| //===- subzero/src/IceCfgNode.cpp - Basic block (node) implementation -----===// |
| // |
| // The Subzero Code Generator |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the CfgNode class, including the complexities |
| // of instruction insertion and in-edge calculation. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "IceCfg.h" |
| #include "IceCfgNode.h" |
| #include "IceInst.h" |
| #include "IceLiveness.h" |
| #include "IceOperand.h" |
| #include "IceTargetLowering.h" |
| |
| namespace Ice { |
| |
| CfgNode::CfgNode(Cfg *Func, SizeT LabelNumber, IceString Name) |
| : Func(Func), Number(LabelNumber), Name(Name), HasReturn(false), |
| InstCountEstimate(0) {} |
| |
| // Returns the name the node was created with. If no name was given, |
| // it synthesizes a (hopefully) unique name. |
| IceString CfgNode::getName() const { |
| if (!Name.empty()) |
| return Name; |
| char buf[30]; |
| snprintf(buf, llvm::array_lengthof(buf), "__%u", getIndex()); |
| return buf; |
| } |
| |
| // Adds an instruction to either the Phi list or the regular |
| // instruction list. Validates that all Phis are added before all |
| // regular instructions. |
| void CfgNode::appendInst(Inst *Inst) { |
| ++InstCountEstimate; |
| if (InstPhi *Phi = llvm::dyn_cast<InstPhi>(Inst)) { |
| if (!Insts.empty()) { |
| Func->setError("Phi instruction added to the middle of a block"); |
| return; |
| } |
| Phis.push_back(Phi); |
| } else { |
| Insts.push_back(Inst); |
| } |
| } |
| |
| // Renumbers the non-deleted instructions in the node. This needs to |
| // be done in preparation for live range analysis. The instruction |
| // numbers in a block must be monotonically increasing. The range of |
| // instruction numbers in a block, from lowest to highest, must not |
| // overlap with the range of any other block. |
| void CfgNode::renumberInstructions() { |
| InstNumberT FirstNumber = Func->getNextInstNumber(); |
| for (InstPhi *I : Phis) |
| I->renumber(Func); |
| for (Inst *I : Insts) |
| I->renumber(Func); |
| InstCountEstimate = Func->getNextInstNumber() - FirstNumber; |
| } |
| |
| // When a node is created, the OutEdges are immediately knows, but the |
| // InEdges have to be built up incrementally. After the CFG has been |
| // constructed, the computePredecessors() pass finalizes it by |
| // creating the InEdges list. |
| void CfgNode::computePredecessors() { |
| OutEdges = (*Insts.rbegin())->getTerminatorEdges(); |
| for (CfgNode *Succ : OutEdges) |
| Succ->InEdges.push_back(this); |
| } |
| |
| // This does part 1 of Phi lowering, by creating a new dest variable |
| // for each Phi instruction, replacing the Phi instruction's dest with |
| // that variable, and adding an explicit assignment of the old dest to |
| // the new dest. For example, |
| // a=phi(...) |
| // changes to |
| // "a_phi=phi(...); a=a_phi". |
| // |
| // This is in preparation for part 2 which deletes the Phi |
| // instructions and appends assignment instructions to predecessor |
| // blocks. Note that this transformation preserves SSA form. |
| void CfgNode::placePhiLoads() { |
| for (InstPhi *I : Phis) |
| Insts.insert(Insts.begin(), I->lower(Func)); |
| } |
| |
| // This does part 2 of Phi lowering. For each Phi instruction at each |
| // out-edge, create a corresponding assignment instruction, and add |
| // all the assignments near the end of this block. They need to be |
| // added before any branch instruction, and also if the block ends |
| // with a compare instruction followed by a branch instruction that we |
| // may want to fuse, it's better to insert the new assignments before |
| // the compare instruction. The tryOptimizedCmpxchgCmpBr() method |
