| //===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the interfaces that Sparc uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SparcISelLowering.h" |
| #include "MCTargetDesc/SparcMCExpr.h" |
| #include "SparcMachineFunctionInfo.h" |
| #include "SparcRegisterInfo.h" |
| #include "SparcTargetMachine.h" |
| #include "SparcTargetObjectFile.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| using namespace llvm; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT, |
| MVT &LocVT, CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, CCState &State) |
| { |
| assert (ArgFlags.isSRet()); |
| |
| // Assign SRet argument. |
| State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, |
| 0, |
| LocVT, LocInfo)); |
| return true; |
| } |
| |
| static bool CC_Sparc_Assign_Split_64(unsigned &ValNo, MVT &ValVT, |
| MVT &LocVT, CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, CCState &State) |
| { |
| static const MCPhysReg RegList[] = { |
| SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 |
| }; |
| // Try to get first reg. |
| if (Register Reg = State.AllocateReg(RegList)) { |
| State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| } else { |
| // Assign whole thing in stack. |
| State.addLoc(CCValAssign::getCustomMem( |
| ValNo, ValVT, State.AllocateStack(8, Align(4)), LocVT, LocInfo)); |
| return true; |
| } |
| |
| // Try to get second reg. |
| if (Register Reg = State.AllocateReg(RegList)) |
| State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| else |
| State.addLoc(CCValAssign::getCustomMem( |
| ValNo, ValVT, State.AllocateStack(4, Align(4)), LocVT, LocInfo)); |
| return true; |
| } |
| |
| static bool CC_Sparc_Assign_Ret_Split_64(unsigned &ValNo, MVT &ValVT, |
| MVT &LocVT, CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, CCState &State) |
| { |
| static const MCPhysReg RegList[] = { |
| SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 |
| }; |
| |
| // Try to get first reg. |
| if (Register Reg = State.AllocateReg(RegList)) |
| State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| else |
| return false; |
| |
| // Try to get second reg. |
| if (Register Reg = State.AllocateReg(RegList)) |
| State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| else |
| return false; |
| |
| return true; |
| } |
| |
| // Allocate a full-sized argument for the 64-bit ABI. |
| static bool Analyze_CC_Sparc64_Full(bool IsReturn, unsigned &ValNo, MVT &ValVT, |
| MVT &LocVT, CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, CCState &State) { |
| assert((LocVT == MVT::f32 || LocVT == MVT::f128 |
| || LocVT.getSizeInBits() == 64) && |
| "Can't handle non-64 bits locations"); |
| |
| // Stack space is allocated for all arguments starting from [%fp+BIAS+128]. |
| unsigned size = (LocVT == MVT::f128) ? 16 : 8; |
| Align alignment = (LocVT == MVT::f128) ? Align(16) : Align(8); |
| unsigned Offset = State.AllocateStack(size, alignment); |
| unsigned Reg = 0; |
| |
| if (LocVT == MVT::i64 && Offset < 6*8) |
| // Promote integers to %i0-%i5. |
| Reg = SP::I0 + Offset/8; |
| else if (LocVT == MVT::f64 && Offset < 16*8) |
| // Promote doubles to %d0-%d30. (Which LLVM calls D0-D15). |
| Reg = SP::D0 + Offset/8; |
| else if (LocVT == MVT::f32 && Offset < 16*8) |
| // Promote floats to %f1, %f3, ... |
| Reg = SP::F1 + Offset/4; |
| else if (LocVT == MVT::f128 && Offset < 16*8) |
| // Promote long doubles to %q0-%q28. (Which LLVM calls Q0-Q7). |
| Reg = SP::Q0 + Offset/16; |
| |
| // Promote to register when possible, otherwise use the stack slot. |
| if (Reg) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return true; |
| } |
| |
| // Bail out if this is a return CC and we run out of registers to place |
| // values into. |
| if (IsReturn) |
| return false; |
| |
| // This argument goes on the stack in an 8-byte slot. |
| // When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to |
| // the right-aligned float. The first 4 bytes of the stack slot are undefined. |
| if (LocVT == MVT::f32) |
| Offset += 4; |
| |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); |
| return true; |
| } |
| |
| // Allocate a half-sized argument for the 64-bit ABI. |
| // |
| // This is used when passing { float, int } structs by value in registers. |
| static bool Analyze_CC_Sparc64_Half(bool IsReturn, unsigned &ValNo, MVT &ValVT, |
| MVT &LocVT, CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, CCState &State) { |
| assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations"); |
| unsigned Offset = State.AllocateStack(4, Align(4)); |
| |
| if (LocVT == MVT::f32 && Offset < 16*8) { |
| // Promote floats to %f0-%f31. |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4, |
| LocVT, LocInfo)); |
| return true; |
| } |
| |
| if (LocVT == MVT::i32 && Offset < 6*8) { |
| // Promote integers to %i0-%i5, using half the register. |
| unsigned Reg = SP::I0 + Offset/8; |
| LocVT = MVT::i64; |
| LocInfo = CCValAssign::AExt; |
| |
| // Set the Custom bit if this i32 goes in the high bits of a register. |
| if (Offset % 8 == 0) |
| State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, |
| LocVT, LocInfo)); |
| else |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return true; |
| } |
| |
| // Bail out if this is a return CC and we run out of registers to place |
| // values into. |
| if (IsReturn) |
| return false; |
| |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); |
| return true; |
| } |
| |
| static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, CCState &State) { |
| return Analyze_CC_Sparc64_Full(false, ValNo, ValVT, LocVT, LocInfo, ArgFlags, |
| State); |
| } |
| |
| static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, CCState &State) { |
| return Analyze_CC_Sparc64_Half(false, ValNo, ValVT, LocVT, LocInfo, ArgFlags, |
| State); |
| } |
| |
| static bool RetCC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, CCState &State) { |
| return Analyze_CC_Sparc64_Full(true, ValNo, ValVT, LocVT, LocInfo, ArgFlags, |
| State); |
| } |
| |
| static bool RetCC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, CCState &State) { |
| return Analyze_CC_Sparc64_Half(true, ValNo, ValVT, LocVT, LocInfo, ArgFlags, |
| State); |
| } |
| |
| #include "SparcGenCallingConv.inc" |
| |
| // The calling conventions in SparcCallingConv.td are described in terms of the |
| // callee's register window. This function translates registers to the |
| // corresponding caller window %o register. |
| static unsigned toCallerWindow(unsigned Reg) { |
| static_assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7, |
| "Unexpected enum"); |
| if (Reg >= SP::I0 && Reg <= SP::I7) |
| return Reg - SP::I0 + SP::O0; |
| return Reg; |
| } |
| |
| bool SparcTargetLowering::CanLowerReturn( |
| CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); |
| return CCInfo.CheckReturn(Outs, Subtarget->is64Bit() ? RetCC_Sparc64 |
| : RetCC_Sparc32); |
| } |
| |
| SDValue |
| SparcTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| bool IsVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &DL, SelectionDAG &DAG) const { |
| if (Subtarget->is64Bit()) |
| return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); |
| return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); |
| } |
| |
| SDValue |
| SparcTargetLowering::LowerReturn_32(SDValue Chain, CallingConv::ID CallConv, |
| bool IsVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &DL, SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| // CCValAssign - represent the assignment of the return value to locations. |
| SmallVector<CCValAssign, 16> RVLocs; |
| |
| // CCState - Info about the registers and stack slot. |
| CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| |
| // Analyze return values. |
| CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32); |
| |
| SDValue Flag; |
| SmallVector<SDValue, 4> RetOps(1, Chain); |
| // Make room for the return address offset. |
| RetOps.push_back(SDValue()); |
| |
| // Copy the result values into the output registers. |
| for (unsigned i = 0, realRVLocIdx = 0; |
| i != RVLocs.size(); |
| ++i, ++realRVLocIdx) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| |
| SDValue Arg = OutVals[realRVLocIdx]; |
| |
| if (VA.needsCustom()) { |
| assert(VA.getLocVT() == MVT::v2i32); |
| // Legalize ret v2i32 -> ret 2 x i32 (Basically: do what would |
| // happen by default if this wasn't a legal type) |
| |
| SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, |
| Arg, |
| DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout()))); |
| SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, |
