget.hasInt256()) {
// The only way in which we have a legal 256-bit vector result but not the
// integer 256-bit operations needed to directly lower a sextload is if we
// have AVX1 but not AVX2. In that case, we can always emit a sextload to
// a 128-bit vector and a normal sign_extend to 256-bits that should get
// correctly legalized. We do this late to allow the canonical form of
// sextload to persist throughout the rest of the DAG combiner -- it wants
// to fold together any extensions it can, and so will fuse a sign_extend
// of an sextload into a sextload targeting a wider value.
SDValue Load;
if (MemSz == 128) {
// Just switch this to a normal load.
assert(TLI.isTypeLegal(MemVT) && "If the memory type is a 128-bit type, "
"it must be a legal 128-bit vector "
"type!");
Load = DAG.getLoad(MemVT, dl, Ld->getChain(), Ld->getBasePtr(),
Ld->getPointerInfo(), Ld->getAlignment(),
Ld->getMemOperand()->getFlags());
} else {
assert(MemSz < 128 &&
"Can't extend a type wider than 128 bits to a 256 bit vector!");
// Do an sext load to a 128-bit vector type. We want to use the same
// number of elements, but elements half as wide. This will end up being
// recursively lowered by this routine, but will succeed as we definitely
// have all the necessary features if we're using AVX1.
EVT HalfEltVT =
EVT::getIntegerVT(*DAG.getContext(), RegVT.getScalarSizeInBits() / 2);
EVT HalfVecVT = EVT::getVectorVT(*DAG.getContext(), HalfEltVT, NumElems);
Load =
DAG.getExtLoad(Ext, dl, HalfVecVT, Ld->getChain(), Ld->getBasePtr(),
Ld->getPointerInfo(), MemVT, Ld->getAlignment(),
Ld->getMemOperand()->getFlags());
}
// Replace chain users with the new chain.
assert(Load->getNumValues() == 2 && "Loads must carry a chain!");
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1));
// Finally, do a normal sign-extend to the desired register.
return DAG.getSExtOrTrunc(Load, dl, RegVT);
}
// All sizes must be a power of two.
assert(isPowerOf2_32(RegSz * MemSz * NumElems) &&
"Non-power-of-two elements are not custom lowered!");
// Attempt to load the original value using scalar loads.
// Find the largest scalar type that divides the total loaded size.
MVT SclrLoadTy = MVT::i8;
for (MVT Tp : MVT::integer_valuetypes()) {
if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
SclrLoadTy = Tp;
}
}
// On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
(64 <= MemSz))
SclrLoadTy = MVT::f64;
// Calculate the number of scalar loads that we need to perform
// in order to load our vector from memory.
unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
assert((Ext != ISD::SEXTLOAD || NumLoads == 1) &&
"Can only lower sext loads with a single scalar load!");
unsigned loadRegZize = RegSz;
if (Ext == ISD::SEXTLOAD && RegSz >= 256)
loadRegZize = 128;
// If we don't have BWI we won't be able to create the shuffle needed for
// v8i8->v8i64.
if (Ext == ISD::EXTLOAD && !Subtarget.hasBWI() && RegVT == MVT::v8i64 &&
MemVT == MVT::v8i8)
loadRegZize = 128;
// Represent our vector as a sequence of elements which are the
// largest scalar that we can load.
EVT LoadUnitVecVT = EVT::getVectorVT(
*DAG.getContext(), SclrLoadTy, loadRegZize / SclrLoadTy.getSizeInBits());
// Represent the data using the same element type that is stored in
// memory. In practice, we ''widen'' MemVT.
EVT WideVecVT =
EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
loadRegZize / MemVT.getScalarSizeInBits());
assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
"Invalid vector type");
// We can't shuffle using an illegal type.
assert(TLI.isTypeLegal(WideVecVT) &&
"We only lower types that form legal widened vector types");
SmallVector<SDValue, 8> Chains;
SDValue Ptr = Ld->getBasePtr();
SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits() / 8, dl,
TLI.getPointerTy(DAG.getDataLayout()));
SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
for (unsigned i = 0; i < NumLoads; ++i) {
// Perform a single load.
SDValue ScalarLoad =
DAG.getLoad(SclrLoadTy, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
Ld->getAlignment(), Ld->getMemOperand()->getFlags());
Chains.push_back(ScalarLoad.getValue(1));
// Create the first element type using SCALAR_TO_VECTOR in order to avoid
// another round of DAGCombining.
if (i == 0)
Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
else
Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
ScalarLoad, DAG.getIntPtrConstant(i, dl));
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
}
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
// Bitcast the loaded value to a vector of the original element type, in
// the size of the target vector type.
SDValue SlicedVec = DAG.getBitcast(WideVecVT, Res);
unsigned SizeRatio = RegSz / MemSz;
if (Ext == ISD::SEXTLOAD) {
// If we have SSE4.1, we can directly emit a VSEXT node.
if (Subtarget.hasSSE41()) {
SDValue Sext = getExtendInVec(X86ISD::VSEXT, dl, RegVT, SlicedVec, DAG);
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
return Sext;
}
// Otherwise we'll use SIGN_EXTEND_VECTOR_INREG to sign extend the lowest
// lanes.
assert(TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND_VECTOR_INREG, RegVT) &&
"We can't implement a sext load without SIGN_EXTEND_VECTOR_INREG!");
SDValue Shuff = DAG.getSignExtendVectorInReg(SlicedVec, dl, RegVT);
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
return Shuff;
}
if (Ext == ISD::EXTLOAD && !Subtarget.hasBWI() && RegVT == MVT::v8i64 &&
MemVT == MVT::v8i8) {
SDValue Sext = getExtendInVec(X86ISD::VZEXT, dl, RegVT, SlicedVec, DAG);
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
return Sext;
}
// Redistribute the loaded elements into the different locations.
SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
for (unsigned i = 0; i != NumElems; ++i)
ShuffleVec[i * SizeRatio] = i;
SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
DAG.getUNDEF(WideVecVT), ShuffleVec);
// Bitcast to the requested type.
Shuff = DAG.getBitcast(RegVT, Shuff);
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
return Shuff;
}
/// Return true if node is an ISD::AND or ISD::OR of two X86ISD::SETCC nodes
/// each of which has no other use apart from the AND / OR.
static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
Opc = Op.getOpcode();
if (Opc != ISD::OR && Opc != ISD::AND)
return false;
return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
Op.getOperand(0).hasOneUse() &&
Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
Op.getOperand(1).hasOneUse());
}
/// Return true if node is an ISD::XOR of a X86ISD::SETCC and 1 and that the
/// SETCC node has a single use.
static bool isXor1OfSetCC(SDValue Op) {
if (Op.getOpcode() != ISD::XOR)
return false;
if (isOneConstant(Op.getOperand(1)))
return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
Op.getOperand(0).hasOneUse();
return false;
}
SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
bool addTest = true;
SDValue Chain = Op.getOperand(0);
SDValue Cond = Op.getOperand(1);
SDValue Dest = Op.getOperand(2);
SDLoc dl(Op);
SDValue CC;
bool Inverted = false;
if (Cond.getOpcode() == ISD::SETCC) {
// Check for setcc([su]{add,sub,mul}o == 0).
if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
isNullConstant(Cond.getOperand(1)) &&
Cond.getOperand(0).getResNo() == 1 &&
(Cond.getOperand(0).getOpcode() == ISD::SADDO ||
Cond.getOperand(0).getOpcode() == ISD::UADDO ||
Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
Cond.getOperand(0).getOpcode() == ISD::USUBO ||
Cond.getOperand(0).getOpcode() == ISD::SMULO ||
Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
Inverted = true;
Cond = Cond.getOperand(0);
} else {
if (SDValue NewCond = LowerSETCC(Cond, DAG))
Cond = NewCond;
}
}
#if 0
// FIXME: LowerXALUO doesn't handle these!!
else if (Cond.getOpcode() == X86ISD::ADD ||
Cond.getOpcode() == X86ISD::SUB ||
Cond.getOpcode() == X86ISD::SMUL ||
Cond.getOpcode() == X86ISD::UMUL)
Cond = LowerXALUO(Cond, DAG);
#endif
// Look pass (and (setcc_carry (cmp ...)), 1).
if (Cond.getOpcode() == ISD::AND &&
Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY &&
isOneConstant(Cond.getOperand(1)))
Cond = Cond.getOperand(0);
// If condition flag is set by a X86ISD::CMP, then use it as the condition
// setting operand in place of the X86ISD::SETCC.
unsigned CondOpcode = Cond.getOpcode();
if (CondOpcode == X86ISD::SETCC ||
CondOpcode == X86ISD::SETCC_CARRY) {
CC = Cond.getOperand(0);
SDValue Cmp = Cond.getOperand(1);
unsigned Opc = Cmp.getOpcode();
// FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
Cond = Cmp;
addTest = false;
} else {
switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
default: break;
case X86::COND_O:
case X86::COND_B:
// These can only come from an arithmetic instruction with overflow,
// e.g. SADDO, UADDO.
Cond = Cond.getOperand(1);
addTest = false;
break;
}
}
}
CondOpcode = Cond.getOpcode();
if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
Cond.getOperand(0).getValueType() != MVT::i8)) {
SDValue LHS = Cond.getOperand(0);
SDValue RHS = Cond.getOperand(1);
unsigned X86Opcode;
unsigned X86Cond;
SDVTList VTs;
// Keep this in sync with LowerXALUO, otherwise we might create redundant
// instructions that can't be removed afterwards (i.e. X86ISD::ADD and
// X86ISD::INC).
switch (CondOpcode) {
case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
case ISD::SADDO:
if (isOneConstant(RHS)) {
X86Opcode = X86ISD::INC; X86Cond = X86::COND_O;
break;
}
X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
case ISD::SSUBO:
if (isOneConstant(RHS)) {
X86Opcode = X86ISD::DEC; X86Cond = X86::COND_O;
break;
}
X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
default: llvm_unreachable("unexpected overflowing operator");
}
if (Inverted)
X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
if (CondOpcode == ISD::UMULO)
VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
MVT::i32);
else
VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
if (CondOpcode == ISD::UMULO)
Cond = X86Op.getValue(2);
else
Cond = X86Op.getValue(1);
CC = DAG.getConstant(X86Cond, dl, MVT::i8);
addTest = false;
} else {
unsigned CondOpc;
if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
SDValue Cmp = Cond.getOperand(0).getOperand(1);
if (CondOpc == ISD::OR) {
// Also, recognize the pattern generated by an FCMP_UNE. We can emit
// two branches instead of an explicit OR instruction with a
// separate test.
if (Cmp == Cond.getOperand(1).getOperand(1) &&
isX86LogicalCmp(Cmp)) {
CC = Cond.getOperand(0).getOperand(0);
Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
Chain, Dest, CC, Cmp);
CC = Cond.getOperand(1).getOperand(0);
Cond = Cmp;
addTest = false;
}
} else { // ISD::AND
// Also, recognize the pattern generated by an FCMP_OEQ. We can emit
// two branches instead of an explicit AND instruction with a
// separate test. However, we only do this if this block doesn't
// have a fall-through edge, because this requires an explicit
// jmp when the condition is false.
if (Cmp == Cond.getOperand(1).getOperand(1) &&
isX86LogicalCmp(Cmp) &&
Op.getNode()->hasOneUse()) {
X86::CondCode CCode =
(X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
CCode = X86::GetOppositeBranchCondition(CCode);
CC = DAG.getConstant(CCode, dl, MVT::i8);
SDNode *User = *Op.getNode()->use_begin();
// Look for an unconditional branch following this conditional branch.
// We need this because we need to reverse the successors in order
// to implement FCMP_OEQ.
if (User->getOpcode() == ISD::BR) {
SDValue FalseBB = User->getOperand(1);
SDNode *NewBR =
DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
assert(NewBR == User);
(void)NewBR;
Dest = FalseBB;
Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
Chain, Dest, CC, Cmp);
X86::CondCode CCode =
(X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
CCode = X86::GetOppositeBranchCondition(CCode);
CC = DAG.getConstant(CCode, dl, MVT::i8);
Cond = Cmp;
addTest = false;
}
}
}
} else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
// Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
// It should be transformed during dag combiner except when the condition
// is set by a arithmetics with overflow node.
X86::CondCode CCode =
(X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
CCode = X86::GetOppositeBranchCondition(CCode);
CC = DAG.getConstant(CCode, dl, MVT::i8);
Cond = Cond.getOperand(0).getOperand(1);
addTest = false;
} else if (Cond.getOpcode() == ISD::SETCC &&
cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
// For FCMP_OEQ, we can emit
// two branches instead of an explicit AND instruction with a
// separate test. However, we only do this if this block doesn't
// have a fall-through edge, because this requires an explicit
// jmp when the condition is false.
if (Op.getNode()->hasOneUse()) {
SDNode *User = *Op.getNode()->use_begin();
// Look for an unconditional branch following this conditional branch.
// We need this because we need to reverse the successors in order
// to implement FCMP_OEQ.
if (User->getOpcode() == ISD::BR) {
SDValue FalseBB = User->getOperand(1);
SDNode *NewBR =
DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
assert(NewBR == User);
(void)NewBR;
Dest = FalseBB;
SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
Cond.getOperand(0), Cond.getOperand(1));
Cmp = ConvertCmpIfNecessary(Cmp, DAG);
CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8);
Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
Chain, Dest, CC, Cmp);
CC = DAG.getConstant(X86::COND_P, dl, MVT::i8);
Cond = Cmp;
addTest = false;
}
}
} else if (Cond.getOpcode() == ISD::SETCC &&
cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
// For FCMP_UNE, we can emit
// two branches instead of an explicit AND instruction with a
// separate test. However, we only do this if this block doesn't
// have a fall-through edge, because this requires an explicit
// jmp when the condition is false.
if (Op.getNode()->hasOneUse()) {
SDNode *User = *Op.getNode()->use_begin();
// Look for an unconditional branch following this conditional branch.
// We need this because we need to reverse the successors in order
// to implement FCMP_UNE.
if (User->getOpcode() == ISD::BR) {
SDValue FalseBB = User->getOperand(1);
SDNode *NewBR =
DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
assert(NewBR == User);
(void)NewBR;
SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
Cond.getOperand(0), Cond.getOperand(1));
Cmp = ConvertCmpIfNecessary(Cmp, DAG);
CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8);
Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
Chain, Dest, CC, Cmp);
CC = DAG.getConstant(X86::COND_NP, dl, MVT::i8);
Cond = Cmp;
addTest = false;
Dest = FalseBB;
}
}
}
}
if (addTest) {
// Look pass the truncate if the high bits are known zero.
if (isTruncWithZeroHighBitsInput(Cond, DAG))
Cond = Cond.getOperand(0);
// We know the result of AND is compared against zero. Try to match
// it to BT.
if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
if (SDValue NewSetCC = LowerAndToBT(Cond, ISD::SETNE, dl, DAG)) {
CC = NewSetCC.getOperand(0);
Cond = NewSetCC.getOperand(1);
addTest = false;
}
}
}
if (addTest) {
X86::CondCode X86Cond = Inverted ? X86::COND_E : X86::COND_NE;
CC = DAG.getConstant(X86Cond, dl, MVT::i8);
Cond = EmitTest(Cond, X86Cond, dl, DAG);
}
Cond = ConvertCmpIfNecessary(Cond, DAG);
return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
Chain, Dest, CC, Cond);
}
// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
// Calls to _alloca are needed to probe the stack when allocating more than 4k
// bytes in one go. Touching the stack at 4K increments is necessary to ensure
// that the guard pages used by the OS virtual memory manager are allocated in
// correct sequence.
SDValue
X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
bool SplitStack = MF.shouldSplitStack();
bool EmitStackProbe = !getStackProbeSymbolName(MF).empty();
bool Lower = (Subtarget.isOSWindows() && !Subtarget.isTargetMachO()) ||
SplitStack || EmitStackProbe;
SDLoc dl(Op);
// Get the inputs.
SDNode *Node = Op.getNode();
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
EVT VT = Node->getValueType(0);
// Chain the dynamic stack allocation so that it doesn't modify the stack
// pointer when other instructions are using the stack.
Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
bool Is64Bit = Subtarget.is64Bit();
MVT SPTy = getPointerTy(DAG.getDataLayout());
SDValue Result;
if (!Lower) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
" not tell us which reg is the stack pointer!");
SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
Chain = SP.getValue(1);
const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
unsigned StackAlign = TFI.getStackAlignment();
Result = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
if (Align > StackAlign)
Result = DAG.getNode(ISD::AND, dl, VT, Result,
DAG.getConstant(-(uint64_t)Align, dl, VT));
Chain = DAG.getCopyToReg(Chain, dl, SPReg, Result); // Output chain
} else if (SplitStack) {
MachineRegisterInfo &MRI = MF.getRegInfo();
if (Is64Bit) {
// The 64 bit implementation of segmented stacks needs to clobber both r10
// r11. This makes it impossible to use it along with nested parameters.
const Function &F = MF.getFunction();
for (const auto &A : F.args()) {
if (A.hasNestAttr())
report_fatal_error("Cannot use segmented stacks with functions that "
"have nested arguments.");
}
}
const TargetRegisterClass *AddrRegClass = getRegClassFor(SPTy);
unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
Result = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
DAG.getRegister(Vreg, SPTy));
} else {
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Size);
MF.getInfo<X86MachineFunctionInfo>()->setHasWinAlloca(true);
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
unsigned SPReg = RegInfo->getStackRegister();
SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy);
Chain = SP.getValue(1);
if (Align) {
SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
DAG.getConstant(-(uint64_t)Align, dl, VT));
Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP);
}
Result = SP;
}
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
SDValue Ops[2] = {Result, Chain};
return DAG.getMergeValues(Ops, dl);
}
SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
auto PtrVT = getPointerTy(MF.getDataLayout());
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
SDLoc DL(Op);
if (!Subtarget.is64Bit() ||
Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv())) {
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
MachinePointerInfo(SV));
}
// __va_list_tag:
// gp_offset (0 - 6 * 8)
// fp_offset (48 - 48 + 8 * 16)
// overflow_arg_area (point to parameters coming in memory).
// reg_save_area
SmallVector<SDValue, 8> MemOps;
SDValue FIN = Op.getOperand(1);
// Store gp_offset
SDValue Store = DAG.getStore(
Op.getOperand(0), DL,
DAG.getConstant(FuncInfo->getVarArgsGPOffset(), DL, MVT::i32), FIN,
MachinePointerInfo(SV));
MemOps.push_back(Store);
// Store fp_offset
FIN = DAG.getMemBasePlusOffset(FIN, 4, DL);
Store = DAG.getStore(
Op.getOperand(0), DL,
DAG.getConstant(FuncInfo->getVarArgsFPOffset(), DL, MVT::i32), FIN,
MachinePointerInfo(SV, 4));
MemOps.push_back(Store);
// Store ptr to overflow_arg_area
FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4, DL));
SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
Store =
DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN, MachinePointerInfo(SV, 8));
MemOps.push_back(Store);
// Store ptr to reg_save_area.
FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(
Subtarget.isTarget64BitLP64() ? 8 : 4, DL));
SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT);
Store = DAG.getStore(
Op.getOperand(0), DL, RSFIN, FIN,
MachinePointerInfo(SV, Subtarget.isTarget64BitLP64() ? 16 : 12));
MemOps.push_back(Store);
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
}
SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
assert(Subtarget.is64Bit() &&
"LowerVAARG only handles 64-bit va_arg!");
assert(Op.getNumOperands() == 4);
MachineFunction &MF = DAG.getMachineFunction();
if (Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()))
// The Win64 ABI uses char* instead of a structure.
return DAG.expandVAArg(Op.getNode());
SDValue Chain = Op.getOperand(0);
SDValue SrcPtr = Op.getOperand(1);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
unsigned Align = Op.getConstantOperandVal(3);
SDLoc dl(Op);
EVT ArgVT = Op.getNode()->getValueType(0);
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
uint32_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
uint8_t ArgMode;
// Decide which area this value should be read from.
// TODO: Implement the AMD64 ABI in its entirety. This simple
// selection mechanism works only for the basic types.
if (ArgVT == MVT::f80) {
llvm_unreachable("va_arg for f80 not yet implemented");
} else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
ArgMode = 2; // Argument passed in XMM register. Use fp_offset.
} else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset.
} else {
llvm_unreachable("Unhandled argument type in LowerVAARG");
}
if (ArgMode == 2) {
// Sanity Check: Make sure using fp_offset makes sense.
assert(!Subtarget.useSoftFloat() &&
!(MF.getFunction().hasFnAttribute(Attribute::NoImplicitFloat)) &&
Subtarget.hasSSE1());
}
// Insert VAARG_64 node into the DAG
// VAARG_64 returns two values: Variable Argument Address, Chain
SDValue InstOps[] = {Chain, SrcPtr, DAG.getConstant(ArgSize, dl, MVT::i32),
DAG.getConstant(ArgMode, dl, MVT::i8),
DAG.getConstant(Align, dl, MVT::i32)};
SDVTList VTs = DAG.getVTList(getPointerTy(DAG.getDataLayout()), MVT::Other);
SDValue VAARG = DAG.getMemIntrinsicNode(
X86ISD::VAARG_64, dl,
VTs, InstOps, MVT::i64,
MachinePointerInfo(SV),
/*Align=*/0,
MachineMemOperand::MOLoad | MachineMemOperand::MOStore);
Chain = VAARG.getValue(1);
// Load the next argument and return it
return DAG.getLoad(ArgVT, dl, Chain, VAARG, MachinePointerInfo());
}
static SDValue LowerVACOPY(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
// X86-64 va_list is a struct { i32, i32, i8*, i8* }, except on Windows,
// where a va_list is still an i8*.
assert(Subtarget.is64Bit() && "This code only handles 64-bit va_copy!");
if (Subtarget.isCallingConvWin64(
DAG.getMachineFunction().getFunction().getCallingConv()))
// Probably a Win64 va_copy.
return DAG.expandVACopy(Op.getNode());
SDValue Chain = Op.getOperand(0);
SDValue DstPtr = Op.getOperand(1);
SDValue SrcPtr = Op.getOperand(2);
const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
SDLoc DL(Op);
return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
DAG.getIntPtrConstant(24, DL), 8, /*isVolatile*/false,
false, false,
MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
}
/// Handle vector element shifts where the shift amount is a constant.
/// Takes immediate version of shift as input.
static SDValue getTargetVShiftByConstNode(unsigned Opc, const SDLoc &dl, MVT VT,
SDValue SrcOp, uint64_t ShiftAmt,
SelectionDAG &DAG) {
MVT ElementType = VT.getVectorElementType();
// Bitcast the source vector to the output type, this is mainly necessary for
// vXi8/vXi64 shifts.
if (VT != SrcOp.getSimpleValueType())
SrcOp = DAG.getBitcast(VT, SrcOp);
// Fold this packed shift into its first operand if ShiftAmt is 0.
if (ShiftAmt == 0)
return SrcOp;
// Check for ShiftAmt >= element width
if (ShiftAmt >= ElementType.getSizeInBits()) {
if (Opc == X86ISD::VSRAI)
ShiftAmt = ElementType.getSizeInBits() - 1;
else
return DAG.getConstant(0, dl, VT);
}
assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI)
&& "Unknown target vector shift-by-constant node");
// Fold this packed vector shift into a build vector if SrcOp is a
// vector of Constants or UNDEFs.
if (ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) {
SmallVector<SDValue, 8> Elts;
unsigned NumElts = SrcOp->getNumOperands();
ConstantSDNode *ND;
switch(Opc) {
default: llvm_unreachable("Unknown opcode!");
case X86ISD::VSHLI:
for (unsigned i=0; i!=NumElts; ++i) {
SDValue CurrentOp = SrcOp->getOperand(i);
if (CurrentOp->isUndef()) {
Elts.push_back(CurrentOp);
continue;
}
ND = cast<ConstantSDNode>(CurrentOp);
const APInt &C = ND->getAPIntValue();
Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), dl, ElementType));
}
break;
case X86ISD::VSRLI:
for (unsigned i=0; i!=NumElts; ++i) {
SDValue CurrentOp = SrcOp->getOperand(i);
if (CurrentOp->isUndef()) {
Elts.push_back(CurrentOp);
continue;
}
ND = cast<ConstantSDNode>(CurrentOp);
const APInt &C = ND->getAPIntValue();
Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), dl, ElementType));
}
break;
case X86ISD::VSRAI:
for (unsigned i=0; i!=NumElts; ++i) {
SDValue CurrentOp = SrcOp->getOperand(i);
if (CurrentOp->isUndef()) {
Elts.push_back(CurrentOp);
continue;
}
ND = cast<ConstantSDNode>(CurrentOp);
const APInt &C = ND->getAPIntValue();
Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), dl, ElementType));
}
break;
}
return DAG.getBuildVector(VT, dl, Elts);
}
return DAG.getNode(Opc, dl, VT, SrcOp,
DAG.getConstant(ShiftAmt, dl, MVT::i8));
}
/// Handle vector element shifts where the shift amount may or may not be a
/// constant. Takes immediate version of shift as input.
static SDValue getTargetVShiftNode(unsigned Opc, const SDLoc &dl, MVT VT,
SDValue SrcOp, SDValue ShAmt,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT SVT = ShAmt.getSimpleValueType();
assert((SVT == MVT::i32 || SVT == MVT::i64) && "Unexpected value type!");
// Catch shift-by-constant.
if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt))
return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp,
CShAmt->getZExtValue(), DAG);
// Change opcode to non-immediate version
switch (Opc) {
default: llvm_unreachable("Unknown target vector shift node");
case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
}
// Need to build a vector containing shift amount.
// SSE/AVX packed shifts only use the lower 64-bit of the shift count.
// +=================+============+=======================================+
// | ShAmt is | HasSSE4.1? | Construct ShAmt vector as |
// +=================+============+=======================================+
// | i64 | Yes, No | Use ShAmt as lowest elt |
// | i32 | Yes | zero-extend in-reg |
// | (i32 zext(i16)) | Yes | zero-extend in-reg |
// | i16/i32 | No | v4i32 build_vector(ShAmt, 0, ud, ud)) |
// +=================+============+=======================================+
if (SVT == MVT::i64)
ShAmt = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(ShAmt), MVT::v2i64, ShAmt);
else if (Subtarget.hasSSE41() && ShAmt.getOpcode() == ISD::ZERO_EXTEND &&
ShAmt.getOperand(0).getSimpleValueType() == MVT::i16) {
ShAmt = ShAmt.getOperand(0);
ShAmt = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(ShAmt), MVT::v8i16, ShAmt);
ShAmt = DAG.getZeroExtendVectorInReg(ShAmt, SDLoc(ShAmt), MVT::v2i64);
} else if (Subtarget.hasSSE41() &&
ShAmt.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
ShAmt = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(ShAmt), MVT::v4i32, ShAmt);
ShAmt = DAG.getZeroExtendVectorInReg(ShAmt, SDLoc(ShAmt), MVT::v2i64);
} else {
SDValue ShOps[4] = {ShAmt, DAG.getConstant(0, dl, SVT),
DAG.getUNDEF(SVT), DAG.getUNDEF(SVT)};
ShAmt = DAG.getBuildVector(MVT::v4i32, dl, ShOps);
}
// The return type has to be a 128-bit type with the same element
// type as the input type.
MVT EltVT = VT.getVectorElementType();
MVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
ShAmt = DAG.getBitcast(ShVT, ShAmt);
return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
}
/// Return Mask with the necessary casting or extending
/// for \p Mask according to \p MaskVT when lowering masking intrinsics
static SDValue getMaskNode(SDValue Mask, MVT MaskVT,
const X86Subtarget &Subtarget, SelectionDAG &DAG,
const SDLoc &dl) {
if (isAllOnesConstant(Mask))
return DAG.getConstant(1, dl, MaskVT);
if (X86::isZeroNode(Mask))
return DAG.getConstant(0, dl, MaskVT);
if (MaskVT.bitsGT(Mask.getSimpleValueType())) {
// Mask should be extended
Mask = DAG.getNode(ISD::ANY_EXTEND, dl,
MVT::getIntegerVT(MaskVT.getSizeInBits()), Mask);
}
if (Mask.getSimpleValueType() == MVT::i64 && Subtarget.is32Bit()) {
assert(MaskVT == MVT::v64i1 && "Expected v64i1 mask!");
assert(Subtarget.hasBWI() && "Expected AVX512BW target!");
// In case 32bit mode, bitcast i64 is illegal, extend/split it.
SDValue Lo, Hi;
Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask,
DAG.getConstant(0, dl, MVT::i32));
Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask,
DAG.getConstant(1, dl, MVT::i32));
Lo = DAG.getBitcast(MVT::v32i1, Lo);
Hi = DAG.getBitcast(MVT::v32i1, Hi);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v64i1, Lo, Hi);
} else {
MVT BitcastVT = MVT::getVectorVT(MVT::i1,
Mask.getSimpleValueType().getSizeInBits());
// In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
// are extracted by EXTRACT_SUBVECTOR.
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
DAG.getBitcast(BitcastVT, Mask),
DAG.getIntPtrConstant(0, dl));
}
}
/// Return (and \p Op, \p Mask) for compare instructions or
/// (vselect \p Mask, \p Op, \p PreservedSrc) for others along with the
/// necessary casting or extending for \p Mask when lowering masking intrinsics
static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
SDValue PreservedSrc,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
unsigned OpcodeSelect = ISD::VSELECT;
SDLoc dl(Op);
if (isAllOnesConstant(Mask))
return Op;
SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
switch (Op.getOpcode()) {
default: break;
case X86ISD::CMPM:
case X86ISD::CMPM_RND:
case X86ISD::VPSHUFBITQMB:
case X86ISD::VFPCLASS:
return DAG.getNode(ISD::AND, dl, VT, Op, VMask);
case ISD::TRUNCATE:
case X86ISD::VTRUNC:
case X86ISD::VTRUNCS:
case X86ISD::VTRUNCUS:
case X86ISD::CVTPS2PH:
// We can't use ISD::VSELECT here because it is not always "Legal"
// for the destination type. For example vpmovqb require only AVX512
// and vselect that can operate on byte element type require BWI
OpcodeSelect = X86ISD::SELECT;
break;
}
if (PreservedSrc.isUndef())
PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
return DAG.getNode(OpcodeSelect, dl, VT, VMask, Op, PreservedSrc);
}
/// Creates an SDNode for a predicated scalar operation.
/// \returns (X86vselect \p Mask, \p Op, \p PreservedSrc).
/// The mask is coming as MVT::i8 and it should be transformed
/// to MVT::v1i1 while lowering masking intrinsics.
/// The main difference between ScalarMaskingNode and VectorMaskingNode is using
/// "X86select" instead of "vselect". We just can't create the "vselect" node
/// for a scalar instruction.
static SDValue getScalarMaskingNode(SDValue Op, SDValue Mask,
SDValue PreservedSrc,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
if (auto *MaskConst = dyn_cast<ConstantSDNode>(Mask))
if (MaskConst->getZExtValue() & 0x1)
return Op;
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
assert(Mask.getValueType() == MVT::i8 && "Unexpect type");
SDValue IMask = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i1, Mask);
if (Op.getOpcode() == X86ISD::FSETCCM ||
Op.getOpcode() == X86ISD::FSETCCM_RND ||
Op.getOpcode() == X86ISD::VFPCLASSS)
return DAG.getNode(ISD::AND, dl, VT, Op, IMask);
if (PreservedSrc.isUndef())
PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
return DAG.getNode(X86ISD::SELECTS, dl, VT, IMask, Op, PreservedSrc);
}
static int getSEHRegistrationNodeSize(const Function *Fn) {
if (!Fn->hasPersonalityFn())
report_fatal_error(
"querying registration node size for function without personality");
// The RegNodeSize is 6 32-bit words for SEH and 4 for C++ EH. See
// WinEHStatePass for the full struct definition.
switch (classifyEHPersonality(Fn->getPersonalityFn())) {
case EHPersonality::MSVC_X86SEH: return 24;
case EHPersonality::MSVC_CXX: return 16;
default: break;
}
report_fatal_error(
"can only recover FP for 32-bit MSVC EH personality functions");
}
/// When the MSVC runtime transfers control to us, either to an outlined
/// function or when returning to a parent frame after catching an exception, we
/// recover the parent frame pointer by doing arithmetic on the incoming EBP.
/// Here's the math:
/// RegNodeBase = EntryEBP - RegNodeSize
/// ParentFP = RegNodeBase - ParentFrameOffset
/// Subtracting RegNodeSize takes us to the offset of the registration node, and
/// subtracting the offset (negative on x86) takes us back to the parent FP.
static SDValue recoverFramePointer(SelectionDAG &DAG, const Function *Fn,
SDValue EntryEBP) {
MachineFunction &MF = DAG.getMachineFunction();
SDLoc dl;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
// It's possible that the parent function no longer has a personality function
// if the exceptional code was optimized away, in which case we just return
// the incoming EBP.
if (!Fn->hasPersonalityFn())
return EntryEBP;
// Get an MCSymbol that will ultimately resolve to the frame offset of the EH
// registration, or the .set_setframe offset.
MCSymbol *OffsetSym =
MF.getMMI().getContext().getOrCreateParentFrameOffsetSymbol(
GlobalValue::dropLLVMManglingEscape(Fn->getName()));
SDValue OffsetSymVal = DAG.getMCSymbol(OffsetSym, PtrVT);
SDValue ParentFrameOffset =
DAG.getNode(ISD::LOCAL_RECOVER, dl, PtrVT, OffsetSymVal);
// Return EntryEBP + ParentFrameOffset for x64. This adjusts from RSP after
// prologue to RBP in the parent function.
const X86Subtarget &Subtarget =
static_cast<const X86Subtarget &>(DAG.getSubtarget());
if (Subtarget.is64Bit())
return DAG.getNode(ISD::ADD, dl, PtrVT, EntryEBP, ParentFrameOffset);
int RegNodeSize = getSEHRegistrationNodeSize(Fn);
// RegNodeBase = EntryEBP - RegNodeSize
// ParentFP = RegNodeBase - ParentFrameOffset
SDValue RegNodeBase = DAG.getNode(ISD::SUB, dl, PtrVT, EntryEBP,
DAG.getConstant(RegNodeSize, dl, PtrVT));
return DAG.getNode(ISD::SUB, dl, PtrVT, RegNodeBase, ParentFrameOffset);
}
SDValue X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
// Helper to detect if the operand is CUR_DIRECTION rounding mode.
auto isRoundModeCurDirection = [](SDValue Rnd) {
if (!isa<ConstantSDNode>(Rnd))
return false;
unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue();
return Round == X86::STATIC_ROUNDING::CUR_DIRECTION;
};
SDLoc dl(Op);
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
MVT VT = Op.getSimpleValueType();
const IntrinsicData* IntrData = getIntrinsicWithoutChain(IntNo);
if (IntrData) {
switch(IntrData->Type) {
case INTR_TYPE_1OP: {
// We specify 2 possible opcodes for intrinsics with rounding modes.
// First, we check if the intrinsic may have non-default rounding mode,
// (IntrData->Opc1 != 0), then we check the rounding mode operand.
unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
if (IntrWithRoundingModeOpcode != 0) {
SDValue Rnd = Op.getOperand(2);
if (!isRoundModeCurDirection(Rnd)) {
return DAG.getNode(IntrWithRoundingModeOpcode, dl, Op.getValueType(),
Op.getOperand(1), Rnd);
}
}
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1));
}
case INTR_TYPE_2OP:
case INTR_TYPE_2OP_IMM8: {
SDValue Src2 = Op.getOperand(2);
if (IntrData->Type == INTR_TYPE_2OP_IMM8)
Src2 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src2);
// We specify 2 possible opcodes for intrinsics with rounding modes.
// First, we check if the intrinsic may have non-default rounding mode,
// (IntrData->Opc1 != 0), then we check the rounding mode operand.
unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
if (IntrWithRoundingModeOpcode != 0) {
SDValue Rnd = Op.getOperand(3);
if (!isRoundModeCurDirection(Rnd)) {
return DAG.getNode(IntrWithRoundingModeOpcode, dl, Op.getValueType(),
Op.getOperand(1), Src2, Rnd);
}
}
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(),
Op.getOperand(1), Src2);
}
case INTR_TYPE_3OP:
case INTR_TYPE_3OP_IMM8: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue Src3 = Op.getOperand(3);
if (IntrData->Type == INTR_TYPE_3OP_IMM8)
Src3 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src3);
// We specify 2 possible opcodes for intrinsics with rounding modes.
// First, we check if the intrinsic may have non-default rounding mode,
// (IntrData->Opc1 != 0), then we check the rounding mode operand.
unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
if (IntrWithRoundingModeOpcode != 0) {
SDValue Rnd = Op.getOperand(4);
if (!isRoundModeCurDirection(Rnd)) {
return DAG.getNode(IntrWithRoundingModeOpcode,
dl, Op.getValueType(),
Src1, Src2, Src3, Rnd);
}
}
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(),
Src1, Src2, Src3);
}
case INTR_TYPE_4OP:
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(4));
case INTR_TYPE_1OP_MASK_RM: {
SDValue Src = Op.getOperand(1);
SDValue PassThru = Op.getOperand(2);
SDValue Mask = Op.getOperand(3);
SDValue RoundingMode;
// We always add rounding mode to the Node.
// If the rounding mode is not specified, we add the
// "current direction" mode.
if (Op.getNumOperands() == 4)
RoundingMode =
DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
else
RoundingMode = Op.getOperand(4);
assert(IntrData->Opc1 == 0 && "Unexpected second opcode!");
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src,
RoundingMode),
Mask, PassThru, Subtarget, DAG);
}
case INTR_TYPE_1OP_MASK: {
SDValue Src = Op.getOperand(1);
SDValue PassThru = Op.getOperand(2);
SDValue Mask = Op.getOperand(3);
// We add rounding mode to the Node when
// - RM Opcode is specified and
// - RM is not "current direction".
unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
if (IntrWithRoundingModeOpcode != 0) {
SDValue Rnd = Op.getOperand(4);
if (!isRoundModeCurDirection(Rnd)) {
return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
dl, Op.getValueType(),
Src, Rnd),
Mask, PassThru, Subtarget, DAG);
}
}
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src),
Mask, PassThru, Subtarget, DAG);
}
case INTR_TYPE_SCALAR_MASK: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue passThru = Op.getOperand(3);
SDValue Mask = Op.getOperand(4);
unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
// There are 2 kinds of intrinsics in this group:
// (1) With suppress-all-exceptions (sae) or rounding mode- 6 operands
// (2) With rounding mode and sae - 7 operands.
bool HasRounding = IntrWithRoundingModeOpcode != 0;
if (Op.getNumOperands() == (5U + HasRounding)) {
if (HasRounding) {
SDValue Rnd = Op.getOperand(5);
if (!isRoundModeCurDirection(Rnd))
return getScalarMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
dl, VT, Src1, Src2, Rnd),
Mask, passThru, Subtarget, DAG);
}
return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1,
Src2),
Mask, passThru, Subtarget, DAG);
}
assert(Op.getNumOperands() == (6U + HasRounding) &&
"Unexpected intrinsic form");
SDValue RoundingMode = Op.getOperand(5);
if (HasRounding) {
SDValue Sae = Op.getOperand(6);
if (!isRoundModeCurDirection(Sae))
return getScalarMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
dl, VT, Src1, Src2,
RoundingMode, Sae),
Mask, passThru, Subtarget, DAG);
}
return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1,
Src2, RoundingMode),
Mask, passThru, Subtarget, DAG);
}
case INTR_TYPE_SCALAR_MASK_RM: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue Src0 = Op.getOperand(3);
SDValue Mask = Op.getOperand(4);
// There are 2 kinds of intrinsics in this group:
// (1) With suppress-all-exceptions (sae) or rounding mode- 6 operands
// (2) With rounding mode and sae - 7 operands.
if (Op.getNumOperands() == 6) {
SDValue Sae = Op.getOperand(5);
return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2,
Sae),
Mask, Src0, Subtarget, DAG);
}
assert(Op.getNumOperands() == 7 && "Unexpected intrinsic form");
SDValue RoundingMode = Op.getOperand(5);
SDValue Sae = Op.getOperand(6);
return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2,
RoundingMode, Sae),
Mask, Src0, Subtarget, DAG);
}
case INTR_TYPE_2OP_MASK: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue PassThru = Op.getOperand(3);
SDValue Mask = Op.getOperand(4);
// We specify 2 possible opcodes for intrinsics with rounding modes.
// First, we check if the intrinsic may have non-default rounding mode,
// (IntrData->Opc1 != 0), then we check the rounding mode operand.
unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
if (IntrWithRoundingModeOpcode != 0) {
SDValue Rnd = Op.getOperand(5);
if (!isRoundModeCurDirection(Rnd)) {
return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
dl, Op.getValueType(),
Src1, Src2, Rnd),
Mask, PassThru, Subtarget, DAG);
}
}
// TODO: Intrinsics should have fast-math-flags to propagate.
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,Src1,Src2),
Mask, PassThru, Subtarget, DAG);
}
case INTR_TYPE_2OP_MASK_RM: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue PassThru = Op.getOperand(3);
SDValue Mask = Op.getOperand(4);
// We specify 2 possible modes for intrinsics, with/without rounding
// modes.
// First, we check if the intrinsic have rounding mode (6 operands),
// if not, we set rounding mode to "current".
SDValue Rnd;
if (Op.getNumOperands() == 6)
Rnd = Op.getOperand(5);
else
Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
Src1, Src2, Rnd),
Mask, PassThru, Subtarget, DAG);
}
case INTR_TYPE_3OP_SCALAR_MASK: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue Src3 = Op.getOperand(3);
SDValue PassThru = Op.getOperand(4);
SDValue Mask = Op.getOperand(5);
unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
if (IntrWithRoundingModeOpcode != 0) {
SDValue Rnd = Op.getOperand(6);
if (!isRoundModeCurDirection(Rnd))
return getScalarMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
dl, VT, Src1, Src2, Src3, Rnd),
Mask, PassThru, Subtarget, DAG);
}
return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1,
Src2, Src3),
Mask, PassThru, Subtarget, DAG);
}
case INTR_TYPE_3OP_MASK: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue Src3 = Op.getOperand(3);
SDValue PassThru = Op.getOperand(4);
SDValue Mask = Op.getOperand(5);
// We specify 2 possible opcodes for intrinsics with rounding modes.
// First, we check if the intrinsic may have non-default rounding mode,
// (IntrData->Opc1 != 0), then we check the rounding mode operand.
unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
if (IntrWithRoundingModeOpcode != 0) {
SDValue Rnd = Op.getOperand(6);
if (!isRoundModeCurDirection(Rnd)) {
return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
dl, Op.getValueType(),
Src1, Src2, Src3, Rnd),
Mask, PassThru, Subtarget, DAG);
}
}
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
Src1, Src2, Src3),
Mask, PassThru, Subtarget, DAG);
}
case VPERM_2OP : {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
// Swap Src1 and Src2 in the node creation
return DAG.getNode(IntrData->Opc0, dl, VT,Src2, Src1);
}
case FMA_OP_MASKZ:
case FMA_OP_MASK: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue Src3 = Op.getOperand(3);
SDValue Mask = Op.getOperand(4);
MVT VT = Op.getSimpleValueType();
SDValue PassThru = SDValue();
// set PassThru element
if (IntrData->Type == FMA_OP_MASKZ)
PassThru = getZeroVector(VT, Subtarget, DAG, dl);
else
PassThru = Src1;
// We specify 2 possible opcodes for intrinsics with rounding modes.
// First, we check if the intrinsic may have non-default rounding mode,
// (IntrData->Opc1 != 0), then we check the rounding mode operand.
unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
if (IntrWithRoundingModeOpcode != 0) {
SDValue Rnd = Op.getOperand(5);
if (!isRoundModeCurDirection(Rnd))
return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
dl, Op.getValueType(),
Src1, Src2, Src3, Rnd),
Mask, PassThru, Subtarget, DAG);
}
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0,
dl, Op.getValueType(),
Src1, Src2, Src3),
Mask, PassThru, Subtarget, DAG);
}
case IFMA_OP:
// NOTE: We need to swizzle the operands to pass the multiply operands
// first.
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
case CVTPD2PS:
// ISD::FP_ROUND has a second argument that indicates if the truncation
// does not change the value. Set it to 0 since it can change.
return DAG.getNode(IntrData->Opc0, dl, VT, Op.getOperand(1),
DAG.getIntPtrConstant(0, dl));
case CVTPD2PS_MASK: {
SDValue Src = Op.getOperand(1);
SDValue PassThru = Op.getOperand(2);
SDValue Mask = Op.getOperand(3);
// We add rounding mode to the Node when
// - RM Opcode is specified and
// - RM is not "current direction".
unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
if (IntrWithRoundingModeOpcode != 0) {
SDValue Rnd = Op.getOperand(4);
if (!isRoundModeCurDirection(Rnd)) {
return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
dl, Op.getValueType(),
Src, Rnd),
Mask, PassThru, Subtarget, DAG);
}
}
assert(IntrData->Opc0 == ISD::FP_ROUND && "Unexpected opcode!");
// ISD::FP_ROUND has a second argument that indicates if the truncation
// does not change the value. Set it to 0 since it can change.
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src,
DAG.getIntPtrConstant(0, dl)),
Mask, PassThru, Subtarget, DAG);
}
case FPCLASS: {
// FPclass intrinsics
SDValue Src1 = Op.getOperand(1);
MVT MaskVT = Op.getSimpleValueType();
SDValue Imm = Op.getOperand(2);
return DAG.getNode(IntrData->Opc0, dl, MaskVT, Src1, Imm);
}
case FPCLASSS: {
SDValue Src1 = Op.getOperand(1);
SDValue Imm = Op.getOperand(2);
SDValue Mask = Op.getOperand(3);
SDValue FPclass = DAG.getNode(IntrData->Opc0, dl, MVT::v1i1, Src1, Imm);
SDValue FPclassMask = getScalarMaskingNode(FPclass, Mask, SDValue(),
Subtarget, DAG);
// Need to fill with zeros to ensure the bitcast will produce zeroes
// for the upper bits. An EXTRACT_ELEMENT here wouldn't guarantee that.
SDValue Ins = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v8i1,
DAG.getConstant(0, dl, MVT::v8i1),
FPclassMask, DAG.getIntPtrConstant(0, dl));
return DAG.getBitcast(MVT::i8, Ins);
}
case CMP_MASK: {
// Comparison intrinsics with masks.
// Example of transformation:
// (i8 (int_x86_avx512_mask_pcmpeq_q_128
// (v2i64 %a), (v2i64 %b), (i8 %mask))) ->
// (i8 (bitcast
// (v8i1 (insert_subvector zero,
// (v2i1 (and (PCMPEQM %a, %b),
// (extract_subvector
// (v8i1 (bitcast %mask)), 0))), 0))))
MVT VT = Op.getOperand(1).getSimpleValueType();
MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
SDValue Mask = Op.getOperand((IntrData->Type == CMP_MASK_CC) ? 4 : 3);
MVT BitcastVT = MVT::getVectorVT(MVT::i1,
Mask.getSimpleValueType().getSizeInBits());
SDValue Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
Op.getOperand(2));
SDValue CmpMask = getVectorMaskingNode(Cmp, Mask, SDValue(),
Subtarget, DAG);
// Need to fill with zeros to ensure the bitcast will produce zeroes
// for the upper bits in the v2i1/v4i1 case.
SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT,
DAG.getConstant(0, dl, BitcastVT),
CmpMask, DAG.getIntPtrConstant(0, dl));
return DAG.getBitcast(Op.getValueType(), Res);
}
case CMP_MASK_CC: {
MVT MaskVT = Op.getSimpleValueType();
SDValue Cmp;
SDValue CC = Op.getOperand(3);
CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, CC);
// We specify 2 possible opcodes for intrinsics with rounding modes.
// First, we check if the intrinsic may have non-default rounding mode,
// (IntrData->Opc1 != 0), then we check the rounding mode operand.
if (IntrData->Opc1 != 0) {
SDValue Rnd = Op.getOperand(4);
if (!isRoundModeCurDirection(Rnd))
Cmp = DAG.getNode(IntrData->Opc1, dl, MaskVT, Op.getOperand(1),
Op.getOperand(2), CC, Rnd);
}
//default rounding mode
if (!Cmp.getNode())
Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
Op.getOperand(2), CC);
return Cmp;
}
case CMP_MASK_SCALAR_CC: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(3));
SDValue Mask = Op.getOperand(4);
SDValue Cmp;
if (IntrData->Opc1 != 0) {
SDValue Rnd = Op.getOperand(5);
if (!isRoundModeCurDirection(Rnd))
Cmp = DAG.getNode(IntrData->Opc1, dl, MVT::v1i1, Src1, Src2, CC, Rnd);
}
//default rounding mode
if(!Cmp.getNode())
Cmp = DAG.getNode(IntrData->Opc0, dl, MVT::v1i1, Src1, Src2, CC);
SDValue CmpMask = getScalarMaskingNode(Cmp, Mask, SDValue(),
Subtarget, DAG);
// Need to fill with zeros to ensure the bitcast will produce zeroes
// for the upper bits. An EXTRACT_ELEMENT here wouldn't guarantee that.
SDValue Ins = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v8i1,
DAG.getConstant(0, dl, MVT::v8i1),
CmpMask, DAG.getIntPtrConstant(0, dl));
return DAG.getBitcast(MVT::i8, Ins);
}
case COMI: { // Comparison intrinsics
ISD::CondCode CC = (ISD::CondCode)IntrData->Opc1;
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
SDValue Comi = DAG.getNode(IntrData->Opc0, dl, MVT::i32, LHS, RHS);
SDValue InvComi = DAG.getNode(IntrData->Opc0, dl, MVT::i32, RHS, LHS);
SDValue SetCC;
switch (CC) {
case ISD::SETEQ: { // (ZF = 0 and PF = 0)
SetCC = getSETCC(X86::COND_E, Comi, dl, DAG);
SDValue SetNP = getSETCC(X86::COND_NP, Comi, dl, DAG);
SetCC = DAG.getNode(ISD::AND, dl, MVT::i8, SetCC, SetNP);
break;
}
case ISD::SETNE: { // (ZF = 1 or PF = 1)
SetCC = getSETCC(X86::COND_NE, Comi, dl, DAG);
SDValue SetP = getSETCC(X86::COND_P, Comi, dl, DAG);
SetCC = DAG.getNode(ISD::OR, dl, MVT::i8, SetCC, SetP);
break;
}
case ISD::SETGT: // (CF = 0 and ZF = 0)
SetCC = getSETCC(X86::COND_A, Comi, dl, DAG);
break;
case ISD::SETLT: { // The condition is opposite to GT. Swap the operands.
SetCC = getSETCC(X86::COND_A, InvComi, dl, DAG);
break;
}
case ISD::SETGE: // CF = 0
SetCC = getSETCC(X86::COND_AE, Comi, dl, DAG);
break;
case ISD::SETLE: // The condition is opposite to GE. Swap the operands.
SetCC = getSETCC(X86::COND_AE, InvComi, dl, DAG);
break;
default:
llvm_unreachable("Unexpected illegal condition!");
}
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
}
case COMI_RM: { // Comparison intrinsics with Sae
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
unsigned CondVal = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
SDValue Sae = Op.getOperand(4);
SDValue FCmp;
if (isRoundModeCurDirection(Sae))
FCmp = DAG.getNode(X86ISD::FSETCCM, dl, MVT::v1i1, LHS, RHS,
DAG.getConstant(CondVal, dl, MVT::i8));
else
FCmp = DAG.getNode(X86ISD::FSETCCM_RND, dl, MVT::v1i1, LHS, RHS,
DAG.getConstant(CondVal, dl, MVT::i8), Sae);
// Need to fill with zeros to ensure the bitcast will produce zeroes
// for the upper bits. An EXTRACT_ELEMENT here wouldn't guarantee that.
SDValue Ins = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v16i1,
DAG.getConstant(0, dl, MVT::v16i1),
FCmp, DAG.getIntPtrConstant(0, dl));
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32,
DAG.getBitcast(MVT::i16, Ins));
}
case VSHIFT:
return getTargetVShiftNode(IntrData->Opc0, dl, Op.getSimpleValueType(),
Op.getOperand(1), Op.getOperand(2), Subtarget,
DAG);
case COMPRESS_EXPAND_IN_REG: {
SDValue Mask = Op.getOperand(3);
SDValue DataToCompress = Op.getOperand(1);
SDValue PassThru = Op.getOperand(2);
if (isAllOnesConstant(Mask)) // return data as is
return Op.getOperand(1);
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
DataToCompress),
Mask, PassThru, Subtarget, DAG);
}
case FIXUPIMMS:
case FIXUPIMMS_MASKZ:
case FIXUPIMM:
case FIXUPIMM_MASKZ:{
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue Src3 = Op.getOperand(3);
SDValue Imm = Op.getOperand(4);
SDValue Mask = Op.getOperand(5);
SDValue Passthru = (IntrData->Type == FIXUPIMM || IntrData->Type == FIXUPIMMS ) ?
Src1 : getZeroVector(VT, Subtarget, DAG, dl);
// We specify 2 possible modes for intrinsics, with/without rounding
// modes.
// First, we check if the intrinsic have rounding mode (7 operands),
// if not, we set rounding mode to "current".
SDValue Rnd;
if (Op.getNumOperands() == 7)
Rnd = Op.getOperand(6);
else
Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
if (IntrData->Type == FIXUPIMM || IntrData->Type == FIXUPIMM_MASKZ)
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
Src1, Src2, Src3, Imm, Rnd),
Mask, Passthru, Subtarget, DAG);
else // Scalar - FIXUPIMMS, FIXUPIMMS_MASKZ
return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
Src1, Src2, Src3, Imm, Rnd),
Mask, Passthru, Subtarget, DAG);
}
case ROUNDP: {
assert(IntrData->Opc0 == X86ISD::VRNDSCALE && "Unexpected opcode");
// Clear the upper bits of the rounding immediate so that the legacy
// intrinsic can't trigger the scaling behavior of VRNDSCALE.
SDValue RoundingMode = DAG.getNode(ISD::AND, dl, MVT::i32,
Op.getOperand(2),
DAG.getConstant(0xf, dl, MVT::i32));
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(),
Op.getOperand(1), RoundingMode);
}
case ROUNDS: {
assert(IntrData->Opc0 == X86ISD::VRNDSCALES && "Unexpected opcode");
// Clear the upper bits of the rounding immediate so that the legacy
// intrinsic can't trigger the scaling behavior of VRNDSCALE.
SDValue RoundingMode = DAG.getNode(ISD::AND, dl, MVT::i32,
Op.getOperand(3),
DAG.getConstant(0xf, dl, MVT::i32));
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2), RoundingMode);
}
default:
break;
}
}
switch (IntNo) {
default: return SDValue(); // Don't custom lower most intrinsics.
// ptest and testp intrinsics. The intrinsic these come from are designed to
// return an integer value, not just an instruction so lower it to the ptest
// or testp pattern and a setcc for the result.
case Intrinsic::x86_sse41_ptestz:
case Intrinsic::x86_sse41_ptestc:
case Intrinsic::x86_sse41_ptestnzc:
case Intrinsic::x86_avx_ptestz_256:
case Intrinsic::x86_avx_ptestc_256:
case Intrinsic::x86_avx_ptestnzc_256:
case Intrinsic::x86_avx_vtestz_ps:
case Intrinsic::x86_avx_vtestc_ps:
case Intrinsic::x86_avx_vtestnzc_ps:
case Intrinsic::x86_avx_vtestz_pd:
case Intrinsic::x86_avx_vtestc_pd:
case Intrinsic::x86_avx_vtestnzc_pd:
case Intrinsic::x86_avx_vtestz_ps_256:
case Intrinsic::x86_avx_vtestc_ps_256:
case Intrinsic::x86_avx_vtestnzc_ps_256:
case Intrinsic::x86_avx_vtestz_pd_256:
case Intrinsic::x86_avx_vtestc_pd_256:
case Intrinsic::x86_avx_vtestnzc_pd_256: {
bool IsTestPacked = false;
X86::CondCode X86CC;
switch (IntNo) {
default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
case Intrinsic::x86_avx_vtestz_ps:
case Intrinsic::x86_avx_vtestz_pd:
case Intrinsic::x86_avx_vtestz_ps_256:
case Intrinsic::x86_avx_vtestz_pd_256:
IsTestPacked = true;
LLVM_FALLTHROUGH;
case Intrinsic::x86_sse41_ptestz:
case Intrinsic::x86_avx_ptestz_256:
// ZF = 1
X86CC = X86::COND_E;
break;
case Intrinsic::x86_avx_vtestc_ps:
case Intrinsic::x86_avx_vtestc_pd:
case Intrinsic::x86_avx_vtestc_ps_256:
case Intrinsic::x86_avx_vtestc_pd_256:
IsTestPacked = true;
LLVM_FALLTHROUGH;
case Intrinsic::x86_sse41_ptestc:
case Intrinsic::x86_avx_ptestc_256:
// CF = 1
X86CC = X86::COND_B;
break;
case Intrinsic::x86_avx_vtestnzc_ps:
case Intrinsic::x86_avx_vtestnzc_pd:
case Intrinsic::x86_avx_vtestnzc_ps_256:
case Intrinsic::x86_avx_vtestnzc_pd_256:
IsTestPacked = true;
LLVM_FALLTHROUGH;
case Intrinsic::x86_sse41_ptestnzc:
case Intrinsic::x86_avx_ptestnzc_256:
// ZF and CF = 0
X86CC = X86::COND_A;
break;
}
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
SDValue SetCC = getSETCC(X86CC, Test, dl, DAG);
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
}
case Intrinsic::x86_sse42_pcmpistria128:
case Intrinsic::x86_sse42_pcmpestria128:
case Intrinsic::x86_sse42_pcmpistric128:
case Intrinsic::x86_sse42_pcmpestric128:
case Intrinsic::x86_sse42_pcmpistrio128:
case Intrinsic::x86_sse42_pcmpestrio128:
case Intrinsic::x86_sse42_pcmpistris128:
case Intrinsic::x86_sse42_pcmpestris128:
case Intrinsic::x86_sse42_pcmpistriz128:
case Intrinsic::x86_sse42_pcmpestriz128: {
unsigned Opcode;
X86::CondCode X86CC;
switch (IntNo) {
default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
case Intrinsic::x86_sse42_pcmpistria128:
Opcode = X86ISD::PCMPISTR;
X86CC = X86::COND_A;
break;
case Intrinsic::x86_sse42_pcmpestria128:
Opcode = X86ISD::PCMPESTR;
X86CC = X86::COND_A;
break;
case Intrinsic::x86_sse42_pcmpistric128:
Opcode = X86ISD::PCMPISTR;
X86CC = X86::COND_B;
break;
case Intrinsic::x86_sse42_pcmpestric128:
Opcode = X86ISD::PCMPESTR;
X86CC = X86::COND_B;
break;
case Intrinsic::x86_sse42_pcmpistrio128:
Opcode = X86ISD::PCMPISTR;
X86CC = X86::COND_O;
break;
case Intrinsic::x86_sse42_pcmpestrio128:
Opcode = X86ISD::PCMPESTR;
X86CC = X86::COND_O;
break;
case Intrinsic::x86_sse42_pcmpistris128:
Opcode = X86ISD::PCMPISTR;
X86CC = X86::COND_S;
break;
case Intrinsic::x86_sse42_pcmpestris128:
Opcode = X86ISD::PCMPESTR;
X86CC = X86::COND_S;
break;
case Intrinsic::x86_sse42_pcmpistriz128:
Opcode = X86ISD::PCMPISTR;
X86CC = X86::COND_E;
break;
case Intrinsic::x86_sse42_pcmpestriz128:
Opcode = X86ISD::PCMPESTR;
X86CC = X86::COND_E;
break;
}
SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::v16i8, MVT::i32);
SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps).getValue(2);
SDValue SetCC = getSETCC(X86CC, PCMP, dl, DAG);
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
}
case Intrinsic::x86_sse42_pcmpistri128:
case Intrinsic::x86_sse42_pcmpestri128: {
unsigned Opcode;
if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
Opcode = X86ISD::PCMPISTR;
else
Opcode = X86ISD::PCMPESTR;
SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::v16i8, MVT::i32);
return DAG.getNode(Opcode, dl, VTs, NewOps);
}
case Intrinsic::x86_sse42_pcmpistrm128:
case Intrinsic::x86_sse42_pcmpestrm128: {
unsigned Opcode;
if (IntNo == Intrinsic::x86_sse42_pcmpistrm128)
Opcode = X86ISD::PCMPISTR;
else
Opcode = X86ISD::PCMPESTR;
SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::v16i8, MVT::i32);
return DAG.getNode(Opcode, dl, VTs, NewOps).getValue(1);
}
case Intrinsic::eh_sjlj_lsda: {
MachineFunction &MF = DAG.getMachineFunction();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
auto &Context = MF.getMMI().getContext();
MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
Twine(MF.getFunctionNumber()));
return DAG.getNode(getGlobalWrapperKind(), dl, VT,
DAG.getMCSymbol(S, PtrVT));
}
case Intrinsic::x86_seh_lsda: {
// Compute the symbol for the LSDA. We know it'll get emitted later.
MachineFunction &MF = DAG.getMachineFunction();
SDValue Op1 = Op.getOperand(1);
auto *Fn = cast<Function>(cast<GlobalAddressSDNode>(Op1)->getGlobal());
MCSymbol *LSDASym = MF.getMMI().getContext().getOrCreateLSDASymbol(
GlobalValue::dropLLVMManglingEscape(Fn->getName()));
// Generate a simple absolute symbol reference. This intrinsic is only
// supported on 32-bit Windows, which isn't PIC.
SDValue Result = DAG.getMCSymbol(LSDASym, VT);
return DAG.getNode(X86ISD::Wrapper, dl, VT, Result);
}
case Intrinsic::x86_seh_recoverfp: {
SDValue FnOp = Op.getOperand(1);
SDValue IncomingFPOp = Op.getOperand(2);
GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp);
auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr);
if (!Fn)
report_fatal_error(
"llvm.x86.seh.recoverfp must take a function as the first argument");
return recoverFramePointer(DAG, Fn, IncomingFPOp);
}
case Intrinsic::localaddress: {
// Returns one of the stack, base, or frame pointer registers, depending on
// which is used to reference local variables.
MachineFunction &MF = DAG.getMachineFunction();
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
unsigned Reg;
if (RegInfo->hasBasePointer(MF))
Reg = RegInfo->getBaseRegister();
else // This function handles the SP or FP case.
Reg = RegInfo->getPtrSizedFrameRegister(MF);
return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
}
}
}
static SDValue getAVX2GatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
SDValue Src, SDValue Mask, SDValue Base,
SDValue Index, SDValue ScaleOp, SDValue Chain,
const X86Subtarget &Subtarget) {
SDLoc dl(Op);
auto *C = dyn_cast<ConstantSDNode>(ScaleOp);
// Scale must be constant.
if (!C)
return SDValue();
SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
EVT MaskVT = Mask.getValueType();
SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
SDValue Segment = DAG.getRegister(0, MVT::i32);
// If source is undef or we know it won't be used, use a zero vector
// to break register dependency.
// TODO: use undef instead and let BreakFalseDeps deal with it?
if (Src.isUndef() || ISD::isBuildVectorAllOnes(Mask.getNode()))
Src = getZeroVector(Op.getSimpleValueType(), Subtarget, DAG, dl);
SDValue Ops[] = {Src, Base, Scale, Index, Disp, Segment, Mask, Chain};
SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
return DAG.getMergeValues(RetOps, dl);
}
static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
SDValue Src, SDValue Mask, SDValue Base,
SDValue Index, SDValue ScaleOp, SDValue Chain,
const X86Subtarget &Subtarget) {
SDLoc dl(Op);
auto *C = dyn_cast<ConstantSDNode>(ScaleOp);
// Scale must be constant.
if (!C)
return SDValue();
SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
MVT MaskVT = MVT::getVectorVT(MVT::i1,
Index.getSimpleValueType().getVectorNumElements());
SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
SDValue Segment = DAG.getRegister(0, MVT::i32);
// If source is undef or we know it won't be used, use a zero vector
// to break register dependency.
// TODO: use undef instead and let BreakFalseDeps deal with it?
if (Src.isUndef() || ISD::isBuildVectorAllOnes(VMask.getNode()))
Src = getZeroVector(Op.getSimpleValueType(), Subtarget, DAG, dl);
SDValue Ops[] = {Src, VMask, Base, Scale, Index, Disp, Segment, Chain};
SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
return DAG.getMergeValues(RetOps, dl);
}
static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
SDValue Src, SDValue Mask, SDValue Base,
SDValue Index, SDValue ScaleOp, SDValue Chain,
const X86Subtarget &Subtarget) {
SDLoc dl(Op);
auto *C = dyn_cast<ConstantSDNode>(ScaleOp);
// Scale must be constant.
if (!C)
return SDValue();
SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
SDValue Segment = DAG.getRegister(0, MVT::i32);
MVT MaskVT = MVT::getVectorVT(MVT::i1,
Index.getSimpleValueType().getVectorNumElements());
SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
SDValue Ops[] = {Base, Scale, Index, Disp, Segment, VMask, Src, Chain};
SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
return SDValue(Res, 1);
}
static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
SDValue Mask, SDValue Base, SDValue Index,
SDValue ScaleOp, SDValue Chain,
const X86Subtarget &Subtarget) {
SDLoc dl(Op);
auto *C = dyn_cast<ConstantSDNode>(ScaleOp);
// Scale must be constant.
if (!C)
return SDValue();
SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
SDValue Segment = DAG.getRegister(0, MVT::i32);
MVT MaskVT =
MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements());
SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
SDValue Ops[] = {VMask, Base, Scale, Index, Disp, Segment, Chain};
SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops);
return SDValue(Res, 0);
}
/// Handles the lowering of builtin intrinsic that return the value
/// of the extended control register.
static void getExtendedControlRegister(SDNode *N, const SDLoc &DL,
SelectionDAG &DAG,
const X86Subtarget &Subtarget,
SmallVectorImpl<SDValue> &Results) {
assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue LO, HI;
// The ECX register is used to select the index of the XCR register to
// return.
SDValue Chain =
DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX, N->getOperand(2));
SDNode *N1 = DAG.getMachineNode(X86::XGETBV, DL, Tys, Chain);
Chain = SDValue(N1, 0);
// Reads the content of XCR and returns it in registers EDX:EAX.
if (Subtarget.is64Bit()) {
LO = DAG.getCopyFromReg(Chain, DL, X86::RAX, MVT::i64, SDValue(N1, 1));
HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
LO.getValue(2));
} else {
LO = DAG.getCopyFromReg(Chain, DL, X86::EAX, MVT::i32, SDValue(N1, 1));
HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
LO.getValue(2));
}
Chain = HI.getValue(1);
if (Subtarget.is64Bit()) {
// Merge the two 32-bit values into a 64-bit one..
SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
DAG.getConstant(32, DL, MVT::i8));
Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
Results.push_back(Chain);
return;
}
// Use a buildpair to merge the two 32-bit values into a 64-bit one.
SDValue Ops[] = { LO, HI };
SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
Results.push_back(Pair);
Results.push_back(Chain);
}
/// Handles the lowering of builtin intrinsics that read performance monitor
/// counters (x86_rdpmc).
static void getReadPerformanceCounter(SDNode *N, const SDLoc &DL,
SelectionDAG &DAG,
const X86Subtarget &Subtarget,
SmallVectorImpl<SDValue> &Results) {
assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue LO, HI;
// The ECX register is used to select the index of the performance counter
// to read.
SDValue Chain = DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX,
N->getOperand(2));
SDValue rd = DAG.getNode(X86ISD::RDPMC_DAG, DL, Tys, Chain);
// Reads the content of a 64-bit performance counter and returns it in the
// registers EDX:EAX.
if (Subtarget.is64Bit()) {
LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
LO.getValue(2));
} else {
LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
LO.getValue(2));
}
Chain = HI.getValue(1);
if (Subtarget.is64Bit()) {
// The EAX register is loaded with the low-order 32 bits. The EDX register
// is loaded with the supported high-order bits of the counter.
SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
DAG.getConstant(32, DL, MVT::i8));
Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
Results.push_back(Chain);
return;
}
// Use a buildpair to merge the two 32-bit values into a 64-bit one.
SDValue Ops[] = { LO, HI };
SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
Results.push_back(Pair);
Results.push_back(Chain);
}
/// Handles the lowering of builtin intrinsics that read the time stamp counter
/// (x86_rdtsc and x86_rdtscp). This function is also used to custom lower
/// READCYCLECOUNTER nodes.
static void getReadTimeStampCounter(SDNode *N, const SDLoc &DL, unsigned Opcode,
SelectionDAG &DAG,
const X86Subtarget &Subtarget,
SmallVectorImpl<SDValue> &Results) {
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue rd = DAG.getNode(Opcode, DL, Tys, N->getOperand(0));
SDValue LO, HI;
// The processor's time-stamp counter (a 64-bit MSR) is stored into the
// EDX:EAX registers. EDX is loaded with the high-order 32 bits of the MSR
// and the EAX register is loaded with the low-order 32 bits.
if (Subtarget.is64Bit()) {
LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
LO.getValue(2));
} else {
LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
LO.getValue(2));
}
SDValue Chain = HI.getValue(1);
if (Opcode == X86ISD::RDTSCP_DAG) {
assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
// Instruction RDTSCP loads the IA32:TSC_AUX_MSR (address C000_0103H) into
// the ECX register. Add 'ecx' explicitly to the chain.
SDValue ecx = DAG.getCopyFromReg(Chain, DL, X86::ECX, MVT::i32,
HI.getValue(2));
// Explicitly store the content of ECX at the location passed in input
// to the 'rdtscp' intrinsic.
Chain = DAG.getStore(ecx.getValue(1), DL, ecx, N->getOperand(2),
MachinePointerInfo());
}
if (Subtarget.is64Bit()) {
// The EDX register is loaded with the high-order 32 bits of the MSR, and
// the EAX register is loaded with the low-order 32 bits.
SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
DAG.getConstant(32, DL, MVT::i8));
Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
Results.push_back(Chain);
return;
}
// Use a buildpair to merge the two 32-bit values into a 64-bit one.
SDValue Ops[] = { LO, HI };
SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
Results.push_back(Pair);
Results.push_back(Chain);
}
static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SmallVector<SDValue, 2> Results;
SDLoc DL(Op);
getReadTimeStampCounter(Op.getNode(), DL, X86ISD::RDTSC_DAG, DAG, Subtarget,
Results);
return DAG.getMergeValues(Results, DL);
}
static SDValue MarkEHRegistrationNode(SDValue Op, SelectionDAG &DAG) {
MachineFunction &MF = DAG.getMachineFunction();
SDValue Chain = Op.getOperand(0);
SDValue RegNode = Op.getOperand(2);
WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
if (!EHInfo)
report_fatal_error("EH registrations only live in functions using WinEH");
// Cast the operand to an alloca, and remember the frame index.
auto *FINode = dyn_cast<FrameIndexSDNode>(RegNode);
if (!FINode)
report_fatal_error("llvm.x86.seh.ehregnode expects a static alloca");
EHInfo->EHRegNodeFrameIndex = FINode->getIndex();
// Return the chain operand without making any DAG nodes.
return Chain;
}
static SDValue MarkEHGuard(SDValue Op, SelectionDAG &DAG) {
MachineFunction &MF = DAG.getMachineFunction();
SDValue Chain = Op.getOperand(0);
SDValue EHGuard = Op.getOperand(2);
WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
if (!EHInfo)
report_fatal_error("EHGuard only live in functions using WinEH");
// Cast the operand to an alloca, and remember the frame index.
auto *FINode = dyn_cast<FrameIndexSDNode>(EHGuard);
if (!FINode)
report_fatal_error("llvm.x86.seh.ehguard expects a static alloca");
EHInfo->EHGuardFrameIndex = FINode->getIndex();
// Return the chain operand without making any DAG nodes.
return Chain;
}
/// Emit Truncating Store with signed or unsigned saturation.
static SDValue
EmitTruncSStore(bool SignedSat, SDValue Chain, const SDLoc &Dl, SDValue Val,
SDValue Ptr, EVT MemVT, MachineMemOperand *MMO,
SelectionDAG &DAG) {
SDVTList VTs = DAG.getVTList(MVT::Other);
SDValue Undef = DAG.getUNDEF(Ptr.getValueType());
SDValue Ops[] = { Chain, Val, Ptr, Undef };
return SignedSat ?
DAG.getTargetMemSDNode<TruncSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO) :
DAG.getTargetMemSDNode<TruncUSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO);
}
/// Emit Masked Truncating Store with signed or unsigned saturation.
static SDValue
EmitMaskedTruncSStore(bool SignedSat, SDValue Chain, const SDLoc &Dl,
SDValue Val, SDValue Ptr, SDValue Mask, EVT MemVT,
MachineMemOperand *MMO, SelectionDAG &DAG) {
SDVTList VTs = DAG.getVTList(MVT::Other);
SDValue Ops[] = { Chain, Ptr, Mask, Val };
return SignedSat ?
DAG.getTargetMemSDNode<MaskedTruncSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO) :
DAG.getTargetMemSDNode<MaskedTruncUSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO);
}
static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
const IntrinsicData *IntrData = getIntrinsicWithChain(IntNo);
if (!IntrData) {
switch (IntNo) {
case llvm::Intrinsic::x86_seh_ehregnode:
return MarkEHRegistrationNode(Op, DAG);
case llvm::Intrinsic::x86_seh_ehguard:
return MarkEHGuard(Op, DAG);
case llvm::Intrinsic::x86_flags_read_u32:
case llvm::Intrinsic::x86_flags_read_u64:
case llvm::Intrinsic::x86_flags_write_u32:
case llvm::Intrinsic::x86_flags_write_u64: {
// We need a frame pointer because this will get lowered to a PUSH/POP
// sequence.
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
MFI.setHasCopyImplyingStackAdjustment(true);
// Don't do anything here, we will expand these intrinsics out later
// during ExpandISelPseudos in EmitInstrWithCustomInserter.
return SDValue();
}
case Intrinsic::x86_lwpins32:
case Intrinsic::x86_lwpins64:
case Intrinsic::x86_umwait:
case Intrinsic::x86_tpause: {
SDLoc dl(Op);
SDValue Chain = Op->getOperand(0);
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
unsigned Opcode;
switch (IntNo) {
default: llvm_unreachable("Impossible intrinsic");
case Intrinsic::x86_umwait:
Opcode = X86ISD::UMWAIT;
break;
case Intrinsic::x86_tpause:
Opcode = X86ISD::TPAUSE;
break;
case Intrinsic::x86_lwpins32:
case Intrinsic::x86_lwpins64:
Opcode = X86ISD::LWPINS;
break;
}
SDValue Operation =
DAG.getNode(Opcode, dl, VTs, Chain, Op->getOperand(2),
Op->getOperand(3), Op->getOperand(4));
SDValue SetCC = getSETCC(X86::COND_B, Operation.getValue(0), dl, DAG);
SDValue Result = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i8, SetCC);
return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result,
Operation.getValue(1));
}
}
return SDValue();
}
SDLoc dl(Op);
switch(IntrData->Type) {
default: llvm_unreachable("Unknown Intrinsic Type");
case RDSEED:
case RDRAND: {
// Emit the node with the right value type.
SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32, MVT::Other);
SDValue Result = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
// If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
// Otherwise return the value from Rand, which is always 0, casted to i32.
SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
DAG.getConstant(1, dl, Op->getValueType(1)),
DAG.getConstant(X86::COND_B, dl, MVT::i8),
SDValue(Result.getNode(), 1) };
SDValue isValid = DAG.getNode(X86ISD::CMOV, dl, Op->getValueType(1), Ops);
// Return { result, isValid, chain }.
return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
SDValue(Result.getNode(), 2));
}
case GATHER_AVX2: {
SDValue Chain = Op.getOperand(0);
SDValue Src = Op.getOperand(2);
SDValue Base = Op.getOperand(3);
SDValue Index = Op.getOperand(4);
SDValue Mask = Op.getOperand(5);
SDValue Scale = Op.getOperand(6);
return getAVX2GatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index,
Scale, Chain, Subtarget);
}
case GATHER: {
//gather(v1, mask, index, base, scale);
SDValue Chain = Op.getOperand(0);
SDValue Src = Op.getOperand(2);
SDValue Base = Op.getOperand(3);
SDValue Index = Op.getOperand(4);
SDValue Mask = Op.getOperand(5);
SDValue Scale = Op.getOperand(6);
return getGatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale,
Chain, Subtarget);
}
case SCATTER: {
//scatter(base, mask, index, v1, scale);
SDValue Chain = Op.getOperand(0);
SDValue Base = Op.getOperand(2);
SDValue Mask = Op.getOperand(3);
SDValue Index = Op.getOperand(4);
SDValue Src = Op.getOperand(5);
SDValue Scale = Op.getOperand(6);
return getScatterNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index,
Scale, Chain, Subtarget);
}
case PREFETCH: {
SDValue Hint = Op.getOperand(6);
unsigned HintVal = cast<ConstantSDNode>(Hint)->getZExtValue();
assert((HintVal == 2 || HintVal == 3) &&
"Wrong prefetch hint in intrinsic: should be 2 or 3");
unsigned Opcode = (HintVal == 2 ? IntrData->Opc1 : IntrData->Opc0);
SDValue Chain = Op.getOperand(0);
SDValue Mask = Op.getOperand(2);
SDValue Index = Op.getOperand(3);
SDValue Base = Op.getOperand(4);
SDValue Scale = Op.getOperand(5);
return getPrefetchNode(Opcode, Op, DAG, Mask, Base, Index, Scale, Chain,
Subtarget);
}
// Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP).
case RDTSC: {
SmallVector<SDValue, 2> Results;
getReadTimeStampCounter(Op.getNode(), dl, IntrData->Opc0, DAG, Subtarget,
Results);
return DAG.getMergeValues(Results, dl);
}
// Read Performance Monitoring Counters.
case RDPMC: {
SmallVector<SDValue, 2> Results;
getReadPerformanceCounter(Op.getNode(), dl, DAG, Subtarget, Results);
return DAG.getMergeValues(Results, dl);
}
// Get Extended Control Register.
case XGETBV: {
SmallVector<SDValue, 2> Results;
getExtendedControlRegister(Op.getNode(), dl, DAG, Subtarget, Results);
return DAG.getMergeValues(Results, dl);
}
// XTEST intrinsics.
case XTEST: {
SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
SDValue InTrans = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
SDValue SetCC = getSETCC(X86::COND_NE, InTrans, dl, DAG);
SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
Ret, SDValue(InTrans.getNode(), 1));
}
// ADC/ADCX/SBB
case ADX: {
SDVTList CFVTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
SDVTList VTs = DAG.getVTList(Op.getOperand(3).getValueType(), MVT::i32);
SDValue GenCF = DAG.getNode(X86ISD::ADD, dl, CFVTs, Op.getOperand(2),
DAG.getConstant(-1, dl, MVT::i8));
SDValue Res = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(3),
Op.getOperand(4), GenCF.getValue(1));
SDValue Store = DAG.getStore(Op.getOperand(0), dl, Res.getValue(0),
Op.getOperand(5), MachinePointerInfo());
SDValue SetCC = getSETCC(X86::COND_B, Res.getValue(1), dl, DAG);
SDValue Results[] = { SetCC, Store };
return DAG.getMergeValues(Results, dl);
}
case TRUNCATE_TO_MEM_VI8:
case TRUNCATE_TO_MEM_VI16:
case TRUNCATE_TO_MEM_VI32: {
SDValue Mask = Op.getOperand(4);
SDValue DataToTruncate = Op.getOperand(3);
SDValue Addr = Op.getOperand(2);
SDValue Chain = Op.getOperand(0);
MemIntrinsicSDNode *MemIntr = dyn_cast<MemIntrinsicSDNode>(Op);
assert(MemIntr && "Expected MemIntrinsicSDNode!");
EVT MemVT = MemIntr->getMemoryVT();
uint16_t TruncationOp = IntrData->Opc0;
switch (TruncationOp) {
case X86ISD::VTRUNC: {
if (isAllOnesConstant(Mask)) // return just a truncate store
return DAG.getTruncStore(Chain, dl, DataToTruncate, Addr, MemVT,
MemIntr->getMemOperand());
MVT MaskVT = MVT::getVectorVT(MVT::i1, MemVT.getVectorNumElements());
SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
return DAG.getMaskedStore(Chain, dl, DataToTruncate, Addr, VMask, MemVT,
MemIntr->getMemOperand(), true /* truncating */);
}
case X86ISD::VTRUNCUS:
case X86ISD::VTRUNCS: {
bool IsSigned = (TruncationOp == X86ISD::VTRUNCS);
if (isAllOnesConstant(Mask))
return EmitTruncSStore(IsSigned, Chain, dl, DataToTruncate, Addr, MemVT,
MemIntr->getMemOperand(), DAG);
MVT MaskVT = MVT::getVectorVT(MVT::i1, MemVT.getVectorNumElements());
SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
return EmitMaskedTruncSStore(IsSigned, Chain, dl, DataToTruncate, Addr,
VMask, MemVT, MemIntr->getMemOperand(), DAG);
}
default:
llvm_unreachable("Unsupported truncstore intrinsic");
}
}
}
}
SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
MFI.setReturnAddressIsTaken(true);
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
SDLoc dl(Op);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
if (Depth > 0) {
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), dl, PtrVT);
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
MachinePointerInfo());
}
// Just load the return address.
SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
MachinePointerInfo());
}
SDValue X86TargetLowering::LowerADDROFRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
DAG.getMachineFunction().getFrameInfo().setReturnAddressIsTaken(true);
return getReturnAddressFrameIndex(DAG);
}
SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
EVT VT = Op.getValueType();
MFI.setFrameAddressIsTaken(true);
if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
// Depth > 0 makes no sense on targets which use Windows unwind codes. It
// is not possible to crawl up the stack without looking at the unwind codes
// simultaneously.
int FrameAddrIndex = FuncInfo->getFAIndex();
if (!FrameAddrIndex) {
// Set up a frame object for the return address.
unsigned SlotSize = RegInfo->getSlotSize();
FrameAddrIndex = MF.getFrameInfo().CreateFixedObject(
SlotSize, /*Offset=*/0, /*IsImmutable=*/false);
FuncInfo->setFAIndex(FrameAddrIndex);
}
return DAG.getFrameIndex(FrameAddrIndex, VT);
}
unsigned FrameReg =
RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction());
SDLoc dl(Op); // FIXME probably not meaningful
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
(FrameReg == X86::EBP && VT == MVT::i32)) &&
"Invalid Frame Register!");
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
while (Depth--)
FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
MachinePointerInfo());
return FrameAddr;
}
// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
unsigned X86TargetLowering::getRegisterByName(const char* RegName, EVT VT,
SelectionDAG &DAG) const {
const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
const MachineFunction &MF = DAG.getMachineFunction();
unsigned Reg = StringSwitch<unsigned>(RegName)
.Case("esp", X86::ESP)
.Case("rsp", X86::RSP)
.Case("ebp", X86::EBP)
.Case("rbp", X86::RBP)
.Default(0);
if (Reg == X86::EBP || Reg == X86::RBP) {
if (!TFI.hasFP(MF))
report_fatal_error("register " + StringRef(RegName) +
" is allocatable: function has no frame pointer");
#ifndef NDEBUG
else {
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
unsigned FrameReg =
RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction());
assert((FrameReg == X86::EBP || FrameReg == X86::RBP) &&
"Invalid Frame Register!");
}
#endif
}
if (Reg)
return Reg;
report_fatal_error("Invalid register name global variable");
}
SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
SelectionDAG &DAG) const {
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize(), SDLoc(Op));
}
unsigned X86TargetLowering::getExceptionPointerRegister(
const Constant *PersonalityFn) const {
if (classifyEHPersonality(PersonalityFn) == EHPersonality::CoreCLR)
return Subtarget.isTarget64BitLP64() ? X86::RDX : X86::EDX;
return Subtarget.isTarget64BitLP64() ? X86::RAX : X86::EAX;
}
unsigned X86TargetLowering::getExceptionSelectorRegister(
const Constant *PersonalityFn) const {
// Funclet personalities don't use selectors (the runtime does the selection).
assert(!isFuncletEHPersonality(classifyEHPersonality(PersonalityFn)));
return Subtarget.isTarget64BitLP64() ? X86::RDX : X86::EDX;
}
bool X86TargetLowering::needsFixedCatchObjects() const {
return Subtarget.isTargetWin64();
}
SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Offset = Op.getOperand(1);
SDValue Handler = Op.getOperand(2);
SDLoc dl (Op);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
(FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
"Invalid Frame Register!");
SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
DAG.getIntPtrConstant(RegInfo->getSlotSize(),
dl));
StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
DAG.getRegister(StoreAddrReg, PtrVT));
}
SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
// If the subtarget is not 64bit, we may need the global base reg
// after isel expand pseudo, i.e., after CGBR pass ran.
// Therefore, ask for the GlobalBaseReg now, so that the pass
// inserts the code for us in case we need it.
// Otherwise, we will end up in a situation where we will
// reference a virtual register that is not defined!
if (!Subtarget.is64Bit()) {
const X86InstrInfo *TII = Subtarget.getInstrInfo();
(void)TII->getGlobalBaseReg(&DAG.getMachineFunction());
}
return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
DAG.getVTList(MVT::i32, MVT::Other),
Op.getOperand(0), Op.getOperand(1));
}
SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
Op.getOperand(0), Op.getOperand(1));
}
SDValue X86TargetLowering::lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
return DAG.getNode(X86ISD::EH_SJLJ_SETUP_DISPATCH, DL, MVT::Other,
Op.getOperand(0));
}
static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
return Op.getOperand(0);
}
SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
SelectionDAG &DAG) const {
SDValue Root = Op.getOperand(0);
SDValue Trmp = Op.getOperand(1); // trampoline
SDValue FPtr = Op.getOperand(2); // nested function
SDValue Nest = Op.getOperand(3); // 'nest' parameter value
SDLoc dl (Op);
const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
if (Subtarget.is64Bit()) {
SDValue OutChains[6];
// Large code-model.
const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode.
const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
// Load the pointer to the nested function into R11.
unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
SDValue Addr = Trmp;
OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
Addr, MachinePointerInfo(TrmpAddr));
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(2, dl, MVT::i64));
OutChains[1] =
DAG.getStore(Root, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 2),
/* Alignment = */ 2);
// Load the 'nest' parameter value into R10.
// R10 is specified in X86CallingConv.td
OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(10, dl, MVT::i64));
OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
Addr, MachinePointerInfo(TrmpAddr, 10));
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(12, dl, MVT::i64));
OutChains[3] =
DAG.getStore(Root, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12),
/* Alignment = */ 2);
// Jump to the nested function.
OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(20, dl, MVT::i64));
OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
Addr, MachinePointerInfo(TrmpAddr, 20));
unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(22, dl, MVT::i64));
OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, dl, MVT::i8),
Addr, MachinePointerInfo(TrmpAddr, 22));
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
} else {
const Function *Func =
cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
CallingConv::ID CC = Func->getCallingConv();
unsigned NestReg;
switch (CC) {
default:
llvm_unreachable("Unsupported calling convention");
case CallingConv::C:
case CallingConv::X86_StdCall: {
// Pass 'nest' parameter in ECX.
// Must be kept in sync with X86CallingConv.td
NestReg = X86::ECX;
// Check that ECX wasn't needed by an 'inreg' parameter.
FunctionType *FTy = Func->getFunctionType();
const AttributeList &Attrs = Func->getAttributes();
if (!Attrs.isEmpty() && !Func->isVarArg()) {
unsigned InRegCount = 0;
unsigned Idx = 1;
for (FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end(); I != E; ++I, ++Idx)
if (Attrs.hasAttribute(Idx, Attribute::InReg)) {
auto &DL = DAG.getDataLayout();
// FIXME: should only count parameters that are lowered to integers.
InRegCount += (DL.getTypeSizeInBits(*I) + 31) / 32;
}
if (InRegCount > 2) {
report_fatal_error("Nest register in use - reduce number of inreg"
" parameters!");
}
}
break;
}
case CallingConv::X86_FastCall:
case CallingConv::X86_ThisCall:
case CallingConv::Fast:
// Pass 'nest' parameter in EAX.
// Must be kept in sync with X86CallingConv.td
NestReg = X86::EAX;
break;
}
SDValue OutChains[4];
SDValue Addr, Disp;
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(10, dl, MVT::i32));
Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
// This is storing the opcode for MOV32ri.
const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
OutChains[0] =
DAG.getStore(Root, dl, DAG.getConstant(MOV32ri | N86Reg, dl, MVT::i8),
Trmp, MachinePointerInfo(TrmpAddr));
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(1, dl, MVT::i32));
OutChains[1] =
DAG.getStore(Root, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 1),
/* Alignment = */ 1);
const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(5, dl, MVT::i32));
OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, dl, MVT::i8),
Addr, MachinePointerInfo(TrmpAddr, 5),
/* Alignment = */ 1);
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(6, dl, MVT::i32));
OutChains[3] =
DAG.getStore(Root, dl, Disp, Addr, MachinePointerInfo(TrmpAddr, 6),
/* Alignment = */ 1);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
}
}
SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
SelectionDAG &DAG) const {
/*
The rounding mode is in bits 11:10 of FPSR, and has the following
settings:
00 Round to nearest
01 Round to -inf
10 Round to +inf
11 Round to 0
FLT_ROUNDS, on the other hand, expects the following:
-1 Undefined
0 Round to 0
1 Round to nearest
2 Round to +inf
3 Round to -inf
To perform the conversion, we do:
(((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
*/
MachineFunction &MF = DAG.getMachineFunction();
const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
unsigned StackAlignment = TFI.getStackAlignment();
MVT VT = Op.getSimpleValueType();
SDLoc DL(Op);
// Save FP Control Word to stack slot
int SSFI = MF.getFrameInfo().CreateStackObject(2, StackAlignment, false);
SDValue StackSlot =
DAG.getFrameIndex(SSFI, getPointerTy(DAG.getDataLayout()));
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
MachineMemOperand::MOStore, 2, 2);
SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
DAG.getVTList(MVT::Other),
Ops, MVT::i16, MMO);
// Load FP Control Word from stack slot
SDValue CWD =
DAG.getLoad(MVT::i16, DL, Chain, StackSlot, MachinePointerInfo());
// Transform as necessary
SDValue CWD1 =
DAG.getNode(ISD::SRL, DL, MVT::i16,
DAG.getNode(ISD::AND, DL, MVT::i16,
CWD, DAG.getConstant(0x800, DL, MVT::i16)),
DAG.getConstant(11, DL, MVT::i8));
SDValue CWD2 =
DAG.getNode(ISD::SRL, DL, MVT::i16,
DAG.getNode(ISD::AND, DL, MVT::i16,
CWD, DAG.getConstant(0x400, DL, MVT::i16)),
DAG.getConstant(9, DL, MVT::i8));
SDValue RetVal =
DAG.getNode(ISD::AND, DL, MVT::i16,
DAG.getNode(ISD::ADD, DL, MVT::i16,
DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
DAG.getConstant(1, DL, MVT::i16)),
DAG.getConstant(3, DL, MVT::i16));
return DAG.getNode((VT.getSizeInBits() < 16 ?
ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
}
// Split an unary integer op into 2 half sized ops.
static SDValue LowerVectorIntUnary(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
unsigned NumElems = VT.getVectorNumElements();
unsigned SizeInBits = VT.getSizeInBits();
MVT EltVT = VT.getVectorElementType();
SDValue Src = Op.getOperand(0);
assert(EltVT == Src.getSimpleValueType().getVectorElementType() &&
"Src and Op should have the same element type!");
// Extract the Lo/Hi vectors
SDLoc dl(Op);
SDValue Lo = extractSubVector(Src, 0, DAG, dl, SizeInBits / 2);
SDValue Hi = extractSubVector(Src, NumElems / 2, DAG, dl, SizeInBits / 2);
MVT NewVT = MVT::getVectorVT(EltVT, NumElems / 2);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
DAG.getNode(Op.getOpcode(), dl, NewVT, Lo),
DAG.getNode(Op.getOpcode(), dl, NewVT, Hi));
}
// Decompose 256-bit ops into smaller 128-bit ops.
static SDValue Lower256IntUnary(SDValue Op, SelectionDAG &DAG) {
assert(Op.getSimpleValueType().is256BitVector() &&
Op.getSimpleValueType().isInteger() &&
"Only handle AVX 256-bit vector integer operation");
return LowerVectorIntUnary(Op, DAG);
}
// Decompose 512-bit ops into smaller 256-bit ops.
static SDValue Lower512IntUnary(SDValue Op, SelectionDAG &DAG) {
assert(Op.getSimpleValueType().is512BitVector() &&
Op.getSimpleValueType().isInteger() &&
"Only handle AVX 512-bit vector integer operation");
return LowerVectorIntUnary(Op, DAG);
}
/// Lower a vector CTLZ using native supported vector CTLZ instruction.
//
// i8/i16 vector implemented using dword LZCNT vector instruction
// ( sub(trunc(lzcnt(zext32(x)))) ). In case zext32(x) is illegal,
// split the vector, perform operation on it's Lo a Hi part and
// concatenate the results.
static SDValue LowerVectorCTLZ_AVX512CDI(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
assert(Op.getOpcode() == ISD::CTLZ);
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
MVT EltVT = VT.getVectorElementType();
unsigned NumElems = VT.getVectorNumElements();
assert((EltVT == MVT::i8 || EltVT == MVT::i16) &&
"Unsupported element type");
// Split vector, it's Lo and Hi parts will be handled in next iteration.
if (NumElems > 16 ||
(NumElems == 16 && !Subtarget.canExtendTo512DQ()))
return LowerVectorIntUnary(Op, DAG);
MVT NewVT = MVT::getVectorVT(MVT::i32, NumElems);
assert((NewVT.is256BitVector() || NewVT.is512BitVector()) &&
"Unsupported value type for operation");
// Use native supported vector instruction vplzcntd.
Op = DAG.getNode(ISD::ZERO_EXTEND, dl, NewVT, Op.getOperand(0));
SDValue CtlzNode = DAG.getNode(ISD::CTLZ, dl, NewVT, Op);
SDValue TruncNode = DAG.getNode(ISD::TRUNCATE, dl, VT, CtlzNode);
SDValue Delta = DAG.getConstant(32 - EltVT.getSizeInBits(), dl, VT);
return DAG.getNode(ISD::SUB, dl, VT, TruncNode, Delta);
}
// Lower CTLZ using a PSHUFB lookup table implementation.
static SDValue LowerVectorCTLZInRegLUT(SDValue Op, const SDLoc &DL,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
int NumElts = VT.getVectorNumElements();
int NumBytes = NumElts * (VT.getScalarSizeInBits() / 8);
MVT CurrVT = MVT::getVectorVT(MVT::i8, NumBytes);
// Per-nibble leading zero PSHUFB lookup table.
const int LUT[16] = {/* 0 */ 4, /* 1 */ 3, /* 2 */ 2, /* 3 */ 2,
/* 4 */ 1, /* 5 */ 1, /* 6 */ 1, /* 7 */ 1,
/* 8 */ 0, /* 9 */ 0, /* a */ 0, /* b */ 0,
/* c */ 0, /* d */ 0, /* e */ 0, /* f */ 0};
SmallVector<SDValue, 64> LUTVec;
for (int i = 0; i < NumBytes; ++i)
LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8));
SDValue InRegLUT = DAG.getBuildVector(CurrVT, DL, LUTVec);
// Begin by bitcasting the input to byte vector, then split those bytes
// into lo/hi nibbles and use the PSHUFB LUT to perform CLTZ on each of them.
// If the hi input nibble is zero then we add both results together, otherwise
// we just take the hi result (by masking the lo result to zero before the
// add).
SDValue Op0 = DAG.getBitcast(CurrVT, Op.getOperand(0));
SDValue Zero = getZeroVector(CurrVT, Subtarget, DAG, DL);
SDValue NibbleMask = DAG.getConstant(0xF, DL, CurrVT);
SDValue NibbleShift = DAG.getConstant(0x4, DL, CurrVT);
SDValue Lo = DAG.getNode(ISD::AND, DL, CurrVT, Op0, NibbleMask);
SDValue Hi = DAG.getNode(ISD::SRL, DL, CurrVT, Op0, NibbleShift);
SDValue HiZ;
if (CurrVT.is512BitVector()) {
MVT MaskVT = MVT::getVectorVT(MVT::i1, CurrVT.getVectorNumElements());
HiZ = DAG.getSetCC(DL, MaskVT, Hi, Zero, ISD::SETEQ);
HiZ = DAG.getNode(ISD::SIGN_EXTEND, DL, CurrVT, HiZ);
} else {
HiZ = DAG.getSetCC(DL, CurrVT, Hi, Zero, ISD::SETEQ);
}
Lo = DAG.getNode(X86ISD::PSHUFB, DL, CurrVT, InRegLUT, Lo);
Hi = DAG.getNode(X86ISD::PSHUFB, DL, CurrVT, InRegLUT, Hi);
Lo = DAG.getNode(ISD::AND, DL, CurrVT, Lo, HiZ);
SDValue Res = DAG.getNode(ISD::ADD, DL, CurrVT, Lo, Hi);
// Merge result back from vXi8 back to VT, working on the lo/hi halves
// of the current vector width in the same way we did for the nibbles.
// If the upper half of the input element is zero then add the halves'
// leading zero counts together, otherwise just use the upper half's.
// Double the width of the result until we are at target width.
while (CurrVT != VT) {
int CurrScalarSizeInBits = CurrVT.getScalarSizeInBits();
int CurrNumElts = CurrVT.getVectorNumElements();
MVT NextSVT = MVT::getIntegerVT(CurrScalarSizeInBits * 2);
MVT NextVT = MVT::getVectorVT(NextSVT, CurrNumElts / 2);
SDValue Shift = DAG.getConstant(CurrScalarSizeInBits, DL, NextVT);
// Check if the upper half of the input element is zero.
if (CurrVT.is512BitVector()) {
MVT MaskVT = MVT::getVectorVT(MVT::i1, CurrVT.getVectorNumElements());
HiZ = DAG.getSetCC(DL, MaskVT, DAG.getBitcast(CurrVT, Op0),
DAG.getBitcast(CurrVT, Zero), ISD::SETEQ);
HiZ = DAG.getNode(ISD::SIGN_EXTEND, DL, CurrVT, HiZ);
} else {
HiZ = DAG.getSetCC(DL, CurrVT, DAG.getBitcast(CurrVT, Op0),
DAG.getBitcast(CurrVT, Zero), ISD::SETEQ);
}
HiZ = DAG.getBitcast(NextVT, HiZ);
// Move the upper/lower halves to the lower bits as we'll be extending to
// NextVT. Mask the lower result to zero if HiZ is true and add the results
// together.
SDValue ResNext = Res = DAG.getBitcast(NextVT, Res);
SDValue R0 = DAG.getNode(ISD::SRL, DL, NextVT, ResNext, Shift);
SDValue R1 = DAG.getNode(ISD::SRL, DL, NextVT, HiZ, Shift);
R1 = DAG.getNode(ISD::AND, DL, NextVT, ResNext, R1);
Res = DAG.getNode(ISD::ADD, DL, NextVT, R0, R1);
CurrVT = NextVT;
}
return Res;
}
static SDValue LowerVectorCTLZ(SDValue Op, const SDLoc &DL,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
if (Subtarget.hasCDI() &&
// vXi8 vectors need to be promoted to 512-bits for vXi32.
(Subtarget.canExtendTo512DQ() || VT.getVectorElementType() != MVT::i8))
return LowerVectorCTLZ_AVX512CDI(Op, DAG, Subtarget);
// Decompose 256-bit ops into smaller 128-bit ops.
if (VT.is256BitVector() && !Subtarget.hasInt256())
return Lower256IntUnary(Op, DAG);
// Decompose 512-bit ops into smaller 256-bit ops.
if (VT.is512BitVector() && !Subtarget.hasBWI())
return Lower512IntUnary(Op, DAG);
assert(Subtarget.hasSSSE3() && "Expected SSSE3 support for PSHUFB");
return LowerVectorCTLZInRegLUT(Op, DL, Subtarget, DAG);
}
static SDValue LowerCTLZ(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
MVT OpVT = VT;
unsigned NumBits = VT.getSizeInBits();
SDLoc dl(Op);
unsigned Opc = Op.getOpcode();
if (VT.isVector())
return LowerVectorCTLZ(Op, dl, Subtarget, DAG);
Op = Op.getOperand(0);
if (VT == MVT::i8) {
// Zero extend to i32 since there is not an i8 bsr.
OpVT = MVT::i32;
Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
}
// Issue a bsr (scan bits in reverse) which also sets EFLAGS.
SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
if (Opc == ISD::CTLZ) {
// If src is zero (i.e. bsr sets ZF), returns NumBits.
SDValue Ops[] = {
Op,
DAG.getConstant(NumBits + NumBits - 1, dl, OpVT),
DAG.getConstant(X86::COND_E, dl, MVT::i8),
Op.getValue(1)
};
Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops);
}
// Finally xor with NumBits-1.
