blob: 767c9c375286a893e3c725efb1da1de629f74f26 [file] [log] [blame]
//===- subzero/src/IceCfgNode.cpp - Basic block (node) implementation -----===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the CfgNode class, including the complexities
// of instruction insertion and in-edge calculation.
//
//===----------------------------------------------------------------------===//
#include "IceCfg.h"
#include "IceCfgNode.h"
#include "IceInst.h"
#include "IceLiveness.h"
#include "IceOperand.h"
#include "IceTargetLowering.h"
namespace Ice {
CfgNode::CfgNode(Cfg *Func, SizeT LabelNumber, IceString Name)
: Func(Func), Number(LabelNumber), Name(Name), HasReturn(false),
InstCountEstimate(0) {}
// Returns the name the node was created with. If no name was given,
// it synthesizes a (hopefully) unique name.
IceString CfgNode::getName() const {
if (!Name.empty())
return Name;
char buf[30];
snprintf(buf, llvm::array_lengthof(buf), "__%u", getIndex());
return buf;
}
// Adds an instruction to either the Phi list or the regular
// instruction list. Validates that all Phis are added before all
// regular instructions.
void CfgNode::appendInst(Inst *Inst) {
++InstCountEstimate;
if (InstPhi *Phi = llvm::dyn_cast<InstPhi>(Inst)) {
if (!Insts.empty()) {
Func->setError("Phi instruction added to the middle of a block");
return;
}
Phis.push_back(Phi);
} else {
Insts.push_back(Inst);
}
}
// Renumbers the non-deleted instructions in the node. This needs to
// be done in preparation for live range analysis. The instruction
// numbers in a block must be monotonically increasing. The range of
// instruction numbers in a block, from lowest to highest, must not
// overlap with the range of any other block.
void CfgNode::renumberInstructions() {
InstNumberT FirstNumber = Func->getNextInstNumber();
for (InstPhi *I : Phis)
I->renumber(Func);
for (Inst *I : Insts)
I->renumber(Func);
InstCountEstimate = Func->getNextInstNumber() - FirstNumber;
}
// When a node is created, the OutEdges are immediately knows, but the
// InEdges have to be built up incrementally. After the CFG has been
// constructed, the computePredecessors() pass finalizes it by
// creating the InEdges list.
void CfgNode::computePredecessors() {
OutEdges = (*Insts.rbegin())->getTerminatorEdges();
for (CfgNode *Succ : OutEdges)
Succ->InEdges.push_back(this);
}
// This does part 1 of Phi lowering, by creating a new dest variable
// for each Phi instruction, replacing the Phi instruction's dest with
// that variable, and adding an explicit assignment of the old dest to
// the new dest. For example,
// a=phi(...)
// changes to
// "a_phi=phi(...); a=a_phi".
//
// This is in preparation for part 2 which deletes the Phi
// instructions and appends assignment instructions to predecessor
// blocks. Note that this transformation preserves SSA form.
void CfgNode::placePhiLoads() {
for (InstPhi *I : Phis)
Insts.insert(Insts.begin(), I->lower(Func));
}
// This does part 2 of Phi lowering. For each Phi instruction at each
// out-edge, create a corresponding assignment instruction, and add
// all the assignments near the end of this block. They need to be
// added before any branch instruction, and also if the block ends
// with a compare instruction followed by a branch instruction that we
// may want to fuse, it's better to insert the new assignments before
// the compare instruction. The tryOptimizedCmpxchgCmpBr() method
// assumes this ordering of instructions.
//
// Note that this transformation takes the Phi dest variables out of
// SSA form, as there may be assignments to the dest variable in
// multiple blocks.
//
// TODO: Defer this pass until after register allocation, then split
// critical edges, add the assignments, and lower them. This should
// reduce the amount of shuffling at the end of each block.
void CfgNode::placePhiStores() {
// Find the insertion point.
InstList::iterator InsertionPoint = Insts.end();
// Every block must end in a terminator instruction, and therefore
// must have at least one instruction, so it's valid to decrement
// InsertionPoint (but assert just in case).
assert(InsertionPoint != Insts.begin());
--InsertionPoint;
// Confirm that InsertionPoint is a terminator instruction. Calling
// getTerminatorEdges() on a non-terminator instruction will cause
// an llvm_unreachable().