| Arg, |
| DAG.getConstant(1, DL, getVectorIdxTy(DAG.getDataLayout()))); |
| |
| Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part0, Flag); |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| VA = RVLocs[++i]; // skip ahead to next loc |
| Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part1, |
| Flag); |
| } else |
| Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); |
| |
| // Guarantee that all emitted copies are stuck together with flags. |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| } |
| |
| unsigned RetAddrOffset = 8; // Call Inst + Delay Slot |
| // If the function returns a struct, copy the SRetReturnReg to I0 |
| if (MF.getFunction().hasStructRetAttr()) { |
| SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); |
| Register Reg = SFI->getSRetReturnReg(); |
| if (!Reg) |
| llvm_unreachable("sret virtual register not created in the entry block"); |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, PtrVT); |
| Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Flag); |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(SP::I0, PtrVT)); |
| RetAddrOffset = 12; // CallInst + Delay Slot + Unimp |
| } |
| |
| RetOps[0] = Chain; // Update chain. |
| RetOps[1] = DAG.getConstant(RetAddrOffset, DL, MVT::i32); |
| |
| // Add the flag if we have it. |
| if (Flag.getNode()) |
| RetOps.push_back(Flag); |
| |
| return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps); |
| } |
| |
| // Lower return values for the 64-bit ABI. |
| // Return values are passed the exactly the same way as function arguments. |
| SDValue |
| SparcTargetLowering::LowerReturn_64(SDValue Chain, CallingConv::ID CallConv, |
| bool IsVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &DL, SelectionDAG &DAG) const { |
| // CCValAssign - represent the assignment of the return value to locations. |
| SmallVector<CCValAssign, 16> RVLocs; |
| |
| // CCState - Info about the registers and stack slot. |
| CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| |
| // Analyze return values. |
| CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64); |
| |
| SDValue Flag; |
| SmallVector<SDValue, 4> RetOps(1, Chain); |
| |
| // The second operand on the return instruction is the return address offset. |
| // The return address is always %i7+8 with the 64-bit ABI. |
| RetOps.push_back(DAG.getConstant(8, DL, MVT::i32)); |
| |
| // Copy the result values into the output registers. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| SDValue OutVal = OutVals[i]; |
| |
| // Integer return values must be sign or zero extended by the callee. |
| switch (VA.getLocInfo()) { |
| case CCValAssign::Full: break; |
| case CCValAssign::SExt: |
| OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal); |
| break; |
| case CCValAssign::ZExt: |
| OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal); |
| break; |
| case CCValAssign::AExt: |
| OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal); |
| break; |
| default: |
| llvm_unreachable("Unknown loc info!"); |
| } |
| |
| // The custom bit on an i32 return value indicates that it should be passed |
| // in the high bits of the register. |
| if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { |
| OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal, |
| DAG.getConstant(32, DL, MVT::i32)); |
| |
| // The next value may go in the low bits of the same register. |
| // Handle both at once. |
| if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) { |
| SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]); |
| OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV); |
| // Skip the next value, it's already done. |
| ++i; |
| } |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag); |
| |
| // Guarantee that all emitted copies are stuck together with flags. |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| } |
| |
| RetOps[0] = Chain; // Update chain. |
| |
| // Add the flag if we have it. |
| if (Flag.getNode()) |
| RetOps.push_back(Flag); |
| |
| return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps); |
| } |
| |
| SDValue SparcTargetLowering::LowerFormalArguments( |
| SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| if (Subtarget->is64Bit()) |
| return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins, |
| DL, DAG, InVals); |
| return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins, |
| DL, DAG, InVals); |
| } |
| |
| /// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are |
| /// passed in either one or two GPRs, including FP values. TODO: we should |
| /// pass FP values in FP registers for fastcc functions. |
| SDValue SparcTargetLowering::LowerFormalArguments_32( |
| SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, |
| *DAG.getContext()); |
| CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32); |
| |
| const unsigned StackOffset = 92; |
| bool IsLittleEndian = DAG.getDataLayout().isLittleEndian(); |
| |
| unsigned InIdx = 0; |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++InIdx) { |
| CCValAssign &VA = ArgLocs[i]; |
| |
| if (Ins[InIdx].Flags.isSRet()) { |
| if (InIdx != 0) |
| report_fatal_error("sparc only supports sret on the first parameter"); |
| // Get SRet from [%fp+64]. |
| int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, 64, true); |
| SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); |
| SDValue Arg = |
| DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); |
| InVals.push_back(Arg); |
| continue; |
| } |
| |
| if (VA.isRegLoc()) { |
| if (VA.needsCustom()) { |
| assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); |
| |
| Register VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); |
| MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi); |
| SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32); |
| |
| assert(i+1 < e); |
| CCValAssign &NextVA = ArgLocs[++i]; |
| |
| SDValue LoVal; |
| if (NextVA.isMemLoc()) { |
| int FrameIdx = MF.getFrameInfo(). |
| CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true); |
| SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); |
| LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); |
| } else { |
| Register loReg = MF.addLiveIn(NextVA.getLocReg(), |
| &SP::IntRegsRegClass); |
| LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32); |
| } |
| |
| if (IsLittleEndian) |
| std::swap(LoVal, HiVal); |
| |
| SDValue WholeValue = |
| DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); |
| WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), WholeValue); |
| InVals.push_back(WholeValue); |
| continue; |
| } |
| Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); |
| MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg); |
| SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); |
| if (VA.getLocVT() == MVT::f32) |
| Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg); |
| else if (VA.getLocVT() != MVT::i32) { |
| Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg, |
| DAG.getValueType(VA.getLocVT())); |
| Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg); |
| } |
| InVals.push_back(Arg); |
| continue; |
| } |
| |
| assert(VA.isMemLoc()); |
| |
| unsigned Offset = VA.getLocMemOffset()+StackOffset; |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| if (VA.needsCustom()) { |
| assert(VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::v2i32); |
| // If it is double-word aligned, just load. |
| if (Offset % 8 == 0) { |
| int FI = MF.getFrameInfo().CreateFixedObject(8, |
| Offset, |
| true); |
| SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); |
| SDValue Load = |
| DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo()); |
| InVals.push_back(Load); |
| continue; |
| } |
| |
| int FI = MF.getFrameInfo().CreateFixedObject(4, |
| Offset, |
| true); |
| SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); |
| SDValue HiVal = |
| DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); |
| int FI2 = MF.getFrameInfo().CreateFixedObject(4, |
| Offset+4, |
| true); |
| SDValue FIPtr2 = DAG.getFrameIndex(FI2, PtrVT); |
| |
| SDValue LoVal = |
| DAG.getLoad(MVT::i32, dl, Chain, FIPtr2, MachinePointerInfo()); |
| |
| if (IsLittleEndian) |
| std::swap(LoVal, HiVal); |
| |
| SDValue WholeValue = |
| DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); |
| WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), WholeValue); |
| InVals.push_back(WholeValue); |
| continue; |
| } |
| |
| int FI = MF.getFrameInfo().CreateFixedObject(4, |
| Offset, |
| true); |
| SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); |
| SDValue Load ; |