Op = DAG.getNode(ISD::XOR, dl, OpVT, Op,
DAG.getConstant(NumBits - 1, dl, OpVT));
if (VT == MVT::i8)
Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
return Op;
}
static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
unsigned NumBits = VT.getScalarSizeInBits();
SDLoc dl(Op);
if (VT.isVector()) {
SDValue N0 = Op.getOperand(0);
SDValue Zero = DAG.getConstant(0, dl, VT);
// lsb(x) = (x & -x)
SDValue LSB = DAG.getNode(ISD::AND, dl, VT, N0,
DAG.getNode(ISD::SUB, dl, VT, Zero, N0));
// cttz_undef(x) = (width - 1) - ctlz(lsb)
if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
SDValue WidthMinusOne = DAG.getConstant(NumBits - 1, dl, VT);
return DAG.getNode(ISD::SUB, dl, VT, WidthMinusOne,
DAG.getNode(ISD::CTLZ, dl, VT, LSB));
}
// cttz(x) = ctpop(lsb - 1)
SDValue One = DAG.getConstant(1, dl, VT);
return DAG.getNode(ISD::CTPOP, dl, VT,
DAG.getNode(ISD::SUB, dl, VT, LSB, One));
}
assert(Op.getOpcode() == ISD::CTTZ &&
"Only scalar CTTZ requires custom lowering");
// Issue a bsf (scan bits forward) which also sets EFLAGS.
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op.getOperand(0));
// If src is zero (i.e. bsf sets ZF), returns NumBits.
SDValue Ops[] = {
Op,
DAG.getConstant(NumBits, dl, VT),
DAG.getConstant(X86::COND_E, dl, MVT::i8),
Op.getValue(1)
};
return DAG.getNode(X86ISD::CMOV, dl, VT, Ops);
}
/// Break a 256-bit integer operation into two new 128-bit ones and then
/// concatenate the result back.
static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
assert(VT.is256BitVector() && VT.isInteger() &&
"Unsupported value type for operation");
unsigned NumElems = VT.getVectorNumElements();
SDLoc dl(Op);
// Extract the LHS vectors
SDValue LHS = Op.getOperand(0);
SDValue LHS1 = extract128BitVector(LHS, 0, DAG, dl);
SDValue LHS2 = extract128BitVector(LHS, NumElems / 2, DAG, dl);
// Extract the RHS vectors
SDValue RHS = Op.getOperand(1);
SDValue RHS1 = extract128BitVector(RHS, 0, DAG, dl);
SDValue RHS2 = extract128BitVector(RHS, NumElems / 2, DAG, dl);
MVT EltVT = VT.getVectorElementType();
MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
}
/// Break a 512-bit integer operation into two new 256-bit ones and then
/// concatenate the result back.
static SDValue Lower512IntArith(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
assert(VT.is512BitVector() && VT.isInteger() &&
"Unsupported value type for operation");
unsigned NumElems = VT.getVectorNumElements();
SDLoc dl(Op);
// Extract the LHS vectors
SDValue LHS = Op.getOperand(0);
SDValue LHS1 = extract256BitVector(LHS, 0, DAG, dl);
SDValue LHS2 = extract256BitVector(LHS, NumElems / 2, DAG, dl);
// Extract the RHS vectors
SDValue RHS = Op.getOperand(1);
SDValue RHS1 = extract256BitVector(RHS, 0, DAG, dl);
SDValue RHS2 = extract256BitVector(RHS, NumElems / 2, DAG, dl);
MVT EltVT = VT.getVectorElementType();
MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
}
static SDValue LowerADD_SUB(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
if (VT.getScalarType() == MVT::i1)
return DAG.getNode(ISD::XOR, SDLoc(Op), VT,
Op.getOperand(0), Op.getOperand(1));
assert(Op.getSimpleValueType().is256BitVector() &&
Op.getSimpleValueType().isInteger() &&
"Only handle AVX 256-bit vector integer operation");
return Lower256IntArith(Op, DAG);
}
static SDValue LowerABS(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) {
// Since X86 does not have CMOV for 8-bit integer, we don't convert
// 8-bit integer abs to NEG and CMOV.
SDLoc DL(Op);
SDValue N0 = Op.getOperand(0);
SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
DAG.getConstant(0, DL, VT), N0);
SDValue Ops[] = {N0, Neg, DAG.getConstant(X86::COND_GE, DL, MVT::i8),
SDValue(Neg.getNode(), 1)};
return DAG.getNode(X86ISD::CMOV, DL, VT, Ops);
}
assert(Op.getSimpleValueType().is256BitVector() &&
Op.getSimpleValueType().isInteger() &&
"Only handle AVX 256-bit vector integer operation");
return Lower256IntUnary(Op, DAG);
}
static SDValue LowerMINMAX(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
// For AVX1 cases, split to use legal ops (everything but v4i64).
if (VT.getScalarType() != MVT::i64 && VT.is256BitVector())
return Lower256IntArith(Op, DAG);
SDLoc DL(Op);
unsigned Opcode = Op.getOpcode();
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
// For pre-SSE41, we can perform UMIN/UMAX v8i16 by flipping the signbit,
// using the SMIN/SMAX instructions and flipping the signbit back.
if (VT == MVT::v8i16) {
assert((Opcode == ISD::UMIN || Opcode == ISD::UMAX) &&
"Unexpected MIN/MAX opcode");
SDValue Sign = DAG.getConstant(APInt::getSignedMinValue(16), DL, VT);
N0 = DAG.getNode(ISD::XOR, DL, VT, N0, Sign);
N1 = DAG.getNode(ISD::XOR, DL, VT, N1, Sign);
Opcode = (Opcode == ISD::UMIN ? ISD::SMIN : ISD::SMAX);
SDValue Result = DAG.getNode(Opcode, DL, VT, N0, N1);
return DAG.getNode(ISD::XOR, DL, VT, Result, Sign);
}
// Else, expand to a compare/select.
ISD::CondCode CC;
switch (Opcode) {
case ISD::SMIN: CC = ISD::CondCode::SETLT; break;
case ISD::SMAX: CC = ISD::CondCode::SETGT; break;
case ISD::UMIN: CC = ISD::CondCode::SETULT; break;
case ISD::UMAX: CC = ISD::CondCode::SETUGT; break;
default: llvm_unreachable("Unknown MINMAX opcode");
}
SDValue Cond = DAG.getSetCC(DL, VT, N0, N1, CC);
return DAG.getSelect(DL, VT, Cond, N0, N1);
}
static SDValue LowerMUL(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
if (VT.getScalarType() == MVT::i1)
return DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), Op.getOperand(1));
// Decompose 256-bit ops into smaller 128-bit ops.
if (VT.is256BitVector() && !Subtarget.hasInt256())
return Lower256IntArith(Op, DAG);
SDValue A = Op.getOperand(0);
SDValue B = Op.getOperand(1);
// Lower v16i8/v32i8/v64i8 mul as sign-extension to v8i16/v16i16/v32i16
// vector pairs, multiply and truncate.
if (VT == MVT::v16i8 || VT == MVT::v32i8 || VT == MVT::v64i8) {
if (Subtarget.hasInt256()) {
// For 512-bit vectors, split into 256-bit vectors to allow the
// sign-extension to occur.
if (VT == MVT::v64i8)
return Lower512IntArith(Op, DAG);
// For 256-bit vectors, split into 128-bit vectors to allow the
// sign-extension to occur. We don't need this on AVX512BW as we can
// safely sign-extend to v32i16.
if (VT == MVT::v32i8 && !Subtarget.hasBWI())
return Lower256IntArith(Op, DAG);
MVT ExVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements());
return DAG.getNode(
ISD::TRUNCATE, dl, VT,
DAG.getNode(ISD::MUL, dl, ExVT,
DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, A),
DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, B)));
}
assert(VT == MVT::v16i8 &&
"Pre-AVX2 support only supports v16i8 multiplication");
MVT ExVT = MVT::v8i16;
// Extract the lo parts and sign extend to i16
// We're going to mask off the low byte of each result element of the
// pmullw, so it doesn't matter what's in the high byte of each 16-bit
// element.
const int LoShufMask[] = {0, -1, 1, -1, 2, -1, 3, -1,
4, -1, 5, -1, 6, -1, 7, -1};
SDValue ALo = DAG.getVectorShuffle(VT, dl, A, A, LoShufMask);
SDValue BLo = DAG.getVectorShuffle(VT, dl, B, B, LoShufMask);
ALo = DAG.getBitcast(ExVT, ALo);
BLo = DAG.getBitcast(ExVT, BLo);
// Extract the hi parts and sign extend to i16
// We're going to mask off the low byte of each result element of the
// pmullw, so it doesn't matter what's in the high byte of each 16-bit
// element.
const int HiShufMask[] = {8, -1, 9, -1, 10, -1, 11, -1,
12, -1, 13, -1, 14, -1, 15, -1};
SDValue AHi = DAG.getVectorShuffle(VT, dl, A, A, HiShufMask);
SDValue BHi = DAG.getVectorShuffle(VT, dl, B, B, HiShufMask);
AHi = DAG.getBitcast(ExVT, AHi);
BHi = DAG.getBitcast(ExVT, BHi);
// Multiply, mask the lower 8bits of the lo/hi results and pack
SDValue RLo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo);
SDValue RHi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi);
RLo = DAG.getNode(ISD::AND, dl, ExVT, RLo, DAG.getConstant(255, dl, ExVT));
RHi = DAG.getNode(ISD::AND, dl, ExVT, RHi, DAG.getConstant(255, dl, ExVT));
return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
}
// Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
if (VT == MVT::v4i32) {
assert(Subtarget.hasSSE2() && !Subtarget.hasSSE41() &&
"Should not custom lower when pmulld is available!");
// Extract the odd parts.
static const int UnpackMask[] = { 1, -1, 3, -1 };
SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
// Multiply the even parts.
SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64,
DAG.getBitcast(MVT::v2i64, A),
DAG.getBitcast(MVT::v2i64, B));
// Now multiply odd parts.
SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64,
DAG.getBitcast(MVT::v2i64, Aodds),
DAG.getBitcast(MVT::v2i64, Bodds));
Evens = DAG.getBitcast(VT, Evens);
Odds = DAG.getBitcast(VT, Odds);
// Merge the two vectors back together with a shuffle. This expands into 2
// shuffles.
static const int ShufMask[] = { 0, 4, 2, 6 };
return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
}
assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) &&
"Only know how to lower V2I64/V4I64/V8I64 multiply");
assert(!Subtarget.hasDQI() && "DQI should use MULLQ");
// Ahi = psrlqi(a, 32);
// Bhi = psrlqi(b, 32);
//
// AloBlo = pmuludq(a, b);
// AloBhi = pmuludq(a, Bhi);
// AhiBlo = pmuludq(Ahi, b);
//
// Hi = psllqi(AloBhi + AhiBlo, 32);
// return AloBlo + Hi;
KnownBits AKnown, BKnown;
DAG.computeKnownBits(A, AKnown);
DAG.computeKnownBits(B, BKnown);
APInt LowerBitsMask = APInt::getLowBitsSet(64, 32);
bool ALoIsZero = LowerBitsMask.isSubsetOf(AKnown.Zero);
bool BLoIsZero = LowerBitsMask.isSubsetOf(BKnown.Zero);
APInt UpperBitsMask = APInt::getHighBitsSet(64, 32);
bool AHiIsZero = UpperBitsMask.isSubsetOf(AKnown.Zero);
bool BHiIsZero = UpperBitsMask.isSubsetOf(BKnown.Zero);
SDValue Zero = getZeroVector(VT, Subtarget, DAG, dl);
// Only multiply lo/hi halves that aren't known to be zero.
SDValue AloBlo = Zero;
if (!ALoIsZero && !BLoIsZero)
AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
SDValue AloBhi = Zero;
if (!ALoIsZero && !BHiIsZero) {
SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG);
AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
}
SDValue AhiBlo = Zero;
if (!AHiIsZero && !BLoIsZero) {
SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG);
AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
}
SDValue Hi = DAG.getNode(ISD::ADD, dl, VT, AloBhi, AhiBlo);
Hi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Hi, 32, DAG);
return DAG.getNode(ISD::ADD, dl, VT, AloBlo, Hi);
}
static SDValue LowerMULH(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
// Decompose 256-bit ops into smaller 128-bit ops.
if (VT.is256BitVector() && !Subtarget.hasInt256())
return Lower256IntArith(Op, DAG);
// Only i8 vectors should need custom lowering after this.
assert((VT == MVT::v16i8 || (VT == MVT::v32i8 && Subtarget.hasInt256()) ||
(VT == MVT::v64i8 && Subtarget.hasBWI())) &&
"Unsupported vector type");
// Lower v16i8/v32i8 as extension to v8i16/v16i16 vector pairs, multiply,
// logical shift down the upper half and pack back to i8.
SDValue A = Op.getOperand(0);
SDValue B = Op.getOperand(1);
// With SSE41 we can use sign/zero extend, but for pre-SSE41 we unpack
// and then ashr/lshr the upper bits down to the lower bits before multiply.
unsigned Opcode = Op.getOpcode();
unsigned ExShift = (ISD::MULHU == Opcode ? ISD::SRL : ISD::SRA);
unsigned ExAVX = (ISD::MULHU == Opcode ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
// For 512-bit vectors, split into 256-bit vectors to allow the
// sign-extension to occur.
if (VT == MVT::v64i8)
return Lower512IntArith(Op, DAG);
// AVX2 implementations - extend xmm subvectors to ymm.
if (Subtarget.hasInt256()) {
unsigned NumElems = VT.getVectorNumElements();
SDValue Lo = DAG.getIntPtrConstant(0, dl);
SDValue Hi = DAG.getIntPtrConstant(NumElems / 2, dl);
if (VT == MVT::v32i8) {
if (Subtarget.canExtendTo512BW()) {
SDValue ExA = DAG.getNode(ExAVX, dl, MVT::v32i16, A);
SDValue ExB = DAG.getNode(ExAVX, dl, MVT::v32i16, B);
SDValue Mul = DAG.getNode(ISD::MUL, dl, MVT::v32i16, ExA, ExB);
Mul = DAG.getNode(ISD::SRL, dl, MVT::v32i16, Mul,
DAG.getConstant(8, dl, MVT::v32i16));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
}
SDValue ALo = extract128BitVector(A, 0, DAG, dl);
SDValue BLo = extract128BitVector(B, 0, DAG, dl);
SDValue AHi = extract128BitVector(A, NumElems / 2, DAG, dl);
SDValue BHi = extract128BitVector(B, NumElems / 2, DAG, dl);
ALo = DAG.getNode(ExAVX, dl, MVT::v16i16, ALo);
BLo = DAG.getNode(ExAVX, dl, MVT::v16i16, BLo);
AHi = DAG.getNode(ExAVX, dl, MVT::v16i16, AHi);
BHi = DAG.getNode(ExAVX, dl, MVT::v16i16, BHi);
Lo = DAG.getNode(ISD::SRL, dl, MVT::v16i16,
DAG.getNode(ISD::MUL, dl, MVT::v16i16, ALo, BLo),
DAG.getConstant(8, dl, MVT::v16i16));
Hi = DAG.getNode(ISD::SRL, dl, MVT::v16i16,
DAG.getNode(ISD::MUL, dl, MVT::v16i16, AHi, BHi),
DAG.getConstant(8, dl, MVT::v16i16));
// The ymm variant of PACKUS treats the 128-bit lanes separately, so before
// using PACKUS we need to permute the inputs to the correct lo/hi xmm lane.
const int LoMask[] = {0, 1, 2, 3, 4, 5, 6, 7,
16, 17, 18, 19, 20, 21, 22, 23};
const int HiMask[] = {8, 9, 10, 11, 12, 13, 14, 15,
24, 25, 26, 27, 28, 29, 30, 31};
return DAG.getNode(X86ISD::PACKUS, dl, VT,
DAG.getVectorShuffle(MVT::v16i16, dl, Lo, Hi, LoMask),
DAG.getVectorShuffle(MVT::v16i16, dl, Lo, Hi, HiMask));
}
assert(VT == MVT::v16i8 && "Unexpected VT");
SDValue ExA = DAG.getNode(ExAVX, dl, MVT::v16i16, A);
SDValue ExB = DAG.getNode(ExAVX, dl, MVT::v16i16, B);
SDValue Mul = DAG.getNode(ISD::MUL, dl, MVT::v16i16, ExA, ExB);
Mul = DAG.getNode(ISD::SRL, dl, MVT::v16i16, Mul,
DAG.getConstant(8, dl, MVT::v16i16));
// If we have BWI we can use truncate instruction.
if (Subtarget.hasBWI())
return DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v8i16, Mul, Lo);
Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v8i16, Mul, Hi);
return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi);
}
assert(VT == MVT::v16i8 &&
"Pre-AVX2 support only supports v16i8 multiplication");
MVT ExVT = MVT::v8i16;
unsigned ExSSE41 = ISD::MULHU == Opcode ? ISD::ZERO_EXTEND_VECTOR_INREG
: ISD::SIGN_EXTEND_VECTOR_INREG;
// Extract the lo parts and zero/sign extend to i16.
SDValue ALo, BLo;
if (Subtarget.hasSSE41()) {
ALo = DAG.getNode(ExSSE41, dl, ExVT, A);
BLo = DAG.getNode(ExSSE41, dl, ExVT, B);
} else {
const int ShufMask[] = {-1, 0, -1, 1, -1, 2, -1, 3,
-1, 4, -1, 5, -1, 6, -1, 7};
ALo = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
BLo = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
ALo = DAG.getBitcast(ExVT, ALo);
BLo = DAG.getBitcast(ExVT, BLo);
ALo = DAG.getNode(ExShift, dl, ExVT, ALo, DAG.getConstant(8, dl, ExVT));
BLo = DAG.getNode(ExShift, dl, ExVT, BLo, DAG.getConstant(8, dl, ExVT));
}
// Extract the hi parts and zero/sign extend to i16.
SDValue AHi, BHi;
if (Subtarget.hasSSE41()) {
const int ShufMask[] = {8, 9, 10, 11, 12, 13, 14, 15,
-1, -1, -1, -1, -1, -1, -1, -1};
AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
AHi = DAG.getNode(ExSSE41, dl, ExVT, AHi);
BHi = DAG.getNode(ExSSE41, dl, ExVT, BHi);
} else {
const int ShufMask[] = {-1, 8, -1, 9, -1, 10, -1, 11,
-1, 12, -1, 13, -1, 14, -1, 15};
AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
AHi = DAG.getBitcast(ExVT, AHi);
BHi = DAG.getBitcast(ExVT, BHi);
AHi = DAG.getNode(ExShift, dl, ExVT, AHi, DAG.getConstant(8, dl, ExVT));
BHi = DAG.getNode(ExShift, dl, ExVT, BHi, DAG.getConstant(8, dl, ExVT));
}
// Multiply, lshr the upper 8bits to the lower 8bits of the lo/hi results and
// pack back to v16i8.
SDValue RLo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo);
SDValue RHi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi);
RLo = DAG.getNode(ISD::SRL, dl, ExVT, RLo, DAG.getConstant(8, dl, ExVT));
RHi = DAG.getNode(ISD::SRL, dl, ExVT, RHi, DAG.getConstant(8, dl, ExVT));
return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
}
SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const {
assert(Subtarget.isTargetWin64() && "Unexpected target");
EVT VT = Op.getValueType();
assert(VT.isInteger() && VT.getSizeInBits() == 128 &&
"Unexpected return type for lowering");
RTLIB::Libcall LC;
bool isSigned;
switch (Op->getOpcode()) {
default: llvm_unreachable("Unexpected request for libcall!");
case ISD::SDIV: isSigned = true; LC = RTLIB::SDIV_I128; break;
case ISD::UDIV: isSigned = false; LC = RTLIB::UDIV_I128; break;
case ISD::SREM: isSigned = true; LC = RTLIB::SREM_I128; break;
case ISD::UREM: isSigned = false; LC = RTLIB::UREM_I128; break;
case ISD::SDIVREM: isSigned = true; LC = RTLIB::SDIVREM_I128; break;
case ISD::UDIVREM: isSigned = false; LC = RTLIB::UDIVREM_I128; break;
}
SDLoc dl(Op);
SDValue InChain = DAG.getEntryNode();
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
EVT ArgVT = Op->getOperand(i).getValueType();
assert(ArgVT.isInteger() && ArgVT.getSizeInBits() == 128 &&
"Unexpected argument type for lowering");
SDValue StackPtr = DAG.CreateStackTemporary(ArgVT, 16);
Entry.Node = StackPtr;
InChain = DAG.getStore(InChain, dl, Op->getOperand(i), StackPtr,
MachinePointerInfo(), /* Alignment = */ 16);
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
Entry.Ty = PointerType::get(ArgTy,0);
Entry.IsSExt = false;
Entry.IsZExt = false;
Args.push_back(Entry);
}
SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
getPointerTy(DAG.getDataLayout()));
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(InChain)
.setLibCallee(
getLibcallCallingConv(LC),
static_cast<EVT>(MVT::v2i64).getTypeForEVT(*DAG.getContext()), Callee,
std::move(Args))
.setInRegister()
.setSExtResult(isSigned)
.setZExtResult(!isSigned);
std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
return DAG.getBitcast(VT, CallInfo.first);
}
static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
MVT VT = Op0.getSimpleValueType();
SDLoc dl(Op);
// Decompose 256-bit ops into smaller 128-bit ops.
if (VT.is256BitVector() && !Subtarget.hasInt256()) {
unsigned Opcode = Op.getOpcode();
unsigned NumElems = VT.getVectorNumElements();
MVT HalfVT = MVT::getVectorVT(VT.getScalarType(), NumElems / 2);
SDValue Lo0 = extract128BitVector(Op0, 0, DAG, dl);
SDValue Lo1 = extract128BitVector(Op1, 0, DAG, dl);
SDValue Hi0 = extract128BitVector(Op0, NumElems / 2, DAG, dl);
SDValue Hi1 = extract128BitVector(Op1, NumElems / 2, DAG, dl);
SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(HalfVT, HalfVT), Lo0, Lo1);
SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(HalfVT, HalfVT), Hi0, Hi1);
SDValue Ops[] = {
DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo.getValue(0), Hi.getValue(0)),
DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo.getValue(1), Hi.getValue(1))
};
return DAG.getMergeValues(Ops, dl);
}
assert((VT == MVT::v4i32 && Subtarget.hasSSE2()) ||
(VT == MVT::v8i32 && Subtarget.hasInt256()) ||
(VT == MVT::v16i32 && Subtarget.hasAVX512()));
int NumElts = VT.getVectorNumElements();
// PMULxD operations multiply each even value (starting at 0) of LHS with
// the related value of RHS and produce a widen result.
// E.g., PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
// => <2 x i64> <ae|cg>
//
// In other word, to have all the results, we need to perform two PMULxD:
// 1. one with the even values.
// 2. one with the odd values.
// To achieve #2, with need to place the odd values at an even position.
//
// Place the odd value at an even position (basically, shift all values 1
// step to the left):
const int Mask[] = {1, -1, 3, -1, 5, -1, 7, -1, 9, -1, 11, -1, 13, -1, 15, -1};
// <a|b|c|d> => <b|undef|d|undef>
SDValue Odd0 = DAG.getVectorShuffle(VT, dl, Op0, Op0,
makeArrayRef(&Mask[0], NumElts));
// <e|f|g|h> => <f|undef|h|undef>
SDValue Odd1 = DAG.getVectorShuffle(VT, dl, Op1, Op1,
makeArrayRef(&Mask[0], NumElts));
// Emit two multiplies, one for the lower 2 ints and one for the higher 2
// ints.
MVT MulVT = MVT::getVectorVT(MVT::i64, NumElts / 2);
bool IsSigned = Op->getOpcode() == ISD::SMUL_LOHI;
unsigned Opcode =
(!IsSigned || !Subtarget.hasSSE41()) ? X86ISD::PMULUDQ : X86ISD::PMULDQ;
// PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
// => <2 x i64> <ae|cg>
SDValue Mul1 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT,
DAG.getBitcast(MulVT, Op0),
DAG.getBitcast(MulVT, Op1)));
// PMULUDQ <4 x i32> <b|undef|d|undef>, <4 x i32> <f|undef|h|undef>
// => <2 x i64> <bf|dh>
SDValue Mul2 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT,
DAG.getBitcast(MulVT, Odd0),
DAG.getBitcast(MulVT, Odd1)));
// Shuffle it back into the right order.
SmallVector<int, 16> HighMask(NumElts);
SmallVector<int, 16> LowMask(NumElts);
for (int i = 0; i != NumElts; ++i) {
HighMask[i] = (i / 2) * 2 + ((i % 2) * NumElts) + 1;
LowMask[i] = (i / 2) * 2 + ((i % 2) * NumElts);
}
SDValue Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
SDValue Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
// If we have a signed multiply but no PMULDQ fix up the high parts of a
// unsigned multiply.
if (IsSigned && !Subtarget.hasSSE41()) {
SDValue ShAmt = DAG.getConstant(
31, dl,
DAG.getTargetLoweringInfo().getShiftAmountTy(VT, DAG.getDataLayout()));
SDValue T1 = DAG.getNode(ISD::AND, dl, VT,
DAG.getNode(ISD::SRA, dl, VT, Op0, ShAmt), Op1);
SDValue T2 = DAG.getNode(ISD::AND, dl, VT,
DAG.getNode(ISD::SRA, dl, VT, Op1, ShAmt), Op0);
SDValue Fixup = DAG.getNode(ISD::ADD, dl, VT, T1, T2);
Highs = DAG.getNode(ISD::SUB, dl, VT, Highs, Fixup);
}
// The first result of MUL_LOHI is actually the low value, followed by the
// high value.
SDValue Ops[] = {Lows, Highs};
return DAG.getMergeValues(Ops, dl);
}
// Return true if the required (according to Opcode) shift-imm form is natively
// supported by the Subtarget
static bool SupportedVectorShiftWithImm(MVT VT, const X86Subtarget &Subtarget,
unsigned Opcode) {
if (VT.getScalarSizeInBits() < 16)
return false;
if (VT.is512BitVector() && Subtarget.hasAVX512() &&
(VT.getScalarSizeInBits() > 16 || Subtarget.hasBWI()))
return true;
bool LShift = (VT.is128BitVector() && Subtarget.hasSSE2()) ||
(VT.is256BitVector() && Subtarget.hasInt256());
bool AShift = LShift && (Subtarget.hasAVX512() ||
(VT != MVT::v2i64 && VT != MVT::v4i64));
return (Opcode == ISD::SRA) ? AShift : LShift;
}
// The shift amount is a variable, but it is the same for all vector lanes.
// These instructions are defined together with shift-immediate.
static
bool SupportedVectorShiftWithBaseAmnt(MVT VT, const X86Subtarget &Subtarget,
unsigned Opcode) {
return SupportedVectorShiftWithImm(VT, Subtarget, Opcode);
}
// Return true if the required (according to Opcode) variable-shift form is
// natively supported by the Subtarget
static bool SupportedVectorVarShift(MVT VT, const X86Subtarget &Subtarget,
unsigned Opcode) {
if (!Subtarget.hasInt256() || VT.getScalarSizeInBits() < 16)
return false;
// vXi16 supported only on AVX-512, BWI
if (VT.getScalarSizeInBits() == 16 && !Subtarget.hasBWI())
return false;
if (Subtarget.hasAVX512())
return true;
bool LShift = VT.is128BitVector() || VT.is256BitVector();
bool AShift = LShift && VT != MVT::v2i64 && VT != MVT::v4i64;
return (Opcode == ISD::SRA) ? AShift : LShift;
}
static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
SDValue R = Op.getOperand(0);
SDValue Amt = Op.getOperand(1);
unsigned X86Opc = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHLI :
(Op.getOpcode() == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI;
auto ArithmeticShiftRight64 = [&](uint64_t ShiftAmt) {
assert((VT == MVT::v2i64 || VT == MVT::v4i64) && "Unexpected SRA type");
MVT ExVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() * 2);
SDValue Ex = DAG.getBitcast(ExVT, R);
// ashr(R, 63) === cmp_slt(R, 0)
if (ShiftAmt == 63 && Subtarget.hasSSE42()) {
assert((VT != MVT::v4i64 || Subtarget.hasInt256()) &&
"Unsupported PCMPGT op");
return DAG.getNode(X86ISD::PCMPGT, dl, VT,
getZeroVector(VT, Subtarget, DAG, dl), R);
}
if (ShiftAmt >= 32) {
// Splat sign to upper i32 dst, and SRA upper i32 src to lower i32.
SDValue Upper =
getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, 31, DAG);
SDValue Lower = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex,
ShiftAmt - 32, DAG);
if (VT == MVT::v2i64)
Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {5, 1, 7, 3});
if (VT == MVT::v4i64)
Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower,
{9, 1, 11, 3, 13, 5, 15, 7});
} else {
// SRA upper i32, SHL whole i64 and select lower i32.
SDValue Upper = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex,
ShiftAmt, DAG);
SDValue Lower =
getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt, DAG);
Lower = DAG.getBitcast(ExVT, Lower);
if (VT == MVT::v2i64)
Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {4, 1, 6, 3});
if (VT == MVT::v4i64)
Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower,
{8, 1, 10, 3, 12, 5, 14, 7});
}
return DAG.getBitcast(VT, Ex);
};
// Optimize shl/srl/sra with constant shift amount.
if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) {
if (auto *ShiftConst = BVAmt->getConstantSplatNode()) {
uint64_t ShiftAmt = ShiftConst->getZExtValue();
if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode()))
return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG);
// i64 SRA needs to be performed as partial shifts.
if (((!Subtarget.hasXOP() && VT == MVT::v2i64) ||
(Subtarget.hasInt256() && VT == MVT::v4i64)) &&
Op.getOpcode() == ISD::SRA)
return ArithmeticShiftRight64(ShiftAmt);
if (VT == MVT::v16i8 ||
(Subtarget.hasInt256() && VT == MVT::v32i8) ||
VT == MVT::v64i8) {
unsigned NumElts = VT.getVectorNumElements();
MVT ShiftVT = MVT::getVectorVT(MVT::i16, NumElts / 2);
// Simple i8 add case
if (Op.getOpcode() == ISD::SHL && ShiftAmt == 1)
return DAG.getNode(ISD::ADD, dl, VT, R, R);
// ashr(R, 7) === cmp_slt(R, 0)
if (Op.getOpcode() == ISD::SRA && ShiftAmt == 7) {
SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
if (VT.is512BitVector()) {
assert(VT == MVT::v64i8 && "Unexpected element type!");
SDValue CMP = DAG.getSetCC(dl, MVT::v64i1, Zeros, R,
ISD::SETGT);
return DAG.getNode(ISD::SIGN_EXTEND, dl, VT, CMP);
}
return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
}
// XOP can shift v16i8 directly instead of as shift v8i16 + mask.
if (VT == MVT::v16i8 && Subtarget.hasXOP())
return SDValue();
if (Op.getOpcode() == ISD::SHL) {
// Make a large shift.
SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, ShiftVT,
R, ShiftAmt, DAG);
SHL = DAG.getBitcast(VT, SHL);
// Zero out the rightmost bits.
return DAG.getNode(ISD::AND, dl, VT, SHL,
DAG.getConstant(uint8_t(-1U << ShiftAmt), dl, VT));
}
if (Op.getOpcode() == ISD::SRL) {
// Make a large shift.
SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ShiftVT,
R, ShiftAmt, DAG);
SRL = DAG.getBitcast(VT, SRL);
// Zero out the leftmost bits.
return DAG.getNode(ISD::AND, dl, VT, SRL,
DAG.getConstant(uint8_t(-1U) >> ShiftAmt, dl, VT));
}
if (Op.getOpcode() == ISD::SRA) {
// ashr(R, Amt) === sub(xor(lshr(R, Amt), Mask), Mask)
SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
SDValue Mask = DAG.getConstant(128 >> ShiftAmt, dl, VT);
Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
return Res;
}
llvm_unreachable("Unknown shift opcode.");
}
}
}
// Check cases (mainly 32-bit) where i64 is expanded into high and low parts.
// TODO: Replace constant extraction with getTargetConstantBitsFromNode.
if (!Subtarget.hasXOP() &&
(VT == MVT::v2i64 || (Subtarget.hasInt256() && VT == MVT::v4i64) ||
(Subtarget.hasAVX512() && VT == MVT::v8i64))) {
// AVX1 targets maybe extracting a 128-bit vector from a 256-bit constant.
unsigned SubVectorScale = 1;
if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
SubVectorScale =
Amt.getOperand(0).getValueSizeInBits() / Amt.getValueSizeInBits();
Amt = Amt.getOperand(0);
}
// Peek through any splat that was introduced for i64 shift vectorization.
int SplatIndex = -1;
if (ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt.getNode()))
if (SVN->isSplat()) {
SplatIndex = SVN->getSplatIndex();
Amt = Amt.getOperand(0);
assert(SplatIndex < (int)VT.getVectorNumElements() &&
"Splat shuffle referencing second operand");
}
if (Amt.getOpcode() != ISD::BITCAST ||
Amt.getOperand(0).getOpcode() != ISD::BUILD_VECTOR)
return SDValue();
Amt = Amt.getOperand(0);
unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
(SubVectorScale * VT.getVectorNumElements());
unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
uint64_t ShiftAmt = 0;
unsigned BaseOp = (SplatIndex < 0 ? 0 : SplatIndex * Ratio);
for (unsigned i = 0; i != Ratio; ++i) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + BaseOp));
if (!C)
return SDValue();
// 6 == Log2(64)
ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
}
// Check remaining shift amounts (if not a splat).
if (SplatIndex < 0) {
for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
uint64_t ShAmt = 0;
for (unsigned j = 0; j != Ratio; ++j) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
if (!C)
return SDValue();
// 6 == Log2(64)
ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
}
if (ShAmt != ShiftAmt)
return SDValue();
}
}
if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode()))
return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG);
if (Op.getOpcode() == ISD::SRA)
return ArithmeticShiftRight64(ShiftAmt);
}
return SDValue();
}
// Determine if V is a splat value, and return the scalar.
static SDValue IsSplatValue(MVT VT, SDValue V, const SDLoc &dl,
SelectionDAG &DAG, const X86Subtarget &Subtarget,
unsigned Opcode) {
V = peekThroughEXTRACT_SUBVECTORs(V);
// Check if this is a splat build_vector node.
if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(V)) {
SDValue SplatAmt = BV->getSplatValue();
if (SplatAmt && SplatAmt.isUndef())
return SDValue();
return SplatAmt;
}
// Check for SUB(SPLAT_BV, SPLAT) cases from rotate patterns.
if (V.getOpcode() == ISD::SUB &&
!SupportedVectorVarShift(VT, Subtarget, Opcode)) {
SDValue LHS = peekThroughEXTRACT_SUBVECTORs(V.getOperand(0));
SDValue RHS = peekThroughEXTRACT_SUBVECTORs(V.getOperand(1));
// Ensure that the corresponding splat BV element is not UNDEF.
BitVector UndefElts;
BuildVectorSDNode *BV0 = dyn_cast<BuildVectorSDNode>(LHS);
ShuffleVectorSDNode *SVN1 = dyn_cast<ShuffleVectorSDNode>(RHS);
if (BV0 && SVN1 && BV0->getSplatValue(&UndefElts) && SVN1->isSplat()) {
unsigned SplatIdx = (unsigned)SVN1->getSplatIndex();
if (!UndefElts[SplatIdx])
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
VT.getVectorElementType(), V,
DAG.getIntPtrConstant(SplatIdx, dl));
}
}
// Check if this is a shuffle node doing a splat.
ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V);
if (!SVN || !SVN->isSplat())
return SDValue();
unsigned SplatIdx = (unsigned)SVN->getSplatIndex();
SDValue InVec = V.getOperand(0);
if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
assert((SplatIdx < VT.getVectorNumElements()) &&
"Unexpected shuffle index found!");
return InVec.getOperand(SplatIdx);
} else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2)))
if (C->getZExtValue() == SplatIdx)
return InVec.getOperand(1);
}
// Avoid introducing an extract element from a shuffle.
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
VT.getVectorElementType(), InVec,
DAG.getIntPtrConstant(SplatIdx, dl));
}
static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
SDValue R = Op.getOperand(0);
SDValue Amt = Op.getOperand(1);
unsigned Opcode = Op.getOpcode();
unsigned X86OpcI = (Opcode == ISD::SHL) ? X86ISD::VSHLI :
(Opcode == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI;
unsigned X86OpcV = (Opcode == ISD::SHL) ? X86ISD::VSHL :
(Opcode == ISD::SRL) ? X86ISD::VSRL : X86ISD::VSRA;
Amt = peekThroughEXTRACT_SUBVECTORs(Amt);
if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Opcode)) {
if (SDValue BaseShAmt = IsSplatValue(VT, Amt, dl, DAG, Subtarget, Opcode)) {
MVT EltVT = VT.getVectorElementType();
assert(EltVT.bitsLE(MVT::i64) && "Unexpected element type!");
if (EltVT != MVT::i64 && EltVT.bitsGT(MVT::i32))
BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, BaseShAmt);
else if (EltVT.bitsLT(MVT::i32))
BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
return getTargetVShiftNode(X86OpcI, dl, VT, R, BaseShAmt, Subtarget, DAG);
}
}
// Check cases (mainly 32-bit) where i64 is expanded into high and low parts.
if (VT == MVT::v2i64 && Amt.getOpcode() == ISD::BITCAST &&
Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
Amt = Amt.getOperand(0);
unsigned Ratio = 64 / Amt.getScalarValueSizeInBits();
std::vector<SDValue> Vals(Ratio);
for (unsigned i = 0; i != Ratio; ++i)
Vals[i] = Amt.getOperand(i);
for (unsigned i = Ratio, e = Amt.getNumOperands(); i != e; i += Ratio) {
for (unsigned j = 0; j != Ratio; ++j)
if (Vals[j] != Amt.getOperand(i + j))
return SDValue();
}
if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode()))
return DAG.getNode(X86OpcV, dl, VT, R, Op.getOperand(1));
}
return SDValue();
}
// Convert a shift/rotate left amount to a multiplication scale factor.
static SDValue convertShiftLeftToScale(SDValue Amt, const SDLoc &dl,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Amt.getSimpleValueType();
if (!(VT == MVT::v8i16 || VT == MVT::v4i32 ||
(Subtarget.hasInt256() && VT == MVT::v16i16) ||
(!Subtarget.hasAVX512() && VT == MVT::v16i8)))
return SDValue();
if (ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
SmallVector<SDValue, 8> Elts;
MVT SVT = VT.getVectorElementType();
unsigned SVTBits = SVT.getSizeInBits();
APInt One(SVTBits, 1);
unsigned NumElems = VT.getVectorNumElements();
for (unsigned i = 0; i != NumElems; ++i) {
SDValue Op = Amt->getOperand(i);
if (Op->isUndef()) {
Elts.push_back(Op);
continue;
}
ConstantSDNode *ND = cast<ConstantSDNode>(Op);
APInt C(SVTBits, ND->getAPIntValue().getZExtValue());
uint64_t ShAmt = C.getZExtValue();
if (ShAmt >= SVTBits) {
Elts.push_back(DAG.getUNDEF(SVT));
continue;
}
Elts.push_back(DAG.getConstant(One.shl(ShAmt), dl, SVT));
}
return DAG.getBuildVector(VT, dl, Elts);
}
// If the target doesn't support variable shifts, use either FP conversion
// or integer multiplication to avoid shifting each element individually.
if (VT == MVT::v4i32) {
Amt = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, dl, VT));
Amt = DAG.getNode(ISD::ADD, dl, VT, Amt,
DAG.getConstant(0x3f800000U, dl, VT));
Amt = DAG.getBitcast(MVT::v4f32, Amt);
return DAG.getNode(ISD::FP_TO_SINT, dl, VT, Amt);
}
// AVX2 can more effectively perform this as a zext/trunc to/from v8i32.
if (VT == MVT::v8i16 && !Subtarget.hasAVX2()) {
SDValue Z = getZeroVector(VT, Subtarget, DAG, dl);
SDValue Lo = DAG.getBitcast(MVT::v4i32, getUnpackl(DAG, dl, VT, Amt, Z));
SDValue Hi = DAG.getBitcast(MVT::v4i32, getUnpackh(DAG, dl, VT, Amt, Z));
Lo = convertShiftLeftToScale(Lo, dl, Subtarget, DAG);
Hi = convertShiftLeftToScale(Hi, dl, Subtarget, DAG);
if (Subtarget.hasSSE41())
return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi);
return DAG.getVectorShuffle(VT, dl, DAG.getBitcast(VT, Lo),
DAG.getBitcast(VT, Hi),
{0, 2, 4, 6, 8, 10, 12, 14});
}
return SDValue();
}
static SDValue LowerShift(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
SDValue R = Op.getOperand(0);
SDValue Amt = Op.getOperand(1);
bool ConstantAmt = ISD::isBuildVectorOfConstantSDNodes(Amt.getNode());
assert(VT.isVector() && "Custom lowering only for vector shifts!");
assert(Subtarget.hasSSE2() && "Only custom lower when we have SSE2!");
if (SDValue V = LowerScalarImmediateShift(Op, DAG, Subtarget))
return V;
if (SDValue V = LowerScalarVariableShift(Op, DAG, Subtarget))
return V;
if (SupportedVectorVarShift(VT, Subtarget, Op.getOpcode()))
return Op;
// XOP has 128-bit variable logical/arithmetic shifts.
// +ve/-ve Amt = shift left/right.
if (Subtarget.hasXOP() && (VT == MVT::v2i64 || VT == MVT::v4i32 ||
VT == MVT::v8i16 || VT == MVT::v16i8)) {
if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) {
SDValue Zero = DAG.getConstant(0, dl, VT);
Amt = DAG.getNode(ISD::SUB, dl, VT, Zero, Amt);
}
if (Op.getOpcode() == ISD::SHL || Op.getOpcode() == ISD::SRL)
return DAG.getNode(X86ISD::VPSHL, dl, VT, R, Amt);
if (Op.getOpcode() == ISD::SRA)
return DAG.getNode(X86ISD::VPSHA, dl, VT, R, Amt);
}
// 2i64 vector logical shifts can efficiently avoid scalarization - do the
// shifts per-lane and then shuffle the partial results back together.
if (VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) {
// Splat the shift amounts so the scalar shifts above will catch it.
SDValue Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {0, 0});
SDValue Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {1, 1});
SDValue R0 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt0);
SDValue R1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt1);
return DAG.getVectorShuffle(VT, dl, R0, R1, {0, 3});
}
// i64 vector arithmetic shift can be emulated with the transform:
// M = lshr(SIGN_MASK, Amt)
// ashr(R, Amt) === sub(xor(lshr(R, Amt), M), M)
if ((VT == MVT::v2i64 || (VT == MVT::v4i64 && Subtarget.hasInt256())) &&
Op.getOpcode() == ISD::SRA) {
SDValue S = DAG.getConstant(APInt::getSignMask(64), dl, VT);
SDValue M = DAG.getNode(ISD::SRL, dl, VT, S, Amt);
R = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
R = DAG.getNode(ISD::XOR, dl, VT, R, M);
R = DAG.getNode(ISD::SUB, dl, VT, R, M);
return R;
}
// If possible, lower this shift as a sequence of two shifts by
// constant plus a BLENDing shuffle instead of scalarizing it.
// Example:
// (v4i32 (srl A, (build_vector < X, Y, Y, Y>)))
//
// Could be rewritten as:
// (v4i32 (MOVSS (srl A, <Y,Y,Y,Y>), (srl A, <X,X,X,X>)))
//
// The advantage is that the two shifts from the example would be
// lowered as X86ISD::VSRLI nodes in parallel before blending.
if (ConstantAmt && (VT == MVT::v8i16 || VT == MVT::v4i32 ||
(VT == MVT::v16i16 && Subtarget.hasInt256()))) {
SDValue Amt1, Amt2;
unsigned NumElts = VT.getVectorNumElements();
SmallVector<int, 8> ShuffleMask;
for (unsigned i = 0; i != NumElts; ++i) {
SDValue A = Amt->getOperand(i);
if (A.isUndef()) {
ShuffleMask.push_back(SM_SentinelUndef);
continue;
}
if (!Amt1 || Amt1 == A) {
ShuffleMask.push_back(i);
Amt1 = A;
continue;
}
if (!Amt2 || Amt2 == A) {
ShuffleMask.push_back(i + NumElts);
Amt2 = A;
continue;
}
break;
}
// Only perform this blend if we can perform it without loading a mask.
if (ShuffleMask.size() == NumElts && Amt1 && Amt2 &&
isa<ConstantSDNode>(Amt1) && isa<ConstantSDNode>(Amt2) &&
(VT != MVT::v16i16 ||
is128BitLaneRepeatedShuffleMask(VT, ShuffleMask)) &&
(VT == MVT::v4i32 || Subtarget.hasSSE41() ||
Op.getOpcode() != ISD::SHL || canWidenShuffleElements(ShuffleMask))) {
SDValue Splat1 =
DAG.getConstant(cast<ConstantSDNode>(Amt1)->getAPIntValue(), dl, VT);
SDValue Shift1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat1);
SDValue Splat2 =
DAG.getConstant(cast<ConstantSDNode>(Amt2)->getAPIntValue(), dl, VT);
SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2);
return DAG.getVectorShuffle(VT, dl, Shift1, Shift2, ShuffleMask);
}
}
// If possible, lower this packed shift into a vector multiply instead of
// expanding it into a sequence of scalar shifts.
if (Op.getOpcode() == ISD::SHL)
if (SDValue Scale = convertShiftLeftToScale(Amt, dl, Subtarget, DAG))
return DAG.getNode(ISD::MUL, dl, VT, R, Scale);
// Constant ISD::SRL can be performed efficiently on vXi8/vXi16 vectors as we
// can replace with ISD::MULHU, creating scale factor from (NumEltBits - Amt).
// TODO: Improve support for the shift by zero special case.
if (Op.getOpcode() == ISD::SRL && ConstantAmt &&
((Subtarget.hasSSE41() && VT == MVT::v8i16) ||
DAG.isKnownNeverZero(Amt)) &&
(VT == MVT::v16i8 || VT == MVT::v8i16 ||
((VT == MVT::v32i8 || VT == MVT::v16i16) && Subtarget.hasInt256()))) {
SDValue EltBits = DAG.getConstant(VT.getScalarSizeInBits(), dl, VT);
SDValue RAmt = DAG.getNode(ISD::SUB, dl, VT, EltBits, Amt);
if (SDValue Scale = convertShiftLeftToScale(RAmt, dl, Subtarget, DAG)) {
SDValue Zero = DAG.getConstant(0, dl, VT);
SDValue ZAmt = DAG.getSetCC(dl, VT, Amt, Zero, ISD::SETEQ);
SDValue Res = DAG.getNode(ISD::MULHU, dl, VT, R, Scale);
return DAG.getSelect(dl, VT, ZAmt, R, Res);
}
}
// v4i32 Non Uniform Shifts.
// If the shift amount is constant we can shift each lane using the SSE2
// immediate shifts, else we need to zero-extend each lane to the lower i64
// and shift using the SSE2 variable shifts.
// The separate results can then be blended together.
if (VT == MVT::v4i32) {
unsigned Opc = Op.getOpcode();
SDValue Amt0, Amt1, Amt2, Amt3;
if (ConstantAmt) {
Amt0 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {0, 0, 0, 0});
Amt1 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {1, 1, 1, 1});
Amt2 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {2, 2, 2, 2});
Amt3 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {3, 3, 3, 3});
} else {
// ISD::SHL is handled above but we include it here for completeness.
switch (Opc) {
default:
llvm_unreachable("Unknown target vector shift node");
case ISD::SHL:
Opc = X86ISD::VSHL;
break;
case ISD::SRL:
Opc = X86ISD::VSRL;
break;
case ISD::SRA:
Opc = X86ISD::VSRA;
break;
}
// The SSE2 shifts use the lower i64 as the same shift amount for
// all lanes and the upper i64 is ignored. On AVX we're better off
// just zero-extending, but for SSE just duplicating the top 16-bits is
// cheaper and has the same effect for out of range values.
if (Subtarget.hasAVX()) {
SDValue Z = getZeroVector(VT, Subtarget, DAG, dl);
Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Z, {0, 4, -1, -1});
Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Z, {1, 5, -1, -1});
Amt2 = DAG.getVectorShuffle(VT, dl, Amt, Z, {2, 6, -1, -1});
Amt3 = DAG.getVectorShuffle(VT, dl, Amt, Z, {3, 7, -1, -1});
} else {
SDValue Amt01 = DAG.getBitcast(MVT::v8i16, Amt);
SDValue Amt23 = DAG.getVectorShuffle(MVT::v8i16, dl, Amt01, Amt01,
{4, 5, 6, 7, -1, -1, -1, -1});
Amt0 = DAG.getVectorShuffle(MVT::v8i16, dl, Amt01, Amt01,
{0, 1, 1, 1, -1, -1, -1, -1});
Amt1 = DAG.getVectorShuffle(MVT::v8i16, dl, Amt01, Amt01,
{2, 3, 3, 3, -1, -1, -1, -1});
Amt2 = DAG.getVectorShuffle(MVT::v8i16, dl, Amt23, Amt23,
{0, 1, 1, 1, -1, -1, -1, -1});
Amt3 = DAG.getVectorShuffle(MVT::v8i16, dl, Amt23, Amt23,
{2, 3, 3, 3, -1, -1, -1, -1});
}
}
SDValue R0 = DAG.getNode(Opc, dl, VT, R, DAG.getBitcast(VT, Amt0));
SDValue R1 = DAG.getNode(Opc, dl, VT, R, DAG.getBitcast(VT, Amt1));
SDValue R2 = DAG.getNode(Opc, dl, VT, R, DAG.getBitcast(VT, Amt2));
SDValue R3 = DAG.getNode(Opc, dl, VT, R, DAG.getBitcast(VT, Amt3));
// Merge the shifted lane results optimally with/without PBLENDW.
// TODO - ideally shuffle combining would handle this.
if (Subtarget.hasSSE41()) {
SDValue R02 = DAG.getVectorShuffle(VT, dl, R0, R2, {0, -1, 6, -1});
SDValue R13 = DAG.getVectorShuffle(VT, dl, R1, R3, {-1, 1, -1, 7});
return DAG.getVectorShuffle(VT, dl, R02, R13, {0, 5, 2, 7});
}
SDValue R01 = DAG.getVectorShuffle(VT, dl, R0, R1, {0, -1, -1, 5});
SDValue R23 = DAG.getVectorShuffle(VT, dl, R2, R3, {2, -1, -1, 7});
return DAG.getVectorShuffle(VT, dl, R01, R23, {0, 3, 4, 7});
}
// It's worth extending once and using the vXi16/vXi32 shifts for smaller
// types, but without AVX512 the extra overheads to get from vXi8 to vXi32
// make the existing SSE solution better.
// NOTE: We honor prefered vector width before promoting to 512-bits.
if ((Subtarget.hasInt256() && VT == MVT::v8i16) ||
(Subtarget.canExtendTo512DQ() && VT == MVT::v16i16) ||
(Subtarget.canExtendTo512DQ() && VT == MVT::v16i8) ||
(Subtarget.canExtendTo512BW() && VT == MVT::v32i8) ||
(Subtarget.hasBWI() && Subtarget.hasVLX() && VT == MVT::v16i8)) {
assert((!Subtarget.hasBWI() || VT == MVT::v32i8 || VT == MVT::v16i8) &&
"Unexpected vector type");
MVT EvtSVT = Subtarget.hasBWI() ? MVT::i16 : MVT::i32;
MVT ExtVT = MVT::getVectorVT(EvtSVT, VT.getVectorNumElements());
unsigned ExtOpc =
Op.getOpcode() == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
R = DAG.getNode(ExtOpc, dl, ExtVT, R);
Amt = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Amt);
return DAG.getNode(ISD::TRUNCATE, dl, VT,
DAG.getNode(Op.getOpcode(), dl, ExtVT, R, Amt));
}
if (VT == MVT::v16i8 ||
(VT == MVT::v32i8 && Subtarget.hasInt256() && !Subtarget.hasXOP()) ||
(VT == MVT::v64i8 && Subtarget.hasBWI())) {
MVT ExtVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements() / 2);
unsigned ShiftOpcode = Op->getOpcode();
auto SignBitSelect = [&](MVT SelVT, SDValue Sel, SDValue V0, SDValue V1) {
if (VT.is512BitVector()) {
// On AVX512BW targets we make use of the fact that VSELECT lowers
// to a masked blend which selects bytes based just on the sign bit
// extracted to a mask.
MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
V0 = DAG.getBitcast(VT, V0);
V1 = DAG.getBitcast(VT, V1);
Sel = DAG.getBitcast(VT, Sel);
Sel = DAG.getSetCC(dl, MaskVT, DAG.getConstant(0, dl, VT), Sel,
ISD::SETGT);
return DAG.getBitcast(SelVT, DAG.getSelect(dl, VT, Sel, V0, V1));
} else if (Subtarget.hasSSE41()) {
// On SSE41 targets we make use of the fact that VSELECT lowers
// to PBLENDVB which selects bytes based just on the sign bit.
V0 = DAG.getBitcast(VT, V0);
V1 = DAG.getBitcast(VT, V1);
Sel = DAG.getBitcast(VT, Sel);
return DAG.getBitcast(SelVT, DAG.getSelect(dl, VT, Sel, V0, V1));
}
// On pre-SSE41 targets we test for the sign bit by comparing to
// zero - a negative value will set all bits of the lanes to true
// and VSELECT uses that in its OR(AND(V0,C),AND(V1,~C)) lowering.
SDValue Z = getZeroVector(SelVT, Subtarget, DAG, dl);
SDValue C = DAG.getNode(X86ISD::PCMPGT, dl, SelVT, Z, Sel);
return DAG.getSelect(dl, SelVT, C, V0, V1);
};
// Turn 'a' into a mask suitable for VSELECT: a = a << 5;
// We can safely do this using i16 shifts as we're only interested in
// the 3 lower bits of each byte.
Amt = DAG.getBitcast(ExtVT, Amt);
Amt = DAG.getNode(ISD::SHL, dl, ExtVT, Amt, DAG.getConstant(5, dl, ExtVT));
Amt = DAG.getBitcast(VT, Amt);
if (Op->getOpcode() == ISD::SHL || Op->getOpcode() == ISD::SRL) {
// r = VSELECT(r, shift(r, 4), a);
SDValue M =
DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT));
R = SignBitSelect(VT, Amt, M, R);
// a += a
Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
// r = VSELECT(r, shift(r, 2), a);
M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT));
R = SignBitSelect(VT, Amt, M, R);
// a += a
Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
// return VSELECT(r, shift(r, 1), a);
M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT));
R = SignBitSelect(VT, Amt, M, R);
return R;
}
if (Op->getOpcode() == ISD::SRA) {
// For SRA we need to unpack each byte to the higher byte of a i16 vector
// so we can correctly sign extend. We don't care what happens to the
// lower byte.
SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), Amt);
SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), Amt);
SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), R);
SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), R);
ALo = DAG.getBitcast(ExtVT, ALo);
AHi = DAG.getBitcast(ExtVT, AHi);
RLo = DAG.getBitcast(ExtVT, RLo);
RHi = DAG.getBitcast(ExtVT, RHi);
// r = VSELECT(r, shift(r, 4), a);
SDValue MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo,
DAG.getConstant(4, dl, ExtVT));
SDValue MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi,
DAG.getConstant(4, dl, ExtVT));
RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
// a += a
ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo);
AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi);
// r = VSELECT(r, shift(r, 2), a);
MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo,
DAG.getConstant(2, dl, ExtVT));
MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi,
DAG.getConstant(2, dl, ExtVT));
RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
// a += a
ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo);
AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi);
// r = VSELECT(r, shift(r, 1), a);
MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo,
DAG.getConstant(1, dl, ExtVT));
MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi,
DAG.getConstant(1, dl, ExtVT));
RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
// Logical shift the result back to the lower byte, leaving a zero upper
// byte
// meaning that we can safely pack with PACKUSWB.
RLo =
DAG.getNode(ISD::SRL, dl, ExtVT, RLo, DAG.getConstant(8, dl, ExtVT));
RHi =
DAG.getNode(ISD::SRL, dl, ExtVT, RHi, DAG.getConstant(8, dl, ExtVT));
return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
}
}
if (Subtarget.hasInt256() && !Subtarget.hasXOP() && VT == MVT::v16i16) {
MVT ExtVT = MVT::v8i32;
SDValue Z = getZeroVector(VT, Subtarget, DAG, dl);
SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, Amt, Z);
SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, Amt, Z);
SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, Z, R);
SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, Z, R);
ALo = DAG.getBitcast(ExtVT, ALo);
AHi = DAG.getBitcast(ExtVT, AHi);
RLo = DAG.getBitcast(ExtVT, RLo);
RHi = DAG.getBitcast(ExtVT, RHi);
SDValue Lo = DAG.getNode(Op.getOpcode(), dl, ExtVT, RLo, ALo);
SDValue Hi = DAG.getNode(Op.getOpcode(), dl, ExtVT, RHi, AHi);
Lo = DAG.getNode(ISD::SRL, dl, ExtVT, Lo, DAG.getConstant(16, dl, ExtVT));
Hi = DAG.getNode(ISD::SRL, dl, ExtVT, Hi, DAG.getConstant(16, dl, ExtVT));
return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi);
}
if (VT == MVT::v8i16) {
unsigned ShiftOpcode = Op->getOpcode();
// If we have a constant shift amount, the non-SSE41 path is best as
// avoiding bitcasts make it easier to constant fold and reduce to PBLENDW.
bool UseSSE41 = Subtarget.hasSSE41() &&
!ISD::isBuildVectorOfConstantSDNodes(Amt.getNode());
auto SignBitSelect = [&](SDValue Sel, SDValue V0, SDValue V1) {
// On SSE41 targets we make use of the fact that VSELECT lowers
// to PBLENDVB which selects bytes based just on the sign bit.
if (UseSSE41) {
MVT ExtVT = MVT::getVectorVT(MVT::i8, VT.getVectorNumElements() * 2);
V0 = DAG.getBitcast(ExtVT, V0);
V1 = DAG.getBitcast(ExtVT, V1);
Sel = DAG.getBitcast(ExtVT, Sel);
return DAG.getBitcast(VT, DAG.getSelect(dl, ExtVT, Sel, V0, V1));
}
// On pre-SSE41 targets we splat the sign bit - a negative value will
// set all bits of the lanes to true and VSELECT uses that in
// its OR(AND(V0,C),AND(V1,~C)) lowering.
SDValue C =
DAG.getNode(ISD::SRA, dl, VT, Sel, DAG.getConstant(15, dl, VT));
return DAG.getSelect(dl, VT, C, V0, V1);
};
// Turn 'a' into a mask suitable for VSELECT: a = a << 12;
if (UseSSE41) {
// On SSE41 targets we need to replicate the shift mask in both
// bytes for PBLENDVB.
Amt = DAG.getNode(
ISD::OR, dl, VT,
DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(4, dl, VT)),
DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT)));
} else {
Amt = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT));
}
// r = VSELECT(r, shift(r, 8), a);
SDValue M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(8, dl, VT));
R = SignBitSelect(Amt, M, R);
// a += a
Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
// r = VSELECT(r, shift(r, 4), a);
M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT));
R = SignBitSelect(Amt, M, R);
// a += a
Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
// r = VSELECT(r, shift(r, 2), a);
M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT));
R = SignBitSelect(Amt, M, R);
// a += a
Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
// return VSELECT(r, shift(r, 1), a);
M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT));
R = SignBitSelect(Amt, M, R);
return R;
}
// Decompose 256-bit shifts into smaller 128-bit shifts.
if (VT.is256BitVector())
return Lower256IntArith(Op, DAG);
return SDValue();
}
static SDValue LowerRotate(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
assert(VT.isVector() && "Custom lowering only for vector rotates!");
SDLoc DL(Op);
SDValue R = Op.getOperand(0);
SDValue Amt = Op.getOperand(1);
unsigned Opcode = Op.getOpcode();
unsigned EltSizeInBits = VT.getScalarSizeInBits();
if (Subtarget.hasAVX512() && 32 <= EltSizeInBits) {
// Attempt to rotate by immediate.
APInt UndefElts;
SmallVector<APInt, 16> EltBits;
if (getTargetConstantBitsFromNode(Amt, EltSizeInBits, UndefElts, EltBits)) {
if (!UndefElts && llvm::all_of(EltBits, [EltBits](APInt &V) {
return EltBits[0] == V;
})) {
unsigned Op = (Opcode == ISD::ROTL ? X86ISD::VROTLI : X86ISD::VROTRI);
uint64_t RotateAmt = EltBits[0].urem(EltSizeInBits);
return DAG.getNode(Op, DL, VT, R,
DAG.getConstant(RotateAmt, DL, MVT::i8));
}
}
// Else, fall-back on VPROLV/VPRORV.
return Op;
}
assert((Opcode == ISD::ROTL) && "Only ROTL supported");
// XOP has 128-bit vector variable + immediate rotates.
// +ve/-ve Amt = rotate left/right - just need to handle ISD::ROTL.
if (Subtarget.hasXOP()) {
// Split 256-bit integers.
if (VT.is256BitVector())
return Lower256IntArith(Op, DAG);
assert(VT.is128BitVector() && "Only rotate 128-bit vectors!");
// Attempt to rotate by immediate.
if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) {
if (auto *RotateConst = BVAmt->getConstantSplatNode()) {
uint64_t RotateAmt = RotateConst->getAPIntValue().getZExtValue();
assert(RotateAmt < EltSizeInBits && "Rotation out of range");
return DAG.getNode(X86ISD::VROTLI, DL, VT, R,
DAG.getConstant(RotateAmt, DL, MVT::i8));
}
}
// Use general rotate by variable (per-element).
return Op;
}
// Split 256-bit integers on pre-AVX2 targets.
if (VT.is256BitVector() && !Subtarget.hasAVX2())
return Lower256IntArith(Op, DAG);
assert((VT == MVT::v4i32 || VT == MVT::v8i16 || VT == MVT::v16i8 ||
((VT == MVT::v8i32 || VT == MVT::v16i16 || VT == MVT::v32i8) &&
Subtarget.hasAVX2())) &&
"Only vXi32/vXi16/vXi8 vector rotates supported");
// Rotate by an uniform constant - expand back to shifts.
// TODO - legalizers should be able to handle this.
if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) {
if (auto *RotateConst = BVAmt->getConstantSplatNode()) {
uint64_t RotateAmt = RotateConst->getAPIntValue().getZExtValue();
assert(RotateAmt < EltSizeInBits && "Rotation out of range");
if (RotateAmt == 0)
return R;
SDValue AmtR = DAG.getConstant(EltSizeInBits - RotateAmt, DL, VT);
SDValue SHL = DAG.getNode(ISD::SHL, DL, VT, R, Amt);
SDValue SRL = DAG.getNode(ISD::SRL, DL, VT, R, AmtR);
return DAG.getNode(ISD::OR, DL, VT, SHL, SRL);
}
}
// Rotate by splat - expand back to shifts.
// TODO - legalizers should be able to handle this.
if ((EltSizeInBits >= 16 || Subtarget.hasBWI()) &&
IsSplatValue(VT, Amt, DL, DAG, Subtarget, Opcode)) {
SDValue AmtR = DAG.getConstant(EltSizeInBits, DL, VT);
AmtR = DAG.getNode(ISD::SUB, DL, VT, AmtR, Amt);
SDValue SHL = DAG.getNode(ISD::SHL, DL, VT, R, Amt);
SDValue SRL = DAG.getNode(ISD::SRL, DL, VT, R, AmtR);
return DAG.getNode(ISD::OR, DL, VT, SHL, SRL);
}
// v16i8/v32i8: Split rotation into rot4/rot2/rot1 stages and select by
// the amount bit.
if (EltSizeInBits == 8) {
if (Subtarget.hasBWI()) {
SDValue AmtR = DAG.getConstant(EltSizeInBits, DL, VT);
AmtR = DAG.getNode(ISD::SUB, DL, VT, AmtR, Amt);
SDValue SHL = DAG.getNode(ISD::SHL, DL, VT, R, Amt);
SDValue SRL = DAG.getNode(ISD::SRL, DL, VT, R, AmtR);
return DAG.getNode(ISD::OR, DL, VT, SHL, SRL);
}
MVT ExtVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements() / 2);
auto SignBitSelect = [&](MVT SelVT, SDValue Sel, SDValue V0, SDValue V1) {
if (Subtarget.hasSSE41()) {
// On SSE41 targets we make use of the fact that VSELECT lowers
// to PBLENDVB which selects bytes based just on the sign bit.
V0 = DAG.getBitcast(VT, V0);
V1 = DAG.getBitcast(VT, V1);
Sel = DAG.getBitcast(VT, Sel);
return DAG.getBitcast(SelVT, DAG.getSelect(DL, VT, Sel, V0, V1));
}
// On pre-SSE41 targets we test for the sign bit by comparing to
// zero - a negative value will set all bits of the lanes to true
// and VSELECT uses that in its OR(AND(V0,C),AND(V1,~C)) lowering.
SDValue Z = getZeroVector(SelVT, Subtarget, DAG, DL);
SDValue C = DAG.getNode(X86ISD::PCMPGT, DL, SelVT, Z, Sel);
return DAG.getSelect(DL, SelVT, C, V0, V1);
};
// Turn 'a' into a mask suitable for VSELECT: a = a << 5;
// We can safely do this using i16 shifts as we're only interested in
// the 3 lower bits of each byte.
Amt = DAG.getBitcast(ExtVT, Amt);
Amt = DAG.getNode(ISD::SHL, DL, ExtVT, Amt, DAG.getConstant(5, DL, ExtVT));
Amt = DAG.getBitcast(VT, Amt);
// r = VSELECT(r, rot(r, 4), a);
SDValue M;
M = DAG.getNode(
ISD::OR, DL, VT,
DAG.getNode(ISD::SHL, DL, VT, R, DAG.getConstant(4, DL, VT)),
DAG.getNode(ISD::SRL, DL, VT, R, DAG.getConstant(4, DL, VT)));
R = SignBitSelect(VT, Amt, M, R);
// a += a
Amt = DAG.getNode(ISD::ADD, DL, VT, Amt, Amt);
// r = VSELECT(r, rot(r, 2), a);
M = DAG.getNode(
ISD::OR, DL, VT,
DAG.getNode(ISD::SHL, DL, VT, R, DAG.getConstant(2, DL, VT)),
DAG.getNode(ISD::SRL, DL, VT, R, DAG.getConstant(6, DL, VT)));
R = SignBitSelect(VT, Amt, M, R);
// a += a
Amt = DAG.getNode(ISD::ADD, DL, VT, Amt, Amt);
// return VSELECT(r, rot(r, 1), a);
M = DAG.getNode(
ISD::OR, DL, VT,
DAG.getNode(ISD::SHL, DL, VT, R, DAG.getConstant(1, DL, VT)),
DAG.getNode(ISD::SRL, DL, VT, R, DAG.getConstant(7, DL, VT)));
return SignBitSelect(VT, Amt, M, R);
}
bool ConstantAmt = ISD::isBuildVectorOfConstantSDNodes(Amt.getNode());
bool LegalVarShifts = SupportedVectorVarShift(VT, Subtarget, ISD::SHL) &&
SupportedVectorVarShift(VT, Subtarget, ISD::SRL);
// Best to fallback for all supported variable shifts.
// AVX2 - best to fallback for non-constants as well.
// TODO - legalizers should be able to handle this.
if (LegalVarShifts || (Subtarget.hasAVX2() && !ConstantAmt)) {
SDValue AmtR = DAG.getConstant(EltSizeInBits, DL, VT);
AmtR = DAG.getNode(ISD::SUB, DL, VT, AmtR, Amt);
SDValue SHL = DAG.getNode(ISD::SHL, DL, VT, R, Amt);
SDValue SRL = DAG.getNode(ISD::SRL, DL, VT, R, AmtR);
return DAG.getNode(ISD::OR, DL, VT, SHL, SRL);
}
// As with shifts, convert the rotation amount to a multiplication factor.
SDValue Scale = convertShiftLeftToScale(Amt, DL, Subtarget, DAG);
assert(Scale && "Failed to convert ROTL amount to scale");
// v8i16/v16i16: perform unsigned multiply hi/lo and OR the results.
if (EltSizeInBits == 16) {
SDValue Lo = DAG.getNode(ISD::MUL, DL, VT, R, Scale);
SDValue Hi = DAG.getNode(ISD::MULHU, DL, VT, R, Scale);
return DAG.getNode(ISD::OR, DL, VT, Lo, Hi);
}
// v4i32: make use of the PMULUDQ instruction to multiply 2 lanes of v4i32
// to v2i64 results at a time. The upper 32-bits contain the wrapped bits
// that can then be OR'd with the lower 32-bits.
assert(VT == MVT::v4i32 && "Only v4i32 vector rotate expected");
static const int OddMask[] = {1, -1, 3, -1};
SDValue R13 = DAG.getVectorShuffle(VT, DL, R, R, OddMask);
SDValue Scale13 = DAG.getVectorShuffle(VT, DL, Scale, Scale, OddMask);
SDValue Res02 = DAG.getNode(X86ISD::PMULUDQ, DL, MVT::v2i64,
DAG.getBitcast(MVT::v2i64, R),
DAG.getBitcast(MVT::v2i64, Scale));
SDValue Res13 = DAG.getNode(X86ISD::PMULUDQ, DL, MVT::v2i64,
DAG.getBitcast(MVT::v2i64, R13),
DAG.getBitcast(MVT::v2i64, Scale13));
Res02 = DAG.getBitcast(VT, Res02);
Res13 = DAG.getBitcast(VT, Res13);
return DAG.getNode(ISD::OR, DL, VT,
DAG.getVectorShuffle(VT, DL, Res02, Res13, {0, 4, 2, 6}),
DAG.getVectorShuffle(VT, DL, Res02, Res13, {1, 5, 3, 7}));
}
static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
// Lower the "add/sub/mul with overflow" instruction into a regular ins plus
// a "setcc" instruction that checks the overflow flag. The "brcond" lowering
// looks for this combo and may remove the "setcc" instruction if the "setcc"
// has only one use.
SDNode *N = Op.getNode();
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
unsigned BaseOp = 0;
X86::CondCode Cond;
SDLoc DL(Op);
switch (Op.getOpcode()) {
default: llvm_unreachable("Unknown ovf instruction!");
case ISD::SADDO:
// A subtract of one will be selected as a INC. Note that INC doesn't
// set CF, so we can't do this for UADDO.
if (isOneConstant(RHS)) {
BaseOp = X86ISD::INC;
Cond = X86::COND_O;
break;
}
BaseOp = X86ISD::ADD;
Cond = X86::COND_O;
break;
case ISD::UADDO:
BaseOp = X86ISD::ADD;
Cond = X86::COND_B;
break;
case ISD::SSUBO:
// A subtract of one will be selected as a DEC. Note that DEC doesn't
// set CF, so we can't do this for USUBO.
if (isOneConstant(RHS)) {
BaseOp = X86ISD::DEC;
Cond = X86::COND_O;
break;
}
BaseOp = X86ISD::SUB;
Cond = X86::COND_O;
break;
case ISD::USUBO:
BaseOp = X86ISD::SUB;
Cond = X86::COND_B;
break;
case ISD::SMULO:
BaseOp = N->getValueType(0) == MVT::i8 ? X86ISD::SMUL8 : X86ISD::SMUL;
Cond = X86::COND_O;
break;
case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
if (N->getValueType(0) == MVT::i8) {
BaseOp = X86ISD::UMUL8;
Cond = X86::COND_O;
break;
}
SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
MVT::i32);
SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
SDValue SetCC = getSETCC(X86::COND_O, SDValue(Sum.getNode(), 2), DL, DAG);
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
}
}
// Also sets EFLAGS.
SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
SDValue SetCC = getSETCC(Cond, SDValue(Sum.getNode(), 1), DL, DAG);
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
}
/// Returns true if the operand type is exactly twice the native width, and
/// the corresponding cmpxchg8b or cmpxchg16b instruction is available.
/// Used to know whether to use cmpxchg8/16b when expanding atomic operations
/// (otherwise we leave them alone to become __sync_fetch_and_... calls).
bool X86TargetLowering::needsCmpXchgNb(Type *MemType) const {
unsigned OpWidth = MemType->getPrimitiveSizeInBits();
if (OpWidth == 64)
return !Subtarget.is64Bit(); // FIXME this should be Subtarget.hasCmpxchg8b
else if (OpWidth == 128)
return Subtarget.hasCmpxchg16b();
else
return false;
}
bool X86TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
return needsCmpXchgNb(SI->getValueOperand()->getType());
}
// Note: this turns large loads into lock cmpxchg8b/16b.
// FIXME: On 32 bits x86, fild/movq might be faster than lock cmpxchg8b.
TargetLowering::AtomicExpansionKind
X86TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
auto PTy = cast<PointerType>(LI->getPointerOperandType());
return needsCmpXchgNb(PTy->getElementType()) ? AtomicExpansionKind::CmpXChg
: AtomicExpansionKind::None;
}
TargetLowering::AtomicExpansionKind
X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32;
Type *MemType = AI->getType();
// If the operand is too big, we must see if cmpxchg8/16b is available
// and default to library calls otherwise.
if (MemType->getPrimitiveSizeInBits() > NativeWidth) {
return needsCmpXchgNb(MemType) ? AtomicExpansionKind::CmpXChg
: AtomicExpansionKind::None;
}
AtomicRMWInst::BinOp Op = AI->getOperation();
switch (Op) {
default:
llvm_unreachable("Unknown atomic operation");
case AtomicRMWInst::Xchg:
case AtomicRMWInst::Add:
case AtomicRMWInst::Sub:
// It's better to use xadd, xsub or xchg for these in all cases.
return AtomicExpansionKind::None;
case AtomicRMWInst::Or:
case AtomicRMWInst::And:
case AtomicRMWInst::Xor:
// If the atomicrmw's result isn't actually used, we can just add a "lock"
// prefix to a normal instruction for these operations.
return !AI->use_empty() ? AtomicExpansionKind::CmpXChg
: AtomicExpansionKind::None;
case AtomicRMWInst::Nand:
case AtomicRMWInst::Max:
case AtomicRMWInst::Min:
case AtomicRMWInst::UMax:
case AtomicRMWInst::UMin:
// These always require a non-trivial set of data operations on x86. We must
// use a cmpxchg loop.
return AtomicExpansionKind::CmpXChg;
}
}
LoadInst *
X86TargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const {
unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32;
Type *MemType = AI->getType();
// Accesses larger than the native width are turned into cmpxchg/libcalls, so
// there is no benefit in turning such RMWs into loads, and it is actually
// harmful as it introduces a mfence.
if (MemType->getPrimitiveSizeInBits() > NativeWidth)
return nullptr;
auto Builder = IRBuilder<>(AI);
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
auto SSID = AI->getSyncScopeID();
// We must restrict the ordering to avoid generating loads with Release or
// ReleaseAcquire orderings.
auto Order = AtomicCmpXchgInst::getStrongestFailureOrdering(AI->getOrdering());
auto Ptr = AI->getPointerOperand();
// Before the load we need a fence. Here is an example lifted from
// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf showing why a fence
// is required:
// Thread 0:
// x.store(1, relaxed);
// r1 = y.fetch_add(0, release);
// Thread 1:
// y.fetch_add(42, acquire);
// r2 = x.load(relaxed);
// r1 = r2 = 0 is impossible, but becomes possible if the idempotent rmw is
// lowered to just a load without a fence. A mfence flushes the store buffer,
// making the optimization clearly correct.
// FIXME: it is required if isReleaseOrStronger(Order) but it is not clear
// otherwise, we might be able to be more aggressive on relaxed idempotent
// rmw. In practice, they do not look useful, so we don't try to be
// especially clever.
if (SSID == SyncScope::SingleThread)
// FIXME: we could just insert an X86ISD::MEMBARRIER here, except we are at
// the IR level, so we must wrap it in an intrinsic.
return nullptr;
if (!Subtarget.hasMFence())
// FIXME: it might make sense to use a locked operation here but on a
// different cache-line to prevent cache-line bouncing. In practice it
// is probably a small win, and x86 processors without mfence are rare
// enough that we do not bother.
return nullptr;
Function *MFence =
llvm::Intrinsic::getDeclaration(M, Intrinsic::x86_sse2_mfence);
Builder.CreateCall(MFence, {});
// Finally we can emit the atomic load.
LoadInst *Loaded = Builder.CreateAlignedLoad(Ptr,
AI->getType()->getPrimitiveSizeInBits());
Loaded->setAtomic(Order, SSID);
AI->replaceAllUsesWith(Loaded);
AI->eraseFromParent();
return Loaded;
}
static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc dl(Op);
AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
// The only fence that needs an instruction is a sequentially-consistent
// cross-thread fence.
if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
FenceSSID == SyncScope::System) {
if (Subtarget.hasMFence())
return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
SDValue Chain = Op.getOperand(0);
SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
SDValue Ops[] = {
DAG.getRegister(X86::ESP, MVT::i32), // Base
DAG.getTargetConstant(1, dl, MVT::i8), // Scale
DAG.getRegister(0, MVT::i32), // Index
DAG.getTargetConstant(0, dl, MVT::i32), // Disp
DAG.getRegister(0, MVT::i32), // Segment.
Zero,
Chain
};
SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops);
return SDValue(Res, 0);
}
// MEMBARRIER is a compiler barrier; it codegens to a no-op.
return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
}
static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT T = Op.getSimpleValueType();
SDLoc DL(Op);
unsigned Reg = 0;
unsigned size = 0;
switch(T.SimpleTy) {
default: llvm_unreachable("Invalid value type!");
case MVT::i8: Reg = X86::AL; size = 1; break;
case MVT::i16: Reg = X86::AX; size = 2; break;
case MVT::i32: Reg = X86::EAX; size = 4; break;
case MVT::i64:
assert(Subtarget.is64Bit() && "Node not type legal!");
Reg = X86::RAX; size = 8;
break;
}
SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
Op.getOperand(2), SDValue());
SDValue Ops[] = { cpIn.getValue(0),
Op.getOperand(1),
Op.getOperand(3),
DAG.getTargetConstant(size, DL, MVT::i8),
cpIn.getValue(1) };
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
Ops, T, MMO);
SDValue cpOut =
DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
SDValue EFLAGS = DAG.getCopyFromReg(cpOut.getValue(1), DL, X86::EFLAGS,
MVT::i32, cpOut.getValue(2));
SDValue Success = getSETCC(X86::COND_E, EFLAGS, DL, DAG);
DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), cpOut);
DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), EFLAGS.getValue(1));
return SDValue();
}
// Create MOVMSKB, taking into account whether we need to split for AVX1.
static SDValue getPMOVMSKB(const SDLoc &DL, SDValue V, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT InVT = V.getSimpleValueType();
if (InVT == MVT::v32i8 && !Subtarget.hasInt256()) {
SDValue Lo, Hi;
std::tie(Lo, Hi) = DAG.SplitVector(V, DL);
Lo = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, Lo);
Hi = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, Hi);
Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
DAG.getConstant(16, DL, MVT::i8));
return DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi);
}
return DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, V);
}
static SDValue LowerBITCAST(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDValue Src = Op.getOperand(0);
MVT SrcVT = Src.getSimpleValueType();
MVT DstVT = Op.getSimpleValueType();
// Legalize (v64i1 (bitcast i64 (X))) by splitting the i64, bitcasting each
// half to v32i1 and concatenating the result.
if (SrcVT == MVT::i64 && DstVT == MVT::v64i1) {
assert(!Subtarget.is64Bit() && "Expected 32-bit mode");
assert(Subtarget.hasBWI() && "Expected BWI target");
SDLoc dl(Op);
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Src,
DAG.getIntPtrConstant(0, dl));
Lo = DAG.getBitcast(MVT::v32i1, Lo);
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Src,
DAG.getIntPtrConstant(1, dl));
Hi = DAG.getBitcast(MVT::v32i1, Hi);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v64i1, Lo, Hi);
}
// Custom splitting for BWI types when AVX512F is available but BWI isn't.
if ((SrcVT == MVT::v32i16 || SrcVT == MVT::v64i8) && DstVT.isVector() &&
DAG.getTargetLoweringInfo().isTypeLegal(DstVT)) {
SDLoc dl(Op);
SDValue Lo, Hi;
std::tie(Lo, Hi) = DAG.SplitVector(Op.getOperand(0), dl);
EVT CastVT = MVT::getVectorVT(DstVT.getVectorElementType(),
DstVT.getVectorNumElements() / 2);
Lo = DAG.getBitcast(CastVT, Lo);
Hi = DAG.getBitcast(CastVT, Hi);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, DstVT, Lo, Hi);
}
// Use MOVMSK for vector to scalar conversion to prevent scalarization.
if ((SrcVT == MVT::v16i1 || SrcVT == MVT::v32i1) && DstVT.isScalarInteger()) {
assert(!Subtarget.hasAVX512() && "Should use K-registers with AVX512");
MVT SExtVT = SrcVT == MVT::v16i1 ? MVT::v16i8 : MVT::v32i8;
SDLoc DL(Op);
SDValue V = DAG.getSExtOrTrunc(Src, DL, SExtVT);
V = getPMOVMSKB(DL, V, DAG, Subtarget);
return DAG.getZExtOrTrunc(V, DL, DstVT);
}
if (SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8 ||
SrcVT == MVT::i64) {
assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
if (DstVT != MVT::f64)
// This conversion needs to be expanded.
return SDValue();
SmallVector<SDValue, 16> Elts;
SDLoc dl(Op);
unsigned NumElts;
MVT SVT;
if (SrcVT.isVector()) {
NumElts = SrcVT.getVectorNumElements();
SVT = SrcVT.getVectorElementType();
// Widen the vector in input in the case of MVT::v2i32.
// Example: from MVT::v2i32 to MVT::v4i32.
for (unsigned i = 0, e = NumElts; i != e; ++i)
Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, Src,
DAG.getIntPtrConstant(i, dl)));
} else {
assert(SrcVT == MVT::i64 && !Subtarget.is64Bit() &&
"Unexpected source type in LowerBITCAST");
Elts.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Src,
DAG.getIntPtrConstant(0, dl)));
Elts.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Src,
DAG.getIntPtrConstant(1, dl)));
NumElts = 2;
SVT = MVT::i32;
}
// Explicitly mark the extra elements as Undef.
Elts.append(NumElts, DAG.getUNDEF(SVT));
EVT NewVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
SDValue BV = DAG.getBuildVector(NewVT, dl, Elts);
SDValue ToV2F64 = DAG.getBitcast(MVT::v2f64, BV);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, ToV2F64,
DAG.getIntPtrConstant(0, dl));
}
assert(Subtarget.is64Bit() && !Subtarget.hasSSE2() &&
Subtarget.hasMMX() && "Unexpected custom BITCAST");
assert((DstVT == MVT::i64 ||
(DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
"Unexpected custom BITCAST");
// i64 <=> MMX conversions are Legal.
if (SrcVT==MVT::i64 && DstVT.isVector())
return Op;
if (DstVT==MVT::i64 && SrcVT.isVector())
return Op;
// MMX <=> MMX conversions are Legal.
if (SrcVT.isVector() && DstVT.isVector())
return Op;
// All other conversions need to be expanded.
return SDValue();
}
/// Compute the horizontal sum of bytes in V for the elements of VT.
///
/// Requires V to be a byte vector and VT to be an integer vector type with
/// wider elements than V's type. The width of the elements of VT determines
/// how many bytes of V are summed horizontally to produce each element of the
/// result.
static SDValue LowerHorizontalByteSum(SDValue V, MVT VT,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(V);
MVT ByteVecVT = V.getSimpleValueType();
MVT EltVT = VT.getVectorElementType();
assert(ByteVecVT.getVectorElementType() == MVT::i8 &&
"Expected value to have byte element type.");
assert(EltVT != MVT::i8 &&
"Horizontal byte sum only makes sense for wider elements!");
unsigned VecSize = VT.getSizeInBits();
assert(ByteVecVT.getSizeInBits() == VecSize && "Cannot change vector size!");
// PSADBW instruction horizontally add all bytes and leave the result in i64
// chunks, thus directly computes the pop count for v2i64 and v4i64.
if (EltVT == MVT::i64) {
SDValue Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL);
MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64);
V = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT, V, Zeros);
return DAG.getBitcast(VT, V);
}
if (EltVT == MVT::i32) {
// We unpack the low half and high half into i32s interleaved with zeros so
// that we can use PSADBW to horizontally sum them. The most useful part of
// this is that it lines up the results of two PSADBW instructions to be
// two v2i64 vectors which concatenated are the 4 population counts. We can
// then use PACKUSWB to shrink and concatenate them into a v4i32 again.
SDValue Zeros = getZeroVector(VT, Subtarget, DAG, DL);
SDValue V32 = DAG.getBitcast(VT, V);
SDValue Low = DAG.getNode(X86ISD::UNPCKL, DL, VT, V32, Zeros);
SDValue High = DAG.getNode(X86ISD::UNPCKH, DL, VT, V32, Zeros);
// Do the horizontal sums into two v2i64s.
Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL);
MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64);
Low = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT,
DAG.getBitcast(ByteVecVT, Low), Zeros);
High = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT,
DAG.getBitcast(ByteVecVT, High), Zeros);
// Merge them together.
MVT ShortVecVT = MVT::getVectorVT(MVT::i16, VecSize / 16);
V = DAG.getNode(X86ISD::PACKUS, DL, ByteVecVT,
DAG.getBitcast(ShortVecVT, Low),
DAG.getBitcast(ShortVecVT, High));
return DAG.getBitcast(VT, V);
}
// The only element type left is i16.
assert(EltVT == MVT::i16 && "Unknown how to handle type");
// To obtain pop count for each i16 element starting from the pop count for
// i8 elements, shift the i16s left by 8, sum as i8s, and then shift as i16s
// right by 8. It is important to shift as i16s as i8 vector shift isn't
// directly supported.
SDValue ShifterV = DAG.getConstant(8, DL, VT);
SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, DAG.getBitcast(VT, V), ShifterV);
V = DAG.getNode(ISD::ADD, DL, ByteVecVT, DAG.getBitcast(ByteVecVT, Shl),
DAG.getBitcast(ByteVecVT, V));
return DAG.getNode(ISD::SRL, DL, VT, DAG.getBitcast(VT, V), ShifterV);
}
static SDValue LowerVectorCTPOPInRegLUT(SDValue Op, const SDLoc &DL,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
MVT EltVT = VT.getVectorElementType();
unsigned VecSize = VT.getSizeInBits();
// Implement a lookup table in register by using an algorithm based on:
// http://wm.ite.pl/articles/sse-popcount.html
//
// The general idea is that every lower byte nibble in the input vector is an
// index into a in-register pre-computed pop count table. We then split up the
// input vector in two new ones: (1) a vector with only the shifted-right
// higher nibbles for each byte and (2) a vector with the lower nibbles (and
// masked out higher ones) for each byte. PSHUFB is used separately with both
// to index the in-register table. Next, both are added and the result is a
// i8 vector where each element contains the pop count for input byte.
//
// To obtain the pop count for elements != i8, we follow up with the same
// approach and use additional tricks as described below.
//
const int LUT[16] = {/* 0 */ 0, /* 1 */ 1, /* 2 */ 1, /* 3 */ 2,
/* 4 */ 1, /* 5 */ 2, /* 6 */ 2, /* 7 */ 3,
/* 8 */ 1, /* 9 */ 2, /* a */ 2, /* b */ 3,
/* c */ 2, /* d */ 3, /* e */ 3, /* f */ 4};
int NumByteElts = VecSize / 8;
MVT ByteVecVT = MVT::getVectorVT(MVT::i8, NumByteElts);
SDValue In = DAG.getBitcast(ByteVecVT, Op);
SmallVector<SDValue, 64> LUTVec;
for (int i = 0; i < NumByteElts; ++i)
LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8));
SDValue InRegLUT = DAG.getBuildVector(ByteVecVT, DL, LUTVec);
SDValue M0F = DAG.getConstant(0x0F, DL, ByteVecVT);
// High nibbles
SDValue FourV = DAG.getConstant(4, DL, ByteVecVT);
SDValue HighNibbles = DAG.getNode(ISD::SRL, DL, ByteVecVT, In, FourV);
// Low nibbles
SDValue LowNibbles = DAG.getNode(ISD::AND, DL, ByteVecVT, In, M0F);
// The input vector is used as the shuffle mask that index elements into the
// LUT. After counting low and high nibbles, add the vector to obtain the
// final pop count per i8 element.
SDValue HighPopCnt =
DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, HighNibbles);
SDValue LowPopCnt =
DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, LowNibbles);
SDValue PopCnt = DAG.getNode(ISD::ADD, DL, ByteVecVT, HighPopCnt, LowPopCnt);
if (EltVT == MVT::i8)
return PopCnt;
return LowerHorizontalByteSum(PopCnt, VT, Subtarget, DAG);
}
static SDValue LowerVectorCTPOPBitmath(SDValue Op, const SDLoc &DL,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
assert(VT.is128BitVector() &&
"Only 128-bit vector bitmath lowering supported.");
int VecSize = VT.getSizeInBits();
MVT EltVT = VT.getVectorElementType();
int Len = EltVT.getSizeInBits();
// This is the vectorized version of the "best" algorithm from
// http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
// with a minor tweak to use a series of adds + shifts instead of vector
// multiplications. Implemented for all integer vector types. We only use
// this when we don't have SSSE3 which allows a LUT-based lowering that is
// much faster, even faster than using native popcnt instructions.
auto GetShift = [&](unsigned OpCode, SDValue V, int Shifter) {
MVT VT = V.getSimpleValueType();
SDValue ShifterV = DAG.getConstant(Shifter, DL, VT);
return DAG.getNode(OpCode, DL, VT, V, ShifterV);
};
auto GetMask = [&](SDValue V, APInt Mask) {
MVT VT = V.getSimpleValueType();
SDValue MaskV = DAG.getConstant(Mask, DL, VT);
return DAG.getNode(ISD::AND, DL, VT, V, MaskV);
};
// We don't want to incur the implicit masks required to SRL vNi8 vectors on
// x86, so set the SRL type to have elements at least i16 wide. This is
// correct because all of our SRLs are followed immediately by a mask anyways
// that handles any bits that sneak into the high bits of the byte elements.
MVT SrlVT = Len > 8 ? VT : MVT::getVectorVT(MVT::i16, VecSize / 16);
SDValue V = Op;
// v = v - ((v >> 1) & 0x55555555...)
SDValue Srl =
DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 1));
SDValue And = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x55)));
V = DAG.getNode(ISD::SUB, DL, VT, V, And);
// v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
SDValue AndLHS = GetMask(V, APInt::getSplat(Len, APInt(8, 0x33)));
Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 2));
SDValue AndRHS = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x33)));
V = DAG.getNode(ISD::ADD, DL, VT, AndLHS, AndRHS);
// v = (v + (v >> 4)) & 0x0F0F0F0F...
Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 4));
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, V, Srl);
V = GetMask(Add, APInt::getSplat(Len, APInt(8, 0x0F)));
// At this point, V contains the byte-wise population count, and we are
// merely doing a horizontal sum if necessary to get the wider element
// counts.
if (EltVT == MVT::i8)
return V;
return LowerHorizontalByteSum(
DAG.getBitcast(MVT::getVectorVT(MVT::i8, VecSize / 8), V), VT, Subtarget,
DAG);
}
// Please ensure that any codegen change from LowerVectorCTPOP is reflected in
// updated cost models in X86TTIImpl::getIntrinsicInstrCost.
static SDValue LowerVectorCTPOP(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
assert((VT.is512BitVector() || VT.is256BitVector() || VT.is128BitVector()) &&
"Unknown CTPOP type to handle");
SDLoc DL(Op.getNode());
SDValue Op0 = Op.getOperand(0);
// TRUNC(CTPOP(ZEXT(X))) to make use of vXi32/vXi64 VPOPCNT instructions.
if (Subtarget.hasVPOPCNTDQ()) {
unsigned NumElems = VT.getVectorNumElements();
assert((VT.getVectorElementType() == MVT::i8 ||
VT.getVectorElementType() == MVT::i16) && "Unexpected type");
if (NumElems < 16 || (NumElems == 16 && Subtarget.canExtendTo512DQ())) {
MVT NewVT = MVT::getVectorVT(MVT::i32, NumElems);
Op = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, Op0);
Op = DAG.getNode(ISD::CTPOP, DL, NewVT, Op);
return DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
}
}
if (!Subtarget.hasSSSE3()) {
// We can't use the fast LUT approach, so fall back on vectorized bitmath.
assert(VT.is128BitVector() && "Only 128-bit vectors supported in SSE!");
return LowerVectorCTPOPBitmath(Op0, DL, Subtarget, DAG);
}
// Decompose 256-bit ops into smaller 128-bit ops.
if (VT.is256BitVector() && !Subtarget.hasInt256())
return Lower256IntUnary(Op, DAG);
// Decompose 512-bit ops into smaller 256-bit ops.
if (VT.is512BitVector() && !Subtarget.hasBWI())
return Lower512IntUnary(Op, DAG);
return LowerVectorCTPOPInRegLUT(Op0, DL, Subtarget, DAG);
}
static SDValue LowerCTPOP(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Op.getSimpleValueType().isVector() &&
"We only do custom lowering for vector population count.");
return LowerVectorCTPOP(Op, Subtarget, DAG);
}
static SDValue LowerBITREVERSE_XOP(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
SDValue In = Op.getOperand(0);
SDLoc DL(Op);
// For scalars, its still beneficial to transfer to/from the SIMD unit to
// perform the BITREVERSE.
if (!VT.isVector()) {
MVT VecVT = MVT::getVectorVT(VT, 128 / VT.getSizeInBits());
SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, In);
Res = DAG.getNode(ISD::BITREVERSE, DL, VecVT, Res);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Res,
DAG.getIntPtrConstant(0, DL));
}
int NumElts = VT.getVectorNumElements();
int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
// Decompose 256-bit ops into smaller 128-bit ops.
if (VT.is256BitVector())
return Lower256IntUnary(Op, DAG);
assert(VT.is128BitVector() &&
"Only 128-bit vector bitreverse lowering supported.");
// VPPERM reverses the bits of a byte with the permute Op (2 << 5), and we
// perform the BSWAP in the shuffle.
// Its best to shuffle using the second operand as this will implicitly allow
// memory folding for multiple vectors.
SmallVector<SDValue, 16> MaskElts;
for (int i = 0; i != NumElts; ++i) {
for (int j = ScalarSizeInBytes - 1; j >= 0; --j) {
int SourceByte = 16 + (i * ScalarSizeInBytes) + j;
int PermuteByte = SourceByte | (2 << 5);
MaskElts.push_back(DAG.getConstant(PermuteByte, DL, MVT::i8));
}
}
SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, MaskElts);
SDValue Res = DAG.getBitcast(MVT::v16i8, In);
Res = DAG.getNode(X86ISD::VPPERM, DL, MVT::v16i8, DAG.getUNDEF(MVT::v16i8),
Res, Mask);
return DAG.getBitcast(VT, Res);
}
static SDValue LowerBITREVERSE(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
if (Subtarget.hasXOP() && !VT.is512BitVector())
return LowerBITREVERSE_XOP(Op, DAG);
assert(Subtarget.hasSSSE3() && "SSSE3 required for BITREVERSE");
SDValue In = Op.getOperand(0);
SDLoc DL(Op);
unsigned NumElts = VT.getVectorNumElements();
assert(VT.getScalarType() == MVT::i8 &&
"Only byte vector BITREVERSE supported");
// Decompose 256-bit ops into smaller 128-bit ops on pre-AVX2.
if (VT.is256BitVector() && !Subtarget.hasInt256())
return Lower256IntUnary(Op, DAG);
// Perform BITREVERSE using PSHUFB lookups. Each byte is split into
// two nibbles and a PSHUFB lookup to find the bitreverse of each
// 0-15 value (moved to the other nibble).
SDValue NibbleMask = DAG.getConstant(0xF, DL, VT);
SDValue Lo = DAG.getNode(ISD::AND, DL, VT, In, NibbleMask);
SDValue Hi = DAG.getNode(ISD::SRL, DL, VT, In, DAG.getConstant(4, DL, VT));
const int LoLUT[16] = {
/* 0 */ 0x00, /* 1 */ 0x80, /* 2 */ 0x40, /* 3 */ 0xC0,
/* 4 */ 0x20, /* 5 */ 0xA0, /* 6 */ 0x60, /* 7 */ 0xE0,
/* 8 */ 0x10, /* 9 */ 0x90, /* a */ 0x50, /* b */ 0xD0,
/* c */ 0x30, /* d */ 0xB0, /* e */ 0x70, /* f */ 0xF0};
const int HiLUT[16] = {
/* 0 */ 0x00, /* 1 */ 0x08, /* 2 */ 0x04, /* 3 */ 0x0C,
/* 4 */ 0x02, /* 5 */ 0x0A, /* 6 */ 0x06, /* 7 */ 0x0E,
/* 8 */ 0x01, /* 9 */ 0x09, /* a */ 0x05, /* b */ 0x0D,
/* c */ 0x03, /* d */ 0x0B, /* e */ 0x07, /* f */ 0x0F};
SmallVector<SDValue, 16> LoMaskElts, HiMaskElts;
for (unsigned i = 0; i < NumElts; ++i) {
LoMaskElts.push_back(DAG.getConstant(LoLUT[i % 16], DL, MVT::i8));
HiMaskElts.push_back(DAG.getConstant(HiLUT[i % 16], DL, MVT::i8));
}
SDValue LoMask = DAG.getBuildVector(VT, DL, LoMaskElts);
SDValue HiMask = DAG.getBuildVector(VT, DL, HiMaskElts);
Lo = DAG.getNode(X86ISD::PSHUFB, DL, VT, LoMask, Lo);
Hi = DAG.getNode(X86ISD::PSHUFB, DL, VT, HiMask, Hi);
return DAG.getNode(ISD::OR, DL, VT, Lo, Hi);
}
static SDValue lowerAtomicArithWithLOCK(SDValue N, SelectionDAG &DAG,
const X86Subtarget &Subtarget,
bool AllowIncDec = true) {
unsigned NewOpc = 0;
switch (N->getOpcode()) {
case ISD::ATOMIC_LOAD_ADD:
NewOpc = X86ISD::LADD;
break;
case ISD::ATOMIC_LOAD_SUB:
NewOpc = X86ISD::LSUB;
break;
case ISD::ATOMIC_LOAD_OR:
NewOpc = X86ISD::LOR;
break;
case ISD::ATOMIC_LOAD_XOR:
NewOpc = X86ISD::LXOR;
break;
case ISD::ATOMIC_LOAD_AND:
NewOpc = X86ISD::LAND;
break;
default:
llvm_unreachable("Unknown ATOMIC_LOAD_ opcode");
}
MachineMemOperand *MMO = cast<MemSDNode>(N)->getMemOperand();
if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
// Convert to inc/dec if they aren't slow or we are optimizing for size.
if (AllowIncDec && (!Subtarget.slowIncDec() ||
DAG.getMachineFunction().getFunction().optForSize())) {
if ((NewOpc == X86ISD::LADD && C->isOne()) ||
(NewOpc == X86ISD::LSUB && C->isAllOnesValue()))
return DAG.getMemIntrinsicNode(X86ISD::LINC, SDLoc(N),
DAG.getVTList(MVT::i32, MVT::Other),
{N->getOperand(0), N->getOperand(1)},
/*MemVT=*/N->getSimpleValueType(0), MMO);
if ((NewOpc == X86ISD::LSUB && C->isOne()) ||
(NewOpc == X86ISD::LADD && C->isAllOnesValue()))
return DAG.getMemIntrinsicNode(X86ISD::LDEC, SDLoc(N),
DAG.getVTList(MVT::i32, MVT::Other),
{N->getOperand(0), N->getOperand(1)},
/*MemVT=*/N->getSimpleValueType(0), MMO);
}
}
return DAG.getMemIntrinsicNode(
NewOpc, SDLoc(N), DAG.getVTList(MVT::i32, MVT::Other),
{N->getOperand(0), N->getOperand(1), N->getOperand(2)},
/*MemVT=*/N->getSimpleValueType(0), MMO);
}
/// Lower atomic_load_ops into LOCK-prefixed operations.
static SDValue lowerAtomicArith(SDValue N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDValue Chain = N->getOperand(0);
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
unsigned Opc = N->getOpcode();
MVT VT = N->getSimpleValueType(0);
SDLoc DL(N);
// We can lower atomic_load_add into LXADD. However, any other atomicrmw op
// can only be lowered when the result is unused. They should have already
// been transformed into a cmpxchg loop in AtomicExpand.
if (N->hasAnyUseOfValue(0)) {
// Handle (atomic_load_sub p, v) as (atomic_load_add p, -v), to be able to
// select LXADD if LOCK_SUB can't be selected.
if (Opc == ISD::ATOMIC_LOAD_SUB) {
AtomicSDNode *AN = cast<AtomicSDNode>(N.getNode());
RHS = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), RHS);
return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, VT, Chain, LHS,
RHS, AN->getMemOperand());
}
assert(Opc == ISD::ATOMIC_LOAD_ADD &&
"Used AtomicRMW ops other than Add should have been expanded!");
return N;
}
SDValue LockOp = lowerAtomicArithWithLOCK(N, DAG, Subtarget);
// RAUW the chain, but don't worry about the result, as it's unused.
assert(!N->hasAnyUseOfValue(0));
DAG.ReplaceAllUsesOfValueWith(N.getValue(1), LockOp.getValue(1));
return SDValue();
}
static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
SDNode *Node = Op.getNode();
SDLoc dl(Node);
EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
// Convert seq_cst store -> xchg
// Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
// FIXME: On 32-bit, store -> fist or movq would be more efficient
// (The only way to get a 16-byte store is cmpxchg16b)
// FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
if (cast<AtomicSDNode>(Node)->getOrdering() ==
AtomicOrdering::SequentiallyConsistent ||
!DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
cast<AtomicSDNode>(Node)->getMemoryVT(),
Node->getOperand(0),
Node->getOperand(1), Node->getOperand(2),
cast<AtomicSDNode>(Node)->getMemOperand());
return Swap.getValue(1);
}
// Other atomic stores have a simple pattern.
return Op;
}
static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
SDNode *N = Op.getNode();
MVT VT = N->getSimpleValueType(0);
// Let legalize expand this if it isn't a legal type yet.