(void)(*InsertionPoint)->getTerminatorEdges();
// SafeInsertionPoint is always immediately before the terminator
// instruction. If the block ends in a compare and conditional
// branch, it's better to place the Phi store before the compare so
// as not to interfere with compare/branch fusing. However, if the
// compare instruction's dest operand is the same as the new
// assignment statement's source operand, this can't be done due to
// data dependences, so we need to fall back to the
// SafeInsertionPoint. To illustrate:
// ; <label>:95
// %97 = load i8* %96, align 1
// %98 = icmp ne i8 %97, 0
// br i1 %98, label %99, label %2132
// ; <label>:99
// %100 = phi i8 [ %97, %95 ], [ %110, %108 ]
// %101 = phi i1 [ %98, %95 ], [ %111, %108 ]
// would be Phi-lowered as:
// ; <label>:95
// %97 = load i8* %96, align 1
// %100_phi = %97 ; can be at InsertionPoint
// %98 = icmp ne i8 %97, 0
// %101_phi = %98 ; must be at SafeInsertionPoint
// br i1 %98, label %99, label %2132
// ; <label>:99
// %100 = %100_phi
// %101 = %101_phi
//
// TODO(stichnot): It may be possible to bypass this whole
// SafeInsertionPoint mechanism. If a source basic block ends in a
// conditional branch:
// labelSource:
// ...
// br i1 %foo, label %labelTrue, label %labelFalse
// and a branch target has a Phi involving the branch operand:
// labelTrue:
// %bar = phi i1 [ %foo, %labelSource ], ...
// then we actually know the constant i1 value of the Phi operand:
// labelTrue:
// %bar = phi i1 [ true, %labelSource ], ...
// It seems that this optimization should be done by clang or opt,
// but we could also do it here.
InstList::iterator SafeInsertionPoint = InsertionPoint;
// Keep track of the dest variable of a compare instruction, so that
// we insert the new instruction at the SafeInsertionPoint if the
// compare's dest matches the Phi-lowered assignment's source.
Variable *CmpInstDest = NULL;
// If the current insertion point is at a conditional branch
// instruction, and the previous instruction is a compare
// instruction, then we move the insertion point before the compare
// instruction so as not to interfere with compare/branch fusing.
if (InstBr *Branch = llvm::dyn_cast<InstBr>(*InsertionPoint)) {
if (!Branch->isUnconditional()) {
if (InsertionPoint != Insts.begin()) {
--InsertionPoint;
if (llvm::isa<InstIcmp>(*InsertionPoint) ||
llvm::isa<InstFcmp>(*InsertionPoint)) {
CmpInstDest = (*InsertionPoint)->getDest();
} else {
++InsertionPoint;
}
}
}
}
// Consider every out-edge.
for (CfgNode *Succ : OutEdges) {
// Consider every Phi instruction at the out-edge.
for (InstPhi *I : Succ->Phis) {
Operand *Operand = I->getOperandForTarget(this);
assert(Operand);
Variable *Dest = I->getDest();
assert(Dest);
InstAssign *NewInst = InstAssign::create(Func, Dest, Operand);
if (CmpInstDest == Operand)
Insts.insert(SafeInsertionPoint, NewInst);
else
Insts.insert(InsertionPoint, NewInst);
}
}
}
// Deletes the phi instructions after the loads and stores are placed.
void CfgNode::deletePhis() {
for (InstPhi *I : Phis)
I->setDeleted();
}
// Does address mode optimization. Pass each instruction to the
// TargetLowering object. If it returns a new instruction
// (representing the optimized address mode), then insert the new
// instruction and delete the old.
void CfgNode::doAddressOpt() {
TargetLowering *Target = Func->getTarget();
LoweringContext &Context = Target->getContext();
Context.init(this);
while (!Context.atEnd()) {
Target->doAddressOpt();
}
}
void CfgNode::doNopInsertion() {
TargetLowering *Target = Func->getTarget();
LoweringContext &Context = Target->getContext();
Context.init(this);
while (!Context.atEnd()) {
Target->doNopInsertion();
// Ensure Cur=Next, so that the nops are inserted before the current
// instruction rather than after.
Context.advanceNext();
Context.advanceCur();
}
// Insert before all instructions.
Context.setInsertPoint(getInsts().begin());
Context.advanceNext();
Context.advanceCur();
Target->doNopInsertion();
}
// Drives the target lowering. Passes the current instruction and the
// next non-deleted instruction for target lowering.
void CfgNode::genCode() {
TargetLowering *Target = Func->getTarget();
LoweringContext &Context = Target->getContext();
// Lower only the regular instructions. Defer the Phi instructions.
