blob: 913f133465b9fb71a98e8261fc3841d743ed7736 [file] [log] [blame]
//===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the interfaces that Sparc uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "SparcISelLowering.h"
#include "MCTargetDesc/SparcMCExpr.h"
#include "SparcMachineFunctionInfo.h"
#include "SparcRegisterInfo.h"
#include "SparcTargetMachine.h"
#include "SparcTargetObjectFile.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT,
MVT &LocVT, CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State)
{
assert (ArgFlags.isSRet());
// Assign SRet argument.
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
0,
LocVT, LocInfo));
return true;
}
static bool CC_Sparc_Assign_Split_64(unsigned &ValNo, MVT &ValVT,
MVT &LocVT, CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State)
{
static const MCPhysReg RegList[] = {
SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
};
// Try to get first reg.
if (Register Reg = State.AllocateReg(RegList)) {
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
} else {
// Assign whole thing in stack.
State.addLoc(CCValAssign::getCustomMem(
ValNo, ValVT, State.AllocateStack(8, Align(4)), LocVT, LocInfo));
return true;
}
// Try to get second reg.
if (Register Reg = State.AllocateReg(RegList))
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
else
State.addLoc(CCValAssign::getCustomMem(
ValNo, ValVT, State.AllocateStack(4, Align(4)), LocVT, LocInfo));
return true;
}
static bool CC_Sparc_Assign_Ret_Split_64(unsigned &ValNo, MVT &ValVT,
MVT &LocVT, CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State)
{
static const MCPhysReg RegList[] = {
SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
};
// Try to get first reg.
if (Register Reg = State.AllocateReg(RegList))
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
else
return false;
// Try to get second reg.
if (Register Reg = State.AllocateReg(RegList))
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
else
return false;
return true;
}
// Allocate a full-sized argument for the 64-bit ABI.
static bool Analyze_CC_Sparc64_Full(bool IsReturn, unsigned &ValNo, MVT &ValVT,
MVT &LocVT, CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State) {
assert((LocVT == MVT::f32 || LocVT == MVT::f128
|| LocVT.getSizeInBits() == 64) &&
"Can't handle non-64 bits locations");
// Stack space is allocated for all arguments starting from [%fp+BIAS+128].
unsigned size = (LocVT == MVT::f128) ? 16 : 8;
Align alignment = (LocVT == MVT::f128) ? Align(16) : Align(8);
unsigned Offset = State.AllocateStack(size, alignment);
unsigned Reg = 0;
if (LocVT == MVT::i64 && Offset < 6*8)
// Promote integers to %i0-%i5.
Reg = SP::I0 + Offset/8;
else if (LocVT == MVT::f64 && Offset < 16*8)
// Promote doubles to %d0-%d30. (Which LLVM calls D0-D15).
Reg = SP::D0 + Offset/8;
else if (LocVT == MVT::f32 && Offset < 16*8)
// Promote floats to %f1, %f3, ...
Reg = SP::F1 + Offset/4;
else if (LocVT == MVT::f128 && Offset < 16*8)
// Promote long doubles to %q0-%q28. (Which LLVM calls Q0-Q7).
Reg = SP::Q0 + Offset/16;
// Promote to register when possible, otherwise use the stack slot.
if (Reg) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return true;
}
// Bail out if this is a return CC and we run out of registers to place
// values into.
if (IsReturn)
return false;
// This argument goes on the stack in an 8-byte slot.
// When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to
// the right-aligned float. The first 4 bytes of the stack slot are undefined.
if (LocVT == MVT::f32)
Offset += 4;
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return true;
}
// Allocate a half-sized argument for the 64-bit ABI.
//
// This is used when passing { float, int } structs by value in registers.
static bool Analyze_CC_Sparc64_Half(bool IsReturn, unsigned &ValNo, MVT &ValVT,
MVT &LocVT, CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State) {
assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations");
unsigned Offset = State.AllocateStack(4, Align(4));
if (LocVT == MVT::f32 && Offset < 16*8) {
// Promote floats to %f0-%f31.
State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4,
LocVT, LocInfo));
return true;
}
if (LocVT == MVT::i32 && Offset < 6*8) {
// Promote integers to %i0-%i5, using half the register.
unsigned Reg = SP::I0 + Offset/8;
LocVT = MVT::i64;
LocInfo = CCValAssign::AExt;
// Set the Custom bit if this i32 goes in the high bits of a register.
if (Offset % 8 == 0)
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg,
LocVT, LocInfo));
else
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return true;
}
// Bail out if this is a return CC and we run out of registers to place
// values into.
if (IsReturn)
return false;
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return true;
}
static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State) {
return Analyze_CC_Sparc64_Full(false, ValNo, ValVT, LocVT, LocInfo, ArgFlags,
State);
}
static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State) {
return Analyze_CC_Sparc64_Half(false, ValNo, ValVT, LocVT, LocInfo, ArgFlags,
State);
}
static bool RetCC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State) {
return Analyze_CC_Sparc64_Full(true, ValNo, ValVT, LocVT, LocInfo, ArgFlags,
State);
}
static bool RetCC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State) {
return Analyze_CC_Sparc64_Half(true, ValNo, ValVT, LocVT, LocInfo, ArgFlags,
State);
}
#include "SparcGenCallingConv.inc"
// The calling conventions in SparcCallingConv.td are described in terms of the
// callee's register window. This function translates registers to the
// corresponding caller window %o register.
static unsigned toCallerWindow(unsigned Reg) {
static_assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7,
"Unexpected enum");
if (Reg >= SP::I0 && Reg <= SP::I7)
return Reg - SP::I0 + SP::O0;
return Reg;
}
bool SparcTargetLowering::CanLowerReturn(
CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, Subtarget->is64Bit() ? RetCC_Sparc64
: RetCC_Sparc32);
}
SDValue
SparcTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &DL, SelectionDAG &DAG) const {
if (Subtarget->is64Bit())
return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG);
return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG);
}
SDValue
SparcTargetLowering::LowerReturn_32(SDValue Chain, CallingConv::ID CallConv,
bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &DL, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
// CCValAssign - represent the assignment of the return value to locations.
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
// Analyze return values.
CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32);
SDValue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);
// Make room for the return address offset.
RetOps.push_back(SDValue());
// Copy the result values into the output registers.
for (unsigned i = 0, realRVLocIdx = 0;
i != RVLocs.size();
++i, ++realRVLocIdx) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue Arg = OutVals[realRVLocIdx];
if (VA.needsCustom()) {
assert(VA.getLocVT() == MVT::v2i32);
// Legalize ret v2i32 -> ret 2 x i32 (Basically: do what would
// happen by default if this wasn't a legal type)
SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
Arg,
DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout())));
SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
Arg,
DAG.getConstant(1, DL, getVectorIdxTy(DAG.getDataLayout())));
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part0, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
VA = RVLocs[++i]; // skip ahead to next loc
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part1,
Flag);
} else
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
// Guarantee that all emitted copies are stuck together with flags.
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
unsigned RetAddrOffset = 8; // Call Inst + Delay Slot
// If the function returns a struct, copy the SRetReturnReg to I0
if (MF.getFunction().hasStructRetAttr()) {
SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
Register Reg = SFI->getSRetReturnReg();
if (!Reg)
llvm_unreachable("sret virtual register not created in the entry block");
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, PtrVT);
Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(SP::I0, PtrVT));
RetAddrOffset = 12; // CallInst + Delay Slot + Unimp
}
RetOps[0] = Chain; // Update chain.
RetOps[1] = DAG.getConstant(RetAddrOffset, DL, MVT::i32);
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps);
}
// Lower return values for the 64-bit ABI.
// Return values are passed the exactly the same way as function arguments.
SDValue
SparcTargetLowering::LowerReturn_64(SDValue Chain, CallingConv::ID CallConv,
bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &DL, SelectionDAG &DAG) const {
// CCValAssign - represent the assignment of the return value to locations.
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
// Analyze return values.
CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64);
SDValue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);
// The second operand on the return instruction is the return address offset.
// The return address is always %i7+8 with the 64-bit ABI.
RetOps.push_back(DAG.getConstant(8, DL, MVT::i32));
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue OutVal = OutVals[i];
// Integer return values must be sign or zero extended by the callee.
switch (VA.getLocInfo()) {
case CCValAssign::Full: break;
case CCValAssign::SExt:
OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal);
break;
case CCValAssign::ZExt:
OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal);
break;
case CCValAssign::AExt:
OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal);
break;
default:
llvm_unreachable("Unknown loc info!");
}
// The custom bit on an i32 return value indicates that it should be passed
// in the high bits of the register.
if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal,
DAG.getConstant(32, DL, MVT::i32));
// The next value may go in the low bits of the same register.
// Handle both at once.
if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) {
SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]);
OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV);
// Skip the next value, it's already done.
++i;
}
}
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag);
// Guarantee that all emitted copies are stuck together with flags.
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps);
}
SDValue SparcTargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
if (Subtarget->is64Bit())
return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins,
DL, DAG, InVals);
return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins,
DL, DAG, InVals);
}
/// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are
/// passed in either one or two GPRs, including FP values. TODO: we should
/// pass FP values in FP registers for fastcc functions.
SDValue SparcTargetLowering::LowerFormalArguments_32(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32);
const unsigned StackOffset = 92;
bool IsLittleEndian = DAG.getDataLayout().isLittleEndian();
unsigned InIdx = 0;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++InIdx) {
CCValAssign &VA = ArgLocs[i];
if (Ins[InIdx].Flags.isSRet()) {
if (InIdx != 0)
report_fatal_error("sparc only supports sret on the first parameter");
// Get SRet from [%fp+64].
int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, 64, true);
SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
SDValue Arg =
DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
InVals.push_back(Arg);
continue;
}
if (VA.isRegLoc()) {
if (VA.needsCustom()) {
assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32);
Register VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi);
SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32);
assert(i+1 < e);
CCValAssign &NextVA = ArgLocs[++i];
SDValue LoVal;
if (NextVA.isMemLoc()) {
int FrameIdx = MF.getFrameInfo().
CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true);
SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
} else {
Register loReg = MF.addLiveIn(NextVA.getLocReg(),
&SP::IntRegsRegClass);
LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32);
}
if (IsLittleEndian)
std::swap(LoVal, HiVal);
SDValue WholeValue =
DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), WholeValue);
InVals.push_back(WholeValue);
continue;
}
Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg);
SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
if (VA.getLocVT() == MVT::f32)
Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg);
else if (VA.getLocVT() != MVT::i32) {
Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg,
DAG.getValueType(VA.getLocVT()));
Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg);
}
InVals.push_back(Arg);
continue;
}
assert(VA.isMemLoc());
unsigned Offset = VA.getLocMemOffset()+StackOffset;
auto PtrVT = getPointerTy(DAG.getDataLayout());
if (VA.needsCustom()) {
assert(VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::v2i32);
// If it is double-word aligned, just load.
if (Offset % 8 == 0) {
int FI = MF.getFrameInfo().CreateFixedObject(8,
Offset,
true);
SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
SDValue Load =
DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo());
InVals.push_back(Load);
continue;
}
int FI = MF.getFrameInfo().CreateFixedObject(4,
Offset,
true);
SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
SDValue HiVal =
DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
int FI2 = MF.getFrameInfo().CreateFixedObject(4,
Offset+4,
true);
SDValue FIPtr2 = DAG.getFrameIndex(FI2, PtrVT);
SDValue LoVal =
DAG.getLoad(MVT::i32, dl, Chain, FIPtr2, MachinePointerInfo());
if (IsLittleEndian)
std::swap(LoVal, HiVal);
SDValue WholeValue =
DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), WholeValue);
InVals.push_back(WholeValue);
continue;
}
int FI = MF.getFrameInfo().CreateFixedObject(4,
Offset,
true);
SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
SDValue Load ;
if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) {
Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo());
} else if (VA.getValVT() == MVT::f128) {
report_fatal_error("SPARCv8 does not handle f128 in calls; "
"pass indirectly");
} else {
// We shouldn't see any other value types here.
llvm_unreachable("Unexpected ValVT encountered in frame lowering.");
}
InVals.push_back(Load);
}
if (MF.getFunction().hasStructRetAttr()) {
// Copy the SRet Argument to SRetReturnReg.
SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
Register Reg = SFI->getSRetReturnReg();
if (!Reg) {
Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass);
SFI->setSRetReturnReg(Reg);
}
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
}
// Store remaining ArgRegs to the stack if this is a varargs function.
if (isVarArg) {
static const MCPhysReg ArgRegs[] = {
SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
};
unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs);
const MCPhysReg *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6;
unsigned ArgOffset = CCInfo.getNextStackOffset();
if (NumAllocated == 6)
ArgOffset += StackOffset;
else {
assert(!ArgOffset);
ArgOffset = 68+4*NumAllocated;
}
// Remember the vararg offset for the va_start implementation.