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
SDLoc DL(N);
// Set the carry flag.
SDValue Carry = Op.getOperand(2);
EVT CarryVT = Carry.getValueType();
APInt NegOne = APInt::getAllOnesValue(CarryVT.getScalarSizeInBits());
Carry = DAG.getNode(X86ISD::ADD, DL, DAG.getVTList(CarryVT, MVT::i32),
Carry, DAG.getConstant(NegOne, DL, CarryVT));
unsigned Opc = Op.getOpcode() == ISD::ADDCARRY ? X86ISD::ADC : X86ISD::SBB;
SDValue Sum = DAG.getNode(Opc, DL, VTs, Op.getOperand(0),
Op.getOperand(1), Carry.getValue(1));
SDValue SetCC = getSETCC(X86::COND_B, Sum.getValue(1), DL, DAG);
if (N->getValueType(1) == MVT::i1)
SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
}
static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Subtarget.isTargetDarwin() && Subtarget.is64Bit());
// For MacOSX, we want to call an alternative entry point: __sincos_stret,
// which returns the values as { float, float } (in XMM0) or
// { double, double } (which is returned in XMM0, XMM1).
SDLoc dl(Op);
SDValue Arg = Op.getOperand(0);
EVT ArgVT = Arg.getValueType();
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Arg;
Entry.Ty = ArgTy;
Entry.IsSExt = false;
Entry.IsZExt = false;
Args.push_back(Entry);
bool isF64 = ArgVT == MVT::f64;
// Only optimize x86_64 for now. i386 is a bit messy. For f32,
// the small struct {f32, f32} is returned in (eax, edx). For f64,
// the results are returned via SRet in memory.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
RTLIB::Libcall LC = isF64 ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
const char *LibcallName = TLI.getLibcallName(LC);
SDValue Callee =
DAG.getExternalSymbol(LibcallName, TLI.getPointerTy(DAG.getDataLayout()));
Type *RetTy = isF64 ? (Type *)StructType::get(ArgTy, ArgTy)
: (Type *)VectorType::get(ArgTy, 4);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(DAG.getEntryNode())
.setLibCallee(CallingConv::C, RetTy, Callee, std::move(Args));
std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
if (isF64)
// Returned in xmm0 and xmm1.
return CallResult.first;
// Returned in bits 0:31 and 32:64 xmm0.
SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
CallResult.first, DAG.getIntPtrConstant(0, dl));
SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
CallResult.first, DAG.getIntPtrConstant(1, dl));
SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
}
/// Widen a vector input to a vector of NVT. The
/// input vector must have the same element type as NVT.
static SDValue ExtendToType(SDValue InOp, MVT NVT, SelectionDAG &DAG,
bool FillWithZeroes = false) {
// Check if InOp already has the right width.
MVT InVT = InOp.getSimpleValueType();
if (InVT == NVT)
return InOp;
if (InOp.isUndef())
return DAG.getUNDEF(NVT);
assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
"input and widen element type must match");
unsigned InNumElts = InVT.getVectorNumElements();
unsigned WidenNumElts = NVT.getVectorNumElements();
assert(WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0 &&
"Unexpected request for vector widening");
SDLoc dl(InOp);
if (InOp.getOpcode() == ISD::CONCAT_VECTORS &&
InOp.getNumOperands() == 2) {
SDValue N1 = InOp.getOperand(1);
if ((ISD::isBuildVectorAllZeros(N1.getNode()) && FillWithZeroes) ||
N1.isUndef()) {
InOp = InOp.getOperand(0);
InVT = InOp.getSimpleValueType();
InNumElts = InVT.getVectorNumElements();
}
}
if (ISD::isBuildVectorOfConstantSDNodes(InOp.getNode()) ||
ISD::isBuildVectorOfConstantFPSDNodes(InOp.getNode())) {
SmallVector<SDValue, 16> Ops;
for (unsigned i = 0; i < InNumElts; ++i)
Ops.push_back(InOp.getOperand(i));
EVT EltVT = InOp.getOperand(0).getValueType();
SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, EltVT) :
DAG.getUNDEF(EltVT);
for (unsigned i = 0; i < WidenNumElts - InNumElts; ++i)
Ops.push_back(FillVal);
return DAG.getBuildVector(NVT, dl, Ops);
}
SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, NVT) :
DAG.getUNDEF(NVT);
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, NVT, FillVal,
InOp, DAG.getIntPtrConstant(0, dl));
}
static SDValue LowerMSCATTER(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Subtarget.hasAVX512() &&
"MGATHER/MSCATTER are supported on AVX-512 arch only");
MaskedScatterSDNode *N = cast<MaskedScatterSDNode>(Op.getNode());
SDValue Src = N->getValue();
MVT VT = Src.getSimpleValueType();
assert(VT.getScalarSizeInBits() >= 32 && "Unsupported scatter op");
SDLoc dl(Op);
SDValue Scale = N->getScale();
SDValue Index = N->getIndex();
SDValue Mask = N->getMask();
SDValue Chain = N->getChain();
SDValue BasePtr = N->getBasePtr();
if (VT == MVT::v2f32) {
assert(Mask.getValueType() == MVT::v2i1 && "Unexpected mask type");
// If the index is v2i64 and we have VLX we can use xmm for data and index.
if (Index.getValueType() == MVT::v2i64 && Subtarget.hasVLX()) {
Src = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, Src,
DAG.getUNDEF(MVT::v2f32));
SDVTList VTs = DAG.getVTList(MVT::v2i1, MVT::Other);
SDValue Ops[] = {Chain, Src, Mask, BasePtr, Index, Scale};
SDValue NewScatter = DAG.getTargetMemSDNode<X86MaskedScatterSDNode>(
VTs, Ops, dl, N->getMemoryVT(), N->getMemOperand());
DAG.ReplaceAllUsesWith(Op, SDValue(NewScatter.getNode(), 1));
return SDValue(NewScatter.getNode(), 1);
}
return SDValue();
}
if (VT == MVT::v2i32) {
assert(Mask.getValueType() == MVT::v2i1 && "Unexpected mask type");
Src = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32, Src,
DAG.getUNDEF(MVT::v2i32));
// If the index is v2i64 and we have VLX we can use xmm for data and index.
if (Index.getValueType() == MVT::v2i64 && Subtarget.hasVLX()) {
SDVTList VTs = DAG.getVTList(MVT::v2i1, MVT::Other);
SDValue Ops[] = {Chain, Src, Mask, BasePtr, Index, Scale};
SDValue NewScatter = DAG.getTargetMemSDNode<X86MaskedScatterSDNode>(
VTs, Ops, dl, N->getMemoryVT(), N->getMemOperand());
DAG.ReplaceAllUsesWith(Op, SDValue(NewScatter.getNode(), 1));
return SDValue(NewScatter.getNode(), 1);
}
// Custom widen all the operands to avoid promotion.
EVT NewIndexVT = EVT::getVectorVT(
*DAG.getContext(), Index.getValueType().getVectorElementType(), 4);
Index = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewIndexVT, Index,
DAG.getUNDEF(Index.getValueType()));
Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i1, Mask,
DAG.getConstant(0, dl, MVT::v2i1));
SDValue Ops[] = {Chain, Src, Mask, BasePtr, Index, Scale};
return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), N->getMemoryVT(), dl,
Ops, N->getMemOperand());
}
MVT IndexVT = Index.getSimpleValueType();
MVT MaskVT = Mask.getSimpleValueType();
// If the index is v2i32, we're being called by type legalization and we
// should just let the default handling take care of it.
if (IndexVT == MVT::v2i32)
return SDValue();
// If we don't have VLX and neither the passthru or index is 512-bits, we
// need to widen until one is.
if (!Subtarget.hasVLX() && !VT.is512BitVector() &&
!Index.getSimpleValueType().is512BitVector()) {
// Determine how much we need to widen by to get a 512-bit type.
unsigned Factor = std::min(512/VT.getSizeInBits(),
512/IndexVT.getSizeInBits());
unsigned NumElts = VT.getVectorNumElements() * Factor;
VT = MVT::getVectorVT(VT.getVectorElementType(), NumElts);
IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), NumElts);
MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
Src = ExtendToType(Src, VT, DAG);
Index = ExtendToType(Index, IndexVT, DAG);
Mask = ExtendToType(Mask, MaskVT, DAG, true);
}
SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
SDValue Ops[] = {Chain, Src, Mask, BasePtr, Index, Scale};
SDValue NewScatter = DAG.getTargetMemSDNode<X86MaskedScatterSDNode>(
VTs, Ops, dl, N->getMemoryVT(), N->getMemOperand());
DAG.ReplaceAllUsesWith(Op, SDValue(NewScatter.getNode(), 1));
return SDValue(NewScatter.getNode(), 1);
}
static SDValue LowerMLOAD(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode());
MVT VT = Op.getSimpleValueType();
MVT ScalarVT = VT.getScalarType();
SDValue Mask = N->getMask();
SDLoc dl(Op);
assert((!N->isExpandingLoad() || Subtarget.hasAVX512()) &&
"Expanding masked load is supported on AVX-512 target only!");
assert((!N->isExpandingLoad() || ScalarVT.getSizeInBits() >= 32) &&
"Expanding masked load is supported for 32 and 64-bit types only!");
assert(Subtarget.hasAVX512() && !Subtarget.hasVLX() && !VT.is512BitVector() &&
"Cannot lower masked load op.");
assert((ScalarVT.getSizeInBits() >= 32 ||
(Subtarget.hasBWI() &&
(ScalarVT == MVT::i8 || ScalarVT == MVT::i16))) &&
"Unsupported masked load op.");
// This operation is legal for targets with VLX, but without
// VLX the vector should be widened to 512 bit
unsigned NumEltsInWideVec = 512 / VT.getScalarSizeInBits();
MVT WideDataVT = MVT::getVectorVT(ScalarVT, NumEltsInWideVec);
SDValue Src0 = N->getSrc0();
Src0 = ExtendToType(Src0, WideDataVT, DAG);
// Mask element has to be i1.
assert(Mask.getSimpleValueType().getScalarType() == MVT::i1 &&
"Unexpected mask type");
MVT WideMaskVT = MVT::getVectorVT(MVT::i1, NumEltsInWideVec);
Mask = ExtendToType(Mask, WideMaskVT, DAG, true);
SDValue NewLoad = DAG.getMaskedLoad(WideDataVT, dl, N->getChain(),
N->getBasePtr(), Mask, Src0,
N->getMemoryVT(), N->getMemOperand(),
N->getExtensionType(),
N->isExpandingLoad());
SDValue Exract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
NewLoad.getValue(0),
DAG.getIntPtrConstant(0, dl));
SDValue RetOps[] = {Exract, NewLoad.getValue(1)};
return DAG.getMergeValues(RetOps, dl);
}
static SDValue LowerMSTORE(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MaskedStoreSDNode *N = cast<MaskedStoreSDNode>(Op.getNode());
SDValue DataToStore = N->getValue();
MVT VT = DataToStore.getSimpleValueType();
MVT ScalarVT = VT.getScalarType();
SDValue Mask = N->getMask();
SDLoc dl(Op);
assert((!N->isCompressingStore() || Subtarget.hasAVX512()) &&
"Expanding masked load is supported on AVX-512 target only!");
assert((!N->isCompressingStore() || ScalarVT.getSizeInBits() >= 32) &&
"Expanding masked load is supported for 32 and 64-bit types only!");
assert(Subtarget.hasAVX512() && !Subtarget.hasVLX() && !VT.is512BitVector() &&
"Cannot lower masked store op.");
assert((ScalarVT.getSizeInBits() >= 32 ||
(Subtarget.hasBWI() &&
(ScalarVT == MVT::i8 || ScalarVT == MVT::i16))) &&
"Unsupported masked store op.");
// This operation is legal for targets with VLX, but without
// VLX the vector should be widened to 512 bit
unsigned NumEltsInWideVec = 512/VT.getScalarSizeInBits();
MVT WideDataVT = MVT::getVectorVT(ScalarVT, NumEltsInWideVec);
// Mask element has to be i1.
assert(Mask.getSimpleValueType().getScalarType() == MVT::i1 &&
"Unexpected mask type");
MVT WideMaskVT = MVT::getVectorVT(MVT::i1, NumEltsInWideVec);
DataToStore = ExtendToType(DataToStore, WideDataVT, DAG);
Mask = ExtendToType(Mask, WideMaskVT, DAG, true);
return DAG.getMaskedStore(N->getChain(), dl, DataToStore, N->getBasePtr(),
Mask, N->getMemoryVT(), N->getMemOperand(),
N->isTruncatingStore(), N->isCompressingStore());
}
static SDValue LowerMGATHER(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Subtarget.hasAVX2() &&
"MGATHER/MSCATTER are supported on AVX-512/AVX-2 arch only");
MaskedGatherSDNode *N = cast<MaskedGatherSDNode>(Op.getNode());
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
SDValue Index = N->getIndex();
SDValue Mask = N->getMask();
SDValue Src0 = N->getValue();
MVT IndexVT = Index.getSimpleValueType();
MVT MaskVT = Mask.getSimpleValueType();
assert(VT.getScalarSizeInBits() >= 32 && "Unsupported gather op");
// If the index is v2i32, we're being called by type legalization.
if (IndexVT == MVT::v2i32)
return SDValue();
// If we don't have VLX and neither the passthru or index is 512-bits, we
// need to widen until one is.
MVT OrigVT = VT;
if (Subtarget.hasAVX512() && !Subtarget.hasVLX() && !VT.is512BitVector() &&
!IndexVT.is512BitVector()) {
// Determine how much we need to widen by to get a 512-bit type.
unsigned Factor = std::min(512/VT.getSizeInBits(),
512/IndexVT.getSizeInBits());
unsigned NumElts = VT.getVectorNumElements() * Factor;
VT = MVT::getVectorVT(VT.getVectorElementType(), NumElts);
IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), NumElts);
MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
Src0 = ExtendToType(Src0, VT, DAG);
Index = ExtendToType(Index, IndexVT, DAG);
Mask = ExtendToType(Mask, MaskVT, DAG, true);
}
SDValue Ops[] = { N->getChain(), Src0, Mask, N->getBasePtr(), Index,
N->getScale() };
SDValue NewGather = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>(
DAG.getVTList(VT, MaskVT, MVT::Other), Ops, dl, N->getMemoryVT(),
N->getMemOperand());
SDValue Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OrigVT,
NewGather, DAG.getIntPtrConstant(0, dl));
return DAG.getMergeValues({Extract, NewGather.getValue(2)}, dl);
}
SDValue X86TargetLowering::LowerGC_TRANSITION_START(SDValue Op,
SelectionDAG &DAG) const {
// TODO: Eventually, the lowering of these nodes should be informed by or
// deferred to the GC strategy for the function in which they appear. For
// now, however, they must be lowered to something. Since they are logically
// no-ops in the case of a null GC strategy (or a GC strategy which does not
// require special handling for these nodes), lower them as literal NOOPs for
// the time being.
SmallVector<SDValue, 2> Ops;
Ops.push_back(Op.getOperand(0));
if (Op->getGluedNode())
Ops.push_back(Op->getOperand(Op->getNumOperands() - 1));
SDLoc OpDL(Op);
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0);
return NOOP;
}
SDValue X86TargetLowering::LowerGC_TRANSITION_END(SDValue Op,
SelectionDAG &DAG) const {
// TODO: Eventually, the lowering of these nodes should be informed by or
// deferred to the GC strategy for the function in which they appear. For
// now, however, they must be lowered to something. Since they are logically
// no-ops in the case of a null GC strategy (or a GC strategy which does not
// require special handling for these nodes), lower them as literal NOOPs for
// the time being.
SmallVector<SDValue, 2> Ops;
Ops.push_back(Op.getOperand(0));
if (Op->getGluedNode())
Ops.push_back(Op->getOperand(Op->getNumOperands() - 1));
SDLoc OpDL(Op);
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0);
return NOOP;
}
/// Provide custom lowering hooks for some operations.
SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: llvm_unreachable("Should not custom lower this!");
case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, Subtarget, DAG);
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
return LowerCMP_SWAP(Op, Subtarget, DAG);
case ISD::CTPOP: return LowerCTPOP(Op, Subtarget, DAG);
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_AND: return lowerAtomicArith(Op, DAG, Subtarget);
case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG);
case ISD::BITREVERSE: return LowerBITREVERSE(Op, Subtarget, DAG);
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, Subtarget, DAG);
case ISD::VECTOR_SHUFFLE: return lowerVectorShuffle(Op, Subtarget, DAG);
case ISD::VSELECT: return LowerVSELECT(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, Subtarget,DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::SHL_PARTS:
case ISD::SRA_PARTS:
case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG);
case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG);
case ISD::ZERO_EXTEND: return LowerZERO_EXTEND(Op, Subtarget, DAG);
case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, Subtarget, DAG);
case ISD::ANY_EXTEND: return LowerANY_EXTEND(Op, Subtarget, DAG);
case ISD::ZERO_EXTEND_VECTOR_INREG:
case ISD::SIGN_EXTEND_VECTOR_INREG:
return LowerEXTEND_VECTOR_INREG(Op, Subtarget, DAG);
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
case ISD::LOAD: return LowerLoad(Op, Subtarget, DAG);
case ISD::STORE: return LowerStore(Op, Subtarget, DAG);
case ISD::FABS:
case ISD::FNEG: return LowerFABSorFNEG(Op, DAG);
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG);
case ISD::SETCC: return LowerSETCC(Op, DAG);
case ISD::SETCCCARRY: return LowerSETCCCARRY(Op, DAG);
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
case ISD::VAARG: return LowerVAARG(Op, DAG);
case ISD::VACOPY: return LowerVACOPY(Op, Subtarget, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::INTRINSIC_VOID:
case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG);
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::ADDROFRETURNADDR: return LowerADDROFRETURNADDR(Op, DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::FRAME_TO_ARGS_OFFSET:
return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG);
case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG);
case ISD::EH_SJLJ_SETUP_DISPATCH:
return lowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ(Op, Subtarget, DAG);
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op, DAG);
case ISD::MUL: return LowerMUL(Op, Subtarget, DAG);
case ISD::MULHS:
case ISD::MULHU: return LowerMULH(Op, Subtarget, DAG);
case ISD::UMUL_LOHI:
case ISD::SMUL_LOHI: return LowerMUL_LOHI(Op, Subtarget, DAG);
case ISD::ROTL:
case ISD::ROTR: return LowerRotate(Op, Subtarget, DAG);
case ISD::SRA:
case ISD::SRL:
case ISD::SHL: return LowerShift(Op, Subtarget, DAG);
case ISD::SADDO:
case ISD::UADDO:
case ISD::SSUBO:
case ISD::USUBO:
case ISD::SMULO:
case ISD::UMULO: return LowerXALUO(Op, DAG);
case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
case ISD::BITCAST: return LowerBITCAST(Op, Subtarget, DAG);
case ISD::ADDCARRY:
case ISD::SUBCARRY: return LowerADDSUBCARRY(Op, DAG);
case ISD::ADD:
case ISD::SUB: return LowerADD_SUB(Op, DAG);
case ISD::SMAX:
case ISD::SMIN:
case ISD::UMAX:
case ISD::UMIN: return LowerMINMAX(Op, DAG);
case ISD::ABS: return LowerABS(Op, DAG);
case ISD::FSINCOS: return LowerFSINCOS(Op, Subtarget, DAG);
case ISD::MLOAD: return LowerMLOAD(Op, Subtarget, DAG);
case ISD::MSTORE: return LowerMSTORE(Op, Subtarget, DAG);
case ISD::MGATHER: return LowerMGATHER(Op, Subtarget, DAG);
case ISD::MSCATTER: return LowerMSCATTER(Op, Subtarget, DAG);
case ISD::GC_TRANSITION_START:
return LowerGC_TRANSITION_START(Op, DAG);
case ISD::GC_TRANSITION_END: return LowerGC_TRANSITION_END(Op, DAG);
}
}
/// Places new result values for the node in Results (their number
/// and types must exactly match those of the original return values of
/// the node), or leaves Results empty, which indicates that the node is not
/// to be custom lowered after all.
void X86TargetLowering::LowerOperationWrapper(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
SDValue Res = LowerOperation(SDValue(N, 0), DAG);
if (!Res.getNode())
return;
assert((N->getNumValues() <= Res->getNumValues()) &&
"Lowering returned the wrong number of results!");
// Places new result values base on N result number.
// In some cases (LowerSINT_TO_FP for example) Res has more result values
// than original node, chain should be dropped(last value).
for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
Results.push_back(Res.getValue(I));
}
/// Replace a node with an illegal result type with a new node built out of
/// custom code.
void X86TargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG) const {
SDLoc dl(N);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
switch (N->getOpcode()) {
default:
llvm_unreachable("Do not know how to custom type legalize this operation!");
case X86ISD::AVG: {
// Legalize types for X86ISD::AVG by expanding vectors.
assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
auto InVT = N->getValueType(0);
assert(InVT.getSizeInBits() < 128);
assert(128 % InVT.getSizeInBits() == 0);
unsigned NumConcat = 128 / InVT.getSizeInBits();
EVT RegVT = EVT::getVectorVT(*DAG.getContext(),
InVT.getVectorElementType(),
NumConcat * InVT.getVectorNumElements());
SmallVector<SDValue, 16> Ops(NumConcat, DAG.getUNDEF(InVT));
Ops[0] = N->getOperand(0);
SDValue InVec0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Ops);
Ops[0] = N->getOperand(1);
SDValue InVec1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Ops);
SDValue Res = DAG.getNode(X86ISD::AVG, dl, RegVT, InVec0, InVec1);
if (getTypeAction(*DAG.getContext(), InVT) != TypeWidenVector)
Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InVT, Res,
DAG.getIntPtrConstant(0, dl));
Results.push_back(Res);
return;
}
case ISD::SETCC: {
// Widen v2i32 (setcc v2f32). This is really needed for AVX512VL when
// setCC result type is v2i1 because type legalzation will end up with
// a v4i1 setcc plus an extend.
assert(N->getValueType(0) == MVT::v2i32 && "Unexpected type");
if (N->getOperand(0).getValueType() != MVT::v2f32)
return;
SDValue UNDEF = DAG.getUNDEF(MVT::v2f32);
SDValue LHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
N->getOperand(0), UNDEF);
SDValue RHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
N->getOperand(1), UNDEF);
SDValue Res = DAG.getNode(ISD::SETCC, dl, MVT::v4i32, LHS, RHS,
N->getOperand(2));
if (getTypeAction(*DAG.getContext(), MVT::v2i32) != TypeWidenVector)
Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i32, Res,
DAG.getIntPtrConstant(0, dl));
Results.push_back(Res);
return;
}
// We might have generated v2f32 FMIN/FMAX operations. Widen them to v4f32.
case X86ISD::FMINC:
case X86ISD::FMIN:
case X86ISD::FMAXC:
case X86ISD::FMAX: {
EVT VT = N->getValueType(0);
assert(VT == MVT::v2f32 && "Unexpected type (!= v2f32) on FMIN/FMAX.");
SDValue UNDEF = DAG.getUNDEF(VT);
SDValue LHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
N->getOperand(0), UNDEF);
SDValue RHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
N->getOperand(1), UNDEF);
Results.push_back(DAG.getNode(N->getOpcode(), dl, MVT::v4f32, LHS, RHS));
return;
}
case ISD::SDIV:
case ISD::UDIV:
case ISD::SREM:
case ISD::UREM:
case ISD::SDIVREM:
case ISD::UDIVREM: {
SDValue V = LowerWin64_i128OP(SDValue(N,0), DAG);
Results.push_back(V);
return;
}
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: {
bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
EVT VT = N->getValueType(0);
SDValue Src = N->getOperand(0);
EVT SrcVT = Src.getValueType();
if (VT == MVT::v2i32) {
assert((IsSigned || Subtarget.hasAVX512()) &&
"Can only handle signed conversion without AVX512");
assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
if (Src.getValueType() == MVT::v2f64) {
MVT ResVT = MVT::v4i32;
unsigned Opc = IsSigned ? X86ISD::CVTTP2SI : X86ISD::CVTTP2UI;
if (!IsSigned && !Subtarget.hasVLX()) {
// Widen to 512-bits.
ResVT = MVT::v8i32;
Opc = ISD::FP_TO_UINT;
Src = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v8f64,
DAG.getUNDEF(MVT::v8f64),
Src, DAG.getIntPtrConstant(0, dl));
}
SDValue Res = DAG.getNode(Opc, dl, ResVT, Src);
bool WidenType = getTypeAction(*DAG.getContext(),
MVT::v2i32) == TypeWidenVector;
ResVT = WidenType ? MVT::v4i32 : MVT::v2i32;
Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResVT, Res,
DAG.getIntPtrConstant(0, dl));
Results.push_back(Res);
return;
}
if (SrcVT == MVT::v2f32) {
SDValue Idx = DAG.getIntPtrConstant(0, dl);
SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, Src,
DAG.getUNDEF(MVT::v2f32));
Res = DAG.getNode(IsSigned ? ISD::FP_TO_SINT
: ISD::FP_TO_UINT, dl, MVT::v4i32, Res);
if (getTypeAction(*DAG.getContext(), MVT::v2i32) != TypeWidenVector)
Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i32, Res, Idx);
Results.push_back(Res);
return;
}
// The FP_TO_INTHelper below only handles f32/f64/f80 scalar inputs,
// so early out here.
return;
}
if (Subtarget.hasDQI() && VT == MVT::i64 &&
(SrcVT == MVT::f32 || SrcVT == MVT::f64)) {
assert(!Subtarget.is64Bit() && "i64 should be legal");
unsigned NumElts = Subtarget.hasVLX() ? 4 : 8;
// Using a 256-bit input here to guarantee 128-bit input for f32 case.
// TODO: Use 128-bit vectors for f64 case?
// TODO: Use 128-bit vectors for f32 by using CVTTP2SI/CVTTP2UI.
MVT VecVT = MVT::getVectorVT(MVT::i64, NumElts);
MVT VecInVT = MVT::getVectorVT(SrcVT.getSimpleVT(), NumElts);
SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl);
SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecInVT,
DAG.getConstantFP(0.0, dl, VecInVT), Src,
ZeroIdx);
Res = DAG.getNode(N->getOpcode(), SDLoc(N), VecVT, Res);
Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Res, ZeroIdx);
Results.push_back(Res);
return;
}
std::pair<SDValue,SDValue> Vals =
FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
SDValue FIST = Vals.first, StackSlot = Vals.second;
if (FIST.getNode()) {
// Return a load from the stack slot.
if (StackSlot.getNode())
Results.push_back(
DAG.getLoad(VT, dl, FIST, StackSlot, MachinePointerInfo()));
else
Results.push_back(FIST);
}
return;
}
case ISD::SINT_TO_FP: {
assert(Subtarget.hasDQI() && Subtarget.hasVLX() && "Requires AVX512DQVL!");
SDValue Src = N->getOperand(0);
if (N->getValueType(0) != MVT::v2f32 || Src.getValueType() != MVT::v2i64)
return;
Results.push_back(DAG.getNode(X86ISD::CVTSI2P, dl, MVT::v4f32, Src));
return;
}
case ISD::UINT_TO_FP: {
assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
EVT VT = N->getValueType(0);
if (VT != MVT::v2f32)
return;
SDValue Src = N->getOperand(0);
EVT SrcVT = Src.getValueType();
if (Subtarget.hasDQI() && Subtarget.hasVLX() && SrcVT == MVT::v2i64) {
Results.push_back(DAG.getNode(X86ISD::CVTUI2P, dl, MVT::v4f32, Src));
return;
}
if (SrcVT != MVT::v2i32)
return;
SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64, Src);
SDValue VBias =
DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl, MVT::v2f64);
SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
DAG.getBitcast(MVT::v2i64, VBias));
Or = DAG.getBitcast(MVT::v2f64, Or);
// TODO: Are there any fast-math-flags to propagate here?
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
return;
}
case ISD::FP_ROUND: {
if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
return;
SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
Results.push_back(V);
return;
}
case ISD::FP_EXTEND: {
// Right now, only MVT::v2f32 has OperationAction for FP_EXTEND.
// No other ValueType for FP_EXTEND should reach this point.
assert(N->getValueType(0) == MVT::v2f32 &&
"Do not know how to legalize this Node");
return;
}
case ISD::INTRINSIC_W_CHAIN: {
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
switch (IntNo) {
default : llvm_unreachable("Do not know how to custom type "
"legalize this intrinsic operation!");
case Intrinsic::x86_rdtsc:
return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
Results);
case Intrinsic::x86_rdtscp:
return getReadTimeStampCounter(N, dl, X86ISD::RDTSCP_DAG, DAG, Subtarget,
Results);
case Intrinsic::x86_rdpmc:
return getReadPerformanceCounter(N, dl, DAG, Subtarget, Results);
case Intrinsic::x86_xgetbv:
return getExtendedControlRegister(N, dl, DAG, Subtarget, Results);
}
}
case ISD::INTRINSIC_WO_CHAIN: {
if (SDValue V = LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG))
Results.push_back(V);
return;
}
case ISD::READCYCLECOUNTER: {
return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
Results);
}
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
EVT T = N->getValueType(0);
assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
bool Regs64bit = T == MVT::i128;
MVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
SDValue cpInL, cpInH;
cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
DAG.getConstant(0, dl, HalfT));
cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
DAG.getConstant(1, dl, HalfT));
cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
Regs64bit ? X86::RAX : X86::EAX,
cpInL, SDValue());
cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
Regs64bit ? X86::RDX : X86::EDX,
cpInH, cpInL.getValue(1));
SDValue swapInL, swapInH;
swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
DAG.getConstant(0, dl, HalfT));
swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
DAG.getConstant(1, dl, HalfT));
swapInH =
DAG.getCopyToReg(cpInH.getValue(0), dl, Regs64bit ? X86::RCX : X86::ECX,
swapInH, cpInH.getValue(1));
// If the current function needs the base pointer, RBX,
// we shouldn't use cmpxchg directly.
// Indeed the lowering of that instruction will clobber
// that register and since RBX will be a reserved register
// the register allocator will not make sure its value will
// be properly saved and restored around this live-range.
const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
SDValue Result;
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
unsigned BasePtr = TRI->getBaseRegister();
MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
if (TRI->hasBasePointer(DAG.getMachineFunction()) &&
(BasePtr == X86::RBX || BasePtr == X86::EBX)) {
// ISel prefers the LCMPXCHG64 variant.
// If that assert breaks, that means it is not the case anymore,
// and we need to teach LCMPXCHG8_SAVE_EBX_DAG how to save RBX,
// not just EBX. This is a matter of accepting i64 input for that
// pseudo, and restoring into the register of the right wide
// in expand pseudo. Everything else should just work.
assert(((Regs64bit == (BasePtr == X86::RBX)) || BasePtr == X86::EBX) &&
"Saving only half of the RBX");
unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_SAVE_RBX_DAG
: X86ISD::LCMPXCHG8_SAVE_EBX_DAG;
SDValue RBXSave = DAG.getCopyFromReg(swapInH.getValue(0), dl,
Regs64bit ? X86::RBX : X86::EBX,
HalfT, swapInH.getValue(1));
SDValue Ops[] = {/*Chain*/ RBXSave.getValue(1), N->getOperand(1), swapInL,
RBXSave,
/*Glue*/ RBXSave.getValue(2)};
Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO);
} else {
unsigned Opcode =
Regs64bit ? X86ISD::LCMPXCHG16_DAG : X86ISD::LCMPXCHG8_DAG;
swapInL = DAG.getCopyToReg(swapInH.getValue(0), dl,
Regs64bit ? X86::RBX : X86::EBX, swapInL,
swapInH.getValue(1));
SDValue Ops[] = {swapInL.getValue(0), N->getOperand(1),
swapInL.getValue(1)};
Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO);
}
SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
Regs64bit ? X86::RAX : X86::EAX,
HalfT, Result.getValue(1));
SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
Regs64bit ? X86::RDX : X86::EDX,
HalfT, cpOutL.getValue(2));
SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
SDValue EFLAGS = DAG.getCopyFromReg(cpOutH.getValue(1), dl, X86::EFLAGS,
MVT::i32, cpOutH.getValue(2));
SDValue Success = getSETCC(X86::COND_E, EFLAGS, dl, DAG);
Success = DAG.getZExtOrTrunc(Success, dl, N->getValueType(1));
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF));
Results.push_back(Success);
Results.push_back(EFLAGS.getValue(1));
return;
}
case ISD::ATOMIC_SWAP:
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_NAND:
case ISD::ATOMIC_LOAD_MIN:
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX:
case ISD::ATOMIC_LOAD: {
// Delegate to generic TypeLegalization. Situations we can really handle
// should have already been dealt with by AtomicExpandPass.cpp.
break;
}
case ISD::BITCAST: {
assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
EVT DstVT = N->getValueType(0);
EVT SrcVT = N->getOperand(0).getValueType();
// If this is a bitcast from a v64i1 k-register to a i64 on a 32-bit target
// we can split using the k-register rather than memory.
if (SrcVT == MVT::v64i1 && DstVT == MVT::i64 && Subtarget.hasBWI()) {
assert(!Subtarget.is64Bit() && "Expected 32-bit mode");
SDValue Lo, Hi;
std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
Lo = DAG.getBitcast(MVT::i32, Lo);
Hi = DAG.getBitcast(MVT::i32, Hi);
SDValue Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
Results.push_back(Res);
return;
}
// Custom splitting for BWI types when AVX512F is available but BWI isn't.
if ((DstVT == MVT::v32i16 || DstVT == MVT::v64i8) &&
SrcVT.isVector() && isTypeLegal(SrcVT)) {
SDValue Lo, Hi;
std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
MVT CastVT = (DstVT == MVT::v32i16) ? MVT::v16i16 : MVT::v32i8;
Lo = DAG.getBitcast(CastVT, Lo);
Hi = DAG.getBitcast(CastVT, Hi);
SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, DstVT, Lo, Hi);
Results.push_back(Res);
return;
}
if (SrcVT != MVT::f64 ||
(DstVT != MVT::v2i32 && DstVT != MVT::v4i16 && DstVT != MVT::v8i8))
return;
unsigned NumElts = DstVT.getVectorNumElements();
EVT SVT = DstVT.getVectorElementType();
EVT WiderVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
SDValue Expanded = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
MVT::v2f64, N->getOperand(0));
SDValue ToVecInt = DAG.getBitcast(WiderVT, Expanded);
if (getTypeAction(*DAG.getContext(), DstVT) == TypeWidenVector) {
// If we are legalizing vectors by widening, we already have the desired
// legal vector type, just return it.
Results.push_back(ToVecInt);
return;
}
SmallVector<SDValue, 8> Elts;
for (unsigned i = 0, e = NumElts; i != e; ++i)
Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT,
ToVecInt, DAG.getIntPtrConstant(i, dl)));
Results.push_back(DAG.getBuildVector(DstVT, dl, Elts));
return;
}
case ISD::MGATHER: {
EVT VT = N->getValueType(0);
if (VT == MVT::v2f32 && (Subtarget.hasVLX() || !Subtarget.hasAVX512())) {
auto *Gather = cast<MaskedGatherSDNode>(N);
SDValue Index = Gather->getIndex();
if (Index.getValueType() != MVT::v2i64)
return;
SDValue Mask = Gather->getMask();
assert(Mask.getValueType() == MVT::v2i1 && "Unexpected mask type");
SDValue Src0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
Gather->getValue(),
DAG.getUNDEF(MVT::v2f32));
if (!Subtarget.hasVLX()) {
// We need to widen the mask, but the instruction will only use 2
// of its elements. So we can use undef.
Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i1, Mask,
DAG.getUNDEF(MVT::v2i1));
Mask = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Mask);
}
SDValue Ops[] = { Gather->getChain(), Src0, Mask, Gather->getBasePtr(),
Index, Gather->getScale() };
SDValue Res = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>(
DAG.getVTList(MVT::v4f32, Mask.getValueType(), MVT::Other), Ops, dl,
Gather->getMemoryVT(), Gather->getMemOperand());
Results.push_back(Res);
Results.push_back(Res.getValue(2));
return;
}
if (VT == MVT::v2i32) {
auto *Gather = cast<MaskedGatherSDNode>(N);
SDValue Index = Gather->getIndex();
SDValue Mask = Gather->getMask();
assert(Mask.getValueType() == MVT::v2i1 && "Unexpected mask type");
SDValue Src0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32,
Gather->getValue(),
DAG.getUNDEF(MVT::v2i32));
// If the index is v2i64 we can use it directly.
if (Index.getValueType() == MVT::v2i64 &&
(Subtarget.hasVLX() || !Subtarget.hasAVX512())) {
if (!Subtarget.hasVLX()) {
// We need to widen the mask, but the instruction will only use 2
// of its elements. So we can use undef.
Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i1, Mask,
DAG.getUNDEF(MVT::v2i1));
Mask = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Mask);
}
SDValue Ops[] = { Gather->getChain(), Src0, Mask, Gather->getBasePtr(),
Index, Gather->getScale() };
SDValue Res = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>(
DAG.getVTList(MVT::v4i32, Mask.getValueType(), MVT::Other), Ops, dl,
Gather->getMemoryVT(), Gather->getMemOperand());
SDValue Chain = Res.getValue(2);
if (getTypeAction(*DAG.getContext(), VT) != TypeWidenVector)
Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i32, Res,
DAG.getIntPtrConstant(0, dl));
Results.push_back(Res);
Results.push_back(Chain);
return;
}
EVT IndexVT = Index.getValueType();
EVT NewIndexVT = EVT::getVectorVT(*DAG.getContext(),
IndexVT.getScalarType(), 4);
// Otherwise we need to custom widen everything to avoid promotion.
Index = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewIndexVT, Index,
DAG.getUNDEF(IndexVT));
Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i1, Mask,
DAG.getConstant(0, dl, MVT::v2i1));
SDValue Ops[] = { Gather->getChain(), Src0, Mask, Gather->getBasePtr(),
Index, Gather->getScale() };
SDValue Res = DAG.getMaskedGather(DAG.getVTList(MVT::v4i32, MVT::Other),
Gather->getMemoryVT(), dl, Ops,
Gather->getMemOperand());
SDValue Chain = Res.getValue(1);
if (getTypeAction(*DAG.getContext(), MVT::v2i32) != TypeWidenVector)
Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i32, Res,
DAG.getIntPtrConstant(0, dl));
Results.push_back(Res);
Results.push_back(Chain);
return;
}
break;
}
}
}
const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
switch ((X86ISD::NodeType)Opcode) {
case X86ISD::FIRST_NUMBER: break;
case X86ISD::BSF: return "X86ISD::BSF";
case X86ISD::BSR: return "X86ISD::BSR";
case X86ISD::SHLD: return "X86ISD::SHLD";
case X86ISD::SHRD: return "X86ISD::SHRD";
case X86ISD::FAND: return "X86ISD::FAND";
case X86ISD::FANDN: return "X86ISD::FANDN";
case X86ISD::FOR: return "X86ISD::FOR";
case X86ISD::FXOR: return "X86ISD::FXOR";
case X86ISD::FILD: return "X86ISD::FILD";
case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
case X86ISD::FLD: return "X86ISD::FLD";
case X86ISD::FST: return "X86ISD::FST";
case X86ISD::CALL: return "X86ISD::CALL";
case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
case X86ISD::RDTSCP_DAG: return "X86ISD::RDTSCP_DAG";
case X86ISD::RDPMC_DAG: return "X86ISD::RDPMC_DAG";
case X86ISD::BT: return "X86ISD::BT";
case X86ISD::CMP: return "X86ISD::CMP";
case X86ISD::COMI: return "X86ISD::COMI";
case X86ISD::UCOMI: return "X86ISD::UCOMI";
case X86ISD::CMPM: return "X86ISD::CMPM";
case X86ISD::CMPM_RND: return "X86ISD::CMPM_RND";
case X86ISD::SETCC: return "X86ISD::SETCC";
case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY";
case X86ISD::FSETCC: return "X86ISD::FSETCC";
case X86ISD::FSETCCM: return "X86ISD::FSETCCM";
case X86ISD::FSETCCM_RND: return "X86ISD::FSETCCM_RND";
case X86ISD::CMOV: return "X86ISD::CMOV";
case X86ISD::BRCOND: return "X86ISD::BRCOND";
case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
case X86ISD::IRET: return "X86ISD::IRET";
case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
case X86ISD::Wrapper: return "X86ISD::Wrapper";
case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
case X86ISD::MOVDQ2Q: return "X86ISD::MOVDQ2Q";
case X86ISD::MMX_MOVD2W: return "X86ISD::MMX_MOVD2W";
case X86ISD::MMX_MOVW2D: return "X86ISD::MMX_MOVW2D";
case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
case X86ISD::PINSRB: return "X86ISD::PINSRB";
case X86ISD::PINSRW: return "X86ISD::PINSRW";
case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
case X86ISD::ANDNP: return "X86ISD::ANDNP";
case X86ISD::BLENDI: return "X86ISD::BLENDI";
case X86ISD::SHRUNKBLEND: return "X86ISD::SHRUNKBLEND";
case X86ISD::ADDUS: return "X86ISD::ADDUS";
case X86ISD::SUBUS: return "X86ISD::SUBUS";
case X86ISD::HADD: return "X86ISD::HADD";
case X86ISD::HSUB: return "X86ISD::HSUB";
case X86ISD::FHADD: return "X86ISD::FHADD";
case X86ISD::FHSUB: return "X86ISD::FHSUB";
case X86ISD::CONFLICT: return "X86ISD::CONFLICT";
case X86ISD::FMAX: return "X86ISD::FMAX";
case X86ISD::FMAXS: return "X86ISD::FMAXS";
case X86ISD::FMAX_RND: return "X86ISD::FMAX_RND";
case X86ISD::FMAXS_RND: return "X86ISD::FMAX_RND";
case X86ISD::FMIN: return "X86ISD::FMIN";
case X86ISD::FMINS: return "X86ISD::FMINS";
case X86ISD::FMIN_RND: return "X86ISD::FMIN_RND";
case X86ISD::FMINS_RND: return "X86ISD::FMINS_RND";
case X86ISD::FMAXC: return "X86ISD::FMAXC";
case X86ISD::FMINC: return "X86ISD::FMINC";
case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
case X86ISD::FRCP: return "X86ISD::FRCP";
case X86ISD::EXTRQI: return "X86ISD::EXTRQI";
case X86ISD::INSERTQI: return "X86ISD::INSERTQI";
case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
case X86ISD::TLSBASEADDR: return "X86ISD::TLSBASEADDR";
case X86ISD::TLSCALL: return "X86ISD::TLSCALL";
case X86ISD::EH_SJLJ_SETJMP: return "X86ISD::EH_SJLJ_SETJMP";
case X86ISD::EH_SJLJ_LONGJMP: return "X86ISD::EH_SJLJ_LONGJMP";
case X86ISD::EH_SJLJ_SETUP_DISPATCH:
return "X86ISD::EH_SJLJ_SETUP_DISPATCH";
case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
case X86ISD::FNSTSW16r: return "X86ISD::FNSTSW16r";
case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
case X86ISD::LCMPXCHG16_DAG: return "X86ISD::LCMPXCHG16_DAG";
case X86ISD::LCMPXCHG8_SAVE_EBX_DAG:
return "X86ISD::LCMPXCHG8_SAVE_EBX_DAG";
case X86ISD::LCMPXCHG16_SAVE_RBX_DAG:
return "X86ISD::LCMPXCHG16_SAVE_RBX_DAG";
case X86ISD::LADD: return "X86ISD::LADD";
case X86ISD::LSUB: return "X86ISD::LSUB";
case X86ISD::LOR: return "X86ISD::LOR";
case X86ISD::LXOR: return "X86ISD::LXOR";
case X86ISD::LAND: return "X86ISD::LAND";
case X86ISD::LINC: return "X86ISD::LINC";
case X86ISD::LDEC: return "X86ISD::LDEC";
case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
case X86ISD::VZEXT: return "X86ISD::VZEXT";
case X86ISD::VSEXT: return "X86ISD::VSEXT";
case X86ISD::VTRUNC: return "X86ISD::VTRUNC";
case X86ISD::VTRUNCS: return "X86ISD::VTRUNCS";
case X86ISD::VTRUNCUS: return "X86ISD::VTRUNCUS";
case X86ISD::VTRUNCSTORES: return "X86ISD::VTRUNCSTORES";
case X86ISD::VTRUNCSTOREUS: return "X86ISD::VTRUNCSTOREUS";
case X86ISD::VMTRUNCSTORES: return "X86ISD::VMTRUNCSTORES";
case X86ISD::VMTRUNCSTOREUS: return "X86ISD::VMTRUNCSTOREUS";
case X86ISD::VFPEXT: return "X86ISD::VFPEXT";
case X86ISD::VFPEXT_RND: return "X86ISD::VFPEXT_RND";
case X86ISD::VFPEXTS_RND: return "X86ISD::VFPEXTS_RND";
case X86ISD::VFPROUND: return "X86ISD::VFPROUND";
case X86ISD::VFPROUND_RND: return "X86ISD::VFPROUND_RND";
case X86ISD::VFPROUNDS_RND: return "X86ISD::VFPROUNDS_RND";
case X86ISD::VSHLDQ: return "X86ISD::VSHLDQ";
case X86ISD::VSRLDQ: return "X86ISD::VSRLDQ";
case X86ISD::VSHL: return "X86ISD::VSHL";
case X86ISD::VSRL: return "X86ISD::VSRL";
case X86ISD::VSRA: return "X86ISD::VSRA";
case X86ISD::VSHLI: return "X86ISD::VSHLI";
case X86ISD::VSRLI: return "X86ISD::VSRLI";
case X86ISD::VSRAI: return "X86ISD::VSRAI";
case X86ISD::VSRAV: return "X86ISD::VSRAV";
case X86ISD::VROTLI: return "X86ISD::VROTLI";
case X86ISD::VROTRI: return "X86ISD::VROTRI";
case X86ISD::VPPERM: return "X86ISD::VPPERM";
case X86ISD::CMPP: return "X86ISD::CMPP";
case X86ISD::PCMPEQ: return "X86ISD::PCMPEQ";
case X86ISD::PCMPGT: return "X86ISD::PCMPGT";
case X86ISD::PHMINPOS: return "X86ISD::PHMINPOS";
case X86ISD::ADD: return "X86ISD::ADD";
case X86ISD::SUB: return "X86ISD::SUB";
case X86ISD::ADC: return "X86ISD::ADC";
case X86ISD::SBB: return "X86ISD::SBB";
case X86ISD::SMUL: return "X86ISD::SMUL";
case X86ISD::UMUL: return "X86ISD::UMUL";
case X86ISD::SMUL8: return "X86ISD::SMUL8";
case X86ISD::UMUL8: return "X86ISD::UMUL8";
case X86ISD::SDIVREM8_SEXT_HREG: return "X86ISD::SDIVREM8_SEXT_HREG";
case X86ISD::UDIVREM8_ZEXT_HREG: return "X86ISD::UDIVREM8_ZEXT_HREG";
case X86ISD::INC: return "X86ISD::INC";
case X86ISD::DEC: return "X86ISD::DEC";
case X86ISD::OR: return "X86ISD::OR";
case X86ISD::XOR: return "X86ISD::XOR";
case X86ISD::AND: return "X86ISD::AND";
case X86ISD::BEXTR: return "X86ISD::BEXTR";
case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
case X86ISD::MOVMSK: return "X86ISD::MOVMSK";
case X86ISD::PTEST: return "X86ISD::PTEST";
case X86ISD::TESTP: return "X86ISD::TESTP";
case X86ISD::KORTEST: return "X86ISD::KORTEST";
case X86ISD::KTEST: return "X86ISD::KTEST";
case X86ISD::KADD: return "X86ISD::KADD";
case X86ISD::KSHIFTL: return "X86ISD::KSHIFTL";
case X86ISD::KSHIFTR: return "X86ISD::KSHIFTR";
case X86ISD::PACKSS: return "X86ISD::PACKSS";
case X86ISD::PACKUS: return "X86ISD::PACKUS";
case X86ISD::PALIGNR: return "X86ISD::PALIGNR";
case X86ISD::VALIGN: return "X86ISD::VALIGN";
case X86ISD::VSHLD: return "X86ISD::VSHLD";
case X86ISD::VSHRD: return "X86ISD::VSHRD";
case X86ISD::VSHLDV: return "X86ISD::VSHLDV";
case X86ISD::VSHRDV: return "X86ISD::VSHRDV";
case X86ISD::PSHUFD: return "X86ISD::PSHUFD";
case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW";
case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW";
case X86ISD::SHUFP: return "X86ISD::SHUFP";
case X86ISD::SHUF128: return "X86ISD::SHUF128";
case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS";
case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS";
case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP";
case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP";
case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP";
case X86ISD::MOVSD: return "X86ISD::MOVSD";
case X86ISD::MOVSS: return "X86ISD::MOVSS";
case X86ISD::UNPCKL: return "X86ISD::UNPCKL";
case X86ISD::UNPCKH: return "X86ISD::UNPCKH";
case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST";
case X86ISD::VBROADCASTM: return "X86ISD::VBROADCASTM";
case X86ISD::SUBV_BROADCAST: return "X86ISD::SUBV_BROADCAST";
case X86ISD::VPERMILPV: return "X86ISD::VPERMILPV";
case X86ISD::VPERMILPI: return "X86ISD::VPERMILPI";
case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128";
case X86ISD::VPERMV: return "X86ISD::VPERMV";
case X86ISD::VPERMV3: return "X86ISD::VPERMV3";
case X86ISD::VPERMI: return "X86ISD::VPERMI";
case X86ISD::VPTERNLOG: return "X86ISD::VPTERNLOG";
case X86ISD::VFIXUPIMM: return "X86ISD::VFIXUPIMM";
case X86ISD::VFIXUPIMMS: return "X86ISD::VFIXUPIMMS";
case X86ISD::VRANGE: return "X86ISD::VRANGE";
case X86ISD::VRANGE_RND: return "X86ISD::VRANGE_RND";
case X86ISD::VRANGES: return "X86ISD::VRANGES";
case X86ISD::VRANGES_RND: return "X86ISD::VRANGES_RND";
case X86ISD::PMULUDQ: return "X86ISD::PMULUDQ";
case X86ISD::PMULDQ: return "X86ISD::PMULDQ";
case X86ISD::PSADBW: return "X86ISD::PSADBW";
case X86ISD::DBPSADBW: return "X86ISD::DBPSADBW";
case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
case X86ISD::VAARG_64: return "X86ISD::VAARG_64";
case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA";
case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER";
case X86ISD::MFENCE: return "X86ISD::MFENCE";
case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA";
case X86ISD::SAHF: return "X86ISD::SAHF";
case X86ISD::RDRAND: return "X86ISD::RDRAND";
case X86ISD::RDSEED: return "X86ISD::RDSEED";
case X86ISD::VPMADDUBSW: return "X86ISD::VPMADDUBSW";
case X86ISD::VPMADDWD: return "X86ISD::VPMADDWD";
case X86ISD::VPSHA: return "X86ISD::VPSHA";
case X86ISD::VPSHL: return "X86ISD::VPSHL";
case X86ISD::VPCOM: return "X86ISD::VPCOM";
case X86ISD::VPCOMU: return "X86ISD::VPCOMU";
case X86ISD::VPERMIL2: return "X86ISD::VPERMIL2";
case X86ISD::FMSUB: return "X86ISD::FMSUB";
case X86ISD::FNMADD: return "X86ISD::FNMADD";
case X86ISD::FNMSUB: return "X86ISD::FNMSUB";
case X86ISD::FMADDSUB: return "X86ISD::FMADDSUB";
case X86ISD::FMSUBADD: return "X86ISD::FMSUBADD";
case X86ISD::FMADD_RND: return "X86ISD::FMADD_RND";
case X86ISD::FNMADD_RND: return "X86ISD::FNMADD_RND";
case X86ISD::FMSUB_RND: return "X86ISD::FMSUB_RND";
case X86ISD::FNMSUB_RND: return "X86ISD::FNMSUB_RND";
case X86ISD::FMADDSUB_RND: return "X86ISD::FMADDSUB_RND";
case X86ISD::FMSUBADD_RND: return "X86ISD::FMSUBADD_RND";
case X86ISD::VPMADD52H: return "X86ISD::VPMADD52H";
case X86ISD::VPMADD52L: return "X86ISD::VPMADD52L";
case X86ISD::VRNDSCALE: return "X86ISD::VRNDSCALE";
case X86ISD::VRNDSCALE_RND: return "X86ISD::VRNDSCALE_RND";
case X86ISD::VRNDSCALES: return "X86ISD::VRNDSCALES";
case X86ISD::VRNDSCALES_RND: return "X86ISD::VRNDSCALES_RND";
case X86ISD::VREDUCE: return "X86ISD::VREDUCE";
case X86ISD::VREDUCE_RND: return "X86ISD::VREDUCE_RND";
case X86ISD::VREDUCES: return "X86ISD::VREDUCES";
case X86ISD::VREDUCES_RND: return "X86ISD::VREDUCES_RND";
case X86ISD::VGETMANT: return "X86ISD::VGETMANT";
case X86ISD::VGETMANT_RND: return "X86ISD::VGETMANT_RND";
case X86ISD::VGETMANTS: return "X86ISD::VGETMANTS";
case X86ISD::VGETMANTS_RND: return "X86ISD::VGETMANTS_RND";
case X86ISD::PCMPESTR: return "X86ISD::PCMPESTR";
case X86ISD::PCMPISTR: return "X86ISD::PCMPISTR";
case X86ISD::XTEST: return "X86ISD::XTEST";
case X86ISD::COMPRESS: return "X86ISD::COMPRESS";
case X86ISD::EXPAND: return "X86ISD::EXPAND";
case X86ISD::SELECT: return "X86ISD::SELECT";
case X86ISD::SELECTS: return "X86ISD::SELECTS";
case X86ISD::ADDSUB: return "X86ISD::ADDSUB";
case X86ISD::RCP14: return "X86ISD::RCP14";
case X86ISD::RCP14S: return "X86ISD::RCP14S";
case X86ISD::RCP28: return "X86ISD::RCP28";
case X86ISD::RCP28S: return "X86ISD::RCP28S";
case X86ISD::EXP2: return "X86ISD::EXP2";
case X86ISD::RSQRT14: return "X86ISD::RSQRT14";
case X86ISD::RSQRT14S: return "X86ISD::RSQRT14S";
case X86ISD::RSQRT28: return "X86ISD::RSQRT28";
case X86ISD::RSQRT28S: return "X86ISD::RSQRT28S";
case X86ISD::FADD_RND: return "X86ISD::FADD_RND";
case X86ISD::FADDS_RND: return "X86ISD::FADDS_RND";
case X86ISD::FSUB_RND: return "X86ISD::FSUB_RND";
case X86ISD::FSUBS_RND: return "X86ISD::FSUBS_RND";
case X86ISD::FMUL_RND: return "X86ISD::FMUL_RND";
case X86ISD::FMULS_RND: return "X86ISD::FMULS_RND";
case X86ISD::FDIV_RND: return "X86ISD::FDIV_RND";
case X86ISD::FDIVS_RND: return "X86ISD::FDIVS_RND";
case X86ISD::FSQRT_RND: return "X86ISD::FSQRT_RND";
case X86ISD::FSQRTS_RND: return "X86ISD::FSQRTS_RND";
case X86ISD::FGETEXP_RND: return "X86ISD::FGETEXP_RND";
case X86ISD::FGETEXPS_RND: return "X86ISD::FGETEXPS_RND";
case X86ISD::SCALEF: return "X86ISD::SCALEF";
case X86ISD::SCALEFS: return "X86ISD::SCALEFS";
case X86ISD::ADDS: return "X86ISD::ADDS";
case X86ISD::SUBS: return "X86ISD::SUBS";
case X86ISD::AVG: return "X86ISD::AVG";
case X86ISD::MULHRS: return "X86ISD::MULHRS";
case X86ISD::SINT_TO_FP_RND: return "X86ISD::SINT_TO_FP_RND";
case X86ISD::UINT_TO_FP_RND: return "X86ISD::UINT_TO_FP_RND";
case X86ISD::CVTTP2SI: return "X86ISD::CVTTP2SI";
case X86ISD::CVTTP2UI: return "X86ISD::CVTTP2UI";
case X86ISD::CVTTP2SI_RND: return "X86ISD::CVTTP2SI_RND";
case X86ISD::CVTTP2UI_RND: return "X86ISD::CVTTP2UI_RND";
case X86ISD::CVTTS2SI_RND: return "X86ISD::CVTTS2SI_RND";
case X86ISD::CVTTS2UI_RND: return "X86ISD::CVTTS2UI_RND";
case X86ISD::CVTSI2P: return "X86ISD::CVTSI2P";
case X86ISD::CVTUI2P: return "X86ISD::CVTUI2P";
case X86ISD::VFPCLASS: return "X86ISD::VFPCLASS";
case X86ISD::VFPCLASSS: return "X86ISD::VFPCLASSS";
case X86ISD::MULTISHIFT: return "X86ISD::MULTISHIFT";
case X86ISD::SCALAR_SINT_TO_FP_RND: return "X86ISD::SCALAR_SINT_TO_FP_RND";
case X86ISD::SCALAR_UINT_TO_FP_RND: return "X86ISD::SCALAR_UINT_TO_FP_RND";
case X86ISD::CVTPS2PH: return "X86ISD::CVTPS2PH";
case X86ISD::CVTPH2PS: return "X86ISD::CVTPH2PS";
case X86ISD::CVTPH2PS_RND: return "X86ISD::CVTPH2PS_RND";
case X86ISD::CVTP2SI: return "X86ISD::CVTP2SI";
case X86ISD::CVTP2UI: return "X86ISD::CVTP2UI";
case X86ISD::CVTP2SI_RND: return "X86ISD::CVTP2SI_RND";
case X86ISD::CVTP2UI_RND: return "X86ISD::CVTP2UI_RND";
case X86ISD::CVTS2SI_RND: return "X86ISD::CVTS2SI_RND";
case X86ISD::CVTS2UI_RND: return "X86ISD::CVTS2UI_RND";
case X86ISD::LWPINS: return "X86ISD::LWPINS";
case X86ISD::MGATHER: return "X86ISD::MGATHER";
case X86ISD::MSCATTER: return "X86ISD::MSCATTER";
case X86ISD::VPDPBUSD: return "X86ISD::VPDPBUSD";
case X86ISD::VPDPBUSDS: return "X86ISD::VPDPBUSDS";
case X86ISD::VPDPWSSD: return "X86ISD::VPDPWSSD";
case X86ISD::VPDPWSSDS: return "X86ISD::VPDPWSSDS";
case X86ISD::VPSHUFBITQMB: return "X86ISD::VPSHUFBITQMB";
case X86ISD::GF2P8MULB: return "X86ISD::GF2P8MULB";
case X86ISD::GF2P8AFFINEQB: return "X86ISD::GF2P8AFFINEQB";
case X86ISD::GF2P8AFFINEINVQB: return "X86ISD::GF2P8AFFINEINVQB";
case X86ISD::NT_CALL: return "X86ISD::NT_CALL";
case X86ISD::NT_BRIND: return "X86ISD::NT_BRIND";
case X86ISD::UMWAIT: return "X86ISD::UMWAIT";
case X86ISD::TPAUSE: return "X86ISD::TPAUSE";
}
return nullptr;
}
/// Return true if the addressing mode represented by AM is legal for this
/// target, for a load/store of the specified type.
bool X86TargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS,
Instruction *I) const {
// X86 supports extremely general addressing modes.
CodeModel::Model M = getTargetMachine().getCodeModel();
// X86 allows a sign-extended 32-bit immediate field as a displacement.
if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != nullptr))
return false;
if (AM.BaseGV) {
unsigned GVFlags = Subtarget.classifyGlobalReference(AM.BaseGV);
// If a reference to this global requires an extra load, we can't fold it.
if (isGlobalStubReference(GVFlags))
return false;
// If BaseGV requires a register for the PIC base, we cannot also have a
// BaseReg specified.
if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
return false;
// If lower 4G is not available, then we must use rip-relative addressing.
if ((M != CodeModel::Small || isPositionIndependent()) &&
Subtarget.is64Bit() && (AM.BaseOffs || AM.Scale > 1))
return false;
}
switch (AM.Scale) {
case 0:
case 1:
case 2:
case 4:
case 8:
// These scales always work.
break;
case 3:
case 5:
case 9:
// These scales are formed with basereg+scalereg. Only accept if there is
// no basereg yet.
if (AM.HasBaseReg)
return false;
break;
default: // Other stuff never works.
return false;
}
return true;
}
bool X86TargetLowering::isVectorShiftByScalarCheap(Type *Ty) const {
unsigned Bits = Ty->getScalarSizeInBits();
// 8-bit shifts are always expensive, but versions with a scalar amount aren't
// particularly cheaper than those without.
if (Bits == 8)
return false;
// XOP has v16i8/v8i16/v4i32/v2i64 variable vector shifts.
if (Subtarget.hasXOP() && Ty->getPrimitiveSizeInBits() == 128 &&
(Bits == 8 || Bits == 16 || Bits == 32 || Bits == 64))
return false;
// AVX2 has vpsllv[dq] instructions (and other shifts) that make variable
// shifts just as cheap as scalar ones.
if (Subtarget.hasAVX2() && (Bits == 32 || Bits == 64))
return false;
// AVX512BW has shifts such as vpsllvw.
if (Subtarget.hasBWI() && Bits == 16)
return false;
// Otherwise, it's significantly cheaper to shift by a scalar amount than by a
// fully general vector.
return true;
}
bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
return false;
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
return NumBits1 > NumBits2;
}
bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
return false;
if (!isTypeLegal(EVT::getEVT(Ty1)))
return false;
assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
// Assuming the caller doesn't have a zeroext or signext return parameter,
// truncation all the way down to i1 is valid.
return true;
}
bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
return isInt<32>(Imm);
}
bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
// Can also use sub to handle negated immediates.
return isInt<32>(Imm);
}
bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
if (!VT1.isInteger() || !VT2.isInteger())
return false;
unsigned NumBits1 = VT1.getSizeInBits();
unsigned NumBits2 = VT2.getSizeInBits();
return NumBits1 > NumBits2;
}
bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
// x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget.is64Bit();
}
bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
// x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget.is64Bit();
}
bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
EVT VT1 = Val.getValueType();
if (isZExtFree(VT1, VT2))
return true;
if (Val.getOpcode() != ISD::LOAD)
return false;
if (!VT1.isSimple() || !VT1.isInteger() ||
!VT2.isSimple() || !VT2.isInteger())
return false;
switch (VT1.getSimpleVT().SimpleTy) {
default: break;
case MVT::i8:
case MVT::i16:
case MVT::i32:
// X86 has 8, 16, and 32-bit zero-extending loads.
return true;
}
return false;
}
bool X86TargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
EVT SrcVT = ExtVal.getOperand(0).getValueType();
// There is no extending load for vXi1.
if (SrcVT.getScalarType() == MVT::i1)
return false;
return true;
}
bool
X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
if (!Subtarget.hasAnyFMA())
return false;
VT = VT.getScalarType();
if (!VT.isSimple())
return false;
switch (VT.getSimpleVT().SimpleTy) {
case MVT::f32:
case MVT::f64:
return true;
default:
break;
}
return false;
}
bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
// i16 instructions are longer (0x66 prefix) and potentially slower.
return !(VT1 == MVT::i32 && VT2 == MVT::i16);
}
/// Targets can use this to indicate that they only support *some*
/// VECTOR_SHUFFLE operations, those with specific masks.
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
/// are assumed to be legal.
bool X86TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
if (!VT.isSimple())
return false;
// Not for i1 vectors
if (VT.getSimpleVT().getScalarType() == MVT::i1)
return false;
// Very little shuffling can be done for 64-bit vectors right now.
if (VT.getSimpleVT().getSizeInBits() == 64)
return false;
// We only care that the types being shuffled are legal. The lowering can
// handle any possible shuffle mask that results.
return isTypeLegal(VT.getSimpleVT());
}
bool X86TargetLowering::isVectorClearMaskLegal(ArrayRef<int> Mask,
EVT VT) const {
// Don't convert an 'and' into a shuffle that we don't directly support.
// vpblendw and vpshufb for 256-bit vectors are not available on AVX1.
if (!Subtarget.hasAVX2())
if (VT == MVT::v32i8 || VT == MVT::v16i16)
return false;
// Just delegate to the generic legality, clear masks aren't special.
return isShuffleMaskLegal(Mask, VT);
}
bool X86TargetLowering::areJTsAllowed(const Function *Fn) const {
// If the subtarget is using retpolines, we need to not generate jump tables.
if (Subtarget.useRetpoline())
return false;
// Otherwise, fallback on the generic logic.
return TargetLowering::areJTsAllowed(Fn);
}
//===----------------------------------------------------------------------===//
// X86 Scheduler Hooks
//===----------------------------------------------------------------------===//
/// Utility function to emit xbegin specifying the start of an RTM region.
static MachineBasicBlock *emitXBegin(MachineInstr &MI, MachineBasicBlock *MBB,
const TargetInstrInfo *TII) {
DebugLoc DL = MI.getDebugLoc();
const BasicBlock *BB = MBB->getBasicBlock();
MachineFunction::iterator I = ++MBB->getIterator();
// For the v = xbegin(), we generate
//
// thisMBB:
// xbegin sinkMBB
//
// mainMBB:
// s0 = -1
//
// fallBB:
// eax = # XABORT_DEF
// s1 = eax
//
// sinkMBB:
// v = phi(s0/mainBB, s1/fallBB)
MachineBasicBlock *thisMBB = MBB;
MachineFunction *MF = MBB->getParent();
MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *fallMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
MF->insert(I, mainMBB);
MF->insert(I, fallMBB);
MF->insert(I, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
MachineRegisterInfo &MRI = MF->getRegInfo();
unsigned DstReg = MI.getOperand(0).getReg();
const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
unsigned mainDstReg = MRI.createVirtualRegister(RC);
unsigned fallDstReg = MRI.createVirtualRegister(RC);
// thisMBB:
// xbegin fallMBB
// # fallthrough to mainMBB
// # abortion to fallMBB
BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(fallMBB);
thisMBB->addSuccessor(mainMBB);
thisMBB->addSuccessor(fallMBB);
// mainMBB:
// mainDstReg := -1
BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), mainDstReg).addImm(-1);
BuildMI(mainMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB);
mainMBB->addSuccessor(sinkMBB);
// fallMBB:
// ; pseudo instruction to model hardware's definition from XABORT
// EAX := XABORT_DEF
// fallDstReg := EAX
BuildMI(fallMBB, DL, TII->get(X86::XABORT_DEF));
BuildMI(fallMBB, DL, TII->get(TargetOpcode::COPY), fallDstReg)
.addReg(X86::EAX);
fallMBB->addSuccessor(sinkMBB);
// sinkMBB:
// DstReg := phi(mainDstReg/mainBB, fallDstReg/fallBB)
BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(X86::PHI), DstReg)
.addReg(mainDstReg).addMBB(mainMBB)
.addReg(fallDstReg).addMBB(fallMBB);
MI.eraseFromParent();
return sinkMBB;
}
static MachineBasicBlock *emitWRPKRU(MachineInstr &MI, MachineBasicBlock *BB,
const X86Subtarget &Subtarget) {
DebugLoc dl = MI.getDebugLoc();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
// insert input VAL into EAX
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
.addReg(MI.getOperand(0).getReg());
// insert zero to ECX
BuildMI(*BB, MI, dl, TII->get(X86::MOV32r0), X86::ECX);
// insert zero to EDX
BuildMI(*BB, MI, dl, TII->get(X86::MOV32r0), X86::EDX);
// insert WRPKRU instruction
BuildMI(*BB, MI, dl, TII->get(X86::WRPKRUr));
MI.eraseFromParent(); // The pseudo is gone now.
return BB;
}
static MachineBasicBlock *emitRDPKRU(MachineInstr &MI, MachineBasicBlock *BB,
const X86Subtarget &Subtarget) {
DebugLoc dl = MI.getDebugLoc();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
// insert zero to ECX
BuildMI(*BB, MI, dl, TII->get(X86::MOV32r0), X86::ECX);
// insert RDPKRU instruction
BuildMI(*BB, MI, dl, TII->get(X86::RDPKRUr));
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), MI.getOperand(0).getReg())
.addReg(X86::EAX);
MI.eraseFromParent(); // The pseudo is gone now.
return BB;
}
static MachineBasicBlock *emitMonitor(MachineInstr &MI, MachineBasicBlock *BB,
const X86Subtarget &Subtarget,
unsigned Opc) {
DebugLoc dl = MI.getDebugLoc();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
// Address into RAX/EAX, other two args into ECX, EDX.
unsigned MemOpc = Subtarget.is64Bit() ? X86::LEA64r : X86::LEA32r;
unsigned MemReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX;
MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
for (int i = 0; i < X86::AddrNumOperands; ++i)
MIB.add(MI.getOperand(i));
unsigned ValOps = X86::AddrNumOperands;
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
.addReg(MI.getOperand(ValOps).getReg());
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
.addReg(MI.getOperand(ValOps + 1).getReg());
// The instruction doesn't actually take any operands though.
BuildMI(*BB, MI, dl, TII->get(Opc));
MI.eraseFromParent(); // The pseudo is gone now.
return BB;
}
static MachineBasicBlock *emitClzero(MachineInstr *MI, MachineBasicBlock *BB,
const X86Subtarget &Subtarget) {
DebugLoc dl = MI->getDebugLoc();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
// Address into RAX/EAX
unsigned MemOpc = Subtarget.is64Bit() ? X86::LEA64r : X86::LEA32r;
unsigned MemReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX;
MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
for (int i = 0; i < X86::AddrNumOperands; ++i)
MIB.add(MI->getOperand(i));
// The instruction doesn't actually take any operands though.
BuildMI(*BB, MI, dl, TII->get(X86::CLZEROr));
MI->eraseFromParent(); // The pseudo is gone now.
return BB;
}
MachineBasicBlock *
X86TargetLowering::EmitVAARG64WithCustomInserter(MachineInstr &MI,
MachineBasicBlock *MBB) const {
// Emit va_arg instruction on X86-64.
// Operands to this pseudo-instruction:
// 0 ) Output : destination address (reg)
// 1-5) Input : va_list address (addr, i64mem)
// 6 ) ArgSize : Size (in bytes) of vararg type
// 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset
// 8 ) Align : Alignment of type
// 9 ) EFLAGS (implicit-def)
assert(MI.getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
static_assert(X86::AddrNumOperands == 5,
"VAARG_64 assumes 5 address operands");
unsigned DestReg = MI.getOperand(0).getReg();
MachineOperand &Base = MI.getOperand(1);
MachineOperand &Scale = MI.getOperand(2);
MachineOperand &Index = MI.getOperand(3);
MachineOperand &Disp = MI.getOperand(4);
MachineOperand &Segment = MI.getOperand(5);
unsigned ArgSize = MI.getOperand(6).getImm();
unsigned ArgMode = MI.getOperand(7).getImm();
unsigned Align = MI.getOperand(8).getImm();
// Memory Reference
assert(MI.hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
// Machine Information
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
DebugLoc DL = MI.getDebugLoc();
// struct va_list {
// i32 gp_offset
// i32 fp_offset
// i64 overflow_area (address)
// i64 reg_save_area (address)
// }
// sizeof(va_list) = 24
// alignment(va_list) = 8
unsigned TotalNumIntRegs = 6;
unsigned TotalNumXMMRegs = 8;
bool UseGPOffset = (ArgMode == 1);
bool UseFPOffset = (ArgMode == 2);
unsigned MaxOffset = TotalNumIntRegs * 8 +
(UseFPOffset ? TotalNumXMMRegs * 16 : 0);
/* Align ArgSize to a multiple of 8 */
unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
bool NeedsAlign = (Align > 8);
MachineBasicBlock *thisMBB = MBB;
MachineBasicBlock *overflowMBB;
MachineBasicBlock *offsetMBB;
MachineBasicBlock *endMBB;
unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB
unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB
unsigned OffsetReg = 0;
if (!UseGPOffset && !UseFPOffset) {
// If we only pull from the overflow region, we don't create a branch.
// We don't need to alter control flow.
OffsetDestReg = 0; // unused
OverflowDestReg = DestReg;
offsetMBB = nullptr;
overflowMBB = thisMBB;
endMBB = thisMBB;
} else {
// First emit code to check if gp_offset (or fp_offset) is below the bound.
// If so, pull the argument from reg_save_area. (branch to offsetMBB)
// If not, pull from overflow_area. (branch to overflowMBB)
//
// thisMBB
// | .
// | .
// offsetMBB overflowMBB
// | .
// | .
// endMBB
// Registers for the PHI in endMBB
OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
MachineFunction *MF = MBB->getParent();
overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator MBBIter = ++MBB->getIterator();
// Insert the new basic blocks
MF->insert(MBBIter, offsetMBB);
MF->insert(MBBIter, overflowMBB);
MF->insert(MBBIter, endMBB);
// Transfer the remainder of MBB and its successor edges to endMBB.
endMBB->splice(endMBB->begin(), thisMBB,
std::next(MachineBasicBlock::iterator(MI)), thisMBB->end());
endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
// Make offsetMBB and overflowMBB successors of thisMBB
thisMBB->addSuccessor(offsetMBB);
thisMBB->addSuccessor(overflowMBB);
// endMBB is a successor of both offsetMBB and overflowMBB
offsetMBB->addSuccessor(endMBB);
overflowMBB->addSuccessor(endMBB);
// Load the offset value into a register
OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
.add(Base)
.add(Scale)
.add(Index)
.addDisp(Disp, UseFPOffset ? 4 : 0)
.add(Segment)
.setMemRefs(MMOBegin, MMOEnd);
// Check if there is enough room left to pull this argument.
BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
.addReg(OffsetReg)
.addImm(MaxOffset + 8 - ArgSizeA8);
// Branch to "overflowMBB" if offset >= max
// Fall through to "offsetMBB" otherwise
BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
.addMBB(overflowMBB);
}
// In offsetMBB, emit code to use the reg_save_area.
if (offsetMBB) {
assert(OffsetReg != 0);
// Read the reg_save_area address.
unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
.add(Base)
.add(Scale)
.add(Index)
.addDisp(Disp, 16)
.add(Segment)
.setMemRefs(MMOBegin, MMOEnd);
// Zero-extend the offset
unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
.addImm(0)
.addReg(OffsetReg)
.addImm(X86::sub_32bit);
// Add the offset to the reg_save_area to get the final address.
BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
.addReg(OffsetReg64)
.addReg(RegSaveReg);
// Compute the offset for the next argument
unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
.addReg(OffsetReg)
.addImm(UseFPOffset ? 16 : 8);
// Store it back into the va_list.
BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
.add(Base)
.add(Scale)
.add(Index)
.addDisp(Disp, UseFPOffset ? 4 : 0)
.add(Segment)
.addReg(NextOffsetReg)
.setMemRefs(MMOBegin, MMOEnd);
// Jump to endMBB
BuildMI(offsetMBB, DL, TII->get(X86::JMP_1))
.addMBB(endMBB);
}
//
// Emit code to use overflow area
//
// Load the overflow_area address into a register.
unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
.add(Base)
.add(Scale)
.add(Index)
.addDisp(Disp, 8)
.add(Segment)
.setMemRefs(MMOBegin, MMOEnd);
// If we need to align it, do so. Otherwise, just copy the address
// to OverflowDestReg.
if (NeedsAlign) {
// Align the overflow address
assert(isPowerOf2_32(Align) && "Alignment must be a power of 2");
unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
// aligned_addr = (addr + (align-1)) & ~(align-1)
BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
.addReg(OverflowAddrReg)
.addImm(Align-1);
BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
.addReg(TmpReg)
.addImm(~(uint64_t)(Align-1));
} else {
BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
.addReg(OverflowAddrReg);
}
// Compute the next overflow address after this argument.
// (the overflow address should be kept 8-byte aligned)
unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
.addReg(OverflowDestReg)
.addImm(ArgSizeA8);
// Store the new overflow address.
BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
.add(Base)
.add(Scale)
.add(Index)
.addDisp(Disp, 8)
.add(Segment)
.addReg(NextAddrReg)
.setMemRefs(MMOBegin, MMOEnd);
// If we branched, emit the PHI to the front of endMBB.
if (offsetMBB) {
BuildMI(*endMBB, endMBB->begin(), DL,
TII->get(X86::PHI), DestReg)
.addReg(OffsetDestReg).addMBB(offsetMBB)
.addReg(OverflowDestReg).addMBB(overflowMBB);
}
// Erase the pseudo instruction
MI.eraseFromParent();
return endMBB;
}
MachineBasicBlock *X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
MachineInstr &MI, MachineBasicBlock *MBB) const {
// Emit code to save XMM registers to the stack. The ABI says that the
// number of registers to save is given in %al, so it's theoretically
// possible to do an indirect jump trick to avoid saving all of them,
// however this code takes a simpler approach and just executes all
// of the stores if %al is non-zero. It's less code, and it's probably
// easier on the hardware branch predictor, and stores aren't all that
// expensive anyway.
// Create the new basic blocks. One block contains all the XMM stores,
// and one block is the final destination regardless of whether any
// stores were performed.
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
MachineFunction *F = MBB->getParent();
MachineFunction::iterator MBBIter = ++MBB->getIterator();
MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(MBBIter, XMMSaveMBB);
F->insert(MBBIter, EndMBB);
// Transfer the remainder of MBB and its successor edges to EndMBB.
EndMBB->splice(EndMBB->begin(), MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
// The original block will now fall through to the XMM save block.
MBB->addSuccessor(XMMSaveMBB);
// The XMMSaveMBB will fall through to the end block.
XMMSaveMBB->addSuccessor(EndMBB);
// Now add the instructions.
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
unsigned CountReg = MI.getOperand(0).getReg();
int64_t RegSaveFrameIndex = MI.getOperand(1).getImm();
int64_t VarArgsFPOffset = MI.getOperand(2).getImm();
if (!Subtarget.isCallingConvWin64(F->getFunction().getCallingConv())) {
// If %al is 0, branch around the XMM save block.
BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
BuildMI(MBB, DL, TII->get(X86::JE_1)).addMBB(EndMBB);
MBB->addSuccessor(EndMBB);
}
// Make sure the last operand is EFLAGS, which gets clobbered by the branch
// that was just emitted, but clearly shouldn't be "saved".
assert((MI.getNumOperands() <= 3 ||
!MI.getOperand(MI.getNumOperands() - 1).isReg() ||
MI.getOperand(MI.getNumOperands() - 1).getReg() == X86::EFLAGS) &&
"Expected last argument to be EFLAGS");
unsigned MOVOpc = Subtarget.hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
// In the XMM save block, save all the XMM argument registers.
for (int i = 3, e = MI.getNumOperands() - 1; i != e; ++i) {
int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
MachineMemOperand *MMO = F->getMachineMemOperand(
MachinePointerInfo::getFixedStack(*F, RegSaveFrameIndex, Offset),
MachineMemOperand::MOStore,
/*Size=*/16, /*Align=*/16);
BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
.addFrameIndex(RegSaveFrameIndex)
.addImm(/*Scale=*/1)
.addReg(/*IndexReg=*/0)
.addImm(/*Disp=*/Offset)
.addReg(/*Segment=*/0)
.addReg(MI.getOperand(i).getReg())
.addMemOperand(MMO);
}
MI.eraseFromParent(); // The pseudo instruction is gone now.
return EndMBB;
}
// The EFLAGS operand of SelectItr might be missing a kill marker
// because there were multiple uses of EFLAGS, and ISel didn't know
// which to mark. Figure out whether SelectItr should have had a
// kill marker, and set it if it should. Returns the correct kill
// marker value.
static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
MachineBasicBlock* BB,
const TargetRegisterInfo* TRI) {
// Scan forward through BB for a use/def of EFLAGS.
MachineBasicBlock::iterator miI(std::next(SelectItr));
for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
const MachineInstr& mi = *miI;
if (mi.readsRegister(X86::EFLAGS))
return false;
if (mi.definesRegister(X86::EFLAGS))
break; // Should have kill-flag - update below.
}
// If we hit the end of the block, check whether EFLAGS is live into a
// successor.
if (miI == BB->end()) {
for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
sEnd = BB->succ_end();
sItr != sEnd; ++sItr) {
MachineBasicBlock* succ = *sItr;
if (succ->isLiveIn(X86::EFLAGS))
return false;
}
}
// We found a def, or hit the end of the basic block and EFLAGS wasn't live
// out. SelectMI should have a kill flag on EFLAGS.
SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
return true;
}
// Return true if it is OK for this CMOV pseudo-opcode to be cascaded
// together with other CMOV pseudo-opcodes into a single basic-block with
// conditional jump around it.
static bool isCMOVPseudo(MachineInstr &MI) {
switch (MI.getOpcode()) {
case X86::CMOV_FR32:
case X86::CMOV_FR64:
case X86::CMOV_GR8:
case X86::CMOV_GR16:
case X86::CMOV_GR32:
case X86::CMOV_RFP32:
case X86::CMOV_RFP64:
case X86::CMOV_RFP80:
case X86::CMOV_V2F64:
case X86::CMOV_V2I64:
case X86::CMOV_V4F32:
case X86::CMOV_V4F64:
case X86::CMOV_V4I64:
case X86::CMOV_V16F32:
case X86::CMOV_V8F32:
case X86::CMOV_V8F64:
case X86::CMOV_V8I64:
case X86::CMOV_V8I1:
case X86::CMOV_V16I1:
case X86::CMOV_V32I1:
case X86::CMOV_V64I1:
return true;
default:
return false;
}
}
// Helper function, which inserts PHI functions into SinkMBB:
// %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
// where %FalseValue(i) and %TrueValue(i) are taken from the consequent CMOVs
// in [MIItBegin, MIItEnd) range. It returns the last MachineInstrBuilder for
// the last PHI function inserted.
static MachineInstrBuilder createPHIsForCMOVsInSinkBB(
MachineBasicBlock::iterator MIItBegin, MachineBasicBlock::iterator MIItEnd,
MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB,
MachineBasicBlock *SinkMBB) {
MachineFunction *MF = TrueMBB->getParent();
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
DebugLoc DL = MIItBegin->getDebugLoc();
X86::CondCode CC = X86::CondCode(MIItBegin->getOperand(3).getImm());
X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
// As we are creating the PHIs, we have to be careful if there is more than
// one. Later CMOVs may reference the results of earlier CMOVs, but later
// PHIs have to reference the individual true/false inputs from earlier PHIs.
// That also means that PHI construction must work forward from earlier to
// later, and that the code must maintain a mapping from earlier PHI's
// destination registers, and the registers that went into the PHI.
DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
MachineInstrBuilder MIB;
for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
unsigned DestReg = MIIt->getOperand(0).getReg();
unsigned Op1Reg = MIIt->getOperand(1).getReg();
unsigned Op2Reg = MIIt->getOperand(2).getReg();
// If this CMOV we are generating is the opposite condition from
// the jump we generated, then we have to swap the operands for the
// PHI that is going to be generated.
if (MIIt->getOperand(3).getImm() == OppCC)
std::swap(Op1Reg, Op2Reg);
if (RegRewriteTable.find(Op1Reg) != RegRewriteTable.end())
Op1Reg = RegRewriteTable[Op1Reg].first;
if (RegRewriteTable.find(Op2Reg) != RegRewriteTable.end())
Op2Reg = RegRewriteTable[Op2Reg].second;
MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg)
.addReg(Op1Reg)
.addMBB(FalseMBB)
.addReg(Op2Reg)
.addMBB(TrueMBB);
// Add this PHI to the rewrite table.
RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
}
return MIB;
}
// Lower cascaded selects in form of (SecondCmov (FirstCMOV F, T, cc1), T, cc2).
MachineBasicBlock *
X86TargetLowering::EmitLoweredCascadedSelect(MachineInstr &FirstCMOV,
MachineInstr &SecondCascadedCMOV,
MachineBasicBlock *ThisMBB) const {
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = FirstCMOV.getDebugLoc();
// We lower cascaded CMOVs such as
//
// (SecondCascadedCMOV (FirstCMOV F, T, cc1), T, cc2)
//
// to two successive branches.
//
// Without this, we would add a PHI between the two jumps, which ends up
// creating a few copies all around. For instance, for
//
// (sitofp (zext (fcmp une)))
//
// we would generate:
//
// ucomiss %xmm1, %xmm0
// movss <1.0f>, %xmm0
// movaps %xmm0, %xmm1
// jne .LBB5_2
// xorps %xmm1, %xmm1
// .LBB5_2:
// jp .LBB5_4
// movaps %xmm1, %xmm0
// .LBB5_4:
// retq
//
// because this custom-inserter would have generated:
//
// A
// | \
// | B
// | /
// C
// | \
// | D
// | /
// E
//
// A: X = ...; Y = ...
// B: empty
// C: Z = PHI [X, A], [Y, B]
// D: empty
// E: PHI [X, C], [Z, D]
//
// If we lower both CMOVs in a single step, we can instead generate:
//
// A
// | \
// | C
// | /|
// |/ |
// | |
// | D
// | /
// E
//
// A: X = ...; Y = ...
// D: empty
// E: PHI [X, A], [X, C], [Y, D]
//
// Which, in our sitofp/fcmp example, gives us something like:
//
// ucomiss %xmm1, %xmm0
// movss <1.0f>, %xmm0
// jne .LBB5_4
// jp .LBB5_4
// xorps %xmm0, %xmm0
// .LBB5_4:
// retq
//
// We lower cascaded CMOV into two successive branches to the same block.
// EFLAGS is used by both, so mark it as live in the second.
const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
MachineFunction *F = ThisMBB->getParent();
MachineBasicBlock *FirstInsertedMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *SecondInsertedMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator It = ++ThisMBB->getIterator();
F->insert(It, FirstInsertedMBB);
F->insert(It, SecondInsertedMBB);
F->insert(It, SinkMBB);
// For a cascaded CMOV, we lower it to two successive branches to
// the same block (SinkMBB). EFLAGS is used by both, so mark it as live in
// the FirstInsertedMBB.
FirstInsertedMBB->addLiveIn(X86::EFLAGS);
// If the EFLAGS register isn't dead in the terminator, then claim that it's
// live into the sink and copy blocks.
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
if (!SecondCascadedCMOV.killsRegister(X86::EFLAGS) &&
!checkAndUpdateEFLAGSKill(SecondCascadedCMOV, ThisMBB, TRI)) {
SecondInsertedMBB->addLiveIn(X86::EFLAGS);
SinkMBB->addLiveIn(X86::EFLAGS);
}
// Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
SinkMBB->splice(SinkMBB->begin(), ThisMBB,
std::next(MachineBasicBlock::iterator(FirstCMOV)),
ThisMBB->end());
SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
// Fallthrough block for ThisMBB.
ThisMBB->addSuccessor(FirstInsertedMBB);
// The true block target of the first branch is always SinkMBB.
ThisMBB->addSuccessor(SinkMBB);
// Fallthrough block for FirstInsertedMBB.
FirstInsertedMBB->addSuccessor(SecondInsertedMBB);
// The true block for the branch of FirstInsertedMBB.
FirstInsertedMBB->addSuccessor(SinkMBB);
// This is fallthrough.
SecondInsertedMBB->addSuccessor(SinkMBB);
// Create the conditional branch instructions.
X86::CondCode FirstCC = X86::CondCode(FirstCMOV.getOperand(3).getImm());
unsigned Opc = X86::GetCondBranchFromCond(FirstCC);
BuildMI(ThisMBB, DL, TII->get(Opc)).addMBB(SinkMBB);
X86::CondCode SecondCC =
X86::CondCode(SecondCascadedCMOV.getOperand(3).getImm());
unsigned Opc2 = X86::GetCondBranchFromCond(SecondCC);
BuildMI(FirstInsertedMBB, DL, TII->get(Opc2)).addMBB(SinkMBB);
// SinkMBB:
// %Result = phi [ %FalseValue, SecondInsertedMBB ], [ %TrueValue, ThisMBB ]
unsigned DestReg = FirstCMOV.getOperand(0).getReg();
unsigned Op1Reg = FirstCMOV.getOperand(1).getReg();
unsigned Op2Reg = FirstCMOV.getOperand(2).getReg();
MachineInstrBuilder MIB =
BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII->get(X86::PHI), DestReg)
.addReg(Op1Reg)
.addMBB(SecondInsertedMBB)
.addReg(Op2Reg)
.addMBB(ThisMBB);
// The second SecondInsertedMBB provides the same incoming value as the
// FirstInsertedMBB (the True operand of the SELECT_CC/CMOV nodes).
MIB.addReg(FirstCMOV.getOperand(2).getReg()).addMBB(FirstInsertedMBB);
// Copy the PHI result to the register defined by the second CMOV.
BuildMI(*SinkMBB, std::next(MachineBasicBlock::iterator(MIB.getInstr())), DL,
TII->get(TargetOpcode::COPY),
SecondCascadedCMOV.getOperand(0).getReg())
.addReg(FirstCMOV.getOperand(0).getReg());
// Now remove the CMOVs.
FirstCMOV.eraseFromParent();
SecondCascadedCMOV.eraseFromParent();
return SinkMBB;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredSelect(MachineInstr &MI,
MachineBasicBlock *ThisMBB) const {
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between and a branch opcode to use.
// ThisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// bCC copy1MBB
// fallthrough --> FalseMBB
// This code lowers all pseudo-CMOV instructions. Generally it lowers these
// as described above, by inserting a BB, and then making a PHI at the join
// point to select the true and false operands of the CMOV in the PHI.
//
// The code also handles two different cases of multiple CMOV opcodes
// in a row.
//
// Case 1:
// In this case, there are multiple CMOVs in a row, all which are based on
// the same condition setting (or the exact opposite condition setting).
// In this case we can lower all the CMOVs using a single inserted BB, and
// then make a number of PHIs at the join point to model the CMOVs. The only
// trickiness here, is that in a case like:
//
// t2 = CMOV cond1 t1, f1
// t3 = CMOV cond1 t2, f2
//
// when rewriting this into PHIs, we have to perform some renaming on the
// temps since you cannot have a PHI operand refer to a PHI result earlier
// in the same block. The "simple" but wrong lowering would be:
//
// t2 = PHI t1(BB1), f1(BB2)
// t3 = PHI t2(BB1), f2(BB2)
//
// but clearly t2 is not defined in BB1, so that is incorrect. The proper
// renaming is to note that on the path through BB1, t2 is really just a
// copy of t1, and do that renaming, properly generating:
//
// t2 = PHI t1(BB1), f1(BB2)
// t3 = PHI t1(BB1), f2(BB2)
//
// Case 2:
// CMOV ((CMOV F, T, cc1), T, cc2) is checked here and handled by a separate
// function - EmitLoweredCascadedSelect.
X86::CondCode CC = X86::CondCode(MI.getOperand(3).getImm());
X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
MachineInstr *LastCMOV = &MI;
MachineBasicBlock::iterator NextMIIt =
std::next(MachineBasicBlock::iterator(MI));
// Check for case 1, where there are multiple CMOVs with the same condition
// first. Of the two cases of multiple CMOV lowerings, case 1 reduces the
// number of jumps the most.
if (isCMOVPseudo(MI)) {
// See if we have a string of CMOVS with the same condition.
while (NextMIIt != ThisMBB->end() && isCMOVPseudo(*NextMIIt) &&
(NextMIIt->getOperand(3).getImm() == CC ||
NextMIIt->getOperand(3).getImm() == OppCC)) {
LastCMOV = &*NextMIIt;
++NextMIIt;
}
}
// This checks for case 2, but only do this if we didn't already find
// case 1, as indicated by LastCMOV == MI.
if (LastCMOV == &MI && NextMIIt != ThisMBB->end() &&
NextMIIt->getOpcode() == MI.getOpcode() &&
NextMIIt->getOperand(2).getReg() == MI.getOperand(2).getReg() &&
NextMIIt->getOperand(1).getReg() == MI.getOperand(0).getReg() &&
NextMIIt->getOperand(1).isKill()) {
return EmitLoweredCascadedSelect(MI, *NextMIIt, ThisMBB);
}
const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
MachineFunction *F = ThisMBB->getParent();
MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator It = ++ThisMBB->getIterator();
F->insert(It, FalseMBB);
F->insert(It, SinkMBB);
// If the EFLAGS register isn't dead in the terminator, then claim that it's
// live into the sink and copy blocks.
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
if (!LastCMOV->killsRegister(X86::EFLAGS) &&
!checkAndUpdateEFLAGSKill(LastCMOV, ThisMBB, TRI)) {
FalseMBB->addLiveIn(X86::EFLAGS);
SinkMBB->addLiveIn(X86::EFLAGS);
}
// Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
SinkMBB->splice(SinkMBB->begin(), ThisMBB,
std::next(MachineBasicBlock::iterator(LastCMOV)),
ThisMBB->end());
SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
// Fallthrough block for ThisMBB.
ThisMBB->addSuccessor(FalseMBB);
// The true block target of the first (or only) branch is always a SinkMBB.
ThisMBB->addSuccessor(SinkMBB);
// Fallthrough block for FalseMBB.
FalseMBB->addSuccessor(SinkMBB);
// Create the conditional branch instruction.
unsigned Opc = X86::GetCondBranchFromCond(CC);
BuildMI(ThisMBB, DL, TII->get(Opc)).addMBB(SinkMBB);
// SinkMBB:
// %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, ThisMBB ]
// ...
MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
MachineBasicBlock::iterator MIItEnd =
std::next(MachineBasicBlock::iterator(LastCMOV));
createPHIsForCMOVsInSinkBB(MIItBegin, MIItEnd, ThisMBB, FalseMBB, SinkMBB);
// Now remove the CMOV(s).
ThisMBB->erase(MIItBegin, MIItEnd);
return SinkMBB;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredAtomicFP(MachineInstr &MI,
MachineBasicBlock *BB) const {
// Combine the following atomic floating-point modification pattern:
// a.store(reg OP a.load(acquire), release)
// Transform them into:
// OPss (%gpr), %xmm
// movss %xmm, (%gpr)
// Or sd equivalent for 64-bit operations.
unsigned MOp, FOp;
switch (MI.getOpcode()) {
default: llvm_unreachable("unexpected instr type for EmitLoweredAtomicFP");
case X86::RELEASE_FADD32mr:
FOp = X86::ADDSSrm;
MOp = X86::MOVSSmr;
break;
case X86::RELEASE_FADD64mr:
FOp = X86::ADDSDrm;
MOp = X86::MOVSDmr;
break;
}
const X86InstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
unsigned ValOpIdx = X86::AddrNumOperands;
unsigned VSrc = MI.getOperand(ValOpIdx).getReg();
MachineInstrBuilder MIB =
BuildMI(*BB, MI, DL, TII->get(FOp),
MRI.createVirtualRegister(MRI.getRegClass(VSrc)))
.addReg(VSrc);
for (int i = 0; i < X86::AddrNumOperands; ++i) {
MachineOperand &Operand = MI.getOperand(i);
// Clear any kill flags on register operands as we'll create a second
// instruction using the same address operands.
if (Operand.isReg())
Operand.setIsKill(false);
MIB.add(Operand);
}
MachineInstr *FOpMI = MIB;
MIB = BuildMI(*BB, MI, DL, TII->get(MOp));
for (int i = 0; i < X86::AddrNumOperands; ++i)
MIB.add(MI.getOperand(i));
MIB.addReg(FOpMI->getOperand(0).getReg(), RegState::Kill);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredSegAlloca(MachineInstr &MI,
MachineBasicBlock *BB) const {
MachineFunction *MF = BB->getParent();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
assert(MF->shouldSplitStack());
const bool Is64Bit = Subtarget.is64Bit();
const bool IsLP64 = Subtarget.isTarget64BitLP64();
const unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
const unsigned TlsOffset = IsLP64 ? 0x70 : Is64Bit ? 0x40 : 0x30;
// BB:
// ... [Till the alloca]
// If stacklet is not large enough, jump to mallocMBB
//
// bumpMBB:
// Allocate by subtracting from RSP
// Jump to continueMBB
//
// mallocMBB:
// Allocate by call to runtime
//
// continueMBB:
// ...
// [rest of original BB]
//
MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineRegisterInfo &MRI = MF->getRegInfo();
const TargetRegisterClass *AddrRegClass =
getRegClassFor(getPointerTy(MF->getDataLayout()));
unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
sizeVReg = MI.getOperand(1).getReg(),
physSPReg =
IsLP64 || Subtarget.isTargetNaCl64() ? X86::RSP : X86::ESP;
MachineFunction::iterator MBBIter = ++BB->getIterator();
MF->insert(MBBIter, bumpMBB);
MF->insert(MBBIter, mallocMBB);
MF->insert(MBBIter, continueMBB);
continueMBB->splice(continueMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
continueMBB->transferSuccessorsAndUpdatePHIs(BB);
// Add code to the main basic block to check if the stack limit has been hit,
// and if so, jump to mallocMBB otherwise to bumpMBB.
BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
BuildMI(BB, DL, TII->get(IsLP64 ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
.addReg(tmpSPVReg).addReg(sizeVReg);
BuildMI(BB, DL, TII->get(IsLP64 ? X86::CMP64mr:X86::CMP32mr))
.addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
.addReg(SPLimitVReg);
BuildMI(BB, DL, TII->get(X86::JG_1)).addMBB(mallocMBB);
// bumpMBB simply decreases the stack pointer, since we know the current
// stacklet has enough space.
BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
.addReg(SPLimitVReg);
BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
.addReg(SPLimitVReg);
BuildMI(bumpMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB);
// Calls into a routine in libgcc to allocate more space from the heap.
const uint32_t *RegMask =
Subtarget.getRegisterInfo()->getCallPreservedMask(*MF, CallingConv::C);
if (IsLP64) {
BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
.addReg(sizeVReg);
BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
.addExternalSymbol("__morestack_allocate_stack_space")
.addRegMask(RegMask)
.addReg(X86::RDI, RegState::Implicit)
.addReg(X86::RAX, RegState::ImplicitDefine);
} else if (Is64Bit) {
BuildMI(mallocMBB, DL, TII->get(X86::MOV32rr), X86::EDI)
.addReg(sizeVReg);
BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
.addExternalSymbol("__morestack_allocate_stack_space")
.addRegMask(RegMask)
.addReg(X86::EDI, RegState::Implicit)
.addReg(X86::EAX, RegState::ImplicitDefine);
} else {
BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
.addImm(12);
BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
.addExternalSymbol("__morestack_allocate_stack_space")
.addRegMask(RegMask)
.addReg(X86::EAX, RegState::ImplicitDefine);
}
if (!Is64Bit)
BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
.addImm(16);
BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
.addReg(IsLP64 ? X86::RAX : X86::EAX);
BuildMI(mallocMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB);
// Set up the CFG correctly.
BB->addSuccessor(bumpMBB);
BB->addSuccessor(mallocMBB);
mallocMBB->addSuccessor(continueMBB);
bumpMBB->addSuccessor(continueMBB);
// Take care of the PHI nodes.
BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
MI.getOperand(0).getReg())
.addReg(mallocPtrVReg)
.addMBB(mallocMBB)
.addReg(bumpSPPtrVReg)
.addMBB(bumpMBB);
// Delete the original pseudo instruction.
MI.eraseFromParent();
// And we're done.
return continueMBB;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredCatchRet(MachineInstr &MI,
MachineBasicBlock *BB) const {
MachineFunction *MF = BB->getParent();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
MachineBasicBlock *TargetMBB = MI.getOperand(0).getMBB();
DebugLoc DL = MI.getDebugLoc();
assert(!isAsynchronousEHPersonality(
classifyEHPersonality(MF->getFunction().getPersonalityFn())) &&
"SEH does not use catchret!");
// Only 32-bit EH needs to worry about manually restoring stack pointers.
if (!Subtarget.is32Bit())
return BB;
// C++ EH creates a new target block to hold the restore code, and wires up
// the new block to the return destination with a normal JMP_4.