Context.init(this);
while (!Context.atEnd()) {
InstList::iterator Orig = Context.getCur();
if (llvm::isa<InstRet>(*Orig))
setHasReturn();
Target->lower();
// Ensure target lowering actually moved the cursor.
assert(Context.getCur() != Orig);
}
}
void CfgNode::livenessLightweight() {
SizeT NumVars = Func->getNumVariables();
LivenessBV Live(NumVars);
// Process regular instructions in reverse order.
// TODO(stichnot): Use llvm::make_range with LLVM 3.5.
for (auto I = Insts.rbegin(), E = Insts.rend(); I != E; ++I) {
if ((*I)->isDeleted())
continue;
(*I)->livenessLightweight(Func, Live);
}
for (InstPhi *I : Phis) {
if (I->isDeleted())
continue;
I->livenessLightweight(Func, Live);
}
}
// Performs liveness analysis on the block. Returns true if the
// incoming liveness changed from before, false if it stayed the same.
// (If it changes, the node's predecessors need to be processed
// again.)
bool CfgNode::liveness(Liveness *Liveness) {
SizeT NumVars = Liveness->getNumVarsInNode(this);
LivenessBV Live(NumVars);
LiveBeginEndMap *LiveBegin = NULL;
LiveBeginEndMap *LiveEnd = NULL;
// Mark the beginning and ending of each variable's live range
// with the sentinel instruction number 0.
if (Liveness->getMode() == Liveness_Intervals) {
LiveBegin = Liveness->getLiveBegin(this);
LiveEnd = Liveness->getLiveEnd(this);
LiveBegin->clear();
LiveEnd->clear();
// Guess that the number of live ranges beginning is roughly the
// number of instructions, and same for live ranges ending.
LiveBegin->reserve(getInstCountEstimate());
LiveEnd->reserve(getInstCountEstimate());
}
// Initialize Live to be the union of all successors' LiveIn.
for (CfgNode *Succ : OutEdges) {
Live |= Liveness->getLiveIn(Succ);
// Mark corresponding argument of phis in successor as live.
for (InstPhi *I : Succ->Phis)
I->livenessPhiOperand(Live, this, Liveness);
}
Liveness->getLiveOut(this) = Live;
// Process regular instructions in reverse order.
// TODO(stichnot): Use llvm::make_range with LLVM 3.5.
for (auto I = Insts.rbegin(), E = Insts.rend(); I != E; ++I) {
if ((*I)->isDeleted())
continue;
(*I)->liveness((*I)->getNumber(), Live, Liveness, LiveBegin, LiveEnd);
}
// Process phis in forward order so that we can override the
// instruction number to be that of the earliest phi instruction in
// the block.
InstNumberT FirstPhiNumber = Inst::NumberSentinel;
for (InstPhi *I : Phis) {
if (I->isDeleted())
continue;
if (FirstPhiNumber == Inst::NumberSentinel)
FirstPhiNumber = I->getNumber();
I->liveness(FirstPhiNumber, Live, Liveness, LiveBegin, LiveEnd);
}
// When using the sparse representation, after traversing the
// instructions in the block, the Live bitvector should only contain
// set bits for global variables upon block entry. We validate this
// by shrinking the Live vector and then testing it against the
// pre-shrunk version. (The shrinking is required, but the
// validation is not.)
LivenessBV LiveOrig = Live;
Live.resize(Liveness->getNumGlobalVars());
// Non-global arguments in the entry node are allowed to be live on
// entry.
bool IsEntry = (Func->getEntryNode() == this);
if (!(IsEntry || Live == LiveOrig)) {
// This is a fatal liveness consistency error. Print some
// diagnostics and abort.
Ostream &Str = Func->getContext()->getStrDump();
Func->resetCurrentNode();
Str << "LiveOrig-Live =";
for (SizeT i = Live.size(); i < LiveOrig.size(); ++i) {
if (LiveOrig.test(i)) {
Str << " ";
Liveness->getVariable(i, this)->dump(Func);
}
}
Str << "\n";
llvm_unreachable("Fatal inconsistency in liveness analysis");
}
bool Changed = false;
LivenessBV &LiveIn = Liveness->getLiveIn(this);
// Add in current LiveIn
Live |= LiveIn;
// Check result, set LiveIn=Live
Changed = (Live != LiveIn);
if (Changed)
LiveIn = Live;
return Changed;
}
// Now that basic liveness is complete, remove dead instructions that
// were tentatively marked as dead, and compute actual live ranges.