FuncInfo->setVarArgsFrameOffset(ArgOffset);
std::vector<SDValue> OutChains;
for (; CurArgReg != ArgRegEnd; ++CurArgReg) {
Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
MF.getRegInfo().addLiveIn(*CurArgReg, VReg);
SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32);
int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, ArgOffset,
true);
SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
OutChains.push_back(
DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, MachinePointerInfo()));
ArgOffset += 4;
}
if (!OutChains.empty()) {
OutChains.push_back(Chain);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
}
}
return Chain;
}
// Lower formal arguments for the 64 bit ABI.
SDValue SparcTargetLowering::LowerFormalArguments_64(
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
// Analyze arguments according to CC_Sparc64.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64);
// The argument array begins at %fp+BIAS+128, after the register save area.
const unsigned ArgArea = 128;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (VA.isRegLoc()) {
// This argument is passed in a register.
// All integer register arguments are promoted by the caller to i64.
// Create a virtual register for the promoted live-in value.
Register VReg = MF.addLiveIn(VA.getLocReg(),
getRegClassFor(VA.getLocVT()));
SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT());
// Get the high bits for i32 struct elements.
if (VA.getValVT() == MVT::i32 && VA.needsCustom())
Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg,
DAG.getConstant(32, DL, MVT::i32));
// The caller promoted the argument, so insert an Assert?ext SDNode so we
// won't promote the value again in this function.
switch (VA.getLocInfo()) {
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg,
DAG.getValueType(VA.getValVT()));
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg,
DAG.getValueType(VA.getValVT()));
break;
default:
break;
}
// Truncate the register down to the argument type.
if (VA.isExtInLoc())
Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
InVals.push_back(Arg);
continue;
}
// The registers are exhausted. This argument was passed on the stack.
assert(VA.isMemLoc());
// The CC_Sparc64_Full/Half functions compute stack offsets relative to the
// beginning of the arguments area at %fp+BIAS+128.
unsigned Offset = VA.getLocMemOffset() + ArgArea;
unsigned ValSize = VA.getValVT().getSizeInBits() / 8;
// Adjust offset for extended arguments, SPARC is big-endian.
// The caller will have written the full slot with extended bytes, but we
// prefer our own extending loads.
if (VA.isExtInLoc())
Offset += 8 - ValSize;
int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true);
InVals.push_back(
DAG.getLoad(VA.getValVT(), DL, Chain,
DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())),
MachinePointerInfo::getFixedStack(MF, FI)));
}
if (!IsVarArg)
return Chain;
// This function takes variable arguments, some of which may have been passed
// in registers %i0-%i5. Variable floating point arguments are never passed
// in floating point registers. They go on %i0-%i5 or on the stack like
// integer arguments.
//
// The va_start intrinsic needs to know the offset to the first variable
// argument.
unsigned ArgOffset = CCInfo.getNextStackOffset();
SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
// Skip the 128 bytes of register save area.
FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea +
Subtarget->getStackPointerBias());
// Save the variable arguments that were passed in registers.
// The caller is required to reserve stack space for 6 arguments regardless
// of how many arguments were actually passed.
SmallVector<SDValue, 8> OutChains;
for (; ArgOffset < 6*8; ArgOffset += 8) {
Register VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass);
SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
int FI = MF.getFrameInfo().CreateFixedObject(8, ArgOffset + ArgArea, true);
auto PtrVT = getPointerTy(MF.getDataLayout());
OutChains.push_back(
DAG.getStore(Chain, DL, VArg, DAG.getFrameIndex(FI, PtrVT),
MachinePointerInfo::getFixedStack(MF, FI)));
}
if (!OutChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
return Chain;
}
SDValue
SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
if (Subtarget->is64Bit())
return LowerCall_64(CLI, InVals);
return LowerCall_32(CLI, InVals);
}
static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee,
const CallBase *Call) {
if (Call)
return Call->hasFnAttr(Attribute::ReturnsTwice);
const Function *CalleeFn = nullptr;
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
CalleeFn = dyn_cast<Function>(G->getGlobal());
} else if (ExternalSymbolSDNode *E =
dyn_cast<ExternalSymbolSDNode>(Callee)) {
const Function &Fn = DAG.getMachineFunction().getFunction();
const Module *M = Fn.getParent();
const char *CalleeName = E->getSymbol();
CalleeFn = M->getFunction(CalleeName);
}
if (!CalleeFn)
return false;
return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice);
}
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization.
bool SparcTargetLowering::IsEligibleForTailCallOptimization(
CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF) const {
auto &Outs = CLI.Outs;
auto &Caller = MF.getFunction();
// Do not tail call opt functions with "disable-tail-calls" attribute.
if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
return false;
// Do not tail call opt if the stack is used to pass parameters.
// 64-bit targets have a slightly higher limit since the ABI requires
// to allocate some space even when all the parameters fit inside registers.
unsigned StackOffsetLimit = Subtarget->is64Bit() ? 48 : 0;
if (CCInfo.getNextStackOffset() > StackOffsetLimit)
return false;
// Do not tail call opt if either the callee or caller returns
// a struct and the other does not.
if (!Outs.empty() && Caller.hasStructRetAttr() != Outs[0].Flags.isSRet())
return false;
// Byval parameters hand the function a pointer directly into the stack area
// we want to reuse during a tail call.
for (auto &Arg : Outs)
if (Arg.Flags.isByVal())
return false;
return true;
}
// Lower a call for the 32-bit ABI.
SDValue
SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &dl = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &isTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool isVarArg = CLI.IsVarArg;
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32);
isTailCall = isTailCall && IsEligibleForTailCallOptimization(
CCInfo, CLI, DAG.getMachineFunction());
// Get the size of the outgoing arguments stack space requirement.
unsigned ArgsSize = CCInfo.getNextStackOffset();
// Keep stack frames 8-byte aligned.
ArgsSize = (ArgsSize+7) & ~7;
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
// Create local copies for byval args.
SmallVector<SDValue, 8> ByValArgs;
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
ISD::ArgFlagsTy Flags = Outs[i].Flags;
if (!Flags.isByVal())
continue;
SDValue Arg = OutVals[i];
unsigned Size = Flags.getByValSize();
Align Alignment = Flags.getNonZeroByValAlign();
if (Size > 0U) {
int FI = MFI.CreateStackObject(Size, Alignment, false);
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
SDValue SizeNode = DAG.getConstant(Size, dl, MVT::i32);
Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Alignment,
false, // isVolatile,
(Size <= 32), // AlwaysInline if size <= 32,
false, // isTailCall
MachinePointerInfo(), MachinePointerInfo());
ByValArgs.push_back(FIPtr);
}
else {
SDValue nullVal;
ByValArgs.push_back(nullVal);
}
}
assert(!isTailCall || ArgsSize == 0);
if (!isTailCall)
Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, dl);
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
const unsigned StackOffset = 92;
bool hasStructRetAttr = false;
unsigned SRetArgSize = 0;
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size();
i != e;
++i, ++realArgIdx) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[realArgIdx];
ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
// Use local copy if it is a byval arg.
if (Flags.isByVal()) {
Arg = ByValArgs[byvalArgIdx++];
if (!Arg) {
continue;
}
}
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
break;
}
if (Flags.isSRet()) {
assert(VA.needsCustom());
if (isTailCall)
continue;
// store SRet argument in %sp+64
SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
SDValue PtrOff = DAG.getIntPtrConstant(64, dl);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(
DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
hasStructRetAttr = true;
// sret only allowed on first argument
assert(Outs[realArgIdx].OrigArgIndex == 0);
SRetArgSize =
DAG.getDataLayout().getTypeAllocSize(CLI.getArgs()[0].IndirectType);
continue;
}
if (VA.needsCustom()) {
assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32);
if (VA.isMemLoc()) {
unsigned Offset = VA.getLocMemOffset() + StackOffset;
// if it is double-word aligned, just store.
if (Offset % 8 == 0) {
SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(
DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
continue;
}
}
if (VA.getLocVT() == MVT::f64) {
// Move from the float value from float registers into the
// integer registers.
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Arg))
Arg = bitcastConstantFPToInt(C, dl, DAG);
else
Arg = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, Arg);
}
SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
Arg,
DAG.getConstant(0, dl, getVectorIdxTy(DAG.getDataLayout())));
SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
Arg,
DAG.getConstant(1, dl, getVectorIdxTy(DAG.getDataLayout())));
if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Part0));
assert(i+1 != e);
CCValAssign &NextVA = ArgLocs[++i];
if (NextVA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Part1));
} else {
// Store the second part in stack.
unsigned Offset = NextVA.getLocMemOffset() + StackOffset;
SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(
DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo()));
}
} else {
unsigned Offset = VA.getLocMemOffset() + StackOffset;
// Store the first part.
SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(
DAG.getStore(Chain, dl, Part0, PtrOff, MachinePointerInfo()));
// Store the second part.
PtrOff = DAG.getIntPtrConstant(Offset + 4, dl);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(
DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo()));
}
continue;
}
// Arguments that can be passed on register must be kept at
// RegsToPass vector
if (VA.isRegLoc()) {
if (VA.getLocVT() != MVT::f32) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
continue;
}
Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
continue;
}
assert(VA.isMemLoc());
// Create a store off the stack pointer for this argument.
SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + StackOffset,
dl);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(
DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
}
// Emit all stores, make sure the occur before any copies into physregs.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
// Build a sequence of copy-to-reg nodes chained together with token
// chain and flag operands which copy the outgoing args into registers.
// The InFlag in necessary since all emitted instructions must be
// stuck together.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Register Reg = RegsToPass[i].first;
if (!isTailCall)
Reg = toCallerWindow(Reg);
Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB);
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
// Likewise ExternalSymbol -> TargetExternalSymbol.
unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30
: SparcMCExpr::VK_Sparc_WDISP30;
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32, 0, TF);
else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32, TF);
// Returns a chain & a flag for retval copy to use
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
if (hasStructRetAttr)
Ops.push_back(DAG.getTargetConstant(SRetArgSize, dl, MVT::i32));
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Register Reg = RegsToPass[i].first;
if (!isTailCall)
Reg = toCallerWindow(Reg);
Ops.push_back(DAG.getRegister(Reg, RegsToPass[i].second.getValueType()));
}
// Add a register mask operand representing the call-preserved registers.
const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo();
const uint32_t *Mask =
((hasReturnsTwice)
? TRI->getRTCallPreservedMask(CallConv)
: TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv));
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
if (InFlag.getNode())
Ops.push_back(InFlag);
if (isTailCall) {
DAG.getMachineFunction().getFrameInfo().setHasTailCall();
return DAG.getNode(SPISD::TAIL_CALL, dl, MVT::Other, Ops);
}
Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops);
InFlag = Chain.getValue(1);
Chain = DAG.getCALLSEQ_END(Chain, ArgsSize, 0, InFlag, dl);
InFlag = Chain.getValue(1);
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
assert(RVLocs[i].isRegLoc() && "Can only return in registers!");
if (RVLocs[i].getLocVT() == MVT::v2i32) {
SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2i32);
SDValue Lo = DAG.getCopyFromReg(
Chain, dl, toCallerWindow(RVLocs[i++].getLocReg()), MVT::i32, InFlag);
Chain = Lo.getValue(1);
InFlag = Lo.getValue(2);
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Lo,
DAG.getConstant(0, dl, MVT::i32));
SDValue Hi = DAG.getCopyFromReg(
Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), MVT::i32, InFlag);
Chain = Hi.getValue(1);
InFlag = Hi.getValue(2);
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Hi,
DAG.getConstant(1, dl, MVT::i32));
InVals.push_back(Vec);
} else {
Chain =
DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()),
RVLocs[i].getValVT(), InFlag)
.getValue(1);
InFlag = Chain.getValue(2);
InVals.push_back(Chain.getValue(0));
}
}
return Chain;
}
// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
Register SparcTargetLowering::getRegisterByName(const char* RegName, LLT VT,
const MachineFunction &MF) const {
Register Reg = StringSwitch<Register>(RegName)
.Case("i0", SP::I0).Case("i1", SP::I1).Case("i2", SP::I2).Case("i3", SP::I3)
.Case("i4", SP::I4).Case("i5", SP::I5).Case("i6", SP::I6).Case("i7", SP::I7)
.Case("o0", SP::O0).Case("o1", SP::O1).Case("o2", SP::O2).Case("o3", SP::O3)
.Case("o4", SP::O4).Case("o5", SP::O5).Case("o6", SP::O6).Case("o7", SP::O7)
.Case("l0", SP::L0).Case("l1", SP::L1).Case("l2", SP::L2).Case("l3", SP::L3)
.Case("l4", SP::L4).Case("l5", SP::L5).Case("l6", SP::L6).Case("l7", SP::L7)
.Case("g0", SP::G0).Case("g1", SP::G1).Case("g2", SP::G2).Case("g3", SP::G3)
.Case("g4", SP::G4).Case("g5", SP::G5).Case("g6", SP::G6).Case("g7", SP::G7)
.Default(0);
if (Reg)
return Reg;
report_fatal_error("Invalid register name global variable");
}
// Fixup floating point arguments in the ... part of a varargs call.