MachineBasicBlock *RestoreMBB =
MF->CreateMachineBasicBlock(BB->getBasicBlock());
assert(BB->succ_size() == 1);
MF->insert(std::next(BB->getIterator()), RestoreMBB);
RestoreMBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(RestoreMBB);
MI.getOperand(0).setMBB(RestoreMBB);
auto RestoreMBBI = RestoreMBB->begin();
BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::EH_RESTORE));
BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::JMP_4)).addMBB(TargetMBB);
return BB;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredCatchPad(MachineInstr &MI,
MachineBasicBlock *BB) const {
MachineFunction *MF = BB->getParent();
const Constant *PerFn = MF->getFunction().getPersonalityFn();
bool IsSEH = isAsynchronousEHPersonality(classifyEHPersonality(PerFn));
// Only 32-bit SEH requires special handling for catchpad.
if (IsSEH && Subtarget.is32Bit()) {
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
BuildMI(*BB, MI, DL, TII.get(X86::EH_RESTORE));
}
MI.eraseFromParent();
return BB;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredTLSAddr(MachineInstr &MI,
MachineBasicBlock *BB) const {
// So, here we replace TLSADDR with the sequence:
// adjust_stackdown -> TLSADDR -> adjust_stackup.
// We need this because TLSADDR is lowered into calls
// inside MC, therefore without the two markers shrink-wrapping
// may push the prologue/epilogue pass them.
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
MachineFunction &MF = *BB->getParent();
// Emit CALLSEQ_START right before the instruction.
unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
MachineInstrBuilder CallseqStart =
BuildMI(MF, DL, TII.get(AdjStackDown)).addImm(0).addImm(0).addImm(0);
BB->insert(MachineBasicBlock::iterator(MI), CallseqStart);
// Emit CALLSEQ_END right after the instruction.
// We don't call erase from parent because we want to keep the
// original instruction around.
unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
MachineInstrBuilder CallseqEnd =
BuildMI(MF, DL, TII.get(AdjStackUp)).addImm(0).addImm(0);
BB->insertAfter(MachineBasicBlock::iterator(MI), CallseqEnd);
return BB;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredTLSCall(MachineInstr &MI,
MachineBasicBlock *BB) const {
// This is pretty easy. We're taking the value that we received from
// our load from the relocation, sticking it in either RDI (x86-64)
// or EAX and doing an indirect call. The return value will then
// be in the normal return register.
MachineFunction *F = BB->getParent();
const X86InstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
assert(Subtarget.isTargetDarwin() && "Darwin only instr emitted?");
assert(MI.getOperand(3).isGlobal() && "This should be a global");
// Get a register mask for the lowered call.
// FIXME: The 32-bit calls have non-standard calling conventions. Use a
// proper register mask.
const uint32_t *RegMask =
Subtarget.is64Bit() ?
Subtarget.getRegisterInfo()->getDarwinTLSCallPreservedMask() :
Subtarget.getRegisterInfo()->getCallPreservedMask(*F, CallingConv::C);
if (Subtarget.is64Bit()) {
MachineInstrBuilder MIB =
BuildMI(*BB, MI, DL, TII->get(X86::MOV64rm), X86::RDI)
.addReg(X86::RIP)
.addImm(0)
.addReg(0)
.addGlobalAddress(MI.getOperand(3).getGlobal(), 0,
MI.getOperand(3).getTargetFlags())
.addReg(0);
MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
addDirectMem(MIB, X86::RDI);
MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
} else if (!isPositionIndependent()) {
MachineInstrBuilder MIB =
BuildMI(*BB, MI, DL, TII->get(X86::MOV32rm), X86::EAX)
.addReg(0)
.addImm(0)
.addReg(0)
.addGlobalAddress(MI.getOperand(3).getGlobal(), 0,
MI.getOperand(3).getTargetFlags())
.addReg(0);
MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
addDirectMem(MIB, X86::EAX);
MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
} else {
MachineInstrBuilder MIB =
BuildMI(*BB, MI, DL, TII->get(X86::MOV32rm), X86::EAX)
.addReg(TII->getGlobalBaseReg(F))
.addImm(0)
.addReg(0)
.addGlobalAddress(MI.getOperand(3).getGlobal(), 0,
MI.getOperand(3).getTargetFlags())
.addReg(0);
MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
addDirectMem(MIB, X86::EAX);
MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
}
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
static unsigned getOpcodeForRetpoline(unsigned RPOpc) {
switch (RPOpc) {
case X86::RETPOLINE_CALL32:
return X86::CALLpcrel32;
case X86::RETPOLINE_CALL64:
return X86::CALL64pcrel32;
case X86::RETPOLINE_TCRETURN32:
return X86::TCRETURNdi;
case X86::RETPOLINE_TCRETURN64:
return X86::TCRETURNdi64;
}
llvm_unreachable("not retpoline opcode");
}
static const char *getRetpolineSymbol(const X86Subtarget &Subtarget,
unsigned Reg) {
if (Subtarget.useRetpolineExternalThunk()) {
// When using an external thunk for retpolines, we pick names that match the
// names GCC happens to use as well. This helps simplify the implementation
// of the thunks for kernels where they have no easy ability to create
// aliases and are doing non-trivial configuration of the thunk's body. For
// example, the Linux kernel will do boot-time hot patching of the thunk
// bodies and cannot easily export aliases of these to loaded modules.
//
// Note that at any point in the future, we may need to change the semantics
// of how we implement retpolines and at that time will likely change the
// name of the called thunk. Essentially, there is no hard guarantee that
// LLVM will generate calls to specific thunks, we merely make a best-effort
// attempt to help out kernels and other systems where duplicating the
// thunks is costly.
switch (Reg) {
case X86::EAX:
assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
return "__x86_indirect_thunk_eax";
case X86::ECX:
assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
return "__x86_indirect_thunk_ecx";
case X86::EDX:
assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
return "__x86_indirect_thunk_edx";
case X86::EDI:
assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
return "__x86_indirect_thunk_edi";
case X86::R11:
assert(Subtarget.is64Bit() && "Should not be using a 64-bit thunk!");
return "__x86_indirect_thunk_r11";
}
llvm_unreachable("unexpected reg for retpoline");
}
// When targeting an internal COMDAT thunk use an LLVM-specific name.
switch (Reg) {
case X86::EAX:
assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
return "__llvm_retpoline_eax";
case X86::ECX:
assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
return "__llvm_retpoline_ecx";
case X86::EDX:
assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
return "__llvm_retpoline_edx";
case X86::EDI:
assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
return "__llvm_retpoline_edi";
case X86::R11:
assert(Subtarget.is64Bit() && "Should not be using a 64-bit thunk!");
return "__llvm_retpoline_r11";
}
llvm_unreachable("unexpected reg for retpoline");
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredRetpoline(MachineInstr &MI,
MachineBasicBlock *BB) const {
// Copy the virtual register into the R11 physical register and
// call the retpoline thunk.
DebugLoc DL = MI.getDebugLoc();
const X86InstrInfo *TII = Subtarget.getInstrInfo();
unsigned CalleeVReg = MI.getOperand(0).getReg();
unsigned Opc = getOpcodeForRetpoline(MI.getOpcode());
// Find an available scratch register to hold the callee. On 64-bit, we can
// just use R11, but we scan for uses anyway to ensure we don't generate
// incorrect code. On 32-bit, we use one of EAX, ECX, or EDX that isn't
// already a register use operand to the call to hold the callee. If none
// are available, use EDI instead. EDI is chosen because EBX is the PIC base
// register and ESI is the base pointer to realigned stack frames with VLAs.
SmallVector<unsigned, 3> AvailableRegs;
if (Subtarget.is64Bit())
AvailableRegs.push_back(X86::R11);
else
AvailableRegs.append({X86::EAX, X86::ECX, X86::EDX, X86::EDI});
// Zero out any registers that are already used.
for (const auto &MO : MI.operands()) {
if (MO.isReg() && MO.isUse())
for (unsigned &Reg : AvailableRegs)
if (Reg == MO.getReg())
Reg = 0;
}
// Choose the first remaining non-zero available register.
unsigned AvailableReg = 0;
for (unsigned MaybeReg : AvailableRegs) {
if (MaybeReg) {
AvailableReg = MaybeReg;
break;
}
}
if (!AvailableReg)
report_fatal_error("calling convention incompatible with retpoline, no "
"available registers");
const char *Symbol = getRetpolineSymbol(Subtarget, AvailableReg);
BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY), AvailableReg)
.addReg(CalleeVReg);
MI.getOperand(0).ChangeToES(Symbol);
MI.setDesc(TII->get(Opc));
MachineInstrBuilder(*BB->getParent(), &MI)
.addReg(AvailableReg, RegState::Implicit | RegState::Kill);
return BB;
}
/// SetJmp implies future control flow change upon calling the corresponding
/// LongJmp.
/// Instead of using the 'return' instruction, the long jump fixes the stack and
/// performs an indirect branch. To do so it uses the registers that were stored
/// in the jump buffer (when calling SetJmp).
/// In case the shadow stack is enabled we need to fix it as well, because some
/// return addresses will be skipped.
/// The function will save the SSP for future fixing in the function
/// emitLongJmpShadowStackFix.
/// \sa emitLongJmpShadowStackFix
/// \param [in] MI The temporary Machine Instruction for the builtin.
/// \param [in] MBB The Machine Basic Block that will be modified.
void X86TargetLowering::emitSetJmpShadowStackFix(MachineInstr &MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI.getDebugLoc();
MachineFunction *MF = MBB->getParent();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo &MRI = MF->getRegInfo();
MachineInstrBuilder MIB;
// Memory Reference.
MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
// Initialize a register with zero.
MVT PVT = getPointerTy(MF->getDataLayout());
const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
unsigned ZReg = MRI.createVirtualRegister(PtrRC);
unsigned XorRROpc = (PVT == MVT::i64) ? X86::XOR64rr : X86::XOR32rr;
BuildMI(*MBB, MI, DL, TII->get(XorRROpc))
.addDef(ZReg)
.addReg(ZReg, RegState::Undef)
.addReg(ZReg, RegState::Undef);
// Read the current SSP Register value to the zeroed register.
unsigned SSPCopyReg = MRI.createVirtualRegister(PtrRC);
unsigned RdsspOpc = (PVT == MVT::i64) ? X86::RDSSPQ : X86::RDSSPD;
BuildMI(*MBB, MI, DL, TII->get(RdsspOpc), SSPCopyReg).addReg(ZReg);
// Write the SSP register value to offset 3 in input memory buffer.
unsigned PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
MIB = BuildMI(*MBB, MI, DL, TII->get(PtrStoreOpc));
const int64_t SSPOffset = 3 * PVT.getStoreSize();
const unsigned MemOpndSlot = 1;
for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
if (i == X86::AddrDisp)
MIB.addDisp(MI.getOperand(MemOpndSlot + i), SSPOffset);
else
MIB.add(MI.getOperand(MemOpndSlot + i));
}
MIB.addReg(SSPCopyReg);
MIB.setMemRefs(MMOBegin, MMOEnd);
}
MachineBasicBlock *
X86TargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI.getDebugLoc();
MachineFunction *MF = MBB->getParent();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
MachineRegisterInfo &MRI = MF->getRegInfo();
const BasicBlock *BB = MBB->getBasicBlock();
MachineFunction::iterator I = ++MBB->getIterator();
// Memory Reference
MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
unsigned DstReg;
unsigned MemOpndSlot = 0;
unsigned CurOp = 0;
DstReg = MI.getOperand(CurOp++).getReg();
const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
(void)TRI;
unsigned mainDstReg = MRI.createVirtualRegister(RC);
unsigned restoreDstReg = MRI.createVirtualRegister(RC);
MemOpndSlot = CurOp;
MVT PVT = getPointerTy(MF->getDataLayout());
assert((PVT == MVT::i64 || PVT == MVT::i32) &&
"Invalid Pointer Size!");
// For v = setjmp(buf), we generate
//
// thisMBB:
// buf[LabelOffset] = restoreMBB <-- takes address of restoreMBB
// SjLjSetup restoreMBB
//
// mainMBB:
// v_main = 0
//
// sinkMBB:
// v = phi(main, restore)
//
// restoreMBB:
// if base pointer being used, load it from frame
// v_restore = 1
MachineBasicBlock *thisMBB = MBB;
MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
MF->insert(I, mainMBB);
MF->insert(I, sinkMBB);
MF->push_back(restoreMBB);
restoreMBB->setHasAddressTaken();
MachineInstrBuilder MIB;
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
// thisMBB:
unsigned PtrStoreOpc = 0;
unsigned LabelReg = 0;
const int64_t LabelOffset = 1 * PVT.getStoreSize();
bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) &&
!isPositionIndependent();
// Prepare IP either in reg or imm.
if (!UseImmLabel) {
PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
LabelReg = MRI.createVirtualRegister(PtrRC);
if (Subtarget.is64Bit()) {
MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
.addReg(X86::RIP)
.addImm(0)
.addReg(0)
.addMBB(restoreMBB)
.addReg(0);
} else {
const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
.addReg(XII->getGlobalBaseReg(MF))
.addImm(0)
.addReg(0)
.addMBB(restoreMBB, Subtarget.classifyBlockAddressReference())
.addReg(0);
}
} else
PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
// Store IP
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
if (i == X86::AddrDisp)
MIB.addDisp(MI.getOperand(MemOpndSlot + i), LabelOffset);
else
MIB.add(MI.getOperand(MemOpndSlot + i));
}
if (!UseImmLabel)
MIB.addReg(LabelReg);
else
MIB.addMBB(restoreMBB);
MIB.setMemRefs(MMOBegin, MMOEnd);
if (MF->getMMI().getModule()->getModuleFlag("cf-protection-return")) {
emitSetJmpShadowStackFix(MI, thisMBB);
}
// Setup
MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
.addMBB(restoreMBB);
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
MIB.addRegMask(RegInfo->getNoPreservedMask());
thisMBB->addSuccessor(mainMBB);
thisMBB->addSuccessor(restoreMBB);
// mainMBB:
// EAX = 0
BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
mainMBB->addSuccessor(sinkMBB);
// sinkMBB:
BuildMI(*sinkMBB, sinkMBB->begin(), DL,
TII->get(X86::PHI), DstReg)
.addReg(mainDstReg).addMBB(mainMBB)
.addReg(restoreDstReg).addMBB(restoreMBB);
// restoreMBB:
if (RegInfo->hasBasePointer(*MF)) {
const bool Uses64BitFramePtr =
Subtarget.isTarget64BitLP64() || Subtarget.isTargetNaCl64();
X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
X86FI->setRestoreBasePointer(MF);
unsigned FramePtr = RegInfo->getFrameRegister(*MF);
unsigned BasePtr = RegInfo->getBaseRegister();
unsigned Opm = Uses64BitFramePtr ? X86::MOV64rm : X86::MOV32rm;
addRegOffset(BuildMI(restoreMBB, DL, TII->get(Opm), BasePtr),
FramePtr, true, X86FI->getRestoreBasePointerOffset())
.setMIFlag(MachineInstr::FrameSetup);
}
BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
BuildMI(restoreMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB);
restoreMBB->addSuccessor(sinkMBB);
MI.eraseFromParent();
return sinkMBB;
}
/// Fix the shadow stack using the previously saved SSP pointer.
/// \sa emitSetJmpShadowStackFix
/// \param [in] MI The temporary Machine Instruction for the builtin.
/// \param [in] MBB The Machine Basic Block that will be modified.
/// \return The sink MBB that will perform the future indirect branch.
MachineBasicBlock *
X86TargetLowering::emitLongJmpShadowStackFix(MachineInstr &MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI.getDebugLoc();
MachineFunction *MF = MBB->getParent();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo &MRI = MF->getRegInfo();
// Memory Reference
MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
MVT PVT = getPointerTy(MF->getDataLayout());
const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
// checkSspMBB:
// xor vreg1, vreg1
// rdssp vreg1
// test vreg1, vreg1
// je sinkMBB # Jump if Shadow Stack is not supported
// fallMBB:
// mov buf+24/12(%rip), vreg2
// sub vreg1, vreg2
// jbe sinkMBB # No need to fix the Shadow Stack
// fixShadowMBB:
// shr 3/2, vreg2
// incssp vreg2 # fix the SSP according to the lower 8 bits
// shr 8, vreg2
// je sinkMBB
// fixShadowLoopPrepareMBB:
// shl vreg2
// mov 128, vreg3
// fixShadowLoopMBB:
// incssp vreg3
// dec vreg2
// jne fixShadowLoopMBB # Iterate until you finish fixing
// # the Shadow Stack
// sinkMBB:
MachineFunction::iterator I = ++MBB->getIterator();
const BasicBlock *BB = MBB->getBasicBlock();
MachineBasicBlock *checkSspMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *fallMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *fixShadowMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *fixShadowLoopPrepareMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *fixShadowLoopMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
MF->insert(I, checkSspMBB);
MF->insert(I, fallMBB);
MF->insert(I, fixShadowMBB);
MF->insert(I, fixShadowLoopPrepareMBB);
MF->insert(I, fixShadowLoopMBB);
MF->insert(I, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), MBB, MachineBasicBlock::iterator(MI),
MBB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
MBB->addSuccessor(checkSspMBB);
// Initialize a register with zero.
unsigned ZReg = MRI.createVirtualRegister(PtrRC);
unsigned XorRROpc = (PVT == MVT::i64) ? X86::XOR64rr : X86::XOR32rr;
BuildMI(checkSspMBB, DL, TII->get(XorRROpc))
.addDef(ZReg)
.addReg(ZReg, RegState::Undef)
.addReg(ZReg, RegState::Undef);
// Read the current SSP Register value to the zeroed register.
unsigned SSPCopyReg = MRI.createVirtualRegister(PtrRC);
unsigned RdsspOpc = (PVT == MVT::i64) ? X86::RDSSPQ : X86::RDSSPD;
BuildMI(checkSspMBB, DL, TII->get(RdsspOpc), SSPCopyReg).addReg(ZReg);
// Check whether the result of the SSP register is zero and jump directly
// to the sink.
unsigned TestRROpc = (PVT == MVT::i64) ? X86::TEST64rr : X86::TEST32rr;
BuildMI(checkSspMBB, DL, TII->get(TestRROpc))
.addReg(SSPCopyReg)
.addReg(SSPCopyReg);
BuildMI(checkSspMBB, DL, TII->get(X86::JE_1)).addMBB(sinkMBB);
checkSspMBB->addSuccessor(sinkMBB);
checkSspMBB->addSuccessor(fallMBB);
// Reload the previously saved SSP register value.
unsigned PrevSSPReg = MRI.createVirtualRegister(PtrRC);
unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
const int64_t SPPOffset = 3 * PVT.getStoreSize();
MachineInstrBuilder MIB =
BuildMI(fallMBB, DL, TII->get(PtrLoadOpc), PrevSSPReg);
for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
if (i == X86::AddrDisp)
MIB.addDisp(MI.getOperand(i), SPPOffset);
else
MIB.add(MI.getOperand(i));
}
MIB.setMemRefs(MMOBegin, MMOEnd);
// Subtract the current SSP from the previous SSP.
unsigned SspSubReg = MRI.createVirtualRegister(PtrRC);
unsigned SubRROpc = (PVT == MVT::i64) ? X86::SUB64rr : X86::SUB32rr;
BuildMI(fallMBB, DL, TII->get(SubRROpc), SspSubReg)
.addReg(PrevSSPReg)
.addReg(SSPCopyReg);
// Jump to sink in case PrevSSPReg <= SSPCopyReg.
BuildMI(fallMBB, DL, TII->get(X86::JBE_1)).addMBB(sinkMBB);
fallMBB->addSuccessor(sinkMBB);
fallMBB->addSuccessor(fixShadowMBB);
// Shift right by 2/3 for 32/64 because incssp multiplies the argument by 4/8.
unsigned ShrRIOpc = (PVT == MVT::i64) ? X86::SHR64ri : X86::SHR32ri;
unsigned Offset = (PVT == MVT::i64) ? 3 : 2;
unsigned SspFirstShrReg = MRI.createVirtualRegister(PtrRC);
BuildMI(fixShadowMBB, DL, TII->get(ShrRIOpc), SspFirstShrReg)
.addReg(SspSubReg)
.addImm(Offset);
// Increase SSP when looking only on the lower 8 bits of the delta.
unsigned IncsspOpc = (PVT == MVT::i64) ? X86::INCSSPQ : X86::INCSSPD;
BuildMI(fixShadowMBB, DL, TII->get(IncsspOpc)).addReg(SspFirstShrReg);
// Reset the lower 8 bits.
unsigned SspSecondShrReg = MRI.createVirtualRegister(PtrRC);
BuildMI(fixShadowMBB, DL, TII->get(ShrRIOpc), SspSecondShrReg)
.addReg(SspFirstShrReg)
.addImm(8);
// Jump if the result of the shift is zero.
BuildMI(fixShadowMBB, DL, TII->get(X86::JE_1)).addMBB(sinkMBB);
fixShadowMBB->addSuccessor(sinkMBB);
fixShadowMBB->addSuccessor(fixShadowLoopPrepareMBB);
// Do a single shift left.
unsigned ShlR1Opc = (PVT == MVT::i64) ? X86::SHL64r1 : X86::SHL32r1;
unsigned SspAfterShlReg = MRI.createVirtualRegister(PtrRC);
BuildMI(fixShadowLoopPrepareMBB, DL, TII->get(ShlR1Opc), SspAfterShlReg)
.addReg(SspSecondShrReg);
// Save the value 128 to a register (will be used next with incssp).
unsigned Value128InReg = MRI.createVirtualRegister(PtrRC);
unsigned MovRIOpc = (PVT == MVT::i64) ? X86::MOV64ri32 : X86::MOV32ri;
BuildMI(fixShadowLoopPrepareMBB, DL, TII->get(MovRIOpc), Value128InReg)
.addImm(128);
fixShadowLoopPrepareMBB->addSuccessor(fixShadowLoopMBB);
// Since incssp only looks at the lower 8 bits, we might need to do several
// iterations of incssp until we finish fixing the shadow stack.
unsigned DecReg = MRI.createVirtualRegister(PtrRC);
unsigned CounterReg = MRI.createVirtualRegister(PtrRC);
BuildMI(fixShadowLoopMBB, DL, TII->get(X86::PHI), CounterReg)
.addReg(SspAfterShlReg)
.addMBB(fixShadowLoopPrepareMBB)
.addReg(DecReg)
.addMBB(fixShadowLoopMBB);
// Every iteration we increase the SSP by 128.
BuildMI(fixShadowLoopMBB, DL, TII->get(IncsspOpc)).addReg(Value128InReg);
// Every iteration we decrement the counter by 1.
unsigned DecROpc = (PVT == MVT::i64) ? X86::DEC64r : X86::DEC32r;
BuildMI(fixShadowLoopMBB, DL, TII->get(DecROpc), DecReg).addReg(CounterReg);
// Jump if the counter is not zero yet.
BuildMI(fixShadowLoopMBB, DL, TII->get(X86::JNE_1)).addMBB(fixShadowLoopMBB);
fixShadowLoopMBB->addSuccessor(sinkMBB);
fixShadowLoopMBB->addSuccessor(fixShadowLoopMBB);
return sinkMBB;
}
MachineBasicBlock *
X86TargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI.getDebugLoc();
MachineFunction *MF = MBB->getParent();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo &MRI = MF->getRegInfo();
// Memory Reference
MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
MVT PVT = getPointerTy(MF->getDataLayout());
assert((PVT == MVT::i64 || PVT == MVT::i32) &&
"Invalid Pointer Size!");
const TargetRegisterClass *RC =
(PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
unsigned Tmp = MRI.createVirtualRegister(RC);
// Since FP is only updated here but NOT referenced, it's treated as GPR.
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
unsigned SP = RegInfo->getStackRegister();
MachineInstrBuilder MIB;
const int64_t LabelOffset = 1 * PVT.getStoreSize();
const int64_t SPOffset = 2 * PVT.getStoreSize();
unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
MachineBasicBlock *thisMBB = MBB;
// When CET and shadow stack is enabled, we need to fix the Shadow Stack.
if (MF->getMMI().getModule()->getModuleFlag("cf-protection-return")) {
thisMBB = emitLongJmpShadowStackFix(MI, thisMBB);
}
// Reload FP
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrLoadOpc), FP);
for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
MIB.add(MI.getOperand(i));
MIB.setMemRefs(MMOBegin, MMOEnd);
// Reload IP
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
if (i == X86::AddrDisp)
MIB.addDisp(MI.getOperand(i), LabelOffset);
else
MIB.add(MI.getOperand(i));
}
MIB.setMemRefs(MMOBegin, MMOEnd);
// Reload SP
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrLoadOpc), SP);
for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
if (i == X86::AddrDisp)
MIB.addDisp(MI.getOperand(i), SPOffset);
else
MIB.add(MI.getOperand(i));
}
MIB.setMemRefs(MMOBegin, MMOEnd);
// Jump
BuildMI(*thisMBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
MI.eraseFromParent();
return thisMBB;
}
void X86TargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
MachineBasicBlock *MBB,
MachineBasicBlock *DispatchBB,
int FI) const {
DebugLoc DL = MI.getDebugLoc();
MachineFunction *MF = MBB->getParent();
MachineRegisterInfo *MRI = &MF->getRegInfo();
const X86InstrInfo *TII = Subtarget.getInstrInfo();
MVT PVT = getPointerTy(MF->getDataLayout());
assert((PVT == MVT::i64 || PVT == MVT::i32) && "Invalid Pointer Size!");
unsigned Op = 0;
unsigned VR = 0;
bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) &&
!isPositionIndependent();
if (UseImmLabel) {
Op = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
} else {
const TargetRegisterClass *TRC =
(PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
VR = MRI->createVirtualRegister(TRC);
Op = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
if (Subtarget.is64Bit())
BuildMI(*MBB, MI, DL, TII->get(X86::LEA64r), VR)
.addReg(X86::RIP)
.addImm(1)
.addReg(0)
.addMBB(DispatchBB)
.addReg(0);
else
BuildMI(*MBB, MI, DL, TII->get(X86::LEA32r), VR)
.addReg(0) /* TII->getGlobalBaseReg(MF) */
.addImm(1)
.addReg(0)
.addMBB(DispatchBB, Subtarget.classifyBlockAddressReference())
.addReg(0);
}
MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(Op));
addFrameReference(MIB, FI, Subtarget.is64Bit() ? 56 : 36);
if (UseImmLabel)
MIB.addMBB(DispatchBB);
else
MIB.addReg(VR);
}
MachineBasicBlock *
X86TargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
MachineBasicBlock *BB) const {
DebugLoc DL = MI.getDebugLoc();
MachineFunction *MF = BB->getParent();
MachineFrameInfo &MFI = MF->getFrameInfo();
MachineRegisterInfo *MRI = &MF->getRegInfo();
const X86InstrInfo *TII = Subtarget.getInstrInfo();
int FI = MFI.getFunctionContextIndex();
// Get a mapping of the call site numbers to all of the landing pads they're
// associated with.
DenseMap<unsigned, SmallVector<MachineBasicBlock *, 2>> CallSiteNumToLPad;
unsigned MaxCSNum = 0;
for (auto &MBB : *MF) {
if (!MBB.isEHPad())
continue;
MCSymbol *Sym = nullptr;
for (const auto &MI : MBB) {
if (MI.isDebugInstr())
continue;
assert(MI.isEHLabel() && "expected EH_LABEL");
Sym = MI.getOperand(0).getMCSymbol();
break;
}
if (!MF->hasCallSiteLandingPad(Sym))
continue;
for (unsigned CSI : MF->getCallSiteLandingPad(Sym)) {
CallSiteNumToLPad[CSI].push_back(&MBB);
MaxCSNum = std::max(MaxCSNum, CSI);
}
}
// Get an ordered list of the machine basic blocks for the jump table.
std::vector<MachineBasicBlock *> LPadList;
SmallPtrSet<MachineBasicBlock *, 32> InvokeBBs;
LPadList.reserve(CallSiteNumToLPad.size());
for (unsigned CSI = 1; CSI <= MaxCSNum; ++CSI) {
for (auto &LP : CallSiteNumToLPad[CSI]) {
LPadList.push_back(LP);
InvokeBBs.insert(LP->pred_begin(), LP->pred_end());
}
}
assert(!LPadList.empty() &&
"No landing pad destinations for the dispatch jump table!");
// Create the MBBs for the dispatch code.
// Shove the dispatch's address into the return slot in the function context.
MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
DispatchBB->setIsEHPad(true);
MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
BuildMI(TrapBB, DL, TII->get(X86::TRAP));
DispatchBB->addSuccessor(TrapBB);
MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
DispatchBB->addSuccessor(DispContBB);
// Insert MBBs.
MF->push_back(DispatchBB);
MF->push_back(DispContBB);
MF->push_back(TrapBB);
// Insert code into the entry block that creates and registers the function
// context.
SetupEntryBlockForSjLj(MI, BB, DispatchBB, FI);
// Create the jump table and associated information
unsigned JTE = getJumpTableEncoding();
MachineJumpTableInfo *JTI = MF->getOrCreateJumpTableInfo(JTE);
unsigned MJTI = JTI->createJumpTableIndex(LPadList);
const X86RegisterInfo &RI = TII->getRegisterInfo();
// Add a register mask with no preserved registers. This results in all
// registers being marked as clobbered.
if (RI.hasBasePointer(*MF)) {
const bool FPIs64Bit =
Subtarget.isTarget64BitLP64() || Subtarget.isTargetNaCl64();
X86MachineFunctionInfo *MFI = MF->getInfo<X86MachineFunctionInfo>();
MFI->setRestoreBasePointer(MF);
unsigned FP = RI.getFrameRegister(*MF);
unsigned BP = RI.getBaseRegister();
unsigned Op = FPIs64Bit ? X86::MOV64rm : X86::MOV32rm;
addRegOffset(BuildMI(DispatchBB, DL, TII->get(Op), BP), FP, true,
MFI->getRestoreBasePointerOffset())
.addRegMask(RI.getNoPreservedMask());
} else {
BuildMI(DispatchBB, DL, TII->get(X86::NOOP))
.addRegMask(RI.getNoPreservedMask());
}
// IReg is used as an index in a memory operand and therefore can't be SP
unsigned IReg = MRI->createVirtualRegister(&X86::GR32_NOSPRegClass);
addFrameReference(BuildMI(DispatchBB, DL, TII->get(X86::MOV32rm), IReg), FI,
Subtarget.is64Bit() ? 8 : 4);
BuildMI(DispatchBB, DL, TII->get(X86::CMP32ri))
.addReg(IReg)
.addImm(LPadList.size());
BuildMI(DispatchBB, DL, TII->get(X86::JAE_1)).addMBB(TrapBB);
if (Subtarget.is64Bit()) {
unsigned BReg = MRI->createVirtualRegister(&X86::GR64RegClass);
unsigned IReg64 = MRI->createVirtualRegister(&X86::GR64_NOSPRegClass);
// leaq .LJTI0_0(%rip), BReg
BuildMI(DispContBB, DL, TII->get(X86::LEA64r), BReg)
.addReg(X86::RIP)
.addImm(1)
.addReg(0)
.addJumpTableIndex(MJTI)
.addReg(0);
// movzx IReg64, IReg
BuildMI(DispContBB, DL, TII->get(TargetOpcode::SUBREG_TO_REG), IReg64)
.addImm(0)
.addReg(IReg)
.addImm(X86::sub_32bit);
switch (JTE) {
case MachineJumpTableInfo::EK_BlockAddress:
// jmpq *(BReg,IReg64,8)
BuildMI(DispContBB, DL, TII->get(X86::JMP64m))
.addReg(BReg)
.addImm(8)
.addReg(IReg64)
.addImm(0)
.addReg(0);
break;
case MachineJumpTableInfo::EK_LabelDifference32: {
unsigned OReg = MRI->createVirtualRegister(&X86::GR32RegClass);
unsigned OReg64 = MRI->createVirtualRegister(&X86::GR64RegClass);
unsigned TReg = MRI->createVirtualRegister(&X86::GR64RegClass);
// movl (BReg,IReg64,4), OReg
BuildMI(DispContBB, DL, TII->get(X86::MOV32rm), OReg)
.addReg(BReg)
.addImm(4)
.addReg(IReg64)
.addImm(0)
.addReg(0);
// movsx OReg64, OReg
BuildMI(DispContBB, DL, TII->get(X86::MOVSX64rr32), OReg64).addReg(OReg);
// addq BReg, OReg64, TReg
BuildMI(DispContBB, DL, TII->get(X86::ADD64rr), TReg)
.addReg(OReg64)
.addReg(BReg);
// jmpq *TReg
BuildMI(DispContBB, DL, TII->get(X86::JMP64r)).addReg(TReg);
break;
}
default:
llvm_unreachable("Unexpected jump table encoding");
}
} else {
// jmpl *.LJTI0_0(,IReg,4)
BuildMI(DispContBB, DL, TII->get(X86::JMP32m))
.addReg(0)
.addImm(4)
.addReg(IReg)
.addJumpTableIndex(MJTI)
.addReg(0);
}
// Add the jump table entries as successors to the MBB.
SmallPtrSet<MachineBasicBlock *, 8> SeenMBBs;
for (auto &LP : LPadList)
if (SeenMBBs.insert(LP).second)
DispContBB->addSuccessor(LP);
// N.B. the order the invoke BBs are processed in doesn't matter here.
SmallVector<MachineBasicBlock *, 64> MBBLPads;
const MCPhysReg *SavedRegs = MF->getRegInfo().getCalleeSavedRegs();
for (MachineBasicBlock *MBB : InvokeBBs) {
// Remove the landing pad successor from the invoke block and replace it
// with the new dispatch block.
// Keep a copy of Successors since it's modified inside the loop.
SmallVector<MachineBasicBlock *, 8> Successors(MBB->succ_rbegin(),
MBB->succ_rend());
// FIXME: Avoid quadratic complexity.
for (auto MBBS : Successors) {
if (MBBS->isEHPad()) {
MBB->removeSuccessor(MBBS);
MBBLPads.push_back(MBBS);
}
}
MBB->addSuccessor(DispatchBB);
// Find the invoke call and mark all of the callee-saved registers as
// 'implicit defined' so that they're spilled. This prevents code from
// moving instructions to before the EH block, where they will never be
// executed.
for (auto &II : reverse(*MBB)) {
if (!II.isCall())
continue;
DenseMap<unsigned, bool> DefRegs;
for (auto &MOp : II.operands())
if (MOp.isReg())
DefRegs[MOp.getReg()] = true;
MachineInstrBuilder MIB(*MF, &II);
for (unsigned RI = 0; SavedRegs[RI]; ++RI) {
unsigned Reg = SavedRegs[RI];
if (!DefRegs[Reg])
MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
}
break;
}
}
// Mark all former landing pads as non-landing pads. The dispatch is the only
// landing pad now.
for (auto &LP : MBBLPads)
LP->setIsEHPad(false);
// The instruction is gone now.
MI.eraseFromParent();
return BB;
}
MachineBasicBlock *
X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *BB) const {
MachineFunction *MF = BB->getParent();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
switch (MI.getOpcode()) {
default: llvm_unreachable("Unexpected instr type to insert");
case X86::TLS_addr32:
case X86::TLS_addr64:
case X86::TLS_base_addr32:
case X86::TLS_base_addr64:
return EmitLoweredTLSAddr(MI, BB);
case X86::RETPOLINE_CALL32:
case X86::RETPOLINE_CALL64:
case X86::RETPOLINE_TCRETURN32:
case X86::RETPOLINE_TCRETURN64:
return EmitLoweredRetpoline(MI, BB);
case X86::CATCHRET:
return EmitLoweredCatchRet(MI, BB);
case X86::CATCHPAD:
return EmitLoweredCatchPad(MI, BB);
case X86::SEG_ALLOCA_32:
case X86::SEG_ALLOCA_64:
return EmitLoweredSegAlloca(MI, BB);
case X86::TLSCall_32:
case X86::TLSCall_64:
return EmitLoweredTLSCall(MI, BB);
case X86::CMOV_FR32:
case X86::CMOV_FR64:
case X86::CMOV_F128:
case X86::CMOV_GR8:
case X86::CMOV_GR16:
case X86::CMOV_GR32:
case X86::CMOV_RFP32:
case X86::CMOV_RFP64:
case X86::CMOV_RFP80:
case X86::CMOV_V2F64:
case X86::CMOV_V2I64:
case X86::CMOV_V4F32:
case X86::CMOV_V4F64:
case X86::CMOV_V4I64:
case X86::CMOV_V16F32:
case X86::CMOV_V8F32:
case X86::CMOV_V8F64:
case X86::CMOV_V8I64:
case X86::CMOV_V8I1:
case X86::CMOV_V16I1:
case X86::CMOV_V32I1:
case X86::CMOV_V64I1:
return EmitLoweredSelect(MI, BB);
case X86::RDFLAGS32:
case X86::RDFLAGS64: {
unsigned PushF =
MI.getOpcode() == X86::RDFLAGS32 ? X86::PUSHF32 : X86::PUSHF64;
unsigned Pop = MI.getOpcode() == X86::RDFLAGS32 ? X86::POP32r : X86::POP64r;
MachineInstr *Push = BuildMI(*BB, MI, DL, TII->get(PushF));
// Permit reads of the EFLAGS and DF registers without them being defined.
// This intrinsic exists to read external processor state in flags, such as
// the trap flag, interrupt flag, and direction flag, none of which are
// modeled by the backend.
assert(Push->getOperand(2).getReg() == X86::EFLAGS &&
"Unexpected register in operand!");
Push->getOperand(2).setIsUndef();
assert(Push->getOperand(3).getReg() == X86::DF &&
"Unexpected register in operand!");
Push->getOperand(3).setIsUndef();
BuildMI(*BB, MI, DL, TII->get(Pop), MI.getOperand(0).getReg());
MI.eraseFromParent(); // The pseudo is gone now.
return BB;
}
case X86::WRFLAGS32:
case X86::WRFLAGS64: {
unsigned Push =
MI.getOpcode() == X86::WRFLAGS32 ? X86::PUSH32r : X86::PUSH64r;
unsigned PopF =
MI.getOpcode() == X86::WRFLAGS32 ? X86::POPF32 : X86::POPF64;
BuildMI(*BB, MI, DL, TII->get(Push)).addReg(MI.getOperand(0).getReg());
BuildMI(*BB, MI, DL, TII->get(PopF));
MI.eraseFromParent(); // The pseudo is gone now.
return BB;
}
case X86::RELEASE_FADD32mr:
case X86::RELEASE_FADD64mr:
return EmitLoweredAtomicFP(MI, BB);
case X86::FP32_TO_INT16_IN_MEM:
case X86::FP32_TO_INT32_IN_MEM:
case X86::FP32_TO_INT64_IN_MEM:
case X86::FP64_TO_INT16_IN_MEM:
case X86::FP64_TO_INT32_IN_MEM:
case X86::FP64_TO_INT64_IN_MEM:
case X86::FP80_TO_INT16_IN_MEM:
case X86::FP80_TO_INT32_IN_MEM:
case X86::FP80_TO_INT64_IN_MEM: {
// Change the floating point control register to use "round towards zero"
// mode when truncating to an integer value.
int CWFrameIdx = MF->getFrameInfo().CreateStackObject(2, 2, false);
addFrameReference(BuildMI(*BB, MI, DL,
TII->get(X86::FNSTCW16m)), CWFrameIdx);
// Load the old value of the high byte of the control word...
unsigned OldCW =
MF->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
CWFrameIdx);
// Set the high part to be round to zero...
addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
.addImm(0xC7F);
// Reload the modified control word now...
addFrameReference(BuildMI(*BB, MI, DL,
TII->get(X86::FLDCW16m)), CWFrameIdx);
// Restore the memory image of control word to original value
addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
.addReg(OldCW);
// Get the X86 opcode to use.
unsigned Opc;
switch (MI.getOpcode()) {
default: llvm_unreachable("illegal opcode!");
case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
}
X86AddressMode AM = getAddressFromInstr(&MI, 0);
addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
.addReg(MI.getOperand(X86::AddrNumOperands).getReg());
// Reload the original control word now.
addFrameReference(BuildMI(*BB, MI, DL,
TII->get(X86::FLDCW16m)), CWFrameIdx);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
// Thread synchronization.
case X86::MONITOR:
return emitMonitor(MI, BB, Subtarget, X86::MONITORrrr);
case X86::MONITORX:
return emitMonitor(MI, BB, Subtarget, X86::MONITORXrrr);
// Cache line zero
case X86::CLZERO:
return emitClzero(&MI, BB, Subtarget);
// PKU feature
case X86::WRPKRU:
return emitWRPKRU(MI, BB, Subtarget);
case X86::RDPKRU:
return emitRDPKRU(MI, BB, Subtarget);
// xbegin
case X86::XBEGIN:
return emitXBegin(MI, BB, Subtarget.getInstrInfo());
case X86::VASTART_SAVE_XMM_REGS:
return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
case X86::VAARG_64:
return EmitVAARG64WithCustomInserter(MI, BB);
case X86::EH_SjLj_SetJmp32:
case X86::EH_SjLj_SetJmp64:
return emitEHSjLjSetJmp(MI, BB);
case X86::EH_SjLj_LongJmp32:
case X86::EH_SjLj_LongJmp64:
return emitEHSjLjLongJmp(MI, BB);
case X86::Int_eh_sjlj_setup_dispatch:
return EmitSjLjDispatchBlock(MI, BB);
case TargetOpcode::STATEPOINT:
// As an implementation detail, STATEPOINT shares the STACKMAP format at
// this point in the process. We diverge later.
return emitPatchPoint(MI, BB);
case TargetOpcode::STACKMAP:
case TargetOpcode::PATCHPOINT:
return emitPatchPoint(MI, BB);
case TargetOpcode::PATCHABLE_EVENT_CALL:
return emitXRayCustomEvent(MI, BB);
case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
return emitXRayTypedEvent(MI, BB);
case X86::LCMPXCHG8B: {
const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
// In addition to 4 E[ABCD] registers implied by encoding, CMPXCHG8B
// requires a memory operand. If it happens that current architecture is
// i686 and for current function we need a base pointer
// - which is ESI for i686 - register allocator would not be able to
// allocate registers for an address in form of X(%reg, %reg, Y)
// - there never would be enough unreserved registers during regalloc
// (without the need for base ptr the only option would be X(%edi, %esi, Y).
// We are giving a hand to register allocator by precomputing the address in
// a new vreg using LEA.
// If it is not i686 or there is no base pointer - nothing to do here.
if (!Subtarget.is32Bit() || !TRI->hasBasePointer(*MF))
return BB;
// Even though this code does not necessarily needs the base pointer to
// be ESI, we check for that. The reason: if this assert fails, there are
// some changes happened in the compiler base pointer handling, which most
// probably have to be addressed somehow here.
assert(TRI->getBaseRegister() == X86::ESI &&
"LCMPXCHG8B custom insertion for i686 is written with X86::ESI as a "
"base pointer in mind");
MachineRegisterInfo &MRI = MF->getRegInfo();
MVT SPTy = getPointerTy(MF->getDataLayout());
const TargetRegisterClass *AddrRegClass = getRegClassFor(SPTy);
unsigned computedAddrVReg = MRI.createVirtualRegister(AddrRegClass);
X86AddressMode AM = getAddressFromInstr(&MI, 0);
// Regalloc does not need any help when the memory operand of CMPXCHG8B
// does not use index register.
if (AM.IndexReg == X86::NoRegister)
return BB;
// After X86TargetLowering::ReplaceNodeResults CMPXCHG8B is glued to its
// four operand definitions that are E[ABCD] registers. We skip them and
// then insert the LEA.
MachineBasicBlock::iterator MBBI(MI);
while (MBBI->definesRegister(X86::EAX) || MBBI->definesRegister(X86::EBX) ||
MBBI->definesRegister(X86::ECX) || MBBI->definesRegister(X86::EDX))
--MBBI;
addFullAddress(
BuildMI(*BB, *MBBI, DL, TII->get(X86::LEA32r), computedAddrVReg), AM);
setDirectAddressInInstr(&MI, 0, computedAddrVReg);
return BB;
}
case X86::LCMPXCHG16B:
return BB;
case X86::LCMPXCHG8B_SAVE_EBX:
case X86::LCMPXCHG16B_SAVE_RBX: {
unsigned BasePtr =
MI.getOpcode() == X86::LCMPXCHG8B_SAVE_EBX ? X86::EBX : X86::RBX;
if (!BB->isLiveIn(BasePtr))
BB->addLiveIn(BasePtr);
return BB;
}
}
}
//===----------------------------------------------------------------------===//
// X86 Optimization Hooks
//===----------------------------------------------------------------------===//
bool
X86TargetLowering::targetShrinkDemandedConstant(SDValue Op,
const APInt &Demanded,
TargetLoweringOpt &TLO) const {
// Only optimize Ands to prevent shrinking a constant that could be
// matched by movzx.
if (Op.getOpcode() != ISD::AND)
return false;
EVT VT = Op.getValueType();
// Ignore vectors.
if (VT.isVector())
return false;
unsigned Size = VT.getSizeInBits();
// Make sure the RHS really is a constant.
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
if (!C)
return false;
const APInt &Mask = C->getAPIntValue();
// Clear all non-demanded bits initially.
APInt ShrunkMask = Mask & Demanded;
// Find the width of the shrunk mask.
unsigned Width = ShrunkMask.getActiveBits();
// If the mask is all 0s there's nothing to do here.
if (Width == 0)
return false;
// Find the next power of 2 width, rounding up to a byte.
Width = PowerOf2Ceil(std::max(Width, 8U));
// Truncate the width to size to handle illegal types.
Width = std::min(Width, Size);
// Calculate a possible zero extend mask for this constant.
APInt ZeroExtendMask = APInt::getLowBitsSet(Size, Width);
// If we aren't changing the mask, just return true to keep it and prevent
// the caller from optimizing.
if (ZeroExtendMask == Mask)
return true;
// Make sure the new mask can be represented by a combination of mask bits
// and non-demanded bits.
if (!ZeroExtendMask.isSubsetOf(Mask | ~Demanded))
return false;
// Replace the constant with the zero extend mask.
SDLoc DL(Op);
SDValue NewC = TLO.DAG.getConstant(ZeroExtendMask, DL, VT);
SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
return TLO.CombineTo(Op, NewOp);
}
void X86TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth) const {
unsigned BitWidth = Known.getBitWidth();
unsigned Opc = Op.getOpcode();
EVT VT = Op.getValueType();
assert((Opc >= ISD::BUILTIN_OP_END ||
Opc == ISD::INTRINSIC_WO_CHAIN ||
Opc == ISD::INTRINSIC_W_CHAIN ||
Opc == ISD::INTRINSIC_VOID) &&
"Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!");
Known.resetAll();
switch (Opc) {
default: break;
case X86ISD::SETCC:
Known.Zero.setBitsFrom(1);
break;
case X86ISD::MOVMSK: {
unsigned NumLoBits = Op.getOperand(0).getValueType().getVectorNumElements();
Known.Zero.setBitsFrom(NumLoBits);
break;
}
case X86ISD::PEXTRB:
case X86ISD::PEXTRW: {
SDValue Src = Op.getOperand(0);
EVT SrcVT = Src.getValueType();
APInt DemandedElt = APInt::getOneBitSet(SrcVT.getVectorNumElements(),
Op.getConstantOperandVal(1));
DAG.computeKnownBits(Src, Known, DemandedElt, Depth + 1);
Known = Known.zextOrTrunc(BitWidth);
Known.Zero.setBitsFrom(SrcVT.getScalarSizeInBits());
break;
}
case X86ISD::VSHLI:
case X86ISD::VSRLI: {
if (auto *ShiftImm = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
if (ShiftImm->getAPIntValue().uge(VT.getScalarSizeInBits())) {
Known.setAllZero();
break;
}
DAG.computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
unsigned ShAmt = ShiftImm->getZExtValue();
if (Opc == X86ISD::VSHLI) {
Known.Zero <<= ShAmt;
Known.One <<= ShAmt;
// Low bits are known zero.
Known.Zero.setLowBits(ShAmt);
} else {
Known.Zero.lshrInPlace(ShAmt);
Known.One.lshrInPlace(ShAmt);
// High bits are known zero.
Known.Zero.setHighBits(ShAmt);
}
}
break;
}
case X86ISD::PACKUS: {
// PACKUS is just a truncation if the upper half is zero.
// TODO: Add DemandedElts support.
KnownBits Known2;
DAG.computeKnownBits(Op.getOperand(0), Known, Depth + 1);
DAG.computeKnownBits(Op.getOperand(1), Known2, Depth + 1);
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
if (Known.countMinLeadingZeros() < BitWidth)
Known.resetAll();
Known = Known.trunc(BitWidth);
break;
}
case X86ISD::VZEXT: {
// TODO: Add DemandedElts support.
SDValue N0 = Op.getOperand(0);
unsigned NumElts = VT.getVectorNumElements();
EVT SrcVT = N0.getValueType();
unsigned InNumElts = SrcVT.getVectorNumElements();
unsigned InBitWidth = SrcVT.getScalarSizeInBits();
assert(InNumElts >= NumElts && "Illegal VZEXT input");
Known = KnownBits(InBitWidth);
APInt DemandedSrcElts = APInt::getLowBitsSet(InNumElts, NumElts);
DAG.computeKnownBits(N0, Known, DemandedSrcElts, Depth + 1);
Known = Known.zext(BitWidth);
Known.Zero.setBitsFrom(InBitWidth);
break;
}
case X86ISD::CMOV: {
DAG.computeKnownBits(Op.getOperand(1), Known, Depth+1);
// If we don't know any bits, early out.
if (Known.isUnknown())
break;
KnownBits Known2;
DAG.computeKnownBits(Op.getOperand(0), Known2, Depth+1);
// Only known if known in both the LHS and RHS.
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
break;
}
case X86ISD::UDIVREM8_ZEXT_HREG:
// TODO: Support more than just the zero extended bits?
if (Op.getResNo() != 1)
break;
// The remainder is zero extended.
Known.Zero.setBitsFrom(8);
break;
}
// Handle target shuffles.
// TODO - use resolveTargetShuffleInputs once we can limit recursive depth.
if (isTargetShuffle(Opc)) {
bool IsUnary;
SmallVector<int, 64> Mask;
SmallVector<SDValue, 2> Ops;
if (getTargetShuffleMask(Op.getNode(), VT.getSimpleVT(), true, Ops, Mask,
IsUnary)) {
unsigned NumOps = Ops.size();
unsigned NumElts = VT.getVectorNumElements();
if (Mask.size() == NumElts) {
SmallVector<APInt, 2> DemandedOps(NumOps, APInt(NumElts, 0));
Known.Zero.setAllBits(); Known.One.setAllBits();
for (unsigned i = 0; i != NumElts; ++i) {
if (!DemandedElts[i])
continue;
int M = Mask[i];
if (M == SM_SentinelUndef) {
// For UNDEF elements, we don't know anything about the common state
// of the shuffle result.
Known.resetAll();
break;
} else if (M == SM_SentinelZero) {
Known.One.clearAllBits();
continue;
}
assert(0 <= M && (unsigned)M < (NumOps * NumElts) &&
"Shuffle index out of range");
unsigned OpIdx = (unsigned)M / NumElts;
unsigned EltIdx = (unsigned)M % NumElts;
if (Ops[OpIdx].getValueType() != VT) {
// TODO - handle target shuffle ops with different value types.
Known.resetAll();
break;
}
DemandedOps[OpIdx].setBit(EltIdx);
}
// Known bits are the values that are shared by every demanded element.
for (unsigned i = 0; i != NumOps && !Known.isUnknown(); ++i) {
if (!DemandedOps[i])
continue;
KnownBits Known2;
DAG.computeKnownBits(Ops[i], Known2, DemandedOps[i], Depth + 1);
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
}
}
}
}
}
unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(
SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
unsigned Depth) const {
unsigned VTBits = Op.getScalarValueSizeInBits();
unsigned Opcode = Op.getOpcode();
switch (Opcode) {
case X86ISD::SETCC_CARRY:
// SETCC_CARRY sets the dest to ~0 for true or 0 for false.
return VTBits;
case X86ISD::VSEXT: {
// TODO: Add DemandedElts support.
SDValue Src = Op.getOperand(0);
unsigned Tmp = DAG.ComputeNumSignBits(Src, Depth + 1);
Tmp += VTBits - Src.getScalarValueSizeInBits();
return Tmp;
}
case X86ISD::VTRUNC: {
// TODO: Add DemandedElts support.
SDValue Src = Op.getOperand(0);
unsigned NumSrcBits = Src.getScalarValueSizeInBits();
assert(VTBits < NumSrcBits && "Illegal truncation input type");
unsigned Tmp = DAG.ComputeNumSignBits(Src, Depth + 1);
if (Tmp > (NumSrcBits - VTBits))
return Tmp - (NumSrcBits - VTBits);
return 1;
}
case X86ISD::PACKSS: {
// PACKSS is just a truncation if the sign bits extend to the packed size.
// TODO: Add DemandedElts support.
unsigned SrcBits = Op.getOperand(0).getScalarValueSizeInBits();
unsigned Tmp0 = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
unsigned Tmp1 = DAG.ComputeNumSignBits(Op.getOperand(1), Depth + 1);
unsigned Tmp = std::min(Tmp0, Tmp1);
if (Tmp > (SrcBits - VTBits))
return Tmp - (SrcBits - VTBits);
return 1;
}
case X86ISD::VSHLI: {
SDValue Src = Op.getOperand(0);
APInt ShiftVal = cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue();
if (ShiftVal.uge(VTBits))
return VTBits; // Shifted all bits out --> zero.
unsigned Tmp = DAG.ComputeNumSignBits(Src, DemandedElts, Depth + 1);
if (ShiftVal.uge(Tmp))
return 1; // Shifted all sign bits out --> unknown.
return Tmp - ShiftVal.getZExtValue();
}
case X86ISD::VSRAI: {
SDValue Src = Op.getOperand(0);
APInt ShiftVal = cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue();
if (ShiftVal.uge(VTBits - 1))
return VTBits; // Sign splat.
unsigned Tmp = DAG.ComputeNumSignBits(Src, DemandedElts, Depth + 1);
ShiftVal += Tmp;
return ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
}
case X86ISD::PCMPGT:
case X86ISD::PCMPEQ:
case X86ISD::CMPP:
case X86ISD::VPCOM:
case X86ISD::VPCOMU:
// Vector compares return zero/all-bits result values.
return VTBits;
case X86ISD::CMOV: {
unsigned Tmp0 = DAG.ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (Tmp0 == 1) return 1; // Early out.
unsigned Tmp1 = DAG.ComputeNumSignBits(Op.getOperand(1), Depth+1);
return std::min(Tmp0, Tmp1);
}
case X86ISD::SDIVREM8_SEXT_HREG:
// TODO: Support more than just the sign extended bits?
if (Op.getResNo() != 1)
break;
// The remainder is sign extended.
return VTBits - 7;
}
// Fallback case.
return 1;
}
SDValue X86TargetLowering::unwrapAddress(SDValue N) const {
if (N->getOpcode() == X86ISD::Wrapper || N->getOpcode() == X86ISD::WrapperRIP)
return N->getOperand(0);
return N;
}
/// Returns true (and the GlobalValue and the offset) if the node is a
/// GlobalAddress + offset.
bool X86TargetLowering::isGAPlusOffset(SDNode *N,
const GlobalValue* &GA,
int64_t &Offset) const {
if (N->getOpcode() == X86ISD::Wrapper) {
if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
return true;
}
}
return TargetLowering::isGAPlusOffset(N, GA, Offset);
}
// Attempt to match a combined shuffle mask against supported unary shuffle
// instructions.
// TODO: Investigate sharing more of this with shuffle lowering.
static bool matchUnaryVectorShuffle(MVT MaskVT, ArrayRef<int> Mask,
bool AllowFloatDomain, bool AllowIntDomain,
SDValue &V1, const SDLoc &DL,
SelectionDAG &DAG,
const X86Subtarget &Subtarget,
unsigned &Shuffle, MVT &SrcVT, MVT &DstVT) {
unsigned NumMaskElts = Mask.size();
unsigned MaskEltSize = MaskVT.getScalarSizeInBits();
// Match against a VZEXT_MOVL vXi32 zero-extending instruction.
if (MaskEltSize == 32 && isUndefOrEqual(Mask[0], 0) &&
isUndefOrZero(Mask[1]) && isUndefInRange(Mask, 2, NumMaskElts - 2)) {
Shuffle = X86ISD::VZEXT_MOVL;
SrcVT = DstVT = !Subtarget.hasSSE2() ? MVT::v4f32 : MaskVT;
return true;
}
// Match against a ZERO_EXTEND_VECTOR_INREG/VZEXT instruction.
// TODO: Add 512-bit vector support (split AVX512F and AVX512BW).
if (AllowIntDomain && ((MaskVT.is128BitVector() && Subtarget.hasSSE41()) ||
(MaskVT.is256BitVector() && Subtarget.hasInt256()))) {
unsigned MaxScale = 64 / MaskEltSize;
for (unsigned Scale = 2; Scale <= MaxScale; Scale *= 2) {
bool Match = true;
unsigned NumDstElts = NumMaskElts / Scale;
for (unsigned i = 0; i != NumDstElts && Match; ++i) {
Match &= isUndefOrEqual(Mask[i * Scale], (int)i);
Match &= isUndefOrZeroInRange(Mask, (i * Scale) + 1, Scale - 1);
}
if (Match) {
unsigned SrcSize = std::max(128u, NumDstElts * MaskEltSize);
MVT ScalarTy = MaskVT.isInteger() ? MaskVT.getScalarType() :
MVT::getIntegerVT(MaskEltSize);
SrcVT = MVT::getVectorVT(ScalarTy, SrcSize / MaskEltSize);
if (SrcVT.getSizeInBits() != MaskVT.getSizeInBits()) {
V1 = extractSubVector(V1, 0, DAG, DL, SrcSize);
Shuffle = unsigned(X86ISD::VZEXT);
} else
Shuffle = unsigned(ISD::ZERO_EXTEND_VECTOR_INREG);
DstVT = MVT::getIntegerVT(Scale * MaskEltSize);
DstVT = MVT::getVectorVT(DstVT, NumDstElts);
return true;
}
}
}
// Match against a VZEXT_MOVL instruction, SSE1 only supports 32-bits (MOVSS).
if (((MaskEltSize == 32) || (MaskEltSize == 64 && Subtarget.hasSSE2())) &&
isUndefOrEqual(Mask[0], 0) &&
isUndefOrZeroInRange(Mask, 1, NumMaskElts - 1)) {
Shuffle = X86ISD::VZEXT_MOVL;
SrcVT = DstVT = !Subtarget.hasSSE2() ? MVT::v4f32 : MaskVT;
return true;
}
// Check if we have SSE3 which will let us use MOVDDUP etc. The
// instructions are no slower than UNPCKLPD but has the option to
// fold the input operand into even an unaligned memory load.
if (MaskVT.is128BitVector() && Subtarget.hasSSE3() && AllowFloatDomain) {
if (!Subtarget.hasAVX2() && isTargetShuffleEquivalent(Mask, {0, 0})) {
Shuffle = X86ISD::MOVDDUP;
SrcVT = DstVT = MVT::v2f64;
return true;
}
if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2})) {
Shuffle = X86ISD::MOVSLDUP;
SrcVT = DstVT = MVT::v4f32;
return true;
}
if (isTargetShuffleEquivalent(Mask, {1, 1, 3, 3})) {
Shuffle = X86ISD::MOVSHDUP;
SrcVT = DstVT = MVT::v4f32;
return true;
}
}
if (MaskVT.is256BitVector() && AllowFloatDomain) {
assert(Subtarget.hasAVX() && "AVX required for 256-bit vector shuffles");
if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2})) {
Shuffle = X86ISD::MOVDDUP;
SrcVT = DstVT = MVT::v4f64;
return true;
}
if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2, 4, 4, 6, 6})) {
Shuffle = X86ISD::MOVSLDUP;
SrcVT = DstVT = MVT::v8f32;
return true;
}
if (isTargetShuffleEquivalent(Mask, {1, 1, 3, 3, 5, 5, 7, 7})) {
Shuffle = X86ISD::MOVSHDUP;
SrcVT = DstVT = MVT::v8f32;
return true;
}
}
if (MaskVT.is512BitVector() && AllowFloatDomain) {
assert(Subtarget.hasAVX512() &&
"AVX512 required for 512-bit vector shuffles");
if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2, 4, 4, 6, 6})) {
Shuffle = X86ISD::MOVDDUP;
SrcVT = DstVT = MVT::v8f64;
return true;
}
if (isTargetShuffleEquivalent(
Mask, {0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14})) {
Shuffle = X86ISD::MOVSLDUP;
SrcVT = DstVT = MVT::v16f32;
return true;
}
if (isTargetShuffleEquivalent(
Mask, {1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15})) {
Shuffle = X86ISD::MOVSHDUP;
SrcVT = DstVT = MVT::v16f32;
return true;
}
}
// Attempt to match against broadcast-from-vector.
if (Subtarget.hasAVX2()) {
SmallVector<int, 64> BroadcastMask(NumMaskElts, 0);
if (isTargetShuffleEquivalent(Mask, BroadcastMask)) {
SrcVT = DstVT = MaskVT;
Shuffle = X86ISD::VBROADCAST;
return true;
}
}
return false;
}
// Attempt to match a combined shuffle mask against supported unary immediate
// permute instructions.
// TODO: Investigate sharing more of this with shuffle lowering.
static bool matchUnaryPermuteVectorShuffle(MVT MaskVT, ArrayRef<int> Mask,
const APInt &Zeroable,
bool AllowFloatDomain,
bool AllowIntDomain,
const X86Subtarget &Subtarget,
unsigned &Shuffle, MVT &ShuffleVT,
unsigned &PermuteImm) {
unsigned NumMaskElts = Mask.size();
unsigned InputSizeInBits = MaskVT.getSizeInBits();
unsigned MaskScalarSizeInBits = InputSizeInBits / NumMaskElts;
MVT MaskEltVT = MVT::getIntegerVT(MaskScalarSizeInBits);
bool ContainsZeros =
llvm::any_of(Mask, [](int M) { return M == SM_SentinelZero; });
// Handle VPERMI/VPERMILPD vXi64/vXi64 patterns.
if (!ContainsZeros && MaskScalarSizeInBits == 64) {
// Check for lane crossing permutes.
if (is128BitLaneCrossingShuffleMask(MaskEltVT, Mask)) {
// PERMPD/PERMQ permutes within a 256-bit vector (AVX2+).
if (Subtarget.hasAVX2() && MaskVT.is256BitVector()) {
Shuffle = X86ISD::VPERMI;
ShuffleVT = (AllowFloatDomain ? MVT::v4f64 : MVT::v4i64);
PermuteImm = getV4X86ShuffleImm(Mask);
return true;
}
if (Subtarget.hasAVX512() && MaskVT.is512BitVector()) {
SmallVector<int, 4> RepeatedMask;
if (is256BitLaneRepeatedShuffleMask(MVT::v8f64, Mask, RepeatedMask)) {
Shuffle = X86ISD::VPERMI;
ShuffleVT = (AllowFloatDomain ? MVT::v8f64 : MVT::v8i64);
PermuteImm = getV4X86ShuffleImm(RepeatedMask);
return true;
}
}
} else if (AllowFloatDomain && Subtarget.hasAVX()) {
// VPERMILPD can permute with a non-repeating shuffle.
Shuffle = X86ISD::VPERMILPI;
ShuffleVT = MVT::getVectorVT(MVT::f64, Mask.size());
PermuteImm = 0;
for (int i = 0, e = Mask.size(); i != e; ++i) {
int M = Mask[i];
if (M == SM_SentinelUndef)
continue;
assert(((M / 2) == (i / 2)) && "Out of range shuffle mask index");
PermuteImm |= (M & 1) << i;
}
return true;
}
}
// Handle PSHUFD/VPERMILPI vXi32/vXf32 repeated patterns.
// AVX introduced the VPERMILPD/VPERMILPS float permutes, before then we
// had to use 2-input SHUFPD/SHUFPS shuffles (not handled here).
if ((MaskScalarSizeInBits == 64 || MaskScalarSizeInBits == 32) &&
!ContainsZeros && (AllowIntDomain || Subtarget.hasAVX())) {
SmallVector<int, 4> RepeatedMask;
if (is128BitLaneRepeatedShuffleMask(MaskEltVT, Mask, RepeatedMask)) {
// Narrow the repeated mask to create 32-bit element permutes.
SmallVector<int, 4> WordMask = RepeatedMask;
if (MaskScalarSizeInBits == 64)
scaleShuffleMask<int>(2, RepeatedMask, WordMask);
Shuffle = (AllowIntDomain ? X86ISD::PSHUFD : X86ISD::VPERMILPI);
ShuffleVT = (AllowIntDomain ? MVT::i32 : MVT::f32);
ShuffleVT = MVT::getVectorVT(ShuffleVT, InputSizeInBits / 32);
PermuteImm = getV4X86ShuffleImm(WordMask);
return true;
}
}
// Handle PSHUFLW/PSHUFHW vXi16 repeated patterns.
if (!ContainsZeros && AllowIntDomain && MaskScalarSizeInBits == 16) {
SmallVector<int, 4> RepeatedMask;
if (is128BitLaneRepeatedShuffleMask(MaskEltVT, Mask, RepeatedMask)) {
ArrayRef<int> LoMask(Mask.data() + 0, 4);
ArrayRef<int> HiMask(Mask.data() + 4, 4);
// PSHUFLW: permute lower 4 elements only.
if (isUndefOrInRange(LoMask, 0, 4) &&
isSequentialOrUndefInRange(HiMask, 0, 4, 4)) {
Shuffle = X86ISD::PSHUFLW;
ShuffleVT = MVT::getVectorVT(MVT::i16, InputSizeInBits / 16);
PermuteImm = getV4X86ShuffleImm(LoMask);
return true;
}
// PSHUFHW: permute upper 4 elements only.
if (isUndefOrInRange(HiMask, 4, 8) &&
isSequentialOrUndefInRange(LoMask, 0, 4, 0)) {
// Offset the HiMask so that we can create the shuffle immediate.
int OffsetHiMask[4];
for (int i = 0; i != 4; ++i)
OffsetHiMask[i] = (HiMask[i] < 0 ? HiMask[i] : HiMask[i] - 4);
Shuffle = X86ISD::PSHUFHW;
ShuffleVT = MVT::getVectorVT(MVT::i16, InputSizeInBits / 16);
PermuteImm = getV4X86ShuffleImm(OffsetHiMask);
return true;
}
}
}
// Attempt to match against byte/bit shifts.
// FIXME: Add 512-bit support.
if (AllowIntDomain && ((MaskVT.is128BitVector() && Subtarget.hasSSE2()) ||
(MaskVT.is256BitVector() && Subtarget.hasAVX2()))) {
int ShiftAmt = matchVectorShuffleAsShift(ShuffleVT, Shuffle,
MaskScalarSizeInBits, Mask,
0, Zeroable, Subtarget);
if (0 < ShiftAmt) {
PermuteImm = (unsigned)ShiftAmt;
return true;
}
}
return false;
}
// Attempt to match a combined unary shuffle mask against supported binary
// shuffle instructions.
// TODO: Investigate sharing more of this with shuffle lowering.
static bool matchBinaryVectorShuffle(MVT MaskVT, ArrayRef<int> Mask,
bool AllowFloatDomain, bool AllowIntDomain,
SDValue &V1, SDValue &V2, const SDLoc &DL,
SelectionDAG &DAG,
const X86Subtarget &Subtarget,
unsigned &Shuffle, MVT &SrcVT, MVT &DstVT,
bool IsUnary) {
unsigned EltSizeInBits = MaskVT.getScalarSizeInBits();
if (MaskVT.is128BitVector()) {
if (isTargetShuffleEquivalent(Mask, {0, 0}) && AllowFloatDomain) {
V2 = V1;
V1 = (SM_SentinelUndef == Mask[0] ? DAG.getUNDEF(MVT::v4f32) : V1);
Shuffle = Subtarget.hasSSE2() ? X86ISD::UNPCKL : X86ISD::MOVLHPS;
SrcVT = DstVT = Subtarget.hasSSE2() ? MVT::v2f64 : MVT::v4f32;
return true;
}
if (isTargetShuffleEquivalent(Mask, {1, 1}) && AllowFloatDomain) {
V2 = V1;
Shuffle = Subtarget.hasSSE2() ? X86ISD::UNPCKH : X86ISD::MOVHLPS;
SrcVT = DstVT = Subtarget.hasSSE2() ? MVT::v2f64 : MVT::v4f32;
return true;
}
if (isTargetShuffleEquivalent(Mask, {0, 3}) && Subtarget.hasSSE2() &&
(AllowFloatDomain || !Subtarget.hasSSE41())) {
std::swap(V1, V2);
Shuffle = X86ISD::MOVSD;
SrcVT = DstVT = MVT::v2f64;
return true;
}
if (isTargetShuffleEquivalent(Mask, {4, 1, 2, 3}) &&
(AllowFloatDomain || !Subtarget.hasSSE41())) {
Shuffle = X86ISD::MOVSS;
SrcVT = DstVT = MVT::v4f32;
return true;
}
}
// Attempt to match against either a unary or binary PACKSS/PACKUS shuffle.
// TODO add support for 256/512-bit types.
if ((MaskVT == MVT::v8i16 || MaskVT == MVT::v16i8) && Subtarget.hasSSE2()) {
if (matchVectorShuffleWithPACK(MaskVT, SrcVT, V1, V2, Shuffle, Mask, DAG,
Subtarget)) {
DstVT = MaskVT;
return true;
}
}
// Attempt to match against either a unary or binary UNPCKL/UNPCKH shuffle.
if ((MaskVT == MVT::v4f32 && Subtarget.hasSSE1()) ||
(MaskVT.is128BitVector() && Subtarget.hasSSE2()) ||
(MaskVT.is256BitVector() && 32 <= EltSizeInBits && Subtarget.hasAVX()) ||
(MaskVT.is256BitVector() && Subtarget.hasAVX2()) ||
(MaskVT.is512BitVector() && Subtarget.hasAVX512())) {
if (matchVectorShuffleWithUNPCK(MaskVT, V1, V2, Shuffle, IsUnary, Mask, DL,
DAG, Subtarget)) {
SrcVT = DstVT = MaskVT;
if (MaskVT.is256BitVector() && !Subtarget.hasAVX2())
SrcVT = DstVT = (32 == EltSizeInBits ? MVT::v8f32 : MVT::v4f64);
return true;
}
}
return false;
}
static bool matchBinaryPermuteVectorShuffle(
MVT MaskVT, ArrayRef<int> Mask, const APInt &Zeroable,
bool AllowFloatDomain, bool AllowIntDomain, SDValue &V1, SDValue &V2,
const SDLoc &DL, SelectionDAG &DAG, const X86Subtarget &Subtarget,
unsigned &Shuffle, MVT &ShuffleVT, unsigned &PermuteImm) {
unsigned NumMaskElts = Mask.size();
unsigned EltSizeInBits = MaskVT.getScalarSizeInBits();
// Attempt to match against PALIGNR byte rotate.
if (AllowIntDomain && ((MaskVT.is128BitVector() && Subtarget.hasSSSE3()) ||
(MaskVT.is256BitVector() && Subtarget.hasAVX2()))) {
int ByteRotation = matchVectorShuffleAsByteRotate(MaskVT, V1, V2, Mask);
if (0 < ByteRotation) {
Shuffle = X86ISD::PALIGNR;
ShuffleVT = MVT::getVectorVT(MVT::i8, MaskVT.getSizeInBits() / 8);
PermuteImm = ByteRotation;
return true;
}
}
// Attempt to combine to X86ISD::BLENDI.
if ((NumMaskElts <= 8 && ((Subtarget.hasSSE41() && MaskVT.is128BitVector()) ||
(Subtarget.hasAVX() && MaskVT.is256BitVector()))) ||
(MaskVT == MVT::v16i16 && Subtarget.hasAVX2())) {
uint64_t BlendMask = 0;
bool ForceV1Zero = false, ForceV2Zero = false;
SmallVector<int, 8> TargetMask(Mask.begin(), Mask.end());
if (matchVectorShuffleAsBlend(V1, V2, TargetMask, ForceV1Zero, ForceV2Zero,
BlendMask)) {
if (MaskVT == MVT::v16i16) {
// We can only use v16i16 PBLENDW if the lanes are repeated.
SmallVector<int, 8> RepeatedMask;
if (isRepeatedTargetShuffleMask(128, MaskVT, TargetMask,
RepeatedMask)) {
assert(RepeatedMask.size() == 8 &&
"Repeated mask size doesn't match!");
PermuteImm = 0;
for (int i = 0; i < 8; ++i)
if (RepeatedMask[i] >= 8)
PermuteImm |= 1 << i;
V1 = ForceV1Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V1;
V2 = ForceV2Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V2;
Shuffle = X86ISD::BLENDI;
ShuffleVT = MaskVT;
return true;
}
} else {
// Determine a type compatible with X86ISD::BLENDI.
ShuffleVT = MaskVT;
if (Subtarget.hasAVX2()) {
if (ShuffleVT == MVT::v4i64)
ShuffleVT = MVT::v8i32;
else if (ShuffleVT == MVT::v2i64)
ShuffleVT = MVT::v4i32;
} else {
if (ShuffleVT == MVT::v2i64 || ShuffleVT == MVT::v4i32)
ShuffleVT = MVT::v8i16;
else if (ShuffleVT == MVT::v4i64)
ShuffleVT = MVT::v4f64;
else if (ShuffleVT == MVT::v8i32)
ShuffleVT = MVT::v8f32;
}
if (!ShuffleVT.isFloatingPoint()) {
int Scale = EltSizeInBits / ShuffleVT.getScalarSizeInBits();
BlendMask =
scaleVectorShuffleBlendMask(BlendMask, NumMaskElts, Scale);
ShuffleVT = MVT::getIntegerVT(EltSizeInBits / Scale);
ShuffleVT = MVT::getVectorVT(ShuffleVT, NumMaskElts * Scale);
}
V1 = ForceV1Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V1;
V2 = ForceV2Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V2;
PermuteImm = (unsigned)BlendMask;
Shuffle = X86ISD::BLENDI;
return true;
}
}
}
// Attempt to combine to INSERTPS.
if (AllowFloatDomain && EltSizeInBits == 32 && Subtarget.hasSSE41() &&
MaskVT.is128BitVector()) {
if (Zeroable.getBoolValue() &&
matchVectorShuffleAsInsertPS(V1, V2, PermuteImm, Zeroable, Mask, DAG)) {
Shuffle = X86ISD::INSERTPS;
ShuffleVT = MVT::v4f32;
return true;
}
}
// Attempt to combine to SHUFPD.
if (AllowFloatDomain && EltSizeInBits == 64 &&
((MaskVT.is128BitVector() && Subtarget.hasSSE2()) ||
(MaskVT.is256BitVector() && Subtarget.hasAVX()) ||
(MaskVT.is512BitVector() && Subtarget.hasAVX512()))) {
if (matchVectorShuffleWithSHUFPD(MaskVT, V1, V2, PermuteImm, Mask)) {
Shuffle = X86ISD::SHUFP;
ShuffleVT = MVT::getVectorVT(MVT::f64, MaskVT.getSizeInBits() / 64);
return true;
}
}
// Attempt to combine to SHUFPS.
if (AllowFloatDomain && EltSizeInBits == 32 &&
((MaskVT.is128BitVector() && Subtarget.hasSSE1()) ||
(MaskVT.is256BitVector() && Subtarget.hasAVX()) ||
(MaskVT.is512BitVector() && Subtarget.hasAVX512()))) {
SmallVector<int, 4> RepeatedMask;
if (isRepeatedTargetShuffleMask(128, MaskVT, Mask, RepeatedMask)) {
// Match each half of the repeated mask, to determine if its just
// referencing one of the vectors, is zeroable or entirely undef.
auto MatchHalf = [&](unsigned Offset, int &S0, int &S1) {
int M0 = RepeatedMask[Offset];
int M1 = RepeatedMask[Offset + 1];
if (isUndefInRange(RepeatedMask, Offset, 2)) {
return DAG.getUNDEF(MaskVT);
} else if (isUndefOrZeroInRange(RepeatedMask, Offset, 2)) {
S0 = (SM_SentinelUndef == M0 ? -1 : 0);
S1 = (SM_SentinelUndef == M1 ? -1 : 1);
return getZeroVector(MaskVT, Subtarget, DAG, DL);
} else if (isUndefOrInRange(M0, 0, 4) && isUndefOrInRange(M1, 0, 4)) {
S0 = (SM_SentinelUndef == M0 ? -1 : M0 & 3);
S1 = (SM_SentinelUndef == M1 ? -1 : M1 & 3);
return V1;
} else if (isUndefOrInRange(M0, 4, 8) && isUndefOrInRange(M1, 4, 8)) {
S0 = (SM_SentinelUndef == M0 ? -1 : M0 & 3);
S1 = (SM_SentinelUndef == M1 ? -1 : M1 & 3);
return V2;
}
return SDValue();
};
int ShufMask[4] = {-1, -1, -1, -1};
SDValue Lo = MatchHalf(0, ShufMask[0], ShufMask[1]);
SDValue Hi = MatchHalf(2, ShufMask[2], ShufMask[3]);
if (Lo && Hi) {
V1 = Lo;
V2 = Hi;
Shuffle = X86ISD::SHUFP;
ShuffleVT = MVT::getVectorVT(MVT::f32, MaskVT.getSizeInBits() / 32);
PermuteImm = getV4X86ShuffleImm(ShufMask);
return true;
}
}
}
return false;
}
/// Combine an arbitrary chain of shuffles into a single instruction if
/// possible.
///
/// This is the leaf of the recursive combine below. When we have found some
/// chain of single-use x86 shuffle instructions and accumulated the combined
/// shuffle mask represented by them, this will try to pattern match that mask
/// into either a single instruction if there is a special purpose instruction
/// for this operation, or into a PSHUFB instruction which is a fully general
/// instruction but should only be used to replace chains over a certain depth.
static SDValue combineX86ShuffleChain(ArrayRef<SDValue> Inputs, SDValue Root,
ArrayRef<int> BaseMask, int Depth,
bool HasVariableMask, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
assert(!BaseMask.empty() && "Cannot combine an empty shuffle mask!");
assert((Inputs.size() == 1 || Inputs.size() == 2) &&
"Unexpected number of shuffle inputs!");
// Find the inputs that enter the chain. Note that multiple uses are OK
// here, we're not going to remove the operands we find.
bool UnaryShuffle = (Inputs.size() == 1);
SDValue V1 = peekThroughBitcasts(Inputs[0]);
SDValue V2 = (UnaryShuffle ? DAG.getUNDEF(V1.getValueType())
: peekThroughBitcasts(Inputs[1]));
MVT VT1 = V1.getSimpleValueType();
MVT VT2 = V2.getSimpleValueType();
MVT RootVT = Root.getSimpleValueType();
assert(VT1.getSizeInBits() == RootVT.getSizeInBits() &&
VT2.getSizeInBits() == RootVT.getSizeInBits() &&
"Vector size mismatch");
SDLoc DL(Root);
SDValue Res;
unsigned NumBaseMaskElts = BaseMask.size();
if (NumBaseMaskElts == 1) {
assert(BaseMask[0] == 0 && "Invalid shuffle index found!");
return DAG.getBitcast(RootVT, V1);
}
unsigned RootSizeInBits = RootVT.getSizeInBits();
unsigned NumRootElts = RootVT.getVectorNumElements();
unsigned BaseMaskEltSizeInBits = RootSizeInBits / NumBaseMaskElts;
bool FloatDomain = VT1.isFloatingPoint() || VT2.isFloatingPoint() ||
(RootVT.isFloatingPoint() && Depth >= 2) ||
(RootVT.is256BitVector() && !Subtarget.hasAVX2());
// Don't combine if we are a AVX512/EVEX target and the mask element size
// is different from the root element size - this would prevent writemasks
// from being reused.
// TODO - this currently prevents all lane shuffles from occurring.
// TODO - check for writemasks usage instead of always preventing combining.
// TODO - attempt to narrow Mask back to writemask size.
bool IsEVEXShuffle =
RootSizeInBits == 512 || (Subtarget.hasVLX() && RootSizeInBits >= 128);
// TODO - handle 128/256-bit lane shuffles of 512-bit vectors.
// Handle 128-bit lane shuffles of 256-bit vectors.
// If we have AVX2, prefer to use VPERMQ/VPERMPD for unary shuffles unless
// we need to use the zeroing feature.
// TODO - this should support binary shuffles.
if (UnaryShuffle && RootVT.is256BitVector() && NumBaseMaskElts == 2 &&
!(Subtarget.hasAVX2() && BaseMask[0] >= -1 && BaseMask[1] >= -1) &&
!isSequentialOrUndefOrZeroInRange(BaseMask, 0, 2, 0)) {
if (Depth == 1 && Root.getOpcode() == X86ISD::VPERM2X128)
return SDValue(); // Nothing to do!
MVT ShuffleVT = (FloatDomain ? MVT::v4f64 : MVT::v4i64);
unsigned PermMask = 0;
PermMask |= ((BaseMask[0] < 0 ? 0x8 : (BaseMask[0] & 1)) << 0);
PermMask |= ((BaseMask[1] < 0 ? 0x8 : (BaseMask[1] & 1)) << 4);
Res = DAG.getBitcast(ShuffleVT, V1);
Res = DAG.getNode(X86ISD::VPERM2X128, DL, ShuffleVT, Res,
DAG.getUNDEF(ShuffleVT),
DAG.getConstant(PermMask, DL, MVT::i8));
return DAG.getBitcast(RootVT, Res);
}
// For masks that have been widened to 128-bit elements or more,
// narrow back down to 64-bit elements.
SmallVector<int, 64> Mask;
if (BaseMaskEltSizeInBits > 64) {
assert((BaseMaskEltSizeInBits % 64) == 0 && "Illegal mask size");
int MaskScale = BaseMaskEltSizeInBits / 64;
scaleShuffleMask<int>(MaskScale, BaseMask, Mask);
} else {
Mask = SmallVector<int, 64>(BaseMask.begin(), BaseMask.end());
}
unsigned NumMaskElts = Mask.size();
unsigned MaskEltSizeInBits = RootSizeInBits / NumMaskElts;
// Determine the effective mask value type.
FloatDomain &= (32 <= MaskEltSizeInBits);
MVT MaskVT = FloatDomain ? MVT::getFloatingPointVT(MaskEltSizeInBits)
: MVT::getIntegerVT(MaskEltSizeInBits);
MaskVT = MVT::getVectorVT(MaskVT, NumMaskElts);
// Only allow legal mask types.
if (!DAG.getTargetLoweringInfo().isTypeLegal(MaskVT))
return SDValue();
// Attempt to match the mask against known shuffle patterns.
MVT ShuffleSrcVT, ShuffleVT;
unsigned Shuffle, PermuteImm;
// Which shuffle domains are permitted?
// Permit domain crossing at higher combine depths.
bool AllowFloatDomain = FloatDomain || (Depth > 3);
bool AllowIntDomain = (!FloatDomain || (Depth > 3)) && Subtarget.hasSSE2() &&
(!MaskVT.is256BitVector() || Subtarget.hasAVX2());
// Determine zeroable mask elements.
APInt Zeroable(NumMaskElts, 0);
for (unsigned i = 0; i != NumMaskElts; ++i)
if (isUndefOrZero(Mask[i]))
Zeroable.setBit(i);
if (UnaryShuffle) {
// If we are shuffling a X86ISD::VZEXT_LOAD then we can use the load
// directly if we don't shuffle the lower element and we shuffle the upper
// (zero) elements within themselves.
if (V1.getOpcode() == X86ISD::VZEXT_LOAD &&
(V1.getScalarValueSizeInBits() % MaskEltSizeInBits) == 0) {
unsigned Scale = V1.getScalarValueSizeInBits() / MaskEltSizeInBits;
ArrayRef<int> HiMask(Mask.data() + Scale, NumMaskElts - Scale);
if (isSequentialOrUndefInRange(Mask, 0, Scale, 0) &&
isUndefOrZeroOrInRange(HiMask, Scale, NumMaskElts)) {
return DAG.getBitcast(RootVT, V1);
}
}
SDValue NewV1 = V1; // Save operand in case early exit happens.
if (matchUnaryVectorShuffle(MaskVT, Mask, AllowFloatDomain, AllowIntDomain,
NewV1, DL, DAG, Subtarget, Shuffle,
ShuffleSrcVT, ShuffleVT) &&
(!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) {
if (Depth == 1 && Root.getOpcode() == Shuffle)
return SDValue(); // Nothing to do!
Res = DAG.getBitcast(ShuffleSrcVT, NewV1);
Res = DAG.getNode(Shuffle, DL, ShuffleVT, Res);
return DAG.getBitcast(RootVT, Res);
}
if (matchUnaryPermuteVectorShuffle(MaskVT, Mask, Zeroable, AllowFloatDomain,
AllowIntDomain, Subtarget, Shuffle,
ShuffleVT, PermuteImm) &&
(!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) {
if (Depth == 1 && Root.getOpcode() == Shuffle)
return SDValue(); // Nothing to do!
Res = DAG.getBitcast(ShuffleVT, V1);
Res = DAG.getNode(Shuffle, DL, ShuffleVT, Res,
DAG.getConstant(PermuteImm, DL, MVT::i8));
return DAG.getBitcast(RootVT, Res);
}
}
SDValue NewV1 = V1; // Save operands in case early exit happens.
SDValue NewV2 = V2;
if (matchBinaryVectorShuffle(MaskVT, Mask, AllowFloatDomain, AllowIntDomain,
NewV1, NewV2, DL, DAG, Subtarget, Shuffle,
ShuffleSrcVT, ShuffleVT, UnaryShuffle) &&
(!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) {
if (Depth == 1 && Root.getOpcode() == Shuffle)
return SDValue(); // Nothing to do!
NewV1 = DAG.getBitcast(ShuffleSrcVT, NewV1);
NewV2 = DAG.getBitcast(ShuffleSrcVT, NewV2);
Res = DAG.getNode(Shuffle, DL, ShuffleVT, NewV1, NewV2);
return DAG.getBitcast(RootVT, Res);
}
NewV1 = V1; // Save operands in case early exit happens.
NewV2 = V2;
if (matchBinaryPermuteVectorShuffle(
MaskVT, Mask, Zeroable, AllowFloatDomain, AllowIntDomain, NewV1,
NewV2, DL, DAG, Subtarget, Shuffle, ShuffleVT, PermuteImm) &&
(!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) {
if (Depth == 1 && Root.getOpcode() == Shuffle)
return SDValue(); // Nothing to do!
NewV1 = DAG.getBitcast(ShuffleVT, NewV1);
NewV2 = DAG.getBitcast(ShuffleVT, NewV2);
Res = DAG.getNode(Shuffle, DL, ShuffleVT, NewV1, NewV2,
DAG.getConstant(PermuteImm, DL, MVT::i8));
return DAG.getBitcast(RootVT, Res);
}
// Typically from here on, we need an integer version of MaskVT.
MVT IntMaskVT = MVT::getIntegerVT(MaskEltSizeInBits);
IntMaskVT = MVT::getVectorVT(IntMaskVT, NumMaskElts);
// Annoyingly, SSE4A instructions don't map into the above match helpers.
if (Subtarget.hasSSE4A() && AllowIntDomain && RootSizeInBits == 128) {
uint64_t BitLen, BitIdx;
if (matchVectorShuffleAsEXTRQ(IntMaskVT, V1, V2, Mask, BitLen, BitIdx,
Zeroable)) {
if (Depth == 1 && Root.getOpcode() == X86ISD::EXTRQI)
return SDValue(); // Nothing to do!
V1 = DAG.getBitcast(IntMaskVT, V1);
Res = DAG.getNode(X86ISD::EXTRQI, DL, IntMaskVT, V1,
DAG.getConstant(BitLen, DL, MVT::i8),
DAG.getConstant(BitIdx, DL, MVT::i8));
return DAG.getBitcast(RootVT, Res);
}
if (matchVectorShuffleAsINSERTQ(IntMaskVT, V1, V2, Mask, BitLen, BitIdx)) {
if (Depth == 1 && Root.getOpcode() == X86ISD::INSERTQI)
return SDValue(); // Nothing to do!
V1 = DAG.getBitcast(IntMaskVT, V1);
V2 = DAG.getBitcast(IntMaskVT, V2);
Res = DAG.getNode(X86ISD::INSERTQI, DL, IntMaskVT, V1, V2,
DAG.getConstant(BitLen, DL, MVT::i8),
DAG.getConstant(BitIdx, DL, MVT::i8));
return DAG.getBitcast(RootVT, Res);
}
}
// Don't try to re-form single instruction chains under any circumstances now
// that we've done encoding canonicalization for them.
if (Depth < 2)
return SDValue();
// Depth threshold above which we can efficiently use variable mask shuffles.
int VariableShuffleDepth = Subtarget.hasFastVariableShuffle() ? 2 : 3;
bool AllowVariableMask = (Depth >= VariableShuffleDepth) || HasVariableMask;
bool MaskContainsZeros =
any_of(Mask, [](int M) { return M == SM_SentinelZero; });
if (is128BitLaneCrossingShuffleMask(MaskVT, Mask)) {
// If we have a single input lane-crossing shuffle then lower to VPERMV.
if (UnaryShuffle && AllowVariableMask && !MaskContainsZeros &&
((Subtarget.hasAVX2() &&
(MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) ||
(Subtarget.hasAVX512() &&
(MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 ||
MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) ||
(Subtarget.hasBWI() && MaskVT == MVT::v32i16) ||
(Subtarget.hasBWI() && Subtarget.hasVLX() && MaskVT == MVT::v16i16) ||
(Subtarget.hasVBMI() && MaskVT == MVT::v64i8) ||
(Subtarget.hasVBMI() && Subtarget.hasVLX() && MaskVT == MVT::v32i8))) {
SDValue VPermMask = getConstVector(Mask, IntMaskVT, DAG, DL, true);
Res = DAG.getBitcast(MaskVT, V1);
Res = DAG.getNode(X86ISD::VPERMV, DL, MaskVT, VPermMask, Res);
return DAG.getBitcast(RootVT, Res);
}
// Lower a unary+zero lane-crossing shuffle as VPERMV3 with a zero
// vector as the second source.
if (UnaryShuffle && AllowVariableMask &&
((Subtarget.hasAVX512() &&
(MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 ||
MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) ||
(Subtarget.hasVLX() &&
(MaskVT == MVT::v4f64 || MaskVT == MVT::v4i64 ||
MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) ||
(Subtarget.hasBWI() && MaskVT == MVT::v32i16) ||
(Subtarget.hasBWI() && Subtarget.hasVLX() && MaskVT == MVT::v16i16) ||
(Subtarget.hasVBMI() && MaskVT == MVT::v64i8) ||
(Subtarget.hasVBMI() && Subtarget.hasVLX() && MaskVT == MVT::v32i8))) {
// Adjust shuffle mask - replace SM_SentinelZero with second source index.
for (unsigned i = 0; i != NumMaskElts; ++i)
if (Mask[i] == SM_SentinelZero)
Mask[i] = NumMaskElts + i;
SDValue VPermMask = getConstVector(Mask, IntMaskVT, DAG, DL, true);
Res = DAG.getBitcast(MaskVT, V1);
SDValue Zero = getZeroVector(MaskVT, Subtarget, DAG, DL);
Res = DAG.getNode(X86ISD::VPERMV3, DL, MaskVT, Res, VPermMask, Zero);
return DAG.getBitcast(RootVT, Res);
}
// If we have a dual input lane-crossing shuffle then lower to VPERMV3.
if (AllowVariableMask && !MaskContainsZeros &&
((Subtarget.hasAVX512() &&
(MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 ||
MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) ||
(Subtarget.hasVLX() &&
(MaskVT == MVT::v4f64 || MaskVT == MVT::v4i64 ||
MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) ||
(Subtarget.hasBWI() && MaskVT == MVT::v32i16) ||
(Subtarget.hasBWI() && Subtarget.hasVLX() && MaskVT == MVT::v16i16) ||
(Subtarget.hasVBMI() && MaskVT == MVT::v64i8) ||
(Subtarget.hasVBMI() && Subtarget.hasVLX() && MaskVT == MVT::v32i8))) {
SDValue VPermMask = getConstVector(Mask, IntMaskVT, DAG, DL, true);
V1 = DAG.getBitcast(MaskVT, V1);
V2 = DAG.getBitcast(MaskVT, V2);
Res = DAG.getNode(X86ISD::VPERMV3, DL, MaskVT, V1, VPermMask, V2);
return DAG.getBitcast(RootVT, Res);
}
return SDValue();
}
// See if we can combine a single input shuffle with zeros to a bit-mask,
// which is much simpler than any shuffle.
if (UnaryShuffle && MaskContainsZeros && AllowVariableMask &&
isSequentialOrUndefOrZeroInRange(Mask, 0, NumMaskElts, 0) &&
DAG.getTargetLoweringInfo().isTypeLegal(MaskVT)) {
APInt Zero = APInt::getNullValue(MaskEltSizeInBits);
APInt AllOnes = APInt::getAllOnesValue(MaskEltSizeInBits);
APInt UndefElts(NumMaskElts, 0);
SmallVector<APInt, 64> EltBits(NumMaskElts, Zero);
for (unsigned i = 0; i != NumMaskElts; ++i) {
int M = Mask[i];
if (M == SM_SentinelUndef) {
UndefElts.setBit(i);
continue;
}
if (M == SM_SentinelZero)
continue;
EltBits[i] = AllOnes;
}
SDValue BitMask = getConstVector(EltBits, UndefElts, MaskVT, DAG, DL);
Res = DAG.getBitcast(MaskVT, V1);
unsigned AndOpcode =
FloatDomain ? unsigned(X86ISD::FAND) : unsigned(ISD::AND);
Res = DAG.getNode(AndOpcode, DL, MaskVT, Res, BitMask);
return DAG.getBitcast(RootVT, Res);
}
// If we have a single input shuffle with different shuffle patterns in the
// the 128-bit lanes use the variable mask to VPERMILPS.
// TODO Combine other mask types at higher depths.
if (UnaryShuffle && AllowVariableMask && !MaskContainsZeros &&
((MaskVT == MVT::v8f32 && Subtarget.hasAVX()) ||
(MaskVT == MVT::v16f32 && Subtarget.hasAVX512()))) {
SmallVector<SDValue, 16> VPermIdx;
for (int M : Mask) {
SDValue Idx =
M < 0 ? DAG.getUNDEF(MVT::i32) : DAG.getConstant(M % 4, DL, MVT::i32);
VPermIdx.push_back(Idx);
}
SDValue VPermMask = DAG.getBuildVector(IntMaskVT, DL, VPermIdx);
Res = DAG.getBitcast(MaskVT, V1);
Res = DAG.getNode(X86ISD::VPERMILPV, DL, MaskVT, Res, VPermMask);
return DAG.getBitcast(RootVT, Res);
}
// With XOP, binary shuffles of 128/256-bit floating point vectors can combine
// to VPERMIL2PD/VPERMIL2PS.
if (AllowVariableMask && Subtarget.hasXOP() &&
(MaskVT == MVT::v2f64 || MaskVT == MVT::v4f64 || MaskVT == MVT::v4f32 ||
MaskVT == MVT::v8f32)) {
// VPERMIL2 Operation.
// Bits[3] - Match Bit.
// Bits[2:1] - (Per Lane) PD Shuffle Mask.
// Bits[2:0] - (Per Lane) PS Shuffle Mask.
unsigned NumLanes = MaskVT.getSizeInBits() / 128;
unsigned NumEltsPerLane = NumMaskElts / NumLanes;
SmallVector<int, 8> VPerm2Idx;
unsigned M2ZImm = 0;
for (int M : Mask) {
if (M == SM_SentinelUndef) {
VPerm2Idx.push_back(-1);
continue;
}
if (M == SM_SentinelZero) {
M2ZImm = 2;
VPerm2Idx.push_back(8);
continue;
}
int Index = (M % NumEltsPerLane) + ((M / NumMaskElts) * NumEltsPerLane);
Index = (MaskVT.getScalarSizeInBits() == 64 ? Index << 1 : Index);
VPerm2Idx.push_back(Index);
}
V1 = DAG.getBitcast(MaskVT, V1);
V2 = DAG.getBitcast(MaskVT, V2);
SDValue VPerm2MaskOp = getConstVector(VPerm2Idx, IntMaskVT, DAG, DL, true);
Res = DAG.getNode(X86ISD::VPERMIL2, DL, MaskVT, V1, V2, VPerm2MaskOp,
DAG.getConstant(M2ZImm, DL, MVT::i8));
return DAG.getBitcast(RootVT, Res);
}
// If we have 3 or more shuffle instructions or a chain involving a variable
// mask, we can replace them with a single PSHUFB instruction profitably.
// Intel's manuals suggest only using PSHUFB if doing so replacing 5
// instructions, but in practice PSHUFB tends to be *very* fast so we're
// more aggressive.
if (UnaryShuffle && AllowVariableMask &&
((RootVT.is128BitVector() && Subtarget.hasSSSE3()) ||
(RootVT.is256BitVector() && Subtarget.hasAVX2()) ||
(RootVT.is512BitVector() && Subtarget.hasBWI()))) {
SmallVector<SDValue, 16> PSHUFBMask;
int NumBytes = RootVT.getSizeInBits() / 8;
int Ratio = NumBytes / NumMaskElts;
for (int i = 0; i < NumBytes; ++i) {
int M = Mask[i / Ratio];
if (M == SM_SentinelUndef) {
PSHUFBMask.push_back(DAG.getUNDEF(MVT::i8));
continue;
}
if (M == SM_SentinelZero) {
PSHUFBMask.push_back(DAG.getConstant(255, DL, MVT::i8));
continue;
}
M = Ratio * M + i % Ratio;
assert((M / 16) == (i / 16) && "Lane crossing detected");
PSHUFBMask.push_back(DAG.getConstant(M, DL, MVT::i8));
}
MVT ByteVT = MVT::getVectorVT(MVT::i8, NumBytes);
Res = DAG.getBitcast(ByteVT, V1);
SDValue PSHUFBMaskOp = DAG.getBuildVector(ByteVT, DL, PSHUFBMask);
Res = DAG.getNode(X86ISD::PSHUFB, DL, ByteVT, Res, PSHUFBMaskOp);
return DAG.getBitcast(RootVT, Res);
}
// With XOP, if we have a 128-bit binary input shuffle we can always combine
// to VPPERM. We match the depth requirement of PSHUFB - VPPERM is never
// slower than PSHUFB on targets that support both.
if (AllowVariableMask && RootVT.is128BitVector() && Subtarget.hasXOP()) {
// VPPERM Mask Operation
// Bits[4:0] - Byte Index (0 - 31)
// Bits[7:5] - Permute Operation (0 - Source byte, 4 - ZERO)
SmallVector<SDValue, 16> VPPERMMask;
int NumBytes = 16;
int Ratio = NumBytes / NumMaskElts;
for (int i = 0; i < NumBytes; ++i) {
int M = Mask[i / Ratio];
if (M == SM_SentinelUndef) {
VPPERMMask.push_back(DAG.getUNDEF(MVT::i8));
continue;
}
if (M == SM_SentinelZero) {
VPPERMMask.push_back(DAG.getConstant(128, DL, MVT::i8));
continue;
}
M = Ratio * M + i % Ratio;
VPPERMMask.push_back(DAG.getConstant(M, DL, MVT::i8));
}
MVT ByteVT = MVT::v16i8;
V1 = DAG.getBitcast(ByteVT, V1);
V2 = DAG.getBitcast(ByteVT, V2);
SDValue VPPERMMaskOp = DAG.getBuildVector(ByteVT, DL, VPPERMMask);
Res = DAG.getNode(X86ISD::VPPERM, DL, ByteVT, V1, V2, VPPERMMaskOp);
return DAG.getBitcast(RootVT, Res);
}
// Failed to find any combines.
return SDValue();
}
// Attempt to constant fold all of the constant source ops.
// Returns true if the entire shuffle is folded to a constant.
// TODO: Extend this to merge multiple constant Ops and update the mask.
static SDValue combineX86ShufflesConstants(ArrayRef<SDValue> Ops,
ArrayRef<int> Mask, SDValue Root,
bool HasVariableMask,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = Root.getSimpleValueType();
unsigned SizeInBits = VT.getSizeInBits();
unsigned NumMaskElts = Mask.size();
unsigned MaskSizeInBits = SizeInBits / NumMaskElts;
unsigned NumOps = Ops.size();
// Extract constant bits from each source op.
bool OneUseConstantOp = false;
SmallVector<APInt, 16> UndefEltsOps(NumOps);
SmallVector<SmallVector<APInt, 16>, 16> RawBitsOps(NumOps);
for (unsigned i = 0; i != NumOps; ++i) {
SDValue SrcOp = Ops[i];
OneUseConstantOp |= SrcOp.hasOneUse();
if (!getTargetConstantBitsFromNode(SrcOp, MaskSizeInBits, UndefEltsOps[i],
RawBitsOps[i]))
return SDValue();
}
// Only fold if at least one of the constants is only used once or
// the combined shuffle has included a variable mask shuffle, this
// is to avoid constant pool bloat.
if (!OneUseConstantOp && !HasVariableMask)
return SDValue();
// Shuffle the constant bits according to the mask.