// It is assumed that within a single basic block, a live range begins
// at most once and ends at most once. This is certainly true for
// pure SSA form. It is also true once phis are lowered, since each
// assignment to the phi-based temporary is in a different basic
// block, and there is a single read that ends the live in the basic
// block that contained the actual phi instruction.
void CfgNode::livenessPostprocess(LivenessMode Mode, Liveness *Liveness) {
InstNumberT FirstInstNum = Inst::NumberSentinel;
InstNumberT LastInstNum = Inst::NumberSentinel;
// Process phis in any order. Process only Dest operands.
for (InstPhi *I : Phis) {
I->deleteIfDead();
if (I->isDeleted())
continue;
if (FirstInstNum == Inst::NumberSentinel)
FirstInstNum = I->getNumber();
assert(I->getNumber() > LastInstNum);
LastInstNum = I->getNumber();
}
// Process instructions
for (Inst *I : Insts) {
I->deleteIfDead();
if (I->isDeleted())
continue;
if (FirstInstNum == Inst::NumberSentinel)
FirstInstNum = I->getNumber();
assert(I->getNumber() > LastInstNum);
LastInstNum = I->getNumber();
// Create fake live ranges for a Kill instruction, but only if the
// linked instruction is still alive.
if (Mode == Liveness_Intervals) {
if (InstFakeKill *Kill = llvm::dyn_cast<InstFakeKill>(I)) {
if (!Kill->getLinked()->isDeleted()) {
SizeT NumSrcs = I->getSrcSize();
for (SizeT Src = 0; Src < NumSrcs; ++Src) {
Variable *Var = llvm::cast<Variable>(I->getSrc(Src));
InstNumberT InstNumber = I->getNumber();
Var->addLiveRange(InstNumber, InstNumber, 1);
}
}
}
}
}
if (Mode != Liveness_Intervals)
return;
TimerMarker T1(TimerStack::TT_liveRangeCtor, Func);
SizeT NumVars = Liveness->getNumVarsInNode(this);
LivenessBV &LiveIn = Liveness->getLiveIn(this);
LivenessBV &LiveOut = Liveness->getLiveOut(this);
LiveBeginEndMap &MapBegin = *Liveness->getLiveBegin(this);
LiveBeginEndMap &MapEnd = *Liveness->getLiveEnd(this);
std::sort(MapBegin.begin(), MapBegin.end());
std::sort(MapEnd.begin(), MapEnd.end());
// Verify there are no duplicates.
struct ComparePair {
bool operator()(const LiveBeginEndMapEntry &A,
const LiveBeginEndMapEntry &B) {
return A.first == B.first;
}
};
assert(std::adjacent_find(MapBegin.begin(), MapBegin.end(), ComparePair()) ==
MapBegin.end());
assert(std::adjacent_find(MapEnd.begin(), MapEnd.end(), ComparePair()) ==
MapEnd.end());
LivenessBV LiveInAndOut = LiveIn;
LiveInAndOut &= LiveOut;
// Iterate in parallel across the sorted MapBegin[] and MapEnd[].
auto IBB = MapBegin.begin(), IEB = MapEnd.begin();
auto IBE = MapBegin.end(), IEE = MapEnd.end();
while (IBB != IBE || IEB != IEE) {
SizeT i1 = IBB == IBE ? NumVars : IBB->first;
SizeT i2 = IEB == IEE ? NumVars : IEB->first;
SizeT i = std::min(i1, i2);
// i1 is the Variable number of the next MapBegin entry, and i2 is
// the Variable number of the next MapEnd entry. If i1==i2, then
// the Variable's live range begins and ends in this block. If
// i1<i2, then i1's live range begins at instruction IBB->second
// and extends through the end of the block. If i1>i2, then i2's
// live range begins at the first instruction of the block and
// ends at IEB->second. In any case, we choose the lesser of i1
// and i2 and proceed accordingly.
InstNumberT LB = i == i1 ? IBB->second : FirstInstNum;
InstNumberT LE = i == i2 ? IEB->second : LastInstNum + 1;
Variable *Var = Liveness->getVariable(i, this);
if (!Var->getIgnoreLiveness()) {
if (LB > LE) {
Var->addLiveRange(FirstInstNum, LE, 1);
Var->addLiveRange(LB, LastInstNum + 1, 1);
// Assert that Var is a global variable by checking that its
// liveness index is less than the number of globals. This
// ensures that the LiveInAndOut[] access is valid.
assert(i < Liveness->getNumGlobalVars());
LiveInAndOut[i] = false;
} else {
Var->addLiveRange(LB, LE, 1);
}
}
if (i == i1)
++IBB;
if (i == i2)
++IEB;
}
// Process the variables that are live across the entire block.
for (int i = LiveInAndOut.find_first(); i != -1;
i = LiveInAndOut.find_next(i)) {
Variable *Var = Liveness->getVariable(i, this);
Var->addLiveRange(FirstInstNum, LastInstNum + 1, 1);
}
}
void CfgNode::doBranchOpt(const CfgNode *NextNode) {
TargetLowering *Target = Func->getTarget();
// Check every instruction for a branch optimization opportunity.