| if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) { |
| Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo()); |
| } else if (VA.getValVT() == MVT::f128) { |
| report_fatal_error("SPARCv8 does not handle f128 in calls; " |
| "pass indirectly"); |
| } else { |
| // We shouldn't see any other value types here. |
| llvm_unreachable("Unexpected ValVT encountered in frame lowering."); |
| } |
| InVals.push_back(Load); |
| } |
| |
| if (MF.getFunction().hasStructRetAttr()) { |
| // Copy the SRet Argument to SRetReturnReg. |
| SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); |
| Register Reg = SFI->getSRetReturnReg(); |
| if (!Reg) { |
| Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass); |
| SFI->setSRetReturnReg(Reg); |
| } |
| SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); |
| } |
| |
| // Store remaining ArgRegs to the stack if this is a varargs function. |
| if (isVarArg) { |
| static const MCPhysReg ArgRegs[] = { |
| SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 |
| }; |
| unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs); |
| const MCPhysReg *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6; |
| unsigned ArgOffset = CCInfo.getNextStackOffset(); |
| if (NumAllocated == 6) |
| ArgOffset += StackOffset; |
| else { |
| assert(!ArgOffset); |
| ArgOffset = 68+4*NumAllocated; |
| } |
| |
| // Remember the vararg offset for the va_start implementation. |
| FuncInfo->setVarArgsFrameOffset(ArgOffset); |
| |
| std::vector<SDValue> OutChains; |
| |
| for (; CurArgReg != ArgRegEnd; ++CurArgReg) { |
| Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); |
| MF.getRegInfo().addLiveIn(*CurArgReg, VReg); |
| SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32); |
| |
| int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, ArgOffset, |
| true); |
| SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); |
| |
| OutChains.push_back( |
| DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, MachinePointerInfo())); |
| ArgOffset += 4; |
| } |
| |
| if (!OutChains.empty()) { |
| OutChains.push_back(Chain); |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); |
| } |
| } |
| |
| return Chain; |
| } |
| |
| // Lower formal arguments for the 64 bit ABI. |
| SDValue SparcTargetLowering::LowerFormalArguments_64( |
| SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| // Analyze arguments according to CC_Sparc64. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, |
| *DAG.getContext()); |
| CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64); |
| |
| // The argument array begins at %fp+BIAS+128, after the register save area. |
| const unsigned ArgArea = 128; |
| |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| if (VA.isRegLoc()) { |
| // This argument is passed in a register. |
| // All integer register arguments are promoted by the caller to i64. |
| |
| // Create a virtual register for the promoted live-in value. |
| Register VReg = MF.addLiveIn(VA.getLocReg(), |
| getRegClassFor(VA.getLocVT())); |
| SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT()); |
| |
| // Get the high bits for i32 struct elements. |
| if (VA.getValVT() == MVT::i32 && VA.needsCustom()) |
| Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg, |
| DAG.getConstant(32, DL, MVT::i32)); |
| |
| // The caller promoted the argument, so insert an Assert?ext SDNode so we |
| // won't promote the value again in this function. |
| switch (VA.getLocInfo()) { |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg, |
| DAG.getValueType(VA.getValVT())); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg, |
| DAG.getValueType(VA.getValVT())); |
| break; |
| default: |
| break; |
| } |
| |
| // Truncate the register down to the argument type. |
| if (VA.isExtInLoc()) |
| Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); |
| |
| InVals.push_back(Arg); |
| continue; |
| } |
| |
| // The registers are exhausted. This argument was passed on the stack. |
| assert(VA.isMemLoc()); |
| // The CC_Sparc64_Full/Half functions compute stack offsets relative to the |
| // beginning of the arguments area at %fp+BIAS+128. |
| unsigned Offset = VA.getLocMemOffset() + ArgArea; |
| unsigned ValSize = VA.getValVT().getSizeInBits() / 8; |
| // Adjust offset for extended arguments, SPARC is big-endian. |
| // The caller will have written the full slot with extended bytes, but we |
| // prefer our own extending loads. |
| if (VA.isExtInLoc()) |
| Offset += 8 - ValSize; |
| int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true); |
| InVals.push_back( |
| DAG.getLoad(VA.getValVT(), DL, Chain, |
| DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())), |
| MachinePointerInfo::getFixedStack(MF, FI))); |
| } |
| |
| if (!IsVarArg) |
| return Chain; |
| |
| // This function takes variable arguments, some of which may have been passed |
| // in registers %i0-%i5. Variable floating point arguments are never passed |
| // in floating point registers. They go on %i0-%i5 or on the stack like |
| // integer arguments. |
| // |
| // The va_start intrinsic needs to know the offset to the first variable |
| // argument. |
| unsigned ArgOffset = CCInfo.getNextStackOffset(); |
| SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); |
| // Skip the 128 bytes of register save area. |
| FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea + |
| Subtarget->getStackPointerBias()); |
| |
| // Save the variable arguments that were passed in registers. |
| // The caller is required to reserve stack space for 6 arguments regardless |
| // of how many arguments were actually passed. |
| SmallVector<SDValue, 8> OutChains; |
| for (; ArgOffset < 6*8; ArgOffset += 8) { |
| Register VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass); |
| SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); |
| int FI = MF.getFrameInfo().CreateFixedObject(8, ArgOffset + ArgArea, true); |
| auto PtrVT = getPointerTy(MF.getDataLayout()); |
| OutChains.push_back( |
| DAG.getStore(Chain, DL, VArg, DAG.getFrameIndex(FI, PtrVT), |
| MachinePointerInfo::getFixedStack(MF, FI))); |
| } |
| |
| if (!OutChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); |
| |
| return Chain; |
| } |
| |
| SDValue |
| SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| if (Subtarget->is64Bit()) |
| return LowerCall_64(CLI, InVals); |
| return LowerCall_32(CLI, InVals); |
| } |
| |
| static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee, |
| const CallBase *Call) { |
| if (Call) |
| return Call->hasFnAttr(Attribute::ReturnsTwice); |
| |
| const Function *CalleeFn = nullptr; |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| CalleeFn = dyn_cast<Function>(G->getGlobal()); |
| } else if (ExternalSymbolSDNode *E = |
| dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| const Function &Fn = DAG.getMachineFunction().getFunction(); |
| const Module *M = Fn.getParent(); |
| const char *CalleeName = E->getSymbol(); |
| CalleeFn = M->getFunction(CalleeName); |
| } |
| |
| if (!CalleeFn) |
| return false; |
| return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice); |
| } |
| |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible |
| /// for tail call optimization. |
| bool SparcTargetLowering::IsEligibleForTailCallOptimization( |
| CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF) const { |
| |
| auto &Outs = CLI.Outs; |
| auto &Caller = MF.getFunction(); |
| |
| // Do not tail call opt functions with "disable-tail-calls" attribute. |
| if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true") |
| return false; |
| |
| // Do not tail call opt if the stack is used to pass parameters. |
| // 64-bit targets have a slightly higher limit since the ABI requires |
| // to allocate some space even when all the parameters fit inside registers. |
| unsigned StackOffsetLimit = Subtarget->is64Bit() ? 48 : 0; |
| if (CCInfo.getNextStackOffset() > StackOffsetLimit) |
| return false; |
| |
| // Do not tail call opt if either the callee or caller returns |
| // a struct and the other does not. |
| if (!Outs.empty() && Caller.hasStructRetAttr() != Outs[0].Flags.isSRet()) |
| return false; |
| |
| // Byval parameters hand the function a pointer directly into the stack area |
| // we want to reuse during a tail call. |
| for (auto &Arg : Outs) |
| if (Arg.Flags.isByVal()) |
| return false; |
| |
| return true; |
| } |
| |
| // Lower a call for the 32-bit ABI. |
| SDValue |
| SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| SDLoc &dl = CLI.DL; |
| SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; |
| SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; |
| SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| bool &isTailCall = CLI.IsTailCall; |
| CallingConv::ID CallConv = CLI.CallConv; |
| bool isVarArg = CLI.IsVarArg; |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, |
| *DAG.getContext()); |
| CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32); |
| |
| isTailCall = isTailCall && IsEligibleForTailCallOptimization( |
| CCInfo, CLI, DAG.getMachineFunction()); |
| |
| // Get the size of the outgoing arguments stack space requirement. |
| unsigned ArgsSize = CCInfo.getNextStackOffset(); |
| |
| // Keep stack frames 8-byte aligned. |
| ArgsSize = (ArgsSize+7) & ~7; |
| |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| |
| // Create local copies for byval args. |
| SmallVector<SDValue, 8> ByValArgs; |
| for (unsigned i = 0, e = Outs.size(); i != e; ++i) { |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| if (!Flags.isByVal()) |
| continue; |
| |
| SDValue Arg = OutVals[i]; |
| unsigned Size = Flags.getByValSize(); |
| Align Alignment = Flags.getNonZeroByValAlign(); |
| |
| if (Size > 0U) { |
| int FI = MFI.CreateStackObject(Size, Alignment, false); |
| SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); |
| SDValue SizeNode = DAG.getConstant(Size, dl, MVT::i32); |
| |
| Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Alignment, |
| false, // isVolatile, |
| (Size <= 32), // AlwaysInline if size <= 32, |
| false, // isTailCall |
| MachinePointerInfo(), MachinePointerInfo()); |
| ByValArgs.push_back(FIPtr); |
| } |
| else { |
| SDValue nullVal; |
| ByValArgs.push_back(nullVal); |
| } |
| } |
| |
| assert(!isTailCall || ArgsSize == 0); |
| |
| if (!isTailCall) |
| Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, dl); |
| |
| SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| SmallVector<SDValue, 8> MemOpChains; |
| |
| const unsigned StackOffset = 92; |
| bool hasStructRetAttr = false; |
| unsigned SRetArgSize = 0; |
| // Walk the register/memloc assignments, inserting copies/loads. |
| for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size(); |
| i != e; |
| ++i, ++realArgIdx) { |
| CCValAssign &VA = ArgLocs[i]; |
| SDValue Arg = OutVals[realArgIdx]; |
| |
| ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; |
| |
| // Use local copy if it is a byval arg. |
| if (Flags.isByVal()) { |
| Arg = ByValArgs[byvalArgIdx++]; |
| if (!Arg) { |
| continue; |
| } |
| } |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::AExt: |
| Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::BCvt: |
| Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); |
| break; |
| } |
| |
| if (Flags.isSRet()) { |
| assert(VA.needsCustom()); |
| |
| if (isTailCall) |
| continue; |
| |
| // store SRet argument in %sp+64 |
| SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); |
| SDValue PtrOff = DAG.getIntPtrConstant(64, dl); |
| PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); |
| MemOpChains.push_back( |
| DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); |
| hasStructRetAttr = true; |
| // sret only allowed on first argument |
| assert(Outs[realArgIdx].OrigArgIndex == 0); |
| SRetArgSize = |
| DAG.getDataLayout().getTypeAllocSize(CLI.getArgs()[0].IndirectType); |
| continue; |
| } |
| |
| if (VA.needsCustom()) { |
| assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); |
| |
| if (VA.isMemLoc()) { |
| unsigned Offset = VA.getLocMemOffset() + StackOffset; |
| // if it is double-word aligned, just store. |
| if (Offset % 8 == 0) { |
| SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); |
| SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); |
| PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); |
| MemOpChains.push_back( |
| DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); |
| continue; |
| } |
| } |
| |
| if (VA.getLocVT() == MVT::f64) { |
| // Move from the float value from float registers into the |
| // integer registers. |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Arg)) |
| Arg = bitcastConstantFPToInt(C, dl, DAG); |
| else |
| Arg = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, Arg); |
| } |
| |
| SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, |
| Arg, |
| DAG.getConstant(0, dl, getVectorIdxTy(DAG.getDataLayout()))); |
| SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, |
| Arg, |
| DAG.getConstant(1, dl, getVectorIdxTy(DAG.getDataLayout()))); |
| |
| if (VA.isRegLoc()) { |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Part0)); |
| assert(i+1 != e); |
| CCValAssign &NextVA = ArgLocs[++i]; |
| if (NextVA.isRegLoc()) { |
| RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Part1)); |
| } else { |
| // Store the second part in stack. |
| unsigned Offset = NextVA.getLocMemOffset() + StackOffset; |
| SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); |
| SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); |
| PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); |
| MemOpChains.push_back( |
| DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo())); |
| } |
| } else { |
| unsigned Offset = VA.getLocMemOffset() + StackOffset; |
| // Store the first part. |
| SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); |
| SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); |
| PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); |
| MemOpChains.push_back( |
| DAG.getStore(Chain, dl, Part0, PtrOff, MachinePointerInfo())); |
| // Store the second part. |
| PtrOff = DAG.getIntPtrConstant(Offset + 4, dl); |
| PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); |
| MemOpChains.push_back( |
| DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo())); |
| } |
| continue; |
| } |
| |
| // Arguments that can be passed on register must be kept at |
| // RegsToPass vector |
| if (VA.isRegLoc()) { |
| if (VA.getLocVT() != MVT::f32) { |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| continue; |
| } |
| Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| continue; |
| } |
| |
| assert(VA.isMemLoc()); |
| |
| // Create a store off the stack pointer for this argument. |
| SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); |
| SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + StackOffset, |
| dl); |
| PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); |
| MemOpChains.push_back( |
| DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); |
| } |
| |
| |
| // Emit all stores, make sure the occur before any copies into physregs. |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); |
| |
| // Build a sequence of copy-to-reg nodes chained together with token |
| // chain and flag operands which copy the outgoing args into registers. |
| // The InFlag in necessary since all emitted instructions must be |
| // stuck together. |
| SDValue InFlag; |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Register Reg = RegsToPass[i].first; |
| if (!isTailCall) |
| Reg = toCallerWindow(Reg); |
| Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB); |
| |
| // If the callee is a GlobalAddress node (quite common, every direct call is) |
| // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. |
| // Likewise ExternalSymbol -> TargetExternalSymbol. |
| unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 |
| : SparcMCExpr::VK_Sparc_WDISP30; |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) |
| Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32, 0, TF); |
| else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) |
| Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32, TF); |
| |
| // Returns a chain & a flag for retval copy to use |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| if (hasStructRetAttr) |
| Ops.push_back(DAG.getTargetConstant(SRetArgSize, dl, MVT::i32)); |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Register Reg = RegsToPass[i].first; |
| if (!isTailCall) |
| Reg = toCallerWindow(Reg); |
| Ops.push_back(DAG.getRegister(Reg, RegsToPass[i].second.getValueType())); |
| } |
| |
| // Add a register mask operand representing the call-preserved registers. |
| const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| const uint32_t *Mask = |
| ((hasReturnsTwice) |
| ? TRI->getRTCallPreservedMask(CallConv) |
| : TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv)); |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| Ops.push_back(DAG.getRegisterMask(Mask)); |
| |
| if (InFlag.getNode()) |
| Ops.push_back(InFlag); |
| |
| if (isTailCall) { |
| DAG.getMachineFunction().getFrameInfo().setHasTailCall(); |
| return DAG.getNode(SPISD::TAIL_CALL, dl, MVT::Other, Ops); |