APInt UndefElts(NumMaskElts, 0);
APInt ZeroElts(NumMaskElts, 0);
APInt ConstantElts(NumMaskElts, 0);
SmallVector<APInt, 8> ConstantBitData(NumMaskElts,
APInt::getNullValue(MaskSizeInBits));
for (unsigned i = 0; i != NumMaskElts; ++i) {
int M = Mask[i];
if (M == SM_SentinelUndef) {
UndefElts.setBit(i);
continue;
} else if (M == SM_SentinelZero) {
ZeroElts.setBit(i);
continue;
}
assert(0 <= M && M < (int)(NumMaskElts * NumOps));
unsigned SrcOpIdx = (unsigned)M / NumMaskElts;
unsigned SrcMaskIdx = (unsigned)M % NumMaskElts;
auto &SrcUndefElts = UndefEltsOps[SrcOpIdx];
if (SrcUndefElts[SrcMaskIdx]) {
UndefElts.setBit(i);
continue;
}
auto &SrcEltBits = RawBitsOps[SrcOpIdx];
APInt &Bits = SrcEltBits[SrcMaskIdx];
if (!Bits) {
ZeroElts.setBit(i);
continue;
}
ConstantElts.setBit(i);
ConstantBitData[i] = Bits;
}
assert((UndefElts | ZeroElts | ConstantElts).isAllOnesValue());
// Create the constant data.
MVT MaskSVT;
if (VT.isFloatingPoint() && (MaskSizeInBits == 32 || MaskSizeInBits == 64))
MaskSVT = MVT::getFloatingPointVT(MaskSizeInBits);
else
MaskSVT = MVT::getIntegerVT(MaskSizeInBits);
MVT MaskVT = MVT::getVectorVT(MaskSVT, NumMaskElts);
SDLoc DL(Root);
SDValue CstOp = getConstVector(ConstantBitData, UndefElts, MaskVT, DAG, DL);
return DAG.getBitcast(VT, CstOp);
}
/// Fully generic combining of x86 shuffle instructions.
///
/// This should be the last combine run over the x86 shuffle instructions. Once
/// they have been fully optimized, this will recursively consider all chains
/// of single-use shuffle instructions, build a generic model of the cumulative
/// shuffle operation, and check for simpler instructions which implement this
/// operation. We use this primarily for two purposes:
///
/// 1) Collapse generic shuffles to specialized single instructions when
/// equivalent. In most cases, this is just an encoding size win, but
/// sometimes we will collapse multiple generic shuffles into a single
/// special-purpose shuffle.
/// 2) Look for sequences of shuffle instructions with 3 or more total
/// instructions, and replace them with the slightly more expensive SSSE3
/// PSHUFB instruction if available. We do this as the last combining step
/// to ensure we avoid using PSHUFB if we can implement the shuffle with
/// a suitable short sequence of other instructions. The PSHUFB will either
/// use a register or have to read from memory and so is slightly (but only
/// slightly) more expensive than the other shuffle instructions.
///
/// Because this is inherently a quadratic operation (for each shuffle in
/// a chain, we recurse up the chain), the depth is limited to 8 instructions.
/// This should never be an issue in practice as the shuffle lowering doesn't
/// produce sequences of more than 8 instructions.
///
/// FIXME: We will currently miss some cases where the redundant shuffling
/// would simplify under the threshold for PSHUFB formation because of
/// combine-ordering. To fix this, we should do the redundant instruction
/// combining in this recursive walk.
static SDValue combineX86ShufflesRecursively(
ArrayRef<SDValue> SrcOps, int SrcOpIndex, SDValue Root,
ArrayRef<int> RootMask, ArrayRef<const SDNode *> SrcNodes, unsigned Depth,
bool HasVariableMask, SelectionDAG &DAG, const X86Subtarget &Subtarget) {
// Bound the depth of our recursive combine because this is ultimately
// quadratic in nature.
const unsigned MaxRecursionDepth = 8;
if (Depth > MaxRecursionDepth)
return SDValue();
// Directly rip through bitcasts to find the underlying operand.
SDValue Op = SrcOps[SrcOpIndex];
Op = peekThroughOneUseBitcasts(Op);
MVT VT = Op.getSimpleValueType();
if (!VT.isVector())
return SDValue(); // Bail if we hit a non-vector.
assert(Root.getSimpleValueType().isVector() &&
"Shuffles operate on vector types!");
assert(VT.getSizeInBits() == Root.getSimpleValueType().getSizeInBits() &&
"Can only combine shuffles of the same vector register size.");
// Extract target shuffle mask and resolve sentinels and inputs.
SmallVector<int, 64> OpMask;
SmallVector<SDValue, 2> OpInputs;
if (!resolveTargetShuffleInputs(Op, OpInputs, OpMask, DAG))
return SDValue();
assert(OpInputs.size() <= 2 && "Too many shuffle inputs");
SDValue Input0 = (OpInputs.size() > 0 ? OpInputs[0] : SDValue());
SDValue Input1 = (OpInputs.size() > 1 ? OpInputs[1] : SDValue());
// Add the inputs to the Ops list, avoiding duplicates.
SmallVector<SDValue, 16> Ops(SrcOps.begin(), SrcOps.end());
int InputIdx0 = -1, InputIdx1 = -1;
for (int i = 0, e = Ops.size(); i < e; ++i) {
SDValue BC = peekThroughBitcasts(Ops[i]);
if (Input0 && BC == peekThroughBitcasts(Input0))
InputIdx0 = i;
if (Input1 && BC == peekThroughBitcasts(Input1))
InputIdx1 = i;
}
if (Input0 && InputIdx0 < 0) {
InputIdx0 = SrcOpIndex;
Ops[SrcOpIndex] = Input0;
}
if (Input1 && InputIdx1 < 0) {
InputIdx1 = Ops.size();
Ops.push_back(Input1);
}
assert(((RootMask.size() > OpMask.size() &&
RootMask.size() % OpMask.size() == 0) ||
(OpMask.size() > RootMask.size() &&
OpMask.size() % RootMask.size() == 0) ||
OpMask.size() == RootMask.size()) &&
"The smaller number of elements must divide the larger.");
// This function can be performance-critical, so we rely on the power-of-2
// knowledge that we have about the mask sizes to replace div/rem ops with
// bit-masks and shifts.
assert(isPowerOf2_32(RootMask.size()) && "Non-power-of-2 shuffle mask sizes");
assert(isPowerOf2_32(OpMask.size()) && "Non-power-of-2 shuffle mask sizes");
unsigned RootMaskSizeLog2 = countTrailingZeros(RootMask.size());
unsigned OpMaskSizeLog2 = countTrailingZeros(OpMask.size());
unsigned MaskWidth = std::max<unsigned>(OpMask.size(), RootMask.size());
unsigned RootRatio = std::max<unsigned>(1, OpMask.size() >> RootMaskSizeLog2);
unsigned OpRatio = std::max<unsigned>(1, RootMask.size() >> OpMaskSizeLog2);
assert((RootRatio == 1 || OpRatio == 1) &&
"Must not have a ratio for both incoming and op masks!");
assert(isPowerOf2_32(MaskWidth) && "Non-power-of-2 shuffle mask sizes");
assert(isPowerOf2_32(RootRatio) && "Non-power-of-2 shuffle mask sizes");
assert(isPowerOf2_32(OpRatio) && "Non-power-of-2 shuffle mask sizes");
unsigned RootRatioLog2 = countTrailingZeros(RootRatio);
unsigned OpRatioLog2 = countTrailingZeros(OpRatio);
SmallVector<int, 64> Mask(MaskWidth, SM_SentinelUndef);
// Merge this shuffle operation's mask into our accumulated mask. Note that
// this shuffle's mask will be the first applied to the input, followed by the
// root mask to get us all the way to the root value arrangement. The reason
// for this order is that we are recursing up the operation chain.
for (unsigned i = 0; i < MaskWidth; ++i) {
unsigned RootIdx = i >> RootRatioLog2;
if (RootMask[RootIdx] < 0) {
// This is a zero or undef lane, we're done.
Mask[i] = RootMask[RootIdx];
continue;
}
unsigned RootMaskedIdx =
RootRatio == 1
? RootMask[RootIdx]
: (RootMask[RootIdx] << RootRatioLog2) + (i & (RootRatio - 1));
// Just insert the scaled root mask value if it references an input other
// than the SrcOp we're currently inserting.
if ((RootMaskedIdx < (SrcOpIndex * MaskWidth)) ||
(((SrcOpIndex + 1) * MaskWidth) <= RootMaskedIdx)) {
Mask[i] = RootMaskedIdx;
continue;
}
RootMaskedIdx = RootMaskedIdx & (MaskWidth - 1);
unsigned OpIdx = RootMaskedIdx >> OpRatioLog2;
if (OpMask[OpIdx] < 0) {
// The incoming lanes are zero or undef, it doesn't matter which ones we
// are using.
Mask[i] = OpMask[OpIdx];
continue;
}
// Ok, we have non-zero lanes, map them through to one of the Op's inputs.
unsigned OpMaskedIdx =
OpRatio == 1
? OpMask[OpIdx]
: (OpMask[OpIdx] << OpRatioLog2) + (RootMaskedIdx & (OpRatio - 1));
OpMaskedIdx = OpMaskedIdx & (MaskWidth - 1);
if (OpMask[OpIdx] < (int)OpMask.size()) {
assert(0 <= InputIdx0 && "Unknown target shuffle input");
OpMaskedIdx += InputIdx0 * MaskWidth;
} else {
assert(0 <= InputIdx1 && "Unknown target shuffle input");
OpMaskedIdx += InputIdx1 * MaskWidth;
}
Mask[i] = OpMaskedIdx;
}
// Handle the all undef/zero cases early.
if (all_of(Mask, [](int Idx) { return Idx == SM_SentinelUndef; }))
return DAG.getUNDEF(Root.getValueType());
// TODO - should we handle the mixed zero/undef case as well? Just returning
// a zero mask will lose information on undef elements possibly reducing
// future combine possibilities.
if (all_of(Mask, [](int Idx) { return Idx < 0; }))
return getZeroVector(Root.getSimpleValueType(), Subtarget, DAG,
SDLoc(Root));
// Remove unused shuffle source ops.
resolveTargetShuffleInputsAndMask(Ops, Mask);
assert(!Ops.empty() && "Shuffle with no inputs detected");
HasVariableMask |= isTargetShuffleVariableMask(Op.getOpcode());
// Update the list of shuffle nodes that have been combined so far.
SmallVector<const SDNode *, 16> CombinedNodes(SrcNodes.begin(),
SrcNodes.end());
CombinedNodes.push_back(Op.getNode());
// See if we can recurse into each shuffle source op (if it's a target
// shuffle). The source op should only be combined if it either has a
// single use (i.e. current Op) or all its users have already been combined.
// Don't recurse if we already have more source ops than we can combine in
// the remaining recursion depth.
if (Ops.size() < (MaxRecursionDepth - Depth)) {
for (int i = 0, e = Ops.size(); i < e; ++i)
if (Ops[i].getNode()->hasOneUse() ||
SDNode::areOnlyUsersOf(CombinedNodes, Ops[i].getNode()))
if (SDValue Res = combineX86ShufflesRecursively(
Ops, i, Root, Mask, CombinedNodes, Depth + 1, HasVariableMask,
DAG, Subtarget))
return Res;
}
// Attempt to constant fold all of the constant source ops.
if (SDValue Cst = combineX86ShufflesConstants(
Ops, Mask, Root, HasVariableMask, DAG, Subtarget))
return Cst;
// We can only combine unary and binary shuffle mask cases.
if (Ops.size() > 2)
return SDValue();
// Minor canonicalization of the accumulated shuffle mask to make it easier
// to match below. All this does is detect masks with sequential pairs of
// elements, and shrink them to the half-width mask. It does this in a loop
// so it will reduce the size of the mask to the minimal width mask which
// performs an equivalent shuffle.
SmallVector<int, 64> WidenedMask;
while (Mask.size() > 1 && canWidenShuffleElements(Mask, WidenedMask)) {
Mask = std::move(WidenedMask);
}
// Canonicalization of binary shuffle masks to improve pattern matching by
// commuting the inputs.
if (Ops.size() == 2 && canonicalizeShuffleMaskWithCommute(Mask)) {
ShuffleVectorSDNode::commuteMask(Mask);
std::swap(Ops[0], Ops[1]);
}
// Finally, try to combine into a single shuffle instruction.
return combineX86ShuffleChain(Ops, Root, Mask, Depth, HasVariableMask, DAG,
Subtarget);
}
/// Get the PSHUF-style mask from PSHUF node.
///
/// This is a very minor wrapper around getTargetShuffleMask to easy forming v4
/// PSHUF-style masks that can be reused with such instructions.
static SmallVector<int, 4> getPSHUFShuffleMask(SDValue N) {
MVT VT = N.getSimpleValueType();
SmallVector<int, 4> Mask;
SmallVector<SDValue, 2> Ops;
bool IsUnary;
bool HaveMask =
getTargetShuffleMask(N.getNode(), VT, false, Ops, Mask, IsUnary);
(void)HaveMask;
assert(HaveMask);
// If we have more than 128-bits, only the low 128-bits of shuffle mask
// matter. Check that the upper masks are repeats and remove them.
if (VT.getSizeInBits() > 128) {
int LaneElts = 128 / VT.getScalarSizeInBits();
#ifndef NDEBUG
for (int i = 1, NumLanes = VT.getSizeInBits() / 128; i < NumLanes; ++i)
for (int j = 0; j < LaneElts; ++j)
assert(Mask[j] == Mask[i * LaneElts + j] - (LaneElts * i) &&
"Mask doesn't repeat in high 128-bit lanes!");
#endif
Mask.resize(LaneElts);
}
switch (N.getOpcode()) {
case X86ISD::PSHUFD:
return Mask;
case X86ISD::PSHUFLW:
Mask.resize(4);
return Mask;
case X86ISD::PSHUFHW:
Mask.erase(Mask.begin(), Mask.begin() + 4);
for (int &M : Mask)
M -= 4;
return Mask;
default:
llvm_unreachable("No valid shuffle instruction found!");
}
}
/// Search for a combinable shuffle across a chain ending in pshufd.
///
/// We walk up the chain and look for a combinable shuffle, skipping over
/// shuffles that we could hoist this shuffle's transformation past without
/// altering anything.
static SDValue
combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
SelectionDAG &DAG) {
assert(N.getOpcode() == X86ISD::PSHUFD &&
"Called with something other than an x86 128-bit half shuffle!");
SDLoc DL(N);
// Walk up a single-use chain looking for a combinable shuffle. Keep a stack
// of the shuffles in the chain so that we can form a fresh chain to replace
// this one.
SmallVector<SDValue, 8> Chain;
SDValue V = N.getOperand(0);
for (; V.hasOneUse(); V = V.getOperand(0)) {
switch (V.getOpcode()) {
default:
return SDValue(); // Nothing combined!
case ISD::BITCAST:
// Skip bitcasts as we always know the type for the target specific
// instructions.
continue;
case X86ISD::PSHUFD:
// Found another dword shuffle.
break;
case X86ISD::PSHUFLW:
// Check that the low words (being shuffled) are the identity in the
// dword shuffle, and the high words are self-contained.
if (Mask[0] != 0 || Mask[1] != 1 ||
!(Mask[2] >= 2 && Mask[2] < 4 && Mask[3] >= 2 && Mask[3] < 4))
return SDValue();
Chain.push_back(V);
continue;
case X86ISD::PSHUFHW:
// Check that the high words (being shuffled) are the identity in the
// dword shuffle, and the low words are self-contained.
if (Mask[2] != 2 || Mask[3] != 3 ||
!(Mask[0] >= 0 && Mask[0] < 2 && Mask[1] >= 0 && Mask[1] < 2))
return SDValue();
Chain.push_back(V);
continue;
case X86ISD::UNPCKL:
case X86ISD::UNPCKH:
// For either i8 -> i16 or i16 -> i32 unpacks, we can combine a dword
// shuffle into a preceding word shuffle.
if (V.getSimpleValueType().getVectorElementType() != MVT::i8 &&
V.getSimpleValueType().getVectorElementType() != MVT::i16)
return SDValue();
// Search for a half-shuffle which we can combine with.
unsigned CombineOp =
V.getOpcode() == X86ISD::UNPCKL ? X86ISD::PSHUFLW : X86ISD::PSHUFHW;
if (V.getOperand(0) != V.getOperand(1) ||
!V->isOnlyUserOf(V.getOperand(0).getNode()))
return SDValue();
Chain.push_back(V);
V = V.getOperand(0);
do {
switch (V.getOpcode()) {
default:
return SDValue(); // Nothing to combine.
case X86ISD::PSHUFLW:
case X86ISD::PSHUFHW:
if (V.getOpcode() == CombineOp)
break;
Chain.push_back(V);
LLVM_FALLTHROUGH;
case ISD::BITCAST:
V = V.getOperand(0);
continue;
}
break;
} while (V.hasOneUse());
break;
}
// Break out of the loop if we break out of the switch.
break;
}
if (!V.hasOneUse())
// We fell out of the loop without finding a viable combining instruction.
return SDValue();
// Merge this node's mask and our incoming mask.
SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
for (int &M : Mask)
M = VMask[M];
V = DAG.getNode(V.getOpcode(), DL, V.getValueType(), V.getOperand(0),
getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
// Rebuild the chain around this new shuffle.
while (!Chain.empty()) {
SDValue W = Chain.pop_back_val();
if (V.getValueType() != W.getOperand(0).getValueType())
V = DAG.getBitcast(W.getOperand(0).getValueType(), V);
switch (W.getOpcode()) {
default:
llvm_unreachable("Only PSHUF and UNPCK instructions get here!");
case X86ISD::UNPCKL:
case X86ISD::UNPCKH:
V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, V);
break;
case X86ISD::PSHUFD:
case X86ISD::PSHUFLW:
case X86ISD::PSHUFHW:
V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, W.getOperand(1));
break;
}
}
if (V.getValueType() != N.getValueType())
V = DAG.getBitcast(N.getValueType(), V);
// Return the new chain to replace N.
return V;
}
/// Search for a combinable shuffle across a chain ending in pshuflw or
/// pshufhw.
///
/// We walk up the chain, skipping shuffles of the other half and looking
/// through shuffles which switch halves trying to find a shuffle of the same
/// pair of dwords.
static bool combineRedundantHalfShuffle(SDValue N, MutableArrayRef<int> Mask,
SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
assert(
(N.getOpcode() == X86ISD::PSHUFLW || N.getOpcode() == X86ISD::PSHUFHW) &&
"Called with something other than an x86 128-bit half shuffle!");
SDLoc DL(N);
unsigned CombineOpcode = N.getOpcode();
// Walk up a single-use chain looking for a combinable shuffle.
SDValue V = N.getOperand(0);
for (; V.hasOneUse(); V = V.getOperand(0)) {
switch (V.getOpcode()) {
default:
return false; // Nothing combined!
case ISD::BITCAST:
// Skip bitcasts as we always know the type for the target specific
// instructions.
continue;
case X86ISD::PSHUFLW:
case X86ISD::PSHUFHW:
if (V.getOpcode() == CombineOpcode)
break;
// Other-half shuffles are no-ops.
continue;
}
// Break out of the loop if we break out of the switch.
break;
}
if (!V.hasOneUse())
// We fell out of the loop without finding a viable combining instruction.
return false;
// Combine away the bottom node as its shuffle will be accumulated into
// a preceding shuffle.
DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true);
// Record the old value.
SDValue Old = V;
// Merge this node's mask and our incoming mask (adjusted to account for all
// the pshufd instructions encountered).
SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
for (int &M : Mask)
M = VMask[M];
V = DAG.getNode(V.getOpcode(), DL, MVT::v8i16, V.getOperand(0),
getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
// Check that the shuffles didn't cancel each other out. If not, we need to
// combine to the new one.
if (Old != V)
// Replace the combinable shuffle with the combined one, updating all users
// so that we re-evaluate the chain here.
DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true);
return true;
}
/// Try to combine x86 target specific shuffles.
static SDValue combineTargetShuffle(SDValue N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDLoc DL(N);
MVT VT = N.getSimpleValueType();
SmallVector<int, 4> Mask;
unsigned Opcode = N.getOpcode();
// Combine binary shuffle of 2 similar 'Horizontal' instructions into a
// single instruction.
if (VT.getScalarSizeInBits() == 64 &&
(Opcode == X86ISD::MOVSD || Opcode == X86ISD::UNPCKH ||
Opcode == X86ISD::UNPCKL)) {
auto BC0 = peekThroughBitcasts(N.getOperand(0));
auto BC1 = peekThroughBitcasts(N.getOperand(1));
EVT VT0 = BC0.getValueType();
EVT VT1 = BC1.getValueType();
unsigned Opcode0 = BC0.getOpcode();
unsigned Opcode1 = BC1.getOpcode();
if (Opcode0 == Opcode1 && VT0 == VT1 &&
(Opcode0 == X86ISD::FHADD || Opcode0 == X86ISD::HADD ||
Opcode0 == X86ISD::FHSUB || Opcode0 == X86ISD::HSUB ||
Opcode0 == X86ISD::PACKSS || Opcode0 == X86ISD::PACKUS)) {
SDValue Lo, Hi;
if (Opcode == X86ISD::MOVSD) {
Lo = BC1.getOperand(0);
Hi = BC0.getOperand(1);
} else {
Lo = BC0.getOperand(Opcode == X86ISD::UNPCKH ? 1 : 0);
Hi = BC1.getOperand(Opcode == X86ISD::UNPCKH ? 1 : 0);
}
SDValue Horiz = DAG.getNode(Opcode0, DL, VT0, Lo, Hi);
return DAG.getBitcast(VT, Horiz);
}
}
switch (Opcode) {
case X86ISD::VBROADCAST: {
// If broadcasting from another shuffle, attempt to simplify it.
// TODO - we really need a general SimplifyDemandedVectorElts mechanism.
SDValue Src = N.getOperand(0);
SDValue BC = peekThroughBitcasts(Src);
EVT SrcVT = Src.getValueType();
EVT BCVT = BC.getValueType();
if (isTargetShuffle(BC.getOpcode()) &&
VT.getScalarSizeInBits() % BCVT.getScalarSizeInBits() == 0) {
unsigned Scale = VT.getScalarSizeInBits() / BCVT.getScalarSizeInBits();
SmallVector<int, 16> DemandedMask(BCVT.getVectorNumElements(),
SM_SentinelUndef);
for (unsigned i = 0; i != Scale; ++i)
DemandedMask[i] = i;
if (SDValue Res = combineX86ShufflesRecursively(
{BC}, 0, BC, DemandedMask, {}, /*Depth*/ 1,
/*HasVarMask*/ false, DAG, Subtarget))
return DAG.getNode(X86ISD::VBROADCAST, DL, VT,
DAG.getBitcast(SrcVT, Res));
}
return SDValue();
}
case X86ISD::PSHUFD:
case X86ISD::PSHUFLW:
case X86ISD::PSHUFHW:
Mask = getPSHUFShuffleMask(N);
assert(Mask.size() == 4);
break;
case X86ISD::UNPCKL: {
// Combine X86ISD::UNPCKL and ISD::VECTOR_SHUFFLE into X86ISD::UNPCKH, in
// which X86ISD::UNPCKL has a ISD::UNDEF operand, and ISD::VECTOR_SHUFFLE
// moves upper half elements into the lower half part. For example:
//
// t2: v16i8 = vector_shuffle<8,9,10,11,12,13,14,15,u,u,u,u,u,u,u,u> t1,
// undef:v16i8
// t3: v16i8 = X86ISD::UNPCKL undef:v16i8, t2
//
// will be combined to:
//
// t3: v16i8 = X86ISD::UNPCKH undef:v16i8, t1
// This is only for 128-bit vectors. From SSE4.1 onward this combine may not
// happen due to advanced instructions.
if (!VT.is128BitVector())
return SDValue();
auto Op0 = N.getOperand(0);
auto Op1 = N.getOperand(1);
if (Op0.isUndef() && Op1.getOpcode() == ISD::VECTOR_SHUFFLE) {
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op1.getNode())->getMask();
unsigned NumElts = VT.getVectorNumElements();
SmallVector<int, 8> ExpectedMask(NumElts, -1);
std::iota(ExpectedMask.begin(), ExpectedMask.begin() + NumElts / 2,
NumElts / 2);
auto ShufOp = Op1.getOperand(0);
if (isShuffleEquivalent(Op1, ShufOp, Mask, ExpectedMask))
return DAG.getNode(X86ISD::UNPCKH, DL, VT, N.getOperand(0), ShufOp);
}
return SDValue();
}
case X86ISD::MOVSD:
case X86ISD::MOVSS: {
SDValue N0 = N.getOperand(0);
SDValue N1 = N.getOperand(1);
// Canonicalize scalar FPOps:
// MOVS*(N0, OP(N0, N1)) --> MOVS*(N0, SCALAR_TO_VECTOR(OP(N0[0], N1[0])))
// If commutable, allow OP(N1[0], N0[0]).
unsigned Opcode1 = N1.getOpcode();
if (Opcode1 == ISD::FADD || Opcode1 == ISD::FMUL || Opcode1 == ISD::FSUB ||
Opcode1 == ISD::FDIV) {
SDValue N10 = N1.getOperand(0);
SDValue N11 = N1.getOperand(1);
if (N10 == N0 ||
(N11 == N0 && (Opcode1 == ISD::FADD || Opcode1 == ISD::FMUL))) {
if (N10 != N0)
std::swap(N10, N11);
MVT SVT = VT.getVectorElementType();
SDValue ZeroIdx = DAG.getIntPtrConstant(0, DL);
N10 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SVT, N10, ZeroIdx);
N11 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SVT, N11, ZeroIdx);
SDValue Scl = DAG.getNode(Opcode1, DL, SVT, N10, N11);
SDValue SclVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Scl);
return DAG.getNode(Opcode, DL, VT, N0, SclVec);
}
}
return SDValue();
}
case X86ISD::INSERTPS: {
assert(VT == MVT::v4f32 && "INSERTPS ValueType must be MVT::v4f32");
SDValue Op0 = N.getOperand(0);
SDValue Op1 = N.getOperand(1);
SDValue Op2 = N.getOperand(2);
unsigned InsertPSMask = cast<ConstantSDNode>(Op2)->getZExtValue();
unsigned SrcIdx = (InsertPSMask >> 6) & 0x3;
unsigned DstIdx = (InsertPSMask >> 4) & 0x3;
unsigned ZeroMask = InsertPSMask & 0xF;
// If we zero out all elements from Op0 then we don't need to reference it.
if (((ZeroMask | (1u << DstIdx)) == 0xF) && !Op0.isUndef())
return DAG.getNode(X86ISD::INSERTPS, DL, VT, DAG.getUNDEF(VT), Op1,
DAG.getConstant(InsertPSMask, DL, MVT::i8));
// If we zero out the element from Op1 then we don't need to reference it.
if ((ZeroMask & (1u << DstIdx)) && !Op1.isUndef())
return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, DAG.getUNDEF(VT),
DAG.getConstant(InsertPSMask, DL, MVT::i8));
// Attempt to merge insertps Op1 with an inner target shuffle node.
SmallVector<int, 8> TargetMask1;
SmallVector<SDValue, 2> Ops1;
if (setTargetShuffleZeroElements(Op1, TargetMask1, Ops1)) {
int M = TargetMask1[SrcIdx];
if (isUndefOrZero(M)) {
// Zero/UNDEF insertion - zero out element and remove dependency.
InsertPSMask |= (1u << DstIdx);
return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, DAG.getUNDEF(VT),
DAG.getConstant(InsertPSMask, DL, MVT::i8));
}
// Update insertps mask srcidx and reference the source input directly.
assert(0 <= M && M < 8 && "Shuffle index out of range");
InsertPSMask = (InsertPSMask & 0x3f) | ((M & 0x3) << 6);
Op1 = Ops1[M < 4 ? 0 : 1];
return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, Op1,
DAG.getConstant(InsertPSMask, DL, MVT::i8));
}
// Attempt to merge insertps Op0 with an inner target shuffle node.
SmallVector<int, 8> TargetMask0;
SmallVector<SDValue, 2> Ops0;
if (!setTargetShuffleZeroElements(Op0, TargetMask0, Ops0))
return SDValue();
bool Updated = false;
bool UseInput00 = false;
bool UseInput01 = false;
for (int i = 0; i != 4; ++i) {
int M = TargetMask0[i];
if ((InsertPSMask & (1u << i)) || (i == (int)DstIdx)) {
// No change if element is already zero or the inserted element.
continue;
} else if (isUndefOrZero(M)) {
// If the target mask is undef/zero then we must zero the element.
InsertPSMask |= (1u << i);
Updated = true;
continue;
}
// The input vector element must be inline.
if (M != i && M != (i + 4))
return SDValue();
// Determine which inputs of the target shuffle we're using.
UseInput00 |= (0 <= M && M < 4);
UseInput01 |= (4 <= M);
}
// If we're not using both inputs of the target shuffle then use the
// referenced input directly.
if (UseInput00 && !UseInput01) {
Updated = true;
Op0 = Ops0[0];
} else if (!UseInput00 && UseInput01) {
Updated = true;
Op0 = Ops0[1];
}
if (Updated)
return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, Op1,
DAG.getConstant(InsertPSMask, DL, MVT::i8));
return SDValue();
}
default:
return SDValue();
}
// Nuke no-op shuffles that show up after combining.
if (isNoopShuffleMask(Mask))
return N.getOperand(0);
// Look for simplifications involving one or two shuffle instructions.
SDValue V = N.getOperand(0);
switch (N.getOpcode()) {
default:
break;
case X86ISD::PSHUFLW:
case X86ISD::PSHUFHW:
assert(VT.getVectorElementType() == MVT::i16 && "Bad word shuffle type!");
if (combineRedundantHalfShuffle(N, Mask, DAG, DCI))
return SDValue(); // We combined away this shuffle, so we're done.
// See if this reduces to a PSHUFD which is no more expensive and can
// combine with more operations. Note that it has to at least flip the
// dwords as otherwise it would have been removed as a no-op.
if (makeArrayRef(Mask).equals({2, 3, 0, 1})) {
int DMask[] = {0, 1, 2, 3};
int DOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 2;
DMask[DOffset + 0] = DOffset + 1;
DMask[DOffset + 1] = DOffset + 0;
MVT DVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
V = DAG.getBitcast(DVT, V);
V = DAG.getNode(X86ISD::PSHUFD, DL, DVT, V,
getV4X86ShuffleImm8ForMask(DMask, DL, DAG));
return DAG.getBitcast(VT, V);
}
// Look for shuffle patterns which can be implemented as a single unpack.
// FIXME: This doesn't handle the location of the PSHUFD generically, and
// only works when we have a PSHUFD followed by two half-shuffles.
if (Mask[0] == Mask[1] && Mask[2] == Mask[3] &&
(V.getOpcode() == X86ISD::PSHUFLW ||
V.getOpcode() == X86ISD::PSHUFHW) &&
V.getOpcode() != N.getOpcode() &&
V.hasOneUse()) {
SDValue D = peekThroughOneUseBitcasts(V.getOperand(0));
if (D.getOpcode() == X86ISD::PSHUFD && D.hasOneUse()) {
SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
SmallVector<int, 4> DMask = getPSHUFShuffleMask(D);
int NOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
int VOffset = V.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
int WordMask[8];
for (int i = 0; i < 4; ++i) {
WordMask[i + NOffset] = Mask[i] + NOffset;
WordMask[i + VOffset] = VMask[i] + VOffset;
}
// Map the word mask through the DWord mask.
int MappedMask[8];
for (int i = 0; i < 8; ++i)
MappedMask[i] = 2 * DMask[WordMask[i] / 2] + WordMask[i] % 2;
if (makeArrayRef(MappedMask).equals({0, 0, 1, 1, 2, 2, 3, 3}) ||
makeArrayRef(MappedMask).equals({4, 4, 5, 5, 6, 6, 7, 7})) {
// We can replace all three shuffles with an unpack.
V = DAG.getBitcast(VT, D.getOperand(0));
return DAG.getNode(MappedMask[0] == 0 ? X86ISD::UNPCKL
: X86ISD::UNPCKH,
DL, VT, V, V);
}
}
}
break;
case X86ISD::PSHUFD:
if (SDValue NewN = combineRedundantDWordShuffle(N, Mask, DAG))
return NewN;
break;
}
return SDValue();
}
/// Checks if the shuffle mask takes subsequent elements
/// alternately from two vectors.
/// For example <0, 5, 2, 7> or <8, 1, 10, 3, 12, 5, 14, 7> are both correct.
static bool isAddSubOrSubAddMask(ArrayRef<int> Mask, bool &Op0Even) {
int ParitySrc[2] = {-1, -1};
unsigned Size = Mask.size();
for (unsigned i = 0; i != Size; ++i) {
int M = Mask[i];
if (M < 0)
continue;
// Make sure we are using the matching element from the input.
if ((M % Size) != i)
return false;
// Make sure we use the same input for all elements of the same parity.
int Src = M / Size;
if (ParitySrc[i % 2] >= 0 && ParitySrc[i % 2] != Src)
return false;
ParitySrc[i % 2] = Src;
}
// Make sure each input is used.
if (ParitySrc[0] < 0 || ParitySrc[1] < 0 || ParitySrc[0] == ParitySrc[1])
return false;
Op0Even = ParitySrc[0] == 0;
return true;
}
/// Returns true iff the shuffle node \p N can be replaced with ADDSUB(SUBADD)
/// operation. If true is returned then the operands of ADDSUB(SUBADD) operation
/// are written to the parameters \p Opnd0 and \p Opnd1.
///
/// We combine shuffle to ADDSUB(SUBADD) directly on the abstract vector shuffle nodes
/// so it is easier to generically match. We also insert dummy vector shuffle
/// nodes for the operands which explicitly discard the lanes which are unused
/// by this operation to try to flow through the rest of the combiner
/// the fact that they're unused.
static bool isAddSubOrSubAdd(SDNode *N, const X86Subtarget &Subtarget,
SelectionDAG &DAG, SDValue &Opnd0, SDValue &Opnd1,
bool &IsSubAdd) {
EVT VT = N->getValueType(0);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!Subtarget.hasSSE3() || !TLI.isTypeLegal(VT) ||
!VT.getSimpleVT().isFloatingPoint())
return false;
// We only handle target-independent shuffles.
// FIXME: It would be easy and harmless to use the target shuffle mask
// extraction tool to support more.
if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
return false;
SDValue V1 = N->getOperand(0);
SDValue V2 = N->getOperand(1);
// Make sure we have an FADD and an FSUB.
if ((V1.getOpcode() != ISD::FADD && V1.getOpcode() != ISD::FSUB) ||
(V2.getOpcode() != ISD::FADD && V2.getOpcode() != ISD::FSUB) ||
V1.getOpcode() == V2.getOpcode())
return false;
// If there are other uses of these operations we can't fold them.
if (!V1->hasOneUse() || !V2->hasOneUse())
return false;
// Ensure that both operations have the same operands. Note that we can
// commute the FADD operands.
SDValue LHS, RHS;
if (V1.getOpcode() == ISD::FSUB) {
LHS = V1->getOperand(0); RHS = V1->getOperand(1);
if ((V2->getOperand(0) != LHS || V2->getOperand(1) != RHS) &&
(V2->getOperand(0) != RHS || V2->getOperand(1) != LHS))
return false;
} else {
assert(V2.getOpcode() == ISD::FSUB && "Unexpected opcode");
LHS = V2->getOperand(0); RHS = V2->getOperand(1);
if ((V1->getOperand(0) != LHS || V1->getOperand(1) != RHS) &&
(V1->getOperand(0) != RHS || V1->getOperand(1) != LHS))
return false;
}
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask();
bool Op0Even;
if (!isAddSubOrSubAddMask(Mask, Op0Even))
return false;
// It's a subadd if the vector in the even parity is an FADD.
IsSubAdd = Op0Even ? V1->getOpcode() == ISD::FADD
: V2->getOpcode() == ISD::FADD;
Opnd0 = LHS;
Opnd1 = RHS;
return true;
}
/// Combine shuffle of two fma nodes into FMAddSub or FMSubAdd.
static SDValue combineShuffleToFMAddSub(SDNode *N,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
// We only handle target-independent shuffles.
// FIXME: It would be easy and harmless to use the target shuffle mask
// extraction tool to support more.
if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
return SDValue();
MVT VT = N->getSimpleValueType(0);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!Subtarget.hasAnyFMA() || !TLI.isTypeLegal(VT))
return SDValue();
// We're trying to match (shuffle fma(a, b, c), X86Fmsub(a, b, c).
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
SDValue FMAdd = Op0, FMSub = Op1;
if (FMSub.getOpcode() != X86ISD::FMSUB)
std::swap(FMAdd, FMSub);
if (FMAdd.getOpcode() != ISD::FMA || FMSub.getOpcode() != X86ISD::FMSUB ||
FMAdd.getOperand(0) != FMSub.getOperand(0) || !FMAdd.hasOneUse() ||
FMAdd.getOperand(1) != FMSub.getOperand(1) || !FMSub.hasOneUse() ||
FMAdd.getOperand(2) != FMSub.getOperand(2))
return SDValue();
// Check for correct shuffle mask.
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask();
bool Op0Even;
if (!isAddSubOrSubAddMask(Mask, Op0Even))
return SDValue();
// FMAddSub takes zeroth operand from FMSub node.
SDLoc DL(N);
bool IsSubAdd = Op0Even ? Op0 == FMAdd : Op1 == FMAdd;
unsigned Opcode = IsSubAdd ? X86ISD::FMSUBADD : X86ISD::FMADDSUB;
return DAG.getNode(Opcode, DL, VT, FMAdd.getOperand(0), FMAdd.getOperand(1),
FMAdd.getOperand(2));
}
/// Try to combine a shuffle into a target-specific add-sub or
/// mul-add-sub node.
static SDValue combineShuffleToAddSubOrFMAddSub(SDNode *N,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
if (SDValue V = combineShuffleToFMAddSub(N, Subtarget, DAG))
return V;
SDValue Opnd0, Opnd1;
bool IsSubAdd;
if (!isAddSubOrSubAdd(N, Subtarget, DAG, Opnd0, Opnd1, IsSubAdd))
return SDValue();
MVT VT = N->getSimpleValueType(0);
SDLoc DL(N);
// Try to generate X86ISD::FMADDSUB node here.
SDValue Opnd2;
if (isFMAddSubOrFMSubAdd(Subtarget, DAG, Opnd0, Opnd1, Opnd2, 2)) {
unsigned Opc = IsSubAdd ? X86ISD::FMSUBADD : X86ISD::FMADDSUB;
return DAG.getNode(Opc, DL, VT, Opnd0, Opnd1, Opnd2);
}
if (IsSubAdd)
return SDValue();
// Do not generate X86ISD::ADDSUB node for 512-bit types even though
// the ADDSUB idiom has been successfully recognized. There are no known
// X86 targets with 512-bit ADDSUB instructions!
if (VT.is512BitVector())
return SDValue();
return DAG.getNode(X86ISD::ADDSUB, DL, VT, Opnd0, Opnd1);
}
// We are looking for a shuffle where both sources are concatenated with undef
// and have a width that is half of the output's width. AVX2 has VPERMD/Q, so
// if we can express this as a single-source shuffle, that's preferable.
static SDValue combineShuffleOfConcatUndef(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (!Subtarget.hasAVX2() || !isa<ShuffleVectorSDNode>(N))
return SDValue();
EVT VT = N->getValueType(0);
// We only care about shuffles of 128/256-bit vectors of 32/64-bit values.
if (!VT.is128BitVector() && !VT.is256BitVector())
return SDValue();
if (VT.getVectorElementType() != MVT::i32 &&
VT.getVectorElementType() != MVT::i64 &&
VT.getVectorElementType() != MVT::f32 &&
VT.getVectorElementType() != MVT::f64)
return SDValue();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// Check that both sources are concats with undef.
if (N0.getOpcode() != ISD::CONCAT_VECTORS ||
N1.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 ||
N1.getNumOperands() != 2 || !N0.getOperand(1).isUndef() ||
!N1.getOperand(1).isUndef())
return SDValue();
// Construct the new shuffle mask. Elements from the first source retain their
// index, but elements from the second source no longer need to skip an undef.
SmallVector<int, 8> Mask;
int NumElts = VT.getVectorNumElements();
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
for (int Elt : SVOp->getMask())
Mask.push_back(Elt < NumElts ? Elt : (Elt - NumElts / 2));
SDLoc DL(N);
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, N0.getOperand(0),
N1.getOperand(0));
return DAG.getVectorShuffle(VT, DL, Concat, DAG.getUNDEF(VT), Mask);
}
/// Eliminate a redundant shuffle of a horizontal math op.
static SDValue foldShuffleOfHorizOp(SDNode *N) {
if (N->getOpcode() != ISD::VECTOR_SHUFFLE || !N->getOperand(1).isUndef())
return SDValue();
SDValue HOp = N->getOperand(0);
if (HOp.getOpcode() != X86ISD::HADD && HOp.getOpcode() != X86ISD::FHADD &&
HOp.getOpcode() != X86ISD::HSUB && HOp.getOpcode() != X86ISD::FHSUB)
return SDValue();
// 128-bit horizontal math instructions are defined to operate on adjacent
// lanes of each operand as:
// v4X32: A[0] + A[1] , A[2] + A[3] , B[0] + B[1] , B[2] + B[3]
// ...similarly for v2f64 and v8i16.
// TODO: Handle UNDEF operands.
if (HOp.getOperand(0) != HOp.getOperand(1))
return SDValue();
// When the operands of a horizontal math op are identical, the low half of
// the result is the same as the high half. If the shuffle is also replicating
// low and high halves, we don't need the shuffle.
// shuffle (hadd X, X), undef, [low half...high half] --> hadd X, X
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask();
// TODO: Other mask possibilities like {1,1} and {1,0} could be added here,
// but this should be tied to whatever horizontal op matching and shuffle
// canonicalization are producing.
if (HOp.getValueSizeInBits() == 128 &&
(isTargetShuffleEquivalent(Mask, {0, 0}) ||
isTargetShuffleEquivalent(Mask, {0, 1, 0, 1}) ||
isTargetShuffleEquivalent(Mask, {0, 1, 2, 3, 0, 1, 2, 3})))
return HOp;
if (HOp.getValueSizeInBits() == 256 &&
(isTargetShuffleEquivalent(Mask, {0, 0, 2, 2}) ||
isTargetShuffleEquivalent(Mask, {0, 1, 0, 1, 4, 5, 4, 5}) ||
isTargetShuffleEquivalent(
Mask, {0, 1, 2, 3, 0, 1, 2, 3, 8, 9, 10, 11, 8, 9, 10, 11})))
return HOp;
return SDValue();
}
static SDValue combineShuffle(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDLoc dl(N);
EVT VT = N->getValueType(0);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// If we have legalized the vector types, look for blends of FADD and FSUB
// nodes that we can fuse into an ADDSUB, FMADDSUB, or FMSUBADD node.
if (TLI.isTypeLegal(VT)) {
if (SDValue AddSub = combineShuffleToAddSubOrFMAddSub(N, Subtarget, DAG))
return AddSub;
if (SDValue HAddSub = foldShuffleOfHorizOp(N))
return HAddSub;
}
// During Type Legalization, when promoting illegal vector types,
// the backend might introduce new shuffle dag nodes and bitcasts.
//
// This code performs the following transformation:
// fold: (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) ->
// (shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>)
//
// We do this only if both the bitcast and the BINOP dag nodes have
// one use. Also, perform this transformation only if the new binary
// operation is legal. This is to avoid introducing dag nodes that
// potentially need to be further expanded (or custom lowered) into a
// less optimal sequence of dag nodes.
if (!DCI.isBeforeLegalize() && DCI.isBeforeLegalizeOps() &&
N->getOpcode() == ISD::VECTOR_SHUFFLE &&
N->getOperand(0).getOpcode() == ISD::BITCAST &&
N->getOperand(1).isUndef() && N->getOperand(0).hasOneUse()) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue BC0 = N0.getOperand(0);
EVT SVT = BC0.getValueType();
unsigned Opcode = BC0.getOpcode();
unsigned NumElts = VT.getVectorNumElements();
if (BC0.hasOneUse() && SVT.isVector() &&
SVT.getVectorNumElements() * 2 == NumElts &&
TLI.isOperationLegal(Opcode, VT)) {
bool CanFold = false;
switch (Opcode) {
default : break;
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
// isOperationLegal lies for integer ops on floating point types.
CanFold = VT.isInteger();
break;
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
// isOperationLegal lies for floating point ops on integer types.
CanFold = VT.isFloatingPoint();
break;
}
unsigned SVTNumElts = SVT.getVectorNumElements();
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
for (unsigned i = 0, e = SVTNumElts; i != e && CanFold; ++i)
CanFold = SVOp->getMaskElt(i) == (int)(i * 2);
for (unsigned i = SVTNumElts, e = NumElts; i != e && CanFold; ++i)
CanFold = SVOp->getMaskElt(i) < 0;
if (CanFold) {
SDValue BC00 = DAG.getBitcast(VT, BC0.getOperand(0));
SDValue BC01 = DAG.getBitcast(VT, BC0.getOperand(1));
SDValue NewBinOp = DAG.getNode(BC0.getOpcode(), dl, VT, BC00, BC01);
return DAG.getVectorShuffle(VT, dl, NewBinOp, N1, SVOp->getMask());
}
}
}
// Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
// load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
// consecutive, non-overlapping, and in the right order.
SmallVector<SDValue, 16> Elts;
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
if (SDValue Elt = getShuffleScalarElt(N, i, DAG, 0)) {
Elts.push_back(Elt);
continue;
}
Elts.clear();
break;
}
if (Elts.size() == VT.getVectorNumElements())
if (SDValue LD =
EltsFromConsecutiveLoads(VT, Elts, dl, DAG, Subtarget, true))
return LD;
// For AVX2, we sometimes want to combine
// (vector_shuffle <mask> (concat_vectors t1, undef)
// (concat_vectors t2, undef))
// Into:
// (vector_shuffle <mask> (concat_vectors t1, t2), undef)
// Since the latter can be efficiently lowered with VPERMD/VPERMQ
if (SDValue ShufConcat = combineShuffleOfConcatUndef(N, DAG, Subtarget))
return ShufConcat;
if (isTargetShuffle(N->getOpcode())) {
SDValue Op(N, 0);
if (SDValue Shuffle = combineTargetShuffle(Op, DAG, DCI, Subtarget))
return Shuffle;
// Try recursively combining arbitrary sequences of x86 shuffle
// instructions into higher-order shuffles. We do this after combining
// specific PSHUF instruction sequences into their minimal form so that we
// can evaluate how many specialized shuffle instructions are involved in
// a particular chain.
if (SDValue Res = combineX86ShufflesRecursively(
{Op}, 0, Op, {0}, {}, /*Depth*/ 1,
/*HasVarMask*/ false, DAG, Subtarget))
return Res;
}
return SDValue();
}
/// Check if a vector extract from a target-specific shuffle of a load can be
/// folded into a single element load.
/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
/// shuffles have been custom lowered so we need to handle those here.
static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
SDValue InVec = N->getOperand(0);
SDValue EltNo = N->getOperand(1);
EVT EltVT = N->getValueType(0);
if (!isa<ConstantSDNode>(EltNo))
return SDValue();
EVT OriginalVT = InVec.getValueType();
// Peek through bitcasts, don't duplicate a load with other uses.
InVec = peekThroughOneUseBitcasts(InVec);
EVT CurrentVT = InVec.getValueType();
if (!CurrentVT.isVector() ||
CurrentVT.getVectorNumElements() != OriginalVT.getVectorNumElements())
return SDValue();
if (!isTargetShuffle(InVec.getOpcode()))
return SDValue();
// Don't duplicate a load with other uses.
if (!InVec.hasOneUse())
return SDValue();
SmallVector<int, 16> ShuffleMask;
SmallVector<SDValue, 2> ShuffleOps;
bool UnaryShuffle;
if (!getTargetShuffleMask(InVec.getNode(), CurrentVT.getSimpleVT(), true,
ShuffleOps, ShuffleMask, UnaryShuffle))
return SDValue();
// Select the input vector, guarding against out of range extract vector.
unsigned NumElems = CurrentVT.getVectorNumElements();
int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
int Idx = (Elt > (int)NumElems) ? SM_SentinelUndef : ShuffleMask[Elt];
if (Idx == SM_SentinelZero)
return EltVT.isInteger() ? DAG.getConstant(0, SDLoc(N), EltVT)
: DAG.getConstantFP(+0.0, SDLoc(N), EltVT);
if (Idx == SM_SentinelUndef)
return DAG.getUNDEF(EltVT);
assert(0 <= Idx && Idx < (int)(2 * NumElems) && "Shuffle index out of range");
SDValue LdNode = (Idx < (int)NumElems) ? ShuffleOps[0]
: ShuffleOps[1];
// If inputs to shuffle are the same for both ops, then allow 2 uses
unsigned AllowedUses =
(ShuffleOps.size() > 1 && ShuffleOps[0] == ShuffleOps[1]) ? 2 : 1;
if (LdNode.getOpcode() == ISD::BITCAST) {
// Don't duplicate a load with other uses.
if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
return SDValue();
AllowedUses = 1; // only allow 1 load use if we have a bitcast
LdNode = LdNode.getOperand(0);
}
if (!ISD::isNormalLoad(LdNode.getNode()))
return SDValue();
LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
return SDValue();
// If there's a bitcast before the shuffle, check if the load type and
// alignment is valid.
unsigned Align = LN0->getAlignment();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
EltVT.getTypeForEVT(*DAG.getContext()));
if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, EltVT))
return SDValue();
// All checks match so transform back to vector_shuffle so that DAG combiner
// can finish the job
SDLoc dl(N);
// Create shuffle node taking into account the case that its a unary shuffle
SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(CurrentVT) : ShuffleOps[1];
Shuffle = DAG.getVectorShuffle(CurrentVT, dl, ShuffleOps[0], Shuffle,
ShuffleMask);
Shuffle = DAG.getBitcast(OriginalVT, Shuffle);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
EltNo);
}
// Try to match patterns such as
// (i16 bitcast (v16i1 x))
// ->
// (i16 movmsk (16i8 sext (v16i1 x)))
// before the illegal vector is scalarized on subtargets that don't have legal
// vxi1 types.
static SDValue combineBitcastvxi1(SelectionDAG &DAG, SDValue BitCast,
const X86Subtarget &Subtarget) {
EVT VT = BitCast.getValueType();
SDValue N0 = BitCast.getOperand(0);
EVT VecVT = N0->getValueType(0);
if (!VT.isScalarInteger() || !VecVT.isSimple())
return SDValue();
// With AVX512 vxi1 types are legal and we prefer using k-regs.
// MOVMSK is supported in SSE2 or later.
if (Subtarget.hasAVX512() || !Subtarget.hasSSE2())
return SDValue();
// There are MOVMSK flavors for types v16i8, v32i8, v4f32, v8f32, v4f64 and
// v8f64. So all legal 128-bit and 256-bit vectors are covered except for
// v8i16 and v16i16.
// For these two cases, we can shuffle the upper element bytes to a
// consecutive sequence at the start of the vector and treat the results as
// v16i8 or v32i8, and for v16i8 this is the preferable solution. However,
// for v16i16 this is not the case, because the shuffle is expensive, so we
// avoid sign-extending to this type entirely.
// For example, t0 := (v8i16 sext(v8i1 x)) needs to be shuffled as:
// (v16i8 shuffle <0,2,4,6,8,10,12,14,u,u,...,u> (v16i8 bitcast t0), undef)
MVT SExtVT;
MVT FPCastVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
switch (VecVT.getSimpleVT().SimpleTy) {
default:
return SDValue();
case MVT::v2i1:
SExtVT = MVT::v2i64;
FPCastVT = MVT::v2f64;
break;
case MVT::v4i1:
SExtVT = MVT::v4i32;
FPCastVT = MVT::v4f32;
// For cases such as (i4 bitcast (v4i1 setcc v4i64 v1, v2))
// sign-extend to a 256-bit operation to avoid truncation.
if (N0->getOpcode() == ISD::SETCC && Subtarget.hasAVX() &&
N0->getOperand(0).getValueType().is256BitVector()) {
SExtVT = MVT::v4i64;
FPCastVT = MVT::v4f64;
}
break;
case MVT::v8i1:
SExtVT = MVT::v8i16;
// For cases such as (i8 bitcast (v8i1 setcc v8i32 v1, v2)),
// sign-extend to a 256-bit operation to match the compare.
// If the setcc operand is 128-bit, prefer sign-extending to 128-bit over
// 256-bit because the shuffle is cheaper than sign extending the result of
// the compare.
if (N0->getOpcode() == ISD::SETCC && Subtarget.hasAVX() &&
(N0->getOperand(0).getValueType().is256BitVector() ||
N0->getOperand(0).getValueType().is512BitVector())) {
SExtVT = MVT::v8i32;
FPCastVT = MVT::v8f32;
}
break;
case MVT::v16i1:
SExtVT = MVT::v16i8;
// For the case (i16 bitcast (v16i1 setcc v16i16 v1, v2)),
// it is not profitable to sign-extend to 256-bit because this will
// require an extra cross-lane shuffle which is more expensive than
// truncating the result of the compare to 128-bits.
break;
case MVT::v32i1:
SExtVT = MVT::v32i8;
break;
};
SDLoc DL(BitCast);
SDValue V = DAG.getSExtOrTrunc(N0, DL, SExtVT);
if (SExtVT == MVT::v16i8 || SExtVT == MVT::v32i8) {
V = getPMOVMSKB(DL, V, DAG, Subtarget);
return DAG.getZExtOrTrunc(V, DL, VT);
}
if (SExtVT == MVT::v8i16) {
assert(16 == DAG.ComputeNumSignBits(V) && "Expected all/none bit vector");
V = DAG.getNode(X86ISD::PACKSS, DL, MVT::v16i8, V,
DAG.getUNDEF(MVT::v8i16));
} else
assert(SExtVT.getScalarType() != MVT::i16 &&
"Vectors of i16 must be packed");
if (FPCastVT != MVT::INVALID_SIMPLE_VALUE_TYPE)
V = DAG.getBitcast(FPCastVT, V);
V = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, V);
return DAG.getZExtOrTrunc(V, DL, VT);
}
// Convert a vXi1 constant build vector to the same width scalar integer.
static SDValue combinevXi1ConstantToInteger(SDValue Op, SelectionDAG &DAG) {
EVT SrcVT = Op.getValueType();
assert(SrcVT.getVectorElementType() == MVT::i1 &&
"Expected a vXi1 vector");
assert(ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
"Expected a constant build vector");
APInt Imm(SrcVT.getVectorNumElements(), 0);
for (unsigned Idx = 0, e = Op.getNumOperands(); Idx < e; ++Idx) {
SDValue In = Op.getOperand(Idx);
if (!In.isUndef() && (cast<ConstantSDNode>(In)->getZExtValue() & 0x1))
Imm.setBit(Idx);
}
EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), Imm.getBitWidth());
return DAG.getConstant(Imm, SDLoc(Op), IntVT);
}
static SDValue combineCastedMaskArithmetic(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
assert(N->getOpcode() == ISD::BITCAST && "Expected a bitcast");
if (!DCI.isBeforeLegalizeOps())
return SDValue();
// Only do this if we have k-registers.
if (!Subtarget.hasAVX512())
return SDValue();
EVT DstVT = N->getValueType(0);
SDValue Op = N->getOperand(0);
EVT SrcVT = Op.getValueType();
if (!Op.hasOneUse())
return SDValue();
// Look for logic ops.
if (Op.getOpcode() != ISD::AND &&
Op.getOpcode() != ISD::OR &&
Op.getOpcode() != ISD::XOR)
return SDValue();
// Make sure we have a bitcast between mask registers and a scalar type.
if (!(SrcVT.isVector() && SrcVT.getVectorElementType() == MVT::i1 &&
DstVT.isScalarInteger()) &&
!(DstVT.isVector() && DstVT.getVectorElementType() == MVT::i1 &&
SrcVT.isScalarInteger()))
return SDValue();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
if (LHS.hasOneUse() && LHS.getOpcode() == ISD::BITCAST &&
LHS.getOperand(0).getValueType() == DstVT)
return DAG.getNode(Op.getOpcode(), SDLoc(N), DstVT, LHS.getOperand(0),
DAG.getBitcast(DstVT, RHS));
if (RHS.hasOneUse() && RHS.getOpcode() == ISD::BITCAST &&
RHS.getOperand(0).getValueType() == DstVT)
return DAG.getNode(Op.getOpcode(), SDLoc(N), DstVT,
DAG.getBitcast(DstVT, LHS), RHS.getOperand(0));
// If the RHS is a vXi1 build vector, this is a good reason to flip too.
// Most of these have to move a constant from the scalar domain anyway.
if (ISD::isBuildVectorOfConstantSDNodes(RHS.getNode())) {
RHS = combinevXi1ConstantToInteger(RHS, DAG);
return DAG.getNode(Op.getOpcode(), SDLoc(N), DstVT,
DAG.getBitcast(DstVT, LHS), RHS);
}
return SDValue();
}
static SDValue createMMXBuildVector(SDValue N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc DL(N);
unsigned NumElts = N.getNumOperands();
auto *BV = cast<BuildVectorSDNode>(N);
SDValue Splat = BV->getSplatValue();
// Build MMX element from integer GPR or SSE float values.
auto CreateMMXElement = [&](SDValue V) {
if (V.isUndef())
return DAG.getUNDEF(MVT::x86mmx);
if (V.getValueType().isFloatingPoint()) {
if (Subtarget.hasSSE1() && !isa<ConstantFPSDNode>(V)) {
V = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v4f32, V);
V = DAG.getBitcast(MVT::v2i64, V);
return DAG.getNode(X86ISD::MOVDQ2Q, DL, MVT::x86mmx, V);
}
V = DAG.getBitcast(MVT::i32, V);
} else {
V = DAG.getAnyExtOrTrunc(V, DL, MVT::i32);
}
return DAG.getNode(X86ISD::MMX_MOVW2D, DL, MVT::x86mmx, V);
};
// Convert build vector ops to MMX data in the bottom elements.
SmallVector<SDValue, 8> Ops;
// Broadcast - use (PUNPCKL+)PSHUFW to broadcast single element.
if (Splat) {
if (Splat.isUndef())
return DAG.getUNDEF(MVT::x86mmx);
Splat = CreateMMXElement(Splat);
if (Subtarget.hasSSE1()) {
// Unpack v8i8 to splat i8 elements to lowest 16-bits.
if (NumElts == 8)
Splat = DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, DL, MVT::x86mmx,
DAG.getConstant(Intrinsic::x86_mmx_punpcklbw, DL, MVT::i32), Splat,
Splat);
// Use PSHUFW to repeat 16-bit elements.
unsigned ShufMask = (NumElts > 2 ? 0 : 0x44);
return DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, DL, MVT::x86mmx,
DAG.getConstant(Intrinsic::x86_sse_pshuf_w, DL, MVT::i32), Splat,
DAG.getConstant(ShufMask, DL, MVT::i8));
}
Ops.append(NumElts, Splat);
} else {
for (unsigned i = 0; i != NumElts; ++i)
Ops.push_back(CreateMMXElement(N.getOperand(i)));
}
// Use tree of PUNPCKLs to build up general MMX vector.
while (Ops.size() > 1) {
unsigned NumOps = Ops.size();
unsigned IntrinOp =
(NumOps == 2 ? Intrinsic::x86_mmx_punpckldq
: (NumOps == 4 ? Intrinsic::x86_mmx_punpcklwd
: Intrinsic::x86_mmx_punpcklbw));
SDValue Intrin = DAG.getConstant(IntrinOp, DL, MVT::i32);
for (unsigned i = 0; i != NumOps; i += 2)
Ops[i / 2] = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::x86mmx, Intrin,
Ops[i], Ops[i + 1]);
Ops.resize(NumOps / 2);
}
return Ops[0];
}
static SDValue combineBitcast(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT SrcVT = N0.getValueType();
// Try to match patterns such as
// (i16 bitcast (v16i1 x))
// ->
// (i16 movmsk (16i8 sext (v16i1 x)))
// before the setcc result is scalarized on subtargets that don't have legal
// vxi1 types.
if (DCI.isBeforeLegalize()) {
if (SDValue V = combineBitcastvxi1(DAG, SDValue(N, 0), Subtarget))
return V;
// If this is a bitcast between a MVT::v4i1/v2i1 and an illegal integer
// type, widen both sides to avoid a trip through memory.
if ((VT == MVT::v4i1 || VT == MVT::v2i1) && SrcVT.isScalarInteger() &&
Subtarget.hasAVX512()) {
SDLoc dl(N);
N0 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i8, N0);
N0 = DAG.getBitcast(MVT::v8i1, N0);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, N0,
DAG.getIntPtrConstant(0, dl));
}
// If this is a bitcast between a MVT::v4i1/v2i1 and an illegal integer
// type, widen both sides to avoid a trip through memory.
if ((SrcVT == MVT::v4i1 || SrcVT == MVT::v2i1) && VT.isScalarInteger() &&
Subtarget.hasAVX512()) {
SDLoc dl(N);
unsigned NumConcats = 8 / SrcVT.getVectorNumElements();
SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(SrcVT));
Ops[0] = N0;
N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i1, Ops);
N0 = DAG.getBitcast(MVT::i8, N0);
return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
}
}
// Since MMX types are special and don't usually play with other vector types,
// it's better to handle them early to be sure we emit efficient code by
// avoiding store-load conversions.
if (VT == MVT::x86mmx) {
// Detect MMX constant vectors.
APInt UndefElts;
SmallVector<APInt, 1> EltBits;
if (getTargetConstantBitsFromNode(N0, 64, UndefElts, EltBits)) {
SDLoc DL(N0);
// Handle zero-extension of i32 with MOVD.
if (EltBits[0].countLeadingZeros() >= 32)
return DAG.getNode(X86ISD::MMX_MOVW2D, DL, VT,
DAG.getConstant(EltBits[0].trunc(32), DL, MVT::i32));
// Else, bitcast to a double.
// TODO - investigate supporting sext 32-bit immediates on x86_64.
APFloat F64(APFloat::IEEEdouble(), EltBits[0]);
return DAG.getBitcast(VT, DAG.getConstantFP(F64, DL, MVT::f64));
}
// Detect bitcasts to x86mmx low word.
if (N0.getOpcode() == ISD::BUILD_VECTOR &&
(SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8) &&
N0.getOperand(0).getValueType() == SrcVT.getScalarType()) {
bool LowUndef = true, AllUndefOrZero = true;
for (unsigned i = 1, e = SrcVT.getVectorNumElements(); i != e; ++i) {
SDValue Op = N0.getOperand(i);
LowUndef &= Op.isUndef() || (i >= e/2);
AllUndefOrZero &= (Op.isUndef() || isNullConstant(Op));
}
if (AllUndefOrZero) {
SDValue N00 = N0.getOperand(0);
SDLoc dl(N00);
N00 = LowUndef ? DAG.getAnyExtOrTrunc(N00, dl, MVT::i32)
: DAG.getZExtOrTrunc(N00, dl, MVT::i32);
return DAG.getNode(X86ISD::MMX_MOVW2D, dl, VT, N00);
}
}
// Detect bitcasts of 64-bit build vectors and convert to a
// MMX UNPCK/PSHUFW which takes MMX type inputs with the value in the
// lowest element.
if (N0.getOpcode() == ISD::BUILD_VECTOR &&
(SrcVT == MVT::v2f32 || SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 ||
SrcVT == MVT::v8i8))
return createMMXBuildVector(N0, DAG, Subtarget);
// Detect bitcasts between element or subvector extraction to x86mmx.
if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) &&
isNullConstant(N0.getOperand(1))) {
SDValue N00 = N0.getOperand(0);
if (N00.getValueType().is128BitVector())
return DAG.getNode(X86ISD::MOVDQ2Q, SDLoc(N00), VT,
DAG.getBitcast(MVT::v2i64, N00));
}
// Detect bitcasts from FP_TO_SINT to x86mmx.
if (SrcVT == MVT::v2i32 && N0.getOpcode() == ISD::FP_TO_SINT) {
SDLoc DL(N0);
SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4i32, N0,
DAG.getUNDEF(MVT::v2i32));
return DAG.getNode(X86ISD::MOVDQ2Q, DL, VT,
DAG.getBitcast(MVT::v2i64, Res));
}
}
// Try to remove a bitcast of constant vXi1 vector. We have to legalize
// most of these to scalar anyway.
if (Subtarget.hasAVX512() && VT.isScalarInteger() &&
SrcVT.isVector() && SrcVT.getVectorElementType() == MVT::i1 &&
ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
return combinevXi1ConstantToInteger(N0, DAG);
}
if (Subtarget.hasAVX512() && SrcVT.isScalarInteger() &&
VT.isVector() && VT.getVectorElementType() == MVT::i1 &&
isa<ConstantSDNode>(N0)) {
auto *C = cast<ConstantSDNode>(N0);
if (C->isAllOnesValue())
return DAG.getConstant(1, SDLoc(N0), VT);
if (C->isNullValue())
return DAG.getConstant(0, SDLoc(N0), VT);
}
// Try to remove bitcasts from input and output of mask arithmetic to
// remove GPR<->K-register crossings.
if (SDValue V = combineCastedMaskArithmetic(N, DAG, DCI, Subtarget))
return V;
// Convert a bitcasted integer logic operation that has one bitcasted
// floating-point operand into a floating-point logic operation. This may
// create a load of a constant, but that is cheaper than materializing the
// constant in an integer register and transferring it to an SSE register or
// transferring the SSE operand to integer register and back.
unsigned FPOpcode;
switch (N0.getOpcode()) {
case ISD::AND: FPOpcode = X86ISD::FAND; break;
case ISD::OR: FPOpcode = X86ISD::FOR; break;
case ISD::XOR: FPOpcode = X86ISD::FXOR; break;
default: return SDValue();
}
if (!((Subtarget.hasSSE1() && VT == MVT::f32) ||
(Subtarget.hasSSE2() && VT == MVT::f64)))
return SDValue();
SDValue LogicOp0 = N0.getOperand(0);
SDValue LogicOp1 = N0.getOperand(1);
SDLoc DL0(N0);
// bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
if (N0.hasOneUse() && LogicOp0.getOpcode() == ISD::BITCAST &&
LogicOp0.hasOneUse() && LogicOp0.getOperand(0).getValueType() == VT &&
!isa<ConstantSDNode>(LogicOp0.getOperand(0))) {
SDValue CastedOp1 = DAG.getBitcast(VT, LogicOp1);
return DAG.getNode(FPOpcode, DL0, VT, LogicOp0.getOperand(0), CastedOp1);
}
// bitcast(logic(X, bitcast(Y))) --> logic'(bitcast(X), Y)
if (N0.hasOneUse() && LogicOp1.getOpcode() == ISD::BITCAST &&
LogicOp1.hasOneUse() && LogicOp1.getOperand(0).getValueType() == VT &&
!isa<ConstantSDNode>(LogicOp1.getOperand(0))) {
SDValue CastedOp0 = DAG.getBitcast(VT, LogicOp0);
return DAG.getNode(FPOpcode, DL0, VT, LogicOp1.getOperand(0), CastedOp0);
}
return SDValue();
}
// Match a binop + shuffle pyramid that represents a horizontal reduction over
// the elements of a vector.
// Returns the vector that is being reduced on, or SDValue() if a reduction
// was not matched.
static SDValue matchBinOpReduction(SDNode *Extract, unsigned &BinOp,
ArrayRef<ISD::NodeType> CandidateBinOps) {
// The pattern must end in an extract from index 0.
if ((Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT) ||
!isNullConstant(Extract->getOperand(1)))
return SDValue();
SDValue Op = Extract->getOperand(0);
unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
// Match against one of the candidate binary ops.
if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
return Op.getOpcode() == unsigned(BinOp);
}))
return SDValue();
// At each stage, we're looking for something that looks like:
// %s = shufflevector <8 x i32> %op, <8 x i32> undef,
// <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
// i32 undef, i32 undef, i32 undef, i32 undef>
// %a = binop <8 x i32> %op, %s
// Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
// we expect something like:
// <4,5,6,7,u,u,u,u>
// <2,3,u,u,u,u,u,u>
// <1,u,u,u,u,u,u,u>
unsigned CandidateBinOp = Op.getOpcode();
for (unsigned i = 0; i < Stages; ++i) {
if (Op.getOpcode() != CandidateBinOp)
return SDValue();
ShuffleVectorSDNode *Shuffle =
dyn_cast<ShuffleVectorSDNode>(Op.getOperand(0).getNode());
if (Shuffle) {
Op = Op.getOperand(1);
} else {
Shuffle = dyn_cast<ShuffleVectorSDNode>(Op.getOperand(1).getNode());
Op = Op.getOperand(0);
}
// The first operand of the shuffle should be the same as the other operand
// of the binop.
if (!Shuffle || Shuffle->getOperand(0) != Op)
return SDValue();
// Verify the shuffle has the expected (at this stage of the pyramid) mask.
for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index)
if (Shuffle->getMaskElt(Index) != MaskEnd + Index)
return SDValue();
}
BinOp = CandidateBinOp;
return Op;
}
// Given a select, detect the following pattern:
// 1: %2 = zext <N x i8> %0 to <N x i32>
// 2: %3 = zext <N x i8> %1 to <N x i32>
// 3: %4 = sub nsw <N x i32> %2, %3
// 4: %5 = icmp sgt <N x i32> %4, [0 x N] or [-1 x N]
// 5: %6 = sub nsw <N x i32> zeroinitializer, %4
// 6: %7 = select <N x i1> %5, <N x i32> %4, <N x i32> %6
// This is useful as it is the input into a SAD pattern.
static bool detectZextAbsDiff(const SDValue &Select, SDValue &Op0,
SDValue &Op1) {
// Check the condition of the select instruction is greater-than.
SDValue SetCC = Select->getOperand(0);
if (SetCC.getOpcode() != ISD::SETCC)
return false;
ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
if (CC != ISD::SETGT && CC != ISD::SETLT)
return false;
SDValue SelectOp1 = Select->getOperand(1);
SDValue SelectOp2 = Select->getOperand(2);
// The following instructions assume SelectOp1 is the subtraction operand
// and SelectOp2 is the negation operand.
// In the case of SETLT this is the other way around.
if (CC == ISD::SETLT)
std::swap(SelectOp1, SelectOp2);
// The second operand of the select should be the negation of the first
// operand, which is implemented as 0 - SelectOp1.
if (!(SelectOp2.getOpcode() == ISD::SUB &&
ISD::isBuildVectorAllZeros(SelectOp2.getOperand(0).getNode()) &&
SelectOp2.getOperand(1) == SelectOp1))
return false;
// The first operand of SetCC is the first operand of the select, which is the
// difference between the two input vectors.
if (SetCC.getOperand(0) != SelectOp1)
return false;
// In SetLT case, The second operand of the comparison can be either 1 or 0.
APInt SplatVal;
if ((CC == ISD::SETLT) &&
!((ISD::isConstantSplatVector(SetCC.getOperand(1).getNode(), SplatVal) &&
SplatVal.isOneValue()) ||
(ISD::isBuildVectorAllZeros(SetCC.getOperand(1).getNode()))))
return false;
// In SetGT case, The second operand of the comparison can be either -1 or 0.
if ((CC == ISD::SETGT) &&
!(ISD::isBuildVectorAllZeros(SetCC.getOperand(1).getNode()) ||
ISD::isBuildVectorAllOnes(SetCC.getOperand(1).getNode())))
return false;
// The first operand of the select is the difference between the two input
// vectors.
if (SelectOp1.getOpcode() != ISD::SUB)
return false;
Op0 = SelectOp1.getOperand(0);
Op1 = SelectOp1.getOperand(1);
// Check if the operands of the sub are zero-extended from vectors of i8.
if (Op0.getOpcode() != ISD::ZERO_EXTEND ||
Op0.getOperand(0).getValueType().getVectorElementType() != MVT::i8 ||
Op1.getOpcode() != ISD::ZERO_EXTEND ||
Op1.getOperand(0).getValueType().getVectorElementType() != MVT::i8)
return false;
return true;
}
// Given two zexts of <k x i8> to <k x i32>, create a PSADBW of the inputs
// to these zexts.
static SDValue createPSADBW(SelectionDAG &DAG, const SDValue &Zext0,
const SDValue &Zext1, const SDLoc &DL,
const X86Subtarget &Subtarget) {
// Find the appropriate width for the PSADBW.
EVT InVT = Zext0.getOperand(0).getValueType();
unsigned RegSize = std::max(128u, InVT.getSizeInBits());
// "Zero-extend" the i8 vectors. This is not a per-element zext, rather we
// fill in the missing vector elements with 0.
unsigned NumConcat = RegSize / InVT.getSizeInBits();
SmallVector<SDValue, 16> Ops(NumConcat, DAG.getConstant(0, DL, InVT));
Ops[0] = Zext0.getOperand(0);
MVT ExtendedVT = MVT::getVectorVT(MVT::i8, RegSize / 8);
SDValue SadOp0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, ExtendedVT, Ops);
Ops[0] = Zext1.getOperand(0);
SDValue SadOp1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, ExtendedVT, Ops);
// Actually build the SAD, split as 128/256/512 bits for SSE/AVX2/AVX512BW.
auto PSADBWBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
MVT VT = MVT::getVectorVT(MVT::i64, Ops[0].getValueSizeInBits() / 64);
return DAG.getNode(X86ISD::PSADBW, DL, VT, Ops);
};
MVT SadVT = MVT::getVectorVT(MVT::i64, RegSize / 64);
return SplitOpsAndApply(DAG, Subtarget, DL, SadVT, { SadOp0, SadOp1 },
PSADBWBuilder);
}
// Attempt to replace an min/max v8i16/v16i8 horizontal reduction with
// PHMINPOSUW.
static SDValue combineHorizontalMinMaxResult(SDNode *Extract, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// Bail without SSE41.
if (!Subtarget.hasSSE41())
return SDValue();
EVT ExtractVT = Extract->getValueType(0);
if (ExtractVT != MVT::i16 && ExtractVT != MVT::i8)
return SDValue();
// Check for SMAX/SMIN/UMAX/UMIN horizontal reduction patterns.
unsigned BinOp;
SDValue Src = matchBinOpReduction(
Extract, BinOp, {ISD::SMAX, ISD::SMIN, ISD::UMAX, ISD::UMIN});
if (!Src)
return SDValue();
EVT SrcVT = Src.getValueType();
EVT SrcSVT = SrcVT.getScalarType();
if (SrcSVT != ExtractVT || (SrcVT.getSizeInBits() % 128) != 0)
return SDValue();
SDLoc DL(Extract);
SDValue MinPos = Src;
// First, reduce the source down to 128-bit, applying BinOp to lo/hi.
while (SrcVT.getSizeInBits() > 128) {
unsigned NumElts = SrcVT.getVectorNumElements();
unsigned NumSubElts = NumElts / 2;
SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcSVT, NumSubElts);
unsigned SubSizeInBits = SrcVT.getSizeInBits();
SDValue Lo = extractSubVector(MinPos, 0, DAG, DL, SubSizeInBits);
SDValue Hi = extractSubVector(MinPos, NumSubElts, DAG, DL, SubSizeInBits);
MinPos = DAG.getNode(BinOp, DL, SrcVT, Lo, Hi);
}
assert(((SrcVT == MVT::v8i16 && ExtractVT == MVT::i16) ||
(SrcVT == MVT::v16i8 && ExtractVT == MVT::i8)) &&
"Unexpected value type");
// PHMINPOSUW applies to UMIN(v8i16), for SMIN/SMAX/UMAX we must apply a mask
// to flip the value accordingly.
SDValue Mask;
unsigned MaskEltsBits = ExtractVT.getSizeInBits();
if (BinOp == ISD::SMAX)
Mask = DAG.getConstant(APInt::getSignedMaxValue(MaskEltsBits), DL, SrcVT);
else if (BinOp == ISD::SMIN)
Mask = DAG.getConstant(APInt::getSignedMinValue(MaskEltsBits), DL, SrcVT);
else if (BinOp == ISD::UMAX)
Mask = DAG.getConstant(APInt::getAllOnesValue(MaskEltsBits), DL, SrcVT);
if (Mask)
MinPos = DAG.getNode(ISD::XOR, DL, SrcVT, Mask, MinPos);
// For v16i8 cases we need to perform UMIN on pairs of byte elements,
// shuffling each upper element down and insert zeros. This means that the
// v16i8 UMIN will leave the upper element as zero, performing zero-extension
// ready for the PHMINPOS.
if (ExtractVT == MVT::i8) {
SDValue Upper = DAG.getVectorShuffle(
SrcVT, DL, MinPos, getZeroVector(MVT::v16i8, Subtarget, DAG, DL),
{1, 16, 3, 16, 5, 16, 7, 16, 9, 16, 11, 16, 13, 16, 15, 16});
MinPos = DAG.getNode(ISD::UMIN, DL, SrcVT, MinPos, Upper);
}
// Perform the PHMINPOS on a v8i16 vector,
MinPos = DAG.getBitcast(MVT::v8i16, MinPos);
MinPos = DAG.getNode(X86ISD::PHMINPOS, DL, MVT::v8i16, MinPos);
MinPos = DAG.getBitcast(SrcVT, MinPos);
if (Mask)
MinPos = DAG.getNode(ISD::XOR, DL, SrcVT, Mask, MinPos);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtractVT, MinPos,
DAG.getIntPtrConstant(0, DL));
}
// Attempt to replace an all_of/any_of style horizontal reduction with a MOVMSK.
static SDValue combineHorizontalPredicateResult(SDNode *Extract,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// Bail without SSE2 or with AVX512VL (which uses predicate registers).
if (!Subtarget.hasSSE2() || Subtarget.hasVLX())
return SDValue();
EVT ExtractVT = Extract->getValueType(0);
unsigned BitWidth = ExtractVT.getSizeInBits();
if (ExtractVT != MVT::i64 && ExtractVT != MVT::i32 && ExtractVT != MVT::i16 &&
ExtractVT != MVT::i8)
return SDValue();
// Check for OR(any_of) and AND(all_of) horizontal reduction patterns.
unsigned BinOp = 0;
SDValue Match = matchBinOpReduction(Extract, BinOp, {ISD::OR, ISD::AND});
if (!Match)
return SDValue();
// EXTRACT_VECTOR_ELT can require implicit extension of the vector element
// which we can't support here for now.
if (Match.getScalarValueSizeInBits() != BitWidth)
return SDValue();
// We require AVX2 for PMOVMSKB for v16i16/v32i8;
unsigned MatchSizeInBits = Match.getValueSizeInBits();
if (!(MatchSizeInBits == 128 ||
(MatchSizeInBits == 256 &&
((Subtarget.hasAVX() && BitWidth >= 32) || Subtarget.hasAVX2()))))
return SDValue();
// Don't bother performing this for 2-element vectors.
if (Match.getValueType().getVectorNumElements() <= 2)
return SDValue();
// Check that we are extracting a reduction of all sign bits.
if (DAG.ComputeNumSignBits(Match) != BitWidth)
return SDValue();
// For 32/64 bit comparisons use MOVMSKPS/MOVMSKPD, else PMOVMSKB.
MVT MaskVT;
if (64 == BitWidth || 32 == BitWidth)
MaskVT = MVT::getVectorVT(MVT::getFloatingPointVT(BitWidth),
MatchSizeInBits / BitWidth);
else
MaskVT = MVT::getVectorVT(MVT::i8, MatchSizeInBits / 8);
APInt CompareBits;
ISD::CondCode CondCode;
if (BinOp == ISD::OR) {
// any_of -> MOVMSK != 0
CompareBits = APInt::getNullValue(32);
CondCode = ISD::CondCode::SETNE;
} else {
// all_of -> MOVMSK == ((1 << NumElts) - 1)
CompareBits = APInt::getLowBitsSet(32, MaskVT.getVectorNumElements());
CondCode = ISD::CondCode::SETEQ;
}
// Perform the select as i32/i64 and then truncate to avoid partial register
// stalls.
unsigned ResWidth = std::max(BitWidth, 32u);
EVT ResVT = EVT::getIntegerVT(*DAG.getContext(), ResWidth);
SDLoc DL(Extract);
SDValue Zero = DAG.getConstant(0, DL, ResVT);
SDValue Ones = DAG.getAllOnesConstant(DL, ResVT);
SDValue Res = DAG.getBitcast(MaskVT, Match);
Res = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, Res);
Res = DAG.getSelectCC(DL, Res, DAG.getConstant(CompareBits, DL, MVT::i32),
Ones, Zero, CondCode);
return DAG.getSExtOrTrunc(Res, DL, ExtractVT);
}
static SDValue combineBasicSADPattern(SDNode *Extract, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// PSADBW is only supported on SSE2 and up.
if (!Subtarget.hasSSE2())
return SDValue();
// Verify the type we're extracting from is any integer type above i16.
EVT VT = Extract->getOperand(0).getValueType();
if (!VT.isSimple() || !(VT.getVectorElementType().getSizeInBits() > 16))
return SDValue();
unsigned RegSize = 128;
if (Subtarget.useBWIRegs())
RegSize = 512;
else if (Subtarget.hasAVX())
RegSize = 256;
// We handle upto v16i* for SSE2 / v32i* for AVX / v64i* for AVX512.
// TODO: We should be able to handle larger vectors by splitting them before
// feeding them into several SADs, and then reducing over those.
if (RegSize / VT.getVectorNumElements() < 8)
return SDValue();
// Match shuffle + add pyramid.
unsigned BinOp = 0;
SDValue Root = matchBinOpReduction(Extract, BinOp, {ISD::ADD});
// The operand is expected to be zero extended from i8
// (verified in detectZextAbsDiff).
// In order to convert to i64 and above, additional any/zero/sign
// extend is expected.
// The zero extend from 32 bit has no mathematical effect on the result.
// Also the sign extend is basically zero extend
// (extends the sign bit which is zero).
// So it is correct to skip the sign/zero extend instruction.
if (Root && (Root.getOpcode() == ISD::SIGN_EXTEND ||
Root.getOpcode() == ISD::ZERO_EXTEND ||
Root.getOpcode() == ISD::ANY_EXTEND))
Root = Root.getOperand(0);
// If there was a match, we want Root to be a select that is the root of an
// abs-diff pattern.
if (!Root || (Root.getOpcode() != ISD::VSELECT))
return SDValue();
// Check whether we have an abs-diff pattern feeding into the select.
SDValue Zext0, Zext1;
if (!detectZextAbsDiff(Root, Zext0, Zext1))
return SDValue();
// Create the SAD instruction.
SDLoc DL(Extract);
SDValue SAD = createPSADBW(DAG, Zext0, Zext1, DL, Subtarget);
// If the original vector was wider than 8 elements, sum over the results
// in the SAD vector.
unsigned Stages = Log2_32(VT.getVectorNumElements());
MVT SadVT = SAD.getSimpleValueType();
if (Stages > 3) {
unsigned SadElems = SadVT.getVectorNumElements();
for(unsigned i = Stages - 3; i > 0; --i) {
SmallVector<int, 16> Mask(SadElems, -1);
for(unsigned j = 0, MaskEnd = 1 << (i - 1); j < MaskEnd; ++j)
Mask[j] = MaskEnd + j;
SDValue Shuffle =
DAG.getVectorShuffle(SadVT, DL, SAD, DAG.getUNDEF(SadVT), Mask);
SAD = DAG.getNode(ISD::ADD, DL, SadVT, SAD, Shuffle);
}
}
MVT Type = Extract->getSimpleValueType(0);
unsigned TypeSizeInBits = Type.getSizeInBits();
// Return the lowest TypeSizeInBits bits.
MVT ResVT = MVT::getVectorVT(Type, SadVT.getSizeInBits() / TypeSizeInBits);
SAD = DAG.getBitcast(ResVT, SAD);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Type, SAD,
Extract->getOperand(1));
}
// Attempt to peek through a target shuffle and extract the scalar from the
// source.
static SDValue combineExtractWithShuffle(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
SDValue Src = N->getOperand(0);
SDValue Idx = N->getOperand(1);
EVT VT = N->getValueType(0);
EVT SrcVT = Src.getValueType();
EVT SrcSVT = SrcVT.getVectorElementType();
unsigned NumSrcElts = SrcVT.getVectorNumElements();
// Don't attempt this for boolean mask vectors or unknown extraction indices.
if (SrcSVT == MVT::i1 || !isa<ConstantSDNode>(Idx))
return SDValue();
// Handle extract(broadcast(scalar_value)), it doesn't matter what index is.
if (X86ISD::VBROADCAST == Src.getOpcode() &&
Src.getOperand(0).getValueType() == VT)
return Src.getOperand(0);
// Resolve the target shuffle inputs and mask.
SmallVector<int, 16> Mask;
SmallVector<SDValue, 2> Ops;
if (!resolveTargetShuffleInputs(peekThroughBitcasts(Src), Ops, Mask, DAG))
return SDValue();
// Attempt to narrow/widen the shuffle mask to the correct size.
if (Mask.size() != NumSrcElts) {
if ((NumSrcElts % Mask.size()) == 0) {
SmallVector<int, 16> ScaledMask;
int Scale = NumSrcElts / Mask.size();
scaleShuffleMask<int>(Scale, Mask, ScaledMask);
Mask = std::move(ScaledMask);
} else if ((Mask.size() % NumSrcElts) == 0) {
SmallVector<int, 16> WidenedMask;
while (Mask.size() > NumSrcElts &&
canWidenShuffleElements(Mask, WidenedMask))
Mask = std::move(WidenedMask);
// TODO - investigate support for wider shuffle masks with known upper
// undef/zero elements for implicit zero-extension.
}
}
// Check if narrowing/widening failed.
if (Mask.size() != NumSrcElts)
return SDValue();
int SrcIdx = Mask[N->getConstantOperandVal(1)];
SDLoc dl(N);
// If the shuffle source element is undef/zero then we can just accept it.
if (SrcIdx == SM_SentinelUndef)
return DAG.getUNDEF(VT);
if (SrcIdx == SM_SentinelZero)
return VT.isFloatingPoint() ? DAG.getConstantFP(0.0, dl, VT)
: DAG.getConstant(0, dl, VT);
SDValue SrcOp = Ops[SrcIdx / Mask.size()];
SrcOp = DAG.getBitcast(SrcVT, SrcOp);
SrcIdx = SrcIdx % Mask.size();
// We can only extract other elements from 128-bit vectors and in certain
// circumstances, depending on SSE-level.
// TODO: Investigate using extract_subvector for larger vectors.
// TODO: Investigate float/double extraction if it will be just stored.
if ((SrcVT == MVT::v4i32 || SrcVT == MVT::v2i64) &&
((SrcIdx == 0 && Subtarget.hasSSE2()) || Subtarget.hasSSE41())) {
assert(SrcSVT == VT && "Unexpected extraction type");
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SrcSVT, SrcOp,
DAG.getIntPtrConstant(SrcIdx, dl));
}
if ((SrcVT == MVT::v8i16 && Subtarget.hasSSE2()) ||
(SrcVT == MVT::v16i8 && Subtarget.hasSSE41())) {
assert(VT.getSizeInBits() >= SrcSVT.getSizeInBits() &&
"Unexpected extraction type");
unsigned OpCode = (SrcVT == MVT::v8i16 ? X86ISD::PEXTRW : X86ISD::PEXTRB);
SDValue ExtOp = DAG.getNode(OpCode, dl, MVT::i32, SrcOp,
DAG.getIntPtrConstant(SrcIdx, dl));
return DAG.getZExtOrTrunc(ExtOp, dl, VT);
}
return SDValue();
}
/// Detect vector gather/scatter index generation and convert it from being a
/// bunch of shuffles and extracts into a somewhat faster sequence.
/// For i686, the best sequence is apparently storing the value and loading
/// scalars back, while for x64 we should use 64-bit extracts and shifts.
static SDValue combineExtractVectorElt(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
if (SDValue NewOp = combineExtractWithShuffle(N, DAG, DCI, Subtarget))
return NewOp;
// TODO - Remove this once we can handle the implicit zero-extension of
// X86ISD::PEXTRW/X86ISD::PEXTRB in:
// XFormVExtractWithShuffleIntoLoad, combineHorizontalPredicateResult and
// combineBasicSADPattern.
if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
if (SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI))
return NewOp;
SDValue InputVector = N->getOperand(0);
SDValue EltIdx = N->getOperand(1);
EVT SrcVT = InputVector.getValueType();
EVT VT = N->getValueType(0);
SDLoc dl(InputVector);
// Detect mmx extraction of all bits as a i64. It works better as a bitcast.
if (InputVector.getOpcode() == ISD::BITCAST && InputVector.hasOneUse() &&
VT == MVT::i64 && SrcVT == MVT::v1i64 && isNullConstant(EltIdx)) {
SDValue MMXSrc = InputVector.getOperand(0);
// The bitcast source is a direct mmx result.
if (MMXSrc.getValueType() == MVT::x86mmx)
return DAG.getBitcast(VT, InputVector);
}
// Detect mmx to i32 conversion through a v2i32 elt extract.
if (InputVector.getOpcode() == ISD::BITCAST && InputVector.hasOneUse() &&
VT == MVT::i32 && SrcVT == MVT::v2i32 && isNullConstant(EltIdx)) {
SDValue MMXSrc = InputVector.getOperand(0);
// The bitcast source is a direct mmx result.
if (MMXSrc.getValueType() == MVT::x86mmx)
return DAG.getNode(X86ISD::MMX_MOVD2W, dl, MVT::i32, MMXSrc);
}
if (VT == MVT::i1 && InputVector.getOpcode() == ISD::BITCAST &&
isa<ConstantSDNode>(EltIdx) &&
isa<ConstantSDNode>(InputVector.getOperand(0))) {
uint64_t ExtractedElt = N->getConstantOperandVal(1);
auto *InputC = cast<ConstantSDNode>(InputVector.getOperand(0));
const APInt &InputValue = InputC->getAPIntValue();
uint64_t Res = InputValue[ExtractedElt];
return DAG.getConstant(Res, dl, MVT::i1);
}
// Check whether this extract is the root of a sum of absolute differences
// pattern. This has to be done here because we really want it to happen
// pre-legalization,
if (SDValue SAD = combineBasicSADPattern(N, DAG, Subtarget))
return SAD;
// Attempt to replace an all_of/any_of horizontal reduction with a MOVMSK.
if (SDValue Cmp = combineHorizontalPredicateResult(N, DAG, Subtarget))
return Cmp;
// Attempt to replace min/max v8i16/v16i8 reductions with PHMINPOSUW.
if (SDValue MinMax = combineHorizontalMinMaxResult(N, DAG, Subtarget))
return MinMax;
return SDValue();
}
/// If a vector select has an operand that is -1 or 0, try to simplify the
/// select to a bitwise logic operation.
/// TODO: Move to DAGCombiner, possibly using TargetLowering::hasAndNot()?
static SDValue
combineVSelectWithAllOnesOrZeros(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDValue Cond = N->getOperand(0);
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
EVT VT = LHS.getValueType();
EVT CondVT = Cond.getValueType();
SDLoc DL(N);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (N->getOpcode() != ISD::VSELECT)
return SDValue();
assert(CondVT.isVector() && "Vector select expects a vector selector!");
bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
// Check if the first operand is all zeros and Cond type is vXi1.
// This situation only applies to avx512.
if (TValIsAllZeros && Subtarget.hasAVX512() && Cond.hasOneUse() &&
CondVT.getVectorElementType() == MVT::i1) {
// Invert the cond to not(cond) : xor(op,allones)=not(op)
SDValue CondNew = DAG.getNOT(DL, Cond, CondVT);
// Vselect cond, op1, op2 = Vselect not(cond), op2, op1
return DAG.getSelect(DL, VT, CondNew, RHS, LHS);
}
// To use the condition operand as a bitwise mask, it must have elements that
// are the same size as the select elements. Ie, the condition operand must
// have already been promoted from the IR select condition type <N x i1>.
// Don't check if the types themselves are equal because that excludes
// vector floating-point selects.
if (CondVT.getScalarSizeInBits() != VT.getScalarSizeInBits())
return SDValue();
bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
// Try to invert the condition if true value is not all 1s and false value is
// not all 0s.
if (!TValIsAllOnes && !FValIsAllZeros &&
// Check if the selector will be produced by CMPP*/PCMP*.
Cond.getOpcode() == ISD::SETCC &&
// Check if SETCC has already been promoted.
TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT) ==
CondVT) {
bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
if (TValIsAllZeros || FValIsAllOnes) {
SDValue CC = Cond.getOperand(2);
ISD::CondCode NewCC =
ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
Cond.getOperand(0).getValueType().isInteger());
Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1),
NewCC);
std::swap(LHS, RHS);
TValIsAllOnes = FValIsAllOnes;
FValIsAllZeros = TValIsAllZeros;
}
}
// Cond value must be 'sign splat' to be converted to a logical op.
if (DAG.ComputeNumSignBits(Cond) != CondVT.getScalarSizeInBits())
return SDValue();
// vselect Cond, 111..., 000... -> Cond
if (TValIsAllOnes && FValIsAllZeros)
return DAG.getBitcast(VT, Cond);
if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(CondVT))
return SDValue();
// vselect Cond, 111..., X -> or Cond, X
if (TValIsAllOnes) {
SDValue CastRHS = DAG.getBitcast(CondVT, RHS);
SDValue Or = DAG.getNode(ISD::OR, DL, CondVT, Cond, CastRHS);
return DAG.getBitcast(VT, Or);
}
// vselect Cond, X, 000... -> and Cond, X
if (FValIsAllZeros) {
SDValue CastLHS = DAG.getBitcast(CondVT, LHS);
SDValue And = DAG.getNode(ISD::AND, DL, CondVT, Cond, CastLHS);
return DAG.getBitcast(VT, And);
}
// vselect Cond, 000..., X -> andn Cond, X
if (TValIsAllZeros) {
MVT AndNVT = MVT::getVectorVT(MVT::i64, CondVT.getSizeInBits() / 64);
SDValue CastCond = DAG.getBitcast(AndNVT, Cond);
SDValue CastRHS = DAG.getBitcast(AndNVT, RHS);
SDValue AndN = DAG.getNode(X86ISD::ANDNP, DL, AndNVT, CastCond, CastRHS);
return DAG.getBitcast(VT, AndN);
}
return SDValue();
}
static SDValue combineSelectOfTwoConstants(SDNode *N, SelectionDAG &DAG) {
SDValue Cond = N->getOperand(0);
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
SDLoc DL(N);
auto *TrueC = dyn_cast<ConstantSDNode>(LHS);
auto *FalseC = dyn_cast<ConstantSDNode>(RHS);
if (!TrueC || !FalseC)
return SDValue();
// Don't do this for crazy integer types.
EVT VT = N->getValueType(0);
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
// We're going to use the condition bit in math or logic ops. We could allow
// this with a wider condition value (post-legalization it becomes an i8),
// but if nothing is creating selects that late, it doesn't matter.
if (Cond.getValueType() != MVT::i1)
return SDValue();
// A power-of-2 multiply is just a shift. LEA also cheaply handles multiply by
// 3, 5, or 9 with i32/i64, so those get transformed too.
// TODO: For constants that overflow or do not differ by power-of-2 or small
// multiplier, convert to 'and' + 'add'.
const APInt &TrueVal = TrueC->getAPIntValue();
const APInt &FalseVal = FalseC->getAPIntValue();
bool OV;
APInt Diff = TrueVal.ssub_ov(FalseVal, OV);
if (OV)
return SDValue();
APInt AbsDiff = Diff.abs();
if (AbsDiff.isPowerOf2() ||
((VT == MVT::i32 || VT == MVT::i64) &&
(AbsDiff == 3 || AbsDiff == 5 || AbsDiff == 9))) {
// We need a positive multiplier constant for shift/LEA codegen. The 'not'
// of the condition can usually be folded into a compare predicate, but even
// without that, the sequence should be cheaper than a CMOV alternative.
if (TrueVal.slt(FalseVal)) {
Cond = DAG.getNOT(DL, Cond, MVT::i1);
std::swap(TrueC, FalseC);
}
// select Cond, TC, FC --> (zext(Cond) * (TC - FC)) + FC
SDValue R = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
// Multiply condition by the difference if non-one.
if (!AbsDiff.isOneValue())
R = DAG.getNode(ISD::MUL, DL, VT, R, DAG.getConstant(AbsDiff, DL, VT));
// Add the base if non-zero.
if (!FalseC->isNullValue())
R = DAG.getNode(ISD::ADD, DL, VT, R, SDValue(FalseC, 0));
return R;
}
return SDValue();
}
/// If this is a *dynamic* select (non-constant condition) and we can match
/// this node with one of the variable blend instructions, restructure the
/// condition so that blends can use the high (sign) bit of each element.
static SDValue combineVSelectToShrunkBlend(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDValue Cond = N->getOperand(0);
if (N->getOpcode() != ISD::VSELECT ||
ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
return SDValue();
// Don't optimize before the condition has been transformed to a legal type
// and don't ever optimize vector selects that map to AVX512 mask-registers.
unsigned BitWidth = Cond.getScalarValueSizeInBits();
if (BitWidth < 8 || BitWidth > 64)
return SDValue();
// We can only handle the cases where VSELECT is directly legal on the
// subtarget. We custom lower VSELECT nodes with constant conditions and
// this makes it hard to see whether a dynamic VSELECT will correctly
// lower, so we both check the operation's status and explicitly handle the
// cases where a *dynamic* blend will fail even though a constant-condition
// blend could be custom lowered.
// FIXME: We should find a better way to handle this class of problems.
// Potentially, we should combine constant-condition vselect nodes
// pre-legalization into shuffles and not mark as many types as custom
// lowered.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT VT = N->getValueType(0);
if (!TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
return SDValue();
// FIXME: We don't support i16-element blends currently. We could and
// should support them by making *all* the bits in the condition be set
// rather than just the high bit and using an i8-element blend.
if (VT.getVectorElementType() == MVT::i16)
return SDValue();
// Dynamic blending was only available from SSE4.1 onward.
if (VT.is128BitVector() && !Subtarget.hasSSE41())
return SDValue();
// Byte blends are only available in AVX2
if (VT == MVT::v32i8 && !Subtarget.hasAVX2())
return SDValue();
// There are no 512-bit blend instructions that use sign bits.
if (VT.is512BitVector())
return SDValue();
// TODO: Add other opcodes eventually lowered into BLEND.
for (SDNode::use_iterator UI = Cond->use_begin(), UE = Cond->use_end();
UI != UE; ++UI)
if (UI->getOpcode() != ISD::VSELECT || UI.getOperandNo() != 0)
return SDValue();
APInt DemandedMask(APInt::getSignMask(BitWidth));
KnownBits Known;
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
if (!TLI.SimplifyDemandedBits(Cond, DemandedMask, Known, TLO, 0, true))
return SDValue();
// If we changed the computation somewhere in the DAG, this change will
// affect all users of Cond. Update all the nodes so that we do not use
// the generic VSELECT anymore. Otherwise, we may perform wrong
// optimizations as we messed with the actual expectation for the vector
// boolean values.
for (SDNode *U : Cond->uses()) {
SDValue SB = DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(U), U->getValueType(0),
Cond, U->getOperand(1), U->getOperand(2));
DAG.ReplaceAllUsesOfValueWith(SDValue(U, 0), SB);
}
DCI.CommitTargetLoweringOpt(TLO);
return SDValue(N, 0);
}
/// Do target-specific dag combines on SELECT and VSELECT nodes.
static SDValue combineSelect(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDLoc DL(N);
SDValue Cond = N->getOperand(0);
// Get the LHS/RHS of the select.
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
EVT VT = LHS.getValueType();
EVT CondVT = Cond.getValueType();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// Convert vselects with constant condition into shuffles.
if (ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()) &&
DCI.isBeforeLegalizeOps()) {
SmallVector<int, 64> Mask(VT.getVectorNumElements(), -1);
for (int i = 0, Size = Mask.size(); i != Size; ++i) {
SDValue CondElt = Cond->getOperand(i);
Mask[i] = i;
// Arbitrarily choose from the 2nd operand if the select condition element
// is undef.
// TODO: Can we do better by matching patterns such as even/odd?
if (CondElt.isUndef() || isNullConstant(CondElt))
Mask[i] += Size;
}
return DAG.getVectorShuffle(VT, DL, LHS, RHS, Mask);
}
// If we have SSE[12] support, try to form min/max nodes. SSE min/max
// instructions match the semantics of the common C idiom x<y?x:y but not
// x<=y?x:y, because of how they handle negative zero (which can be
// ignored in unsafe-math mode).
// We also try to create v2f32 min/max nodes, which we later widen to v4f32.
if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
VT != MVT::f80 && VT != MVT::f128 &&
(TLI.isTypeLegal(VT) || VT == MVT::v2f32) &&
(Subtarget.hasSSE2() ||
(Subtarget.hasSSE1() && VT.getScalarType() == MVT::f32))) {
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
unsigned Opcode = 0;
// Check for x CC y ? x : y.
if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
DAG.isEqualTo(RHS, Cond.getOperand(1))) {
switch (CC) {
default: break;
case ISD::SETULT:
// Converting this to a min would handle NaNs incorrectly, and swapping
// the operands would cause it to handle comparisons between positive
// and negative zero incorrectly.