| // assumes this ordering of instructions. |
| // |
| // Note that this transformation takes the Phi dest variables out of |
| // SSA form, as there may be assignments to the dest variable in |
| // multiple blocks. |
| // |
| // TODO: Defer this pass until after register allocation, then split |
| // critical edges, add the assignments, and lower them. This should |
| // reduce the amount of shuffling at the end of each block. |
| void CfgNode::placePhiStores() { |
| // Find the insertion point. |
| InstList::iterator InsertionPoint = Insts.end(); |
| // Every block must end in a terminator instruction, and therefore |
| // must have at least one instruction, so it's valid to decrement |
| // InsertionPoint (but assert just in case). |
| assert(InsertionPoint != Insts.begin()); |
| --InsertionPoint; |
| // Confirm that InsertionPoint is a terminator instruction. Calling |
| // getTerminatorEdges() on a non-terminator instruction will cause |
| // an llvm_unreachable(). |
| (void)(*InsertionPoint)->getTerminatorEdges(); |
| // SafeInsertionPoint is always immediately before the terminator |
| // instruction. If the block ends in a compare and conditional |
| // branch, it's better to place the Phi store before the compare so |
| // as not to interfere with compare/branch fusing. However, if the |
| // compare instruction's dest operand is the same as the new |
| // assignment statement's source operand, this can't be done due to |
| // data dependences, so we need to fall back to the |
| // SafeInsertionPoint. To illustrate: |
| // ; <label>:95 |
| // %97 = load i8* %96, align 1 |
| // %98 = icmp ne i8 %97, 0 |
| // br i1 %98, label %99, label %2132 |
| // ; <label>:99 |
| // %100 = phi i8 [ %97, %95 ], [ %110, %108 ] |
| // %101 = phi i1 [ %98, %95 ], [ %111, %108 ] |
| // would be Phi-lowered as: |
| // ; <label>:95 |
| // %97 = load i8* %96, align 1 |
| // %100_phi = %97 ; can be at InsertionPoint |
| // %98 = icmp ne i8 %97, 0 |
| // %101_phi = %98 ; must be at SafeInsertionPoint |
| // br i1 %98, label %99, label %2132 |
| // ; <label>:99 |
| // %100 = %100_phi |
| // %101 = %101_phi |
| // |
| // TODO(stichnot): It may be possible to bypass this whole |
| // SafeInsertionPoint mechanism. If a source basic block ends in a |
| // conditional branch: |
| // labelSource: |
| // ... |
| // br i1 %foo, label %labelTrue, label %labelFalse |
| // and a branch target has a Phi involving the branch operand: |
| // labelTrue: |
| // %bar = phi i1 [ %foo, %labelSource ], ... |
| // then we actually know the constant i1 value of the Phi operand: |
| // labelTrue: |
| // %bar = phi i1 [ true, %labelSource ], ... |
| // It seems that this optimization should be done by clang or opt, |
| // but we could also do it here. |
| InstList::iterator SafeInsertionPoint = InsertionPoint; |
| // Keep track of the dest variable of a compare instruction, so that |
| // we insert the new instruction at the SafeInsertionPoint if the |
| // compare's dest matches the Phi-lowered assignment's source. |
| Variable *CmpInstDest = NULL; |
| // If the current insertion point is at a conditional branch |
| // instruction, and the previous instruction is a compare |
| // instruction, then we move the insertion point before the compare |
| // instruction so as not to interfere with compare/branch fusing. |
| if (InstBr *Branch = llvm::dyn_cast<InstBr>(*InsertionPoint)) { |
| if (!Branch->isUnconditional()) { |
| if (InsertionPoint != Insts.begin()) { |
| --InsertionPoint; |
| if (llvm::isa<InstIcmp>(*InsertionPoint) || |
| llvm::isa<InstFcmp>(*InsertionPoint)) { |
| CmpInstDest = (*InsertionPoint)->getDest(); |
| } else { |
| ++InsertionPoint; |
| } |