| } |
| |
| Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops); |
| InFlag = Chain.getValue(1); |
| |
| Chain = DAG.getCALLSEQ_END(Chain, ArgsSize, 0, InFlag, dl); |
| InFlag = Chain.getValue(1); |
| |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| |
| RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32); |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| assert(RVLocs[i].isRegLoc() && "Can only return in registers!"); |
| if (RVLocs[i].getLocVT() == MVT::v2i32) { |
| SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2i32); |
| SDValue Lo = DAG.getCopyFromReg( |
| Chain, dl, toCallerWindow(RVLocs[i++].getLocReg()), MVT::i32, InFlag); |
| Chain = Lo.getValue(1); |
| InFlag = Lo.getValue(2); |
| Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Lo, |
| DAG.getConstant(0, dl, MVT::i32)); |
| SDValue Hi = DAG.getCopyFromReg( |
| Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), MVT::i32, InFlag); |
| Chain = Hi.getValue(1); |
| InFlag = Hi.getValue(2); |
| Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Hi, |
| DAG.getConstant(1, dl, MVT::i32)); |
| InVals.push_back(Vec); |
| } else { |
| Chain = |
| DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), |
| RVLocs[i].getValVT(), InFlag) |
| .getValue(1); |
| InFlag = Chain.getValue(2); |
| InVals.push_back(Chain.getValue(0)); |
| } |
| } |
| |
| return Chain; |
| } |
| |
| // FIXME? Maybe this could be a TableGen attribute on some registers and |
| // this table could be generated automatically from RegInfo. |
| Register SparcTargetLowering::getRegisterByName(const char* RegName, LLT VT, |
| const MachineFunction &MF) const { |
| Register Reg = StringSwitch<Register>(RegName) |
| .Case("i0", SP::I0).Case("i1", SP::I1).Case("i2", SP::I2).Case("i3", SP::I3) |
| .Case("i4", SP::I4).Case("i5", SP::I5).Case("i6", SP::I6).Case("i7", SP::I7) |
| .Case("o0", SP::O0).Case("o1", SP::O1).Case("o2", SP::O2).Case("o3", SP::O3) |
| .Case("o4", SP::O4).Case("o5", SP::O5).Case("o6", SP::O6).Case("o7", SP::O7) |
| .Case("l0", SP::L0).Case("l1", SP::L1).Case("l2", SP::L2).Case("l3", SP::L3) |
| .Case("l4", SP::L4).Case("l5", SP::L5).Case("l6", SP::L6).Case("l7", SP::L7) |
| .Case("g0", SP::G0).Case("g1", SP::G1).Case("g2", SP::G2).Case("g3", SP::G3) |
| .Case("g4", SP::G4).Case("g5", SP::G5).Case("g6", SP::G6).Case("g7", SP::G7) |
| .Default(0); |
| |
| if (Reg) |
| return Reg; |
| |
| report_fatal_error("Invalid register name global variable"); |
| } |
| |
| // Fixup floating point arguments in the ... part of a varargs call. |
| // |
| // The SPARC v9 ABI requires that floating point arguments are treated the same |
| // as integers when calling a varargs function. This does not apply to the |
| // fixed arguments that are part of the function's prototype. |
| // |
| // This function post-processes a CCValAssign array created by |
| // AnalyzeCallOperands(). |
| static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs, |
| ArrayRef<ISD::OutputArg> Outs) { |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| MVT ValTy = VA.getLocVT(); |
| // FIXME: What about f32 arguments? C promotes them to f64 when calling |
| // varargs functions. |
| if (!VA.isRegLoc() || (ValTy != MVT::f64 && ValTy != MVT::f128)) |
| continue; |
| // The fixed arguments to a varargs function still go in FP registers. |
| if (Outs[VA.getValNo()].IsFixed) |
| continue; |
| |
| // This floating point argument should be reassigned. |
| // Determine the offset into the argument array. |
| Register firstReg = (ValTy == MVT::f64) ? SP::D0 : SP::Q0; |
| unsigned argSize = (ValTy == MVT::f64) ? 8 : 16; |
| unsigned Offset = argSize * (VA.getLocReg() - firstReg); |
| assert(Offset < 16*8 && "Offset out of range, bad register enum?"); |
| |
| if (Offset < 6*8) { |
| // This argument should go in %i0-%i5. |
| unsigned IReg = SP::I0 + Offset/8; |
| if (ValTy == MVT::f64) |
| // Full register, just bitconvert into i64. |
| VA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(), IReg, MVT::i64, |
| CCValAssign::BCvt); |
| else { |
| assert(ValTy == MVT::f128 && "Unexpected type!"); |
| // Full register, just bitconvert into i128 -- We will lower this into |
| // two i64s in LowerCall_64. |
| VA = CCValAssign::getCustomReg(VA.getValNo(), VA.getValVT(), IReg, |
| MVT::i128, CCValAssign::BCvt); |
| } |
| } else { |
| // This needs to go to memory, we're out of integer registers. |
| VA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(), Offset, |
| VA.getLocVT(), VA.getLocInfo()); |
| } |
| } |
| } |
| |
| // Lower a call for the 64-bit ABI. |
| SDValue |
| SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| SDLoc DL = CLI.DL; |
| SDValue Chain = CLI.Chain; |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs, |
| *DAG.getContext()); |
| CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64); |
| |
| CLI.IsTailCall = CLI.IsTailCall && IsEligibleForTailCallOptimization( |
| CCInfo, CLI, DAG.getMachineFunction()); |
| |
| // Get the size of the outgoing arguments stack space requirement. |
| // The stack offset computed by CC_Sparc64 includes all arguments. |
| // Called functions expect 6 argument words to exist in the stack frame, used |
| // or not. |
| unsigned StackReserved = 6 * 8u; |
| unsigned ArgsSize = std::max(StackReserved, CCInfo.getNextStackOffset()); |
| |
| // Keep stack frames 16-byte aligned. |
| ArgsSize = alignTo(ArgsSize, 16); |
| |
| // Varargs calls require special treatment. |
| if (CLI.IsVarArg) |
| fixupVariableFloatArgs(ArgLocs, CLI.Outs); |
| |
| assert(!CLI.IsTailCall || ArgsSize == StackReserved); |
| |
| // Adjust the stack pointer to make room for the arguments. |
| // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls |
| // with more than 6 arguments. |
| if (!CLI.IsTailCall) |
| Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL); |
| |
| // Collect the set of registers to pass to the function and their values. |
| // This will be emitted as a sequence of CopyToReg nodes glued to the call |
| // instruction. |
| SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; |
| |
| // Collect chains from all the memory opeations that copy arguments to the |
| // stack. They must follow the stack pointer adjustment above and precede the |
| // call instruction itself. |
| SmallVector<SDValue, 8> MemOpChains; |
| |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| const CCValAssign &VA = ArgLocs[i]; |
| SDValue Arg = CLI.OutVals[i]; |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| default: |
| llvm_unreachable("Unknown location info!"); |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::AExt: |
| Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::BCvt: |
| // fixupVariableFloatArgs() may create bitcasts from f128 to i128. But |
| // SPARC does not support i128 natively. Lower it into two i64, see below. |
| if (!VA.needsCustom() || VA.getValVT() != MVT::f128 |
| || VA.getLocVT() != MVT::i128) |
| Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); |
| break; |
| } |
| |
| if (VA.isRegLoc()) { |
| if (VA.needsCustom() && VA.getValVT() == MVT::f128 |
| && VA.getLocVT() == MVT::i128) { |
| // Store and reload into the integer register reg and reg+1. |
| unsigned Offset = 8 * (VA.getLocReg() - SP::I0); |
| unsigned StackOffset = Offset + Subtarget->getStackPointerBias() + 128; |
| SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); |
| SDValue HiPtrOff = DAG.getIntPtrConstant(StackOffset, DL); |
| HiPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, HiPtrOff); |
| SDValue LoPtrOff = DAG.getIntPtrConstant(StackOffset + 8, DL); |
| LoPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, LoPtrOff); |
| |
| // Store to %sp+BIAS+128+Offset |
| SDValue Store = |
| DAG.getStore(Chain, DL, Arg, HiPtrOff, MachinePointerInfo()); |
| // Load into Reg and Reg+1 |
| SDValue Hi64 = |
| DAG.getLoad(MVT::i64, DL, Store, HiPtrOff, MachinePointerInfo()); |
| SDValue Lo64 = |
| DAG.getLoad(MVT::i64, DL, Store, LoPtrOff, MachinePointerInfo()); |
| |
| Register HiReg = VA.getLocReg(); |
| Register LoReg = VA.getLocReg() + 1; |
| if (!CLI.IsTailCall) { |
| HiReg = toCallerWindow(HiReg); |
| LoReg = toCallerWindow(LoReg); |
| } |
| |
| RegsToPass.push_back(std::make_pair(HiReg, Hi64)); |
| RegsToPass.push_back(std::make_pair(LoReg, Lo64)); |
| continue; |
| } |
| |
| // The custom bit on an i32 return value indicates that it should be |
| // passed in the high bits of the register. |
| if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { |
| Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg, |