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
if (!DAG.getTarget().Options.UnsafeFPMath &&
!(DAG.isKnownNeverZeroFloat(LHS) ||
DAG.isKnownNeverZeroFloat(RHS)))
break;
std::swap(LHS, RHS);
}
Opcode = X86ISD::FMIN;
break;
case ISD::SETOLE:
// Converting this to a min would handle comparisons between positive
// and negative zero incorrectly.
if (!DAG.getTarget().Options.UnsafeFPMath &&
!DAG.isKnownNeverZeroFloat(LHS) && !DAG.isKnownNeverZeroFloat(RHS))
break;
Opcode = X86ISD::FMIN;
break;
case ISD::SETULE:
// Converting this to a min would handle both negative zeros and NaNs
// incorrectly, but we can swap the operands to fix both.
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETOLT:
case ISD::SETLT:
case ISD::SETLE:
Opcode = X86ISD::FMIN;
break;
case ISD::SETOGE:
// Converting this to a max would handle comparisons between positive
// and negative zero incorrectly.
if (!DAG.getTarget().Options.UnsafeFPMath &&
!DAG.isKnownNeverZeroFloat(LHS) && !DAG.isKnownNeverZeroFloat(RHS))
break;
Opcode = X86ISD::FMAX;
break;
case ISD::SETUGT:
// Converting this to a max would handle NaNs incorrectly, and swapping
// the operands would cause it to handle comparisons between positive
// and negative zero incorrectly.
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
if (!DAG.getTarget().Options.UnsafeFPMath &&
!(DAG.isKnownNeverZeroFloat(LHS) ||
DAG.isKnownNeverZeroFloat(RHS)))
break;
std::swap(LHS, RHS);
}
Opcode = X86ISD::FMAX;
break;
case ISD::SETUGE:
// Converting this to a max would handle both negative zeros and NaNs
// incorrectly, but we can swap the operands to fix both.
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETOGT:
case ISD::SETGT:
case ISD::SETGE:
Opcode = X86ISD::FMAX;
break;
}
// Check for x CC y ? y : x -- a min/max with reversed arms.
} else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
DAG.isEqualTo(RHS, Cond.getOperand(0))) {
switch (CC) {
default: break;
case ISD::SETOGE:
// Converting this to a min would handle comparisons between positive
// and negative zero incorrectly, and swapping the operands would
// cause it to handle NaNs incorrectly.
if (!DAG.getTarget().Options.UnsafeFPMath &&
!(DAG.isKnownNeverZeroFloat(LHS) ||
DAG.isKnownNeverZeroFloat(RHS))) {
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
break;
std::swap(LHS, RHS);
}
Opcode = X86ISD::FMIN;
break;
case ISD::SETUGT:
// Converting this to a min would handle NaNs incorrectly.
if (!DAG.getTarget().Options.UnsafeFPMath &&
(!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
break;
Opcode = X86ISD::FMIN;
break;
case ISD::SETUGE:
// Converting this to a min would handle both negative zeros and NaNs
// incorrectly, but we can swap the operands to fix both.
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETOGT:
case ISD::SETGT:
case ISD::SETGE:
Opcode = X86ISD::FMIN;
break;
case ISD::SETULT:
// Converting this to a max would handle NaNs incorrectly.
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
break;
Opcode = X86ISD::FMAX;
break;
case ISD::SETOLE:
// Converting this to a max would handle comparisons between positive
// and negative zero incorrectly, and swapping the operands would
// cause it to handle NaNs incorrectly.
if (!DAG.getTarget().Options.UnsafeFPMath &&
!DAG.isKnownNeverZeroFloat(LHS) &&
!DAG.isKnownNeverZeroFloat(RHS)) {
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
break;
std::swap(LHS, RHS);
}
Opcode = X86ISD::FMAX;
break;
case ISD::SETULE:
// Converting this to a max would handle both negative zeros and NaNs
// incorrectly, but we can swap the operands to fix both.
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETOLT:
case ISD::SETLT:
case ISD::SETLE:
Opcode = X86ISD::FMAX;
break;
}
}
if (Opcode)
return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
}
// Some mask scalar intrinsics rely on checking if only one bit is set
// and implement it in C code like this:
// A[0] = (U & 1) ? A[0] : W[0];
// This creates some redundant instructions that break pattern matching.
// fold (select (setcc (and (X, 1), 0, seteq), Y, Z)) -> select(and(X, 1),Z,Y)
if (Subtarget.hasAVX512() && N->getOpcode() == ISD::SELECT &&
Cond.getOpcode() == ISD::SETCC && (VT == MVT::f32 || VT == MVT::f64)) {
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
SDValue AndNode = Cond.getOperand(0);
if (AndNode.getOpcode() == ISD::AND && CC == ISD::SETEQ &&
isNullConstant(Cond.getOperand(1)) &&
isOneConstant(AndNode.getOperand(1))) {
// LHS and RHS swapped due to
// setcc outputting 1 when AND resulted in 0 and vice versa.
AndNode = DAG.getZExtOrTrunc(AndNode, DL, MVT::i8);
return DAG.getNode(ISD::SELECT, DL, VT, AndNode, RHS, LHS);
}
}
// v16i8 (select v16i1, v16i8, v16i8) does not have a proper
// lowering on KNL. In this case we convert it to
// v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction.
// The same situation all vectors of i8 and i16 without BWI.
// Make sure we extend these even before type legalization gets a chance to
// split wide vectors.
// Since SKX these selects have a proper lowering.
if (Subtarget.hasAVX512() && !Subtarget.hasBWI() && CondVT.isVector() &&
CondVT.getVectorElementType() == MVT::i1 &&
VT.getVectorNumElements() > 4 &&
(VT.getVectorElementType() == MVT::i8 ||
VT.getVectorElementType() == MVT::i16)) {
Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
return DAG.getNode(N->getOpcode(), DL, VT, Cond, LHS, RHS);
}
if (SDValue V = combineSelectOfTwoConstants(N, DAG))
return V;
// Canonicalize max and min:
// (x > y) ? x : y -> (x >= y) ? x : y
// (x < y) ? x : y -> (x <= y) ? x : y
// This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
// the need for an extra compare
// against zero. e.g.
// (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
// subl %esi, %edi
// testl %edi, %edi
// movl $0, %eax
// cmovgl %edi, %eax
// =>
// xorl %eax, %eax
// subl %esi, $edi
// cmovsl %eax, %edi
if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
DAG.isEqualTo(RHS, Cond.getOperand(1))) {
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
switch (CC) {
default: break;
case ISD::SETLT:
case ISD::SETGT: {
ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
Cond.getOperand(0), Cond.getOperand(1), NewCC);
return DAG.getSelect(DL, VT, Cond, LHS, RHS);
}
}
}
// Early exit check
if (!TLI.isTypeLegal(VT))
return SDValue();
// Match VSELECTs into subs with unsigned saturation.
if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
// psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
((Subtarget.hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
(Subtarget.hasAVX() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
// Check if one of the arms of the VSELECT is a zero vector. If it's on the
// left side invert the predicate to simplify logic below.
SDValue Other;
if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
Other = RHS;
CC = ISD::getSetCCInverse(CC, true);
} else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
Other = LHS;
}
if (Other.getNode() && Other->getNumOperands() == 2 &&
DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
SDValue CondRHS = Cond->getOperand(1);
auto SUBUSBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
return DAG.getNode(X86ISD::SUBUS, DL, Ops[0].getValueType(), Ops);
};
// Look for a general sub with unsigned saturation first.
// x >= y ? x-y : 0 --> subus x, y
// x > y ? x-y : 0 --> subus x, y
if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
return SplitOpsAndApply(DAG, Subtarget, DL, VT, { OpLHS, OpRHS },
SUBUSBuilder);
if (auto *OpRHSBV = dyn_cast<BuildVectorSDNode>(OpRHS))
if (isa<BuildVectorSDNode>(CondRHS)) {
// If the RHS is a constant we have to reverse the const
// canonicalization.
// x > C-1 ? x+-C : 0 --> subus x, C
auto MatchSUBUS = [](ConstantSDNode *Op, ConstantSDNode *Cond) {
return Cond->getAPIntValue() == (-Op->getAPIntValue() - 1);
};
if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchSUBUS)) {
OpRHS = DAG.getNode(ISD::SUB, DL, VT,
DAG.getConstant(0, DL, VT), OpRHS);
return SplitOpsAndApply(DAG, Subtarget, DL, VT, { OpLHS, OpRHS },
SUBUSBuilder);
}
// Another special case: If C was a sign bit, the sub has been
// canonicalized into a xor.
// FIXME: Would it be better to use computeKnownBits to determine
// whether it's safe to decanonicalize the xor?
// x s< 0 ? x^C : 0 --> subus x, C
if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode())
if (CC == ISD::SETLT && Other.getOpcode() == ISD::XOR &&
ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
OpRHSConst->getAPIntValue().isSignMask()) {
OpRHS = DAG.getConstant(OpRHSConst->getAPIntValue(), DL, VT);
// Note that we have to rebuild the RHS constant here to ensure we
// don't rely on particular values of undef lanes.
return SplitOpsAndApply(DAG, Subtarget, DL, VT, { OpLHS, OpRHS },
SUBUSBuilder);
}
}
}
}
if (SDValue V = combineVSelectWithAllOnesOrZeros(N, DAG, DCI, Subtarget))
return V;
if (SDValue V = combineVSelectToShrunkBlend(N, DAG, DCI, Subtarget))
return V;
// Custom action for SELECT MMX
if (VT == MVT::x86mmx) {
LHS = DAG.getBitcast(MVT::i64, LHS);
RHS = DAG.getBitcast(MVT::i64, RHS);
SDValue newSelect = DAG.getNode(ISD::SELECT, DL, MVT::i64, Cond, LHS, RHS);
return DAG.getBitcast(VT, newSelect);
}
return SDValue();
}
/// Combine:
/// (brcond/cmov/setcc .., (cmp (atomic_load_add x, 1), 0), COND_S)
/// to:
/// (brcond/cmov/setcc .., (LADD x, 1), COND_LE)
/// i.e., reusing the EFLAGS produced by the LOCKed instruction.
/// Note that this is only legal for some op/cc combinations.
static SDValue combineSetCCAtomicArith(SDValue Cmp, X86::CondCode &CC,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// This combine only operates on CMP-like nodes.
if (!(Cmp.getOpcode() == X86ISD::CMP ||
(Cmp.getOpcode() == X86ISD::SUB && !Cmp->hasAnyUseOfValue(0))))
return SDValue();
// Can't replace the cmp if it has more uses than the one we're looking at.
// FIXME: We would like to be able to handle this, but would need to make sure
// all uses were updated.
if (!Cmp.hasOneUse())
return SDValue();
// This only applies to variations of the common case:
// (icmp slt x, 0) -> (icmp sle (add x, 1), 0)
// (icmp sge x, 0) -> (icmp sgt (add x, 1), 0)
// (icmp sle x, 0) -> (icmp slt (sub x, 1), 0)
// (icmp sgt x, 0) -> (icmp sge (sub x, 1), 0)
// Using the proper condcodes (see below), overflow is checked for.
// FIXME: We can generalize both constraints:
// - XOR/OR/AND (if they were made to survive AtomicExpand)
// - LHS != 1
// if the result is compared.
SDValue CmpLHS = Cmp.getOperand(0);
SDValue CmpRHS = Cmp.getOperand(1);
if (!CmpLHS.hasOneUse())
return SDValue();
unsigned Opc = CmpLHS.getOpcode();
if (Opc != ISD::ATOMIC_LOAD_ADD && Opc != ISD::ATOMIC_LOAD_SUB)
return SDValue();
SDValue OpRHS = CmpLHS.getOperand(2);
auto *OpRHSC = dyn_cast<ConstantSDNode>(OpRHS);
if (!OpRHSC)
return SDValue();
APInt Addend = OpRHSC->getAPIntValue();
if (Opc == ISD::ATOMIC_LOAD_SUB)
Addend = -Addend;
auto *CmpRHSC = dyn_cast<ConstantSDNode>(CmpRHS);
if (!CmpRHSC)
return SDValue();
APInt Comparison = CmpRHSC->getAPIntValue();
// If the addend is the negation of the comparison value, then we can do
// a full comparison by emitting the atomic arithmetic as a locked sub.
if (Comparison == -Addend) {
// The CC is fine, but we need to rewrite the LHS of the comparison as an
// atomic sub.
auto *AN = cast<AtomicSDNode>(CmpLHS.getNode());
auto AtomicSub = DAG.getAtomic(
ISD::ATOMIC_LOAD_SUB, SDLoc(CmpLHS), CmpLHS.getValueType(),
/*Chain*/ CmpLHS.getOperand(0), /*LHS*/ CmpLHS.getOperand(1),
/*RHS*/ DAG.getConstant(-Addend, SDLoc(CmpRHS), CmpRHS.getValueType()),
AN->getMemOperand());
// If the comparision uses the CF flag we can't use INC/DEC instructions.
bool NeedCF = false;
switch (CC) {
default: break;
case X86::COND_A: case X86::COND_AE:
case X86::COND_B: case X86::COND_BE:
NeedCF = true;
break;
}
auto LockOp = lowerAtomicArithWithLOCK(AtomicSub, DAG, Subtarget, !NeedCF);
DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(0),
DAG.getUNDEF(CmpLHS.getValueType()));
DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(1), LockOp.getValue(1));
return LockOp;
}
// We can handle comparisons with zero in a number of cases by manipulating
// the CC used.
if (!Comparison.isNullValue())
return SDValue();
if (CC == X86::COND_S && Addend == 1)
CC = X86::COND_LE;
else if (CC == X86::COND_NS && Addend == 1)
CC = X86::COND_G;
else if (CC == X86::COND_G && Addend == -1)
CC = X86::COND_GE;
else if (CC == X86::COND_LE && Addend == -1)
CC = X86::COND_L;
else
return SDValue();
SDValue LockOp = lowerAtomicArithWithLOCK(CmpLHS, DAG, Subtarget);
DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(0),
DAG.getUNDEF(CmpLHS.getValueType()));
DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(1), LockOp.getValue(1));
return LockOp;
}
// Check whether a boolean test is testing a boolean value generated by
// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
// code.
//
// Simplify the following patterns:
// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
// to (Op EFLAGS Cond)
//
// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
// to (Op EFLAGS !Cond)
//
// where Op could be BRCOND or CMOV.
//
static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
// This combine only operates on CMP-like nodes.
if (!(Cmp.getOpcode() == X86ISD::CMP ||
(Cmp.getOpcode() == X86ISD::SUB && !Cmp->hasAnyUseOfValue(0))))
return SDValue();
// Quit if not used as a boolean value.
if (CC != X86::COND_E && CC != X86::COND_NE)
return SDValue();
// Check CMP operands. One of them should be 0 or 1 and the other should be
// an SetCC or extended from it.
SDValue Op1 = Cmp.getOperand(0);
SDValue Op2 = Cmp.getOperand(1);
SDValue SetCC;
const ConstantSDNode* C = nullptr;
bool needOppositeCond = (CC == X86::COND_E);
bool checkAgainstTrue = false; // Is it a comparison against 1?
if ((C = dyn_cast<ConstantSDNode>(Op1)))
SetCC = Op2;
else if ((C = dyn_cast<ConstantSDNode>(Op2)))
SetCC = Op1;
else // Quit if all operands are not constants.
return SDValue();
if (C->getZExtValue() == 1) {
needOppositeCond = !needOppositeCond;
checkAgainstTrue = true;
} else if (C->getZExtValue() != 0)
// Quit if the constant is neither 0 or 1.
return SDValue();
bool truncatedToBoolWithAnd = false;
// Skip (zext $x), (trunc $x), or (and $x, 1) node.
while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
SetCC.getOpcode() == ISD::TRUNCATE ||
SetCC.getOpcode() == ISD::AND) {
if (SetCC.getOpcode() == ISD::AND) {
int OpIdx = -1;
if (isOneConstant(SetCC.getOperand(0)))
OpIdx = 1;
if (isOneConstant(SetCC.getOperand(1)))
OpIdx = 0;
if (OpIdx < 0)
break;
SetCC = SetCC.getOperand(OpIdx);
truncatedToBoolWithAnd = true;
} else
SetCC = SetCC.getOperand(0);
}
switch (SetCC.getOpcode()) {
case X86ISD::SETCC_CARRY:
// Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
// simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
// i.e. it's a comparison against true but the result of SETCC_CARRY is not
// truncated to i1 using 'and'.
if (checkAgainstTrue && !truncatedToBoolWithAnd)
break;
assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
"Invalid use of SETCC_CARRY!");
LLVM_FALLTHROUGH;
case X86ISD::SETCC:
// Set the condition code or opposite one if necessary.
CC = X86::CondCode(SetCC.getConstantOperandVal(0));
if (needOppositeCond)
CC = X86::GetOppositeBranchCondition(CC);
return SetCC.getOperand(1);
case X86ISD::CMOV: {
// Check whether false/true value has canonical one, i.e. 0 or 1.
ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
// Quit if true value is not a constant.
if (!TVal)
return SDValue();
// Quit if false value is not a constant.
if (!FVal) {
SDValue Op = SetCC.getOperand(0);
// Skip 'zext' or 'trunc' node.
if (Op.getOpcode() == ISD::ZERO_EXTEND ||
Op.getOpcode() == ISD::TRUNCATE)
Op = Op.getOperand(0);
// A special case for rdrand/rdseed, where 0 is set if false cond is
// found.
if ((Op.getOpcode() != X86ISD::RDRAND &&
Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
return SDValue();
}
// Quit if false value is not the constant 0 or 1.
bool FValIsFalse = true;
if (FVal && FVal->getZExtValue() != 0) {
if (FVal->getZExtValue() != 1)
return SDValue();
// If FVal is 1, opposite cond is needed.
needOppositeCond = !needOppositeCond;
FValIsFalse = false;
}
// Quit if TVal is not the constant opposite of FVal.
if (FValIsFalse && TVal->getZExtValue() != 1)
return SDValue();
if (!FValIsFalse && TVal->getZExtValue() != 0)
return SDValue();
CC = X86::CondCode(SetCC.getConstantOperandVal(2));
if (needOppositeCond)
CC = X86::GetOppositeBranchCondition(CC);
return SetCC.getOperand(3);
}
}
return SDValue();
}
/// Check whether Cond is an AND/OR of SETCCs off of the same EFLAGS.
/// Match:
/// (X86or (X86setcc) (X86setcc))
/// (X86cmp (and (X86setcc) (X86setcc)), 0)
static bool checkBoolTestAndOrSetCCCombine(SDValue Cond, X86::CondCode &CC0,
X86::CondCode &CC1, SDValue &Flags,
bool &isAnd) {
if (Cond->getOpcode() == X86ISD::CMP) {
if (!isNullConstant(Cond->getOperand(1)))
return false;
Cond = Cond->getOperand(0);
}
isAnd = false;
SDValue SetCC0, SetCC1;
switch (Cond->getOpcode()) {
default: return false;
case ISD::AND:
case X86ISD::AND:
isAnd = true;
LLVM_FALLTHROUGH;
case ISD::OR:
case X86ISD::OR:
SetCC0 = Cond->getOperand(0);
SetCC1 = Cond->getOperand(1);
break;
};
// Make sure we have SETCC nodes, using the same flags value.
if (SetCC0.getOpcode() != X86ISD::SETCC ||
SetCC1.getOpcode() != X86ISD::SETCC ||
SetCC0->getOperand(1) != SetCC1->getOperand(1))
return false;
CC0 = (X86::CondCode)SetCC0->getConstantOperandVal(0);
CC1 = (X86::CondCode)SetCC1->getConstantOperandVal(0);
Flags = SetCC0->getOperand(1);
return true;
}
// When legalizing carry, we create carries via add X, -1
// If that comes from an actual carry, via setcc, we use the
// carry directly.
static SDValue combineCarryThroughADD(SDValue EFLAGS) {
if (EFLAGS.getOpcode() == X86ISD::ADD) {
if (isAllOnesConstant(EFLAGS.getOperand(1))) {
SDValue Carry = EFLAGS.getOperand(0);
while (Carry.getOpcode() == ISD::TRUNCATE ||
Carry.getOpcode() == ISD::ZERO_EXTEND ||
Carry.getOpcode() == ISD::SIGN_EXTEND ||
Carry.getOpcode() == ISD::ANY_EXTEND ||
(Carry.getOpcode() == ISD::AND &&
isOneConstant(Carry.getOperand(1))))
Carry = Carry.getOperand(0);
if (Carry.getOpcode() == X86ISD::SETCC ||
Carry.getOpcode() == X86ISD::SETCC_CARRY) {
if (Carry.getConstantOperandVal(0) == X86::COND_B)
return Carry.getOperand(1);
}
}
}
return SDValue();
}
/// Optimize an EFLAGS definition used according to the condition code \p CC
/// into a simpler EFLAGS value, potentially returning a new \p CC and replacing
/// uses of chain values.
static SDValue combineSetCCEFLAGS(SDValue EFLAGS, X86::CondCode &CC,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (CC == X86::COND_B)
if (SDValue Flags = combineCarryThroughADD(EFLAGS))
return Flags;
if (SDValue R = checkBoolTestSetCCCombine(EFLAGS, CC))
return R;
return combineSetCCAtomicArith(EFLAGS, CC, DAG, Subtarget);
}
/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
static SDValue combineCMov(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDLoc DL(N);
SDValue FalseOp = N->getOperand(0);
SDValue TrueOp = N->getOperand(1);
X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
SDValue Cond = N->getOperand(3);
// Try to simplify the EFLAGS and condition code operands.
// We can't always do this as FCMOV only supports a subset of X86 cond.
if (SDValue Flags = combineSetCCEFLAGS(Cond, CC, DAG, Subtarget)) {
if (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC)) {
SDValue Ops[] = {FalseOp, TrueOp, DAG.getConstant(CC, DL, MVT::i8),
Flags};
return DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), Ops);
}
}
// If this is a select between two integer constants, try to do some
// optimizations. Note that the operands are ordered the opposite of SELECT
// operands.
if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
// Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
// larger than FalseC (the false value).
if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
CC = X86::GetOppositeBranchCondition(CC);
std::swap(TrueC, FalseC);
std::swap(TrueOp, FalseOp);
}
// Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
// This is efficient for any integer data type (including i8/i16) and
// shift amount.
if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
Cond = getSETCC(CC, Cond, DL, DAG);
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
unsigned ShAmt = TrueC->getAPIntValue().logBase2();
Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
DAG.getConstant(ShAmt, DL, MVT::i8));
return Cond;
}
// Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
// for any integer data type, including i8/i16.
if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
Cond = getSETCC(CC, Cond, DL, DAG);
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
FalseC->getValueType(0), Cond);
Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
SDValue(FalseC, 0));
return Cond;
}
// Optimize cases that will turn into an LEA instruction. This requires
// an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
bool isFastMultiplier = false;
if (Diff < 10) {
switch ((unsigned char)Diff) {
default: break;
case 1: // result = add base, cond
case 2: // result = lea base( , cond*2)
case 3: // result = lea base(cond, cond*2)
case 4: // result = lea base( , cond*4)
case 5: // result = lea base(cond, cond*4)
case 8: // result = lea base( , cond*8)
case 9: // result = lea base(cond, cond*8)
isFastMultiplier = true;
break;
}
}
if (isFastMultiplier) {
APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
Cond = getSETCC(CC, Cond, DL ,DAG);
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
Cond);
// Scale the condition by the difference.
if (Diff != 1)
Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
DAG.getConstant(Diff, DL, Cond.getValueType()));
// Add the base if non-zero.
if (FalseC->getAPIntValue() != 0)
Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
SDValue(FalseC, 0));
return Cond;
}
}
}
}
// Handle these cases:
// (select (x != c), e, c) -> select (x != c), e, x),
// (select (x == c), c, e) -> select (x == c), x, e)
// where the c is an integer constant, and the "select" is the combination
// of CMOV and CMP.
//
// The rationale for this change is that the conditional-move from a constant
// needs two instructions, however, conditional-move from a register needs
// only one instruction.
//
// CAVEAT: By replacing a constant with a symbolic value, it may obscure
// some instruction-combining opportunities. This opt needs to be
// postponed as late as possible.
//
if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
// the DCI.xxxx conditions are provided to postpone the optimization as
// late as possible.
ConstantSDNode *CmpAgainst = nullptr;
if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
(CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
!isa<ConstantSDNode>(Cond.getOperand(0))) {
if (CC == X86::COND_NE &&
CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
CC = X86::GetOppositeBranchCondition(CC);
std::swap(TrueOp, FalseOp);
}
if (CC == X86::COND_E &&
CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
SDValue Ops[] = { FalseOp, Cond.getOperand(0),
DAG.getConstant(CC, DL, MVT::i8), Cond };
return DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), Ops);
}
}
}
// Fold and/or of setcc's to double CMOV:
// (CMOV F, T, ((cc1 | cc2) != 0)) -> (CMOV (CMOV F, T, cc1), T, cc2)
// (CMOV F, T, ((cc1 & cc2) != 0)) -> (CMOV (CMOV T, F, !cc1), F, !cc2)
//
// This combine lets us generate:
// cmovcc1 (jcc1 if we don't have CMOV)
// cmovcc2 (same)
// instead of:
// setcc1
// setcc2
// and/or
// cmovne (jne if we don't have CMOV)
// When we can't use the CMOV instruction, it might increase branch
// mispredicts.
// When we can use CMOV, or when there is no mispredict, this improves
// throughput and reduces register pressure.
//
if (CC == X86::COND_NE) {
SDValue Flags;
X86::CondCode CC0, CC1;
bool isAndSetCC;
if (checkBoolTestAndOrSetCCCombine(Cond, CC0, CC1, Flags, isAndSetCC)) {
if (isAndSetCC) {
std::swap(FalseOp, TrueOp);
CC0 = X86::GetOppositeBranchCondition(CC0);
CC1 = X86::GetOppositeBranchCondition(CC1);
}
SDValue LOps[] = {FalseOp, TrueOp, DAG.getConstant(CC0, DL, MVT::i8),
Flags};
SDValue LCMOV = DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), LOps);
SDValue Ops[] = {LCMOV, TrueOp, DAG.getConstant(CC1, DL, MVT::i8), Flags};
SDValue CMOV = DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), Ops);
return CMOV;
}
}
// Fold (CMOV C1, (ADD (CTTZ X), C2), (X != 0)) ->
// (ADD (CMOV C1-C2, (CTTZ X), (X != 0)), C2)
// Or (CMOV (ADD (CTTZ X), C2), C1, (X == 0)) ->
// (ADD (CMOV (CTTZ X), C1-C2, (X == 0)), C2)
if ((CC == X86::COND_NE || CC == X86::COND_E) &&
Cond.getOpcode() == X86ISD::CMP && isNullConstant(Cond.getOperand(1))) {
SDValue Add = TrueOp;
SDValue Const = FalseOp;
// Canonicalize the condition code for easier matching and output.
if (CC == X86::COND_E) {
std::swap(Add, Const);
CC = X86::COND_NE;
}
// Ok, now make sure that Add is (add (cttz X), C2) and Const is a constant.
if (isa<ConstantSDNode>(Const) && Add.getOpcode() == ISD::ADD &&
Add.hasOneUse() && isa<ConstantSDNode>(Add.getOperand(1)) &&
(Add.getOperand(0).getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
Add.getOperand(0).getOpcode() == ISD::CTTZ) &&
Add.getOperand(0).getOperand(0) == Cond.getOperand(0)) {
EVT VT = N->getValueType(0);
// This should constant fold.
SDValue Diff = DAG.getNode(ISD::SUB, DL, VT, Const, Add.getOperand(1));
SDValue CMov = DAG.getNode(X86ISD::CMOV, DL, VT, Diff, Add.getOperand(0),
DAG.getConstant(CC, DL, MVT::i8), Cond);
return DAG.getNode(ISD::ADD, DL, VT, CMov, Add.getOperand(1));
}
}
return SDValue();
}
/// Different mul shrinking modes.
enum ShrinkMode { MULS8, MULU8, MULS16, MULU16 };
static bool canReduceVMulWidth(SDNode *N, SelectionDAG &DAG, ShrinkMode &Mode) {
EVT VT = N->getOperand(0).getValueType();
if (VT.getScalarSizeInBits() != 32)
return false;
assert(N->getNumOperands() == 2 && "NumOperands of Mul are 2");
unsigned SignBits[2] = {1, 1};
bool IsPositive[2] = {false, false};
for (unsigned i = 0; i < 2; i++) {
SDValue Opd = N->getOperand(i);
// DAG.ComputeNumSignBits return 1 for ISD::ANY_EXTEND, so we need to
// compute signbits for it separately.
if (Opd.getOpcode() == ISD::ANY_EXTEND) {
// For anyextend, it is safe to assume an appropriate number of leading
// sign/zero bits.
if (Opd.getOperand(0).getValueType().getVectorElementType() == MVT::i8)
SignBits[i] = 25;
else if (Opd.getOperand(0).getValueType().getVectorElementType() ==
MVT::i16)
SignBits[i] = 17;
else
return false;
IsPositive[i] = true;
} else if (Opd.getOpcode() == ISD::BUILD_VECTOR) {
// All the operands of BUILD_VECTOR need to be int constant.
// Find the smallest value range which all the operands belong to.
SignBits[i] = 32;
IsPositive[i] = true;
for (const SDValue &SubOp : Opd.getNode()->op_values()) {
if (SubOp.isUndef())
continue;
auto *CN = dyn_cast<ConstantSDNode>(SubOp);
if (!CN)
return false;
APInt IntVal = CN->getAPIntValue();
if (IntVal.isNegative())
IsPositive[i] = false;
SignBits[i] = std::min(SignBits[i], IntVal.getNumSignBits());
}
} else {
SignBits[i] = DAG.ComputeNumSignBits(Opd);
if (Opd.getOpcode() == ISD::ZERO_EXTEND)
IsPositive[i] = true;
}
}
bool AllPositive = IsPositive[0] && IsPositive[1];
unsigned MinSignBits = std::min(SignBits[0], SignBits[1]);
// When ranges are from -128 ~ 127, use MULS8 mode.
if (MinSignBits >= 25)
Mode = MULS8;
// When ranges are from 0 ~ 255, use MULU8 mode.
else if (AllPositive && MinSignBits >= 24)
Mode = MULU8;
// When ranges are from -32768 ~ 32767, use MULS16 mode.
else if (MinSignBits >= 17)
Mode = MULS16;
// When ranges are from 0 ~ 65535, use MULU16 mode.
else if (AllPositive && MinSignBits >= 16)
Mode = MULU16;
else
return false;
return true;
}
/// When the operands of vector mul are extended from smaller size values,
/// like i8 and i16, the type of mul may be shrinked to generate more
/// efficient code. Two typical patterns are handled:
/// Pattern1:
/// %2 = sext/zext <N x i8> %1 to <N x i32>
/// %4 = sext/zext <N x i8> %3 to <N x i32>
// or %4 = build_vector <N x i32> %C1, ..., %CN (%C1..%CN are constants)
/// %5 = mul <N x i32> %2, %4
///
/// Pattern2:
/// %2 = zext/sext <N x i16> %1 to <N x i32>
/// %4 = zext/sext <N x i16> %3 to <N x i32>
/// or %4 = build_vector <N x i32> %C1, ..., %CN (%C1..%CN are constants)
/// %5 = mul <N x i32> %2, %4
///
/// There are four mul shrinking modes:
/// If %2 == sext32(trunc8(%2)), i.e., the scalar value range of %2 is
/// -128 to 128, and the scalar value range of %4 is also -128 to 128,
/// generate pmullw+sext32 for it (MULS8 mode).
/// If %2 == zext32(trunc8(%2)), i.e., the scalar value range of %2 is
/// 0 to 255, and the scalar value range of %4 is also 0 to 255,
/// generate pmullw+zext32 for it (MULU8 mode).
/// If %2 == sext32(trunc16(%2)), i.e., the scalar value range of %2 is
/// -32768 to 32767, and the scalar value range of %4 is also -32768 to 32767,
/// generate pmullw+pmulhw for it (MULS16 mode).
/// If %2 == zext32(trunc16(%2)), i.e., the scalar value range of %2 is
/// 0 to 65535, and the scalar value range of %4 is also 0 to 65535,
/// generate pmullw+pmulhuw for it (MULU16 mode).
static SDValue reduceVMULWidth(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// Check for legality
// pmullw/pmulhw are not supported by SSE.
if (!Subtarget.hasSSE2())
return SDValue();
// Check for profitability
// pmulld is supported since SSE41. It is better to use pmulld
// instead of pmullw+pmulhw, except for subtargets where pmulld is slower than
// the expansion.
bool OptForMinSize = DAG.getMachineFunction().getFunction().optForMinSize();
if (Subtarget.hasSSE41() && (OptForMinSize || !Subtarget.isPMULLDSlow()))
return SDValue();
ShrinkMode Mode;
if (!canReduceVMulWidth(N, DAG, Mode))
return SDValue();
SDLoc DL(N);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getOperand(0).getValueType();
unsigned NumElts = VT.getVectorNumElements();
if ((NumElts % 2) != 0)
return SDValue();
unsigned RegSize = 128;
MVT OpsVT = MVT::getVectorVT(MVT::i16, RegSize / 16);
EVT ReducedVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16, NumElts);
// Shrink the operands of mul.
SDValue NewN0 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, N0);
SDValue NewN1 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, N1);
if (NumElts >= OpsVT.getVectorNumElements()) {
// Generate the lower part of mul: pmullw. For MULU8/MULS8, only the
// lower part is needed.
SDValue MulLo = DAG.getNode(ISD::MUL, DL, ReducedVT, NewN0, NewN1);
if (Mode == MULU8 || Mode == MULS8) {
return DAG.getNode((Mode == MULU8) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND,
DL, VT, MulLo);
} else {
MVT ResVT = MVT::getVectorVT(MVT::i32, NumElts / 2);
// Generate the higher part of mul: pmulhw/pmulhuw. For MULU16/MULS16,
// the higher part is also needed.
SDValue MulHi = DAG.getNode(Mode == MULS16 ? ISD::MULHS : ISD::MULHU, DL,
ReducedVT, NewN0, NewN1);
// Repack the lower part and higher part result of mul into a wider
// result.
// Generate shuffle functioning as punpcklwd.
SmallVector<int, 16> ShuffleMask(NumElts);
for (unsigned i = 0, e = NumElts / 2; i < e; i++) {
ShuffleMask[2 * i] = i;
ShuffleMask[2 * i + 1] = i + NumElts;
}
SDValue ResLo =
DAG.getVectorShuffle(ReducedVT, DL, MulLo, MulHi, ShuffleMask);
ResLo = DAG.getBitcast(ResVT, ResLo);
// Generate shuffle functioning as punpckhwd.
for (unsigned i = 0, e = NumElts / 2; i < e; i++) {
ShuffleMask[2 * i] = i + NumElts / 2;
ShuffleMask[2 * i + 1] = i + NumElts * 3 / 2;
}
SDValue ResHi =
DAG.getVectorShuffle(ReducedVT, DL, MulLo, MulHi, ShuffleMask);
ResHi = DAG.getBitcast(ResVT, ResHi);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ResLo, ResHi);
}
} else {
// When VT.getVectorNumElements() < OpsVT.getVectorNumElements(), we want
// to legalize the mul explicitly because implicit legalization for type
// <4 x i16> to <4 x i32> sometimes involves unnecessary unpack
// instructions which will not exist when we explicitly legalize it by
// extending <4 x i16> to <8 x i16> (concatenating the <4 x i16> val with
// <4 x i16> undef).
//
// Legalize the operands of mul.
// FIXME: We may be able to handle non-concatenated vectors by insertion.
unsigned ReducedSizeInBits = ReducedVT.getSizeInBits();
if ((RegSize % ReducedSizeInBits) != 0)
return SDValue();
SmallVector<SDValue, 16> Ops(RegSize / ReducedSizeInBits,
DAG.getUNDEF(ReducedVT));
Ops[0] = NewN0;
NewN0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, OpsVT, Ops);
Ops[0] = NewN1;
NewN1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, OpsVT, Ops);
if (Mode == MULU8 || Mode == MULS8) {
// Generate lower part of mul: pmullw. For MULU8/MULS8, only the lower
// part is needed.
SDValue Mul = DAG.getNode(ISD::MUL, DL, OpsVT, NewN0, NewN1);
// convert the type of mul result to VT.
MVT ResVT = MVT::getVectorVT(MVT::i32, RegSize / 32);
SDValue Res = DAG.getNode(Mode == MULU8 ? ISD::ZERO_EXTEND_VECTOR_INREG
: ISD::SIGN_EXTEND_VECTOR_INREG,
DL, ResVT, Mul);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res,
DAG.getIntPtrConstant(0, DL));
} else {
// Generate the lower and higher part of mul: pmulhw/pmulhuw. For
// MULU16/MULS16, both parts are needed.
SDValue MulLo = DAG.getNode(ISD::MUL, DL, OpsVT, NewN0, NewN1);
SDValue MulHi = DAG.getNode(Mode == MULS16 ? ISD::MULHS : ISD::MULHU, DL,
OpsVT, NewN0, NewN1);
// Repack the lower part and higher part result of mul into a wider
// result. Make sure the type of mul result is VT.
MVT ResVT = MVT::getVectorVT(MVT::i32, RegSize / 32);
SDValue Res = getUnpackl(DAG, DL, OpsVT, MulLo, MulHi);
Res = DAG.getBitcast(ResVT, Res);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res,
DAG.getIntPtrConstant(0, DL));
}
}
}
static SDValue combineMulSpecial(uint64_t MulAmt, SDNode *N, SelectionDAG &DAG,
EVT VT, const SDLoc &DL) {
auto combineMulShlAddOrSub = [&](int Mult, int Shift, bool isAdd) {
SDValue Result = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
DAG.getConstant(Mult, DL, VT));
Result = DAG.getNode(ISD::SHL, DL, VT, Result,
DAG.getConstant(Shift, DL, MVT::i8));
Result = DAG.getNode(isAdd ? ISD::ADD : ISD::SUB, DL, VT, Result,
N->getOperand(0));
return Result;
};
auto combineMulMulAddOrSub = [&](int Mul1, int Mul2, bool isAdd) {
SDValue Result = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
DAG.getConstant(Mul1, DL, VT));
Result = DAG.getNode(X86ISD::MUL_IMM, DL, VT, Result,
DAG.getConstant(Mul2, DL, VT));
Result = DAG.getNode(isAdd ? ISD::ADD : ISD::SUB, DL, VT, Result,
N->getOperand(0));
return Result;
};
switch (MulAmt) {
default:
break;
case 11:
// mul x, 11 => add ((shl (mul x, 5), 1), x)
return combineMulShlAddOrSub(5, 1, /*isAdd*/ true);
case 21:
// mul x, 21 => add ((shl (mul x, 5), 2), x)
return combineMulShlAddOrSub(5, 2, /*isAdd*/ true);
case 41:
// mul x, 41 => add ((shl (mul x, 5), 3), x)
return combineMulShlAddOrSub(5, 3, /*isAdd*/ true);
case 22:
// mul x, 22 => add (add ((shl (mul x, 5), 2), x), x)
return DAG.getNode(ISD::ADD, DL, VT, N->getOperand(0),
combineMulShlAddOrSub(5, 2, /*isAdd*/ true));
case 19:
// mul x, 19 => add ((shl (mul x, 9), 1), x)
return combineMulShlAddOrSub(9, 1, /*isAdd*/ true);
case 37:
// mul x, 37 => add ((shl (mul x, 9), 2), x)
return combineMulShlAddOrSub(9, 2, /*isAdd*/ true);
case 73:
// mul x, 73 => add ((shl (mul x, 9), 3), x)
return combineMulShlAddOrSub(9, 3, /*isAdd*/ true);
case 13:
// mul x, 13 => add ((shl (mul x, 3), 2), x)
return combineMulShlAddOrSub(3, 2, /*isAdd*/ true);
case 23:
// mul x, 23 => sub ((shl (mul x, 3), 3), x)
return combineMulShlAddOrSub(3, 3, /*isAdd*/ false);
case 26:
// mul x, 26 => add ((mul (mul x, 5), 5), x)
return combineMulMulAddOrSub(5, 5, /*isAdd*/ true);
case 28:
// mul x, 28 => add ((mul (mul x, 9), 3), x)
return combineMulMulAddOrSub(9, 3, /*isAdd*/ true);
case 29:
// mul x, 29 => add (add ((mul (mul x, 9), 3), x), x)
return DAG.getNode(ISD::ADD, DL, VT, N->getOperand(0),
combineMulMulAddOrSub(9, 3, /*isAdd*/ true));
}
// Another trick. If this is a power 2 + 2/4/8, we can use a shift followed
// by a single LEA.
// First check if this a sum of two power of 2s because that's easy. Then
// count how many zeros are up to the first bit.
// TODO: We can do this even without LEA at a cost of two shifts and an add.
if (isPowerOf2_64(MulAmt & (MulAmt - 1))) {
unsigned ScaleShift = countTrailingZeros(MulAmt);
if (ScaleShift >= 1 && ScaleShift < 4) {
unsigned ShiftAmt = Log2_64((MulAmt & (MulAmt - 1)));
SDValue Shift1 = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
DAG.getConstant(ShiftAmt, DL, MVT::i8));
SDValue Shift2 = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
DAG.getConstant(ScaleShift, DL, MVT::i8));
return DAG.getNode(ISD::ADD, DL, VT, Shift1, Shift2);
}
}
return SDValue();
}
// If the upper 17 bits of each element are zero then we can use PMADDWD,
// which is always at least as quick as PMULLD, expect on KNL.
static SDValue combineMulToPMADDWD(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (!Subtarget.hasSSE2())
return SDValue();
if (Subtarget.getProcFamily() == X86Subtarget::IntelKNL)
return SDValue();
EVT VT = N->getValueType(0);
// Only support vXi32 vectors.
if (!VT.isVector() || VT.getVectorElementType() != MVT::i32)
return SDValue();
// Make sure the vXi16 type is legal. This covers the AVX512 without BWI case.
MVT WVT = MVT::getVectorVT(MVT::i16, 2 * VT.getVectorNumElements());
if (!DAG.getTargetLoweringInfo().isTypeLegal(WVT))
return SDValue();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
APInt Mask17 = APInt::getHighBitsSet(32, 17);
if (!DAG.MaskedValueIsZero(N1, Mask17) ||
!DAG.MaskedValueIsZero(N0, Mask17))
return SDValue();
// Use SplitOpsAndApply to handle AVX splitting.
auto PMADDWDBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
MVT VT = MVT::getVectorVT(MVT::i32, Ops[0].getValueSizeInBits() / 32);
return DAG.getNode(X86ISD::VPMADDWD, DL, VT, Ops);
};
return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT,
{ DAG.getBitcast(WVT, N0), DAG.getBitcast(WVT, N1) },
PMADDWDBuilder);
}
static SDValue combineMulToPMULDQ(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (!Subtarget.hasSSE2())
return SDValue();
EVT VT = N->getValueType(0);
// Only support vXi64 vectors.
if (!VT.isVector() || VT.getVectorElementType() != MVT::i64 ||
!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// MULDQ returns the 64-bit result of the signed multiplication of the lower
// 32-bits. We can lower with this if the sign bits stretch that far.
if (Subtarget.hasSSE41() && DAG.ComputeNumSignBits(N0) > 32 &&
DAG.ComputeNumSignBits(N1) > 32) {
auto PMULDQBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
return DAG.getNode(X86ISD::PMULDQ, DL, Ops[0].getValueType(), Ops);
};
return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT, { N0, N1 },
PMULDQBuilder, /*CheckBWI*/false);
}
// If the upper bits are zero we can use a single pmuludq.
APInt Mask = APInt::getHighBitsSet(64, 32);
if (DAG.MaskedValueIsZero(N0, Mask) && DAG.MaskedValueIsZero(N1, Mask)) {
auto PMULUDQBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
return DAG.getNode(X86ISD::PMULUDQ, DL, Ops[0].getValueType(), Ops);
};
return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT, { N0, N1 },
PMULUDQBuilder, /*CheckBWI*/false);
}
return SDValue();
}
/// Optimize a single multiply with constant into two operations in order to
/// implement it with two cheaper instructions, e.g. LEA + SHL, LEA + LEA.
static SDValue combineMul(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
if (SDValue V = combineMulToPMADDWD(N, DAG, Subtarget))
return V;
if (SDValue V = combineMulToPMULDQ(N, DAG, Subtarget))
return V;
if (DCI.isBeforeLegalize() && VT.isVector())
return reduceVMULWidth(N, DAG, Subtarget);
if (!MulConstantOptimization)
return SDValue();
// An imul is usually smaller than the alternative sequence.
if (DAG.getMachineFunction().getFunction().optForMinSize())
return SDValue();
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
return SDValue();
if (VT != MVT::i64 && VT != MVT::i32)
return SDValue();
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!C)
return SDValue();
if (isPowerOf2_64(C->getZExtValue()))
return SDValue();
int64_t SignMulAmt = C->getSExtValue();
assert(SignMulAmt != INT64_MIN && "Int min should have been handled!");
uint64_t AbsMulAmt = SignMulAmt < 0 ? -SignMulAmt : SignMulAmt;
SDLoc DL(N);
if (AbsMulAmt == 3 || AbsMulAmt == 5 || AbsMulAmt == 9) {
SDValue NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
DAG.getConstant(AbsMulAmt, DL, VT));
if (SignMulAmt < 0)
NewMul = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
NewMul);
return NewMul;
}
uint64_t MulAmt1 = 0;
uint64_t MulAmt2 = 0;
if ((AbsMulAmt % 9) == 0) {
MulAmt1 = 9;
MulAmt2 = AbsMulAmt / 9;
} else if ((AbsMulAmt % 5) == 0) {
MulAmt1 = 5;
MulAmt2 = AbsMulAmt / 5;
} else if ((AbsMulAmt % 3) == 0) {
MulAmt1 = 3;
MulAmt2 = AbsMulAmt / 3;
}
SDValue NewMul;
// For negative multiply amounts, only allow MulAmt2 to be a power of 2.
if (MulAmt2 &&
(isPowerOf2_64(MulAmt2) ||
(SignMulAmt >= 0 && (MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)))) {
if (isPowerOf2_64(MulAmt2) &&
!(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
// If second multiplifer is pow2, issue it first. We want the multiply by
// 3, 5, or 9 to be folded into the addressing mode unless the lone use
// is an add.
std::swap(MulAmt1, MulAmt2);
if (isPowerOf2_64(MulAmt1))
NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
DAG.getConstant(Log2_64(MulAmt1), DL, MVT::i8));
else
NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
DAG.getConstant(MulAmt1, DL, VT));
if (isPowerOf2_64(MulAmt2))
NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
DAG.getConstant(Log2_64(MulAmt2), DL, MVT::i8));
else
NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
DAG.getConstant(MulAmt2, DL, VT));
// Negate the result.
if (SignMulAmt < 0)
NewMul = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
NewMul);
} else if (!Subtarget.slowLEA())
NewMul = combineMulSpecial(C->getZExtValue(), N, DAG, VT, DL);
if (!NewMul) {
assert(C->getZExtValue() != 0 &&
C->getZExtValue() != (VT == MVT::i64 ? UINT64_MAX : UINT32_MAX) &&
"Both cases that could cause potential overflows should have "
"already been handled.");
if (isPowerOf2_64(AbsMulAmt - 1)) {
// (mul x, 2^N + 1) => (add (shl x, N), x)
NewMul = DAG.getNode(
ISD::ADD, DL, VT, N->getOperand(0),
DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
DAG.getConstant(Log2_64(AbsMulAmt - 1), DL,
MVT::i8)));
// To negate, subtract the number from zero
if (SignMulAmt < 0)
NewMul = DAG.getNode(ISD::SUB, DL, VT,
DAG.getConstant(0, DL, VT), NewMul);
} else if (isPowerOf2_64(AbsMulAmt + 1)) {
// (mul x, 2^N - 1) => (sub (shl x, N), x)
NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
DAG.getConstant(Log2_64(AbsMulAmt + 1),
DL, MVT::i8));
// To negate, reverse the operands of the subtract.
if (SignMulAmt < 0)
NewMul = DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), NewMul);
else
NewMul = DAG.getNode(ISD::SUB, DL, VT, NewMul, N->getOperand(0));
} else if (SignMulAmt >= 0 && isPowerOf2_64(AbsMulAmt - 2)) {
// (mul x, 2^N + 2) => (add (add (shl x, N), x), x)
NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
DAG.getConstant(Log2_64(AbsMulAmt - 2),
DL, MVT::i8));
NewMul = DAG.getNode(ISD::ADD, DL, VT, NewMul, N->getOperand(0));
NewMul = DAG.getNode(ISD::ADD, DL, VT, NewMul, N->getOperand(0));
} else if (SignMulAmt >= 0 && isPowerOf2_64(AbsMulAmt + 2)) {
// (mul x, 2^N - 2) => (sub (sub (shl x, N), x), x)
NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
DAG.getConstant(Log2_64(AbsMulAmt + 2),
DL, MVT::i8));
NewMul = DAG.getNode(ISD::SUB, DL, VT, NewMul, N->getOperand(0));
NewMul = DAG.getNode(ISD::SUB, DL, VT, NewMul, N->getOperand(0));
}
}
return NewMul;
}
static SDValue combineShiftLeft(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
EVT VT = N0.getValueType();
// fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
// since the result of setcc_c is all zero's or all ones.
if (VT.isInteger() && !VT.isVector() &&
N1C && N0.getOpcode() == ISD::AND &&
N0.getOperand(1).getOpcode() == ISD::Constant) {
SDValue N00 = N0.getOperand(0);
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
Mask <<= N1C->getAPIntValue();
bool MaskOK = false;
// We can handle cases concerning bit-widening nodes containing setcc_c if
// we carefully interrogate the mask to make sure we are semantics
// preserving.
// The transform is not safe if the result of C1 << C2 exceeds the bitwidth
// of the underlying setcc_c operation if the setcc_c was zero extended.
// Consider the following example:
// zext(setcc_c) -> i32 0x0000FFFF
// c1 -> i32 0x0000FFFF
// c2 -> i32 0x00000001
// (shl (and (setcc_c), c1), c2) -> i32 0x0001FFFE
// (and setcc_c, (c1 << c2)) -> i32 0x0000FFFE
if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
MaskOK = true;
} else if (N00.getOpcode() == ISD::SIGN_EXTEND &&
N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
MaskOK = true;
} else if ((N00.getOpcode() == ISD::ZERO_EXTEND ||
N00.getOpcode() == ISD::ANY_EXTEND) &&
N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
MaskOK = Mask.isIntN(N00.getOperand(0).getValueSizeInBits());
}
if (MaskOK && Mask != 0) {
SDLoc DL(N);
return DAG.getNode(ISD::AND, DL, VT, N00, DAG.getConstant(Mask, DL, VT));
}
}
// Hardware support for vector shifts is sparse which makes us scalarize the
// vector operations in many cases. Also, on sandybridge ADD is faster than
// shl.
// (shl V, 1) -> add V,V
if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
if (auto *N1SplatC = N1BV->getConstantSplatNode()) {
assert(N0.getValueType().isVector() && "Invalid vector shift type");
// We shift all of the values by one. In many cases we do not have
// hardware support for this operation. This is better expressed as an ADD
// of two values.
if (N1SplatC->getAPIntValue() == 1)
return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
}
return SDValue();
}
static SDValue combineShiftRightArithmetic(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
unsigned Size = VT.getSizeInBits();
// fold (ashr (shl, a, [56,48,32,24,16]), SarConst)
// into (shl, (sext (a), [56,48,32,24,16] - SarConst)) or
// into (lshr, (sext (a), SarConst - [56,48,32,24,16]))
// depending on sign of (SarConst - [56,48,32,24,16])
// sexts in X86 are MOVs. The MOVs have the same code size
// as above SHIFTs (only SHIFT on 1 has lower code size).
// However the MOVs have 2 advantages to a SHIFT:
// 1. MOVs can write to a register that differs from source
// 2. MOVs accept memory operands
if (VT.isVector() || N1.getOpcode() != ISD::Constant ||
N0.getOpcode() != ISD::SHL || !N0.hasOneUse() ||
N0.getOperand(1).getOpcode() != ISD::Constant)
return SDValue();
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
APInt ShlConst = (cast<ConstantSDNode>(N01))->getAPIntValue();
APInt SarConst = (cast<ConstantSDNode>(N1))->getAPIntValue();
EVT CVT = N1.getValueType();
if (SarConst.isNegative())
return SDValue();
for (MVT SVT : { MVT::i8, MVT::i16, MVT::i32 }) {
unsigned ShiftSize = SVT.getSizeInBits();
// skipping types without corresponding sext/zext and
// ShlConst that is not one of [56,48,32,24,16]
if (ShiftSize >= Size || ShlConst != Size - ShiftSize)
continue;
SDLoc DL(N);
SDValue NN =
DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, N00, DAG.getValueType(SVT));
SarConst = SarConst - (Size - ShiftSize);
if (SarConst == 0)
return NN;
else if (SarConst.isNegative())
return DAG.getNode(ISD::SHL, DL, VT, NN,
DAG.getConstant(-SarConst, DL, CVT));
else
return DAG.getNode(ISD::SRA, DL, VT, NN,
DAG.getConstant(SarConst, DL, CVT));
}
return SDValue();
}
static SDValue combineShiftRightLogical(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
// Only do this on the last DAG combine as it can interfere with other
// combines.
if (!DCI.isAfterLegalizeDAG())
return SDValue();
// Try to improve a sequence of srl (and X, C1), C2 by inverting the order.
// TODO: This is a generic DAG combine that became an x86-only combine to
// avoid shortcomings in other folds such as bswap, bit-test ('bt'), and
// and-not ('andn').
if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
return SDValue();
auto *ShiftC = dyn_cast<ConstantSDNode>(N1);
auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!ShiftC || !AndC)
return SDValue();
// If we can shrink the constant mask below 8-bits or 32-bits, then this
// transform should reduce code size. It may also enable secondary transforms
// from improved known-bits analysis or instruction selection.
APInt MaskVal = AndC->getAPIntValue();
// If this can be matched by a zero extend, don't optimize.
if (MaskVal.isMask()) {
unsigned TO = MaskVal.countTrailingOnes();
if (TO >= 8 && isPowerOf2_32(TO))
return SDValue();
}
APInt NewMaskVal = MaskVal.lshr(ShiftC->getAPIntValue());
unsigned OldMaskSize = MaskVal.getMinSignedBits();
unsigned NewMaskSize = NewMaskVal.getMinSignedBits();
if ((OldMaskSize > 8 && NewMaskSize <= 8) ||
(OldMaskSize > 32 && NewMaskSize <= 32)) {
// srl (and X, AndC), ShiftC --> and (srl X, ShiftC), (AndC >> ShiftC)
SDLoc DL(N);
SDValue NewMask = DAG.getConstant(NewMaskVal, DL, VT);
SDValue NewShift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), N1);
return DAG.getNode(ISD::AND, DL, VT, NewShift, NewMask);
}
return SDValue();
}
static SDValue combineShift(SDNode* N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
if (N->getOpcode() == ISD::SHL)
if (SDValue V = combineShiftLeft(N, DAG))
return V;
if (N->getOpcode() == ISD::SRA)
if (SDValue V = combineShiftRightArithmetic(N, DAG))
return V;
if (N->getOpcode() == ISD::SRL)
if (SDValue V = combineShiftRightLogical(N, DAG, DCI))
return V;
return SDValue();
}
static SDValue combineVectorPack(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
unsigned Opcode = N->getOpcode();
assert((X86ISD::PACKSS == Opcode || X86ISD::PACKUS == Opcode) &&
"Unexpected shift opcode");
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
unsigned DstBitsPerElt = VT.getScalarSizeInBits();
unsigned SrcBitsPerElt = 2 * DstBitsPerElt;
assert(N0.getScalarValueSizeInBits() == SrcBitsPerElt &&
N1.getScalarValueSizeInBits() == SrcBitsPerElt &&
"Unexpected PACKSS/PACKUS input type");
// Constant Folding.
APInt UndefElts0, UndefElts1;
SmallVector<APInt, 32> EltBits0, EltBits1;
if ((N0->isUndef() || N->isOnlyUserOf(N0.getNode())) &&
(N1->isUndef() || N->isOnlyUserOf(N1.getNode())) &&
getTargetConstantBitsFromNode(N0, SrcBitsPerElt, UndefElts0, EltBits0) &&
getTargetConstantBitsFromNode(N1, SrcBitsPerElt, UndefElts1, EltBits1)) {
unsigned NumLanes = VT.getSizeInBits() / 128;
unsigned NumDstElts = VT.getVectorNumElements();
unsigned NumSrcElts = NumDstElts / 2;
unsigned NumDstEltsPerLane = NumDstElts / NumLanes;
unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
bool IsSigned = (X86ISD::PACKSS == Opcode);
APInt Undefs(NumDstElts, 0);
SmallVector<APInt, 32> Bits(NumDstElts, APInt::getNullValue(DstBitsPerElt));
for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
for (unsigned Elt = 0; Elt != NumDstEltsPerLane; ++Elt) {
unsigned SrcIdx = Lane * NumSrcEltsPerLane + Elt % NumSrcEltsPerLane;
auto &UndefElts = (Elt >= NumSrcEltsPerLane ? UndefElts1 : UndefElts0);
auto &EltBits = (Elt >= NumSrcEltsPerLane ? EltBits1 : EltBits0);
if (UndefElts[SrcIdx]) {
Undefs.setBit(Lane * NumDstEltsPerLane + Elt);
continue;
}
APInt &Val = EltBits[SrcIdx];
if (IsSigned) {
// PACKSS: Truncate signed value with signed saturation.
// Source values less than dst minint are saturated to minint.
// Source values greater than dst maxint are saturated to maxint.
if (Val.isSignedIntN(DstBitsPerElt))
Val = Val.trunc(DstBitsPerElt);
else if (Val.isNegative())
Val = APInt::getSignedMinValue(DstBitsPerElt);
else
Val = APInt::getSignedMaxValue(DstBitsPerElt);
} else {
// PACKUS: Truncate signed value with unsigned saturation.
// Source values less than zero are saturated to zero.
// Source values greater than dst maxuint are saturated to maxuint.
if (Val.isIntN(DstBitsPerElt))
Val = Val.trunc(DstBitsPerElt);
else if (Val.isNegative())
Val = APInt::getNullValue(DstBitsPerElt);
else
Val = APInt::getAllOnesValue(DstBitsPerElt);
}
Bits[Lane * NumDstEltsPerLane + Elt] = Val;
}
}
return getConstVector(Bits, Undefs, VT.getSimpleVT(), DAG, SDLoc(N));
}
// Attempt to combine as shuffle.
SDValue Op(N, 0);
if (SDValue Res =
combineX86ShufflesRecursively({Op}, 0, Op, {0}, {}, /*Depth*/ 1,
/*HasVarMask*/ false, DAG, Subtarget))
return Res;
return SDValue();
}
static SDValue combineVectorShiftImm(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
unsigned Opcode = N->getOpcode();
assert((X86ISD::VSHLI == Opcode || X86ISD::VSRAI == Opcode ||
X86ISD::VSRLI == Opcode) &&
"Unexpected shift opcode");
bool LogicalShift = X86ISD::VSHLI == Opcode || X86ISD::VSRLI == Opcode;
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
unsigned NumBitsPerElt = VT.getScalarSizeInBits();
assert(VT == N0.getValueType() && (NumBitsPerElt % 8) == 0 &&
"Unexpected value type");
// Out of range logical bit shifts are guaranteed to be zero.
// Out of range arithmetic bit shifts splat the sign bit.
APInt ShiftVal = cast<ConstantSDNode>(N1)->getAPIntValue();
if (ShiftVal.zextOrTrunc(8).uge(NumBitsPerElt)) {
if (LogicalShift)
return getZeroVector(VT.getSimpleVT(), Subtarget, DAG, SDLoc(N));
else
ShiftVal = NumBitsPerElt - 1;
}
// Shift N0 by zero -> N0.
if (!ShiftVal)
return N0;
// Shift zero -> zero.
if (ISD::isBuildVectorAllZeros(N0.getNode()))
return getZeroVector(VT.getSimpleVT(), Subtarget, DAG, SDLoc(N));
// fold (VSRLI (VSRAI X, Y), 31) -> (VSRLI X, 31).
// This VSRLI only looks at the sign bit, which is unmodified by VSRAI.
// TODO - support other sra opcodes as needed.
if (Opcode == X86ISD::VSRLI && (ShiftVal + 1) == NumBitsPerElt &&
N0.getOpcode() == X86ISD::VSRAI)
return DAG.getNode(X86ISD::VSRLI, SDLoc(N), VT, N0.getOperand(0), N1);
// fold (VSRAI (VSHLI X, C1), C1) --> X iff NumSignBits(X) > C1
if (Opcode == X86ISD::VSRAI && N0.getOpcode() == X86ISD::VSHLI &&
N1 == N0.getOperand(1)) {
SDValue N00 = N0.getOperand(0);
unsigned NumSignBits = DAG.ComputeNumSignBits(N00);
if (ShiftVal.ult(NumSignBits))
return N00;
}
// We can decode 'whole byte' logical bit shifts as shuffles.
if (LogicalShift && (ShiftVal.getZExtValue() % 8) == 0) {
SDValue Op(N, 0);
if (SDValue Res = combineX86ShufflesRecursively(
{Op}, 0, Op, {0}, {}, /*Depth*/ 1,
/*HasVarMask*/ false, DAG, Subtarget))
return Res;
}
// Constant Folding.
APInt UndefElts;
SmallVector<APInt, 32> EltBits;
if (N->isOnlyUserOf(N0.getNode()) &&
getTargetConstantBitsFromNode(N0, NumBitsPerElt, UndefElts, EltBits)) {
assert(EltBits.size() == VT.getVectorNumElements() &&
"Unexpected shift value type");
unsigned ShiftImm = ShiftVal.getZExtValue();
for (APInt &Elt : EltBits) {
if (X86ISD::VSHLI == Opcode)
Elt <<= ShiftImm;
else if (X86ISD::VSRAI == Opcode)
Elt.ashrInPlace(ShiftImm);
else
Elt.lshrInPlace(ShiftImm);
}
return getConstVector(EltBits, UndefElts, VT.getSimpleVT(), DAG, SDLoc(N));
}
return SDValue();
}
static SDValue combineVectorInsert(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
assert(
((N->getOpcode() == X86ISD::PINSRB && N->getValueType(0) == MVT::v16i8) ||
(N->getOpcode() == X86ISD::PINSRW &&
N->getValueType(0) == MVT::v8i16)) &&
"Unexpected vector insertion");
// Attempt to combine PINSRB/PINSRW patterns to a shuffle.
SDValue Op(N, 0);
if (SDValue Res =
combineX86ShufflesRecursively({Op}, 0, Op, {0}, {}, /*Depth*/ 1,
/*HasVarMask*/ false, DAG, Subtarget))
return Res;
return SDValue();
}
/// Recognize the distinctive (AND (setcc ...) (setcc ..)) where both setccs
/// reference the same FP CMP, and rewrite for CMPEQSS and friends. Likewise for
/// OR -> CMPNEQSS.
static SDValue combineCompareEqual(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
unsigned opcode;
// SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
// we're requiring SSE2 for both.
if (Subtarget.hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue CMP0 = N0->getOperand(1);
SDValue CMP1 = N1->getOperand(1);
SDLoc DL(N);
// The SETCCs should both refer to the same CMP.
if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
return SDValue();
SDValue CMP00 = CMP0->getOperand(0);
SDValue CMP01 = CMP0->getOperand(1);
EVT VT = CMP00.getValueType();
if (VT == MVT::f32 || VT == MVT::f64) {
bool ExpectingFlags = false;
// Check for any users that want flags:
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
!ExpectingFlags && UI != UE; ++UI)
switch (UI->getOpcode()) {
default:
case ISD::BR_CC:
case ISD::BRCOND:
case ISD::SELECT:
ExpectingFlags = true;
break;
case ISD::CopyToReg:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
break;
}
if (!ExpectingFlags) {
enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
X86::CondCode tmp = cc0;
cc0 = cc1;
cc1 = tmp;
}
if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) ||
(cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
// FIXME: need symbolic constants for these magic numbers.
// See X86ATTInstPrinter.cpp:printSSECC().
unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
if (Subtarget.hasAVX512()) {
SDValue FSetCC =
DAG.getNode(X86ISD::FSETCCM, DL, MVT::v1i1, CMP00, CMP01,
DAG.getConstant(x86cc, DL, MVT::i8));
// Need to fill with zeros to ensure the bitcast will produce zeroes
// for the upper bits. An EXTRACT_ELEMENT here wouldn't guarantee that.
SDValue Ins = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v16i1,
DAG.getConstant(0, DL, MVT::v16i1),
FSetCC, DAG.getIntPtrConstant(0, DL));
return DAG.getZExtOrTrunc(DAG.getBitcast(MVT::i16, Ins), DL,
N->getSimpleValueType(0));
}
SDValue OnesOrZeroesF = DAG.getNode(X86ISD::FSETCC, DL,
CMP00.getValueType(), CMP00, CMP01,
DAG.getConstant(x86cc, DL,
MVT::i8));
bool is64BitFP = (CMP00.getValueType() == MVT::f64);
MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32;
if (is64BitFP && !Subtarget.is64Bit()) {
// On a 32-bit target, we cannot bitcast the 64-bit float to a
// 64-bit integer, since that's not a legal type. Since
// OnesOrZeroesF is all ones of all zeroes, we don't need all the
// bits, but can do this little dance to extract the lowest 32 bits
// and work with those going forward.
SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64,
OnesOrZeroesF);
SDValue Vector32 = DAG.getBitcast(MVT::v4f32, Vector64);
OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32,
Vector32, DAG.getIntPtrConstant(0, DL));
IntVT = MVT::i32;
}
SDValue OnesOrZeroesI = DAG.getBitcast(IntVT, OnesOrZeroesF);
SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI,
DAG.getConstant(1, DL, IntVT));
SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
ANDed);
return OneBitOfTruth;
}
}
}
}
return SDValue();
}
// Try to match (and (xor X, -1), Y) logic pattern for (andnp X, Y) combines.
static bool matchANDXORWithAllOnesAsANDNP(SDNode *N, SDValue &X, SDValue &Y) {
if (N->getOpcode() != ISD::AND)
return false;
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (N0.getOpcode() == ISD::XOR &&
ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode())) {
X = N0.getOperand(0);
Y = N1;
return true;
}
if (N1.getOpcode() == ISD::XOR &&
ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode())) {
X = N1.getOperand(0);
Y = N0;
return true;
}
return false;
}
/// Try to fold: (and (xor X, -1), Y) -> (andnp X, Y).
static SDValue combineANDXORWithAllOnesIntoANDNP(SDNode *N, SelectionDAG &DAG) {
assert(N->getOpcode() == ISD::AND);
EVT VT = N->getValueType(0);
if (VT != MVT::v2i64 && VT != MVT::v4i64 && VT != MVT::v8i64)
return SDValue();
SDValue X, Y;
if (matchANDXORWithAllOnesAsANDNP(N, X, Y))
return DAG.getNode(X86ISD::ANDNP, SDLoc(N), VT, X, Y);
return SDValue();
}
// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
// register. In most cases we actually compare or select YMM-sized registers
// and mixing the two types creates horrible code. This method optimizes
// some of the transition sequences.
// Even with AVX-512 this is still useful for removing casts around logical
// operations on vXi1 mask types.
static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
assert(VT.isVector() && "Expected vector type");
assert((N->getOpcode() == ISD::ANY_EXTEND ||
N->getOpcode() == ISD::ZERO_EXTEND ||
N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
SDValue Narrow = N->getOperand(0);
EVT NarrowVT = Narrow.getValueType();
if (Narrow->getOpcode() != ISD::XOR &&
Narrow->getOpcode() != ISD::AND &&
Narrow->getOpcode() != ISD::OR)
return SDValue();
SDValue N0 = Narrow->getOperand(0);
SDValue N1 = Narrow->getOperand(1);
SDLoc DL(Narrow);
// The Left side has to be a trunc.
if (N0.getOpcode() != ISD::TRUNCATE)
return SDValue();
// The type of the truncated inputs.
if (N0->getOperand(0).getValueType() != VT)
return SDValue();
// The right side has to be a 'trunc' or a constant vector.
bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE &&
N1.getOperand(0).getValueType() == VT;
if (!RHSTrunc &&
!ISD::isBuildVectorOfConstantSDNodes(N1.getNode()))
return SDValue();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), VT))
return SDValue();
// Set N0 and N1 to hold the inputs to the new wide operation.
N0 = N0->getOperand(0);
if (RHSTrunc)
N1 = N1->getOperand(0);
else
N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N1);
// Generate the wide operation.
SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, VT, N0, N1);
unsigned Opcode = N->getOpcode();
switch (Opcode) {
default: llvm_unreachable("Unexpected opcode");
case ISD::ANY_EXTEND:
return Op;
case ISD::ZERO_EXTEND:
return DAG.getZeroExtendInReg(Op, DL, NarrowVT.getScalarType());
case ISD::SIGN_EXTEND:
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
Op, DAG.getValueType(NarrowVT));
}
}
/// If both input operands of a logic op are being cast from floating point
/// types, try to convert this into a floating point logic node to avoid
/// unnecessary moves from SSE to integer registers.
static SDValue convertIntLogicToFPLogic(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
unsigned FPOpcode = ISD::DELETED_NODE;
if (N->getOpcode() == ISD::AND)
FPOpcode = X86ISD::FAND;
else if (N->getOpcode() == ISD::OR)
FPOpcode = X86ISD::FOR;
else if (N->getOpcode() == ISD::XOR)
FPOpcode = X86ISD::FXOR;
assert(FPOpcode != ISD::DELETED_NODE &&
"Unexpected input node for FP logic conversion");
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDLoc DL(N);
if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST &&
((Subtarget.hasSSE1() && VT == MVT::i32) ||
(Subtarget.hasSSE2() && VT == MVT::i64))) {
SDValue N00 = N0.getOperand(0);
SDValue N10 = N1.getOperand(0);
EVT N00Type = N00.getValueType();
EVT N10Type = N10.getValueType();
if (N00Type.isFloatingPoint() && N10Type.isFloatingPoint()) {
SDValue FPLogic = DAG.getNode(FPOpcode, DL, N00Type, N00, N10);
return DAG.getBitcast(VT, FPLogic);
}
}
return SDValue();
}
/// If this is a zero/all-bits result that is bitwise-anded with a low bits
/// mask. (Mask == 1 for the x86 lowering of a SETCC + ZEXT), replace the 'and'
/// with a shift-right to eliminate loading the vector constant mask value.
static SDValue combineAndMaskToShift(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDValue Op0 = peekThroughBitcasts(N->getOperand(0));
SDValue Op1 = peekThroughBitcasts(N->getOperand(1));
EVT VT0 = Op0.getValueType();
EVT VT1 = Op1.getValueType();
if (VT0 != VT1 || !VT0.isSimple() || !VT0.isInteger())
return SDValue();
APInt SplatVal;
if (!ISD::isConstantSplatVector(Op1.getNode(), SplatVal) ||
!SplatVal.isMask())
return SDValue();
if (!SupportedVectorShiftWithImm(VT0.getSimpleVT(), Subtarget, ISD::SRL))
return SDValue();
unsigned EltBitWidth = VT0.getScalarSizeInBits();
if (EltBitWidth != DAG.ComputeNumSignBits(Op0))
return SDValue();
SDLoc DL(N);
unsigned ShiftVal = SplatVal.countTrailingOnes();
SDValue ShAmt = DAG.getConstant(EltBitWidth - ShiftVal, DL, MVT::i8);
SDValue Shift = DAG.getNode(X86ISD::VSRLI, DL, VT0, Op0, ShAmt);
return DAG.getBitcast(N->getValueType(0), Shift);
}
// Get the index node from the lowered DAG of a GEP IR instruction with one
// indexing dimension.
static SDValue getIndexFromUnindexedLoad(LoadSDNode *Ld) {
if (Ld->isIndexed())
return SDValue();
SDValue Base = Ld->getBasePtr();
if (Base.getOpcode() != ISD::ADD)
return SDValue();
SDValue ShiftedIndex = Base.getOperand(0);
if (ShiftedIndex.getOpcode() != ISD::SHL)
return SDValue();
return ShiftedIndex.getOperand(0);
}
static bool hasBZHI(const X86Subtarget &Subtarget, MVT VT) {
if (Subtarget.hasBMI2() && VT.isScalarInteger()) {
switch (VT.getSizeInBits()) {
default: return false;
case 64: return Subtarget.is64Bit() ? true : false;
case 32: return true;
}
}
return false;
}
// This function recognizes cases where X86 bzhi instruction can replace and
// 'and-load' sequence.
// In case of loading integer value from an array of constants which is defined
// as follows:
//
// int array[SIZE] = {0x0, 0x1, 0x3, 0x7, 0xF ..., 2^(SIZE-1) - 1}
//
// then applying a bitwise and on the result with another input.
// It's equivalent to performing bzhi (zero high bits) on the input, with the
// same index of the load.
static SDValue combineAndLoadToBZHI(SDNode *Node, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = Node->getSimpleValueType(0);
SDLoc dl(Node);
// Check if subtarget has BZHI instruction for the node's type
if (!hasBZHI(Subtarget, VT))
return SDValue();
// Try matching the pattern for both operands.
for (unsigned i = 0; i < 2; i++) {
SDValue N = Node->getOperand(i);
LoadSDNode *Ld = dyn_cast<LoadSDNode>(N.getNode());
// continue if the operand is not a load instruction
if (!Ld)
return SDValue();
const Value *MemOp = Ld->getMemOperand()->getValue();
if (!MemOp)
return SDValue();
if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(MemOp)) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) {
if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
Constant *Init = GV->getInitializer();
Type *Ty = Init->getType();
if (!isa<ConstantDataArray>(Init) ||
!Ty->getArrayElementType()->isIntegerTy() ||
Ty->getArrayElementType()->getScalarSizeInBits() !=
VT.getSizeInBits() ||
Ty->getArrayNumElements() >
Ty->getArrayElementType()->getScalarSizeInBits())
continue;
// Check if the array's constant elements are suitable to our case.
uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
bool ConstantsMatch = true;
for (uint64_t j = 0; j < ArrayElementCount; j++) {
ConstantInt *Elem =
dyn_cast<ConstantInt>(Init->getAggregateElement(j));
if (Elem->getZExtValue() != (((uint64_t)1 << j) - 1)) {
ConstantsMatch = false;
break;
}
}
if (!ConstantsMatch)
continue;
// Do the transformation (For 32-bit type):
// -> (and (load arr[idx]), inp)
// <- (and (srl 0xFFFFFFFF, (sub 32, idx)))
// that will be replaced with one bzhi instruction.
SDValue Inp = (i == 0) ? Node->getOperand(1) : Node->getOperand(0);
SDValue SizeC = DAG.getConstant(VT.getSizeInBits(), dl, MVT::i32);
// Get the Node which indexes into the array.
SDValue Index = getIndexFromUnindexedLoad(Ld);
if (!Index)
return SDValue();
Index = DAG.getZExtOrTrunc(Index, dl, MVT::i32);
SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, SizeC, Index);
Sub = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Sub);
SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
SDValue LShr = DAG.getNode(ISD::SRL, dl, VT, AllOnes, Sub);
return DAG.getNode(ISD::AND, dl, VT, Inp, LShr);
}
}
}
}
return SDValue();
}
static SDValue combineAnd(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
// If this is SSE1 only convert to FAND to avoid scalarization.
if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && VT == MVT::v4i32) {
return DAG.getBitcast(
MVT::v4i32, DAG.getNode(X86ISD::FAND, SDLoc(N), MVT::v4f32,
DAG.getBitcast(MVT::v4f32, N->getOperand(0)),
DAG.getBitcast(MVT::v4f32, N->getOperand(1))));
}
// Use a 32-bit and+zext if upper bits known zero.
if (VT == MVT::i64 && Subtarget.is64Bit() &&
!isa<ConstantSDNode>(N->getOperand(1))) {
APInt HiMask = APInt::getHighBitsSet(64, 32);
if (DAG.MaskedValueIsZero(N->getOperand(1), HiMask) ||
DAG.MaskedValueIsZero(N->getOperand(0), HiMask)) {
SDLoc dl(N);
SDValue LHS = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, N->getOperand(0));
SDValue RHS = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, N->getOperand(1));
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64,
DAG.getNode(ISD::AND, dl, MVT::i32, LHS, RHS));
}
}
if (DCI.isBeforeLegalizeOps())
return SDValue();
if (SDValue R = combineCompareEqual(N, DAG, DCI, Subtarget))
return R;
if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
return FPLogic;
if (SDValue R = combineANDXORWithAllOnesIntoANDNP(N, DAG))
return R;
if (SDValue ShiftRight = combineAndMaskToShift(N, DAG, Subtarget))
return ShiftRight;
if (SDValue R = combineAndLoadToBZHI(N, DAG, Subtarget))
return R;
// Attempt to recursively combine a bitmask AND with shuffles.
if (VT.isVector() && (VT.getScalarSizeInBits() % 8) == 0) {
SDValue Op(N, 0);
if (SDValue Res = combineX86ShufflesRecursively(
{Op}, 0, Op, {0}, {}, /*Depth*/ 1,
/*HasVarMask*/ false, DAG, Subtarget))
return Res;
}
// Attempt to combine a scalar bitmask AND with an extracted shuffle.
if ((VT.getScalarSizeInBits() % 8) == 0 &&
N->getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
isa<ConstantSDNode>(N->getOperand(0).getOperand(1))) {
SDValue BitMask = N->getOperand(1);
SDValue SrcVec = N->getOperand(0).getOperand(0);
EVT SrcVecVT = SrcVec.getValueType();
// Check that the constant bitmask masks whole bytes.
APInt UndefElts;
SmallVector<APInt, 64> EltBits;
if (VT == SrcVecVT.getScalarType() &&
N->getOperand(0)->isOnlyUserOf(SrcVec.getNode()) &&
getTargetConstantBitsFromNode(BitMask, 8, UndefElts, EltBits) &&
llvm::all_of(EltBits, [](APInt M) {
return M.isNullValue() || M.isAllOnesValue();
})) {
unsigned NumElts = SrcVecVT.getVectorNumElements();
unsigned Scale = SrcVecVT.getScalarSizeInBits() / 8;
unsigned Idx = N->getOperand(0).getConstantOperandVal(1);
// Create a root shuffle mask from the byte mask and the extracted index.
SmallVector<int, 16> ShuffleMask(NumElts * Scale, SM_SentinelUndef);
for (unsigned i = 0; i != Scale; ++i) {
if (UndefElts[i])
continue;
int VecIdx = Scale * Idx + i;
ShuffleMask[VecIdx] =
EltBits[i].isNullValue() ? SM_SentinelZero : VecIdx;
}
if (SDValue Shuffle = combineX86ShufflesRecursively(
{SrcVec}, 0, SrcVec, ShuffleMask, {}, /*Depth*/ 2,
/*HasVarMask*/ false, DAG, Subtarget))
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), VT, Shuffle,
N->getOperand(0).getOperand(1));
}
}
return SDValue();
}
// Try to match OR(AND(~MASK,X),AND(MASK,Y)) logic pattern.
static bool matchLogicBlend(SDNode *N, SDValue &X, SDValue &Y, SDValue &Mask) {
if (N->getOpcode() != ISD::OR)
return false;
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// Canonicalize AND to LHS.
if (N1.getOpcode() == ISD::AND)
std::swap(N0, N1);
// Attempt to match OR(AND(M,Y),ANDNP(M,X)).
if (N0.getOpcode() != ISD::AND || N1.getOpcode() != X86ISD::ANDNP)
return false;
Mask = N1.getOperand(0);
X = N1.getOperand(1);
// Check to see if the mask appeared in both the AND and ANDNP.
if (N0.getOperand(0) == Mask)
Y = N0.getOperand(1);
else if (N0.getOperand(1) == Mask)
Y = N0.getOperand(0);
else
return false;
// TODO: Attempt to match against AND(XOR(-1,M),Y) as well, waiting for
// ANDNP combine allows other combines to happen that prevent matching.
return true;
}
// Try to fold:
// (or (and (m, y), (pandn m, x)))
// into:
// (vselect m, x, y)
// As a special case, try to fold:
// (or (and (m, (sub 0, x)), (pandn m, x)))
// into:
// (sub (xor X, M), M)
static SDValue combineLogicBlendIntoPBLENDV(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
assert(N->getOpcode() == ISD::OR && "Unexpected Opcode");
EVT VT = N->getValueType(0);
if (!((VT.is128BitVector() && Subtarget.hasSSE2()) ||
(VT.is256BitVector() && Subtarget.hasInt256())))
return SDValue();
SDValue X, Y, Mask;
if (!matchLogicBlend(N, X, Y, Mask))
return SDValue();
// Validate that X, Y, and Mask are bitcasts, and see through them.
Mask = peekThroughBitcasts(Mask);
X = peekThroughBitcasts(X);
Y = peekThroughBitcasts(Y);
EVT MaskVT = Mask.getValueType();
unsigned EltBits = MaskVT.getScalarSizeInBits();
// TODO: Attempt to handle floating point cases as well?
if (!MaskVT.isInteger() || DAG.ComputeNumSignBits(Mask) != EltBits)
return SDValue();
SDLoc DL(N);
// Try to match:
// (or (and (M, (sub 0, X)), (pandn M, X)))
// which is a special case of vselect:
// (vselect M, (sub 0, X), X)
// Per:
// http://graphics.stanford.edu/~seander/bithacks.html#ConditionalNegate
// We know that, if fNegate is 0 or 1:
// (fNegate ? -v : v) == ((v ^ -fNegate) + fNegate)
//
// Here, we have a mask, M (all 1s or 0), and, similarly, we know that:
// ((M & 1) ? -X : X) == ((X ^ -(M & 1)) + (M & 1))
// ( M ? -X : X) == ((X ^ M ) + (M & 1))
// This lets us transform our vselect to:
// (add (xor X, M), (and M, 1))
// And further to:
// (sub (xor X, M), M)
if (X.getValueType() == MaskVT && Y.getValueType() == MaskVT &&
DAG.getTargetLoweringInfo().isOperationLegal(ISD::SUB, MaskVT)) {
auto IsNegV = [](SDNode *N, SDValue V) {
return N->getOpcode() == ISD::SUB && N->getOperand(1) == V &&
ISD::isBuildVectorAllZeros(N->getOperand(0).getNode());
};
SDValue V;
if (IsNegV(Y.getNode(), X))
V = X;
else if (IsNegV(X.getNode(), Y))
V = Y;
if (V) {
SDValue SubOp1 = DAG.getNode(ISD::XOR, DL, MaskVT, V, Mask);
SDValue SubOp2 = Mask;
// If the negate was on the false side of the select, then
// the operands of the SUB need to be swapped. PR 27251.
// This is because the pattern being matched above is
// (vselect M, (sub (0, X), X) -> (sub (xor X, M), M)
// but if the pattern matched was
// (vselect M, X, (sub (0, X))), that is really negation of the pattern
// above, -(vselect M, (sub 0, X), X), and therefore the replacement
// pattern also needs to be a negation of the replacement pattern above.
// And -(sub X, Y) is just sub (Y, X), so swapping the operands of the
// sub accomplishes the negation of the replacement pattern.
if (V == Y)
std::swap(SubOp1, SubOp2);
SDValue Res = DAG.getNode(ISD::SUB, DL, MaskVT, SubOp1, SubOp2);
return DAG.getBitcast(VT, Res);
}
}
// PBLENDVB is only available on SSE 4.1.
if (!Subtarget.hasSSE41())
return SDValue();
MVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
X = DAG.getBitcast(BlendVT, X);
Y = DAG.getBitcast(BlendVT, Y);
Mask = DAG.getBitcast(BlendVT, Mask);
Mask = DAG.getSelect(DL, BlendVT, Mask, Y, X);
return DAG.getBitcast(VT, Mask);
}
// Helper function for combineOrCmpEqZeroToCtlzSrl
// Transforms:
// seteq(cmp x, 0)
// into:
// srl(ctlz x), log2(bitsize(x))
// Input pattern is checked by caller.
static SDValue lowerX86CmpEqZeroToCtlzSrl(SDValue Op, EVT ExtTy,
SelectionDAG &DAG) {
SDValue Cmp = Op.getOperand(1);
EVT VT = Cmp.getOperand(0).getValueType();
unsigned Log2b = Log2_32(VT.getSizeInBits());
SDLoc dl(Op);
SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Cmp->getOperand(0));
// The result of the shift is true or false, and on X86, the 32-bit
// encoding of shr and lzcnt is more desirable.
SDValue Trunc = DAG.getZExtOrTrunc(Clz, dl, MVT::i32);
SDValue Scc = DAG.getNode(ISD::SRL, dl, MVT::i32, Trunc,
DAG.getConstant(Log2b, dl, MVT::i8));
return DAG.getZExtOrTrunc(Scc, dl, ExtTy);
}
// Try to transform:
// zext(or(setcc(eq, (cmp x, 0)), setcc(eq, (cmp y, 0))))
// into:
// srl(or(ctlz(x), ctlz(y)), log2(bitsize(x))
// Will also attempt to match more generic cases, eg:
// zext(or(or(setcc(eq, cmp 0), setcc(eq, cmp 0)), setcc(eq, cmp 0)))
// Only applies if the target supports the FastLZCNT feature.
static SDValue combineOrCmpEqZeroToCtlzSrl(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
if (DCI.isBeforeLegalize() || !Subtarget.getTargetLowering()->isCtlzFast())
return SDValue();
auto isORCandidate = [](SDValue N) {
return (N->getOpcode() == ISD::OR && N->hasOneUse());
};
// Check the zero extend is extending to 32-bit or more. The code generated by
// srl(ctlz) for 16-bit or less variants of the pattern would require extra
// instructions to clear the upper bits.
if (!N->hasOneUse() || !N->getSimpleValueType(0).bitsGE(MVT::i32) ||
!isORCandidate(N->getOperand(0)))
return SDValue();
// Check the node matches: setcc(eq, cmp 0)
auto isSetCCCandidate = [](SDValue N) {
return N->getOpcode() == X86ISD::SETCC && N->hasOneUse() &&
X86::CondCode(N->getConstantOperandVal(0)) == X86::COND_E &&
N->getOperand(1).getOpcode() == X86ISD::CMP &&
isNullConstant(N->getOperand(1).getOperand(1)) &&
N->getOperand(1).getValueType().bitsGE(MVT::i32);
};
SDNode *OR = N->getOperand(0).getNode();
SDValue LHS = OR->getOperand(0);
SDValue RHS = OR->getOperand(1);
// Save nodes matching or(or, setcc(eq, cmp 0)).
SmallVector<SDNode *, 2> ORNodes;
while (((isORCandidate(LHS) && isSetCCCandidate(RHS)) ||
(isORCandidate(RHS) && isSetCCCandidate(LHS)))) {
ORNodes.push_back(OR);
OR = (LHS->getOpcode() == ISD::OR) ? LHS.getNode() : RHS.getNode();
LHS = OR->getOperand(0);
RHS = OR->getOperand(1);
}
// The last OR node should match or(setcc(eq, cmp 0), setcc(eq, cmp 0)).
if (!(isSetCCCandidate(LHS) && isSetCCCandidate(RHS)) ||
!isORCandidate(SDValue(OR, 0)))
return SDValue();
// We have a or(setcc(eq, cmp 0), setcc(eq, cmp 0)) pattern, try to lower it
// to
// or(srl(ctlz),srl(ctlz)).
// The dag combiner can then fold it into:
// srl(or(ctlz, ctlz)).
EVT VT = OR->getValueType(0);
SDValue NewLHS = lowerX86CmpEqZeroToCtlzSrl(LHS, VT, DAG);
SDValue Ret, NewRHS;
if (NewLHS && (NewRHS = lowerX86CmpEqZeroToCtlzSrl(RHS, VT, DAG)))
Ret = DAG.getNode(ISD::OR, SDLoc(OR), VT, NewLHS, NewRHS);
if (!Ret)
return SDValue();
// Try to lower nodes matching the or(or, setcc(eq, cmp 0)) pattern.
while (ORNodes.size() > 0) {
OR = ORNodes.pop_back_val();
LHS = OR->getOperand(0);
RHS = OR->getOperand(1);
// Swap rhs with lhs to match or(setcc(eq, cmp, 0), or).
if (RHS->getOpcode() == ISD::OR)
std::swap(LHS, RHS);
EVT VT = OR->getValueType(0);
SDValue NewRHS = lowerX86CmpEqZeroToCtlzSrl(RHS, VT, DAG);
if (!NewRHS)
return SDValue();
Ret = DAG.getNode(ISD::OR, SDLoc(OR), VT, Ret, NewRHS);
}
if (Ret)
Ret = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), Ret);
return Ret;
}
static SDValue combineOr(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
// If this is SSE1 only convert to FOR to avoid scalarization.
if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && VT == MVT::v4i32) {
return DAG.getBitcast(MVT::v4i32,
DAG.getNode(X86ISD::FOR, SDLoc(N), MVT::v4f32,
DAG.getBitcast(MVT::v4f32, N0),
DAG.getBitcast(MVT::v4f32, N1)));
}
if (DCI.isBeforeLegalizeOps())
return SDValue();
if (SDValue R = combineCompareEqual(N, DAG, DCI, Subtarget))
return R;
if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
return FPLogic;
if (SDValue R = combineLogicBlendIntoPBLENDV(N, DAG, Subtarget))
return R;
if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
return SDValue();
// fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
bool OptForSize = DAG.getMachineFunction().getFunction().optForSize();
// SHLD/SHRD instructions have lower register pressure, but on some
// platforms they have higher latency than the equivalent
// series of shifts/or that would otherwise be generated.
// Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions
// have higher latencies and we are not optimizing for size.
if (!OptForSize && Subtarget.isSHLDSlow())
return SDValue();
if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
std::swap(N0, N1);
if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
return SDValue();
if (!N0.hasOneUse() || !N1.hasOneUse())
return SDValue();
SDValue ShAmt0 = N0.getOperand(1);
if (ShAmt0.getValueType() != MVT::i8)
return SDValue();
SDValue ShAmt1 = N1.getOperand(1);
if (ShAmt1.getValueType() != MVT::i8)
return SDValue();
if (ShAmt0.getOpcode() == ISD::TRUNCATE)
ShAmt0 = ShAmt0.getOperand(0);
if (ShAmt1.getOpcode() == ISD::TRUNCATE)
ShAmt1 = ShAmt1.getOperand(0);
SDLoc DL(N);
unsigned Opc = X86ISD::SHLD;
SDValue Op0 = N0.getOperand(0);
SDValue Op1 = N1.getOperand(0);
if (ShAmt0.getOpcode() == ISD::SUB ||
ShAmt0.getOpcode() == ISD::XOR) {
Opc = X86ISD::SHRD;
std::swap(Op0, Op1);
std::swap(ShAmt0, ShAmt1);
}
// OR( SHL( X, C ), SRL( Y, 32 - C ) ) -> SHLD( X, Y, C )
// OR( SRL( X, C ), SHL( Y, 32 - C ) ) -> SHRD( X, Y, C )
// OR( SHL( X, C ), SRL( SRL( Y, 1 ), XOR( C, 31 ) ) ) -> SHLD( X, Y, C )
// OR( SRL( X, C ), SHL( SHL( Y, 1 ), XOR( C, 31 ) ) ) -> SHRD( X, Y, C )
unsigned Bits = VT.getSizeInBits();
if (ShAmt1.getOpcode() == ISD::SUB) {
SDValue Sum = ShAmt1.getOperand(0);
if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
if (ShAmt1Op1.getOpcode() == ISD::TRUNCATE)
ShAmt1Op1 = ShAmt1Op1.getOperand(0);
if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
return DAG.getNode(Opc, DL, VT,
Op0, Op1,
DAG.getNode(ISD::TRUNCATE, DL,
MVT::i8, ShAmt0));
}
} else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
if (ShAmt0C && (ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue()) == Bits)
return DAG.getNode(Opc, DL, VT,
N0.getOperand(0), N1.getOperand(0),
DAG.getNode(ISD::TRUNCATE, DL,
MVT::i8, ShAmt0));
} else if (ShAmt1.getOpcode() == ISD::XOR) {
SDValue Mask = ShAmt1.getOperand(1);
if (ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask)) {
unsigned InnerShift = (X86ISD::SHLD == Opc ? ISD::SRL : ISD::SHL);
SDValue ShAmt1Op0 = ShAmt1.getOperand(0);
if (ShAmt1Op0.getOpcode() == ISD::TRUNCATE)
ShAmt1Op0 = ShAmt1Op0.getOperand(0);
if (MaskC->getSExtValue() == (Bits - 1) && ShAmt1Op0 == ShAmt0) {
if (Op1.getOpcode() == InnerShift &&
isa<ConstantSDNode>(Op1.getOperand(1)) &&
Op1.getConstantOperandVal(1) == 1) {
return DAG.getNode(Opc, DL, VT, Op0, Op1.getOperand(0),
DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ShAmt0));
}
// Test for ADD( Y, Y ) as an equivalent to SHL( Y, 1 ).
if (InnerShift == ISD::SHL && Op1.getOpcode() == ISD::ADD &&
Op1.getOperand(0) == Op1.getOperand(1)) {
return DAG.getNode(Opc, DL, VT, Op0, Op1.getOperand(0),
DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ShAmt0));
}
}
}
}
return SDValue();
}
/// Try to turn tests against the signbit in the form of:
/// XOR(TRUNCATE(SRL(X, size(X)-1)), 1)
/// into:
/// SETGT(X, -1)
static SDValue foldXorTruncShiftIntoCmp(SDNode *N, SelectionDAG &DAG) {
// This is only worth doing if the output type is i8 or i1.
EVT ResultType = N->getValueType(0);
if (ResultType != MVT::i8 && ResultType != MVT::i1)
return SDValue();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// We should be performing an xor against a truncated shift.
if (N0.getOpcode() != ISD::TRUNCATE || !N0.hasOneUse())
return SDValue();
// Make sure we are performing an xor against one.
if (!isOneConstant(N1))
return SDValue();
// SetCC on x86 zero extends so only act on this if it's a logical shift.
SDValue Shift = N0.getOperand(0);
if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse())
return SDValue();
// Make sure we are truncating from one of i16, i32 or i64.
EVT ShiftTy = Shift.getValueType();
if (ShiftTy != MVT::i16 && ShiftTy != MVT::i32 && ShiftTy != MVT::i64)
return SDValue();
// Make sure the shift amount extracts the sign bit.
if (!isa<ConstantSDNode>(Shift.getOperand(1)) ||
Shift.getConstantOperandVal(1) != ShiftTy.getSizeInBits() - 1)
return SDValue();
// Create a greater-than comparison against -1.
// N.B. Using SETGE against 0 works but we want a canonical looking
// comparison, using SETGT matches up with what TranslateX86CC.
SDLoc DL(N);
SDValue ShiftOp = Shift.getOperand(0);
EVT ShiftOpTy = ShiftOp.getValueType();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT SetCCResultType = TLI.getSetCCResultType(DAG.getDataLayout(),
*DAG.getContext(), ResultType);
SDValue Cond = DAG.getSetCC(DL, SetCCResultType, ShiftOp,
DAG.getConstant(-1, DL, ShiftOpTy), ISD::SETGT);
if (SetCCResultType != ResultType)
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, ResultType, Cond);
return Cond;
}
/// Turn vector tests of the signbit in the form of:
/// xor (sra X, elt_size(X)-1), -1
/// into:
/// pcmpgt X, -1
///
/// This should be called before type legalization because the pattern may not
/// persist after that.
static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
if (!VT.isSimple())
return SDValue();
switch (VT.getSimpleVT().SimpleTy) {
default: return SDValue();
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32: if (!Subtarget.hasSSE2()) return SDValue(); break;
case MVT::v2i64: if (!Subtarget.hasSSE42()) return SDValue(); break;
case MVT::v32i8:
case MVT::v16i16:
case MVT::v8i32:
case MVT::v4i64: if (!Subtarget.hasAVX2()) return SDValue(); break;
}
// There must be a shift right algebraic before the xor, and the xor must be a
// 'not' operation.
SDValue Shift = N->getOperand(0);
SDValue Ones = N->getOperand(1);
if (Shift.getOpcode() != ISD::SRA || !Shift.hasOneUse() ||
!ISD::isBuildVectorAllOnes(Ones.getNode()))
return SDValue();
// The shift should be smearing the sign bit across each vector element.
auto *ShiftBV = dyn_cast<BuildVectorSDNode>(Shift.getOperand(1));
if (!ShiftBV)
return SDValue();
EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
auto *ShiftAmt = ShiftBV->getConstantSplatNode();
if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
return SDValue();
// Create a greater-than comparison against -1. We don't use the more obvious
// greater-than-or-equal-to-zero because SSE/AVX don't have that instruction.
return DAG.getNode(X86ISD::PCMPGT, SDLoc(N), VT, Shift.getOperand(0), Ones);
}
/// Check if truncation with saturation form type \p SrcVT to \p DstVT
/// is valid for the given \p Subtarget.
static bool isSATValidOnAVX512Subtarget(EVT SrcVT, EVT DstVT,
const X86Subtarget &Subtarget) {
if (!Subtarget.hasAVX512())
return false;
// FIXME: Scalar type may be supported if we move it to vector register.
if (!SrcVT.isVector())
return false;
EVT SrcElVT = SrcVT.getScalarType();
EVT DstElVT = DstVT.getScalarType();
if (DstElVT != MVT::i8 && DstElVT != MVT::i16 && DstElVT != MVT::i32)
return false;
if (SrcVT.is512BitVector() || Subtarget.hasVLX())
return SrcElVT.getSizeInBits() >= 32 || Subtarget.hasBWI();
return false;
}
/// Detect patterns of truncation with unsigned saturation:
///
/// 1. (truncate (umin (x, unsigned_max_of_dest_type)) to dest_type).
/// Return the source value x to be truncated or SDValue() if the pattern was
/// not matched.
///
/// 2. (truncate (smin (smax (x, C1), C2)) to dest_type),
/// where C1 >= 0 and C2 is unsigned max of destination type.
///
/// (truncate (smax (smin (x, C2), C1)) to dest_type)
/// where C1 >= 0, C2 is unsigned max of destination type and C1 <= C2.
///
/// These two patterns are equivalent to:
/// (truncate (umin (smax(x, C1), unsigned_max_of_dest_type)) to dest_type)
/// So return the smax(x, C1) value to be truncated or SDValue() if the
/// pattern was not matched.
static SDValue detectUSatPattern(SDValue In, EVT VT, SelectionDAG &DAG,
const SDLoc &DL) {
EVT InVT = In.getValueType();
// Saturation with truncation. We truncate from InVT to VT.
assert(InVT.getScalarSizeInBits() > VT.getScalarSizeInBits() &&
"Unexpected types for truncate operation");
// Match min/max and return limit value as a parameter.
auto MatchMinMax = [](SDValue V, unsigned Opcode, APInt &Limit) -> SDValue {
if (V.getOpcode() == Opcode &&
ISD::isConstantSplatVector(V.getOperand(1).getNode(), Limit))
return V.getOperand(0);
return SDValue();
};
APInt C1, C2;
if (SDValue UMin = MatchMinMax(In, ISD::UMIN, C2))
// C2 should be equal to UINT32_MAX / UINT16_MAX / UINT8_MAX according
// the element size of the destination type.
if (C2.isMask(VT.getScalarSizeInBits()))
return UMin;
if (SDValue SMin = MatchMinMax(In, ISD::SMIN, C2))
if (MatchMinMax(SMin, ISD::SMAX, C1))
if (C1.isNonNegative() && C2.isMask(VT.getScalarSizeInBits()))
return SMin;
if (SDValue SMax = MatchMinMax(In, ISD::SMAX, C1))
if (SDValue SMin = MatchMinMax(SMax, ISD::SMIN, C2))
if (C1.isNonNegative() && C2.isMask(VT.getScalarSizeInBits()) &&
C2.uge(C1)) {
return DAG.getNode(ISD::SMAX, DL, InVT, SMin, In.getOperand(1));
}
return SDValue();
}
/// Detect patterns of truncation with signed saturation:
/// (truncate (smin ((smax (x, signed_min_of_dest_type)),
/// signed_max_of_dest_type)) to dest_type)
/// or:
/// (truncate (smax ((smin (x, signed_max_of_dest_type)),
/// signed_min_of_dest_type)) to dest_type).
/// With MatchPackUS, the smax/smin range is [0, unsigned_max_of_dest_type].