| } |
| } |
| } |
| |
| // Consider every out-edge. |
| for (CfgNode *Succ : OutEdges) { |
| // Consider every Phi instruction at the out-edge. |
| for (InstPhi *I : Succ->Phis) { |
| Operand *Operand = I->getOperandForTarget(this); |
| assert(Operand); |
| Variable *Dest = I->getDest(); |
| assert(Dest); |
| InstAssign *NewInst = InstAssign::create(Func, Dest, Operand); |
| if (CmpInstDest == Operand) |
| Insts.insert(SafeInsertionPoint, NewInst); |
| else |
| Insts.insert(InsertionPoint, NewInst); |
| } |
| } |
| } |
| |
| // Deletes the phi instructions after the loads and stores are placed. |
| void CfgNode::deletePhis() { |
| for (InstPhi *I : Phis) |
| I->setDeleted(); |
| } |
| |
| // Does address mode optimization. Pass each instruction to the |
| // TargetLowering object. If it returns a new instruction |
| // (representing the optimized address mode), then insert the new |
| // instruction and delete the old. |
| void CfgNode::doAddressOpt() { |
| TargetLowering *Target = Func->getTarget(); |
| LoweringContext &Context = Target->getContext(); |
| Context.init(this); |
| while (!Context.atEnd()) { |
| Target->doAddressOpt(); |
| } |
| } |
| |
| void CfgNode::doNopInsertion() { |
| TargetLowering *Target = Func->getTarget(); |
| LoweringContext &Context = Target->getContext(); |
| Context.init(this); |
| while (!Context.atEnd()) { |
| Target->doNopInsertion(); |
| // Ensure Cur=Next, so that the nops are inserted before the current |
| // instruction rather than after. |
| Context.advanceNext(); |
| Context.advanceCur(); |
| } |
| // Insert before all instructions. |
| Context.setInsertPoint(getInsts().begin()); |
| Context.advanceNext(); |
| Context.advanceCur(); |
| Target->doNopInsertion(); |
| } |
| |
| // Drives the target lowering. Passes the current instruction and the |
| // next non-deleted instruction for target lowering. |
| void CfgNode::genCode() { |
| TargetLowering *Target = Func->getTarget(); |
| LoweringContext &Context = Target->getContext(); |
| // Lower only the regular instructions. Defer the Phi instructions. |
| Context.init(this); |
| while (!Context.atEnd()) { |
| InstList::iterator Orig = Context.getCur(); |
| if (llvm::isa<InstRet>(*Orig)) |
| setHasReturn(); |
| Target->lower(); |
| // Ensure target lowering actually moved the cursor. |
| assert(Context.getCur() != Orig); |
| } |
| } |
| |
| void CfgNode::livenessLightweight() { |
| SizeT NumVars = Func->getNumVariables(); |
| LivenessBV Live(NumVars); |
| // Process regular instructions in reverse order. |
| // TODO(stichnot): Use llvm::make_range with LLVM 3.5. |
| for (auto I = Insts.rbegin(), E = Insts.rend(); I != E; ++I) { |
| if ((*I)->isDeleted()) |
| continue; |
| (*I)->livenessLightweight(Func, Live); |
| } |
| for (InstPhi *I : Phis) { |
| if (I->isDeleted()) |
| continue; |
| I->livenessLightweight(Func, Live); |
| } |
| } |
| |
| // Performs liveness analysis on the block. Returns true if the |
| // incoming liveness changed from before, false if it stayed the same. |
| // (If it changes, the node's predecessors need to be processed |
| // again.) |
| bool CfgNode::liveness(Liveness *Liveness) { |
| SizeT NumVars = Liveness->getNumVarsInNode(this); |
| LivenessBV Live(NumVars); |
| LiveBeginEndMap *LiveBegin = NULL; |
| LiveBeginEndMap *LiveEnd = NULL; |
| // Mark the beginning and ending of each variable's live range |
| // with the sentinel instruction number 0. |
| if (Liveness->getMode() == Liveness_Intervals) { |
| LiveBegin = Liveness->getLiveBegin(this); |
| LiveEnd = Liveness->getLiveEnd(this); |
| LiveBegin->clear(); |
| LiveEnd->clear(); |
| // Guess that the number of live ranges beginning is roughly the |