| DAG.getConstant(32, DL, MVT::i32)); |
| |
| // The next value may go in the low bits of the same register. |
| // Handle both at once. |
| if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() && |
| ArgLocs[i+1].getLocReg() == VA.getLocReg()) { |
| SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, |
| CLI.OutVals[i+1]); |
| Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV); |
| // Skip the next value, it's already done. |
| ++i; |
| } |
| } |
| |
| Register Reg = VA.getLocReg(); |
| if (!CLI.IsTailCall) |
| Reg = toCallerWindow(Reg); |
| RegsToPass.push_back(std::make_pair(Reg, Arg)); |
| continue; |
| } |
| |
| assert(VA.isMemLoc()); |
| |
| // Create a store off the stack pointer for this argument. |
| SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); |
| // The argument area starts at %fp+BIAS+128 in the callee frame, |
| // %sp+BIAS+128 in ours. |
| SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + |
| Subtarget->getStackPointerBias() + |
| 128, DL); |
| PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); |
| MemOpChains.push_back( |
| DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); |
| } |
| |
| // Emit all stores, make sure they occur before the call. |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); |
| |
| // Build a sequence of CopyToReg nodes glued together with token chain and |
| // glue operands which copy the outgoing args into registers. The InGlue is |
| // necessary since all emitted instructions must be stuck together in order |
| // to pass the live physical registers. |
| SDValue InGlue; |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, DL, |
| RegsToPass[i].first, RegsToPass[i].second, InGlue); |
| InGlue = Chain.getValue(1); |
| } |
| |
| // If the callee is a GlobalAddress node (quite common, every direct call is) |
| // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. |
| // Likewise ExternalSymbol -> TargetExternalSymbol. |
| SDValue Callee = CLI.Callee; |
| bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB); |
| unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 |
| : SparcMCExpr::VK_Sparc_WDISP30; |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) |
| Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT, 0, TF); |
| else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) |
| Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, TF); |
| |
| // Build the operands for the call instruction itself. |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| RegsToPass[i].second.getValueType())); |
| |
| // Add a register mask operand representing the call-preserved registers. |
| const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| const uint32_t *Mask = |
| ((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CLI.CallConv) |
| : TRI->getCallPreservedMask(DAG.getMachineFunction(), |
| CLI.CallConv)); |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| Ops.push_back(DAG.getRegisterMask(Mask)); |
| |
| // Make sure the CopyToReg nodes are glued to the call instruction which |
| // consumes the registers. |
| if (InGlue.getNode()) |
| Ops.push_back(InGlue); |
| |
| // Now the call itself. |
| if (CLI.IsTailCall) { |
| DAG.getMachineFunction().getFrameInfo().setHasTailCall(); |
| return DAG.getNode(SPISD::TAIL_CALL, DL, MVT::Other, Ops); |
| } |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, Ops); |
| InGlue = Chain.getValue(1); |
| |
| // Revert the stack pointer immediately after the call. |
| Chain = DAG.getCALLSEQ_END(Chain, ArgsSize, 0, InGlue, DL); |
| InGlue = Chain.getValue(1); |
| |
| // Now extract the return values. This is more or less the same as |
| // LowerFormalArguments_64. |
| |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| |
| // Set inreg flag manually for codegen generated library calls that |
| // return float. |
| if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB) |
| CLI.Ins[0].Flags.setInReg(); |
| |
| RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_Sparc64); |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| unsigned Reg = toCallerWindow(VA.getLocReg()); |
| |
| // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can |
| // reside in the same register in the high and low bits. Reuse the |
| // CopyFromReg previous node to avoid duplicate copies. |
| SDValue RV; |
| if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1))) |
| if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) |
| RV = Chain.getValue(0); |
| |
| // But usually we'll create a new CopyFromReg for a different register. |
| if (!RV.getNode()) { |
| RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue); |
| Chain = RV.getValue(1); |
| InGlue = Chain.getValue(2); |
| } |
| |
| // Get the high bits for i32 struct elements. |
| if (VA.getValVT() == MVT::i32 && VA.needsCustom()) |
| RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV, |
| DAG.getConstant(32, DL, MVT::i32)); |
| |
| // The callee promoted the return value, so insert an Assert?ext SDNode so |
| // we won't promote the value again in this function. |
| switch (VA.getLocInfo()) { |
| case CCValAssign::SExt: |
| RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV, |
| DAG.getValueType(VA.getValVT())); |
| break; |
| case CCValAssign::ZExt: |
| RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV, |
| DAG.getValueType(VA.getValVT())); |
| break; |
| default: |
| break; |
| } |
| |
| // Truncate the register down to the return value type. |
| if (VA.isExtInLoc()) |
| RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV); |
| |
| InVals.push_back(RV); |
| } |
| |
| return Chain; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TargetLowering Implementation |
| //===----------------------------------------------------------------------===// |
| |
| TargetLowering::AtomicExpansionKind SparcTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { |
| if (AI->getOperation() == AtomicRMWInst::Xchg && |
| AI->getType()->getPrimitiveSizeInBits() == 32) |
| return AtomicExpansionKind::None; // Uses xchg instruction |
| |
| return AtomicExpansionKind::CmpXChg; |
| } |
| |
| /// intCondCCodeToRcond - Convert a DAG integer condition code to a SPARC |
| /// rcond condition. |
| static SPCC::CondCodes intCondCCodeToRcond(ISD::CondCode CC) { |
| switch (CC) { |
| default: |
| llvm_unreachable("Unknown/unsigned integer condition code!"); |
| case ISD::SETEQ: |
| return SPCC::REG_Z; |
| case ISD::SETNE: |
| return SPCC::REG_NZ; |
| case ISD::SETLT: |
| return SPCC::REG_LZ; |
| case ISD::SETGT: |
| return SPCC::REG_GZ; |
| case ISD::SETLE: |
| return SPCC::REG_LEZ; |
| case ISD::SETGE: |
| return SPCC::REG_GEZ; |
| } |
| } |
| |
| /// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC |
| /// condition. |
| static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) { |
| switch (CC) { |
| default: llvm_unreachable("Unknown integer condition code!"); |
| case ISD::SETEQ: return SPCC::ICC_E; |
| case ISD::SETNE: return SPCC::ICC_NE; |
| case ISD::SETLT: return SPCC::ICC_L; |
| case ISD::SETGT: return SPCC::ICC_G; |
| case ISD::SETLE: return SPCC::ICC_LE; |
| case ISD::SETGE: return SPCC::ICC_GE; |
| case ISD::SETULT: return SPCC::ICC_CS; |
| case ISD::SETULE: return SPCC::ICC_LEU; |
| case ISD::SETUGT: return SPCC::ICC_GU; |
| case ISD::SETUGE: return SPCC::ICC_CC; |
| } |
| } |
| |
| /// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC |
| /// FCC condition. |
| static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) { |
| switch (CC) { |
| default: llvm_unreachable("Unknown fp condition code!"); |
| case ISD::SETEQ: |
| case ISD::SETOEQ: return SPCC::FCC_E; |
| case ISD::SETNE: |
| case ISD::SETUNE: return SPCC::FCC_NE; |
| case ISD::SETLT: |
| case ISD::SETOLT: return SPCC::FCC_L; |
| case ISD::SETGT: |
| case ISD::SETOGT: return SPCC::FCC_G; |
| case ISD::SETLE: |
| case ISD::SETOLE: return SPCC::FCC_LE; |
| case ISD::SETGE: |
| case ISD::SETOGE: return SPCC::FCC_GE; |
| case ISD::SETULT: return SPCC::FCC_UL; |
| case ISD::SETULE: return SPCC::FCC_ULE; |
| case ISD::SETUGT: return SPCC::FCC_UG; |
| case ISD::SETUGE: return SPCC::FCC_UGE; |
| case ISD::SETUO: return SPCC::FCC_U; |
| case ISD::SETO: return SPCC::FCC_O; |
| case ISD::SETONE: return SPCC::FCC_LG; |
| case ISD::SETUEQ: return SPCC::FCC_UE; |
| } |
| } |
| |
| SparcTargetLowering::SparcTargetLowering(const TargetMachine &TM, |
| const SparcSubtarget &STI) |
| : TargetLowering(TM), Subtarget(&STI) { |
| MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); |
| |
| // Instructions which use registers as conditionals examine all the |