/// Return the source value to be truncated or SDValue() if the pattern was not
/// matched.
static SDValue detectSSatPattern(SDValue In, EVT VT, bool MatchPackUS = false) {
unsigned NumDstBits = VT.getScalarSizeInBits();
unsigned NumSrcBits = In.getScalarValueSizeInBits();
assert(NumSrcBits > NumDstBits && "Unexpected types for truncate operation");
auto MatchMinMax = [](SDValue V, unsigned Opcode,
const APInt &Limit) -> SDValue {
APInt C;
if (V.getOpcode() == Opcode &&
ISD::isConstantSplatVector(V.getOperand(1).getNode(), C) && C == Limit)
return V.getOperand(0);
return SDValue();
};
APInt SignedMax, SignedMin;
if (MatchPackUS) {
SignedMax = APInt::getAllOnesValue(NumDstBits).zext(NumSrcBits);
SignedMin = APInt(NumSrcBits, 0);
} else {
SignedMax = APInt::getSignedMaxValue(NumDstBits).sext(NumSrcBits);
SignedMin = APInt::getSignedMinValue(NumDstBits).sext(NumSrcBits);
}
if (SDValue SMin = MatchMinMax(In, ISD::SMIN, SignedMax))
if (SDValue SMax = MatchMinMax(SMin, ISD::SMAX, SignedMin))
return SMax;
if (SDValue SMax = MatchMinMax(In, ISD::SMAX, SignedMin))
if (SDValue SMin = MatchMinMax(SMax, ISD::SMIN, SignedMax))
return SMin;
return SDValue();
}
/// Detect a pattern of truncation with signed saturation.
/// The types should allow to use VPMOVSS* instruction on AVX512.
/// Return the source value to be truncated or SDValue() if the pattern was not
/// matched.
static SDValue detectAVX512SSatPattern(SDValue In, EVT VT,
const X86Subtarget &Subtarget,
const TargetLowering &TLI) {
if (!TLI.isTypeLegal(In.getValueType()))
return SDValue();
if (!isSATValidOnAVX512Subtarget(In.getValueType(), VT, Subtarget))
return SDValue();
return detectSSatPattern(In, VT);
}
/// Detect a pattern of truncation with saturation:
/// (truncate (umin (x, unsigned_max_of_dest_type)) to dest_type).
/// The types should allow to use VPMOVUS* instruction on AVX512.
/// Return the source value to be truncated or SDValue() if the pattern was not
/// matched.
static SDValue detectAVX512USatPattern(SDValue In, EVT VT, SelectionDAG &DAG,
const SDLoc &DL,
const X86Subtarget &Subtarget,
const TargetLowering &TLI) {
if (!TLI.isTypeLegal(In.getValueType()))
return SDValue();
if (!isSATValidOnAVX512Subtarget(In.getValueType(), VT, Subtarget))
return SDValue();
return detectUSatPattern(In, VT, DAG, DL);
}
static SDValue combineTruncateWithSat(SDValue In, EVT VT, const SDLoc &DL,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT SVT = VT.getScalarType();
EVT InVT = In.getValueType();
EVT InSVT = InVT.getScalarType();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.isTypeLegal(InVT) && TLI.isTypeLegal(VT) &&
isSATValidOnAVX512Subtarget(InVT, VT, Subtarget)) {
if (auto SSatVal = detectSSatPattern(In, VT))
return DAG.getNode(X86ISD::VTRUNCS, DL, VT, SSatVal);
if (auto USatVal = detectUSatPattern(In, VT, DAG, DL))
return DAG.getNode(X86ISD::VTRUNCUS, DL, VT, USatVal);
}
if (VT.isVector() && isPowerOf2_32(VT.getVectorNumElements()) &&
(SVT == MVT::i8 || SVT == MVT::i16) &&
(InSVT == MVT::i16 || InSVT == MVT::i32)) {
if (auto USatVal = detectSSatPattern(In, VT, true)) {
// vXi32 -> vXi8 must be performed as PACKUSWB(PACKSSDW,PACKSSDW).
if (SVT == MVT::i8 && InSVT == MVT::i32) {
EVT MidVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16,
VT.getVectorNumElements());
SDValue Mid = truncateVectorWithPACK(X86ISD::PACKSS, MidVT, USatVal, DL,
DAG, Subtarget);
if (Mid)
return truncateVectorWithPACK(X86ISD::PACKUS, VT, Mid, DL, DAG,
Subtarget);
} else if (SVT == MVT::i8 || Subtarget.hasSSE41())
return truncateVectorWithPACK(X86ISD::PACKUS, VT, USatVal, DL, DAG,
Subtarget);
}
if (auto SSatVal = detectSSatPattern(In, VT))
return truncateVectorWithPACK(X86ISD::PACKSS, VT, SSatVal, DL, DAG,
Subtarget);
}
return SDValue();
}
/// This function detects the AVG pattern between vectors of unsigned i8/i16,
/// which is c = (a + b + 1) / 2, and replace this operation with the efficient
/// X86ISD::AVG instruction.
static SDValue detectAVGPattern(SDValue In, EVT VT, SelectionDAG &DAG,
const X86Subtarget &Subtarget,
const SDLoc &DL) {
if (!VT.isVector())
return SDValue();
EVT InVT = In.getValueType();
unsigned NumElems = VT.getVectorNumElements();
EVT ScalarVT = VT.getVectorElementType();
if (!((ScalarVT == MVT::i8 || ScalarVT == MVT::i16) &&
isPowerOf2_32(NumElems)))
return SDValue();
// InScalarVT is the intermediate type in AVG pattern and it should be greater
// than the original input type (i8/i16).
EVT InScalarVT = InVT.getVectorElementType();
if (InScalarVT.getSizeInBits() <= ScalarVT.getSizeInBits())
return SDValue();
if (!Subtarget.hasSSE2())
return SDValue();
// Detect the following pattern:
//
// %1 = zext <N x i8> %a to <N x i32>
// %2 = zext <N x i8> %b to <N x i32>
// %3 = add nuw nsw <N x i32> %1, <i32 1 x N>
// %4 = add nuw nsw <N x i32> %3, %2
// %5 = lshr <N x i32> %N, <i32 1 x N>
// %6 = trunc <N x i32> %5 to <N x i8>
//
// In AVX512, the last instruction can also be a trunc store.
if (In.getOpcode() != ISD::SRL)
return SDValue();
// A lambda checking the given SDValue is a constant vector and each element
// is in the range [Min, Max].
auto IsConstVectorInRange = [](SDValue V, unsigned Min, unsigned Max) {
BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(V);
if (!BV || !BV->isConstant())
return false;
for (SDValue Op : V->ops()) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
if (!C)
return false;
const APInt &Val = C->getAPIntValue();
if (Val.ult(Min) || Val.ugt(Max))
return false;
}
return true;
};
// Check if each element of the vector is left-shifted by one.
auto LHS = In.getOperand(0);
auto RHS = In.getOperand(1);
if (!IsConstVectorInRange(RHS, 1, 1))
return SDValue();
if (LHS.getOpcode() != ISD::ADD)
return SDValue();
// Detect a pattern of a + b + 1 where the order doesn't matter.
SDValue Operands[3];
Operands[0] = LHS.getOperand(0);
Operands[1] = LHS.getOperand(1);
auto AVGBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
return DAG.getNode(X86ISD::AVG, DL, Ops[0].getValueType(), Ops);
};
// Take care of the case when one of the operands is a constant vector whose
// element is in the range [1, 256].
if (IsConstVectorInRange(Operands[1], 1, ScalarVT == MVT::i8 ? 256 : 65536) &&
Operands[0].getOpcode() == ISD::ZERO_EXTEND &&
Operands[0].getOperand(0).getValueType() == VT) {
// The pattern is detected. Subtract one from the constant vector, then
// demote it and emit X86ISD::AVG instruction.
SDValue VecOnes = DAG.getConstant(1, DL, InVT);
Operands[1] = DAG.getNode(ISD::SUB, DL, InVT, Operands[1], VecOnes);
Operands[1] = DAG.getNode(ISD::TRUNCATE, DL, VT, Operands[1]);
return SplitOpsAndApply(DAG, Subtarget, DL, VT,
{ Operands[0].getOperand(0), Operands[1] },
AVGBuilder);
}
if (Operands[0].getOpcode() == ISD::ADD)
std::swap(Operands[0], Operands[1]);
else if (Operands[1].getOpcode() != ISD::ADD)
return SDValue();
Operands[2] = Operands[1].getOperand(0);
Operands[1] = Operands[1].getOperand(1);
// Now we have three operands of two additions. Check that one of them is a
// constant vector with ones, and the other two are promoted from i8/i16.
for (int i = 0; i < 3; ++i) {
if (!IsConstVectorInRange(Operands[i], 1, 1))
continue;
std::swap(Operands[i], Operands[2]);
// Check if Operands[0] and Operands[1] are results of type promotion.
for (int j = 0; j < 2; ++j)
if (Operands[j].getOpcode() != ISD::ZERO_EXTEND ||
Operands[j].getOperand(0).getValueType() != VT)
return SDValue();
// The pattern is detected, emit X86ISD::AVG instruction(s).
return SplitOpsAndApply(DAG, Subtarget, DL, VT,
{ Operands[0].getOperand(0),
Operands[1].getOperand(0) }, AVGBuilder);
}
return SDValue();
}
static SDValue combineLoad(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
LoadSDNode *Ld = cast<LoadSDNode>(N);
EVT RegVT = Ld->getValueType(0);
EVT MemVT = Ld->getMemoryVT();
SDLoc dl(Ld);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// For chips with slow 32-byte unaligned loads, break the 32-byte operation
// into two 16-byte operations. Also split non-temporal aligned loads on
// pre-AVX2 targets as 32-byte loads will lower to regular temporal loads.
ISD::LoadExtType Ext = Ld->getExtensionType();
bool Fast;
unsigned AddressSpace = Ld->getAddressSpace();
unsigned Alignment = Ld->getAlignment();
if (RegVT.is256BitVector() && !DCI.isBeforeLegalizeOps() &&
Ext == ISD::NON_EXTLOAD &&
((Ld->isNonTemporal() && !Subtarget.hasInt256() && Alignment >= 16) ||
(TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), RegVT,
AddressSpace, Alignment, &Fast) && !Fast))) {
unsigned NumElems = RegVT.getVectorNumElements();
if (NumElems < 2)
return SDValue();
SDValue Ptr = Ld->getBasePtr();
EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
NumElems/2);
SDValue Load1 =
DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
Alignment, Ld->getMemOperand()->getFlags());
Ptr = DAG.getMemBasePlusOffset(Ptr, 16, dl);
SDValue Load2 =
DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
Ld->getPointerInfo().getWithOffset(16),
MinAlign(Alignment, 16U), Ld->getMemOperand()->getFlags());
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
Load1.getValue(1),
Load2.getValue(1));
SDValue NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Load1, Load2);
return DCI.CombineTo(N, NewVec, TF, true);
}
return SDValue();
}
/// If V is a build vector of boolean constants and exactly one of those
/// constants is true, return the operand index of that true element.
/// Otherwise, return -1.
static int getOneTrueElt(SDValue V) {
// This needs to be a build vector of booleans.
// TODO: Checking for the i1 type matches the IR definition for the mask,
// but the mask check could be loosened to i8 or other types. That might
// also require checking more than 'allOnesValue'; eg, the x86 HW
// instructions only require that the MSB is set for each mask element.
// The ISD::MSTORE comments/definition do not specify how the mask operand
// is formatted.
auto *BV = dyn_cast<BuildVectorSDNode>(V);
if (!BV || BV->getValueType(0).getVectorElementType() != MVT::i1)
return -1;
int TrueIndex = -1;
unsigned NumElts = BV->getValueType(0).getVectorNumElements();
for (unsigned i = 0; i < NumElts; ++i) {
const SDValue &Op = BV->getOperand(i);
if (Op.isUndef())
continue;
auto *ConstNode = dyn_cast<ConstantSDNode>(Op);
if (!ConstNode)
return -1;
if (ConstNode->getAPIntValue().isAllOnesValue()) {
// If we already found a one, this is too many.
if (TrueIndex >= 0)
return -1;
TrueIndex = i;
}
}
return TrueIndex;
}
/// Given a masked memory load/store operation, return true if it has one mask
/// bit set. If it has one mask bit set, then also return the memory address of
/// the scalar element to load/store, the vector index to insert/extract that
/// scalar element, and the alignment for the scalar memory access.
static bool getParamsForOneTrueMaskedElt(MaskedLoadStoreSDNode *MaskedOp,
SelectionDAG &DAG, SDValue &Addr,
SDValue &Index, unsigned &Alignment) {
int TrueMaskElt = getOneTrueElt(MaskedOp->getMask());
if (TrueMaskElt < 0)
return false;
// Get the address of the one scalar element that is specified by the mask
// using the appropriate offset from the base pointer.
EVT EltVT = MaskedOp->getMemoryVT().getVectorElementType();
Addr = MaskedOp->getBasePtr();
if (TrueMaskElt != 0) {
unsigned Offset = TrueMaskElt * EltVT.getStoreSize();
Addr = DAG.getMemBasePlusOffset(Addr, Offset, SDLoc(MaskedOp));
}
Index = DAG.getIntPtrConstant(TrueMaskElt, SDLoc(MaskedOp));
Alignment = MinAlign(MaskedOp->getAlignment(), EltVT.getStoreSize());
return true;
}
/// If exactly one element of the mask is set for a non-extending masked load,
/// it is a scalar load and vector insert.
/// Note: It is expected that the degenerate cases of an all-zeros or all-ones
/// mask have already been optimized in IR, so we don't bother with those here.
static SDValue
reduceMaskedLoadToScalarLoad(MaskedLoadSDNode *ML, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
// TODO: This is not x86-specific, so it could be lifted to DAGCombiner.
// However, some target hooks may need to be added to know when the transform
// is profitable. Endianness would also have to be considered.
SDValue Addr, VecIndex;
unsigned Alignment;
if (!getParamsForOneTrueMaskedElt(ML, DAG, Addr, VecIndex, Alignment))
return SDValue();
// Load the one scalar element that is specified by the mask using the
// appropriate offset from the base pointer.
SDLoc DL(ML);
EVT VT = ML->getValueType(0);
EVT EltVT = VT.getVectorElementType();
SDValue Load =
DAG.getLoad(EltVT, DL, ML->getChain(), Addr, ML->getPointerInfo(),
Alignment, ML->getMemOperand()->getFlags());
// Insert the loaded element into the appropriate place in the vector.
SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, ML->getSrc0(),
Load, VecIndex);
return DCI.CombineTo(ML, Insert, Load.getValue(1), true);
}
static SDValue
combineMaskedLoadConstantMask(MaskedLoadSDNode *ML, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
if (!ISD::isBuildVectorOfConstantSDNodes(ML->getMask().getNode()))
return SDValue();
SDLoc DL(ML);
EVT VT = ML->getValueType(0);
// If we are loading the first and last elements of a vector, it is safe and
// always faster to load the whole vector. Replace the masked load with a
// vector load and select.
unsigned NumElts = VT.getVectorNumElements();
BuildVectorSDNode *MaskBV = cast<BuildVectorSDNode>(ML->getMask());
bool LoadFirstElt = !isNullConstant(MaskBV->getOperand(0));
bool LoadLastElt = !isNullConstant(MaskBV->getOperand(NumElts - 1));
if (LoadFirstElt && LoadLastElt) {
SDValue VecLd = DAG.getLoad(VT, DL, ML->getChain(), ML->getBasePtr(),
ML->getMemOperand());
SDValue Blend = DAG.getSelect(DL, VT, ML->getMask(), VecLd, ML->getSrc0());
return DCI.CombineTo(ML, Blend, VecLd.getValue(1), true);
}
// Convert a masked load with a constant mask into a masked load and a select.
// This allows the select operation to use a faster kind of select instruction
// (for example, vblendvps -> vblendps).
// Don't try this if the pass-through operand is already undefined. That would
// cause an infinite loop because that's what we're about to create.
if (ML->getSrc0().isUndef())
return SDValue();
// The new masked load has an undef pass-through operand. The select uses the
// original pass-through operand.
SDValue NewML = DAG.getMaskedLoad(VT, DL, ML->getChain(), ML->getBasePtr(),
ML->getMask(), DAG.getUNDEF(VT),
ML->getMemoryVT(), ML->getMemOperand(),
ML->getExtensionType());
SDValue Blend = DAG.getSelect(DL, VT, ML->getMask(), NewML, ML->getSrc0());
return DCI.CombineTo(ML, Blend, NewML.getValue(1), true);
}
static SDValue combineMaskedLoad(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
MaskedLoadSDNode *Mld = cast<MaskedLoadSDNode>(N);
// TODO: Expanding load with constant mask may be optimized as well.
if (Mld->isExpandingLoad())
return SDValue();
if (Mld->getExtensionType() == ISD::NON_EXTLOAD) {
if (SDValue ScalarLoad = reduceMaskedLoadToScalarLoad(Mld, DAG, DCI))
return ScalarLoad;
// TODO: Do some AVX512 subsets benefit from this transform?
if (!Subtarget.hasAVX512())
if (SDValue Blend = combineMaskedLoadConstantMask(Mld, DAG, DCI))
return Blend;
}
if (Mld->getExtensionType() != ISD::SEXTLOAD)
return SDValue();
// Resolve extending loads.
EVT VT = Mld->getValueType(0);
unsigned NumElems = VT.getVectorNumElements();
EVT LdVT = Mld->getMemoryVT();
SDLoc dl(Mld);
assert(LdVT != VT && "Cannot extend to the same type");
unsigned ToSz = VT.getScalarSizeInBits();
unsigned FromSz = LdVT.getScalarSizeInBits();
// From/To sizes and ElemCount must be pow of two.
assert (isPowerOf2_32(NumElems * FromSz * ToSz) &&
"Unexpected size for extending masked load");
unsigned SizeRatio = ToSz / FromSz;
assert(SizeRatio * NumElems * FromSz == VT.getSizeInBits());
// Create a type on which we perform the shuffle.
EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
LdVT.getScalarType(), NumElems*SizeRatio);
assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
// Convert Src0 value.
SDValue WideSrc0 = DAG.getBitcast(WideVecVT, Mld->getSrc0());
if (!Mld->getSrc0().isUndef()) {
SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
for (unsigned i = 0; i != NumElems; ++i)
ShuffleVec[i] = i * SizeRatio;
// Can't shuffle using an illegal type.
assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) &&
"WideVecVT should be legal");
WideSrc0 = DAG.getVectorShuffle(WideVecVT, dl, WideSrc0,
DAG.getUNDEF(WideVecVT), ShuffleVec);
}
// Prepare the new mask.
SDValue NewMask;
SDValue Mask = Mld->getMask();
if (Mask.getValueType() == VT) {
// Mask and original value have the same type.
NewMask = DAG.getBitcast(WideVecVT, Mask);
SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
for (unsigned i = 0; i != NumElems; ++i)
ShuffleVec[i] = i * SizeRatio;
for (unsigned i = NumElems; i != NumElems * SizeRatio; ++i)
ShuffleVec[i] = NumElems * SizeRatio;
NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask,
DAG.getConstant(0, dl, WideVecVT),
ShuffleVec);
} else {
assert(Mask.getValueType().getVectorElementType() == MVT::i1);
unsigned WidenNumElts = NumElems*SizeRatio;
unsigned MaskNumElts = VT.getVectorNumElements();
EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
WidenNumElts);
unsigned NumConcat = WidenNumElts / MaskNumElts;
SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType());
SmallVector<SDValue, 16> Ops(NumConcat, ZeroVal);
Ops[0] = Mask;
NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops);
}
SDValue WideLd = DAG.getMaskedLoad(WideVecVT, dl, Mld->getChain(),
Mld->getBasePtr(), NewMask, WideSrc0,
Mld->getMemoryVT(), Mld->getMemOperand(),
ISD::NON_EXTLOAD);
SDValue NewVec = getExtendInVec(X86ISD::VSEXT, dl, VT, WideLd, DAG);
return DCI.CombineTo(N, NewVec, WideLd.getValue(1), true);
}
/// If exactly one element of the mask is set for a non-truncating masked store,
/// it is a vector extract and scalar store.
/// Note: It is expected that the degenerate cases of an all-zeros or all-ones
/// mask have already been optimized in IR, so we don't bother with those here.
static SDValue reduceMaskedStoreToScalarStore(MaskedStoreSDNode *MS,
SelectionDAG &DAG) {
// TODO: This is not x86-specific, so it could be lifted to DAGCombiner.
// However, some target hooks may need to be added to know when the transform
// is profitable. Endianness would also have to be considered.
SDValue Addr, VecIndex;
unsigned Alignment;
if (!getParamsForOneTrueMaskedElt(MS, DAG, Addr, VecIndex, Alignment))
return SDValue();
// Extract the one scalar element that is actually being stored.
SDLoc DL(MS);
EVT VT = MS->getValue().getValueType();
EVT EltVT = VT.getVectorElementType();
SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
MS->getValue(), VecIndex);
// Store that element at the appropriate offset from the base pointer.
return DAG.getStore(MS->getChain(), DL, Extract, Addr, MS->getPointerInfo(),
Alignment, MS->getMemOperand()->getFlags());
}
static SDValue combineMaskedStore(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MaskedStoreSDNode *Mst = cast<MaskedStoreSDNode>(N);
if (Mst->isCompressingStore())
return SDValue();
if (!Mst->isTruncatingStore()) {
if (SDValue ScalarStore = reduceMaskedStoreToScalarStore(Mst, DAG))
return ScalarStore;
// If the mask is checking (0 > X), we're creating a vector with all-zeros
// or all-ones elements based on the sign bits of X. AVX1 masked store only
// cares about the sign bit of each mask element, so eliminate the compare:
// mstore val, ptr, (pcmpgt 0, X) --> mstore val, ptr, X
// Note that by waiting to match an x86-specific PCMPGT node, we're
// eliminating potentially more complex matching of a setcc node which has
// a full range of predicates.
SDValue Mask = Mst->getMask();
if (Mask.getOpcode() == X86ISD::PCMPGT &&
ISD::isBuildVectorAllZeros(Mask.getOperand(0).getNode())) {
assert(Mask.getValueType() == Mask.getOperand(1).getValueType() &&
"Unexpected type for PCMPGT");
return DAG.getMaskedStore(
Mst->getChain(), SDLoc(N), Mst->getValue(), Mst->getBasePtr(),
Mask.getOperand(1), Mst->getMemoryVT(), Mst->getMemOperand());
}
// TODO: AVX512 targets should also be able to simplify something like the
// pattern above, but that pattern will be different. It will either need to
// match setcc more generally or match PCMPGTM later (in tablegen?).
return SDValue();
}
// Resolve truncating stores.
EVT VT = Mst->getValue().getValueType();
unsigned NumElems = VT.getVectorNumElements();
EVT StVT = Mst->getMemoryVT();
SDLoc dl(Mst);
assert(StVT != VT && "Cannot truncate to the same type");
unsigned FromSz = VT.getScalarSizeInBits();
unsigned ToSz = StVT.getScalarSizeInBits();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// The truncating store is legal in some cases. For example
// vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw
// are designated for truncate store.
// In this case we don't need any further transformations.
if (TLI.isTruncStoreLegal(VT, StVT))
return SDValue();
// From/To sizes and ElemCount must be pow of two.
assert (isPowerOf2_32(NumElems * FromSz * ToSz) &&
"Unexpected size for truncating masked store");
// We are going to use the original vector elt for storing.
// Accumulated smaller vector elements must be a multiple of the store size.
assert (((NumElems * FromSz) % ToSz) == 0 &&
"Unexpected ratio for truncating masked store");
unsigned SizeRatio = FromSz / ToSz;
assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
// Create a type on which we perform the shuffle.
EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
StVT.getScalarType(), NumElems*SizeRatio);
assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
SDValue WideVec = DAG.getBitcast(WideVecVT, Mst->getValue());
SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
for (unsigned i = 0; i != NumElems; ++i)
ShuffleVec[i] = i * SizeRatio;
// Can't shuffle using an illegal type.
assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) &&
"WideVecVT should be legal");
SDValue TruncatedVal = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
DAG.getUNDEF(WideVecVT),
ShuffleVec);
SDValue NewMask;
SDValue Mask = Mst->getMask();
if (Mask.getValueType() == VT) {
// Mask and original value have the same type.
NewMask = DAG.getBitcast(WideVecVT, Mask);
for (unsigned i = 0; i != NumElems; ++i)
ShuffleVec[i] = i * SizeRatio;
for (unsigned i = NumElems; i != NumElems*SizeRatio; ++i)
ShuffleVec[i] = NumElems*SizeRatio;
NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask,
DAG.getConstant(0, dl, WideVecVT),
ShuffleVec);
} else {
assert(Mask.getValueType().getVectorElementType() == MVT::i1);
unsigned WidenNumElts = NumElems*SizeRatio;
unsigned MaskNumElts = VT.getVectorNumElements();
EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
WidenNumElts);
unsigned NumConcat = WidenNumElts / MaskNumElts;
SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType());
SmallVector<SDValue, 16> Ops(NumConcat, ZeroVal);
Ops[0] = Mask;
NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops);
}
return DAG.getMaskedStore(Mst->getChain(), dl, TruncatedVal,
Mst->getBasePtr(), NewMask, StVT,
Mst->getMemOperand(), false);
}
static SDValue combineStore(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
StoreSDNode *St = cast<StoreSDNode>(N);
EVT VT = St->getValue().getValueType();
EVT StVT = St->getMemoryVT();
SDLoc dl(St);
SDValue StoredVal = St->getOperand(1);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// If this is a store of a scalar_to_vector to v1i1, just use a scalar store.
// This will avoid a copy to k-register.
if (VT == MVT::v1i1 && VT == StVT && Subtarget.hasAVX512() &&
StoredVal.getOpcode() == ISD::SCALAR_TO_VECTOR &&
StoredVal.getOperand(0).getValueType() == MVT::i8) {
return DAG.getStore(St->getChain(), dl, StoredVal.getOperand(0),
St->getBasePtr(), St->getPointerInfo(),
St->getAlignment(), St->getMemOperand()->getFlags());
}
// Widen v2i1/v4i1 stores to v8i1.
if ((VT == MVT::v2i1 || VT == MVT::v4i1) && VT == StVT &&
Subtarget.hasAVX512()) {
unsigned NumConcats = 8 / VT.getVectorNumElements();
SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(VT));
Ops[0] = StoredVal;
StoredVal = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i1, Ops);
return DAG.getStore(St->getChain(), dl, StoredVal, St->getBasePtr(),
St->getPointerInfo(), St->getAlignment(),
St->getMemOperand()->getFlags());
}
// Turn vXi1 stores of constants into a scalar store.
if ((VT == MVT::v8i1 || VT == MVT::v16i1 || VT == MVT::v32i1 ||
VT == MVT::v64i1) && VT == StVT && TLI.isTypeLegal(VT) &&
ISD::isBuildVectorOfConstantSDNodes(StoredVal.getNode())) {
// If its a v64i1 store without 64-bit support, we need two stores.
if (VT == MVT::v64i1 && !Subtarget.is64Bit()) {
SDValue Lo = DAG.getBuildVector(MVT::v32i1, dl,
StoredVal->ops().slice(0, 32));
Lo = combinevXi1ConstantToInteger(Lo, DAG);
SDValue Hi = DAG.getBuildVector(MVT::v32i1, dl,
StoredVal->ops().slice(32, 32));
Hi = combinevXi1ConstantToInteger(Hi, DAG);
unsigned Alignment = St->getAlignment();
SDValue Ptr0 = St->getBasePtr();
SDValue Ptr1 = DAG.getMemBasePlusOffset(Ptr0, 4, dl);
SDValue Ch0 =
DAG.getStore(St->getChain(), dl, Lo, Ptr0, St->getPointerInfo(),
Alignment, St->getMemOperand()->getFlags());
SDValue Ch1 =
DAG.getStore(St->getChain(), dl, Hi, Ptr1,
St->getPointerInfo().getWithOffset(4),
MinAlign(Alignment, 4U),
St->getMemOperand()->getFlags());
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
}
StoredVal = combinevXi1ConstantToInteger(StoredVal, DAG);
return DAG.getStore(St->getChain(), dl, StoredVal, St->getBasePtr(),
St->getPointerInfo(), St->getAlignment(),
St->getMemOperand()->getFlags());
}
// If we are saving a concatenation of two XMM registers and 32-byte stores
// are slow, such as on Sandy Bridge, perform two 16-byte stores.
bool Fast;
unsigned AddressSpace = St->getAddressSpace();
unsigned Alignment = St->getAlignment();
if (VT.is256BitVector() && StVT == VT &&
TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
AddressSpace, Alignment, &Fast) &&
!Fast) {
unsigned NumElems = VT.getVectorNumElements();
if (NumElems < 2)
return SDValue();
SDValue Value0 = extract128BitVector(StoredVal, 0, DAG, dl);
SDValue Value1 = extract128BitVector(StoredVal, NumElems / 2, DAG, dl);
SDValue Ptr0 = St->getBasePtr();
SDValue Ptr1 = DAG.getMemBasePlusOffset(Ptr0, 16, dl);
SDValue Ch0 =
DAG.getStore(St->getChain(), dl, Value0, Ptr0, St->getPointerInfo(),
Alignment, St->getMemOperand()->getFlags());
SDValue Ch1 =
DAG.getStore(St->getChain(), dl, Value1, Ptr1,
St->getPointerInfo().getWithOffset(16),
MinAlign(Alignment, 16U), St->getMemOperand()->getFlags());
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
}
// Optimize trunc store (of multiple scalars) to shuffle and store.
// First, pack all of the elements in one place. Next, store to memory
// in fewer chunks.
if (St->isTruncatingStore() && VT.isVector()) {
// Check if we can detect an AVG pattern from the truncation. If yes,
// replace the trunc store by a normal store with the result of X86ISD::AVG
// instruction.
if (SDValue Avg = detectAVGPattern(St->getValue(), St->getMemoryVT(), DAG,
Subtarget, dl))
return DAG.getStore(St->getChain(), dl, Avg, St->getBasePtr(),
St->getPointerInfo(), St->getAlignment(),
St->getMemOperand()->getFlags());
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (SDValue Val =
detectAVX512SSatPattern(St->getValue(), St->getMemoryVT(), Subtarget,
TLI))
return EmitTruncSStore(true /* Signed saturation */, St->getChain(),
dl, Val, St->getBasePtr(),
St->getMemoryVT(), St->getMemOperand(), DAG);
if (SDValue Val = detectAVX512USatPattern(St->getValue(), St->getMemoryVT(),
DAG, dl, Subtarget, TLI))
return EmitTruncSStore(false /* Unsigned saturation */, St->getChain(),
dl, Val, St->getBasePtr(),
St->getMemoryVT(), St->getMemOperand(), DAG);
unsigned NumElems = VT.getVectorNumElements();
assert(StVT != VT && "Cannot truncate to the same type");
unsigned FromSz = VT.getScalarSizeInBits();
unsigned ToSz = StVT.getScalarSizeInBits();
// The truncating store is legal in some cases. For example
// vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw
// are designated for truncate store.
// In this case we don't need any further transformations.
if (TLI.isTruncStoreLegalOrCustom(VT, StVT))
return SDValue();
// From, To sizes and ElemCount must be pow of two
if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
// We are going to use the original vector elt for storing.
// Accumulated smaller vector elements must be a multiple of the store size.
if (0 != (NumElems * FromSz) % ToSz) return SDValue();
unsigned SizeRatio = FromSz / ToSz;
assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
// Create a type on which we perform the shuffle
EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
StVT.getScalarType(), NumElems*SizeRatio);
assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
SDValue WideVec = DAG.getBitcast(WideVecVT, St->getValue());
SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
for (unsigned i = 0; i != NumElems; ++i)
ShuffleVec[i] = i * SizeRatio;
// Can't shuffle using an illegal type.
if (!TLI.isTypeLegal(WideVecVT))
return SDValue();
SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
DAG.getUNDEF(WideVecVT),
ShuffleVec);
// At this point all of the data is stored at the bottom of the
// register. We now need to save it to mem.
// Find the largest store unit
MVT StoreType = MVT::i8;
for (MVT Tp : MVT::integer_valuetypes()) {
if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
StoreType = Tp;
}
// On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
(64 <= NumElems * ToSz))
StoreType = MVT::f64;
// Bitcast the original vector into a vector of store-size units
EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
SDValue ShuffWide = DAG.getBitcast(StoreVecVT, Shuff);
SmallVector<SDValue, 8> Chains;
SDValue Ptr = St->getBasePtr();
// Perform one or more big stores into memory.
for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
StoreType, ShuffWide,
DAG.getIntPtrConstant(i, dl));
SDValue Ch =
DAG.getStore(St->getChain(), dl, SubVec, Ptr, St->getPointerInfo(),
St->getAlignment(), St->getMemOperand()->getFlags());
Ptr = DAG.getMemBasePlusOffset(Ptr, StoreType.getStoreSize(), dl);
Chains.push_back(Ch);
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
}
// Turn load->store of MMX types into GPR load/stores. This avoids clobbering
// the FP state in cases where an emms may be missing.
// A preferable solution to the general problem is to figure out the right
// places to insert EMMS. This qualifies as a quick hack.
// Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
if (VT.getSizeInBits() != 64)
return SDValue();
const Function &F = DAG.getMachineFunction().getFunction();
bool NoImplicitFloatOps = F.hasFnAttribute(Attribute::NoImplicitFloat);
bool F64IsLegal =
!Subtarget.useSoftFloat() && !NoImplicitFloatOps && Subtarget.hasSSE2();
if ((VT.isVector() ||
(VT == MVT::i64 && F64IsLegal && !Subtarget.is64Bit())) &&
isa<LoadSDNode>(St->getValue()) &&
!cast<LoadSDNode>(St->getValue())->isVolatile() &&
St->getChain().hasOneUse() && !St->isVolatile()) {
LoadSDNode *Ld = cast<LoadSDNode>(St->getValue().getNode());
SmallVector<SDValue, 8> Ops;
if (!ISD::isNormalLoad(Ld))
return SDValue();
// If this is not the MMX case, i.e. we are just turning i64 load/store
// into f64 load/store, avoid the transformation if there are multiple
// uses of the loaded value.
if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
return SDValue();
SDLoc LdDL(Ld);
SDLoc StDL(N);
// If we are a 64-bit capable x86, lower to a single movq load/store pair.
// Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
// pair instead.
if (Subtarget.is64Bit() || F64IsLegal) {
MVT LdVT = Subtarget.is64Bit() ? MVT::i64 : MVT::f64;
SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
Ld->getMemOperand());
// Make sure new load is placed in same chain order.
DAG.makeEquivalentMemoryOrdering(Ld, NewLd);
return DAG.getStore(St->getChain(), StDL, NewLd, St->getBasePtr(),
St->getMemOperand());
}
// Otherwise, lower to two pairs of 32-bit loads / stores.
SDValue LoAddr = Ld->getBasePtr();
SDValue HiAddr = DAG.getMemBasePlusOffset(LoAddr, 4, LdDL);
SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
Ld->getPointerInfo(), Ld->getAlignment(),
Ld->getMemOperand()->getFlags());
SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
Ld->getPointerInfo().getWithOffset(4),
MinAlign(Ld->getAlignment(), 4),
Ld->getMemOperand()->getFlags());
// Make sure new loads are placed in same chain order.
DAG.makeEquivalentMemoryOrdering(Ld, LoLd);
DAG.makeEquivalentMemoryOrdering(Ld, HiLd);
LoAddr = St->getBasePtr();
HiAddr = DAG.getMemBasePlusOffset(LoAddr, 4, StDL);
SDValue LoSt =
DAG.getStore(St->getChain(), StDL, LoLd, LoAddr, St->getPointerInfo(),
St->getAlignment(), St->getMemOperand()->getFlags());
SDValue HiSt = DAG.getStore(St->getChain(), StDL, HiLd, HiAddr,
St->getPointerInfo().getWithOffset(4),
MinAlign(St->getAlignment(), 4),
St->getMemOperand()->getFlags());
return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
}
// This is similar to the above case, but here we handle a scalar 64-bit
// integer store that is extracted from a vector on a 32-bit target.
// If we have SSE2, then we can treat it like a floating-point double
// to get past legalization. The execution dependencies fixup pass will
// choose the optimal machine instruction for the store if this really is
// an integer or v2f32 rather than an f64.
if (VT == MVT::i64 && F64IsLegal && !Subtarget.is64Bit() &&
St->getOperand(1).getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
SDValue OldExtract = St->getOperand(1);
SDValue ExtOp0 = OldExtract.getOperand(0);
unsigned VecSize = ExtOp0.getValueSizeInBits();
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, VecSize / 64);
SDValue BitCast = DAG.getBitcast(VecVT, ExtOp0);
SDValue NewExtract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
BitCast, OldExtract.getOperand(1));
return DAG.getStore(St->getChain(), dl, NewExtract, St->getBasePtr(),
St->getPointerInfo(), St->getAlignment(),
St->getMemOperand()->getFlags());
}
return SDValue();
}
/// Return 'true' if this vector operation is "horizontal"
/// and return the operands for the horizontal operation in LHS and RHS. A
/// horizontal operation performs the binary operation on successive elements
/// of its first operand, then on successive elements of its second operand,
/// returning the resulting values in a vector. For example, if
/// A = < float a0, float a1, float a2, float a3 >
/// and
/// B = < float b0, float b1, float b2, float b3 >
/// then the result of doing a horizontal operation on A and B is
/// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
/// A horizontal-op B, for some already available A and B, and if so then LHS is
/// set to A, RHS to B, and the routine returns 'true'.
/// Note that the binary operation should have the property that if one of the
/// operands is UNDEF then the result is UNDEF.
static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
// Look for the following pattern: if
// A = < float a0, float a1, float a2, float a3 >
// B = < float b0, float b1, float b2, float b3 >
// and
// LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
// RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
// then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
// which is A horizontal-op B.
// At least one of the operands should be a vector shuffle.
if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
return false;
MVT VT = LHS.getSimpleValueType();
assert((VT.is128BitVector() || VT.is256BitVector()) &&
"Unsupported vector type for horizontal add/sub");
// Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
// operate independently on 128-bit lanes.
unsigned NumElts = VT.getVectorNumElements();
unsigned NumLanes = VT.getSizeInBits()/128;
unsigned NumLaneElts = NumElts / NumLanes;
assert((NumLaneElts % 2 == 0) &&
"Vector type should have an even number of elements in each lane");
unsigned HalfLaneElts = NumLaneElts/2;
// View LHS in the form
// LHS = VECTOR_SHUFFLE A, B, LMask
// If LHS is not a shuffle then pretend it is the shuffle
// LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
// NOTE: in what follows a default initialized SDValue represents an UNDEF of
// type VT.
SDValue A, B;
SmallVector<int, 16> LMask(NumElts);
if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
if (!LHS.getOperand(0).isUndef())
A = LHS.getOperand(0);
if (!LHS.getOperand(1).isUndef())
B = LHS.getOperand(1);
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
std::copy(Mask.begin(), Mask.end(), LMask.begin());
} else {
if (!LHS.isUndef())
A = LHS;
for (unsigned i = 0; i != NumElts; ++i)
LMask[i] = i;
}
// Likewise, view RHS in the form
// RHS = VECTOR_SHUFFLE C, D, RMask
SDValue C, D;
SmallVector<int, 16> RMask(NumElts);
if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
if (!RHS.getOperand(0).isUndef())
C = RHS.getOperand(0);
if (!RHS.getOperand(1).isUndef())
D = RHS.getOperand(1);
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
std::copy(Mask.begin(), Mask.end(), RMask.begin());
} else {
if (!RHS.isUndef())
C = RHS;
for (unsigned i = 0; i != NumElts; ++i)
RMask[i] = i;
}
// Check that the shuffles are both shuffling the same vectors.
if (!(A == C && B == D) && !(A == D && B == C))
return false;
// If everything is UNDEF then bail out: it would be better to fold to UNDEF.
if (!A.getNode() && !B.getNode())
return false;
// If A and B occur in reverse order in RHS, then "swap" them (which means
// rewriting the mask).
if (A != C)
ShuffleVectorSDNode::commuteMask(RMask);
// At this point LHS and RHS are equivalent to
// LHS = VECTOR_SHUFFLE A, B, LMask
// RHS = VECTOR_SHUFFLE A, B, RMask
// Check that the masks correspond to performing a horizontal operation.
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
for (unsigned i = 0; i != NumLaneElts; ++i) {
int LIdx = LMask[i+l], RIdx = RMask[i+l];
// Ignore any UNDEF components.
if (LIdx < 0 || RIdx < 0 ||
(!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
(!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
continue;
// Check that successive elements are being operated on. If not, this is
// not a horizontal operation.
unsigned Src = (i/HalfLaneElts); // each lane is split between srcs
int Index = 2*(i%HalfLaneElts) + NumElts*Src + l;
if (!(LIdx == Index && RIdx == Index + 1) &&
!(IsCommutative && LIdx == Index + 1 && RIdx == Index))
return false;
}
}
LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
return true;
}
/// Do target-specific dag combines on floating-point adds/subs.
static SDValue combineFaddFsub(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
bool IsFadd = N->getOpcode() == ISD::FADD;
assert((IsFadd || N->getOpcode() == ISD::FSUB) && "Wrong opcode");
// Try to synthesize horizontal add/sub from adds/subs of shuffles.
if (((Subtarget.hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
(Subtarget.hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
isHorizontalBinOp(LHS, RHS, IsFadd)) {
auto NewOpcode = IsFadd ? X86ISD::FHADD : X86ISD::FHSUB;
return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
}
return SDValue();
}
/// Attempt to pre-truncate inputs to arithmetic ops if it will simplify
/// the codegen.
/// e.g. TRUNC( BINOP( X, Y ) ) --> BINOP( TRUNC( X ), TRUNC( Y ) )
static SDValue combineTruncatedArithmetic(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget,
const SDLoc &DL) {
assert(N->getOpcode() == ISD::TRUNCATE && "Wrong opcode");
SDValue Src = N->getOperand(0);
unsigned Opcode = Src.getOpcode();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT VT = N->getValueType(0);
EVT SrcVT = Src.getValueType();
auto IsRepeatedOpOrFreeTruncation = [VT](SDValue Op0, SDValue Op1) {
unsigned TruncSizeInBits = VT.getScalarSizeInBits();
// Repeated operand, so we are only trading one output truncation for
// one input truncation.
if (Op0 == Op1)
return true;
// See if either operand has been extended from a smaller/equal size to
// the truncation size, allowing a truncation to combine with the extend.
unsigned Opcode0 = Op0.getOpcode();
if ((Opcode0 == ISD::ANY_EXTEND || Opcode0 == ISD::SIGN_EXTEND ||
Opcode0 == ISD::ZERO_EXTEND) &&
Op0.getOperand(0).getScalarValueSizeInBits() <= TruncSizeInBits)
return true;
unsigned Opcode1 = Op1.getOpcode();
if ((Opcode1 == ISD::ANY_EXTEND || Opcode1 == ISD::SIGN_EXTEND ||
Opcode1 == ISD::ZERO_EXTEND) &&
Op1.getOperand(0).getScalarValueSizeInBits() <= TruncSizeInBits)
return true;
// See if either operand is a single use constant which can be constant
// folded.
SDValue BC0 = peekThroughOneUseBitcasts(Op0);
SDValue BC1 = peekThroughOneUseBitcasts(Op1);
return ISD::isBuildVectorOfConstantSDNodes(BC0.getNode()) ||
ISD::isBuildVectorOfConstantSDNodes(BC1.getNode());
};
auto TruncateArithmetic = [&](SDValue N0, SDValue N1) {
SDValue Trunc0 = DAG.getNode(ISD::TRUNCATE, DL, VT, N0);
SDValue Trunc1 = DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
return DAG.getNode(Opcode, DL, VT, Trunc0, Trunc1);
};
// Don't combine if the operation has other uses.
if (!N->isOnlyUserOf(Src.getNode()))
return SDValue();
// Only support vector truncation for now.
// TODO: i64 scalar math would benefit as well.
if (!VT.isVector())
return SDValue();
// In most cases its only worth pre-truncating if we're only facing the cost
// of one truncation.
// i.e. if one of the inputs will constant fold or the input is repeated.
switch (Opcode) {
case ISD::AND:
case ISD::XOR:
case ISD::OR: {
SDValue Op0 = Src.getOperand(0);
SDValue Op1 = Src.getOperand(1);
if (TLI.isOperationLegalOrPromote(Opcode, VT) &&
IsRepeatedOpOrFreeTruncation(Op0, Op1))
return TruncateArithmetic(Op0, Op1);
break;
}
case ISD::MUL:
// X86 is rubbish at scalar and vector i64 multiplies (until AVX512DQ) - its
// better to truncate if we have the chance.
if (SrcVT.getScalarType() == MVT::i64 && TLI.isOperationLegal(Opcode, VT) &&
!TLI.isOperationLegal(Opcode, SrcVT))
return TruncateArithmetic(Src.getOperand(0), Src.getOperand(1));
LLVM_FALLTHROUGH;
case ISD::ADD: {
// TODO: ISD::SUB should be here but interferes with combineSubToSubus.
SDValue Op0 = Src.getOperand(0);
SDValue Op1 = Src.getOperand(1);
if (TLI.isOperationLegal(Opcode, VT) &&
IsRepeatedOpOrFreeTruncation(Op0, Op1))
return TruncateArithmetic(Op0, Op1);
break;
}
}
return SDValue();
}
/// Truncate using ISD::AND mask and X86ISD::PACKUS.
static SDValue combineVectorTruncationWithPACKUS(SDNode *N, const SDLoc &DL,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDValue In = N->getOperand(0);
EVT InVT = In.getValueType();
EVT InSVT = InVT.getVectorElementType();
EVT OutVT = N->getValueType(0);
EVT OutSVT = OutVT.getVectorElementType();
// Split a long vector into vectors of legal type and mask to unset all bits
// that won't appear in the result to prevent saturation.
// TODO - we should be doing this at the maximum legal size but this is
// causing regressions where we're concatenating back to max width just to
// perform the AND and then extracting back again.....
unsigned NumSubRegs = InVT.getSizeInBits() / 128;
unsigned NumSubRegElts = 128 / InSVT.getSizeInBits();
EVT SubRegVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumSubRegElts);
SmallVector<SDValue, 8> SubVecs(NumSubRegs);
APInt Mask =
APInt::getLowBitsSet(InSVT.getSizeInBits(), OutSVT.getSizeInBits());
SDValue MaskVal = DAG.getConstant(Mask, DL, SubRegVT);
for (unsigned i = 0; i < NumSubRegs; i++) {
SDValue Sub = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubRegVT, In,
DAG.getIntPtrConstant(i * NumSubRegElts, DL));
SubVecs[i] = DAG.getNode(ISD::AND, DL, SubRegVT, Sub, MaskVal);
}
In = DAG.getNode(ISD::CONCAT_VECTORS, DL, InVT, SubVecs);
return truncateVectorWithPACK(X86ISD::PACKUS, OutVT, In, DL, DAG, Subtarget);
}
/// Truncate a group of v4i32 into v8i16 using X86ISD::PACKSS.
static SDValue combineVectorTruncationWithPACKSS(SDNode *N, const SDLoc &DL,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDValue In = N->getOperand(0);
EVT InVT = In.getValueType();
EVT OutVT = N->getValueType(0);
In = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, InVT, In,
DAG.getValueType(OutVT));
return truncateVectorWithPACK(X86ISD::PACKSS, OutVT, In, DL, DAG, Subtarget);
}
/// This function transforms truncation from vXi32/vXi64 to vXi8/vXi16 into
/// X86ISD::PACKUS/X86ISD::PACKSS operations. We do it here because after type
/// legalization the truncation will be translated into a BUILD_VECTOR with each
/// element that is extracted from a vector and then truncated, and it is
/// difficult to do this optimization based on them.
static SDValue combineVectorTruncation(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT OutVT = N->getValueType(0);
if (!OutVT.isVector())
return SDValue();
SDValue In = N->getOperand(0);
if (!In.getValueType().isSimple())
return SDValue();
EVT InVT = In.getValueType();
unsigned NumElems = OutVT.getVectorNumElements();
// TODO: On AVX2, the behavior of X86ISD::PACKUS is different from that on
// SSE2, and we need to take care of it specially.
// AVX512 provides vpmovdb.
if (!Subtarget.hasSSE2() || Subtarget.hasAVX2())
return SDValue();
EVT OutSVT = OutVT.getVectorElementType();
EVT InSVT = InVT.getVectorElementType();
if (!((InSVT == MVT::i32 || InSVT == MVT::i64) &&
(OutSVT == MVT::i8 || OutSVT == MVT::i16) && isPowerOf2_32(NumElems) &&
NumElems >= 8))
return SDValue();
// SSSE3's pshufb results in less instructions in the cases below.
if (Subtarget.hasSSSE3() && NumElems == 8 &&
((OutSVT == MVT::i8 && InSVT != MVT::i64) ||
(InSVT == MVT::i32 && OutSVT == MVT::i16)))
return SDValue();
SDLoc DL(N);
// SSE2 provides PACKUS for only 2 x v8i16 -> v16i8 and SSE4.1 provides PACKUS
// for 2 x v4i32 -> v8i16. For SSSE3 and below, we need to use PACKSS to
// truncate 2 x v4i32 to v8i16.
if (Subtarget.hasSSE41() || OutSVT == MVT::i8)
return combineVectorTruncationWithPACKUS(N, DL, Subtarget, DAG);
if (InSVT == MVT::i32)
return combineVectorTruncationWithPACKSS(N, DL, Subtarget, DAG);
return SDValue();
}
/// This function transforms vector truncation of 'extended sign-bits' or
/// 'extended zero-bits' values.
/// vXi16/vXi32/vXi64 to vXi8/vXi16/vXi32 into X86ISD::PACKSS/PACKUS operations.
static SDValue combineVectorSignBitsTruncation(SDNode *N, const SDLoc &DL,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// Requires SSE2 but AVX512 has fast truncate.
if (!Subtarget.hasSSE2() || Subtarget.hasAVX512())
return SDValue();
if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple())
return SDValue();
SDValue In = N->getOperand(0);
if (!In.getValueType().isSimple())
return SDValue();
MVT VT = N->getValueType(0).getSimpleVT();
MVT SVT = VT.getScalarType();
MVT InVT = In.getValueType().getSimpleVT();
MVT InSVT = InVT.getScalarType();
// Check we have a truncation suited for PACKSS/PACKUS.
if (!VT.is128BitVector() && !VT.is256BitVector())
return SDValue();
if (SVT != MVT::i8 && SVT != MVT::i16 && SVT != MVT::i32)
return SDValue();
if (InSVT != MVT::i16 && InSVT != MVT::i32 && InSVT != MVT::i64)
return SDValue();
unsigned NumPackedSignBits = std::min<unsigned>(SVT.getSizeInBits(), 16);
unsigned NumPackedZeroBits = Subtarget.hasSSE41() ? NumPackedSignBits : 8;
// Use PACKUS if the input has zero-bits that extend all the way to the
// packed/truncated value. e.g. masks, zext_in_reg, etc.
KnownBits Known;
DAG.computeKnownBits(In, Known);
unsigned NumLeadingZeroBits = Known.countMinLeadingZeros();
if (NumLeadingZeroBits >= (InSVT.getSizeInBits() - NumPackedZeroBits))
return truncateVectorWithPACK(X86ISD::PACKUS, VT, In, DL, DAG, Subtarget);
// Use PACKSS if the input has sign-bits that extend all the way to the
// packed/truncated value. e.g. Comparison result, sext_in_reg, etc.
unsigned NumSignBits = DAG.ComputeNumSignBits(In);
if (NumSignBits > (InSVT.getSizeInBits() - NumPackedSignBits))
return truncateVectorWithPACK(X86ISD::PACKSS, VT, In, DL, DAG, Subtarget);
return SDValue();
}
// Try to form a MULHU or MULHS node by looking for
// (trunc (srl (mul ext, ext), 16))
// TODO: This is X86 specific because we want to be able to handle wide types
// before type legalization. But we can only do it if the vector will be
// legalized via widening/splitting. Type legalization can't handle promotion
// of a MULHU/MULHS. There isn't a way to convey this to the generic DAG
// combiner.
static SDValue combinePMULH(SDValue Src, EVT VT, const SDLoc &DL,
SelectionDAG &DAG, const X86Subtarget &Subtarget) {
// First instruction should be a right shift of a multiply.
if (Src.getOpcode() != ISD::SRL ||
Src.getOperand(0).getOpcode() != ISD::MUL)
return SDValue();
if (!Subtarget.hasSSE2())
return SDValue();
// Only handle vXi16 types that are at least 128-bits.
if (!VT.isVector() || VT.getVectorElementType() != MVT::i16 ||
VT.getVectorNumElements() < 8)
return SDValue();
// Input type should be vXi32.
EVT InVT = Src.getValueType();
if (InVT.getVectorElementType() != MVT::i32)
return SDValue();
// Need a shift by 16.
APInt ShiftAmt;
if (!ISD::isConstantSplatVector(Src.getOperand(1).getNode(), ShiftAmt) ||
ShiftAmt != 16)
return SDValue();
SDValue LHS = Src.getOperand(0).getOperand(0);
SDValue RHS = Src.getOperand(0).getOperand(1);
unsigned ExtOpc = LHS.getOpcode();
if ((ExtOpc != ISD::SIGN_EXTEND && ExtOpc != ISD::ZERO_EXTEND) ||
RHS.getOpcode() != ExtOpc)
return SDValue();
// Peek through the extends.
LHS = LHS.getOperand(0);
RHS = RHS.getOperand(0);
// Ensure the input types match.
if (LHS.getValueType() != VT || RHS.getValueType() != VT)
return SDValue();
unsigned Opc = ExtOpc == ISD::SIGN_EXTEND ? ISD::MULHS : ISD::MULHU;
return DAG.getNode(Opc, DL, VT, LHS, RHS);
}
// Attempt to match PMADDUBSW, which multiplies corresponding unsigned bytes
// from one vector with signed bytes from another vector, adds together
// adjacent pairs of 16-bit products, and saturates the result before
// truncating to 16-bits.
//
// Which looks something like this:
// (i16 (ssat (add (mul (zext (even elts (i8 A))), (sext (even elts (i8 B)))),
// (mul (zext (odd elts (i8 A)), (sext (odd elts (i8 B))))))))
static SDValue detectPMADDUBSW(SDValue In, EVT VT, SelectionDAG &DAG,
const X86Subtarget &Subtarget,
const SDLoc &DL) {
if (!VT.isVector() || !Subtarget.hasSSSE3())
return SDValue();
unsigned NumElems = VT.getVectorNumElements();
EVT ScalarVT = VT.getVectorElementType();
if (ScalarVT != MVT::i16 || NumElems < 8 || !isPowerOf2_32(NumElems))
return SDValue();
SDValue SSatVal = detectSSatPattern(In, VT);
if (!SSatVal || SSatVal.getOpcode() != ISD::ADD)
return SDValue();
// Ok this is a signed saturation of an ADD. See if this ADD is adding pairs
// of multiplies from even/odd elements.
SDValue N0 = SSatVal.getOperand(0);
SDValue N1 = SSatVal.getOperand(1);
if (N0.getOpcode() != ISD::MUL || N1.getOpcode() != ISD::MUL)
return SDValue();
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
SDValue N10 = N1.getOperand(0);
SDValue N11 = N1.getOperand(1);
// TODO: Handle constant vectors and use knownbits/computenumsignbits?
// Canonicalize zero_extend to LHS.
if (N01.getOpcode() == ISD::ZERO_EXTEND)
std::swap(N00, N01);
if (N11.getOpcode() == ISD::ZERO_EXTEND)
std::swap(N10, N11);
// Ensure we have a zero_extend and a sign_extend.
if (N00.getOpcode() != ISD::ZERO_EXTEND ||
N01.getOpcode() != ISD::SIGN_EXTEND ||
N10.getOpcode() != ISD::ZERO_EXTEND ||
N11.getOpcode() != ISD::SIGN_EXTEND)
return SDValue();
// Peek through the extends.
N00 = N00.getOperand(0);
N01 = N01.getOperand(0);
N10 = N10.getOperand(0);
N11 = N11.getOperand(0);
// Ensure the extend is from vXi8.
if (N00.getValueType().getVectorElementType() != MVT::i8 ||
N01.getValueType().getVectorElementType() != MVT::i8 ||
N10.getValueType().getVectorElementType() != MVT::i8 ||
N11.getValueType().getVectorElementType() != MVT::i8)
return SDValue();
// All inputs should be build_vectors.
if (N00.getOpcode() != ISD::BUILD_VECTOR ||
N01.getOpcode() != ISD::BUILD_VECTOR ||
N10.getOpcode() != ISD::BUILD_VECTOR ||
N11.getOpcode() != ISD::BUILD_VECTOR)
return SDValue();
// N00/N10 are zero extended. N01/N11 are sign extended.
// For each element, we need to ensure we have an odd element from one vector
// multiplied by the odd element of another vector and the even element from
// one of the same vectors being multiplied by the even element from the
// other vector. So we need to make sure for each element i, this operator
// is being performed:
// A[2 * i] * B[2 * i] + A[2 * i + 1] * B[2 * i + 1]
SDValue ZExtIn, SExtIn;
for (unsigned i = 0; i != NumElems; ++i) {
SDValue N00Elt = N00.getOperand(i);
SDValue N01Elt = N01.getOperand(i);
SDValue N10Elt = N10.getOperand(i);
SDValue N11Elt = N11.getOperand(i);
// TODO: Be more tolerant to undefs.
if (N00Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
N01Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
N10Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
N11Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
auto *ConstN00Elt = dyn_cast<ConstantSDNode>(N00Elt.getOperand(1));
auto *ConstN01Elt = dyn_cast<ConstantSDNode>(N01Elt.getOperand(1));
auto *ConstN10Elt = dyn_cast<ConstantSDNode>(N10Elt.getOperand(1));
auto *ConstN11Elt = dyn_cast<ConstantSDNode>(N11Elt.getOperand(1));
if (!ConstN00Elt || !ConstN01Elt || !ConstN10Elt || !ConstN11Elt)
return SDValue();
unsigned IdxN00 = ConstN00Elt->getZExtValue();
unsigned IdxN01 = ConstN01Elt->getZExtValue();
unsigned IdxN10 = ConstN10Elt->getZExtValue();
unsigned IdxN11 = ConstN11Elt->getZExtValue();
// Add is commutative so indices can be reordered.
if (IdxN00 > IdxN10) {
std::swap(IdxN00, IdxN10);
std::swap(IdxN01, IdxN11);
}
// N0 indices be the even element. N1 indices must be the next odd element.
if (IdxN00 != 2 * i || IdxN10 != 2 * i + 1 ||
IdxN01 != 2 * i || IdxN11 != 2 * i + 1)
return SDValue();
SDValue N00In = N00Elt.getOperand(0);
SDValue N01In = N01Elt.getOperand(0);
SDValue N10In = N10Elt.getOperand(0);
SDValue N11In = N11Elt.getOperand(0);
// First time we find an input capture it.
if (!ZExtIn) {
ZExtIn = N00In;
SExtIn = N01In;
}
if (ZExtIn != N00In || SExtIn != N01In ||
ZExtIn != N10In || SExtIn != N11In)
return SDValue();
}
auto PMADDBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
// Shrink by adding truncate nodes and let DAGCombine fold with the
// sources.
EVT InVT = Ops[0].getValueType();
assert(InVT.getScalarType() == MVT::i8 &&
"Unexpected scalar element type");
assert(InVT == Ops[1].getValueType() && "Operands' types mismatch");
EVT ResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16,
InVT.getVectorNumElements() / 2);
return DAG.getNode(X86ISD::VPMADDUBSW, DL, ResVT, Ops[0], Ops[1]);
};
return SplitOpsAndApply(DAG, Subtarget, DL, VT, { ZExtIn, SExtIn },
PMADDBuilder);
}
static SDValue combineTruncate(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
SDValue Src = N->getOperand(0);
SDLoc DL(N);
// Attempt to pre-truncate inputs to arithmetic ops instead.
if (SDValue V = combineTruncatedArithmetic(N, DAG, Subtarget, DL))
return V;
// Try to detect AVG pattern first.
if (SDValue Avg = detectAVGPattern(Src, VT, DAG, Subtarget, DL))
return Avg;
// Try to detect PMADD
if (SDValue PMAdd = detectPMADDUBSW(Src, VT, DAG, Subtarget, DL))
return PMAdd;
// Try to combine truncation with signed/unsigned saturation.
if (SDValue Val = combineTruncateWithSat(Src, VT, DL, DAG, Subtarget))
return Val;
// Try to combine PMULHUW/PMULHW for vXi16.
if (SDValue V = combinePMULH(Src, VT, DL, DAG, Subtarget))
return V;
// The bitcast source is a direct mmx result.
// Detect bitcasts between i32 to x86mmx
if (Src.getOpcode() == ISD::BITCAST && VT == MVT::i32) {
SDValue BCSrc = Src.getOperand(0);
if (BCSrc.getValueType() == MVT::x86mmx)
return DAG.getNode(X86ISD::MMX_MOVD2W, DL, MVT::i32, BCSrc);
}
// Try to truncate extended sign/zero bits with PACKSS/PACKUS.
if (SDValue V = combineVectorSignBitsTruncation(N, DL, DAG, Subtarget))
return V;
return combineVectorTruncation(N, DAG, Subtarget);
}
/// Returns the negated value if the node \p N flips sign of FP value.
///
/// FP-negation node may have different forms: FNEG(x) or FXOR (x, 0x80000000).
/// AVX512F does not have FXOR, so FNEG is lowered as
/// (bitcast (xor (bitcast x), (bitcast ConstantFP(0x80000000)))).
/// In this case we go though all bitcasts.
static SDValue isFNEG(SDNode *N) {
if (N->getOpcode() == ISD::FNEG)
return N->getOperand(0);
SDValue Op = peekThroughBitcasts(SDValue(N, 0));
if (Op.getOpcode() != X86ISD::FXOR && Op.getOpcode() != ISD::XOR)
return SDValue();
SDValue Op1 = peekThroughBitcasts(Op.getOperand(1));
if (!Op1.getValueType().isFloatingPoint())
return SDValue();
// Extract constant bits and see if they are all sign bit masks.
APInt UndefElts;
SmallVector<APInt, 16> EltBits;
if (getTargetConstantBitsFromNode(Op1, Op1.getScalarValueSizeInBits(),
UndefElts, EltBits, false, false))
if (llvm::all_of(EltBits, [](APInt &I) { return I.isSignMask(); }))
return peekThroughBitcasts(Op.getOperand(0));
return SDValue();
}
/// Do target-specific dag combines on floating point negations.
static SDValue combineFneg(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT OrigVT = N->getValueType(0);
SDValue Arg = isFNEG(N);
assert(Arg.getNode() && "N is expected to be an FNEG node");
EVT VT = Arg.getValueType();
EVT SVT = VT.getScalarType();
SDLoc DL(N);
// Let legalize expand this if it isn't a legal type yet.
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
// If we're negating a FMUL node on a target with FMA, then we can avoid the
// use of a constant by performing (-0 - A*B) instead.
// FIXME: Check rounding control flags as well once it becomes available.
if (Arg.getOpcode() == ISD::FMUL && (SVT == MVT::f32 || SVT == MVT::f64) &&
Arg->getFlags().hasNoSignedZeros() && Subtarget.hasAnyFMA()) {
SDValue Zero = DAG.getConstantFP(0.0, DL, VT);
SDValue NewNode = DAG.getNode(X86ISD::FNMSUB, DL, VT, Arg.getOperand(0),
Arg.getOperand(1), Zero);
return DAG.getBitcast(OrigVT, NewNode);
}
// If we're negating an FMA node, then we can adjust the
// instruction to include the extra negation.
unsigned NewOpcode = 0;
if (Arg.hasOneUse() && Subtarget.hasAnyFMA()) {
switch (Arg.getOpcode()) {
case ISD::FMA: NewOpcode = X86ISD::FNMSUB; break;
case X86ISD::FMSUB: NewOpcode = X86ISD::FNMADD; break;
case X86ISD::FNMADD: NewOpcode = X86ISD::FMSUB; break;
case X86ISD::FNMSUB: NewOpcode = ISD::FMA; break;
case X86ISD::FMADD_RND: NewOpcode = X86ISD::FNMSUB_RND; break;
case X86ISD::FMSUB_RND: NewOpcode = X86ISD::FNMADD_RND; break;
case X86ISD::FNMADD_RND: NewOpcode = X86ISD::FMSUB_RND; break;
case X86ISD::FNMSUB_RND: NewOpcode = X86ISD::FMADD_RND; break;
// We can't handle scalar intrinsic node here because it would only
// invert one element and not the whole vector. But we could try to handle
// a negation of the lower element only.
}
}
if (NewOpcode)
return DAG.getBitcast(OrigVT, DAG.getNode(NewOpcode, DL, VT,
Arg.getNode()->ops()));
return SDValue();
}
static SDValue lowerX86FPLogicOp(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = N->getSimpleValueType(0);
// If we have integer vector types available, use the integer opcodes.
if (VT.isVector() && Subtarget.hasSSE2()) {
SDLoc dl(N);
MVT IntVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64);
SDValue Op0 = DAG.getBitcast(IntVT, N->getOperand(0));
SDValue Op1 = DAG.getBitcast(IntVT, N->getOperand(1));
unsigned IntOpcode;
switch (N->getOpcode()) {
default: llvm_unreachable("Unexpected FP logic op");
case X86ISD::FOR: IntOpcode = ISD::OR; break;
case X86ISD::FXOR: IntOpcode = ISD::XOR; break;
case X86ISD::FAND: IntOpcode = ISD::AND; break;
case X86ISD::FANDN: IntOpcode = X86ISD::ANDNP; break;
}
SDValue IntOp = DAG.getNode(IntOpcode, dl, IntVT, Op0, Op1);
return DAG.getBitcast(VT, IntOp);
}
return SDValue();
}
/// Fold a xor(setcc cond, val), 1 --> setcc (inverted(cond), val)
static SDValue foldXor1SetCC(SDNode *N, SelectionDAG &DAG) {
if (N->getOpcode() != ISD::XOR)
return SDValue();
SDValue LHS = N->getOperand(0);
auto *RHSC = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!RHSC || RHSC->getZExtValue() != 1 || LHS->getOpcode() != X86ISD::SETCC)
return SDValue();
X86::CondCode NewCC = X86::GetOppositeBranchCondition(
X86::CondCode(LHS->getConstantOperandVal(0)));
SDLoc DL(N);
return getSETCC(NewCC, LHS->getOperand(1), DL, DAG);
}
static SDValue combineXor(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
// If this is SSE1 only convert to FXOR to avoid scalarization.
if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() &&
N->getValueType(0) == MVT::v4i32) {
return DAG.getBitcast(
MVT::v4i32, DAG.getNode(X86ISD::FXOR, SDLoc(N), MVT::v4f32,
DAG.getBitcast(MVT::v4f32, N->getOperand(0)),
DAG.getBitcast(MVT::v4f32, N->getOperand(1))));
}
if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
return Cmp;
if (DCI.isBeforeLegalizeOps())
return SDValue();
if (SDValue SetCC = foldXor1SetCC(N, DAG))
return SetCC;
if (SDValue RV = foldXorTruncShiftIntoCmp(N, DAG))
return RV;
if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
return FPLogic;
if (isFNEG(N))
return combineFneg(N, DAG, Subtarget);
return SDValue();
}
static SDValue combineBEXTR(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
EVT VT = N->getValueType(0);
unsigned NumBits = VT.getSizeInBits();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
// TODO - Constant Folding.
if (auto *Cst1 = dyn_cast<ConstantSDNode>(Op1)) {
// Reduce Cst1 to the bottom 16-bits.
// NOTE: SimplifyDemandedBits won't do this for constants.
const APInt &Val1 = Cst1->getAPIntValue();
APInt MaskedVal1 = Val1 & 0xFFFF;
if (MaskedVal1 != Val1)
return DAG.getNode(X86ISD::BEXTR, SDLoc(N), VT, Op0,
DAG.getConstant(MaskedVal1, SDLoc(N), VT));
}
// Only bottom 16-bits of the control bits are required.
KnownBits Known;
APInt DemandedMask(APInt::getLowBitsSet(NumBits, 16));
if (TLI.SimplifyDemandedBits(Op1, DemandedMask, Known, TLO)) {
DCI.CommitTargetLoweringOpt(TLO);
return SDValue(N, 0);
}
return SDValue();
}
static bool isNullFPScalarOrVectorConst(SDValue V) {
return isNullFPConstant(V) || ISD::isBuildVectorAllZeros(V.getNode());
}
/// If a value is a scalar FP zero or a vector FP zero (potentially including
/// undefined elements), return a zero constant that may be used to fold away
/// that value. In the case of a vector, the returned constant will not contain
/// undefined elements even if the input parameter does. This makes it suitable
/// to be used as a replacement operand with operations (eg, bitwise-and) where
/// an undef should not propagate.
static SDValue getNullFPConstForNullVal(SDValue V, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (!isNullFPScalarOrVectorConst(V))
return SDValue();
if (V.getValueType().isVector())
return getZeroVector(V.getSimpleValueType(), Subtarget, DAG, SDLoc(V));
return V;
}
static SDValue combineFAndFNotToFAndn(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
// Vector types are handled in combineANDXORWithAllOnesIntoANDNP().
if (!((VT == MVT::f32 && Subtarget.hasSSE1()) ||
(VT == MVT::f64 && Subtarget.hasSSE2()) ||
(VT == MVT::v4f32 && Subtarget.hasSSE1() && !Subtarget.hasSSE2())))
return SDValue();
auto isAllOnesConstantFP = [](SDValue V) {
if (V.getSimpleValueType().isVector())
return ISD::isBuildVectorAllOnes(V.getNode());
auto *C = dyn_cast<ConstantFPSDNode>(V);
return C && C->getConstantFPValue()->isAllOnesValue();
};
// fand (fxor X, -1), Y --> fandn X, Y
if (N0.getOpcode() == X86ISD::FXOR && isAllOnesConstantFP(N0.getOperand(1)))
return DAG.getNode(X86ISD::FANDN, DL, VT, N0.getOperand(0), N1);
// fand X, (fxor Y, -1) --> fandn Y, X
if (N1.getOpcode() == X86ISD::FXOR && isAllOnesConstantFP(N1.getOperand(1)))
return DAG.getNode(X86ISD::FANDN, DL, VT, N1.getOperand(0), N0);
return SDValue();
}
/// Do target-specific dag combines on X86ISD::FAND nodes.
static SDValue combineFAnd(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// FAND(0.0, x) -> 0.0
if (SDValue V = getNullFPConstForNullVal(N->getOperand(0), DAG, Subtarget))
return V;
// FAND(x, 0.0) -> 0.0
if (SDValue V = getNullFPConstForNullVal(N->getOperand(1), DAG, Subtarget))
return V;
if (SDValue V = combineFAndFNotToFAndn(N, DAG, Subtarget))
return V;
return lowerX86FPLogicOp(N, DAG, Subtarget);
}
/// Do target-specific dag combines on X86ISD::FANDN nodes.
static SDValue combineFAndn(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// FANDN(0.0, x) -> x
if (isNullFPScalarOrVectorConst(N->getOperand(0)))
return N->getOperand(1);
// FANDN(x, 0.0) -> 0.0
if (SDValue V = getNullFPConstForNullVal(N->getOperand(1), DAG, Subtarget))
return V;
return lowerX86FPLogicOp(N, DAG, Subtarget);
}
/// Do target-specific dag combines on X86ISD::FOR and X86ISD::FXOR nodes.
static SDValue combineFOr(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
// F[X]OR(0.0, x) -> x
if (isNullFPScalarOrVectorConst(N->getOperand(0)))
return N->getOperand(1);
// F[X]OR(x, 0.0) -> x
if (isNullFPScalarOrVectorConst(N->getOperand(1)))
return N->getOperand(0);
if (isFNEG(N))
if (SDValue NewVal = combineFneg(N, DAG, Subtarget))
return NewVal;
return lowerX86FPLogicOp(N, DAG, Subtarget);
}
/// Do target-specific dag combines on X86ISD::FMIN and X86ISD::FMAX nodes.
static SDValue combineFMinFMax(SDNode *N, SelectionDAG &DAG) {
assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
// Only perform optimizations if UnsafeMath is used.
if (!DAG.getTarget().Options.UnsafeFPMath)
return SDValue();
// If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
// into FMINC and FMAXC, which are Commutative operations.
unsigned NewOp = 0;
switch (N->getOpcode()) {
default: llvm_unreachable("unknown opcode");
case X86ISD::FMIN: NewOp = X86ISD::FMINC; break;
case X86ISD::FMAX: NewOp = X86ISD::FMAXC; break;
}
return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
N->getOperand(0), N->getOperand(1));
}
static SDValue combineFMinNumFMaxNum(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (Subtarget.useSoftFloat())
return SDValue();
// TODO: If an operand is already known to be a NaN or not a NaN, this
// should be an optional swap and FMAX/FMIN.
EVT VT = N->getValueType(0);
if (!((Subtarget.hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) ||
(Subtarget.hasSSE2() && (VT == MVT::f64 || VT == MVT::v2f64)) ||
(Subtarget.hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))))
return SDValue();
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
SDLoc DL(N);
auto MinMaxOp = N->getOpcode() == ISD::FMAXNUM ? X86ISD::FMAX : X86ISD::FMIN;
// If we don't have to respect NaN inputs, this is a direct translation to x86
// min/max instructions.
if (DAG.getTarget().Options.NoNaNsFPMath || N->getFlags().hasNoNaNs())
return DAG.getNode(MinMaxOp, DL, VT, Op0, Op1, N->getFlags());
// If we have to respect NaN inputs, this takes at least 3 instructions.
// Favor a library call when operating on a scalar and minimizing code size.
if (!VT.isVector() && DAG.getMachineFunction().getFunction().optForMinSize())
return SDValue();
EVT SetCCType = DAG.getTargetLoweringInfo().getSetCCResultType(
DAG.getDataLayout(), *DAG.getContext(), VT);
// There are 4 possibilities involving NaN inputs, and these are the required
// outputs:
// Op1
// Num NaN
// ----------------
// Num | Max | Op0 |
// Op0 ----------------
// NaN | Op1 | NaN |
// ----------------
//
// The SSE FP max/min instructions were not designed for this case, but rather
// to implement:
// Min = Op1 < Op0 ? Op1 : Op0
// Max = Op1 > Op0 ? Op1 : Op0
//
// So they always return Op0 if either input is a NaN. However, we can still
// use those instructions for fmaxnum by selecting away a NaN input.
// If either operand is NaN, the 2nd source operand (Op0) is passed through.
SDValue MinOrMax = DAG.getNode(MinMaxOp, DL, VT, Op1, Op0);
SDValue IsOp0Nan = DAG.getSetCC(DL, SetCCType, Op0, Op0, ISD::SETUO);
// If Op0 is a NaN, select Op1. Otherwise, select the max. If both operands
// are NaN, the NaN value of Op1 is the result.
return DAG.getSelect(DL, VT, IsOp0Nan, Op1, MinOrMax);
}
/// Do target-specific dag combines on X86ISD::ANDNP nodes.
static SDValue combineAndnp(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
// ANDNP(0, x) -> x
if (ISD::isBuildVectorAllZeros(N->getOperand(0).getNode()))
return N->getOperand(1);
// ANDNP(x, 0) -> 0
if (ISD::isBuildVectorAllZeros(N->getOperand(1).getNode()))
return getZeroVector(N->getSimpleValueType(0), Subtarget, DAG, SDLoc(N));
EVT VT = N->getValueType(0);
// Attempt to recursively combine a bitmask ANDNP with shuffles.
if (VT.isVector() && (VT.getScalarSizeInBits() % 8) == 0) {
SDValue Op(N, 0);
if (SDValue Res = combineX86ShufflesRecursively(
{Op}, 0, Op, {0}, {}, /*Depth*/ 1,
/*HasVarMask*/ false, DAG, Subtarget))
return Res;
}
return SDValue();
}
static SDValue combineBT(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// BT ignores high bits in the bit index operand.
unsigned BitWidth = N1.getValueSizeInBits();
APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
if (SDValue DemandedN1 = DAG.GetDemandedBits(N1, DemandedMask))
return DAG.getNode(X86ISD::BT, SDLoc(N), MVT::i32, N0, DemandedN1);
return SDValue();
}
// Try to combine sext_in_reg of a cmov of constants by extending the constants.
static SDValue combineSextInRegCmov(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
if (ExtraVT != MVT::i16)
return SDValue();
// Look through single use any_extends.
if (N0.getOpcode() == ISD::ANY_EXTEND && N0.hasOneUse())
N0 = N0.getOperand(0);
// See if we have a single use cmov.
if (N0.getOpcode() != X86ISD::CMOV || !N0.hasOneUse())
return SDValue();
SDValue CMovOp0 = N0.getOperand(0);
SDValue CMovOp1 = N0.getOperand(1);
// Make sure both operands are constants.
if (!isa<ConstantSDNode>(CMovOp0.getNode()) ||
!isa<ConstantSDNode>(CMovOp1.getNode()))
return SDValue();
SDLoc DL(N);
// If we looked through an any_extend above, add one to the constants.
if (N0.getValueType() != VT) {
CMovOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, VT, CMovOp0);
CMovOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, VT, CMovOp1);
}
CMovOp0 = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, CMovOp0, N1);
CMovOp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, CMovOp1, N1);
return DAG.getNode(X86ISD::CMOV, DL, VT, CMovOp0, CMovOp1,
N0.getOperand(2), N0.getOperand(3));
}
static SDValue combineSignExtendInReg(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (SDValue V = combineSextInRegCmov(N, DAG))
return V;
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
SDLoc dl(N);
// The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
// both SSE and AVX2 since there is no sign-extended shift right
// operation on a vector with 64-bit elements.
//(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
// (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
N0.getOpcode() == ISD::SIGN_EXTEND)) {
SDValue N00 = N0.getOperand(0);
// EXTLOAD has a better solution on AVX2,
// it may be replaced with X86ISD::VSEXT node.
if (N00.getOpcode() == ISD::LOAD && Subtarget.hasInt256())
if (!ISD::isNormalLoad(N00.getNode()))
return SDValue();
if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
N00, N1);
return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
}
}
return SDValue();
}
/// sext(add_nsw(x, C)) --> add(sext(x), C_sext)
/// zext(add_nuw(x, C)) --> add(zext(x), C_zext)
/// Promoting a sign/zero extension ahead of a no overflow 'add' exposes
/// opportunities to combine math ops, use an LEA, or use a complex addressing
/// mode. This can eliminate extend, add, and shift instructions.
static SDValue promoteExtBeforeAdd(SDNode *Ext, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (Ext->getOpcode() != ISD::SIGN_EXTEND &&
Ext->getOpcode() != ISD::ZERO_EXTEND)
return SDValue();
// TODO: This should be valid for other integer types.
EVT VT = Ext->getValueType(0);
if (VT != MVT::i64)
return SDValue();
SDValue Add = Ext->getOperand(0);
if (Add.getOpcode() != ISD::ADD)
return SDValue();
bool Sext = Ext->getOpcode() == ISD::SIGN_EXTEND;
bool NSW = Add->getFlags().hasNoSignedWrap();
bool NUW = Add->getFlags().hasNoUnsignedWrap();
// We need an 'add nsw' feeding into the 'sext' or 'add nuw' feeding
// into the 'zext'
if ((Sext && !NSW) || (!Sext && !NUW))
return SDValue();
// Having a constant operand to the 'add' ensures that we are not increasing
// the instruction count because the constant is extended for free below.
// A constant operand can also become the displacement field of an LEA.
auto *AddOp1 = dyn_cast<ConstantSDNode>(Add.getOperand(1));
if (!AddOp1)
return SDValue();
// Don't make the 'add' bigger if there's no hope of combining it with some
// other 'add' or 'shl' instruction.
// TODO: It may be profitable to generate simpler LEA instructions in place
// of single 'add' instructions, but the cost model for selecting an LEA
// currently has a high threshold.
bool HasLEAPotential = false;
for (auto *User : Ext->uses()) {
if (User->getOpcode() == ISD::ADD || User->getOpcode() == ISD::SHL) {
HasLEAPotential = true;
break;
}
}
if (!HasLEAPotential)
return SDValue();
// Everything looks good, so pull the '{s|z}ext' ahead of the 'add'.
int64_t AddConstant = Sext ? AddOp1->getSExtValue() : AddOp1->getZExtValue();
SDValue AddOp0 = Add.getOperand(0);
SDValue NewExt = DAG.getNode(Ext->getOpcode(), SDLoc(Ext), VT, AddOp0);
SDValue NewConstant = DAG.getConstant(AddConstant, SDLoc(Add), VT);
// The wider add is guaranteed to not wrap because both operands are
// sign-extended.
SDNodeFlags Flags;
Flags.setNoSignedWrap(NSW);
Flags.setNoUnsignedWrap(NUW);
return DAG.getNode(ISD::ADD, SDLoc(Add), VT, NewExt, NewConstant, Flags);
}
/// (i8,i32 {s/z}ext ({s/u}divrem (i8 x, i8 y)) ->
/// (i8,i32 ({s/u}divrem_sext_hreg (i8 x, i8 y)
/// This exposes the {s/z}ext to the sdivrem lowering, so that it directly
/// extends from AH (which we otherwise need to do contortions to access).
static SDValue getDivRem8(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
auto OpcodeN = N->getOpcode();
auto OpcodeN0 = N0.getOpcode();
if (!((OpcodeN == ISD::SIGN_EXTEND && OpcodeN0 == ISD::SDIVREM) ||
(OpcodeN == ISD::ZERO_EXTEND && OpcodeN0 == ISD::UDIVREM)))
return SDValue();
EVT VT = N->getValueType(0);
EVT InVT = N0.getValueType();
if (N0.getResNo() != 1 || InVT != MVT::i8 ||
!(VT == MVT::i32 || VT == MVT::i64))
return SDValue();
SDVTList NodeTys = DAG.getVTList(MVT::i8, MVT::i32);
auto DivRemOpcode = OpcodeN0 == ISD::SDIVREM ? X86ISD::SDIVREM8_SEXT_HREG
: X86ISD::UDIVREM8_ZEXT_HREG;
SDValue R = DAG.getNode(DivRemOpcode, SDLoc(N), NodeTys, N0.getOperand(0),
N0.getOperand(1));
DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0));
// If this was a 64-bit extend, complete it.
if (VT == MVT::i64)
return DAG.getNode(OpcodeN, SDLoc(N), VT, R.getValue(1));
return R.getValue(1);
}
// If we face {ANY,SIGN,ZERO}_EXTEND that is applied to a CMOV with constant
// operands and the result of CMOV is not used anywhere else - promote CMOV
// itself instead of promoting its result. This could be beneficial, because:
// 1) X86TargetLowering::EmitLoweredSelect later can do merging of two
// (or more) pseudo-CMOVs only when they go one-after-another and
// getting rid of result extension code after CMOV will help that.
// 2) Promotion of constant CMOV arguments is free, hence the
// {ANY,SIGN,ZERO}_EXTEND will just be deleted.
// 3) 16-bit CMOV encoding is 4 bytes, 32-bit CMOV is 3-byte, so this
// promotion is also good in terms of code-size.
// (64-bit CMOV is 4-bytes, that's why we don't do 32-bit => 64-bit
// promotion).
static SDValue combineToExtendCMOV(SDNode *Extend, SelectionDAG &DAG) {
SDValue CMovN = Extend->getOperand(0);
if (CMovN.getOpcode() != X86ISD::CMOV || !CMovN.hasOneUse())
return SDValue();
EVT TargetVT = Extend->getValueType(0);
unsigned ExtendOpcode = Extend->getOpcode();
SDLoc DL(Extend);
EVT VT = CMovN.getValueType();
SDValue CMovOp0 = CMovN.getOperand(0);
SDValue CMovOp1 = CMovN.getOperand(1);
if (!isa<ConstantSDNode>(CMovOp0.getNode()) ||
!isa<ConstantSDNode>(CMovOp1.getNode()))
return SDValue();
// Only extend to i32 or i64.
if (TargetVT != MVT::i32 && TargetVT != MVT::i64)
return SDValue();
// Only extend from i16 unless its a sign_extend from i32. Zext/aext from i32
// are free.
if (VT != MVT::i16 && !(ExtendOpcode == ISD::SIGN_EXTEND && VT == MVT::i32))
return SDValue();
// If this a zero extend to i64, we should only extend to i32 and use a free
// zero extend to finish.
EVT ExtendVT = TargetVT;
if (TargetVT == MVT::i64 && ExtendOpcode != ISD::SIGN_EXTEND)
ExtendVT = MVT::i32;
CMovOp0 = DAG.getNode(ExtendOpcode, DL, ExtendVT, CMovOp0);
CMovOp1 = DAG.getNode(ExtendOpcode, DL, ExtendVT, CMovOp1);
SDValue Res = DAG.getNode(X86ISD::CMOV, DL, ExtendVT, CMovOp0, CMovOp1,
CMovN.getOperand(2), CMovN.getOperand(3));
// Finish extending if needed.
if (ExtendVT != TargetVT)
Res = DAG.getNode(ExtendOpcode, DL, TargetVT, Res);
return Res;
}
// Convert (vXiY *ext(vXi1 bitcast(iX))) to extend_in_reg(broadcast(iX)).
// This is more or less the reverse of combineBitcastvxi1.
static SDValue
combineToExtendBoolVectorInReg(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
unsigned Opcode = N->getOpcode();
if (Opcode != ISD::SIGN_EXTEND && Opcode != ISD::ZERO_EXTEND &&
Opcode != ISD::ANY_EXTEND)
return SDValue();
if (!DCI.isBeforeLegalizeOps())
return SDValue();
if (!Subtarget.hasSSE2() || Subtarget.hasAVX512())
return SDValue();
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT SVT = VT.getScalarType();
EVT InSVT = N0.getValueType().getScalarType();
unsigned EltSizeInBits = SVT.getSizeInBits();
// Input type must be extending a bool vector (bit-casted from a scalar
// integer) to legal integer types.
if (!VT.isVector())
return SDValue();
if (SVT != MVT::i64 && SVT != MVT::i32 && SVT != MVT::i16 && SVT != MVT::i8)
return SDValue();
if (InSVT != MVT::i1 || N0.getOpcode() != ISD::BITCAST)
return SDValue();
SDValue N00 = N0.getOperand(0);
EVT SclVT = N0.getOperand(0).getValueType();
if (!SclVT.isScalarInteger())
return SDValue();
SDLoc DL(N);
SDValue Vec;
SmallVector<int, 32> ShuffleMask;
unsigned NumElts = VT.getVectorNumElements();
assert(NumElts == SclVT.getSizeInBits() && "Unexpected bool vector size");
// Broadcast the scalar integer to the vector elements.
if (NumElts > EltSizeInBits) {
// If the scalar integer is greater than the vector element size, then we
// must split it down into sub-sections for broadcasting. For example:
// i16 -> v16i8 (i16 -> v8i16 -> v16i8) with 2 sub-sections.
// i32 -> v32i8 (i32 -> v8i32 -> v32i8) with 4 sub-sections.
assert((NumElts % EltSizeInBits) == 0 && "Unexpected integer scale");
unsigned Scale = NumElts / EltSizeInBits;
EVT BroadcastVT =
EVT::getVectorVT(*DAG.getContext(), SclVT, EltSizeInBits);
Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, BroadcastVT, N00);
Vec = DAG.getBitcast(VT, Vec);
for (unsigned i = 0; i != Scale; ++i)
ShuffleMask.append(EltSizeInBits, i);
} else {
// For smaller scalar integers, we can simply any-extend it to the vector
// element size (we don't care about the upper bits) and broadcast it to all
// elements.
SDValue Scl = DAG.getAnyExtOrTrunc(N00, DL, SVT);
Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Scl);
ShuffleMask.append(NumElts, 0);
}
Vec = DAG.getVectorShuffle(VT, DL, Vec, Vec, ShuffleMask);
// Now, mask the relevant bit in each element.
SmallVector<SDValue, 32> Bits;
for (unsigned i = 0; i != NumElts; ++i) {
int BitIdx = (i % EltSizeInBits);
APInt Bit = APInt::getBitsSet(EltSizeInBits, BitIdx, BitIdx + 1);
Bits.push_back(DAG.getConstant(Bit, DL, SVT));
}
SDValue BitMask = DAG.getBuildVector(VT, DL, Bits);
Vec = DAG.getNode(ISD::AND, DL, VT, Vec, BitMask);
// Compare against the bitmask and extend the result.
EVT CCVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, NumElts);
Vec = DAG.getSetCC(DL, CCVT, Vec, BitMask, ISD::SETEQ);
Vec = DAG.getSExtOrTrunc(Vec, DL, VT);
// For SEXT, this is now done, otherwise shift the result down for
// zero-extension.
if (Opcode == ISD::SIGN_EXTEND)
return Vec;
return DAG.getNode(ISD::SRL, DL, VT, Vec,
DAG.getConstant(EltSizeInBits - 1, DL, VT));
}
/// Convert a SEXT or ZEXT of a vector to a SIGN_EXTEND_VECTOR_INREG or
/// ZERO_EXTEND_VECTOR_INREG, this requires the splitting (or concatenating
/// with UNDEFs) of the input to vectors of the same size as the target type
/// which then extends the lowest elements.
static SDValue combineToExtendVectorInReg(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
unsigned Opcode = N->getOpcode();
if (Opcode != ISD::SIGN_EXTEND && Opcode != ISD::ZERO_EXTEND)
return SDValue();
if (!DCI.isBeforeLegalizeOps())
return SDValue();
if (!Subtarget.hasSSE2())
return SDValue();
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT SVT = VT.getScalarType();
EVT InVT = N0.getValueType();
EVT InSVT = InVT.getScalarType();
// Input type must be a vector and we must be extending legal integer types.
if (!VT.isVector())
return SDValue();
if (SVT != MVT::i64 && SVT != MVT::i32 && SVT != MVT::i16)
return SDValue();
if (InSVT != MVT::i32 && InSVT != MVT::i16 && InSVT != MVT::i8)
return SDValue();
// On AVX2+ targets, if the input/output types are both legal then we will be
// able to use SIGN_EXTEND/ZERO_EXTEND directly.
if (Subtarget.hasInt256() && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
DAG.getTargetLoweringInfo().isTypeLegal(InVT))
return SDValue();
SDLoc DL(N);
auto ExtendVecSize = [&DAG](const SDLoc &DL, SDValue N, unsigned Size) {
EVT InVT = N.getValueType();
EVT OutVT = EVT::getVectorVT(*DAG.getContext(), InVT.getScalarType(),
Size / InVT.getScalarSizeInBits());
SmallVector<SDValue, 8> Opnds(Size / InVT.getSizeInBits(),
DAG.getUNDEF(InVT));
Opnds[0] = N;
return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Opnds);
};
// If target-size is less than 128-bits, extend to a type that would extend
// to 128 bits, extend that and extract the original target vector.
if (VT.getSizeInBits() < 128 && !(128 % VT.getSizeInBits())) {
unsigned Scale = 128 / VT.getSizeInBits();
EVT ExVT =
EVT::getVectorVT(*DAG.getContext(), SVT, 128 / SVT.getSizeInBits());
SDValue Ex = ExtendVecSize(DL, N0, Scale * InVT.getSizeInBits());
SDValue SExt = DAG.getNode(Opcode, DL, ExVT, Ex);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SExt,
DAG.getIntPtrConstant(0, DL));
}
// If target-size is 128-bits (or 256-bits on AVX2 target), then convert to
// ISD::*_EXTEND_VECTOR_INREG which ensures lowering to X86ISD::V*EXT.
// Also use this if we don't have SSE41 to allow the legalizer do its job.
if (!Subtarget.hasSSE41() || VT.is128BitVector() ||
(VT.is256BitVector() && Subtarget.hasInt256()) ||
(VT.is512BitVector() && Subtarget.useAVX512Regs())) {
SDValue ExOp = ExtendVecSize(DL, N0, VT.getSizeInBits());
return Opcode == ISD::SIGN_EXTEND
? DAG.getSignExtendVectorInReg(ExOp, DL, VT)
: DAG.getZeroExtendVectorInReg(ExOp, DL, VT);
}
auto SplitAndExtendInReg = [&](unsigned SplitSize) {
unsigned NumVecs = VT.getSizeInBits() / SplitSize;
unsigned NumSubElts = SplitSize / SVT.getSizeInBits();
EVT SubVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumSubElts);
EVT InSubVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumSubElts);
SmallVector<SDValue, 8> Opnds;
for (unsigned i = 0, Offset = 0; i != NumVecs; ++i, Offset += NumSubElts) {
SDValue SrcVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InSubVT, N0,
DAG.getIntPtrConstant(Offset, DL));
SrcVec = ExtendVecSize(DL, SrcVec, SplitSize);
SrcVec = Opcode == ISD::SIGN_EXTEND
? DAG.getSignExtendVectorInReg(SrcVec, DL, SubVT)
: DAG.getZeroExtendVectorInReg(SrcVec, DL, SubVT);
Opnds.push_back(SrcVec);
}
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Opnds);
};
// On pre-AVX2 targets, split into 128-bit nodes of
// ISD::*_EXTEND_VECTOR_INREG.
if (!Subtarget.hasInt256() && !(VT.getSizeInBits() % 128))
return SplitAndExtendInReg(128);
// On pre-AVX512 targets, split into 256-bit nodes of
// ISD::*_EXTEND_VECTOR_INREG.
if (!Subtarget.useAVX512Regs() && !(VT.getSizeInBits() % 256))
return SplitAndExtendInReg(256);
return SDValue();
}
// Attempt to combine a (sext/zext (setcc)) to a setcc with a xmm/ymm/zmm
// result type.
static SDValue combineExtSetcc(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
SDLoc dl(N);
// Only do this combine with AVX512 for vector extends.
if (!Subtarget.hasAVX512() || !VT.isVector() || N0->getOpcode() != ISD::SETCC)
return SDValue();
// Only combine legal element types.
EVT SVT = VT.getVectorElementType();
if (SVT != MVT::i8 && SVT != MVT::i16 && SVT != MVT::i32 &&
SVT != MVT::i64 && SVT != MVT::f32 && SVT != MVT::f64)
return SDValue();
// We can only do this if the vector size in 256 bits or less.
unsigned Size = VT.getSizeInBits();
if (Size > 256)
return SDValue();
// Don't fold if the condition code can't be handled by PCMPEQ/PCMPGT since
// that's the only integer compares with we have.
ISD::CondCode CC = cast<CondCodeSDNode>(N0->getOperand(2))->get();
if (ISD::isUnsignedIntSetCC(CC))
return SDValue();
// Only do this combine if the extension will be fully consumed by the setcc.
EVT N00VT = N0.getOperand(0).getValueType();
EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger();
if (Size != MatchingVecType.getSizeInBits())
return SDValue();
SDValue Res = DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
if (N->getOpcode() == ISD::ZERO_EXTEND)
Res = DAG.getZeroExtendInReg(Res, dl, N0.getValueType().getScalarType());
return Res;
}
static SDValue combineSext(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT InVT = N0.getValueType();
SDLoc DL(N);
if (SDValue DivRem8 = getDivRem8(N, DAG))
return DivRem8;
if (SDValue NewCMov = combineToExtendCMOV(N, DAG))
return NewCMov;
if (!DCI.isBeforeLegalizeOps())
return SDValue();
if (SDValue V = combineExtSetcc(N, DAG, Subtarget))
return V;
if (InVT == MVT::i1 && N0.getOpcode() == ISD::XOR &&
isAllOnesConstant(N0.getOperand(1)) && N0.hasOneUse()) {
// Invert and sign-extend a boolean is the same as zero-extend and subtract
// 1 because 0 becomes -1 and 1 becomes 0. The subtract is efficiently
// lowered with an LEA or a DEC. This is the same as: select Bool, 0, -1.
// sext (xor Bool, -1) --> sub (zext Bool), 1
SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
return DAG.getNode(ISD::SUB, DL, VT, Zext, DAG.getConstant(1, DL, VT));
}
if (SDValue V = combineToExtendVectorInReg(N, DAG, DCI, Subtarget))
return V;
if (SDValue V = combineToExtendBoolVectorInReg(N, DAG, DCI, Subtarget))
return V;
if (VT.isVector())
if (SDValue R = WidenMaskArithmetic(N, DAG, Subtarget))
return R;
if (SDValue NewAdd = promoteExtBeforeAdd(N, DAG, Subtarget))
return NewAdd;
return SDValue();
}
static unsigned negateFMAOpcode(unsigned Opcode, bool NegMul, bool NegAcc) {
if (NegMul) {
switch (Opcode) {
default: llvm_unreachable("Unexpected opcode");
case ISD::FMA: Opcode = X86ISD::FNMADD; break;
case X86ISD::FMADD_RND: Opcode = X86ISD::FNMADD_RND; break;
case X86ISD::FMSUB: Opcode = X86ISD::FNMSUB; break;
case X86ISD::FMSUB_RND: Opcode = X86ISD::FNMSUB_RND; break;
case X86ISD::FNMADD: Opcode = ISD::FMA; break;
case X86ISD::FNMADD_RND: Opcode = X86ISD::FMADD_RND; break;
case X86ISD::FNMSUB: Opcode = X86ISD::FMSUB; break;
case X86ISD::FNMSUB_RND: Opcode = X86ISD::FMSUB_RND; break;
}
}
if (NegAcc) {
switch (Opcode) {
default: llvm_unreachable("Unexpected opcode");
case ISD::FMA: Opcode = X86ISD::FMSUB; break;
case X86ISD::FMADD_RND: Opcode = X86ISD::FMSUB_RND; break;
case X86ISD::FMSUB: Opcode = ISD::FMA; break;
case X86ISD::FMSUB_RND: Opcode = X86ISD::FMADD_RND; break;
case X86ISD::FNMADD: Opcode = X86ISD::FNMSUB; break;
case X86ISD::FNMADD_RND: Opcode = X86ISD::FNMSUB_RND; break;
case X86ISD::FNMSUB: Opcode = X86ISD::FNMADD; break;
case X86ISD::FNMSUB_RND: Opcode = X86ISD::FNMADD_RND; break;
}
}
return Opcode;
}
static SDValue combineFMA(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc dl(N);
EVT VT = N->getValueType(0);
// Let legalize expand this if it isn't a legal type yet.
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
EVT ScalarVT = VT.getScalarType();
if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || !Subtarget.hasAnyFMA())
return SDValue();
SDValue A = N->getOperand(0);
SDValue B = N->getOperand(1);
SDValue C = N->getOperand(2);
auto invertIfNegative = [&DAG](SDValue &V) {
if (SDValue NegVal = isFNEG(V.getNode())) {
V = DAG.getBitcast(V.getValueType(), NegVal);
return true;
}
// Look through extract_vector_elts. If it comes from an FNEG, create a
// new extract from the FNEG input.
if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
isNullConstant(V.getOperand(1))) {
if (SDValue NegVal = isFNEG(V.getOperand(0).getNode())) {
NegVal = DAG.getBitcast(V.getOperand(0).getValueType(), NegVal);
V = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), V.getValueType(),
NegVal, V.getOperand(1));
return true;
}
}
return false;
};
// Do not convert the passthru input of scalar intrinsics.
// FIXME: We could allow negations of the lower element only.
bool NegA = invertIfNegative(A);
bool NegB = invertIfNegative(B);
bool NegC = invertIfNegative(C);
if (!NegA && !NegB && !NegC)
return SDValue();
unsigned NewOpcode = negateFMAOpcode(N->getOpcode(), NegA != NegB, NegC);
if (N->getNumOperands() == 4)
return DAG.getNode(NewOpcode, dl, VT, A, B, C, N->getOperand(3));
return DAG.getNode(NewOpcode, dl, VT, A, B, C);
}
// Combine FMADDSUB(A, B, FNEG(C)) -> FMSUBADD(A, B, C)
static SDValue combineFMADDSUB(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc dl(N);
EVT VT = N->getValueType(0);
SDValue NegVal = isFNEG(N->getOperand(2).getNode());
if (!NegVal)
return SDValue();
unsigned NewOpcode;
switch (N->getOpcode()) {
default: llvm_unreachable("Unexpected opcode!");
case X86ISD::FMADDSUB: NewOpcode = X86ISD::FMSUBADD; break;
case X86ISD::FMADDSUB_RND: NewOpcode = X86ISD::FMSUBADD_RND; break;
case X86ISD::FMSUBADD: NewOpcode = X86ISD::FMADDSUB; break;
case X86ISD::FMSUBADD_RND: NewOpcode = X86ISD::FMADDSUB_RND; break;
}
if (N->getNumOperands() == 4)
return DAG.getNode(NewOpcode, dl, VT, N->getOperand(0), N->getOperand(1),
NegVal, N->getOperand(3));
return DAG.getNode(NewOpcode, dl, VT, N->getOperand(0), N->getOperand(1),
NegVal);
}
static SDValue combineZext(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
// (i32 zext (and (i8 x86isd::setcc_carry), 1)) ->
// (and (i32 x86isd::setcc_carry), 1)
// This eliminates the zext. This transformation is necessary because
// ISD::SETCC is always legalized to i8.