// It may be more efficient to iterate in reverse and stop after the
// first opportunity, unless there is some target lowering where we
// have the possibility of multiple such optimizations per block
// (currently not the case for x86 lowering).
for (Inst *I : Insts)
Target->doBranchOpt(I, NextNode);
}
// ======================== Dump routines ======================== //
void CfgNode::emit(Cfg *Func) const {
Func->setCurrentNode(this);
Ostream &Str = Func->getContext()->getStrEmit();
if (Func->getEntryNode() == this) {
Str << Func->getContext()->mangleName(Func->getFunctionName()) << ":\n";
}
Str << getAsmName() << ":\n";
for (InstPhi *Phi : Phis) {
if (Phi->isDeleted())
continue;
// Emitting a Phi instruction should cause an error.
Inst *Instr = Phi;
Instr->emit(Func);
}
for (Inst *I : Insts) {
if (I->isDeleted())
continue;
// Here we detect redundant assignments like "mov eax, eax" and
// suppress them.
if (I->isRedundantAssign())
continue;
if (Func->UseIntegratedAssembler()) {
I->emitIAS(Func);
} else {
I->emit(Func);
}
// Update emitted instruction count, plus fill/spill count for
// Variable operands without a physical register.
if (uint32_t Count = I->getEmitInstCount()) {
Func->getContext()->statsUpdateEmitted(Count);
if (Variable *Dest = I->getDest()) {
if (!Dest->hasReg())
Func->getContext()->statsUpdateFills();
}
for (SizeT S = 0; S < I->getSrcSize(); ++S) {
if (Variable *Src = llvm::dyn_cast<Variable>(I->getSrc(S))) {
if (!Src->hasReg())
Func->getContext()->statsUpdateSpills();
}
}
}
}
}
void CfgNode::dump(Cfg *Func) const {
Func->setCurrentNode(this);
Ostream &Str = Func->getContext()->getStrDump();
Liveness *Liveness = Func->getLiveness();
if (Func->getContext()->isVerbose(IceV_Instructions)) {
Str << getName() << ":\n";
}
// Dump list of predecessor nodes.
if (Func->getContext()->isVerbose(IceV_Preds) && !InEdges.empty()) {
Str << " // preds = ";
bool First = true;
for (CfgNode *I : InEdges) {
if (!First)
Str << ", ";
First = false;
Str << "%" << I->getName();
}
Str << "\n";
}
// Dump the live-in variables.
LivenessBV LiveIn;
if (Liveness)
LiveIn = Liveness->getLiveIn(this);
if (Func->getContext()->isVerbose(IceV_Liveness) && !LiveIn.empty()) {
Str << " // LiveIn:";
for (SizeT i = 0; i < LiveIn.size(); ++i) {
if (LiveIn[i]) {
Str << " %" << Liveness->getVariable(i, this)->getName();
}
}
Str << "\n";
}
// Dump each instruction.
if (Func->getContext()->isVerbose(IceV_Instructions)) {
for (InstPhi *I : Phis)
I->dumpDecorated(Func);
for (Inst *I : Insts)
I->dumpDecorated(Func);
}
// Dump the live-out variables.
LivenessBV LiveOut;
if (Liveness)
LiveOut = Liveness->getLiveOut(this);
if (Func->getContext()->isVerbose(IceV_Liveness) && !LiveOut.empty()) {
Str << " // LiveOut:";
for (SizeT i = 0; i < LiveOut.size(); ++i) {
if (LiveOut[i]) {
Str << " %" << Liveness->getVariable(i, this)->getName();
}
}
Str << "\n";
}
// Dump list of successor nodes.
if (Func->getContext()->isVerbose(IceV_Succs)) {
Str << " // succs = ";
bool First = true;
for (CfgNode *I : OutEdges) {
if (!First)
Str << ", ";
First = false;
Str << "%" << I->getName();
}
Str << "\n";
}
}
} // end of namespace Ice