| // bits (as does the pseudo SELECT_CC expansion). I don't think it |
| // matters much whether it's ZeroOrOneBooleanContent, or |
| // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the |
| // former. |
| setBooleanContents(ZeroOrOneBooleanContent); |
| setBooleanVectorContents(ZeroOrOneBooleanContent); |
| |
| // Set up the register classes. |
| addRegisterClass(MVT::i32, &SP::IntRegsRegClass); |
| if (!Subtarget->useSoftFloat()) { |
| addRegisterClass(MVT::f32, &SP::FPRegsRegClass); |
| addRegisterClass(MVT::f64, &SP::DFPRegsRegClass); |
| addRegisterClass(MVT::f128, &SP::QFPRegsRegClass); |
| } |
| if (Subtarget->is64Bit()) { |
| addRegisterClass(MVT::i64, &SP::I64RegsRegClass); |
| } else { |
| // On 32bit sparc, we define a double-register 32bit register |
| // class, as well. This is modeled in LLVM as a 2-vector of i32. |
| addRegisterClass(MVT::v2i32, &SP::IntPairRegClass); |
| |
| // ...but almost all operations must be expanded, so set that as |
| // the default. |
| for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { |
| setOperationAction(Op, MVT::v2i32, Expand); |
| } |
| // Truncating/extending stores/loads are also not supported. |
| for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Expand); |
| |
| setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, VT, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, VT, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, VT, Expand); |
| |
| setTruncStoreAction(VT, MVT::v2i32, Expand); |
| setTruncStoreAction(MVT::v2i32, VT, Expand); |
| } |
| // However, load and store *are* legal. |
| setOperationAction(ISD::LOAD, MVT::v2i32, Legal); |
| setOperationAction(ISD::STORE, MVT::v2i32, Legal); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Legal); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Legal); |
| |
| // And we need to promote i64 loads/stores into vector load/store |
| setOperationAction(ISD::LOAD, MVT::i64, Custom); |
| setOperationAction(ISD::STORE, MVT::i64, Custom); |
| |
| // Sadly, this doesn't work: |
| // AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); |
| // AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); |
| } |
| |
| // Turn FP extload into load/fpextend |
| for (MVT VT : MVT::fp_valuetypes()) { |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand); |
| } |
| |
| // Sparc doesn't have i1 sign extending load |
| for (MVT VT : MVT::integer_valuetypes()) |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); |
| |
| // Turn FP truncstore into trunc + store. |
| setTruncStoreAction(MVT::f32, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f64, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| setTruncStoreAction(MVT::f128, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f128, MVT::f32, Expand); |
| setTruncStoreAction(MVT::f128, MVT::f64, Expand); |
| |
| // Custom legalize GlobalAddress nodes into LO/HI parts. |
| setOperationAction(ISD::GlobalAddress, PtrVT, Custom); |
| setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); |
| setOperationAction(ISD::ConstantPool, PtrVT, Custom); |
| setOperationAction(ISD::BlockAddress, PtrVT, Custom); |
| |
| // Sparc doesn't have sext_inreg, replace them with shl/sra |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); |
| |
| // Sparc has no REM or DIVREM operations. |
| setOperationAction(ISD::UREM, MVT::i32, Expand); |
| setOperationAction(ISD::SREM, MVT::i32, Expand); |
| setOperationAction(ISD::SDIVREM, MVT::i32, Expand); |
| setOperationAction(ISD::UDIVREM, MVT::i32, Expand); |
| |
| // ... nor does SparcV9. |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::UREM, MVT::i64, Expand); |
| setOperationAction(ISD::SREM, MVT::i64, Expand); |
| setOperationAction(ISD::SDIVREM, MVT::i64, Expand); |
| setOperationAction(ISD::UDIVREM, MVT::i64, Expand); |
| } |
| |
| // Custom expand fp<->sint |
| setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); |
| |
| // Custom Expand fp<->uint |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); |
| |
| // Lower f16 conversion operations into library calls |
| setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); |
| setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); |
| setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); |
| setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); |
| setOperationAction(ISD::FP16_TO_FP, MVT::f128, Expand); |
| setOperationAction(ISD::FP_TO_FP16, MVT::f128, Expand); |
| |
| setOperationAction(ISD::BITCAST, MVT::f32, Expand); |
| setOperationAction(ISD::BITCAST, MVT::i32, Expand); |
| |
| // Sparc has no select or setcc: expand to SELECT_CC. |
| setOperationAction(ISD::SELECT, MVT::i32, Expand); |
| setOperationAction(ISD::SELECT, MVT::f32, Expand); |
| setOperationAction(ISD::SELECT, MVT::f64, Expand); |
| setOperationAction(ISD::SELECT, MVT::f128, Expand); |
| |
| setOperationAction(ISD::SETCC, MVT::i32, Expand); |
| setOperationAction(ISD::SETCC, MVT::f32, Expand); |
| setOperationAction(ISD::SETCC, MVT::f64, Expand); |
| setOperationAction(ISD::SETCC, MVT::f128, Expand); |
| |
| // Sparc doesn't have BRCOND either, it has BR_CC. |
| setOperationAction(ISD::BRCOND, MVT::Other, Expand); |
| setOperationAction(ISD::BRIND, MVT::Other, Expand); |
| setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| setOperationAction(ISD::BR_CC, MVT::i32, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f32, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f64, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f128, Custom); |
| |
| setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); |
| |
| setOperationAction(ISD::ADDC, MVT::i32, Custom); |
| setOperationAction(ISD::ADDE, MVT::i32, Custom); |
| setOperationAction(ISD::SUBC, MVT::i32, Custom); |
| setOperationAction(ISD::SUBE, MVT::i32, Custom); |
| |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::ADDC, MVT::i64, Custom); |
| setOperationAction(ISD::ADDE, MVT::i64, Custom); |
| setOperationAction(ISD::SUBC, MVT::i64, Custom); |
| setOperationAction(ISD::SUBE, MVT::i64, Custom); |
| setOperationAction(ISD::BITCAST, MVT::f64, Expand); |
| setOperationAction(ISD::BITCAST, MVT::i64, Expand); |
| setOperationAction(ISD::SELECT, MVT::i64, Expand); |
| setOperationAction(ISD::SETCC, MVT::i64, Expand); |
| setOperationAction(ISD::BR_CC, MVT::i64, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); |
| |
| setOperationAction(ISD::CTPOP, MVT::i64, |
| Subtarget->usePopc() ? Legal : Expand); |
| setOperationAction(ISD::CTTZ , MVT::i64, Expand); |
| setOperationAction(ISD::CTLZ , MVT::i64, Expand); |
| setOperationAction(ISD::BSWAP, MVT::i64, Expand); |
| setOperationAction(ISD::ROTL , MVT::i64, Expand); |
| setOperationAction(ISD::ROTR , MVT::i64, Expand); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); |
| } |
| |
| // ATOMICs. |
| // Atomics are supported on SparcV9. 32-bit atomics are also |
| // supported by some Leon SparcV8 variants. Otherwise, atomics |
| // are unsupported. |
| if (Subtarget->isV9()) |
| setMaxAtomicSizeInBitsSupported(64); |
| else if (Subtarget->hasLeonCasa()) |
| setMaxAtomicSizeInBitsSupported(32); |
| else |
| setMaxAtomicSizeInBitsSupported(0); |
| |
| setMinCmpXchgSizeInBits(32); |
| |
| setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal); |
| |
| setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal); |
| |
| // Custom Lower Atomic LOAD/STORE |
| setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); |
| setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); |
| |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Legal); |
| setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Legal); |
| setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Custom); |
| } |
| |
| if (!Subtarget->is64Bit()) { |
| // These libcalls are not available in 32-bit. |
| setLibcallName(RTLIB::MULO_I64, nullptr); |
| setLibcallName(RTLIB::SHL_I128, nullptr); |
| setLibcallName(RTLIB::SRL_I128, nullptr); |
| setLibcallName(RTLIB::SRA_I128, nullptr); |
| } |
| |
| setLibcallName(RTLIB::MULO_I128, nullptr); |
| |
| if (!Subtarget->isV9()) { |
| // SparcV8 does not have FNEGD and FABSD. |
| setOperationAction(ISD::FNEG, MVT::f64, Custom); |
| setOperationAction(ISD::FABS, MVT::f64, Custom); |
| } |
| |
| setOperationAction(ISD::FSIN , MVT::f128, Expand); |
| setOperationAction(ISD::FCOS , MVT::f128, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f128, Expand); |
| setOperationAction(ISD::FREM , MVT::f128, Expand); |
| setOperationAction(ISD::FMA , MVT::f128, Expand); |
| setOperationAction(ISD::FSIN , MVT::f64, Expand); |