//
// The SPARC v9 ABI requires that floating point arguments are treated the same
// as integers when calling a varargs function. This does not apply to the
// fixed arguments that are part of the function's prototype.
//
// This function post-processes a CCValAssign array created by
// AnalyzeCallOperands().
static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs,
ArrayRef<ISD::OutputArg> Outs) {
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
MVT ValTy = VA.getLocVT();
// FIXME: What about f32 arguments? C promotes them to f64 when calling
// varargs functions.
if (!VA.isRegLoc() || (ValTy != MVT::f64 && ValTy != MVT::f128))
continue;
// The fixed arguments to a varargs function still go in FP registers.
if (Outs[VA.getValNo()].IsFixed)
continue;
// This floating point argument should be reassigned.
// Determine the offset into the argument array.
Register firstReg = (ValTy == MVT::f64) ? SP::D0 : SP::Q0;
unsigned argSize = (ValTy == MVT::f64) ? 8 : 16;
unsigned Offset = argSize * (VA.getLocReg() - firstReg);
assert(Offset < 16*8 && "Offset out of range, bad register enum?");
if (Offset < 6*8) {
// This argument should go in %i0-%i5.
unsigned IReg = SP::I0 + Offset/8;
if (ValTy == MVT::f64)
// Full register, just bitconvert into i64.
VA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(), IReg, MVT::i64,
CCValAssign::BCvt);
else {
assert(ValTy == MVT::f128 && "Unexpected type!");
// Full register, just bitconvert into i128 -- We will lower this into
// two i64s in LowerCall_64.
VA = CCValAssign::getCustomReg(VA.getValNo(), VA.getValVT(), IReg,
MVT::i128, CCValAssign::BCvt);
}
} else {
// This needs to go to memory, we're out of integer registers.
VA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(), Offset,
VA.getLocVT(), VA.getLocInfo());
}
}
}
// Lower a call for the 64-bit ABI.
SDValue
SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc DL = CLI.DL;
SDValue Chain = CLI.Chain;
auto PtrVT = getPointerTy(DAG.getDataLayout());
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64);
CLI.IsTailCall = CLI.IsTailCall && IsEligibleForTailCallOptimization(
CCInfo, CLI, DAG.getMachineFunction());
// Get the size of the outgoing arguments stack space requirement.
// The stack offset computed by CC_Sparc64 includes all arguments.
// Called functions expect 6 argument words to exist in the stack frame, used
// or not.
unsigned StackReserved = 6 * 8u;
unsigned ArgsSize = std::max(StackReserved, CCInfo.getNextStackOffset());
// Keep stack frames 16-byte aligned.
ArgsSize = alignTo(ArgsSize, 16);
// Varargs calls require special treatment.
if (CLI.IsVarArg)
fixupVariableFloatArgs(ArgLocs, CLI.Outs);
assert(!CLI.IsTailCall || ArgsSize == StackReserved);
// Adjust the stack pointer to make room for the arguments.
// FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls
// with more than 6 arguments.
if (!CLI.IsTailCall)
Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL);
// Collect the set of registers to pass to the function and their values.
// This will be emitted as a sequence of CopyToReg nodes glued to the call
// instruction.
SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
// Collect chains from all the memory opeations that copy arguments to the
// stack. They must follow the stack pointer adjustment above and precede the
// call instruction itself.
SmallVector<SDValue, 8> MemOpChains;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
const CCValAssign &VA = ArgLocs[i];
SDValue Arg = CLI.OutVals[i];
// Promote the value if needed.
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unknown location info!");
case CCValAssign::Full:
break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::BCvt:
// fixupVariableFloatArgs() may create bitcasts from f128 to i128. But
// SPARC does not support i128 natively. Lower it into two i64, see below.
if (!VA.needsCustom() || VA.getValVT() != MVT::f128
|| VA.getLocVT() != MVT::i128)
Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
break;
}
if (VA.isRegLoc()) {
if (VA.needsCustom() && VA.getValVT() == MVT::f128
&& VA.getLocVT() == MVT::i128) {
// Store and reload into the integer register reg and reg+1.
unsigned Offset = 8 * (VA.getLocReg() - SP::I0);
unsigned StackOffset = Offset + Subtarget->getStackPointerBias() + 128;
SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT);
SDValue HiPtrOff = DAG.getIntPtrConstant(StackOffset, DL);
HiPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, HiPtrOff);
SDValue LoPtrOff = DAG.getIntPtrConstant(StackOffset + 8, DL);
LoPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, LoPtrOff);
// Store to %sp+BIAS+128+Offset
SDValue Store =
DAG.getStore(Chain, DL, Arg, HiPtrOff, MachinePointerInfo());
// Load into Reg and Reg+1
SDValue Hi64 =
DAG.getLoad(MVT::i64, DL, Store, HiPtrOff, MachinePointerInfo());
SDValue Lo64 =
DAG.getLoad(MVT::i64, DL, Store, LoPtrOff, MachinePointerInfo());
Register HiReg = VA.getLocReg();
Register LoReg = VA.getLocReg() + 1;
if (!CLI.IsTailCall) {
HiReg = toCallerWindow(HiReg);
LoReg = toCallerWindow(LoReg);
}
RegsToPass.push_back(std::make_pair(HiReg, Hi64));
RegsToPass.push_back(std::make_pair(LoReg, Lo64));
continue;
}
// The custom bit on an i32 return value indicates that it should be
// passed in the high bits of the register.
if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg,
DAG.getConstant(32, DL, MVT::i32));
// The next value may go in the low bits of the same register.
// Handle both at once.
if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() &&
ArgLocs[i+1].getLocReg() == VA.getLocReg()) {
SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64,
CLI.OutVals[i+1]);
Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV);
// Skip the next value, it's already done.
++i;
}
}
Register Reg = VA.getLocReg();
if (!CLI.IsTailCall)
Reg = toCallerWindow(Reg);
RegsToPass.push_back(std::make_pair(Reg, Arg));
continue;
}
assert(VA.isMemLoc());
// Create a store off the stack pointer for this argument.
SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT);
// The argument area starts at %fp+BIAS+128 in the callee frame,
// %sp+BIAS+128 in ours.
SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() +
Subtarget->getStackPointerBias() +
128, DL);
PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
MemOpChains.push_back(
DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()));
}
// Emit all stores, make sure they occur before the call.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
// Build a sequence of CopyToReg nodes glued together with token chain and
// glue operands which copy the outgoing args into registers. The InGlue is
// necessary since all emitted instructions must be stuck together in order
// to pass the live physical registers.
SDValue InGlue;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, DL,
RegsToPass[i].first, RegsToPass[i].second, InGlue);
InGlue = Chain.getValue(1);
}
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
// Likewise ExternalSymbol -> TargetExternalSymbol.
SDValue Callee = CLI.Callee;
bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB);
unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30
: SparcMCExpr::VK_Sparc_WDISP30;
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT, 0, TF);
else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, TF);
// Build the operands for the call instruction itself.
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// Add a register mask operand representing the call-preserved registers.
const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo();
const uint32_t *Mask =
((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CLI.CallConv)
: TRI->getCallPreservedMask(DAG.getMachineFunction(),
CLI.CallConv));
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
// Make sure the CopyToReg nodes are glued to the call instruction which
// consumes the registers.
if (InGlue.getNode())
Ops.push_back(InGlue);
// Now the call itself.
if (CLI.IsTailCall) {
DAG.getMachineFunction().getFrameInfo().setHasTailCall();
return DAG.getNode(SPISD::TAIL_CALL, DL, MVT::Other, Ops);
}
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, Ops);
InGlue = Chain.getValue(1);
// Revert the stack pointer immediately after the call.
Chain = DAG.getCALLSEQ_END(Chain, ArgsSize, 0, InGlue, DL);
InGlue = Chain.getValue(1);
// Now extract the return values. This is more or less the same as
// LowerFormalArguments_64.
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
// Set inreg flag manually for codegen generated library calls that
// return float.
if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB)
CLI.Ins[0].Flags.setInReg();
RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_Sparc64);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
unsigned Reg = toCallerWindow(VA.getLocReg());
// When returning 'inreg {i32, i32 }', two consecutive i32 arguments can
// reside in the same register in the high and low bits. Reuse the
// CopyFromReg previous node to avoid duplicate copies.
SDValue RV;
if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1)))
if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg)
RV = Chain.getValue(0);
// But usually we'll create a new CopyFromReg for a different register.
if (!RV.getNode()) {
RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue);
Chain = RV.getValue(1);
InGlue = Chain.getValue(2);
}
// Get the high bits for i32 struct elements.
if (VA.getValVT() == MVT::i32 && VA.needsCustom())
RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV,
DAG.getConstant(32, DL, MVT::i32));
// The callee promoted the return value, so insert an Assert?ext SDNode so
// we won't promote the value again in this function.
switch (VA.getLocInfo()) {
case CCValAssign::SExt:
RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV,
DAG.getValueType(VA.getValVT()));
break;
case CCValAssign::ZExt:
RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV,
DAG.getValueType(VA.getValVT()));
break;
default:
break;
}
// Truncate the register down to the return value type.
if (VA.isExtInLoc())
RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV);
InVals.push_back(RV);
}
return Chain;
}
//===----------------------------------------------------------------------===//
// TargetLowering Implementation
//===----------------------------------------------------------------------===//
TargetLowering::AtomicExpansionKind SparcTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
if (AI->getOperation() == AtomicRMWInst::Xchg &&
AI->getType()->getPrimitiveSizeInBits() == 32)
return AtomicExpansionKind::None; // Uses xchg instruction
return AtomicExpansionKind::CmpXChg;
}
/// intCondCCodeToRcond - Convert a DAG integer condition code to a SPARC
/// rcond condition.
static SPCC::CondCodes intCondCCodeToRcond(ISD::CondCode CC) {
switch (CC) {
default:
llvm_unreachable("Unknown/unsigned integer condition code!");
case ISD::SETEQ:
return SPCC::REG_Z;
case ISD::SETNE:
return SPCC::REG_NZ;
case ISD::SETLT:
return SPCC::REG_LZ;
case ISD::SETGT:
return SPCC::REG_GZ;
case ISD::SETLE:
return SPCC::REG_LEZ;
case ISD::SETGE:
return SPCC::REG_GEZ;
}
}
/// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC
/// condition.
static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Unknown integer condition code!");
case ISD::SETEQ: return SPCC::ICC_E;
case ISD::SETNE: return SPCC::ICC_NE;
case ISD::SETLT: return SPCC::ICC_L;
case ISD::SETGT: return SPCC::ICC_G;
case ISD::SETLE: return SPCC::ICC_LE;
case ISD::SETGE: return SPCC::ICC_GE;
case ISD::SETULT: return SPCC::ICC_CS;
case ISD::SETULE: return SPCC::ICC_LEU;
case ISD::SETUGT: return SPCC::ICC_GU;
case ISD::SETUGE: return SPCC::ICC_CC;
}
}
/// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC
/// FCC condition.
static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Unknown fp condition code!");
case ISD::SETEQ:
case ISD::SETOEQ: return SPCC::FCC_E;
case ISD::SETNE:
case ISD::SETUNE: return SPCC::FCC_NE;
case ISD::SETLT:
case ISD::SETOLT: return SPCC::FCC_L;
case ISD::SETGT:
case ISD::SETOGT: return SPCC::FCC_G;
case ISD::SETLE:
case ISD::SETOLE: return SPCC::FCC_LE;
case ISD::SETGE:
case ISD::SETOGE: return SPCC::FCC_GE;
case ISD::SETULT: return SPCC::FCC_UL;
case ISD::SETULE: return SPCC::FCC_ULE;
case ISD::SETUGT: return SPCC::FCC_UG;
case ISD::SETUGE: return SPCC::FCC_UGE;
case ISD::SETUO: return SPCC::FCC_U;
case ISD::SETO: return SPCC::FCC_O;
case ISD::SETONE: return SPCC::FCC_LG;
case ISD::SETUEQ: return SPCC::FCC_UE;
}
}
SparcTargetLowering::SparcTargetLowering(const TargetMachine &TM,
const SparcSubtarget &STI)
: TargetLowering(TM), Subtarget(&STI) {
MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
// Instructions which use registers as conditionals examine all the
// bits (as does the pseudo SELECT_CC expansion). I don't think it
// matters much whether it's ZeroOrOneBooleanContent, or
// ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the
// former.
setBooleanContents(ZeroOrOneBooleanContent);
setBooleanVectorContents(ZeroOrOneBooleanContent);
// Set up the register classes.
addRegisterClass(MVT::i32, &SP::IntRegsRegClass);
if (!Subtarget->useSoftFloat()) {
addRegisterClass(MVT::f32, &SP::FPRegsRegClass);
addRegisterClass(MVT::f64, &SP::DFPRegsRegClass);
addRegisterClass(MVT::f128, &SP::QFPRegsRegClass);
}
if (Subtarget->is64Bit()) {
addRegisterClass(MVT::i64, &SP::I64RegsRegClass);
} else {
// On 32bit sparc, we define a double-register 32bit register
// class, as well. This is modeled in LLVM as a 2-vector of i32.
addRegisterClass(MVT::v2i32, &SP::IntPairRegClass);
// ...but almost all operations must be expanded, so set that as
// the default.