SDLoc dl(N);
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (N0.getOpcode() == ISD::AND &&
N0.hasOneUse() &&
N0.getOperand(0).hasOneUse()) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
if (!isOneConstant(N0.getOperand(1)))
return SDValue();
return DAG.getNode(ISD::AND, dl, VT,
DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
N00.getOperand(0), N00.getOperand(1)),
DAG.getConstant(1, dl, VT));
}
}
if (N0.getOpcode() == ISD::TRUNCATE &&
N0.hasOneUse() &&
N0.getOperand(0).hasOneUse()) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
return DAG.getNode(ISD::AND, dl, VT,
DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
N00.getOperand(0), N00.getOperand(1)),
DAG.getConstant(1, dl, VT));
}
}
if (SDValue NewCMov = combineToExtendCMOV(N, DAG))
return NewCMov;
if (DCI.isBeforeLegalizeOps())
if (SDValue V = combineExtSetcc(N, DAG, Subtarget))
return V;
if (SDValue V = combineToExtendVectorInReg(N, DAG, DCI, Subtarget))
return V;
if (SDValue V = combineToExtendBoolVectorInReg(N, DAG, DCI, Subtarget))
return V;
if (VT.isVector())
if (SDValue R = WidenMaskArithmetic(N, DAG, Subtarget))
return R;
if (SDValue DivRem8 = getDivRem8(N, DAG))
return DivRem8;
if (SDValue NewAdd = promoteExtBeforeAdd(N, DAG, Subtarget))
return NewAdd;
if (SDValue R = combineOrCmpEqZeroToCtlzSrl(N, DAG, DCI, Subtarget))
return R;
return SDValue();
}
/// Try to map a 128-bit or larger integer comparison to vector instructions
/// before type legalization splits it up into chunks.
static SDValue combineVectorSizedSetCCEquality(SDNode *SetCC, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
assert((CC == ISD::SETNE || CC == ISD::SETEQ) && "Bad comparison predicate");
// We're looking for an oversized integer equality comparison.
SDValue X = SetCC->getOperand(0);
SDValue Y = SetCC->getOperand(1);
EVT OpVT = X.getValueType();
unsigned OpSize = OpVT.getSizeInBits();
if (!OpVT.isScalarInteger() || OpSize < 128)
return SDValue();
// Ignore a comparison with zero because that gets special treatment in
// EmitTest(). But make an exception for the special case of a pair of
// logically-combined vector-sized operands compared to zero. This pattern may
// be generated by the memcmp expansion pass with oversized integer compares
// (see PR33325).
bool IsOrXorXorCCZero = isNullConstant(Y) && X.getOpcode() == ISD::OR &&
X.getOperand(0).getOpcode() == ISD::XOR &&
X.getOperand(1).getOpcode() == ISD::XOR;
if (isNullConstant(Y) && !IsOrXorXorCCZero)
return SDValue();
// Bail out if we know that this is not really just an oversized integer.
if (peekThroughBitcasts(X).getValueType() == MVT::f128 ||
peekThroughBitcasts(Y).getValueType() == MVT::f128)
return SDValue();
// TODO: Use PXOR + PTEST for SSE4.1 or later?
// TODO: Add support for AVX-512.
EVT VT = SetCC->getValueType(0);
SDLoc DL(SetCC);
if ((OpSize == 128 && Subtarget.hasSSE2()) ||
(OpSize == 256 && Subtarget.hasAVX2())) {
EVT VecVT = OpSize == 128 ? MVT::v16i8 : MVT::v32i8;
SDValue Cmp;
if (IsOrXorXorCCZero) {
// This is a bitwise-combined equality comparison of 2 pairs of vectors:
// setcc i128 (or (xor A, B), (xor C, D)), 0, eq|ne
// Use 2 vector equality compares and 'and' the results before doing a
// MOVMSK.
SDValue A = DAG.getBitcast(VecVT, X.getOperand(0).getOperand(0));
SDValue B = DAG.getBitcast(VecVT, X.getOperand(0).getOperand(1));
SDValue C = DAG.getBitcast(VecVT, X.getOperand(1).getOperand(0));
SDValue D = DAG.getBitcast(VecVT, X.getOperand(1).getOperand(1));
SDValue Cmp1 = DAG.getSetCC(DL, VecVT, A, B, ISD::SETEQ);
SDValue Cmp2 = DAG.getSetCC(DL, VecVT, C, D, ISD::SETEQ);
Cmp = DAG.getNode(ISD::AND, DL, VecVT, Cmp1, Cmp2);
} else {
SDValue VecX = DAG.getBitcast(VecVT, X);
SDValue VecY = DAG.getBitcast(VecVT, Y);
Cmp = DAG.getSetCC(DL, VecVT, VecX, VecY, ISD::SETEQ);
}
// If all bytes match (bitmask is 0x(FFFF)FFFF), that's equality.
// setcc i128 X, Y, eq --> setcc (pmovmskb (pcmpeqb X, Y)), 0xFFFF, eq
// setcc i128 X, Y, ne --> setcc (pmovmskb (pcmpeqb X, Y)), 0xFFFF, ne
// setcc i256 X, Y, eq --> setcc (vpmovmskb (vpcmpeqb X, Y)), 0xFFFFFFFF, eq
// setcc i256 X, Y, ne --> setcc (vpmovmskb (vpcmpeqb X, Y)), 0xFFFFFFFF, ne
SDValue MovMsk = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, Cmp);
SDValue FFFFs = DAG.getConstant(OpSize == 128 ? 0xFFFF : 0xFFFFFFFF, DL,
MVT::i32);
return DAG.getSetCC(DL, VT, MovMsk, FFFFs, CC);
}
return SDValue();
}
static SDValue combineSetCC(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
EVT VT = N->getValueType(0);
EVT OpVT = LHS.getValueType();
SDLoc DL(N);
if (CC == ISD::SETNE || CC == ISD::SETEQ) {
// 0-x == y --> x+y == 0
// 0-x != y --> x+y != 0
if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
LHS.hasOneUse()) {
SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, RHS, LHS.getOperand(1));
return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
}
// x == 0-y --> x+y == 0
// x != 0-y --> x+y != 0
if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
RHS.hasOneUse()) {
SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
}
if (SDValue V = combineVectorSizedSetCCEquality(N, DAG, Subtarget))
return V;
}
if (VT.isVector() && VT.getVectorElementType() == MVT::i1 &&
(CC == ISD::SETNE || CC == ISD::SETEQ || ISD::isSignedIntSetCC(CC))) {
// Put build_vectors on the right.
if (LHS.getOpcode() == ISD::BUILD_VECTOR) {
std::swap(LHS, RHS);
CC = ISD::getSetCCSwappedOperands(CC);
}
bool IsSEXT0 =
(LHS.getOpcode() == ISD::SIGN_EXTEND) &&
(LHS.getOperand(0).getValueType().getVectorElementType() == MVT::i1);
bool IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode());
if (IsSEXT0 && IsVZero1) {
assert(VT == LHS.getOperand(0).getValueType() &&
"Uexpected operand type");
if (CC == ISD::SETGT)
return DAG.getConstant(0, DL, VT);
if (CC == ISD::SETLE)
return DAG.getConstant(1, DL, VT);
if (CC == ISD::SETEQ || CC == ISD::SETGE)
return DAG.getNOT(DL, LHS.getOperand(0), VT);
assert((CC == ISD::SETNE || CC == ISD::SETLT) &&
"Unexpected condition code!");
return LHS.getOperand(0);
}
}
// If we have AVX512, but not BWI and this is a vXi16/vXi8 setcc, just
// pre-promote its result type since vXi1 vectors don't get promoted
// during type legalization.
// NOTE: The element count check is to ignore operand types that need to
// go through type promotion to a 128-bit vector.
if (Subtarget.hasAVX512() && !Subtarget.hasBWI() && VT.isVector() &&
VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() > 4 &&
(OpVT.getVectorElementType() == MVT::i8 ||
OpVT.getVectorElementType() == MVT::i16)) {
SDValue Setcc = DAG.getNode(ISD::SETCC, DL, OpVT, LHS, RHS,
N->getOperand(2));
return DAG.getNode(ISD::TRUNCATE, DL, VT, Setcc);
}
// For an SSE1-only target, lower a comparison of v4f32 to X86ISD::CMPP early
// to avoid scalarization via legalization because v4i32 is not a legal type.
if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && VT == MVT::v4i32 &&
LHS.getValueType() == MVT::v4f32)
return LowerVSETCC(SDValue(N, 0), Subtarget, DAG);
return SDValue();
}
static SDValue combineMOVMSK(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
SDValue Src = N->getOperand(0);
MVT SrcVT = Src.getSimpleValueType();
// Perform constant folding.
if (ISD::isBuildVectorOfConstantSDNodes(Src.getNode())) {
assert(N->getValueType(0) == MVT::i32 && "Unexpected result type");
APInt Imm(32, 0);
for (unsigned Idx = 0, e = Src.getNumOperands(); Idx < e; ++Idx) {
SDValue In = Src.getOperand(Idx);
if (!In.isUndef() &&
cast<ConstantSDNode>(In)->getAPIntValue().isNegative())
Imm.setBit(Idx);
}
return DAG.getConstant(Imm, SDLoc(N), N->getValueType(0));
}
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
// MOVMSK only uses the MSB from each vector element.
KnownBits Known;
APInt DemandedMask(APInt::getSignMask(SrcVT.getScalarSizeInBits()));
if (TLI.SimplifyDemandedBits(Src, DemandedMask, Known, TLO)) {
DCI.AddToWorklist(Src.getNode());
DCI.CommitTargetLoweringOpt(TLO);
return SDValue(N, 0);
}
return SDValue();
}
static SDValue combineGatherScatter(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDLoc DL(N);
if (DCI.isBeforeLegalizeOps()) {
SDValue Index = N->getOperand(4);
// Remove any sign extends from 32 or smaller to larger than 32.
// Only do this before LegalizeOps in case we need the sign extend for
// legalization.
if (Index.getOpcode() == ISD::SIGN_EXTEND) {
if (Index.getScalarValueSizeInBits() > 32 &&
Index.getOperand(0).getScalarValueSizeInBits() <= 32) {
SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end());
NewOps[4] = Index.getOperand(0);
SDNode *Res = DAG.UpdateNodeOperands(N, NewOps);
if (Res == N) {
// The original sign extend has less users, add back to worklist in
// case it needs to be removed
DCI.AddToWorklist(Index.getNode());
DCI.AddToWorklist(N);
}
return SDValue(Res, 0);
}
}
// Make sure the index is either i32 or i64
unsigned ScalarSize = Index.getScalarValueSizeInBits();
if (ScalarSize != 32 && ScalarSize != 64) {
MVT EltVT = ScalarSize > 32 ? MVT::i64 : MVT::i32;
EVT IndexVT = EVT::getVectorVT(*DAG.getContext(), EltVT,
Index.getValueType().getVectorNumElements());
Index = DAG.getSExtOrTrunc(Index, DL, IndexVT);
SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end());
NewOps[4] = Index;
SDNode *Res = DAG.UpdateNodeOperands(N, NewOps);
if (Res == N)
DCI.AddToWorklist(N);
return SDValue(Res, 0);
}
// Try to remove zero extends from 32->64 if we know the sign bit of
// the input is zero.
if (Index.getOpcode() == ISD::ZERO_EXTEND &&
Index.getScalarValueSizeInBits() == 64 &&
Index.getOperand(0).getScalarValueSizeInBits() == 32) {
if (DAG.SignBitIsZero(Index.getOperand(0))) {
SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end());
NewOps[4] = Index.getOperand(0);
SDNode *Res = DAG.UpdateNodeOperands(N, NewOps);
if (Res == N) {
// The original sign extend has less users, add back to worklist in
// case it needs to be removed
DCI.AddToWorklist(Index.getNode());
DCI.AddToWorklist(N);
}
return SDValue(Res, 0);
}
}
}
// With AVX2 we only demand the upper bit of the mask.
if (!Subtarget.hasAVX512()) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
SDValue Mask = N->getOperand(2);
KnownBits Known;
APInt DemandedMask(APInt::getSignMask(Mask.getScalarValueSizeInBits()));
if (TLI.SimplifyDemandedBits(Mask, DemandedMask, Known, TLO)) {
DCI.AddToWorklist(Mask.getNode());
DCI.CommitTargetLoweringOpt(TLO);
return SDValue(N, 0);
}
}
return SDValue();
}
// Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
static SDValue combineX86SetCC(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc DL(N);
X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
SDValue EFLAGS = N->getOperand(1);
// Try to simplify the EFLAGS and condition code operands.
if (SDValue Flags = combineSetCCEFLAGS(EFLAGS, CC, DAG, Subtarget))
return getSETCC(CC, Flags, DL, DAG);
return SDValue();
}
/// Optimize branch condition evaluation.
static SDValue combineBrCond(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc DL(N);
SDValue EFLAGS = N->getOperand(3);
X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
// Try to simplify the EFLAGS and condition code operands.
// Make sure to not keep references to operands, as combineSetCCEFLAGS can
// RAUW them under us.
if (SDValue Flags = combineSetCCEFLAGS(EFLAGS, CC, DAG, Subtarget)) {
SDValue Cond = DAG.getConstant(CC, DL, MVT::i8);
return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), N->getOperand(0),
N->getOperand(1), Cond, Flags);
}
return SDValue();
}
static SDValue combineVectorCompareAndMaskUnaryOp(SDNode *N,
SelectionDAG &DAG) {
// Take advantage of vector comparisons producing 0 or -1 in each lane to
// optimize away operation when it's from a constant.
//
// The general transformation is:
// UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
// AND(VECTOR_CMP(x,y), constant2)
// constant2 = UNARYOP(constant)
// Early exit if this isn't a vector operation, the operand of the
// unary operation isn't a bitwise AND, or if the sizes of the operations
// aren't the same.
EVT VT = N->getValueType(0);
if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits())
return SDValue();
// Now check that the other operand of the AND is a constant. We could
// make the transformation for non-constant splats as well, but it's unclear
// that would be a benefit as it would not eliminate any operations, just
// perform one more step in scalar code before moving to the vector unit.
if (BuildVectorSDNode *BV =
dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
// Bail out if the vector isn't a constant.
if (!BV->isConstant())
return SDValue();
// Everything checks out. Build up the new and improved node.
SDLoc DL(N);
EVT IntVT = BV->getValueType(0);
// Create a new constant of the appropriate type for the transformed
// DAG.
SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
// The AND node needs bitcasts to/from an integer vector type around it.
SDValue MaskConst = DAG.getBitcast(IntVT, SourceConst);
SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
N->getOperand(0)->getOperand(0), MaskConst);
SDValue Res = DAG.getBitcast(VT, NewAnd);
return Res;
}
return SDValue();
}
static SDValue combineUIntToFP(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDValue Op0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT InVT = Op0.getValueType();
// UINT_TO_FP(vXi1) -> SINT_TO_FP(SEXT(vXi1 to vXi32))
// UINT_TO_FP(vXi8) -> SINT_TO_FP(ZEXT(vXi8 to vXi32))
// UINT_TO_FP(vXi16) -> SINT_TO_FP(ZEXT(vXi16 to vXi32))
if (InVT.isVector() && InVT.getScalarSizeInBits() < 32) {
SDLoc dl(N);
EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
InVT.getVectorNumElements());
SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
// UINT_TO_FP isn't legal without AVX512 so use SINT_TO_FP.
return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P);
}
// Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
// optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
// the optimization here.
if (DAG.SignBitIsZero(Op0))
return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, Op0);
return SDValue();
}
static SDValue combineSIntToFP(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// First try to optimize away the conversion entirely when it's
// conditionally from a constant. Vectors only.
if (SDValue Res = combineVectorCompareAndMaskUnaryOp(N, DAG))
return Res;
// Now move on to more general possibilities.
SDValue Op0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT InVT = Op0.getValueType();
// SINT_TO_FP(vXi1) -> SINT_TO_FP(SEXT(vXi1 to vXi32))
// SINT_TO_FP(vXi8) -> SINT_TO_FP(SEXT(vXi8 to vXi32))
// SINT_TO_FP(vXi16) -> SINT_TO_FP(SEXT(vXi16 to vXi32))
if (InVT.isVector() && InVT.getScalarSizeInBits() < 32) {
SDLoc dl(N);
EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
InVT.getVectorNumElements());
SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P);
}
// Without AVX512DQ we only support i64 to float scalar conversion. For both
// vectors and scalars, see if we know that the upper bits are all the sign
// bit, in which case we can truncate the input to i32 and convert from that.
if (InVT.getScalarSizeInBits() > 32 && !Subtarget.hasDQI()) {
unsigned BitWidth = InVT.getScalarSizeInBits();
unsigned NumSignBits = DAG.ComputeNumSignBits(Op0);
if (NumSignBits >= (BitWidth - 31)) {
EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), 32);
if (InVT.isVector())
TruncVT = EVT::getVectorVT(*DAG.getContext(), TruncVT,
InVT.getVectorNumElements());
SDLoc dl(N);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, TruncVT, Op0);
return DAG.getNode(ISD::SINT_TO_FP, dl, VT, Trunc);
}
}
// Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
// a 32-bit target where SSE doesn't support i64->FP operations.
if (!Subtarget.useSoftFloat() && Op0.getOpcode() == ISD::LOAD) {
LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
EVT LdVT = Ld->getValueType(0);
// This transformation is not supported if the result type is f16 or f128.
if (VT == MVT::f16 || VT == MVT::f128)
return SDValue();
// If we have AVX512DQ we can use packed conversion instructions unless
// the VT is f80.
if (Subtarget.hasDQI() && VT != MVT::f80)
return SDValue();
if (!Ld->isVolatile() && !VT.isVector() &&
ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
!Subtarget.is64Bit() && LdVT == MVT::i64) {
SDValue FILDChain = Subtarget.getTargetLowering()->BuildFILD(
SDValue(N, 0), LdVT, Ld->getChain(), Op0, DAG);
DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
return FILDChain;
}
}
return SDValue();
}
static SDValue combineSBB(SDNode *N, SelectionDAG &DAG) {
if (SDValue Flags = combineCarryThroughADD(N->getOperand(2))) {
MVT VT = N->getSimpleValueType(0);
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
return DAG.getNode(X86ISD::SBB, SDLoc(N), VTs,
N->getOperand(0), N->getOperand(1),
Flags);
}
return SDValue();
}
// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
static SDValue combineADC(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
// If the LHS and RHS of the ADC node are zero, then it can't overflow and
// the result is either zero or one (depending on the input carry bit).
// Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
if (X86::isZeroNode(N->getOperand(0)) &&
X86::isZeroNode(N->getOperand(1)) &&
// We don't have a good way to replace an EFLAGS use, so only do this when
// dead right now.
SDValue(N, 1).use_empty()) {
SDLoc DL(N);
EVT VT = N->getValueType(0);
SDValue CarryOut = DAG.getConstant(0, DL, N->getValueType(1));
SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
DAG.getConstant(X86::COND_B, DL,
MVT::i8),
N->getOperand(2)),
DAG.getConstant(1, DL, VT));
return DCI.CombineTo(N, Res1, CarryOut);
}
if (SDValue Flags = combineCarryThroughADD(N->getOperand(2))) {
MVT VT = N->getSimpleValueType(0);
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
return DAG.getNode(X86ISD::ADC, SDLoc(N), VTs,
N->getOperand(0), N->getOperand(1),
Flags);
}
return SDValue();
}
/// Materialize "setb reg" as "sbb reg,reg", since it produces an all-ones bit
/// which is more useful than 0/1 in some cases.
static SDValue materializeSBB(SDNode *N, SDValue EFLAGS, SelectionDAG &DAG) {
SDLoc DL(N);
// "Condition code B" is also known as "the carry flag" (CF).
SDValue CF = DAG.getConstant(X86::COND_B, DL, MVT::i8);
SDValue SBB = DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8, CF, EFLAGS);
MVT VT = N->getSimpleValueType(0);
if (VT == MVT::i8)
return DAG.getNode(ISD::AND, DL, VT, SBB, DAG.getConstant(1, DL, VT));
assert(VT == MVT::i1 && "Unexpected type for SETCC node");
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SBB);
}
/// If this is an add or subtract where one operand is produced by a cmp+setcc,
/// then try to convert it to an ADC or SBB. This replaces TEST+SET+{ADD/SUB}
/// with CMP+{ADC, SBB}.
static SDValue combineAddOrSubToADCOrSBB(SDNode *N, SelectionDAG &DAG) {
bool IsSub = N->getOpcode() == ISD::SUB;
SDValue X = N->getOperand(0);
SDValue Y = N->getOperand(1);
// If this is an add, canonicalize a zext operand to the RHS.
// TODO: Incomplete? What if both sides are zexts?
if (!IsSub && X.getOpcode() == ISD::ZERO_EXTEND &&
Y.getOpcode() != ISD::ZERO_EXTEND)
std::swap(X, Y);
// Look through a one-use zext.
bool PeekedThroughZext = false;
if (Y.getOpcode() == ISD::ZERO_EXTEND && Y.hasOneUse()) {
Y = Y.getOperand(0);
PeekedThroughZext = true;
}
// If this is an add, canonicalize a setcc operand to the RHS.
// TODO: Incomplete? What if both sides are setcc?
// TODO: Should we allow peeking through a zext of the other operand?
if (!IsSub && !PeekedThroughZext && X.getOpcode() == X86ISD::SETCC &&
Y.getOpcode() != X86ISD::SETCC)
std::swap(X, Y);
if (Y.getOpcode() != X86ISD::SETCC || !Y.hasOneUse())
return SDValue();
SDLoc DL(N);
EVT VT = N->getValueType(0);
X86::CondCode CC = (X86::CondCode)Y.getConstantOperandVal(0);
// If X is -1 or 0, then we have an opportunity to avoid constants required in
// the general case below.
auto *ConstantX = dyn_cast<ConstantSDNode>(X);
if (ConstantX) {
if ((!IsSub && CC == X86::COND_AE && ConstantX->isAllOnesValue()) ||
(IsSub && CC == X86::COND_B && ConstantX->isNullValue())) {
// This is a complicated way to get -1 or 0 from the carry flag:
// -1 + SETAE --> -1 + (!CF) --> CF ? -1 : 0 --> SBB %eax, %eax
// 0 - SETB --> 0 - (CF) --> CF ? -1 : 0 --> SBB %eax, %eax
return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
DAG.getConstant(X86::COND_B, DL, MVT::i8),
Y.getOperand(1));
}
if ((!IsSub && CC == X86::COND_BE && ConstantX->isAllOnesValue()) ||
(IsSub && CC == X86::COND_A && ConstantX->isNullValue())) {
SDValue EFLAGS = Y->getOperand(1);
if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
EFLAGS.getValueType().isInteger() &&
!isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
// Swap the operands of a SUB, and we have the same pattern as above.
// -1 + SETBE (SUB A, B) --> -1 + SETAE (SUB B, A) --> SUB + SBB
// 0 - SETA (SUB A, B) --> 0 - SETB (SUB B, A) --> SUB + SBB
SDValue NewSub = DAG.getNode(
X86ISD::SUB, SDLoc(EFLAGS), EFLAGS.getNode()->getVTList(),
EFLAGS.getOperand(1), EFLAGS.getOperand(0));
SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
DAG.getConstant(X86::COND_B, DL, MVT::i8),
NewEFLAGS);
}
}
}
if (CC == X86::COND_B) {
// X + SETB Z --> X + (mask SBB Z, Z)
// X - SETB Z --> X - (mask SBB Z, Z)
// TODO: Produce ADC/SBB here directly and avoid SETCC_CARRY?
SDValue SBB = materializeSBB(Y.getNode(), Y.getOperand(1), DAG);
if (SBB.getValueSizeInBits() != VT.getSizeInBits())
SBB = DAG.getZExtOrTrunc(SBB, DL, VT);
return DAG.getNode(IsSub ? ISD::SUB : ISD::ADD, DL, VT, X, SBB);
}
if (CC == X86::COND_A) {
SDValue EFLAGS = Y->getOperand(1);
// Try to convert COND_A into COND_B in an attempt to facilitate
// materializing "setb reg".
//
// Do not flip "e > c", where "c" is a constant, because Cmp instruction
// cannot take an immediate as its first operand.
//
if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
EFLAGS.getValueType().isInteger() &&
!isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
EFLAGS.getNode()->getVTList(),
EFLAGS.getOperand(1), EFLAGS.getOperand(0));
SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
SDValue SBB = materializeSBB(Y.getNode(), NewEFLAGS, DAG);
if (SBB.getValueSizeInBits() != VT.getSizeInBits())
SBB = DAG.getZExtOrTrunc(SBB, DL, VT);
return DAG.getNode(IsSub ? ISD::SUB : ISD::ADD, DL, VT, X, SBB);
}
}
if (CC != X86::COND_E && CC != X86::COND_NE)
return SDValue();
SDValue Cmp = Y.getOperand(1);
if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
!X86::isZeroNode(Cmp.getOperand(1)) ||
!Cmp.getOperand(0).getValueType().isInteger())
return SDValue();
SDValue Z = Cmp.getOperand(0);
EVT ZVT = Z.getValueType();
// If X is -1 or 0, then we have an opportunity to avoid constants required in
// the general case below.
if (ConstantX) {
// 'neg' sets the carry flag when Z != 0, so create 0 or -1 using 'sbb' with
// fake operands:
// 0 - (Z != 0) --> sbb %eax, %eax, (neg Z)
// -1 + (Z == 0) --> sbb %eax, %eax, (neg Z)
if ((IsSub && CC == X86::COND_NE && ConstantX->isNullValue()) ||
(!IsSub && CC == X86::COND_E && ConstantX->isAllOnesValue())) {
SDValue Zero = DAG.getConstant(0, DL, ZVT);
SDVTList X86SubVTs = DAG.getVTList(ZVT, MVT::i32);
SDValue Neg = DAG.getNode(X86ISD::SUB, DL, X86SubVTs, Zero, Z);
return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
DAG.getConstant(X86::COND_B, DL, MVT::i8),
SDValue(Neg.getNode(), 1));
}
// cmp with 1 sets the carry flag when Z == 0, so create 0 or -1 using 'sbb'
// with fake operands:
// 0 - (Z == 0) --> sbb %eax, %eax, (cmp Z, 1)
// -1 + (Z != 0) --> sbb %eax, %eax, (cmp Z, 1)
if ((IsSub && CC == X86::COND_E && ConstantX->isNullValue()) ||
(!IsSub && CC == X86::COND_NE && ConstantX->isAllOnesValue())) {
SDValue One = DAG.getConstant(1, DL, ZVT);
SDValue Cmp1 = DAG.getNode(X86ISD::CMP, DL, MVT::i32, Z, One);
return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
DAG.getConstant(X86::COND_B, DL, MVT::i8), Cmp1);
}
}
// (cmp Z, 1) sets the carry flag if Z is 0.
SDValue One = DAG.getConstant(1, DL, ZVT);
SDValue Cmp1 = DAG.getNode(X86ISD::CMP, DL, MVT::i32, Z, One);
// Add the flags type for ADC/SBB nodes.
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
// X - (Z != 0) --> sub X, (zext(setne Z, 0)) --> adc X, -1, (cmp Z, 1)
// X + (Z != 0) --> add X, (zext(setne Z, 0)) --> sbb X, -1, (cmp Z, 1)
if (CC == X86::COND_NE)
return DAG.getNode(IsSub ? X86ISD::ADC : X86ISD::SBB, DL, VTs, X,
DAG.getConstant(-1ULL, DL, VT), Cmp1);
// X - (Z == 0) --> sub X, (zext(sete Z, 0)) --> sbb X, 0, (cmp Z, 1)
// X + (Z == 0) --> add X, (zext(sete Z, 0)) --> adc X, 0, (cmp Z, 1)
return DAG.getNode(IsSub ? X86ISD::SBB : X86ISD::ADC, DL, VTs, X,
DAG.getConstant(0, DL, VT), Cmp1);
}
static SDValue combineLoopMAddPattern(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (!Subtarget.hasSSE2())
return SDValue();
SDValue MulOp = N->getOperand(0);
SDValue Phi = N->getOperand(1);
if (MulOp.getOpcode() != ISD::MUL)
std::swap(MulOp, Phi);
if (MulOp.getOpcode() != ISD::MUL)
return SDValue();
ShrinkMode Mode;
if (!canReduceVMulWidth(MulOp.getNode(), DAG, Mode) || Mode == MULU16)
return SDValue();
EVT VT = N->getValueType(0);
// If the vector size is less than 128, or greater than the supported RegSize,
// do not use PMADD.
if (VT.getVectorNumElements() < 8)
return SDValue();
SDLoc DL(N);
EVT ReducedVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16,
VT.getVectorNumElements());
EVT MAddVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
VT.getVectorNumElements() / 2);
// Shrink the operands of mul.
SDValue N0 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, MulOp->getOperand(0));
SDValue N1 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, MulOp->getOperand(1));
// Madd vector size is half of the original vector size
auto PMADDWDBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
MVT VT = MVT::getVectorVT(MVT::i32, Ops[0].getValueSizeInBits() / 32);
return DAG.getNode(X86ISD::VPMADDWD, DL, VT, Ops);
};
SDValue Madd = SplitOpsAndApply(DAG, Subtarget, DL, MAddVT, { N0, N1 },
PMADDWDBuilder);
// Fill the rest of the output with 0
SDValue Zero = getZeroVector(Madd.getSimpleValueType(), Subtarget, DAG, DL);
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Madd, Zero);
return DAG.getNode(ISD::ADD, DL, VT, Concat, Phi);
}
static SDValue combineLoopSADPattern(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (!Subtarget.hasSSE2())
return SDValue();
SDLoc DL(N);
EVT VT = N->getValueType(0);
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
// TODO: There's nothing special about i32, any integer type above i16 should
// work just as well.
if (!VT.isVector() || !VT.isSimple() ||
!(VT.getVectorElementType() == MVT::i32))
return SDValue();
unsigned RegSize = 128;
if (Subtarget.useBWIRegs())
RegSize = 512;
else if (Subtarget.hasAVX())
RegSize = 256;
// We only handle v16i32 for SSE2 / v32i32 for AVX / v64i32 for AVX512.
// TODO: We should be able to handle larger vectors by splitting them before
// feeding them into several SADs, and then reducing over those.
if (VT.getSizeInBits() / 4 > RegSize)
return SDValue();
// We know N is a reduction add, which means one of its operands is a phi.
// To match SAD, we need the other operand to be a vector select.
SDValue SelectOp, Phi;
if (Op0.getOpcode() == ISD::VSELECT) {
SelectOp = Op0;
Phi = Op1;
} else if (Op1.getOpcode() == ISD::VSELECT) {
SelectOp = Op1;
Phi = Op0;
} else
return SDValue();
// Check whether we have an abs-diff pattern feeding into the select.
if(!detectZextAbsDiff(SelectOp, Op0, Op1))
return SDValue();
// SAD pattern detected. Now build a SAD instruction and an addition for
// reduction. Note that the number of elements of the result of SAD is less
// than the number of elements of its input. Therefore, we could only update
// part of elements in the reduction vector.
SDValue Sad = createPSADBW(DAG, Op0, Op1, DL, Subtarget);
// The output of PSADBW is a vector of i64.
// We need to turn the vector of i64 into a vector of i32.
// If the reduction vector is at least as wide as the psadbw result, just
// bitcast. If it's narrower, truncate - the high i32 of each i64 is zero
// anyway.
MVT ResVT = MVT::getVectorVT(MVT::i32, Sad.getValueSizeInBits() / 32);
if (VT.getSizeInBits() >= ResVT.getSizeInBits())
Sad = DAG.getNode(ISD::BITCAST, DL, ResVT, Sad);
else
Sad = DAG.getNode(ISD::TRUNCATE, DL, VT, Sad);
if (VT.getSizeInBits() > ResVT.getSizeInBits()) {
// Fill the upper elements with zero to match the add width.
SDValue Zero = DAG.getConstant(0, DL, VT);
Sad = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Zero, Sad,
DAG.getIntPtrConstant(0, DL));
}
return DAG.getNode(ISD::ADD, DL, VT, Sad, Phi);
}
/// Convert vector increment or decrement to sub/add with an all-ones constant:
/// add X, <1, 1...> --> sub X, <-1, -1...>
/// sub X, <1, 1...> --> add X, <-1, -1...>
/// The all-ones vector constant can be materialized using a pcmpeq instruction
/// that is commonly recognized as an idiom (has no register dependency), so
/// that's better/smaller than loading a splat 1 constant.
static SDValue combineIncDecVector(SDNode *N, SelectionDAG &DAG) {
assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
"Unexpected opcode for increment/decrement transform");
// Pseudo-legality check: getOnesVector() expects one of these types, so bail
// out and wait for legalization if we have an unsupported vector length.
EVT VT = N->getValueType(0);
if (!VT.is128BitVector() && !VT.is256BitVector() && !VT.is512BitVector())
return SDValue();
SDNode *N1 = N->getOperand(1).getNode();
APInt SplatVal;
if (!ISD::isConstantSplatVector(N1, SplatVal) ||
!SplatVal.isOneValue())
return SDValue();
SDValue AllOnesVec = getOnesVector(VT, DAG, SDLoc(N));
unsigned NewOpcode = N->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD;
return DAG.getNode(NewOpcode, SDLoc(N), VT, N->getOperand(0), AllOnesVec);
}
static SDValue matchPMADDWD(SelectionDAG &DAG, SDValue Op0, SDValue Op1,
const SDLoc &DL, EVT VT,
const X86Subtarget &Subtarget) {
// Example of pattern we try to detect:
// t := (v8i32 mul (sext (v8i16 x0), (sext (v8i16 x1))))
//(add (build_vector (extract_elt t, 0),
// (extract_elt t, 2),
// (extract_elt t, 4),
// (extract_elt t, 6)),
// (build_vector (extract_elt t, 1),
// (extract_elt t, 3),
// (extract_elt t, 5),
// (extract_elt t, 7)))
if (!Subtarget.hasSSE2())
return SDValue();
if (Op0.getOpcode() != ISD::BUILD_VECTOR ||
Op1.getOpcode() != ISD::BUILD_VECTOR)
return SDValue();
if (!VT.isVector() || VT.getVectorElementType() != MVT::i32 ||
VT.getVectorNumElements() < 4 ||
!isPowerOf2_32(VT.getVectorNumElements()))
return SDValue();
// Check if one of Op0,Op1 is of the form:
// (build_vector (extract_elt Mul, 0),
// (extract_elt Mul, 2),
// (extract_elt Mul, 4),
// ...
// the other is of the form:
// (build_vector (extract_elt Mul, 1),
// (extract_elt Mul, 3),
// (extract_elt Mul, 5),
// ...
// and identify Mul.
SDValue Mul;
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; i += 2) {
SDValue Op0L = Op0->getOperand(i), Op1L = Op1->getOperand(i),
Op0H = Op0->getOperand(i + 1), Op1H = Op1->getOperand(i + 1);
// TODO: Be more tolerant to undefs.
if (Op0L.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
Op1L.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
Op0H.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
Op1H.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
auto *Const0L = dyn_cast<ConstantSDNode>(Op0L->getOperand(1));
auto *Const1L = dyn_cast<ConstantSDNode>(Op1L->getOperand(1));
auto *Const0H = dyn_cast<ConstantSDNode>(Op0H->getOperand(1));
auto *Const1H = dyn_cast<ConstantSDNode>(Op1H->getOperand(1));
if (!Const0L || !Const1L || !Const0H || !Const1H)
return SDValue();
unsigned Idx0L = Const0L->getZExtValue(), Idx1L = Const1L->getZExtValue(),
Idx0H = Const0H->getZExtValue(), Idx1H = Const1H->getZExtValue();
// Commutativity of mul allows factors of a product to reorder.
if (Idx0L > Idx1L)
std::swap(Idx0L, Idx1L);
if (Idx0H > Idx1H)
std::swap(Idx0H, Idx1H);
// Commutativity of add allows pairs of factors to reorder.
if (Idx0L > Idx0H) {
std::swap(Idx0L, Idx0H);
std::swap(Idx1L, Idx1H);
}
if (Idx0L != 2 * i || Idx1L != 2 * i + 1 || Idx0H != 2 * i + 2 ||
Idx1H != 2 * i + 3)
return SDValue();
if (!Mul) {
// First time an extract_elt's source vector is visited. Must be a MUL
// with 2X number of vector elements than the BUILD_VECTOR.
// Both extracts must be from same MUL.
Mul = Op0L->getOperand(0);
if (Mul->getOpcode() != ISD::MUL ||
Mul.getValueType().getVectorNumElements() != 2 * e)
return SDValue();
}
// Check that the extract is from the same MUL previously seen.
if (Mul != Op0L->getOperand(0) || Mul != Op1L->getOperand(0) ||
Mul != Op0H->getOperand(0) || Mul != Op1H->getOperand(0))
return SDValue();
}
// Check if the Mul source can be safely shrunk.
ShrinkMode Mode;
if (!canReduceVMulWidth(Mul.getNode(), DAG, Mode) || Mode == MULU16)
return SDValue();
auto PMADDBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
// Shrink by adding truncate nodes and let DAGCombine fold with the
// sources.
EVT InVT = Ops[0].getValueType();
assert(InVT.getScalarType() == MVT::i32 &&
"Unexpected scalar element type");
assert(InVT == Ops[1].getValueType() && "Operands' types mismatch");
EVT ResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
InVT.getVectorNumElements() / 2);
EVT TruncVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16,
InVT.getVectorNumElements());
return DAG.getNode(X86ISD::VPMADDWD, DL, ResVT,
DAG.getNode(ISD::TRUNCATE, DL, TruncVT, Ops[0]),
DAG.getNode(ISD::TRUNCATE, DL, TruncVT, Ops[1]));
};
return SplitOpsAndApply(DAG, Subtarget, DL, VT,
{ Mul.getOperand(0), Mul.getOperand(1) },
PMADDBuilder);
}
// Attempt to turn this pattern into PMADDWD.
// (mul (add (zext (build_vector)), (zext (build_vector))),
// (add (zext (build_vector)), (zext (build_vector)))
static SDValue matchPMADDWD_2(SelectionDAG &DAG, SDValue N0, SDValue N1,
const SDLoc &DL, EVT VT,
const X86Subtarget &Subtarget) {
if (!Subtarget.hasSSE2())
return SDValue();
if (N0.getOpcode() != ISD::MUL || N1.getOpcode() != ISD::MUL)
return SDValue();
if (!VT.isVector() || VT.getVectorElementType() != MVT::i32 ||
VT.getVectorNumElements() < 4 ||
!isPowerOf2_32(VT.getVectorNumElements()))
return SDValue();
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
SDValue N10 = N1.getOperand(0);
SDValue N11 = N1.getOperand(1);
// All inputs need to be sign extends.
// TODO: Support ZERO_EXTEND from known positive?
if (N00.getOpcode() != ISD::SIGN_EXTEND ||
N01.getOpcode() != ISD::SIGN_EXTEND ||
N10.getOpcode() != ISD::SIGN_EXTEND ||
N11.getOpcode() != ISD::SIGN_EXTEND)
return SDValue();
// Peek through the extends.
N00 = N00.getOperand(0);
N01 = N01.getOperand(0);
N10 = N10.getOperand(0);
N11 = N11.getOperand(0);
// Must be extending from vXi16.
EVT InVT = N00.getValueType();
if (InVT.getVectorElementType() != MVT::i16 || N01.getValueType() != InVT ||
N10.getValueType() != InVT || N11.getValueType() != InVT)
return SDValue();
// All inputs should be build_vectors.
if (N00.getOpcode() != ISD::BUILD_VECTOR ||
N01.getOpcode() != ISD::BUILD_VECTOR ||
N10.getOpcode() != ISD::BUILD_VECTOR ||
N11.getOpcode() != ISD::BUILD_VECTOR)
return SDValue();
// For each element, we need to ensure we have an odd element from one vector
// multiplied by the odd element of another vector and the even element from
// one of the same vectors being multiplied by the even element from the
// other vector. So we need to make sure for each element i, this operator
// is being performed:
// A[2 * i] * B[2 * i] + A[2 * i + 1] * B[2 * i + 1]
SDValue In0, In1;
for (unsigned i = 0; i != N00.getNumOperands(); ++i) {
SDValue N00Elt = N00.getOperand(i);
SDValue N01Elt = N01.getOperand(i);
SDValue N10Elt = N10.getOperand(i);
SDValue N11Elt = N11.getOperand(i);
// TODO: Be more tolerant to undefs.
if (N00Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
N01Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
N10Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
N11Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
auto *ConstN00Elt = dyn_cast<ConstantSDNode>(N00Elt.getOperand(1));
auto *ConstN01Elt = dyn_cast<ConstantSDNode>(N01Elt.getOperand(1));
auto *ConstN10Elt = dyn_cast<ConstantSDNode>(N10Elt.getOperand(1));
auto *ConstN11Elt = dyn_cast<ConstantSDNode>(N11Elt.getOperand(1));
if (!ConstN00Elt || !ConstN01Elt || !ConstN10Elt || !ConstN11Elt)
return SDValue();
unsigned IdxN00 = ConstN00Elt->getZExtValue();
unsigned IdxN01 = ConstN01Elt->getZExtValue();
unsigned IdxN10 = ConstN10Elt->getZExtValue();
unsigned IdxN11 = ConstN11Elt->getZExtValue();
// Add is commutative so indices can be reordered.
if (IdxN00 > IdxN10) {
std::swap(IdxN00, IdxN10);
std::swap(IdxN01, IdxN11);
}
// N0 indices be the even element. N1 indices must be the next odd element.
if (IdxN00 != 2 * i || IdxN10 != 2 * i + 1 ||
IdxN01 != 2 * i || IdxN11 != 2 * i + 1)
return SDValue();
SDValue N00In = N00Elt.getOperand(0);
SDValue N01In = N01Elt.getOperand(0);
SDValue N10In = N10Elt.getOperand(0);
SDValue N11In = N11Elt.getOperand(0);
// First time we find an input capture it.
if (!In0) {
In0 = N00In;
In1 = N01In;
}
// Mul is commutative so the input vectors can be in any order.
// Canonicalize to make the compares easier.
if (In0 != N00In)
std::swap(N00In, N01In);
if (In0 != N10In)
std::swap(N10In, N11In);
if (In0 != N00In || In1 != N01In || In0 != N10In || In1 != N11In)
return SDValue();
}
auto PMADDBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
// Shrink by adding truncate nodes and let DAGCombine fold with the
// sources.
EVT InVT = Ops[0].getValueType();
assert(InVT.getScalarType() == MVT::i16 &&
"Unexpected scalar element type");
assert(InVT == Ops[1].getValueType() && "Operands' types mismatch");
EVT ResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
InVT.getVectorNumElements() / 2);
return DAG.getNode(X86ISD::VPMADDWD, DL, ResVT, Ops[0], Ops[1]);
};
return SplitOpsAndApply(DAG, Subtarget, DL, VT, { In0, In1 },
PMADDBuilder);
}
static SDValue combineAdd(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
const SDNodeFlags Flags = N->getFlags();
if (Flags.hasVectorReduction()) {
if (SDValue Sad = combineLoopSADPattern(N, DAG, Subtarget))
return Sad;
if (SDValue MAdd = combineLoopMAddPattern(N, DAG, Subtarget))
return MAdd;
}
EVT VT = N->getValueType(0);
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
if (SDValue MAdd = matchPMADDWD(DAG, Op0, Op1, SDLoc(N), VT, Subtarget))
return MAdd;
if (SDValue MAdd = matchPMADDWD_2(DAG, Op0, Op1, SDLoc(N), VT, Subtarget))
return MAdd;
// Try to synthesize horizontal adds from adds of shuffles.
if ((VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v16i16 ||
VT == MVT::v8i32) &&
Subtarget.hasSSSE3() && isHorizontalBinOp(Op0, Op1, true)) {
auto HADDBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
return DAG.getNode(X86ISD::HADD, DL, Ops[0].getValueType(), Ops);
};
return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT, {Op0, Op1},
HADDBuilder);
}
if (SDValue V = combineIncDecVector(N, DAG))
return V;
return combineAddOrSubToADCOrSBB(N, DAG);
}
static SDValue combineSubToSubus(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
EVT VT = N->getValueType(0);
// PSUBUS is supported, starting from SSE2, but truncation for v8i32
// is only worth it with SSSE3 (PSHUFB).
if (!(Subtarget.hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) &&
!(Subtarget.hasSSSE3() && (VT == MVT::v8i32 || VT == MVT::v8i64)) &&
!(Subtarget.hasAVX() && (VT == MVT::v32i8 || VT == MVT::v16i16)) &&
!(Subtarget.useBWIRegs() && (VT == MVT::v64i8 || VT == MVT::v32i16 ||
VT == MVT::v16i32 || VT == MVT::v8i64)))
return SDValue();
SDValue SubusLHS, SubusRHS;
// Try to find umax(a,b) - b or a - umin(a,b) patterns
// they may be converted to subus(a,b).
// TODO: Need to add IR canonicalization for this code.
if (Op0.getOpcode() == ISD::UMAX) {
SubusRHS = Op1;
SDValue MaxLHS = Op0.getOperand(0);
SDValue MaxRHS = Op0.getOperand(1);
if (MaxLHS == Op1)
SubusLHS = MaxRHS;
else if (MaxRHS == Op1)
SubusLHS = MaxLHS;
else
return SDValue();
} else if (Op1.getOpcode() == ISD::UMIN) {
SubusLHS = Op0;
SDValue MinLHS = Op1.getOperand(0);
SDValue MinRHS = Op1.getOperand(1);
if (MinLHS == Op0)
SubusRHS = MinRHS;
else if (MinRHS == Op0)
SubusRHS = MinLHS;
else
return SDValue();
} else
return SDValue();
auto SUBUSBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
return DAG.getNode(X86ISD::SUBUS, DL, Ops[0].getValueType(), Ops);
};
// PSUBUS doesn't support v8i32/v8i64/v16i32, but it can be enabled with
// special preprocessing in some cases.
if (VT != MVT::v8i32 && VT != MVT::v16i32 && VT != MVT::v8i64)
return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT,
{ SubusLHS, SubusRHS }, SUBUSBuilder);
// Special preprocessing case can be only applied
// if the value was zero extended from 16 bit,
// so we require first 16 bits to be zeros for 32 bit
// values, or first 48 bits for 64 bit values.
KnownBits Known;
DAG.computeKnownBits(SubusLHS, Known);
unsigned NumZeros = Known.countMinLeadingZeros();
if ((VT == MVT::v8i64 && NumZeros < 48) || NumZeros < 16)
return SDValue();
EVT ExtType = SubusLHS.getValueType();
EVT ShrinkedType;
if (VT == MVT::v8i32 || VT == MVT::v8i64)
ShrinkedType = MVT::v8i16;
else
ShrinkedType = NumZeros >= 24 ? MVT::v16i8 : MVT::v16i16;
// If SubusLHS is zeroextended - truncate SubusRHS to it's
// size SubusRHS = umin(0xFFF.., SubusRHS).
SDValue SaturationConst =
DAG.getConstant(APInt::getLowBitsSet(ExtType.getScalarSizeInBits(),
ShrinkedType.getScalarSizeInBits()),
SDLoc(SubusLHS), ExtType);
SDValue UMin = DAG.getNode(ISD::UMIN, SDLoc(SubusLHS), ExtType, SubusRHS,
SaturationConst);
SDValue NewSubusLHS =
DAG.getZExtOrTrunc(SubusLHS, SDLoc(SubusLHS), ShrinkedType);
SDValue NewSubusRHS = DAG.getZExtOrTrunc(UMin, SDLoc(SubusRHS), ShrinkedType);
SDValue Psubus =
SplitOpsAndApply(DAG, Subtarget, SDLoc(N), ShrinkedType,
{ NewSubusLHS, NewSubusRHS }, SUBUSBuilder);
// Zero extend the result, it may be used somewhere as 32 bit,
// if not zext and following trunc will shrink.
return DAG.getZExtOrTrunc(Psubus, SDLoc(N), ExtType);
}
static SDValue combineSub(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
// X86 can't encode an immediate LHS of a sub. See if we can push the
// negation into a preceding instruction.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
// If the RHS of the sub is a XOR with one use and a constant, invert the
// immediate. Then add one to the LHS of the sub so we can turn
// X-Y -> X+~Y+1, saving one register.
if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
isa<ConstantSDNode>(Op1.getOperand(1))) {
APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
EVT VT = Op0.getValueType();
SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
Op1.getOperand(0),
DAG.getConstant(~XorC, SDLoc(Op1), VT));
return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
DAG.getConstant(C->getAPIntValue() + 1, SDLoc(N), VT));
}
}
// Try to synthesize horizontal subs from subs of shuffles.
EVT VT = N->getValueType(0);
if ((VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v16i16 ||
VT == MVT::v8i32) &&
Subtarget.hasSSSE3() && isHorizontalBinOp(Op0, Op1, false)) {
auto HSUBBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
return DAG.getNode(X86ISD::HSUB, DL, Ops[0].getValueType(), Ops);
};
return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT, {Op0, Op1},
HSUBBuilder);
}
if (SDValue V = combineIncDecVector(N, DAG))
return V;
// Try to create PSUBUS if SUB's argument is max/min
if (SDValue V = combineSubToSubus(N, DAG, Subtarget))
return V;
return combineAddOrSubToADCOrSBB(N, DAG);
}
static SDValue combineVSZext(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
if (DCI.isBeforeLegalize())
return SDValue();
SDLoc DL(N);
unsigned Opcode = N->getOpcode();
MVT VT = N->getSimpleValueType(0);
MVT SVT = VT.getVectorElementType();
unsigned NumElts = VT.getVectorNumElements();
unsigned EltSizeInBits = SVT.getSizeInBits();
SDValue Op = N->getOperand(0);
MVT OpVT = Op.getSimpleValueType();
MVT OpEltVT = OpVT.getVectorElementType();
unsigned OpEltSizeInBits = OpEltVT.getSizeInBits();
unsigned InputBits = OpEltSizeInBits * NumElts;
// Perform any constant folding.
// FIXME: Reduce constant pool usage and don't fold when OptSize is enabled.
APInt UndefElts;
SmallVector<APInt, 64> EltBits;
if (getTargetConstantBitsFromNode(Op, OpEltSizeInBits, UndefElts, EltBits)) {
APInt Undefs(NumElts, 0);
SmallVector<APInt, 4> Vals(NumElts, APInt(EltSizeInBits, 0));
bool IsZEXT =
(Opcode == X86ISD::VZEXT) || (Opcode == ISD::ZERO_EXTEND_VECTOR_INREG);
for (unsigned i = 0; i != NumElts; ++i) {
if (UndefElts[i]) {
Undefs.setBit(i);
continue;
}
Vals[i] = IsZEXT ? EltBits[i].zextOrTrunc(EltSizeInBits)
: EltBits[i].sextOrTrunc(EltSizeInBits);
}
return getConstVector(Vals, Undefs, VT, DAG, DL);
}
// (vzext (bitcast (vzext (x)) -> (vzext x)
// TODO: (vsext (bitcast (vsext (x)) -> (vsext x)
SDValue V = peekThroughBitcasts(Op);
if (Opcode == X86ISD::VZEXT && V != Op && V.getOpcode() == X86ISD::VZEXT) {
MVT InnerVT = V.getSimpleValueType();
MVT InnerEltVT = InnerVT.getVectorElementType();
// If the element sizes match exactly, we can just do one larger vzext. This
// is always an exact type match as vzext operates on integer types.
if (OpEltVT == InnerEltVT) {
assert(OpVT == InnerVT && "Types must match for vzext!");
return DAG.getNode(X86ISD::VZEXT, DL, VT, V.getOperand(0));
}
// The only other way we can combine them is if only a single element of the
// inner vzext is used in the input to the outer vzext.
if (InnerEltVT.getSizeInBits() < InputBits)
return SDValue();
// In this case, the inner vzext is completely dead because we're going to
// only look at bits inside of the low element. Just do the outer vzext on
// a bitcast of the input to the inner.
return DAG.getNode(X86ISD::VZEXT, DL, VT, DAG.getBitcast(OpVT, V));
}
// Check if we can bypass extracting and re-inserting an element of an input
// vector. Essentially:
// (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
// TODO: Add X86ISD::VSEXT support
if (Opcode == X86ISD::VZEXT &&
V.getOpcode() == ISD::SCALAR_TO_VECTOR &&
V.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
V.getOperand(0).getSimpleValueType().getSizeInBits() == InputBits) {
SDValue ExtractedV = V.getOperand(0);
SDValue OrigV = ExtractedV.getOperand(0);
if (isNullConstant(ExtractedV.getOperand(1))) {
MVT OrigVT = OrigV.getSimpleValueType();
// Extract a subvector if necessary...
if (OrigVT.getSizeInBits() > OpVT.getSizeInBits()) {
int Ratio = OrigVT.getSizeInBits() / OpVT.getSizeInBits();
OrigVT = MVT::getVectorVT(OrigVT.getVectorElementType(),
OrigVT.getVectorNumElements() / Ratio);
OrigV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigVT, OrigV,
DAG.getIntPtrConstant(0, DL));
}
Op = DAG.getBitcast(OpVT, OrigV);
return DAG.getNode(X86ISD::VZEXT, DL, VT, Op);
}
}
return SDValue();
}
static SDValue combineVectorCompare(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = N->getSimpleValueType(0);
SDLoc DL(N);
if (N->getOperand(0) == N->getOperand(1)) {
if (N->getOpcode() == X86ISD::PCMPEQ)
return getOnesVector(VT, DAG, DL);
if (N->getOpcode() == X86ISD::PCMPGT)
return getZeroVector(VT, Subtarget, DAG, DL);
}
return SDValue();
}
static SDValue combineInsertSubvector(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
MVT OpVT = N->getSimpleValueType(0);
bool IsI1Vector = OpVT.getVectorElementType() == MVT::i1;
SDLoc dl(N);
SDValue Vec = N->getOperand(0);
SDValue SubVec = N->getOperand(1);
unsigned IdxVal = N->getConstantOperandVal(2);
MVT SubVecVT = SubVec.getSimpleValueType();
if (ISD::isBuildVectorAllZeros(Vec.getNode())) {
// Inserting zeros into zeros is a nop.
if (ISD::isBuildVectorAllZeros(SubVec.getNode()))
return getZeroVector(OpVT, Subtarget, DAG, dl);
// If we're inserting into a zero vector and then into a larger zero vector,
// just insert into the larger zero vector directly.
if (SubVec.getOpcode() == ISD::INSERT_SUBVECTOR &&
ISD::isBuildVectorAllZeros(SubVec.getOperand(0).getNode())) {
unsigned Idx2Val = SubVec.getConstantOperandVal(2);
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT,
getZeroVector(OpVT, Subtarget, DAG, dl),
SubVec.getOperand(1),
DAG.getIntPtrConstant(IdxVal + Idx2Val, dl));
}
// If we're inserting into a zero vector and our input was extracted from an
// insert into a zero vector of the same type and the extraction was at
// least as large as the original insertion. Just insert the original
// subvector into a zero vector.
if (SubVec.getOpcode() == ISD::EXTRACT_SUBVECTOR && IdxVal == 0 &&
SubVec.getConstantOperandVal(1) == 0 &&
SubVec.getOperand(0).getOpcode() == ISD::INSERT_SUBVECTOR) {
SDValue Ins = SubVec.getOperand(0);
if (Ins.getConstantOperandVal(2) == 0 &&
ISD::isBuildVectorAllZeros(Ins.getOperand(0).getNode()) &&
Ins.getOperand(1).getValueSizeInBits() <= SubVecVT.getSizeInBits())
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT,
getZeroVector(OpVT, Subtarget, DAG, dl),
Ins.getOperand(1), N->getOperand(2));
}
// If we're inserting a bitcast into zeros, rewrite the insert and move the
// bitcast to the other side. This helps with detecting zero extending
// during isel.
// TODO: Is this useful for other indices than 0?
if (!IsI1Vector && SubVec.getOpcode() == ISD::BITCAST && IdxVal == 0) {
MVT CastVT = SubVec.getOperand(0).getSimpleValueType();
unsigned NumElems = OpVT.getSizeInBits() / CastVT.getScalarSizeInBits();
MVT NewVT = MVT::getVectorVT(CastVT.getVectorElementType(), NumElems);
SDValue Insert = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, NewVT,
DAG.getBitcast(NewVT, Vec),
SubVec.getOperand(0), N->getOperand(2));
return DAG.getBitcast(OpVT, Insert);
}
}
// Stop here if this is an i1 vector.
if (IsI1Vector)
return SDValue();
// If this is an insert of an extract, combine to a shuffle. Don't do this
// if the insert or extract can be represented with a subregister operation.
if (SubVec.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
SubVec.getOperand(0).getSimpleValueType() == OpVT &&
(IdxVal != 0 || !Vec.isUndef())) {
int ExtIdxVal = SubVec.getConstantOperandVal(1);
if (ExtIdxVal != 0) {
int VecNumElts = OpVT.getVectorNumElements();
int SubVecNumElts = SubVecVT.getVectorNumElements();
SmallVector<int, 64> Mask(VecNumElts);
// First create an identity shuffle mask.
for (int i = 0; i != VecNumElts; ++i)
Mask[i] = i;
// Now insert the extracted portion.
for (int i = 0; i != SubVecNumElts; ++i)
Mask[i + IdxVal] = i + ExtIdxVal + VecNumElts;
return DAG.getVectorShuffle(OpVT, dl, Vec, SubVec.getOperand(0), Mask);
}
}
// Fold two 16-byte or 32-byte subvector loads into one 32-byte or 64-byte
// load:
// (insert_subvector (insert_subvector undef, (load16 addr), 0),
// (load16 addr + 16), Elts/2)
// --> load32 addr
// or:
// (insert_subvector (insert_subvector undef, (load32 addr), 0),
// (load32 addr + 32), Elts/2)
// --> load64 addr
// or a 16-byte or 32-byte broadcast:
// (insert_subvector (insert_subvector undef, (load16 addr), 0),
// (load16 addr), Elts/2)
// --> X86SubVBroadcast(load16 addr)
// or:
// (insert_subvector (insert_subvector undef, (load32 addr), 0),
// (load32 addr), Elts/2)
// --> X86SubVBroadcast(load32 addr)
if ((IdxVal == OpVT.getVectorNumElements() / 2) &&
Vec.getOpcode() == ISD::INSERT_SUBVECTOR &&
OpVT.getSizeInBits() == SubVecVT.getSizeInBits() * 2) {
if (isNullConstant(Vec.getOperand(2))) {
SDValue SubVec2 = Vec.getOperand(1);
// If needed, look through bitcasts to get to the load.
if (auto *FirstLd = dyn_cast<LoadSDNode>(peekThroughBitcasts(SubVec2))) {
bool Fast;
unsigned Alignment = FirstLd->getAlignment();
unsigned AS = FirstLd->getAddressSpace();
const X86TargetLowering *TLI = Subtarget.getTargetLowering();
if (TLI->allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(),
OpVT, AS, Alignment, &Fast) && Fast) {
SDValue Ops[] = {SubVec2, SubVec};
if (SDValue Ld = EltsFromConsecutiveLoads(OpVT, Ops, dl, DAG,
Subtarget, false))
return Ld;
}
}
// If lower/upper loads are the same and the only users of the load, then
// lower to a VBROADCASTF128/VBROADCASTI128/etc.
if (auto *Ld = dyn_cast<LoadSDNode>(peekThroughOneUseBitcasts(SubVec2)))
if (SubVec2 == SubVec && ISD::isNormalLoad(Ld) &&
SDNode::areOnlyUsersOf({N, Vec.getNode()}, SubVec2.getNode()))
return DAG.getNode(X86ISD::SUBV_BROADCAST, dl, OpVT, SubVec);
// If this is subv_broadcast insert into both halves, use a larger
// subv_broadcast.
if (SubVec.getOpcode() == X86ISD::SUBV_BROADCAST && SubVec == SubVec2)
return DAG.getNode(X86ISD::SUBV_BROADCAST, dl, OpVT,
SubVec.getOperand(0));
// If we're inserting all zeros into the upper half, change this to
// an insert into an all zeros vector. We will match this to a move
// with implicit upper bit zeroing during isel.
if (ISD::isBuildVectorAllZeros(SubVec.getNode()))
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT,
getZeroVector(OpVT, Subtarget, DAG, dl), SubVec2,
Vec.getOperand(2));
// If we are inserting into both halves of the vector, the starting
// vector should be undef. If it isn't, make it so. Only do this if the
// the early insert has no other uses.
// TODO: Should this be a generic DAG combine?
if (!Vec.getOperand(0).isUndef() && Vec.hasOneUse()) {
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, DAG.getUNDEF(OpVT),
SubVec2, Vec.getOperand(2));
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, Vec, SubVec,
N->getOperand(2));
}
}
}
return SDValue();
}
static SDValue combineExtractSubvector(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
MVT OpVT = N->getSimpleValueType(0);
SDValue InVec = N->getOperand(0);
unsigned IdxVal = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
if (ISD::isBuildVectorAllZeros(InVec.getNode()))
return getZeroVector(OpVT, Subtarget, DAG, SDLoc(N));
if (ISD::isBuildVectorAllOnes(InVec.getNode())) {
if (OpVT.getScalarType() == MVT::i1)
return DAG.getConstant(1, SDLoc(N), OpVT);
return getOnesVector(OpVT, DAG, SDLoc(N));
}
if (InVec.getOpcode() == ISD::BUILD_VECTOR)
return DAG.getBuildVector(
OpVT, SDLoc(N),
InVec.getNode()->ops().slice(IdxVal, OpVT.getVectorNumElements()));
// If we're extracting the lowest subvector and we're the only user,
// we may be able to perform this with a smaller vector width.
if (IdxVal == 0 && InVec.hasOneUse()) {
unsigned InOpcode = InVec.getOpcode();
if (OpVT == MVT::v2f64 && InVec.getValueType() == MVT::v4f64) {
// v2f64 CVTDQ2PD(v4i32).
if (InOpcode == ISD::SINT_TO_FP &&
InVec.getOperand(0).getValueType() == MVT::v4i32) {
return DAG.getNode(X86ISD::CVTSI2P, SDLoc(N), OpVT, InVec.getOperand(0));
}
// v2f64 CVTPS2PD(v4f32).
if (InOpcode == ISD::FP_EXTEND &&
InVec.getOperand(0).getValueType() == MVT::v4f32) {
return DAG.getNode(X86ISD::VFPEXT, SDLoc(N), OpVT, InVec.getOperand(0));
}
}
if ((InOpcode == X86ISD::VZEXT || InOpcode == X86ISD::VSEXT) &&
OpVT.is128BitVector() &&
InVec.getOperand(0).getSimpleValueType().is128BitVector()) {
unsigned ExtOp = InOpcode == X86ISD::VZEXT ? ISD::ZERO_EXTEND_VECTOR_INREG
: ISD::SIGN_EXTEND_VECTOR_INREG;
return DAG.getNode(ExtOp, SDLoc(N), OpVT, InVec.getOperand(0));
}
}
return SDValue();
}
static SDValue combineScalarToVector(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
SDValue Src = N->getOperand(0);
// If this is a scalar to vector to v1i1 from an AND with 1, bypass the and.
// This occurs frequently in our masked scalar intrinsic code and our
// floating point select lowering with AVX512.
// TODO: SimplifyDemandedBits instead?
if (VT == MVT::v1i1 && Src.getOpcode() == ISD::AND && Src.hasOneUse())
if (auto *C = dyn_cast<ConstantSDNode>(Src.getOperand(1)))
if (C->getAPIntValue().isOneValue())
return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), MVT::v1i1,
Src.getOperand(0));
return SDValue();
}
// Simplify PMULDQ and PMULUDQ operations.
static SDValue combinePMULDQ(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
APInt DemandedMask(APInt::getLowBitsSet(64, 32));
// PMULQDQ/PMULUDQ only uses lower 32 bits from each vector element.
KnownBits LHSKnown;
if (TLI.SimplifyDemandedBits(LHS, DemandedMask, LHSKnown, TLO)) {
DCI.CommitTargetLoweringOpt(TLO);
return SDValue(N, 0);
}
KnownBits RHSKnown;
if (TLI.SimplifyDemandedBits(RHS, DemandedMask, RHSKnown, TLO)) {
DCI.CommitTargetLoweringOpt(TLO);
return SDValue(N, 0);
}
return SDValue();
}
SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
switch (N->getOpcode()) {
default: break;
case ISD::SCALAR_TO_VECTOR:
return combineScalarToVector(N, DAG);
case ISD::EXTRACT_VECTOR_ELT:
case X86ISD::PEXTRW:
case X86ISD::PEXTRB:
return combineExtractVectorElt(N, DAG, DCI, Subtarget);
case ISD::INSERT_SUBVECTOR:
return combineInsertSubvector(N, DAG, DCI, Subtarget);
case ISD::EXTRACT_SUBVECTOR:
return combineExtractSubvector(N, DAG, DCI, Subtarget);
case ISD::VSELECT:
case ISD::SELECT:
case X86ISD::SHRUNKBLEND: return combineSelect(N, DAG, DCI, Subtarget);
case ISD::BITCAST: return combineBitcast(N, DAG, DCI, Subtarget);
case X86ISD::CMOV: return combineCMov(N, DAG, DCI, Subtarget);
case ISD::ADD: return combineAdd(N, DAG, Subtarget);
case ISD::SUB: return combineSub(N, DAG, Subtarget);
case X86ISD::SBB: return combineSBB(N, DAG);
case X86ISD::ADC: return combineADC(N, DAG, DCI);
case ISD::MUL: return combineMul(N, DAG, DCI, Subtarget);
case ISD::SHL:
case ISD::SRA:
case ISD::SRL: return combineShift(N, DAG, DCI, Subtarget);
case ISD::AND: return combineAnd(N, DAG, DCI, Subtarget);
case ISD::OR: return combineOr(N, DAG, DCI, Subtarget);
case ISD::XOR: return combineXor(N, DAG, DCI, Subtarget);
case X86ISD::BEXTR: return combineBEXTR(N, DAG, DCI, Subtarget);
case ISD::LOAD: return combineLoad(N, DAG, DCI, Subtarget);
case ISD::MLOAD: return combineMaskedLoad(N, DAG, DCI, Subtarget);
case ISD::STORE: return combineStore(N, DAG, Subtarget);
case ISD::MSTORE: return combineMaskedStore(N, DAG, Subtarget);
case ISD::SINT_TO_FP: return combineSIntToFP(N, DAG, Subtarget);
case ISD::UINT_TO_FP: return combineUIntToFP(N, DAG, Subtarget);
case ISD::FADD:
case ISD::FSUB: return combineFaddFsub(N, DAG, Subtarget);
case ISD::FNEG: return combineFneg(N, DAG, Subtarget);
case ISD::TRUNCATE: return combineTruncate(N, DAG, Subtarget);
case X86ISD::ANDNP: return combineAndnp(N, DAG, DCI, Subtarget);
case X86ISD::FAND: return combineFAnd(N, DAG, Subtarget);
case X86ISD::FANDN: return combineFAndn(N, DAG, Subtarget);
case X86ISD::FXOR:
case X86ISD::FOR: return combineFOr(N, DAG, Subtarget);
case X86ISD::FMIN:
case X86ISD::FMAX: return combineFMinFMax(N, DAG);
case ISD::FMINNUM:
case ISD::FMAXNUM: return combineFMinNumFMaxNum(N, DAG, Subtarget);
case X86ISD::BT: return combineBT(N, DAG, DCI);
case ISD::ANY_EXTEND:
case ISD::ZERO_EXTEND: return combineZext(N, DAG, DCI, Subtarget);
case ISD::SIGN_EXTEND: return combineSext(N, DAG, DCI, Subtarget);
case ISD::SIGN_EXTEND_INREG: return combineSignExtendInReg(N, DAG, Subtarget);
case ISD::SETCC: return combineSetCC(N, DAG, Subtarget);
case X86ISD::SETCC: return combineX86SetCC(N, DAG, Subtarget);
case X86ISD::BRCOND: return combineBrCond(N, DAG, Subtarget);
case X86ISD::PACKSS:
case X86ISD::PACKUS: return combineVectorPack(N, DAG, DCI, Subtarget);
case X86ISD::VSHLI:
case X86ISD::VSRAI:
case X86ISD::VSRLI:
return combineVectorShiftImm(N, DAG, DCI, Subtarget);
case ISD::SIGN_EXTEND_VECTOR_INREG:
case ISD::ZERO_EXTEND_VECTOR_INREG:
case X86ISD::VSEXT:
case X86ISD::VZEXT: return combineVSZext(N, DAG, DCI, Subtarget);
case X86ISD::PINSRB:
case X86ISD::PINSRW: return combineVectorInsert(N, DAG, DCI, Subtarget);
case X86ISD::SHUFP: // Handle all target specific shuffles
case X86ISD::INSERTPS:
case X86ISD::EXTRQI:
case X86ISD::INSERTQI:
case X86ISD::PALIGNR:
case X86ISD::VSHLDQ:
case X86ISD::VSRLDQ:
case X86ISD::BLENDI:
case X86ISD::UNPCKH:
case X86ISD::UNPCKL:
case X86ISD::MOVHLPS:
case X86ISD::MOVLHPS:
case X86ISD::PSHUFB:
case X86ISD::PSHUFD:
case X86ISD::PSHUFHW:
case X86ISD::PSHUFLW:
case X86ISD::MOVSHDUP:
case X86ISD::MOVSLDUP:
case X86ISD::MOVDDUP:
case X86ISD::MOVSS:
case X86ISD::MOVSD:
case X86ISD::VBROADCAST:
case X86ISD::VPPERM:
case X86ISD::VPERMI:
case X86ISD::VPERMV:
case X86ISD::VPERMV3:
case X86ISD::VPERMIL2:
case X86ISD::VPERMILPI:
case X86ISD::VPERMILPV:
case X86ISD::VPERM2X128:
case X86ISD::SHUF128:
case X86ISD::VZEXT_MOVL:
case ISD::VECTOR_SHUFFLE: return combineShuffle(N, DAG, DCI,Subtarget);
case X86ISD::FMADD_RND:
case X86ISD::FMSUB:
case X86ISD::FMSUB_RND:
case X86ISD::FNMADD:
case X86ISD::FNMADD_RND:
case X86ISD::FNMSUB:
case X86ISD::FNMSUB_RND:
case ISD::FMA: return combineFMA(N, DAG, Subtarget);
case X86ISD::FMADDSUB_RND:
case X86ISD::FMSUBADD_RND:
case X86ISD::FMADDSUB:
case X86ISD::FMSUBADD: return combineFMADDSUB(N, DAG, Subtarget);
case X86ISD::MOVMSK: return combineMOVMSK(N, DAG, DCI);
case X86ISD::MGATHER:
case X86ISD::MSCATTER:
case ISD::MGATHER:
case ISD::MSCATTER: return combineGatherScatter(N, DAG, DCI, Subtarget);
case X86ISD::PCMPEQ:
case X86ISD::PCMPGT: return combineVectorCompare(N, DAG, Subtarget);
case X86ISD::PMULDQ:
case X86ISD::PMULUDQ: return combinePMULDQ(N, DAG, DCI);
}
return SDValue();
}
/// Return true if the target has native support for the specified value type
/// and it is 'desirable' to use the type for the given node type. e.g. On x86
/// i16 is legal, but undesirable since i16 instruction encodings are longer and
/// some i16 instructions are slow.
bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
if (!isTypeLegal(VT))
return false;
// There are no vXi8 shifts.
if (Opc == ISD::SHL && VT.isVector() && VT.getVectorElementType() == MVT::i8)
return false;
if (VT != MVT::i16)
return true;
switch (Opc) {
default:
return true;
case ISD::LOAD:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
case ISD::SHL:
case ISD::SRL:
case ISD::SUB:
case ISD::ADD:
case ISD::MUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
return false;
}
}
SDValue X86TargetLowering::expandIndirectJTBranch(const SDLoc& dl,
SDValue Value, SDValue Addr,
SelectionDAG &DAG) const {
const Module *M = DAG.getMachineFunction().getMMI().getModule();
Metadata *IsCFProtectionSupported = M->getModuleFlag("cf-protection-branch");
if (IsCFProtectionSupported) {
// In case control-flow branch protection is enabled, we need to add
// notrack prefix to the indirect branch.
// In order to do that we create NT_BRIND SDNode.
// Upon ISEL, the pattern will convert it to jmp with NoTrack prefix.
return DAG.getNode(X86ISD::NT_BRIND, dl, MVT::Other, Value, Addr);
}
return TargetLowering::expandIndirectJTBranch(dl, Value, Addr, DAG);
}
/// This method query the target whether it is beneficial for dag combiner to
/// promote the specified node. If true, it should return the desired promotion
/// type by reference.
bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
EVT VT = Op.getValueType();
if (VT != MVT::i16)
return false;
auto IsFoldableRMW = [](SDValue Load, SDValue Op) {
if (!Op.hasOneUse())
return false;
SDNode *User = *Op->use_begin();
if (!ISD::isNormalStore(User))
return false;
auto *Ld = cast<LoadSDNode>(Load);
auto *St = cast<StoreSDNode>(User);
return Ld->getBasePtr() == St->getBasePtr();
};
bool Commute = false;
switch (Op.getOpcode()) {
default: return false;
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
break;
case ISD::SHL:
case ISD::SRL: {
SDValue N0 = Op.getOperand(0);
// Look out for (store (shl (load), x)).
if (MayFoldLoad(N0) && IsFoldableRMW(N0, Op))
return false;
break;
}
case ISD::ADD:
case ISD::MUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
Commute = true;
LLVM_FALLTHROUGH;
case ISD::SUB: {
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
// Avoid disabling potential load folding opportunities.
if (MayFoldLoad(N1) &&
(!Commute || !isa<ConstantSDNode>(N0) ||
(Op.getOpcode() != ISD::MUL && IsFoldableRMW(N1, Op))))
return false;
if (MayFoldLoad(N0) &&
((Commute && !isa<ConstantSDNode>(N1)) ||
(Op.getOpcode() != ISD::MUL && IsFoldableRMW(N0, Op))))
return false;
}
}
PVT = MVT::i32;
return true;
}
bool X86TargetLowering::
isDesirableToCombineBuildVectorToShuffleTruncate(
ArrayRef<int> ShuffleMask, EVT SrcVT, EVT TruncVT) const {
assert(SrcVT.getVectorNumElements() == ShuffleMask.size() &&
"Element count mismatch");
assert(
Subtarget.getTargetLowering()->isShuffleMaskLegal(ShuffleMask, SrcVT) &&
"Shuffle Mask expected to be legal");
// For 32-bit elements VPERMD is better than shuffle+truncate.
// TODO: After we improve lowerBuildVector, add execption for VPERMW.
if (SrcVT.getScalarSizeInBits() == 32 || !Subtarget.hasAVX2())
return false;
if (is128BitLaneCrossingShuffleMask(SrcVT.getSimpleVT(), ShuffleMask))
return false;
return true;
}
//===----------------------------------------------------------------------===//
// X86 Inline Assembly Support
//===----------------------------------------------------------------------===//
// Helper to match a string separated by whitespace.
static bool matchAsm(StringRef S, ArrayRef<const char *> Pieces) {
S = S.substr(S.find_first_not_of(" \t")); // Skip leading whitespace.
for (StringRef Piece : Pieces) {
if (!S.startswith(Piece)) // Check if the piece matches.
return false;
S = S.substr(Piece.size());
StringRef::size_type Pos = S.find_first_not_of(" \t");
if (Pos == 0) // We matched a prefix.
return false;
S = S.substr(Pos);
}
return S.empty();
}
static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) {
if (AsmPieces.size() == 3 || AsmPieces.size() == 4) {
if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") &&
std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") &&
std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) {
if (AsmPieces.size() == 3)
return true;
else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}"))
return true;
}
}
return false;
}
bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
const std::string &AsmStr = IA->getAsmString();
IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
if (!Ty || Ty->getBitWidth() % 16 != 0)
return false;
// TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
SmallVector<StringRef, 4> AsmPieces;
SplitString(AsmStr, AsmPieces, ";\n");
switch (AsmPieces.size()) {
default: return false;
case 1:
// FIXME: this should verify that we are targeting a 486 or better. If not,
// we will turn this bswap into something that will be lowered to logical
// ops instead of emitting the bswap asm. For now, we don't support 486 or
// lower so don't worry about this.
// bswap $0
if (matchAsm(AsmPieces[0], {"bswap", "$0"}) ||
matchAsm(AsmPieces[0], {"bswapl", "$0"}) ||
matchAsm(AsmPieces[0], {"bswapq", "$0"}) ||
matchAsm(AsmPieces[0], {"bswap", "${0:q}"}) ||
matchAsm(AsmPieces[0], {"bswapl", "${0:q}"}) ||
matchAsm(AsmPieces[0], {"bswapq", "${0:q}"})) {
// No need to check constraints, nothing other than the equivalent of
// "=r,0" would be valid here.
return IntrinsicLowering::LowerToByteSwap(CI);
}
// rorw $$8, ${0:w} --> llvm.bswap.i16
if (CI->getType()->isIntegerTy(16) &&
IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
(matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) ||
matchAsm(AsmPieces[0], {"rolw", "$$8,", "${0:w}"}))) {
AsmPieces.clear();
StringRef ConstraintsStr = IA->getConstraintString();
SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
array_pod_sort(AsmPieces.begin(), AsmPieces.end());
if (clobbersFlagRegisters(AsmPieces))
return IntrinsicLowering::LowerToByteSwap(CI);
}
break;
case 3:
if (CI->getType()->isIntegerTy(32) &&
IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) &&
matchAsm(AsmPieces[1], {"rorl", "$$16,", "$0"}) &&
matchAsm(AsmPieces[2], {"rorw", "$$8,", "${0:w}"})) {
AsmPieces.clear();
StringRef ConstraintsStr = IA->getConstraintString();
SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
array_pod_sort(AsmPieces.begin(), AsmPieces.end());
if (clobbersFlagRegisters(AsmPieces))
return IntrinsicLowering::LowerToByteSwap(CI);
}
if (CI->getType()->isIntegerTy(64)) {
InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
if (Constraints.size() >= 2 &&
Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
// bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
if (matchAsm(AsmPieces[0], {"bswap", "%eax"}) &&
matchAsm(AsmPieces[1], {"bswap", "%edx"}) &&
matchAsm(AsmPieces[2], {"xchgl", "%eax,", "%edx"}))
return IntrinsicLowering::LowerToByteSwap(CI);
}
}
break;
}
return false;
}
/// Given a constraint letter, return the type of constraint for this target.
X86TargetLowering::ConstraintType
X86TargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'R':
case 'q':
case 'Q':
case 'f':
case 't':
case 'u':
case 'y':
case 'x':
case 'v':
case 'Y':
case 'l':
case 'k': // AVX512 masking registers.
return C_RegisterClass;
case 'a':
case 'b':
case 'c':
case 'd':
case 'S':
case 'D':
case 'A':
return C_Register;
case 'I':
case 'J':
case 'K':
case 'L':
case 'M':
case 'N':
case 'G':
case 'C':
case 'e':
case 'Z':
return C_Other;
default:
break;
}
}
else if (Constraint.size() == 2) {
switch (Constraint[0]) {
default:
break;
case 'Y':
switch (Constraint[1]) {
default:
break;
case 'z':
case '0':
return C_Register;
case 'i':
case 'm':
case 'k':
case 't':
case '2':
return C_RegisterClass;
}
}
}
return TargetLowering::getConstraintType(Constraint);
}
/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
X86TargetLowering::getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const {
ConstraintWeight weight = CW_Invalid;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (!CallOperandVal)
return CW_Default;
Type *type = CallOperandVal->getType();
// Look at the constraint type.
switch (*constraint) {
default:
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
LLVM_FALLTHROUGH;
case 'R':
case 'q':
case 'Q':
case 'a':
case 'b':
case 'c':
case 'd':
case 'S':
case 'D':
case 'A':
if (CallOperandVal->getType()->isIntegerTy())
weight = CW_SpecificReg;
break;
case 'f':
case 't':
case 'u':
if (type->isFloatingPointTy())
weight = CW_SpecificReg;
break;
case 'y':
if (type->isX86_MMXTy() && Subtarget.hasMMX())
weight = CW_SpecificReg;
break;
case 'Y': {
unsigned Size = StringRef(constraint).size();
// Pick 'i' as the next char as 'Yi' and 'Y' are synonymous, when matching 'Y'
char NextChar = Size == 2 ? constraint[1] : 'i';
if (Size > 2)
break;
switch (NextChar) {
default:
return CW_Invalid;
// XMM0
case 'z':
case '0':
if ((type->getPrimitiveSizeInBits() == 128) && Subtarget.hasSSE1())
return CW_SpecificReg;
return CW_Invalid;
// Conditional OpMask regs (AVX512)
case 'k':
if ((type->getPrimitiveSizeInBits() == 64) && Subtarget.hasAVX512())
return CW_Register;
return CW_Invalid;
// Any MMX reg
case 'm':
if (type->isX86_MMXTy() && Subtarget.hasMMX())
return weight;
return CW_Invalid;
// Any SSE reg when ISA >= SSE2, same as 'Y'
case 'i':
case 't':
case '2':
if (!Subtarget.hasSSE2())
return CW_Invalid;
break;
}
// Fall through (handle "Y" constraint).
LLVM_FALLTHROUGH;
}
case 'v':
if ((type->getPrimitiveSizeInBits() == 512) && Subtarget.hasAVX512())
weight = CW_Register;
LLVM_FALLTHROUGH;
case 'x':
if (((type->getPrimitiveSizeInBits() == 128) && Subtarget.hasSSE1()) ||
((type->getPrimitiveSizeInBits() == 256) && Subtarget.hasAVX()))
weight = CW_Register;
break;
case 'k':
// Enable conditional vector operations using %k<#> registers.
if ((type->getPrimitiveSizeInBits() == 64) && Subtarget.hasAVX512())
weight = CW_Register;
break;
case 'I':
if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
if (C->getZExtValue() <= 31)
weight = CW_Constant;
}
break;
case 'J':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if (C->getZExtValue() <= 63)
weight = CW_Constant;
}
break;
case 'K':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
weight = CW_Constant;
}
break;
case 'L':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
weight = CW_Constant;
}
break;
case 'M':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if (C->getZExtValue() <= 3)
weight = CW_Constant;
}
break;
case 'N':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if (C->getZExtValue() <= 0xff)
weight = CW_Constant;
}
break;
case 'G':
case 'C':
if (isa<ConstantFP>(CallOperandVal)) {
weight = CW_Constant;
}
break;
case 'e':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if ((C->getSExtValue() >= -0x80000000LL) &&
(C->getSExtValue() <= 0x7fffffffLL))
weight = CW_Constant;
}
break;
case 'Z':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if (C->getZExtValue() <= 0xffffffff)
weight = CW_Constant;
}
break;
}
return weight;
}
/// Try to replace an X constraint, which matches anything, with another that
/// has more specific requirements based on the type of the corresponding
/// operand.
const char *X86TargetLowering::
LowerXConstraint(EVT ConstraintVT) const {
// FP X constraints get lowered to SSE1/2 registers if available, otherwise
// 'f' like normal targets.
if (ConstraintVT.isFloatingPoint()) {
if (Subtarget.hasSSE2())
return "Y";
if (Subtarget.hasSSE1())
return "x";
}
return TargetLowering::LowerXConstraint(ConstraintVT);
}
/// Lower the specified operand into the Ops vector.
/// If it is invalid, don't add anything to Ops.
void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue>&Ops,
SelectionDAG &DAG) const {
SDValue Result;
// Only support length 1 constraints for now.
if (Constraint.length() > 1) return;
char ConstraintLetter = Constraint[0];
switch (ConstraintLetter) {
default: break;
case 'I':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 31) {
Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
return;
case 'J':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 63) {
Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
return;
case 'K':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (isInt<8>(C->getSExtValue())) {
Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
return;
case 'L':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() == 0xff || C->getZExtValue() == 0xffff ||
(Subtarget.is64Bit() && C->getZExtValue() == 0xffffffff)) {
Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
return;
case 'M':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 3) {
Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
return;
case 'N':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 255) {
Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
return;
case 'O':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 127) {
Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
return;
case 'e': {
// 32-bit signed value
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
C->getSExtValue())) {
// Widen to 64 bits here to get it sign extended.
Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), MVT::i64);
break;
}
// FIXME gcc accepts some relocatable values here too, but only in certain
// memory models; it's complicated.
}
return;
}
case 'Z': {
// 32-bit unsigned value
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
C->getZExtValue())) {
Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
// FIXME gcc accepts some relocatable values here too, but only in certain
// memory models; it's complicated.
return;
}
case 'i': {
// Literal immediates are always ok.
if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
// Widen to 64 bits here to get it sign extended.
Result = DAG.getTargetConstant(CST->getSExtValue(), SDLoc(Op), MVT::i64);
break;
}
// In any sort of PIC mode addresses need to be computed at runtime by
// adding in a register or some sort of table lookup. These can't
// be used as immediates.
if (Subtarget.isPICStyleGOT() || Subtarget.isPICStyleStubPIC())
return;
// If we are in non-pic codegen mode, we allow the address of a global (with
// an optional displacement) to be used with 'i'.
GlobalAddressSDNode *GA = nullptr;
int64_t Offset = 0;
// Match either (GA), (GA+C), (GA+C1+C2), etc.
while (1) {
if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
Offset += GA->getOffset();
break;
} else if (Op.getOpcode() == ISD::ADD) {
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Offset += C->getZExtValue();
Op = Op.getOperand(0);
continue;
}
} else if (Op.getOpcode() == ISD::SUB) {
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Offset += -C->getZExtValue();
Op = Op.getOperand(0);
continue;
}
}
// Otherwise, this isn't something we can handle, reject it.
return;
}
const GlobalValue *GV = GA->getGlobal();
// If we require an extra load to get this address, as in PIC mode, we
// can't accept it.
if (isGlobalStubReference(Subtarget.classifyGlobalReference(GV)))
return;
Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
GA->getValueType(0), Offset);
break;
}
}
if (Result.getNode()) {
Ops.push_back(Result);
return;
}
return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
/// Check if \p RC is a general purpose register class.
/// I.e., GR* or one of their variant.
static bool isGRClass(const TargetRegisterClass &RC) {
return RC.hasSuperClassEq(&X86::GR8RegClass) ||
RC.hasSuperClassEq(&X86::GR16RegClass) ||
RC.hasSuperClassEq(&X86::GR32RegClass) ||
RC.hasSuperClassEq(&X86::GR64RegClass) ||
RC.hasSuperClassEq(&X86::LOW32_ADDR_ACCESS_RBPRegClass);
}
/// Check if \p RC is a vector register class.
/// I.e., FR* / VR* or one of their variant.
static bool isFRClass(const TargetRegisterClass &RC) {
return RC.hasSuperClassEq(&X86::FR32XRegClass) ||
RC.hasSuperClassEq(&X86::FR64XRegClass) ||
RC.hasSuperClassEq(&X86::VR128XRegClass) ||
RC.hasSuperClassEq(&X86::VR256XRegClass) ||
RC.hasSuperClassEq(&X86::VR512RegClass);
}
std::pair<unsigned, const TargetRegisterClass *>
X86TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint,
MVT VT) const {
// First, see if this is a constraint that directly corresponds to an LLVM
// register class.
if (Constraint.size() == 1) {
// GCC Constraint Letters
switch (Constraint[0]) {
default: break;
// TODO: Slight differences here in allocation order and leaving
// RIP in the class. Do they matter any more here than they do
// in the normal allocation?
case 'k':
if (Subtarget.hasAVX512()) {
// Only supported in AVX512 or later.
switch (VT.SimpleTy) {
default: break;
case MVT::i32:
return std::make_pair(0U, &X86::VK32RegClass);
case MVT::i16:
return std::make_pair(0U, &X86::VK16RegClass);
case MVT::i8:
return std::make_pair(0U, &X86::VK8RegClass);
case MVT::i1:
return std::make_pair(0U, &X86::VK1RegClass);
case MVT::i64:
return std::make_pair(0U, &X86::VK64RegClass);
}
}
break;
case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
if (Subtarget.is64Bit()) {
if (VT == MVT::i32 || VT == MVT::f32)
return std::make_pair(0U, &X86::GR32RegClass);
if (VT == MVT::i16)
return std::make_pair(0U, &X86::GR16RegClass);
if (VT == MVT::i8 || VT == MVT::i1)
return std::make_pair(0U, &X86::GR8RegClass);
if (VT == MVT::i64 || VT == MVT::f64)
return std::make_pair(0U, &X86::GR64RegClass);
break;
}
LLVM_FALLTHROUGH;
// 32-bit fallthrough
case 'Q': // Q_REGS
if (VT == MVT::i32 || VT == MVT::f32)
return std::make_pair(0U, &X86::GR32_ABCDRegClass);
if (VT == MVT::i16)
return std::make_pair(0U, &X86::GR16_ABCDRegClass);
if (VT == MVT::i8 || VT == MVT::i1)
return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
if (VT == MVT::i64)
return std::make_pair(0U, &X86::GR64_ABCDRegClass);
break;
case 'r': // GENERAL_REGS
case 'l': // INDEX_REGS
if (VT == MVT::i8 || VT == MVT::i1)
return std::make_pair(0U, &X86::GR8RegClass);
if (VT == MVT::i16)
return std::make_pair(0U, &X86::GR16RegClass);
if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget.is64Bit())
return std::make_pair(0U, &X86::GR32RegClass);
return std::make_pair(0U, &X86::GR64RegClass);
case 'R': // LEGACY_REGS
if (VT == MVT::i8 || VT == MVT::i1)
return std::make_pair(0U, &X86::GR8_NOREXRegClass);
if (VT == MVT::i16)
return std::make_pair(0U, &X86::GR16_NOREXRegClass);
if (VT == MVT::i32 || !Subtarget.is64Bit())
return std::make_pair(0U, &X86::GR32_NOREXRegClass);
return std::make_pair(0U, &X86::GR64_NOREXRegClass);
case 'f': // FP Stack registers.
// If SSE is enabled for this VT, use f80 to ensure the isel moves the
// value to the correct fpstack register class.
if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
return std::make_pair(0U, &X86::RFP32RegClass);
if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
return std::make_pair(0U, &X86::RFP64RegClass);
return std::make_pair(0U, &X86::RFP80RegClass);
case 'y': // MMX_REGS if MMX allowed.
if (!Subtarget.hasMMX()) break;
return std::make_pair(0U, &X86::VR64RegClass);
case 'Y': // SSE_REGS if SSE2 allowed
if (!Subtarget.hasSSE2()) break;
LLVM_FALLTHROUGH;
case 'v':
case 'x': // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
if (!Subtarget.hasSSE1()) break;
bool VConstraint = (Constraint[0] == 'v');
switch (VT.SimpleTy) {
default: break;
// Scalar SSE types.
case MVT::f32:
case MVT::i32:
if (VConstraint && Subtarget.hasAVX512() && Subtarget.hasVLX())
return std::make_pair(0U, &X86::FR32XRegClass);
return std::make_pair(0U, &X86::FR32RegClass);
case MVT::f64:
case MVT::i64:
if (VConstraint && Subtarget.hasVLX())
return std::make_pair(0U, &X86::FR64XRegClass);
return std::make_pair(0U, &X86::FR64RegClass);
// TODO: Handle f128 and i128 in FR128RegClass after it is tested well.
// Vector types.
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
if (VConstraint && Subtarget.hasVLX())
return std::make_pair(0U, &X86::VR128XRegClass);
return std::make_pair(0U, &X86::VR128RegClass);
// AVX types.
case MVT::v32i8:
case MVT::v16i16:
case MVT::v8i32:
case MVT::v4i64:
case MVT::v8f32:
case MVT::v4f64:
if (VConstraint && Subtarget.hasVLX())
return std::make_pair(0U, &X86::VR256XRegClass);
return std::make_pair(0U, &X86::VR256RegClass);
case MVT::v8f64:
case MVT::v16f32:
case MVT::v16i32:
case MVT::v8i64:
return std::make_pair(0U, &X86::VR512RegClass);
}
break;
}
} else if (Constraint.size() == 2 && Constraint[0] == 'Y') {
switch (Constraint[1]) {
default:
break;
case 'i':
case 't':
case '2':
return getRegForInlineAsmConstraint(TRI, "Y", VT);
case 'm':
if (!Subtarget.hasMMX()) break;
return std::make_pair(0U, &X86::VR64RegClass);
case 'z':
case '0':
if (!Subtarget.hasSSE1()) break;
return std::make_pair(X86::XMM0, &X86::VR128RegClass);
case 'k':
// This register class doesn't allocate k0 for masked vector operation.
if (Subtarget.hasAVX512()) { // Only supported in AVX512.
switch (VT.SimpleTy) {
default: break;
case MVT::i32:
return std::make_pair(0U, &X86::VK32WMRegClass);
case MVT::i16:
return std::make_pair(0U, &X86::VK16WMRegClass);
case MVT::i8:
return std::make_pair(0U, &X86::VK8WMRegClass);
case MVT::i1:
return std::make_pair(0U, &X86::VK1WMRegClass);
case MVT::i64:
return std::make_pair(0U, &X86::VK64WMRegClass);
}
}
break;
}
}
// Use the default implementation in TargetLowering to convert the register
// constraint into a member of a register class.
std::pair<unsigned, const TargetRegisterClass*> Res;
Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
// Not found as a standard register?
if (!Res.second) {
// Map st(0) -> st(7) -> ST0
if (Constraint.size() == 7 && Constraint[0] == '{' &&
tolower(Constraint[1]) == 's' &&
tolower(Constraint[2]) == 't' &&
Constraint[3] == '(' &&
(Constraint[4] >= '0' && Constraint[4] <= '7') &&
Constraint[5] == ')' &&
Constraint[6] == '}') {
Res.first = X86::FP0+Constraint[4]-'0';
Res.second = &X86::RFP80RegClass;
return Res;
}
// GCC allows "st(0)" to be called just plain "st".
if (StringRef("{st}").equals_lower(Constraint)) {
Res.first = X86::FP0;
Res.second = &X86::RFP80RegClass;
return Res;
}
// flags -> EFLAGS
if (StringRef("{flags}").equals_lower(Constraint)) {
Res.first = X86::EFLAGS;
Res.second = &X86::CCRRegClass;
return Res;
}
// 'A' means [ER]AX + [ER]DX.
if (Constraint == "A") {
if (Subtarget.is64Bit()) {
Res.first = X86::RAX;
Res.second = &X86::GR64_ADRegClass;
} else {
assert((Subtarget.is32Bit() || Subtarget.is16Bit()) &&
"Expecting 64, 32 or 16 bit subtarget");
Res.first = X86::EAX;
Res.second = &X86::GR32_ADRegClass;
}
return Res;
}
return Res;
}
// Make sure it isn't a register that requires 64-bit mode.
if (!Subtarget.is64Bit() &&
(isFRClass(*Res.second) || isGRClass(*Res.second)) &&
TRI->getEncodingValue(Res.first) >= 8) {
// Register requires REX prefix, but we're in 32-bit mode.
Res.first = 0;
Res.second = nullptr;
return Res;
}
// Make sure it isn't a register that requires AVX512.
if (!Subtarget.hasAVX512() && isFRClass(*Res.second) &&
TRI->getEncodingValue(Res.first) & 0x10) {
// Register requires EVEX prefix.
Res.first = 0;
Res.second = nullptr;
return Res;
}
// Otherwise, check to see if this is a register class of the wrong value
// type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
// turn into {ax},{dx}.
// MVT::Other is used to specify clobber names.
if (TRI->isTypeLegalForClass(*Res.second, VT) || VT == MVT::Other)
return Res; // Correct type already, nothing to do.
// Get a matching integer of the correct size. i.e. "ax" with MVT::32 should
// return "eax". This should even work for things like getting 64bit integer
// registers when given an f64 type.
const TargetRegisterClass *Class = Res.second;
// The generic code will match the first register class that contains the
// given register. Thus, based on the ordering of the tablegened file,
// the "plain" GR classes might not come first.
// Therefore, use a helper method.
if (isGRClass(*Class)) {
unsigned Size = VT.getSizeInBits();
if (Size == 1) Size = 8;
unsigned DestReg = getX86SubSuperRegisterOrZero(Res.first, Size);
if (DestReg > 0) {
bool is64Bit = Subtarget.is64Bit();
const TargetRegisterClass *RC =
Size == 8 ? (is64Bit ? &X86::GR8RegClass : &X86::GR8_NOREXRegClass)
: Size == 16 ? (is64Bit ? &X86::GR16RegClass : &X86::GR16_NOREXRegClass)
: Size == 32 ? (is64Bit ? &X86::GR32RegClass : &X86::GR32_NOREXRegClass)
: &X86::GR64RegClass;
if (RC->contains(DestReg))
Res = std::make_pair(DestReg, RC);
} else {
// No register found/type mismatch.
Res.first = 0;
Res.second = nullptr;
}
} else if (isFRClass(*Class)) {
// Handle references to XMM physical registers that got mapped into the
// wrong class. This can happen with constraints like {xmm0} where the
// target independent register mapper will just pick the first match it can
// find, ignoring the required type.
// TODO: Handle f128 and i128 in FR128RegClass after it is tested well.
if (VT == MVT::f32 || VT == MVT::i32)
Res.second = &X86::FR32RegClass;
else if (VT == MVT::f64 || VT == MVT::i64)
Res.second = &X86::FR64RegClass;
else if (TRI->isTypeLegalForClass(X86::VR128RegClass, VT))
Res.second = &X86::VR128RegClass;
else if (TRI->isTypeLegalForClass(X86::VR256RegClass, VT))
Res.second = &X86::VR256RegClass;
else if (TRI->isTypeLegalForClass(X86::VR512RegClass, VT))
Res.second = &X86::VR512RegClass;
else {
// Type mismatch and not a clobber: Return an error;
Res.first = 0;
Res.second = nullptr;
}
}
return Res;
}
int X86TargetLowering::getScalingFactorCost(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS) const {
// Scaling factors are not free at all.
// An indexed folded instruction, i.e., inst (reg1, reg2, scale),
// will take 2 allocations in the out of order engine instead of 1
// for plain addressing mode, i.e. inst (reg1).
// E.g.,
// vaddps (%rsi,%rdx), %ymm0, %ymm1
// Requires two allocations (one for the load, one for the computation)
// whereas:
// vaddps (%rsi), %ymm0, %ymm1
// Requires just 1 allocation, i.e., freeing allocations for other operations
// and having less micro operations to execute.
//
// For some X86 architectures, this is even worse because for instance for
// stores, the complex addressing mode forces the instruction to use the
// "load" ports instead of the dedicated "store" port.
// E.g., on Haswell:
// vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3.
// vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
if (isLegalAddressingMode(DL, AM, Ty, AS))
// Scale represents reg2 * scale, thus account for 1
// as soon as we use a second register.
return AM.Scale != 0;
return -1;
}
bool X86TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
// Integer division on x86 is expensive. However, when aggressively optimizing
// for code size, we prefer to use a div instruction, as it is usually smaller
// than the alternative sequence.
// The exception to this is vector division. Since x86 doesn't have vector
// integer division, leaving the division as-is is a loss even in terms of
// size, because it will have to be scalarized, while the alternative code
// sequence can be performed in vector form.
bool OptSize =
Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize);
return OptSize && !VT.isVector();
}
void X86TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
if (!Subtarget.is64Bit())
return;
// Update IsSplitCSR in X86MachineFunctionInfo.
X86MachineFunctionInfo *AFI =
Entry->getParent()->getInfo<X86MachineFunctionInfo>();
AFI->setIsSplitCSR(true);
}
void X86TargetLowering::insertCopiesSplitCSR(
MachineBasicBlock *Entry,
const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
if (!IStart)
return;
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
MachineBasicBlock::iterator MBBI = Entry->begin();
for (const MCPhysReg *I = IStart; *I; ++I) {
const TargetRegisterClass *RC = nullptr;
if (X86::GR64RegClass.contains(*I))
RC = &X86::GR64RegClass;
else
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
unsigned NewVR = MRI->createVirtualRegister(RC);
// Create copy from CSR to a virtual register.
// FIXME: this currently does not emit CFI pseudo-instructions, it works
// fine for CXX_FAST_TLS since the C++-style TLS access functions should be
// nounwind. If we want to generalize this later, we may need to emit
// CFI pseudo-instructions.
assert(Entry->getParent()->getFunction().hasFnAttribute(
Attribute::NoUnwind) &&
"Function should be nounwind in insertCopiesSplitCSR!");
Entry->addLiveIn(*I);
BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
.addReg(*I);
// Insert the copy-back instructions right before the terminator.
for (auto *Exit : Exits)
BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
TII->get(TargetOpcode::COPY), *I)
.addReg(NewVR);
}
}
bool X86TargetLowering::supportSwiftError() const {
return Subtarget.is64Bit();
}
/// Returns the name of the symbol used to emit stack probes or the empty
/// string if not applicable.
StringRef X86TargetLowering::getStackProbeSymbolName(MachineFunction &MF) const {
// If the function specifically requests stack probes, emit them.
if (MF.getFunction().hasFnAttribute("probe-stack"))
return MF.getFunction().getFnAttribute("probe-stack").getValueAsString();
// Generally, if we aren't on Windows, the platform ABI does not include
// support for stack probes, so don't emit them.
if (!Subtarget.isOSWindows() || Subtarget.isTargetMachO() ||
MF.getFunction().hasFnAttribute("no-stack-arg-probe"))
return "";
// We need a stack probe to conform to the Windows ABI. Choose the right
// symbol.
if (Subtarget.is64Bit())
return Subtarget.isTargetCygMing() ? "___chkstk_ms" : "__chkstk";
return Subtarget.isTargetCygMing() ? "_alloca" : "_chkstk";
}