| // number of instructions, and same for live ranges ending. |
| LiveBegin->reserve(getInstCountEstimate()); |
| LiveEnd->reserve(getInstCountEstimate()); |
| } |
| // Initialize Live to be the union of all successors' LiveIn. |
| for (CfgNode *Succ : OutEdges) { |
| Live |= Liveness->getLiveIn(Succ); |
| // Mark corresponding argument of phis in successor as live. |
| for (InstPhi *I : Succ->Phis) |
| I->livenessPhiOperand(Live, this, Liveness); |
| } |
| Liveness->getLiveOut(this) = Live; |
| |
| // Process regular instructions in reverse order. |
| // TODO(stichnot): Use llvm::make_range with LLVM 3.5. |
| for (auto I = Insts.rbegin(), E = Insts.rend(); I != E; ++I) { |
| if ((*I)->isDeleted()) |
| continue; |
| (*I)->liveness((*I)->getNumber(), Live, Liveness, LiveBegin, LiveEnd); |
| } |
| // Process phis in forward order so that we can override the |
| // instruction number to be that of the earliest phi instruction in |
| // the block. |
| InstNumberT FirstPhiNumber = Inst::NumberSentinel; |
| for (InstPhi *I : Phis) { |
| if (I->isDeleted()) |
| continue; |
| if (FirstPhiNumber == Inst::NumberSentinel) |
| FirstPhiNumber = I->getNumber(); |
| I->liveness(FirstPhiNumber, Live, Liveness, LiveBegin, LiveEnd); |
| } |
| |
| // When using the sparse representation, after traversing the |
| // instructions in the block, the Live bitvector should only contain |
| // set bits for global variables upon block entry. We validate this |
| // by shrinking the Live vector and then testing it against the |
| // pre-shrunk version. (The shrinking is required, but the |
| // validation is not.) |
| LivenessBV LiveOrig = Live; |
| Live.resize(Liveness->getNumGlobalVars()); |
| // Non-global arguments in the entry node are allowed to be live on |
| // entry. |
| bool IsEntry = (Func->getEntryNode() == this); |
| if (!(IsEntry || Live == LiveOrig)) { |
| // This is a fatal liveness consistency error. Print some |
| // diagnostics and abort. |
| Ostream &Str = Func->getContext()->getStrDump(); |
| Func->resetCurrentNode(); |
| Str << "LiveOrig-Live ="; |
| for (SizeT i = Live.size(); i < LiveOrig.size(); ++i) { |
| if (LiveOrig.test(i)) { |
| Str << " "; |
| Liveness->getVariable(i, this)->dump(Func); |
| } |
| } |
| Str << "\n"; |
| llvm_unreachable("Fatal inconsistency in liveness analysis"); |
| } |
| |
| bool Changed = false; |
| LivenessBV &LiveIn = Liveness->getLiveIn(this); |
| // Add in current LiveIn |
| Live |= LiveIn; |
| // Check result, set LiveIn=Live |
| Changed = (Live != LiveIn); |
| if (Changed) |
| LiveIn = Live; |
| return Changed; |
| } |
| |
| // Now that basic liveness is complete, remove dead instructions that |
| // were tentatively marked as dead, and compute actual live ranges. |
| // It is assumed that within a single basic block, a live range begins |
| // at most once and ends at most once. This is certainly true for |
| // pure SSA form. It is also true once phis are lowered, since each |
| // assignment to the phi-based temporary is in a different basic |
| // block, and there is a single read that ends the live in the basic |
| // block that contained the actual phi instruction. |
| void CfgNode::livenessPostprocess(LivenessMode Mode, Liveness *Liveness) { |
| InstNumberT FirstInstNum = Inst::NumberSentinel; |
| InstNumberT LastInstNum = Inst::NumberSentinel; |
| // Process phis in any order. Process only Dest operands. |
| for (InstPhi *I : Phis) { |
| I->deleteIfDead(); |
| if (I->isDeleted()) |
| continue; |
| if (FirstInstNum == Inst::NumberSentinel) |
| FirstInstNum = I->getNumber(); |
| assert(I->getNumber() > LastInstNum); |
| LastInstNum = I->getNumber(); |
| } |
| // Process instructions |