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
setOperationAction(Op, MVT::v2i32, Expand);
}
// Truncating/extending stores/loads are also not supported.
for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i32, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Expand);
setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, VT, Expand);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, VT, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, VT, Expand);
setTruncStoreAction(VT, MVT::v2i32, Expand);
setTruncStoreAction(MVT::v2i32, VT, Expand);
}
// However, load and store *are* legal.
setOperationAction(ISD::LOAD, MVT::v2i32, Legal);
setOperationAction(ISD::STORE, MVT::v2i32, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Legal);
setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Legal);
// And we need to promote i64 loads/stores into vector load/store
setOperationAction(ISD::LOAD, MVT::i64, Custom);
setOperationAction(ISD::STORE, MVT::i64, Custom);
// Sadly, this doesn't work:
// AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
// AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
}
// Turn FP extload into load/fpextend
for (MVT VT : MVT::fp_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
}
// Sparc doesn't have i1 sign extending load
for (MVT VT : MVT::integer_valuetypes())
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
// Turn FP truncstore into trunc + store.
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::f128, MVT::f16, Expand);
setTruncStoreAction(MVT::f128, MVT::f32, Expand);
setTruncStoreAction(MVT::f128, MVT::f64, Expand);
// Custom legalize GlobalAddress nodes into LO/HI parts.
setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
setOperationAction(ISD::ConstantPool, PtrVT, Custom);
setOperationAction(ISD::BlockAddress, PtrVT, Custom);
// Sparc doesn't have sext_inreg, replace them with shl/sra
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
// Sparc has no REM or DIVREM operations.
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
// ... nor does SparcV9.
if (Subtarget->is64Bit()) {
setOperationAction(ISD::UREM, MVT::i64, Expand);
setOperationAction(ISD::SREM, MVT::i64, Expand);
setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
}
// Custom expand fp<->sint
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
// Custom Expand fp<->uint
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
// Lower f16 conversion operations into library calls
setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
setOperationAction(ISD::FP16_TO_FP, MVT::f128, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f128, Expand);
setOperationAction(ISD::BITCAST, MVT::f32, Expand);
setOperationAction(ISD::BITCAST, MVT::i32, Expand);
// Sparc has no select or setcc: expand to SELECT_CC.
setOperationAction(ISD::SELECT, MVT::i32, Expand);
setOperationAction(ISD::SELECT, MVT::f32, Expand);
setOperationAction(ISD::SELECT, MVT::f64, Expand);
setOperationAction(ISD::SELECT, MVT::f128, Expand);
setOperationAction(ISD::SETCC, MVT::i32, Expand);
setOperationAction(ISD::SETCC, MVT::f32, Expand);
setOperationAction(ISD::SETCC, MVT::f64, Expand);
setOperationAction(ISD::SETCC, MVT::f128, Expand);
// Sparc doesn't have BRCOND either, it has BR_CC.
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
setOperationAction(ISD::BRIND, MVT::Other, Expand);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
setOperationAction(ISD::BR_CC, MVT::f128, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
setOperationAction(ISD::ADDC, MVT::i32, Custom);
setOperationAction(ISD::ADDE, MVT::i32, Custom);
setOperationAction(ISD::SUBC, MVT::i32, Custom);
setOperationAction(ISD::SUBE, MVT::i32, Custom);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::ADDC, MVT::i64, Custom);
setOperationAction(ISD::ADDE, MVT::i64, Custom);
setOperationAction(ISD::SUBC, MVT::i64, Custom);
setOperationAction(ISD::SUBE, MVT::i64, Custom);
setOperationAction(ISD::BITCAST, MVT::f64, Expand);
setOperationAction(ISD::BITCAST, MVT::i64, Expand);
setOperationAction(ISD::SELECT, MVT::i64, Expand);
setOperationAction(ISD::SETCC, MVT::i64, Expand);
setOperationAction(ISD::BR_CC, MVT::i64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
setOperationAction(ISD::CTPOP, MVT::i64,
Subtarget->usePopc() ? Legal : Expand);
setOperationAction(ISD::CTTZ , MVT::i64, Expand);
setOperationAction(ISD::CTLZ , MVT::i64, Expand);
setOperationAction(ISD::BSWAP, MVT::i64, Expand);
setOperationAction(ISD::ROTL , MVT::i64, Expand);
setOperationAction(ISD::ROTR , MVT::i64, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
}
// ATOMICs.
// Atomics are supported on SparcV9. 32-bit atomics are also
// supported by some Leon SparcV8 variants. Otherwise, atomics
// are unsupported.
if (Subtarget->isV9())
setMaxAtomicSizeInBitsSupported(64);
else if (Subtarget->hasLeonCasa())
setMaxAtomicSizeInBitsSupported(32);
else
setMaxAtomicSizeInBitsSupported(0);
setMinCmpXchgSizeInBits(32);
setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal);
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal);
// Custom Lower Atomic LOAD/STORE
setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Legal);
setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Legal);
setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Custom);
}
if (!Subtarget->is64Bit()) {
// These libcalls are not available in 32-bit.
setLibcallName(RTLIB::MULO_I64, nullptr);
setLibcallName(RTLIB::SHL_I128, nullptr);
setLibcallName(RTLIB::SRL_I128, nullptr);
setLibcallName(RTLIB::SRA_I128, nullptr);
}
setLibcallName(RTLIB::MULO_I128, nullptr);
if (!Subtarget->isV9()) {
// SparcV8 does not have FNEGD and FABSD.
setOperationAction(ISD::FNEG, MVT::f64, Custom);
setOperationAction(ISD::FABS, MVT::f64, Custom);
}
setOperationAction(ISD::FSIN , MVT::f128, Expand);
setOperationAction(ISD::FCOS , MVT::f128, Expand);
setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
setOperationAction(ISD::FREM , MVT::f128, Expand);
setOperationAction(ISD::FMA , MVT::f128, Expand);
setOperationAction(ISD::FSIN , MVT::f64, Expand);
setOperationAction(ISD::FCOS , MVT::f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
setOperationAction(ISD::FREM , MVT::f64, Expand);
setOperationAction(ISD::FMA , MVT::f64, Expand);
setOperationAction(ISD::FSIN , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f32, Expand);
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
setOperationAction(ISD::FREM , MVT::f32, Expand);
setOperationAction(ISD::FMA , MVT::f32, Expand);
setOperationAction(ISD::CTTZ , MVT::i32, Expand);
setOperationAction(ISD::CTLZ , MVT::i32, Expand);
setOperationAction(ISD::ROTL , MVT::i32, Expand);
setOperationAction(ISD::ROTR , MVT::i32, Expand);
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
setOperationAction(ISD::FPOW , MVT::f128, Expand);
setOperationAction(ISD::FPOW , MVT::f64, Expand);
setOperationAction(ISD::FPOW , MVT::f32, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
// Expands to [SU]MUL_LOHI.
setOperationAction(ISD::MULHU, MVT::i32, Expand);
setOperationAction(ISD::MULHS, MVT::i32, Expand);
setOperationAction(ISD::MUL, MVT::i32, Expand);
if (Subtarget->useSoftMulDiv()) {
// .umul works for both signed and unsigned
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
setLibcallName(RTLIB::MUL_I32, ".umul");
setOperationAction(ISD::SDIV, MVT::i32, Expand);
setLibcallName(RTLIB::SDIV_I32, ".div");
setOperationAction(ISD::UDIV, MVT::i32, Expand);
setLibcallName(RTLIB::UDIV_I32, ".udiv");
setLibcallName(RTLIB::SREM_I32, ".rem");
setLibcallName(RTLIB::UREM_I32, ".urem");
}
if (Subtarget->is64Bit()) {
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::MULHU, MVT::i64, Expand);
setOperationAction(ISD::MULHS, MVT::i64, Expand);
setOperationAction(ISD::UMULO, MVT::i64, Custom);
setOperationAction(ISD::SMULO, MVT::i64, Custom);
setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
}
// VASTART needs to be custom lowered to use the VarArgsFrameIndex.
setOperationAction(ISD::VASTART , MVT::Other, Custom);
// VAARG needs to be lowered to not do unaligned accesses for doubles.
setOperationAction(ISD::VAARG , MVT::Other, Custom);
setOperationAction(ISD::TRAP , MVT::Other, Legal);
setOperationAction(ISD::DEBUGTRAP , MVT::Other, Legal);
// Use the default implementation.
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
setOperationAction(ISD::VAEND , MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
setStackPointerRegisterToSaveRestore(SP::O6);
setOperationAction(ISD::CTPOP, MVT::i32,
Subtarget->usePopc() ? Legal : Expand);
if (Subtarget->isV9() && Subtarget->hasHardQuad()) {
setOperationAction(ISD::LOAD, MVT::f128, Legal);
setOperationAction(ISD::STORE, MVT::f128, Legal);
} else {
setOperationAction(ISD::LOAD, MVT::f128, Custom);
setOperationAction(ISD::STORE, MVT::f128, Custom);
}
if (Subtarget->hasHardQuad()) {
setOperationAction(ISD::FADD, MVT::f128, Legal);
setOperationAction(ISD::FSUB, MVT::f128, Legal);
setOperationAction(ISD::FMUL, MVT::f128, Legal);
setOperationAction(ISD::FDIV, MVT::f128, Legal);
setOperationAction(ISD::FSQRT, MVT::f128, Legal);
setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
if (Subtarget->isV9()) {
setOperationAction(ISD::FNEG, MVT::f128, Legal);
setOperationAction(ISD::FABS, MVT::f128, Legal);
} else {
setOperationAction(ISD::FNEG, MVT::f128, Custom);
setOperationAction(ISD::FABS, MVT::f128, Custom);
}
if (!Subtarget->is64Bit()) {
setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll");
setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull");
setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq");
setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq");
}
} else {
// Custom legalize f128 operations.
setOperationAction(ISD::FADD, MVT::f128, Custom);
setOperationAction(ISD::FSUB, MVT::f128, Custom);
setOperationAction(ISD::FMUL, MVT::f128, Custom);
setOperationAction(ISD::FDIV, MVT::f128, Custom);
setOperationAction(ISD::FSQRT, MVT::f128, Custom);
setOperationAction(ISD::FNEG, MVT::f128, Custom);
setOperationAction(ISD::FABS, MVT::f128, Custom);
setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
// Setup Runtime library names.
if (Subtarget->is64Bit() && !Subtarget->useSoftFloat()) {
setLibcallName(RTLIB::ADD_F128, "_Qp_add");
setLibcallName(RTLIB::SUB_F128, "_Qp_sub");
setLibcallName(RTLIB::MUL_F128, "_Qp_mul");
setLibcallName(RTLIB::DIV_F128, "_Qp_div");
setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt");
setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi");
setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Qp_qtoui");
setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq");
setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Qp_uitoq");
setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Qp_qtox");
setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Qp_qtoux");
setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Qp_xtoq");
setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Qp_uxtoq");
setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq");
setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq");
setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos");
setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod");
} else if (!Subtarget->useSoftFloat()) {
setLibcallName(RTLIB::ADD_F128, "_Q_add");
setLibcallName(RTLIB::SUB_F128, "_Q_sub");
setLibcallName(RTLIB::MUL_F128, "_Q_mul");
setLibcallName(RTLIB::DIV_F128, "_Q_div");
setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt");
setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi");
setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Q_qtou");
setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq");
setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Q_utoq");
setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll");
setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull");
setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq");
setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq");
setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq");
setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq");
setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos");
setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod");
}
}
if (Subtarget->fixAllFDIVSQRT()) {
// Promote FDIVS and FSQRTS to FDIVD and FSQRTD instructions instead as
// the former instructions generate errata on LEON processors.
setOperationAction(ISD::FDIV, MVT::f32, Promote);
setOperationAction(ISD::FSQRT, MVT::f32, Promote);
}
if (Subtarget->hasNoFMULS()) {
setOperationAction(ISD::FMUL, MVT::f32, Promote);
}
// Custom combine bitcast between f64 and v2i32
if (!Subtarget->is64Bit())
setTargetDAGCombine(ISD::BITCAST);
if (Subtarget->hasLeonCycleCounter())
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
setMinFunctionAlignment(Align(4));
computeRegisterProperties(Subtarget->getRegisterInfo());
}
bool SparcTargetLowering::useSoftFloat() const {
return Subtarget->useSoftFloat();
}
const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch ((SPISD::NodeType)Opcode) {
case SPISD::FIRST_NUMBER: break;
case SPISD::CMPICC: return "SPISD::CMPICC";
case SPISD::CMPFCC: return "SPISD::CMPFCC";
case SPISD::CMPFCC_V9:
return "SPISD::CMPFCC_V9";
case SPISD::BRICC: return "SPISD::BRICC";
case SPISD::BPICC:
return "SPISD::BPICC";
case SPISD::BPXCC:
return "SPISD::BPXCC";
case SPISD::BRFCC: return "SPISD::BRFCC";
case SPISD::BRFCC_V9:
return "SPISD::BRFCC_V9";
case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC";
case SPISD::SELECT_XCC: return "SPISD::SELECT_XCC";
case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC";
case SPISD::SELECT_REG:
return "SPISD::SELECT_REG";
case SPISD::Hi: return "SPISD::Hi";
case SPISD::Lo: return "SPISD::Lo";
case SPISD::FTOI: return "SPISD::FTOI";
case SPISD::ITOF: return "SPISD::ITOF";
case SPISD::FTOX: return "SPISD::FTOX";
case SPISD::XTOF: return "SPISD::XTOF";
case SPISD::CALL: return "SPISD::CALL";
case SPISD::RET_FLAG: return "SPISD::RET_FLAG";
case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG";
case SPISD::FLUSHW: return "SPISD::FLUSHW";
case SPISD::TLS_ADD: return "SPISD::TLS_ADD";
case SPISD::TLS_LD: return "SPISD::TLS_LD";
case SPISD::TLS_CALL: return "SPISD::TLS_CALL";
case SPISD::TAIL_CALL: return "SPISD::TAIL_CALL";
case SPISD::LOAD_GDOP: return "SPISD::LOAD_GDOP";
}
return nullptr;
}
EVT SparcTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
EVT VT) const {
if (!VT.isVector())
return MVT::i32;
return VT.changeVectorElementTypeToInteger();
}
/// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to
/// be zero. Op is expected to be a target specific node. Used by DAG
/// combiner.
void SparcTargetLowering::computeKnownBitsForTargetNode
(const SDValue Op,
KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth) const {
KnownBits Known2;
Known.resetAll();
switch (Op.getOpcode()) {
default: break;
case SPISD::SELECT_ICC:
case SPISD::SELECT_XCC:
case SPISD::SELECT_FCC:
Known = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
// Only known if known in both the LHS and RHS.
Known = KnownBits::commonBits(Known, Known2);
break;
}
}
// Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so
// set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition.
static void LookThroughSetCC(SDValue &LHS, SDValue &RHS,
ISD::CondCode CC, unsigned &SPCC) {
if (isNullConstant(RHS) && CC == ISD::SETNE &&
(((LHS.getOpcode() == SPISD::SELECT_ICC ||
LHS.getOpcode() == SPISD::SELECT_XCC) &&
LHS.getOperand(3).getOpcode() == SPISD::CMPICC) ||
(LHS.getOpcode() == SPISD::SELECT_FCC &&
(LHS.getOperand(3).getOpcode() == SPISD::CMPFCC ||
LHS.getOperand(3).getOpcode() == SPISD::CMPFCC_V9))) &&
isOneConstant(LHS.getOperand(0)) && isNullConstant(LHS.getOperand(1))) {
SDValue CMPCC = LHS.getOperand(3);
SPCC = cast<ConstantSDNode>(LHS.getOperand(2))->getZExtValue();
LHS = CMPCC.getOperand(0);
RHS = CMPCC.getOperand(1);
}
}
// Convert to a target node and set target flags.
SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF,
SelectionDAG &DAG) const {
if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
return DAG.getTargetGlobalAddress(GA->getGlobal(),
SDLoc(GA),
GA->getValueType(0),
GA->getOffset(), TF);
if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op))
return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0),
CP->getAlign(), CP->getOffset(), TF);
if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op))
return DAG.getTargetBlockAddress(BA->getBlockAddress(),
Op.getValueType(),
0,
TF);
if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op))
return DAG.getTargetExternalSymbol(ES->getSymbol(),
ES->getValueType(0), TF);
llvm_unreachable("Unhandled address SDNode");
}
// Split Op into high and low parts according to HiTF and LoTF.
// Return an ADD node combining the parts.
SDValue SparcTargetLowering::makeHiLoPair(SDValue Op,
unsigned HiTF, unsigned LoTF,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG));
SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG));
return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
}
// Build SDNodes for producing an address from a GlobalAddress, ConstantPool,
// or ExternalSymbol SDNode.
SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = getPointerTy(DAG.getDataLayout());
// Handle PIC mode first. SPARC needs a got load for every variable!
if (isPositionIndependent()) {
const Module *M = DAG.getMachineFunction().getFunction().getParent();
PICLevel::Level picLevel = M->getPICLevel();
SDValue Idx;
if (picLevel == PICLevel::SmallPIC) {
// This is the pic13 code model, the GOT is known to be smaller than 8KiB.
Idx = DAG.getNode(SPISD::Lo, DL, Op.getValueType(),
withTargetFlags(Op, SparcMCExpr::VK_Sparc_GOT13, DAG));
} else {
// This is the pic32 code model, the GOT is known to be smaller than 4GB.
Idx = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_GOT22,
SparcMCExpr::VK_Sparc_GOT10, DAG);
}
SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT);
SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Idx);
// GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this
// function has calls.
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
MFI.setHasCalls(true);
return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
}
// This is one of the absolute code models.
switch(getTargetMachine().getCodeModel()) {
default:
llvm_unreachable("Unsupported absolute code model");
case CodeModel::Small:
// abs32.
return makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI,
SparcMCExpr::VK_Sparc_LO, DAG);
case CodeModel::Medium: {
// abs44.
SDValue H44 = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_H44,
SparcMCExpr::VK_Sparc_M44, DAG);
H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, DL, MVT::i32));
SDValue L44 = withTargetFlags(Op, SparcMCExpr::VK_Sparc_L44, DAG);
L44 = DAG.getNode(SPISD::Lo, DL, VT, L44);
return DAG.getNode(ISD::ADD, DL, VT, H44, L44);
}
case CodeModel::Large: {
// abs64.
SDValue Hi = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HH,
SparcMCExpr::VK_Sparc_HM, DAG);
Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, DL, MVT::i32));
SDValue Lo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI,
SparcMCExpr::VK_Sparc_LO, DAG);
return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
}
}
}
SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
return makeAddress(Op, DAG);
}
SDValue SparcTargetLowering::LowerConstantPool(SDValue Op,
SelectionDAG &DAG) const {
return makeAddress(Op, DAG);
}
SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
return makeAddress(Op, DAG);
}
SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
if (DAG.getTarget().useEmulatedTLS())
return LowerToTLSEmulatedModel(GA, DAG);
SDLoc DL(GA);
const GlobalValue *GV = GA->getGlobal();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
TLSModel::Model model = getTargetMachine().getTLSModel(GV);
if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
unsigned HiTF = ((model == TLSModel::GeneralDynamic)
? SparcMCExpr::VK_Sparc_TLS_GD_HI22
: SparcMCExpr::VK_Sparc_TLS_LDM_HI22);
unsigned LoTF = ((model == TLSModel::GeneralDynamic)
? SparcMCExpr::VK_Sparc_TLS_GD_LO10
: SparcMCExpr::VK_Sparc_TLS_LDM_LO10);
unsigned addTF = ((model == TLSModel::GeneralDynamic)
? SparcMCExpr::VK_Sparc_TLS_GD_ADD
: SparcMCExpr::VK_Sparc_TLS_LDM_ADD);
unsigned callTF = ((model == TLSModel::GeneralDynamic)
? SparcMCExpr::VK_Sparc_TLS_GD_CALL
: SparcMCExpr::VK_Sparc_TLS_LDM_CALL);
SDValue HiLo = makeHiLoPair(Op, HiTF, LoTF, DAG);
SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT);
SDValue Argument = DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Base, HiLo,
withTargetFlags(Op, addTF, DAG));
SDValue Chain = DAG.getEntryNode();
SDValue InFlag;
Chain = DAG.getCALLSEQ_START(Chain, 1, 0, DL);
Chain = DAG.getCopyToReg(Chain, DL, SP::O0, Argument, InFlag);
InFlag = Chain.getValue(1);
SDValue Callee = DAG.getTargetExternalSymbol("__tls_get_addr", PtrVT);
SDValue Symbol = withTargetFlags(Op, callTF, DAG);
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask(
DAG.getMachineFunction(), CallingConv::C);
assert(Mask && "Missing call preserved mask for calling convention");
SDValue Ops[] = {Chain,
Callee,
Symbol,
DAG.getRegister(SP::O0, PtrVT),
DAG.getRegisterMask(Mask),
InFlag};
Chain = DAG.getNode(SPISD::TLS_CALL, DL, NodeTys, Ops);
InFlag = Chain.getValue(1);
Chain = DAG.getCALLSEQ_END(Chain, 1, 0, InFlag, DL);
InFlag = Chain.getValue(1);
SDValue Ret = DAG.getCopyFromReg(Chain, DL, SP::O0, PtrVT, InFlag);
if (model != TLSModel::LocalDynamic)
return Ret;
SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT,
withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_HIX22, DAG));
SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT,
withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_LOX10, DAG));
HiLo = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo);
return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Ret, HiLo,
withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_ADD, DAG));
}
if (model == TLSModel::InitialExec) {
unsigned ldTF = ((PtrVT == MVT::i64)? SparcMCExpr::VK_Sparc_TLS_IE_LDX
: SparcMCExpr::VK_Sparc_TLS_IE_LD);
SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT);
// GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this
// function has calls.
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
MFI.setHasCalls(true);
SDValue TGA = makeHiLoPair(Op,
SparcMCExpr::VK_Sparc_TLS_IE_HI22,
SparcMCExpr::VK_Sparc_TLS_IE_LO10, DAG);
SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, TGA);
SDValue Offset = DAG.getNode(SPISD::TLS_LD,
DL, PtrVT, Ptr,
withTargetFlags(Op, ldTF, DAG));
return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT,
DAG.getRegister(SP::G7, PtrVT), Offset,
withTargetFlags(Op,
SparcMCExpr::VK_Sparc_TLS_IE_ADD, DAG));
}
assert(model == TLSModel::LocalExec);
SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT,
withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_HIX22, DAG));
SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT,
withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_LOX10, DAG));
SDValue Offset = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo);
return DAG.getNode(ISD::ADD, DL, PtrVT,
DAG.getRegister(SP::G7, PtrVT), Offset);
}
SDValue SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain,
ArgListTy &Args, SDValue Arg,
const SDLoc &DL,
SelectionDAG &DAG) const {
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
EVT ArgVT = Arg.getValueType();
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
ArgListEntry Entry;
Entry.Node = Arg;
Entry.Ty = ArgTy;
if (ArgTy->isFP128Ty()) {
// Create a stack object and pass the pointer to the library function.
int FI = MFI.CreateStackObject(16, Align(8), false);
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
Chain = DAG.getStore(Chain, DL, Entry.Node, FIPtr, MachinePointerInfo(),
Align(8));
Entry.Node = FIPtr;
Entry.Ty = PointerType::getUnqual(ArgTy);
}
Args.push_back(Entry);
return Chain;
}
SDValue
SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG,
const char *LibFuncName,
unsigned numArgs) const {
ArgListTy Args;
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Callee = DAG.getExternalSymbol(LibFuncName, PtrVT);
Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
Type *RetTyABI = RetTy;
SDValue Chain = DAG.getEntryNode();
SDValue RetPtr;
if (RetTy->isFP128Ty()) {
// Create a Stack Object to receive the return value of type f128.
ArgListEntry Entry;
int RetFI = MFI.CreateStackObject(16, Align(8), false);
RetPtr = DAG.getFrameIndex(RetFI, PtrVT);
Entry.Node = RetPtr;
Entry.Ty = PointerType::getUnqual(RetTy);
if (!Subtarget->is64Bit()) {
Entry.IsSRet = true;
Entry.IndirectType = RetTy;
}
Entry.IsReturned = false;
Args.push_back(Entry);
RetTyABI = Type::getVoidTy(*DAG.getContext());
}
assert(Op->getNumOperands() >= numArgs && "Not enough operands!");
for (unsigned i = 0, e = numArgs; i != e; ++i) {
Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG);
}
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(SDLoc(Op)).setChain(Chain)
.setCallee(CallingConv::C, RetTyABI, Callee, std::move(Args));
std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
// chain is in second result.
if (RetTyABI == RetTy)
return CallInfo.first;
assert (RetTy->isFP128Ty() && "Unexpected return type!");
Chain = CallInfo.second;
// Load RetPtr to get the return value.
return DAG.getLoad(Op.getValueType(), SDLoc(Op), Chain, RetPtr,
MachinePointerInfo(), Align(8));
}
SDValue SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS,
unsigned &SPCC, const SDLoc &DL,
SelectionDAG &DAG) const {
const char *LibCall = nullptr;
bool is64Bit = Subtarget->is64Bit();
switch(SPCC) {
default: llvm_unreachable("Unhandled conditional code!");
case SPCC::FCC_E : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break;
case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break;
case SPCC::FCC_L : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break;
case SPCC::FCC_G : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break;
case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break;
case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break;
case SPCC::FCC_UL :
case SPCC::FCC_ULE:
case SPCC::FCC_UG :
case SPCC::FCC_UGE:
case SPCC::FCC_U :
case SPCC::FCC_O :
case SPCC::FCC_LG :
case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break;
}
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Callee = DAG.getExternalSymbol(LibCall, PtrVT);
Type *RetTy = Type::getInt32Ty(*DAG.getContext());
ArgListTy Args;
SDValue Chain = DAG.getEntryNode();
Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG);
Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(DL).setChain(Chain)
.setCallee(CallingConv::C, RetTy, Callee, std::move(Args));
std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
// result is in first, and chain is in second result.