| for (Inst *I : Insts) { |
| I->deleteIfDead(); |
| if (I->isDeleted()) |
| continue; |
| if (FirstInstNum == Inst::NumberSentinel) |
| FirstInstNum = I->getNumber(); |
| assert(I->getNumber() > LastInstNum); |
| LastInstNum = I->getNumber(); |
| // Create fake live ranges for a Kill instruction, but only if the |
| // linked instruction is still alive. |
| if (Mode == Liveness_Intervals) { |
| if (InstFakeKill *Kill = llvm::dyn_cast<InstFakeKill>(I)) { |
| if (!Kill->getLinked()->isDeleted()) { |
| SizeT NumSrcs = I->getSrcSize(); |
| for (SizeT Src = 0; Src < NumSrcs; ++Src) { |
| Variable *Var = llvm::cast<Variable>(I->getSrc(Src)); |
| InstNumberT InstNumber = I->getNumber(); |
| Var->addLiveRange(InstNumber, InstNumber, 1); |
| } |
| } |
| } |
| } |
| } |
| if (Mode != Liveness_Intervals) |
| return; |
| TimerMarker T1(TimerStack::TT_liveRangeCtor, Func); |
| |
| SizeT NumVars = Liveness->getNumVarsInNode(this); |
| LivenessBV &LiveIn = Liveness->getLiveIn(this); |
| LivenessBV &LiveOut = Liveness->getLiveOut(this); |
| LiveBeginEndMap &MapBegin = *Liveness->getLiveBegin(this); |
| LiveBeginEndMap &MapEnd = *Liveness->getLiveEnd(this); |
| std::sort(MapBegin.begin(), MapBegin.end()); |
| std::sort(MapEnd.begin(), MapEnd.end()); |
| // Verify there are no duplicates. |
| struct ComparePair { |
| bool operator()(const LiveBeginEndMapEntry &A, |
| const LiveBeginEndMapEntry &B) { |
| return A.first == B.first; |
| } |
| }; |
| assert(std::adjacent_find(MapBegin.begin(), MapBegin.end(), ComparePair()) == |
| MapBegin.end()); |
| assert(std::adjacent_find(MapEnd.begin(), MapEnd.end(), ComparePair()) == |
| MapEnd.end()); |
| |
| LivenessBV LiveInAndOut = LiveIn; |
| LiveInAndOut &= LiveOut; |
| |
| // Iterate in parallel across the sorted MapBegin[] and MapEnd[]. |
| auto IBB = MapBegin.begin(), IEB = MapEnd.begin(); |
| auto IBE = MapBegin.end(), IEE = MapEnd.end(); |
| while (IBB != IBE || IEB != IEE) { |
| SizeT i1 = IBB == IBE ? NumVars : IBB->first; |
| SizeT i2 = IEB == IEE ? NumVars : IEB->first; |
| SizeT i = std::min(i1, i2); |
| // i1 is the Variable number of the next MapBegin entry, and i2 is |
| // the Variable number of the next MapEnd entry. If i1==i2, then |
| // the Variable's live range begins and ends in this block. If |
| // i1<i2, then i1's live range begins at instruction IBB->second |
| // and extends through the end of the block. If i1>i2, then i2's |
| // live range begins at the first instruction of the block and |
| // ends at IEB->second. In any case, we choose the lesser of i1 |
| // and i2 and proceed accordingly. |
| InstNumberT LB = i == i1 ? IBB->second : FirstInstNum; |
| InstNumberT LE = i == i2 ? IEB->second : LastInstNum + 1; |
| |
| Variable *Var = Liveness->getVariable(i, this); |
| if (!Var->getIgnoreLiveness()) { |
| if (LB > LE) { |
| Var->addLiveRange(FirstInstNum, LE, 1); |
| Var->addLiveRange(LB, LastInstNum + 1, 1); |
| // Assert that Var is a global variable by checking that its |
| // liveness index is less than the number of globals. This |
| // ensures that the LiveInAndOut[] access is valid. |
| assert(i < Liveness->getNumGlobalVars()); |
| LiveInAndOut[i] = false; |
| } else { |
| Var->addLiveRange(LB, LE, 1); |
| } |
| } |
| if (i == i1) |
| ++IBB; |
| if (i == i2) |
| ++IEB; |
| } |
| // Process the variables that are live across the entire block. |
| for (int i = LiveInAndOut.find_first(); i != -1; |
| i = LiveInAndOut.find_next(i)) { |
| Variable *Var = Liveness->getVariable(i, this); |
| Var->addLiveRange(FirstInstNum, LastInstNum + 1, 1); |
| } |
| } |
| |
| void CfgNode::doBranchOpt(const CfgNode *NextNode) { |
| TargetLowering *Target = Func->getTarget(); |