SDValue Result = CallInfo.first;
switch(SPCC) {
default: {
SDValue RHS = DAG.getConstant(0, DL, Result.getValueType());
SPCC = SPCC::ICC_NE;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_UL : {
SDValue Mask = DAG.getConstant(1, DL, Result.getValueType());
Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
SDValue RHS = DAG.getConstant(0, DL, Result.getValueType());
SPCC = SPCC::ICC_NE;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_ULE: {
SDValue RHS = DAG.getConstant(2, DL, Result.getValueType());
SPCC = SPCC::ICC_NE;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_UG : {
SDValue RHS = DAG.getConstant(1, DL, Result.getValueType());
SPCC = SPCC::ICC_G;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_UGE: {
SDValue RHS = DAG.getConstant(1, DL, Result.getValueType());
SPCC = SPCC::ICC_NE;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_U : {
SDValue RHS = DAG.getConstant(3, DL, Result.getValueType());
SPCC = SPCC::ICC_E;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_O : {
SDValue RHS = DAG.getConstant(3, DL, Result.getValueType());
SPCC = SPCC::ICC_NE;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_LG : {
SDValue Mask = DAG.getConstant(3, DL, Result.getValueType());
Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
SDValue RHS = DAG.getConstant(0, DL, Result.getValueType());
SPCC = SPCC::ICC_NE;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_UE : {
SDValue Mask = DAG.getConstant(3, DL, Result.getValueType());
Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
SDValue RHS = DAG.getConstant(0, DL, Result.getValueType());
SPCC = SPCC::ICC_E;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
}
}
static SDValue
LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI) {
if (Op.getOperand(0).getValueType() == MVT::f64)
return TLI.LowerF128Op(Op, DAG,
TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1);
if (Op.getOperand(0).getValueType() == MVT::f32)
return TLI.LowerF128Op(Op, DAG,
TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1);
llvm_unreachable("fpextend with non-float operand!");
return SDValue();
}
static SDValue
LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI) {
// FP_ROUND on f64 and f32 are legal.
if (Op.getOperand(0).getValueType() != MVT::f128)
return Op;
if (Op.getValueType() == MVT::f64)
return TLI.LowerF128Op(Op, DAG,
TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1);
if (Op.getValueType() == MVT::f32)
return TLI.LowerF128Op(Op, DAG,
TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1);
llvm_unreachable("fpround to non-float!");
return SDValue();
}
static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI,
bool hasHardQuad) {
SDLoc dl(Op);
EVT VT = Op.getValueType();
assert(VT == MVT::i32 || VT == MVT::i64);
// Expand f128 operations to fp128 abi calls.
if (Op.getOperand(0).getValueType() == MVT::f128
&& (!hasHardQuad || !TLI.isTypeLegal(VT))) {
const char *libName = TLI.getLibcallName(VT == MVT::i32
? RTLIB::FPTOSINT_F128_I32
: RTLIB::FPTOSINT_F128_I64);
return TLI.LowerF128Op(Op, DAG, libName, 1);
}
// Expand if the resulting type is illegal.
if (!TLI.isTypeLegal(VT))
return SDValue();
// Otherwise, Convert the fp value to integer in an FP register.
if (VT == MVT::i32)
Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0));
else
Op = DAG.getNode(SPISD::FTOX, dl, MVT::f64, Op.getOperand(0));
return DAG.getNode(ISD::BITCAST, dl, VT, Op);
}
static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI,
bool hasHardQuad) {
SDLoc dl(Op);
EVT OpVT = Op.getOperand(0).getValueType();
assert(OpVT == MVT::i32 || (OpVT == MVT::i64));
EVT floatVT = (OpVT == MVT::i32) ? MVT::f32 : MVT::f64;
// Expand f128 operations to fp128 ABI calls.
if (Op.getValueType() == MVT::f128
&& (!hasHardQuad || !TLI.isTypeLegal(OpVT))) {
const char *libName = TLI.getLibcallName(OpVT == MVT::i32
? RTLIB::SINTTOFP_I32_F128
: RTLIB::SINTTOFP_I64_F128);
return TLI.LowerF128Op(Op, DAG, libName, 1);
}
// Expand if the operand type is illegal.
if (!TLI.isTypeLegal(OpVT))
return SDValue();
// Otherwise, Convert the int value to FP in an FP register.
SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, floatVT, Op.getOperand(0));
unsigned opcode = (OpVT == MVT::i32)? SPISD::ITOF : SPISD::XTOF;
return DAG.getNode(opcode, dl, Op.getValueType(), Tmp);
}
static SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI,
bool hasHardQuad) {
SDLoc dl(Op);
EVT VT = Op.getValueType();
// Expand if it does not involve f128 or the target has support for
// quad floating point instructions and the resulting type is legal.
if (Op.getOperand(0).getValueType() != MVT::f128 ||
(hasHardQuad && TLI.isTypeLegal(VT)))
return SDValue();
assert(VT == MVT::i32 || VT == MVT::i64);
return TLI.LowerF128Op(Op, DAG,
TLI.getLibcallName(VT == MVT::i32
? RTLIB::FPTOUINT_F128_I32
: RTLIB::FPTOUINT_F128_I64),
1);
}
static SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI,
bool hasHardQuad) {
SDLoc dl(Op);
EVT OpVT = Op.getOperand(0).getValueType();
assert(OpVT == MVT::i32 || OpVT == MVT::i64);
// Expand if it does not involve f128 or the target has support for
// quad floating point instructions and the operand type is legal.
if (Op.getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(OpVT)))
return SDValue();
return TLI.LowerF128Op(Op, DAG,
TLI.getLibcallName(OpVT == MVT::i32
? RTLIB::UINTTOFP_I32_F128
: RTLIB::UINTTOFP_I64_F128),
1);
}
static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI, bool hasHardQuad,
bool isV9) {
SDValue Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue LHS = Op.getOperand(2);
SDValue RHS = Op.getOperand(3);
SDValue Dest = Op.getOperand(4);
SDLoc dl(Op);
unsigned Opc, SPCC = ~0U;
// If this is a br_cc of a "setcc", and if the setcc got lowered into
// an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
LookThroughSetCC(LHS, RHS, CC, SPCC);
assert(LHS.getValueType() == RHS.getValueType());
// Get the condition flag.
SDValue CompareFlag;
if (LHS.getValueType().isInteger()) {
CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS);
if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
if (isV9)
// 32-bit compares use the icc flags, 64-bit uses the xcc flags.
Opc = LHS.getValueType() == MVT::i32 ? SPISD::BPICC : SPISD::BPXCC;
else
// Non-v9 targets don't have xcc.
Opc = SPISD::BRICC;
} else {
if (!hasHardQuad && LHS.getValueType() == MVT::f128) {
if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG);
Opc = isV9 ? SPISD::BPICC : SPISD::BRICC;
} else {
unsigned CmpOpc = isV9 ? SPISD::CMPFCC_V9 : SPISD::CMPFCC;
CompareFlag = DAG.getNode(CmpOpc, dl, MVT::Glue, LHS, RHS);
if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
Opc = isV9 ? SPISD::BRFCC_V9 : SPISD::BRFCC;
}
}
return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest,
DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag);
}
static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI, bool hasHardQuad,
bool isV9, bool is64Bit) {
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDValue TrueVal = Op.getOperand(2);
SDValue FalseVal = Op.getOperand(3);
SDLoc dl(Op);
unsigned Opc, SPCC = ~0U;
// If this is a select_cc of a "setcc", and if the setcc got lowered into
// an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
LookThroughSetCC(LHS, RHS, CC, SPCC);
assert(LHS.getValueType() == RHS.getValueType());
SDValue CompareFlag;
if (LHS.getValueType().isInteger()) {
// On V9 processors running in 64-bit mode, if CC compares two `i64`s
// and the RHS is zero we might be able to use a specialized select.
// All SELECT_CC between any two scalar integer types are eligible for
// lowering to specialized instructions. Additionally, f32 and f64 types
// are also eligible, but for f128 we can only use the specialized
// instruction when we have hardquad.
EVT ValType = TrueVal.getValueType();
bool IsEligibleType = ValType.isScalarInteger() || ValType == MVT::f32 ||
ValType == MVT::f64 ||
(ValType == MVT::f128 && hasHardQuad);
if (is64Bit && isV9 && LHS.getValueType() == MVT::i64 &&
isNullConstant(RHS) && !ISD::isUnsignedIntSetCC(CC) && IsEligibleType)
return DAG.getNode(
SPISD::SELECT_REG, dl, TrueVal.getValueType(), TrueVal, FalseVal,
DAG.getConstant(intCondCCodeToRcond(CC), dl, MVT::i32), LHS);
CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS);
Opc = LHS.getValueType() == MVT::i32 ?
SPISD::SELECT_ICC : SPISD::SELECT_XCC;
if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
} else {
if (!hasHardQuad && LHS.getValueType() == MVT::f128) {
if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG);
Opc = SPISD::SELECT_ICC;
} else {
unsigned CmpOpc = isV9 ? SPISD::CMPFCC_V9 : SPISD::CMPFCC;
CompareFlag = DAG.getNode(CmpOpc, dl, MVT::Glue, LHS, RHS);
Opc = SPISD::SELECT_FCC;
if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
}
}
return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal,
DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag);
}
static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI) {
MachineFunction &MF = DAG.getMachineFunction();
SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
// Need frame address to find the address of VarArgsFrameIndex.
MF.getFrameInfo().setFrameAddressIsTaken(true);
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
SDLoc DL(Op);
SDValue Offset =
DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(SP::I6, PtrVT),
DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL));
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1),
MachinePointerInfo(SV));
}
static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) {
SDNode *Node = Op.getNode();
EVT VT = Node->getValueType(0);
SDValue InChain = Node->getOperand(0);
SDValue VAListPtr = Node->getOperand(1);
EVT PtrVT = VAListPtr.getValueType();
const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
SDLoc DL(Node);
SDValue VAList =
DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV));
// Increment the pointer, VAList, to the next vaarg.
SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
DAG.getIntPtrConstant(VT.getSizeInBits()/8,
DL));
// Store the incremented VAList to the legalized pointer.
InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr, VAListPtr,
MachinePointerInfo(SV));
// Load the actual argument out of the pointer VAList.
// We can't count on greater alignment than the word size.
return DAG.getLoad(
VT, DL, InChain, VAList, MachinePointerInfo(),
Align(std::min(PtrVT.getFixedSizeInBits(), VT.getFixedSizeInBits()) / 8));
}
static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
const SparcSubtarget *Subtarget) {
SDValue Chain = Op.getOperand(0); // Legalize the chain.
SDValue Size = Op.getOperand(1); // Legalize the size.
MaybeAlign Alignment =
cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue();
Align StackAlign = Subtarget->getFrameLowering()->getStackAlign();
EVT VT = Size->getValueType(0);
SDLoc dl(Op);
// TODO: implement over-aligned alloca. (Note: also implies
// supporting support for overaligned function frames + dynamic
// allocations, at all, which currently isn't supported)
if (Alignment && *Alignment > StackAlign) {
const MachineFunction &MF = DAG.getMachineFunction();
report_fatal_error("Function \"" + Twine(MF.getName()) + "\": "
"over-aligned dynamic alloca not supported.");
}
// The resultant pointer needs to be above the register spill area
// at the bottom of the stack.
unsigned regSpillArea;
if (Subtarget->is64Bit()) {
regSpillArea = 128;
} else {
// On Sparc32, the size of the spill area is 92. Unfortunately,
// that's only 4-byte aligned, not 8-byte aligned (the stack
// pointer is 8-byte aligned). So, if the user asked for an 8-byte
// aligned dynamic allocation, we actually need to add 96 to the
// bottom of the stack, instead of 92, to ensure 8-byte alignment.
// That also means adding 4 to the size of the allocation --
// before applying the 8-byte rounding. Unfortunately, we the
// value we get here has already had rounding applied. So, we need
// to add 8, instead, wasting a bit more memory.
// Further, this only actually needs to be done if the required
// alignment is > 4, but, we've lost that info by this point, too,
// so we always apply it.
// (An alternative approach would be to always reserve 96 bytes
// instead of the required 92, but then we'd waste 4 extra bytes
// in every frame, not just those with dynamic stack allocations)
// TODO: modify code in SelectionDAGBuilder to make this less sad.
Size = DAG.getNode(ISD::ADD, dl, VT, Size,
DAG.getConstant(8, dl, VT));
regSpillArea = 96;
}
unsigned SPReg = SP::O6;
SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
SDValue NewSP = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP); // Output chain
regSpillArea += Subtarget->getStackPointerBias();
SDValue NewVal = DAG.getNode(ISD::ADD, dl, VT, NewSP,
DAG.getConstant(regSpillArea, dl, VT));
SDValue Ops[2] = { NewVal, Chain };
return DAG.getMergeValues(Ops, dl);
}
static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) {
SDLoc dl(Op);
SDValue Chain = DAG.getNode(SPISD::FLUSHW,
dl, MVT::Other, DAG.getEntryNode());
return Chain;
}
static SDValue getFRAMEADDR(uint64_t depth, SDValue Op, SelectionDAG &DAG,
const SparcSubtarget *Subtarget,
bool AlwaysFlush = false) {
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
MFI.setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
SDLoc dl(Op);
unsigned FrameReg = SP::I6;
unsigned stackBias = Subtarget->getStackPointerBias();
SDValue FrameAddr;
SDValue Chain;
// flush first to make sure the windowed registers' values are in stack
Chain = (depth || AlwaysFlush) ? getFLUSHW(Op, DAG) : DAG.getEntryNode();
FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT);
unsigned Offset = (Subtarget->is64Bit()) ? (stackBias + 112) : 56;
while (depth--) {
SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
DAG.getIntPtrConstant(Offset, dl));
FrameAddr = DAG.getLoad(VT, dl, Chain, Ptr, MachinePointerInfo());
}
if (Subtarget->is64Bit())
FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
DAG.getIntPtrConstant(stackBias, dl));
return FrameAddr;
}
static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG,
const SparcSubtarget *Subtarget) {
uint64_t depth = Op.getConstantOperandVal(0);
return getFRAMEADDR(depth, Op, DAG, Subtarget);
}
static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI,
const SparcSubtarget *Subtarget) {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setReturnAddressIsTaken(true);
if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
EVT VT = Op.getValueType();
SDLoc dl(Op);
uint64_t depth = Op.getConstantOperandVal(0);
SDValue RetAddr;
if (depth == 0) {
auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
Register RetReg = MF.addLiveIn(SP::I7, TLI.getRegClassFor(PtrVT));
RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT);
return RetAddr;
}
// Need frame address to find return address of the caller.
SDValue FrameAddr = getFRAMEADDR(depth - 1, Op, DAG, Subtarget, true);
unsigned Offset = (Subtarget->is64Bit()) ? 120 : 60;
SDValue Ptr = DAG.getNode(ISD::ADD,
dl, VT,
FrameAddr,
DAG.getIntPtrConstant(Offset, dl));
RetAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), Ptr, MachinePointerInfo());
return RetAddr;
}
static SDValue LowerF64Op(SDValue SrcReg64, const SDLoc &dl, SelectionDAG &DAG,
unsigned opcode) {
assert(SrcReg64.getValueType() == MVT::f64 && "LowerF64Op called on non-double!");
assert(opcode == ISD::FNEG || opcode == ISD::FABS);
// Lower fneg/fabs on f64 to fneg/fabs on f32.
// fneg f64 => fneg f32:sub_even, fmov f32:sub_odd.
// fabs f64 => fabs f32:sub_even, fmov f32:sub_odd.
// Note: in little-endian, the floating-point value is stored in the
// registers are in the opposite order, so the subreg with the sign
// bit is the highest-numbered (odd), rather than the
// lowest-numbered (even).
SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32,
SrcReg64);
SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32,
SrcReg64);
if (DAG.getDataLayout().isLittleEndian())
Lo32 = DAG.getNode(opcode, dl, MVT::f32, Lo32);
else
Hi32 = DAG.getNode(opcode, dl, MVT::f32, Hi32);
SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
dl, MVT::f64), 0);
DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64,
DstReg64, Hi32);
DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64,
DstReg64, Lo32);
return DstReg64;
}
// Lower a f128 load into two f64 loads.
static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG)
{
SDLoc dl(Op);
LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode());
assert(LdNode->getOffset().isUndef() && "Unexpected node type");
Align Alignment = commonAlignment(LdNode->getOriginalAlign(), 8);
SDValue Hi64 =
DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LdNode->getBasePtr(),
LdNode->getPointerInfo(), Alignment);
EVT addrVT = LdNode->getBasePtr().getValueType();
SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT,
LdNode->getBasePtr(),
DAG.getConstant(8, dl, addrVT));
SDValue Lo64 = DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LoPtr,
LdNode->getPointerInfo().getWithOffset(8),
Alignment);
SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32);
SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32);
SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
dl, MVT::f128);
InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
MVT::f128,
SDValue(InFP128, 0),
Hi64,
SubRegEven);
InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
MVT::f128,
SDValue(InFP128, 0),
Lo64,
SubRegOdd);
SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1),
SDValue(Lo64.getNode(), 1) };
SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
SDValue Ops[2] = {SDValue(InFP128,0), OutChain};
return DAG.getMergeValues(Ops, dl);
}
static SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG)
{
LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode());
EVT MemVT = LdNode->getMemoryVT();
if (MemVT == MVT::f128)
return LowerF128Load(Op, DAG);
return Op;
}
// Lower a f128 store into two f64 stores.
static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) {
SDLoc dl(Op);
StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode());
assert(StNode->getOffset().isUndef() && "Unexpected node type");
SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32);
SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32);
SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG,
dl,
MVT::f64,
StNode->getValue(),
SubRegEven);
SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG,
dl,
MVT::f64,
StNode->getValue(),
SubRegOdd);
Align Alignment = commonAlignment(StNode->getOriginalAlign(), 8);
SDValue OutChains[2];
OutChains[0] =
DAG.getStore(StNode->getChain(), dl, SDValue(Hi64, 0),
StNode->getBasePtr(), StNode->getPointerInfo(),
Alignment);
EVT addrVT = StNode->getBasePtr().getValueType();
SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT,
StNode->getBasePtr(),
DAG.getConstant(8, dl, addrVT));
OutChains[1] = DAG.getStore(StNode->getChain(), dl, SDValue(Lo64, 0), LoPtr,
StNode->getPointerInfo().getWithOffset(8),
Alignment);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
}
static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG)
{
SDLoc dl(Op);
StoreSDNode *St = cast<StoreSDNode>(Op.getNode());
EVT MemVT = St->getMemoryVT();
if (MemVT == MVT::f128)
return LowerF128Store(Op, DAG);
if (MemVT == MVT::i64) {
// Custom handling for i64 stores: turn it into a bitcast and a
// v2i32 store.
SDValue Val = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, St->getValue());
SDValue Chain = DAG.getStore(
St->getChain(), dl, Val, St->getBasePtr(), St->getPointerInfo(),
St->getOriginalAlign(), St->getMemOperand()->getFlags(),
St->getAAInfo());
return Chain;
}
return SDValue();
}
static SDValue LowerFNEGorFABS(SDValue Op, SelectionDAG &DAG, bool isV9) {
assert((Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS)
&& "invalid opcode");
SDLoc dl(Op);
if (Op.getValueType() == MVT::f64)
return LowerF64Op(Op.getOperand(0), dl, DAG, Op.getOpcode());
if (Op.getValueType() != MVT::f128)
return Op;
// Lower fabs/fneg on f128 to fabs/fneg on f64
// fabs/fneg f128 => fabs/fneg f64:sub_even64, fmov f64:sub_odd64
// (As with LowerF64Op, on little-endian, we need to negate the odd
// subreg)
SDValue SrcReg128 = Op.getOperand(0);
SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64,
SrcReg128);
SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64,
SrcReg128);
if (DAG.getDataLayout().isLittleEndian()) {
if (isV9)
Lo64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Lo64);
else
Lo64 = LowerF64Op(Lo64, dl, DAG, Op.getOpcode());
} else {
if (isV9)
Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64);
else
Hi64 = LowerF64Op(Hi64, dl, DAG, Op.getOpcode());
}
SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
dl, MVT::f128), 0);
DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128,
DstReg128, Hi64);
DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128,
DstReg128, Lo64);
return DstReg128;
}
static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
if (Op.getValueType() != MVT::i64)
return Op;
SDLoc dl(Op);
SDValue Src1 = Op.getOperand(0);
SDValue Src1Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1);
SDValue Src1Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src1,
DAG.getConstant(32, dl, MVT::i64));
Src1Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1Hi);
SDValue Src2 = Op.getOperand(1);
SDValue Src2Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2);
SDValue Src2Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src2,
DAG.getConstant(32, dl, MVT::i64));
Src2Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2Hi);
bool hasChain = false;
unsigned hiOpc = Op.getOpcode();
switch (Op.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case ISD::ADDC: hiOpc = ISD::ADDE; break;
case ISD::ADDE: hasChain = true; break;
case ISD::SUBC: hiOpc = ISD::SUBE; break;
case ISD::SUBE: hasChain = true; break;
}
SDValue Lo;
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Glue);
if (hasChain) {
Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo,
Op.getOperand(2));
} else {
Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo);
}
SDValue Hi = DAG.getNode(hiOpc, dl, VTs, Src1Hi, Src2Hi, Lo.getValue(1));
SDValue Carry = Hi.getValue(1);
Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Lo);
Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Hi);
Hi = DAG.getNode(ISD::SHL, dl, MVT::i64, Hi,
DAG.getConstant(32, dl, MVT::i64));
SDValue Dst = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, Lo);
SDValue Ops[2] = { Dst, Carry };
return DAG.getMergeValues(Ops, dl);
}
// Custom lower UMULO/SMULO for SPARC. This code is similar to ExpandNode()
// in LegalizeDAG.cpp except the order of arguments to the library function.
static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI)
{
unsigned opcode = Op.getOpcode();
assert((opcode == ISD::UMULO || opcode == ISD::SMULO) && "Invalid Opcode.");
bool isSigned = (opcode == ISD::SMULO);
EVT VT = MVT::i64;
EVT WideVT = MVT::i128;
SDLoc dl(Op);
SDValue LHS = Op.getOperand(0);
if (LHS.getValueType() != VT)
return Op;
SDValue ShiftAmt = DAG.getConstant(63, dl, VT);
SDValue RHS = Op.getOperand(1);
SDValue HiLHS, HiRHS;
if (isSigned) {
HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, ShiftAmt);
HiRHS = DAG.getNode(ISD::SRA, dl, MVT::i64, RHS, ShiftAmt);
} else {
HiLHS = DAG.getConstant(0, dl, VT);
HiRHS = DAG.getConstant(0, dl, MVT::i64);
}
SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
TargetLowering::MakeLibCallOptions CallOptions;
CallOptions.setSExt(isSigned);
SDValue MulResult = TLI.makeLibCall(DAG,
RTLIB::MUL_I128, WideVT,
Args, CallOptions, dl).first;
SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT,
MulResult, DAG.getIntPtrConstant(0, dl));
SDValue TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT,
MulResult, DAG.getIntPtrConstant(1, dl));
if (isSigned) {
SDValue Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, Tmp1, ISD::SETNE);
} else {
TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, DAG.getConstant(0, dl, VT),
ISD::SETNE);
}
// MulResult is a node with an illegal type. Because such things are not
// generally permitted during this phase of legalization, ensure that
// nothing is left using the node. The above EXTRACT_ELEMENT nodes should have
// been folded.
assert(MulResult->use_empty() && "Illegally typed node still in use!");
SDValue Ops[2] = { BottomHalf, TopHalf } ;
return DAG.getMergeValues(Ops, dl);
}
static SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) {
if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getSuccessOrdering())) {
// Expand with a fence.
return SDValue();
}
// Monotonic load/stores are legal.
return Op;
}
SDValue SparcTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
SDLoc dl(Op);
switch (IntNo) {
default: return SDValue(); // Don't custom lower most intrinsics.