| // Check every instruction for a branch optimization opportunity. |
| // It may be more efficient to iterate in reverse and stop after the |
| // first opportunity, unless there is some target lowering where we |
| // have the possibility of multiple such optimizations per block |
| // (currently not the case for x86 lowering). |
| for (Inst *I : Insts) |
| Target->doBranchOpt(I, NextNode); |
| } |
| |
| // ======================== Dump routines ======================== // |
| |
| void CfgNode::emit(Cfg *Func) const { |
| Func->setCurrentNode(this); |
| Ostream &Str = Func->getContext()->getStrEmit(); |
| if (Func->getEntryNode() == this) { |
| Str << Func->getContext()->mangleName(Func->getFunctionName()) << ":\n"; |
| } |
| Str << getAsmName() << ":\n"; |
| for (InstPhi *Phi : Phis) { |
| if (Phi->isDeleted()) |
| continue; |
| // Emitting a Phi instruction should cause an error. |
| Inst *Instr = Phi; |
| Instr->emit(Func); |
| } |
| for (Inst *I : Insts) { |
| if (I->isDeleted()) |
| continue; |
| // Here we detect redundant assignments like "mov eax, eax" and |
| // suppress them. |
| if (I->isRedundantAssign()) |
| continue; |
| if (Func->UseIntegratedAssembler()) { |
| I->emitIAS(Func); |
| } else { |
| I->emit(Func); |
| } |
| // Update emitted instruction count, plus fill/spill count for |
| // Variable operands without a physical register. |
| if (uint32_t Count = I->getEmitInstCount()) { |
| Func->getContext()->statsUpdateEmitted(Count); |
| if (Variable *Dest = I->getDest()) { |
| if (!Dest->hasReg()) |
| Func->getContext()->statsUpdateFills(); |
| } |
| for (SizeT S = 0; S < I->getSrcSize(); ++S) { |
| if (Variable *Src = llvm::dyn_cast<Variable>(I->getSrc(S))) { |
| if (!Src->hasReg()) |
| Func->getContext()->statsUpdateSpills(); |
| } |
| } |
| } |
| } |
| } |
| |
| void CfgNode::dump(Cfg *Func) const { |
| Func->setCurrentNode(this); |
| Ostream &Str = Func->getContext()->getStrDump(); |
| Liveness *Liveness = Func->getLiveness(); |
| if (Func->getContext()->isVerbose(IceV_Instructions)) { |
| Str << getName() << ":\n"; |
| } |
| // Dump list of predecessor nodes. |
| if (Func->getContext()->isVerbose(IceV_Preds) && !InEdges.empty()) { |
| Str << " // preds = "; |
| bool First = true; |
| for (CfgNode *I : InEdges) { |
| if (!First) |
| Str << ", "; |
| First = false; |
| Str << "%" << I->getName(); |
| } |
| Str << "\n"; |
| } |
| // Dump the live-in variables. |
| LivenessBV LiveIn; |
| if (Liveness) |
| LiveIn = Liveness->getLiveIn(this); |
| if (Func->getContext()->isVerbose(IceV_Liveness) && !LiveIn.empty()) { |
| Str << " // LiveIn:"; |
| for (SizeT i = 0; i < LiveIn.size(); ++i) { |
| if (LiveIn[i]) { |
| Str << " %" << Liveness->getVariable(i, this)->getName(); |
| } |
| } |
| Str << "\n"; |
| } |
| // Dump each instruction. |
| if (Func->getContext()->isVerbose(IceV_Instructions)) { |
| for (InstPhi *I : Phis) |
| I->dumpDecorated(Func); |
| for (Inst *I : Insts) |
| I->dumpDecorated(Func); |
| } |
| // Dump the live-out variables. |
| LivenessBV LiveOut; |
| if (Liveness) |
| LiveOut = Liveness->getLiveOut(this); |
| if (Func->getContext()->isVerbose(IceV_Liveness) && !LiveOut.empty()) { |
| Str << " // LiveOut:"; |
| for (SizeT i = 0; i < LiveOut.size(); ++i) { |
| if (LiveOut[i]) { |
| Str << " %" << Liveness->getVariable(i, this)->getName(); |
| } |
| } |
| Str << "\n"; |
| } |
| // Dump list of successor nodes. |
| if (Func->getContext()->isVerbose(IceV_Succs)) { |
| Str << " // succs = "; |
| bool First = true; |
| for (CfgNode *I : OutEdges) { |
| if (!First) |
| Str << ", "; |
| First = false; |
| Str << "%" << I->getName(); |
| } |
| Str << "\n"; |
| } |
| } |
| |
| } // end of namespace Ice |