case Intrinsic::thread_pointer: {
EVT PtrVT = getPointerTy(DAG.getDataLayout());
return DAG.getRegister(SP::G7, PtrVT);
}
}
}
SDValue SparcTargetLowering::
LowerOperation(SDValue Op, SelectionDAG &DAG) const {
bool hasHardQuad = Subtarget->hasHardQuad();
bool isV9 = Subtarget->isV9();
bool is64Bit = Subtarget->is64Bit();
switch (Op.getOpcode()) {
default: llvm_unreachable("Should not custom lower this!");
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG, *this,
Subtarget);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG,
Subtarget);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG, *this,
hasHardQuad);
case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG, *this,
hasHardQuad);
case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG, *this,
hasHardQuad);
case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG, *this,
hasHardQuad);
case ISD::BR_CC:
return LowerBR_CC(Op, DAG, *this, hasHardQuad, isV9);
case ISD::SELECT_CC:
return LowerSELECT_CC(Op, DAG, *this, hasHardQuad, isV9, is64Bit);
case ISD::VASTART: return LowerVASTART(Op, DAG, *this);
case ISD::VAARG: return LowerVAARG(Op, DAG);
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG,
Subtarget);
case ISD::LOAD: return LowerLOAD(Op, DAG);
case ISD::STORE: return LowerSTORE(Op, DAG);
case ISD::FADD: return LowerF128Op(Op, DAG,
getLibcallName(RTLIB::ADD_F128), 2);
case ISD::FSUB: return LowerF128Op(Op, DAG,
getLibcallName(RTLIB::SUB_F128), 2);
case ISD::FMUL: return LowerF128Op(Op, DAG,
getLibcallName(RTLIB::MUL_F128), 2);
case ISD::FDIV: return LowerF128Op(Op, DAG,
getLibcallName(RTLIB::DIV_F128), 2);
case ISD::FSQRT: return LowerF128Op(Op, DAG,
getLibcallName(RTLIB::SQRT_F128),1);
case ISD::FABS:
case ISD::FNEG: return LowerFNEGorFABS(Op, DAG, isV9);
case ISD::FP_EXTEND: return LowerF128_FPEXTEND(Op, DAG, *this);
case ISD::FP_ROUND: return LowerF128_FPROUND(Op, DAG, *this);
case ISD::ADDC:
case ISD::ADDE:
case ISD::SUBC:
case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
case ISD::UMULO:
case ISD::SMULO: return LowerUMULO_SMULO(Op, DAG, *this);
case ISD::ATOMIC_LOAD:
case ISD::ATOMIC_STORE: return LowerATOMIC_LOAD_STORE(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
}
}
SDValue SparcTargetLowering::bitcastConstantFPToInt(ConstantFPSDNode *C,
const SDLoc &DL,
SelectionDAG &DAG) const {
APInt V = C->getValueAPF().bitcastToAPInt();
SDValue Lo = DAG.getConstant(V.zextOrTrunc(32), DL, MVT::i32);
SDValue Hi = DAG.getConstant(V.lshr(32).zextOrTrunc(32), DL, MVT::i32);
if (DAG.getDataLayout().isLittleEndian())
std::swap(Lo, Hi);
return DAG.getBuildVector(MVT::v2i32, DL, {Hi, Lo});
}
SDValue SparcTargetLowering::PerformBITCASTCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SDLoc dl(N);
SDValue Src = N->getOperand(0);
if (isa<ConstantFPSDNode>(Src) && N->getSimpleValueType(0) == MVT::v2i32 &&
Src.getSimpleValueType() == MVT::f64)
return bitcastConstantFPToInt(cast<ConstantFPSDNode>(Src), dl, DCI.DAG);
return SDValue();
}
SDValue SparcTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
switch (N->getOpcode()) {
default:
break;
case ISD::BITCAST:
return PerformBITCASTCombine(N, DCI);
}
return SDValue();
}
MachineBasicBlock *
SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *BB) const {
switch (MI.getOpcode()) {
default: llvm_unreachable("Unknown SELECT_CC!");
case SP::SELECT_CC_Int_ICC:
case SP::SELECT_CC_FP_ICC:
case SP::SELECT_CC_DFP_ICC:
case SP::SELECT_CC_QFP_ICC:
if (Subtarget->isV9())
return expandSelectCC(MI, BB, SP::BPICC);
return expandSelectCC(MI, BB, SP::BCOND);
case SP::SELECT_CC_Int_XCC:
case SP::SELECT_CC_FP_XCC:
case SP::SELECT_CC_DFP_XCC:
case SP::SELECT_CC_QFP_XCC:
return expandSelectCC(MI, BB, SP::BPXCC);
case SP::SELECT_CC_Int_FCC:
case SP::SELECT_CC_FP_FCC:
case SP::SELECT_CC_DFP_FCC:
case SP::SELECT_CC_QFP_FCC:
if (Subtarget->isV9())
return expandSelectCC(MI, BB, SP::FBCOND_V9);
return expandSelectCC(MI, BB, SP::FBCOND);
}
}
MachineBasicBlock *
SparcTargetLowering::expandSelectCC(MachineInstr &MI, MachineBasicBlock *BB,
unsigned BROpcode) const {
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
unsigned CC = (SPCC::CondCodes)MI.getOperand(3).getImm();
// To "insert" a SELECT_CC instruction, we actually have to insert the
// triangle control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and the condition code for the branch.
//
// We produce the following control flow:
// ThisMBB
// | \
// | IfFalseMBB
// | /
// SinkMBB
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = ++BB->getIterator();
MachineBasicBlock *ThisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, IfFalseMBB);
F->insert(It, SinkMBB);
// Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
SinkMBB->splice(SinkMBB->begin(), ThisMBB,
std::next(MachineBasicBlock::iterator(MI)), ThisMBB->end());
SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
// Set the new successors for ThisMBB.
ThisMBB->addSuccessor(IfFalseMBB);
ThisMBB->addSuccessor(SinkMBB);
BuildMI(ThisMBB, dl, TII.get(BROpcode))
.addMBB(SinkMBB)
.addImm(CC);
// IfFalseMBB just falls through to SinkMBB.
IfFalseMBB->addSuccessor(SinkMBB);
// %Result = phi [ %TrueValue, ThisMBB ], [ %FalseValue, IfFalseMBB ]
BuildMI(*SinkMBB, SinkMBB->begin(), dl, TII.get(SP::PHI),
MI.getOperand(0).getReg())
.addReg(MI.getOperand(1).getReg())
.addMBB(ThisMBB)
.addReg(MI.getOperand(2).getReg())
.addMBB(IfFalseMBB);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return SinkMBB;
}
//===----------------------------------------------------------------------===//
// Sparc Inline Assembly Support
//===----------------------------------------------------------------------===//
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
SparcTargetLowering::ConstraintType
SparcTargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default: break;
case 'r':
case 'f':
case 'e':
return C_RegisterClass;
case 'I': // SIMM13
return C_Immediate;
}
}
return TargetLowering::getConstraintType(Constraint);
}
TargetLowering::ConstraintWeight SparcTargetLowering::
getSingleConstraintMatchWeight(AsmOperandInfo &info,
const char *constraint) const {
ConstraintWeight weight = CW_Invalid;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (!CallOperandVal)
return CW_Default;
// Look at the constraint type.
switch (*constraint) {
default:
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
break;
case 'I': // SIMM13
if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
if (isInt<13>(C->getSExtValue()))
weight = CW_Constant;
}
break;
}
return weight;
}
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
void SparcTargetLowering::
LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const {
SDValue Result;
// Only support length 1 constraints for now.
if (Constraint.length() > 1)
return;
char ConstraintLetter = Constraint[0];
switch (ConstraintLetter) {
default: break;
case 'I':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (isInt<13>(C->getSExtValue())) {
Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
return;
}
}
if (Result.getNode()) {
Ops.push_back(Result);
return;
}
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
std::pair<unsigned, const TargetRegisterClass *>
SparcTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint,
MVT VT) const {
if (Constraint.empty())
return std::make_pair(0U, nullptr);
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r':
if (VT == MVT::v2i32)
return std::make_pair(0U, &SP::IntPairRegClass);
else if (Subtarget->is64Bit())
return std::make_pair(0U, &SP::I64RegsRegClass);
else
return std::make_pair(0U, &SP::IntRegsRegClass);
case 'f':
if (VT == MVT::f32 || VT == MVT::i32)
return std::make_pair(0U, &SP::FPRegsRegClass);
else if (VT == MVT::f64 || VT == MVT::i64)
return std::make_pair(0U, &SP::LowDFPRegsRegClass);
else if (VT == MVT::f128)
return std::make_pair(0U, &SP::LowQFPRegsRegClass);
// This will generate an error message
return std::make_pair(0U, nullptr);
case 'e':
if (VT == MVT::f32 || VT == MVT::i32)
return std::make_pair(0U, &SP::FPRegsRegClass);
else if (VT == MVT::f64 || VT == MVT::i64 )
return std::make_pair(0U, &SP::DFPRegsRegClass);
else if (VT == MVT::f128)
return std::make_pair(0U, &SP::QFPRegsRegClass);
// This will generate an error message
return std::make_pair(0U, nullptr);
}
}
if (Constraint.front() != '{')
return std::make_pair(0U, nullptr);
assert(Constraint.back() == '}' && "Not a brace enclosed constraint?");
StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
if (RegName.empty())
return std::make_pair(0U, nullptr);
unsigned long long RegNo;
// Handle numbered register aliases.
if (RegName[0] == 'r' &&
getAsUnsignedInteger(RegName.begin() + 1, 10, RegNo)) {
// r0-r7 -> g0-g7
// r8-r15 -> o0-o7
// r16-r23 -> l0-l7
// r24-r31 -> i0-i7
if (RegNo > 31)
return std::make_pair(0U, nullptr);
const char RegTypes[] = {'g', 'o', 'l', 'i'};
char RegType = RegTypes[RegNo / 8];
char RegIndex = '0' + (RegNo % 8);
char Tmp[] = {'{', RegType, RegIndex, '}', 0};
return getRegForInlineAsmConstraint(TRI, Tmp, VT);
}
// Rewrite the fN constraint according to the value type if needed.
if (VT != MVT::f32 && VT != MVT::Other && RegName[0] == 'f' &&
getAsUnsignedInteger(RegName.begin() + 1, 10, RegNo)) {
if (VT == MVT::f64 && (RegNo % 2 == 0)) {
return getRegForInlineAsmConstraint(
TRI, StringRef("{d" + utostr(RegNo / 2) + "}"), VT);
} else if (VT == MVT::f128 && (RegNo % 4 == 0)) {
return getRegForInlineAsmConstraint(
TRI, StringRef("{q" + utostr(RegNo / 4) + "}"), VT);
} else {
return std::make_pair(0U, nullptr);
}
}
auto ResultPair =
TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
if (!ResultPair.second)
return std::make_pair(0U, nullptr);
// Force the use of I64Regs over IntRegs for 64-bit values.
if (Subtarget->is64Bit() && VT == MVT::i64) {
assert(ResultPair.second == &SP::IntRegsRegClass &&
"Unexpected register class");
return std::make_pair(ResultPair.first, &SP::I64RegsRegClass);
}
return ResultPair;
}
bool
SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
// The Sparc target isn't yet aware of offsets.
return false;
}
void SparcTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue>& Results,
SelectionDAG &DAG) const {
SDLoc dl(N);
RTLIB::Libcall libCall = RTLIB::UNKNOWN_LIBCALL;
switch (N->getOpcode()) {
default:
llvm_unreachable("Do not know how to custom type legalize this operation!");
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
// Custom lower only if it involves f128 or i64.
if (N->getOperand(0).getValueType() != MVT::f128
|| N->getValueType(0) != MVT::i64)
return;
libCall = ((N->getOpcode() == ISD::FP_TO_SINT)
? RTLIB::FPTOSINT_F128_I64
: RTLIB::FPTOUINT_F128_I64);
Results.push_back(LowerF128Op(SDValue(N, 0),
DAG,
getLibcallName(libCall),
1));
return;
case ISD::READCYCLECOUNTER: {
assert(Subtarget->hasLeonCycleCounter());
SDValue Lo = DAG.getCopyFromReg(N->getOperand(0), dl, SP::ASR23, MVT::i32);
SDValue Hi = DAG.getCopyFromReg(Lo, dl, SP::G0, MVT::i32);
SDValue Ops[] = { Lo, Hi };
SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops);
Results.push_back(Pair);
Results.push_back(N->getOperand(0));
return;
}
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
// Custom lower only if it involves f128 or i64.
if (N->getValueType(0) != MVT::f128
|| N->getOperand(0).getValueType() != MVT::i64)
return;
libCall = ((N->getOpcode() == ISD::SINT_TO_FP)
? RTLIB::SINTTOFP_I64_F128
: RTLIB::UINTTOFP_I64_F128);
Results.push_back(LowerF128Op(SDValue(N, 0),
DAG,
getLibcallName(libCall),
1));
return;
case ISD::LOAD: {
LoadSDNode *Ld = cast<LoadSDNode>(N);
// Custom handling only for i64: turn i64 load into a v2i32 load,
// and a bitcast.
if (Ld->getValueType(0) != MVT::i64 || Ld->getMemoryVT() != MVT::i64)
return;
SDLoc dl(N);
SDValue LoadRes = DAG.getExtLoad(
Ld->getExtensionType(), dl, MVT::v2i32, Ld->getChain(),
Ld->getBasePtr(), Ld->getPointerInfo(), MVT::v2i32,
Ld->getOriginalAlign(), Ld->getMemOperand()->getFlags(),
Ld->getAAInfo());
SDValue Res = DAG.getNode(ISD::BITCAST, dl, MVT::i64, LoadRes);
Results.push_back(Res);
Results.push_back(LoadRes.getValue(1));
return;
}
}
}
// Override to enable LOAD_STACK_GUARD lowering on Linux.
bool SparcTargetLowering::useLoadStackGuardNode() const {
if (!Subtarget->isTargetLinux())
return TargetLowering::useLoadStackGuardNode();
return true;
}
// Override to disable global variable loading on Linux.
void SparcTargetLowering::insertSSPDeclarations(Module &M) const {
if (!Subtarget->isTargetLinux())
return TargetLowering::insertSSPDeclarations(M);
}