| setOperationAction(ISD::FCOS , MVT::f64, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f64, Expand); |
| setOperationAction(ISD::FREM , MVT::f64, Expand); |
| setOperationAction(ISD::FMA , MVT::f64, Expand); |
| setOperationAction(ISD::FSIN , MVT::f32, Expand); |
| setOperationAction(ISD::FCOS , MVT::f32, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f32, Expand); |
| setOperationAction(ISD::FREM , MVT::f32, Expand); |
| setOperationAction(ISD::FMA , MVT::f32, Expand); |
| setOperationAction(ISD::CTTZ , MVT::i32, Expand); |
| setOperationAction(ISD::CTLZ , MVT::i32, Expand); |
| setOperationAction(ISD::ROTL , MVT::i32, Expand); |
| setOperationAction(ISD::ROTR , MVT::i32, Expand); |
| setOperationAction(ISD::BSWAP, MVT::i32, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); |
| setOperationAction(ISD::FPOW , MVT::f128, Expand); |
| setOperationAction(ISD::FPOW , MVT::f64, Expand); |
| setOperationAction(ISD::FPOW , MVT::f32, Expand); |
| |
| setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); |
| setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); |
| setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); |
| |
| // Expands to [SU]MUL_LOHI. |
| setOperationAction(ISD::MULHU, MVT::i32, Expand); |
| setOperationAction(ISD::MULHS, MVT::i32, Expand); |
| setOperationAction(ISD::MUL, MVT::i32, Expand); |
| |
| if (Subtarget->useSoftMulDiv()) { |
| // .umul works for both signed and unsigned |
| setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); |
| setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); |
| setLibcallName(RTLIB::MUL_I32, ".umul"); |
| |
| setOperationAction(ISD::SDIV, MVT::i32, Expand); |
| setLibcallName(RTLIB::SDIV_I32, ".div"); |
| |
| setOperationAction(ISD::UDIV, MVT::i32, Expand); |
| setLibcallName(RTLIB::UDIV_I32, ".udiv"); |
| |
| setLibcallName(RTLIB::SREM_I32, ".rem"); |
| setLibcallName(RTLIB::UREM_I32, ".urem"); |
| } |
| |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); |
| setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); |
| setOperationAction(ISD::MULHU, MVT::i64, Expand); |
| setOperationAction(ISD::MULHS, MVT::i64, Expand); |
| |
| setOperationAction(ISD::UMULO, MVT::i64, Custom); |
| setOperationAction(ISD::SMULO, MVT::i64, Custom); |
| |
| setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); |
| setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); |
| setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); |
| } |
| |
| // VASTART needs to be custom lowered to use the VarArgsFrameIndex. |
| setOperationAction(ISD::VASTART , MVT::Other, Custom); |
| // VAARG needs to be lowered to not do unaligned accesses for doubles. |
| setOperationAction(ISD::VAARG , MVT::Other, Custom); |
| |
| setOperationAction(ISD::TRAP , MVT::Other, Legal); |
| setOperationAction(ISD::DEBUGTRAP , MVT::Other, Legal); |
| |
| // Use the default implementation. |
| setOperationAction(ISD::VACOPY , MVT::Other, Expand); |
| setOperationAction(ISD::VAEND , MVT::Other, Expand); |
| setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); |
| |
| setStackPointerRegisterToSaveRestore(SP::O6); |
| |
| setOperationAction(ISD::CTPOP, MVT::i32, |
| Subtarget->usePopc() ? Legal : Expand); |
| |
| if (Subtarget->isV9() && Subtarget->hasHardQuad()) { |
| setOperationAction(ISD::LOAD, MVT::f128, Legal); |
| setOperationAction(ISD::STORE, MVT::f128, Legal); |
| } else { |
| setOperationAction(ISD::LOAD, MVT::f128, Custom); |
| setOperationAction(ISD::STORE, MVT::f128, Custom); |
| } |
| |
| if (Subtarget->hasHardQuad()) { |
| setOperationAction(ISD::FADD, MVT::f128, Legal); |
| setOperationAction(ISD::FSUB, MVT::f128, Legal); |
| setOperationAction(ISD::FMUL, MVT::f128, Legal); |
| setOperationAction(ISD::FDIV, MVT::f128, Legal); |
| setOperationAction(ISD::FSQRT, MVT::f128, Legal); |
| setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); |
| setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); |
| if (Subtarget->isV9()) { |
| setOperationAction(ISD::FNEG, MVT::f128, Legal); |
| setOperationAction(ISD::FABS, MVT::f128, Legal); |
| } else { |
| setOperationAction(ISD::FNEG, MVT::f128, Custom); |
| setOperationAction(ISD::FABS, MVT::f128, Custom); |
| } |
| |
| if (!Subtarget->is64Bit()) { |
| setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); |
| setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); |
| setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); |
| setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); |
| } |
| |
| } else { |
| // Custom legalize f128 operations. |
| |
| setOperationAction(ISD::FADD, MVT::f128, Custom); |
| setOperationAction(ISD::FSUB, MVT::f128, Custom); |
| setOperationAction(ISD::FMUL, MVT::f128, Custom); |
| setOperationAction(ISD::FDIV, MVT::f128, Custom); |
| setOperationAction(ISD::FSQRT, MVT::f128, Custom); |
| setOperationAction(ISD::FNEG, MVT::f128, Custom); |
| setOperationAction(ISD::FABS, MVT::f128, Custom); |
| |
| setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); |
| setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); |
| setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); |
| |
| // Setup Runtime library names. |
| if (Subtarget->is64Bit() && !Subtarget->useSoftFloat()) { |
| setLibcallName(RTLIB::ADD_F128, "_Qp_add"); |
| setLibcallName(RTLIB::SUB_F128, "_Qp_sub"); |
| setLibcallName(RTLIB::MUL_F128, "_Qp_mul"); |
| setLibcallName(RTLIB::DIV_F128, "_Qp_div"); |
| setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt"); |
| setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi"); |
| setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Qp_qtoui"); |
| setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq"); |
| setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Qp_uitoq"); |
| setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Qp_qtox"); |
| setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Qp_qtoux"); |
| setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Qp_xtoq"); |
| setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Qp_uxtoq"); |
| setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq"); |
| setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq"); |
| setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos"); |
| setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod"); |
| } else if (!Subtarget->useSoftFloat()) { |
| setLibcallName(RTLIB::ADD_F128, "_Q_add"); |
| setLibcallName(RTLIB::SUB_F128, "_Q_sub"); |
| setLibcallName(RTLIB::MUL_F128, "_Q_mul"); |
| setLibcallName(RTLIB::DIV_F128, "_Q_div"); |
| setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt"); |
| setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi"); |
| setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Q_qtou"); |
| setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq"); |
| setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Q_utoq"); |
| setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); |
| setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); |
| setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); |
| setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); |
| setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq"); |
| setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq"); |
| setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos"); |
| setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod"); |
| } |
| } |
| |
| if (Subtarget->fixAllFDIVSQRT()) { |
| // Promote FDIVS and FSQRTS to FDIVD and FSQRTD instructions instead as |
| // the former instructions generate errata on LEON processors. |
| setOperationAction(ISD::FDIV, MVT::f32, Promote); |
| setOperationAction(ISD::FSQRT, MVT::f32, Promote); |
| } |
| |
| if (Subtarget->hasNoFMULS()) { |
| setOperationAction(ISD::FMUL, MVT::f32, Promote); |
| } |
| |
| // Custom combine bitcast between f64 and v2i32 |
| if (!Subtarget->is64Bit()) |
| setTargetDAGCombine(ISD::BITCAST); |
| |
| if (Subtarget->hasLeonCycleCounter()) |
| setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); |
| |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| |
| setMinFunctionAlignment(Align(4)); |
| |
| computeRegisterProperties(Subtarget->getRegisterInfo()); |
| } |
| |
| bool SparcTargetLowering::useSoftFloat() const { |
| return Subtarget->useSoftFloat(); |
| } |
| |
| const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch ((SPISD::NodeType)Opcode) { |
| case SPISD::FIRST_NUMBER: break; |
| case SPISD::CMPICC: return "SPISD::CMPICC"; |
| case SPISD::CMPFCC: return "SPISD::CMPFCC"; |
| case SPISD::CMPFCC_V9: |
| return "SPISD::CMPFCC_V9"; |
| case SPISD::BRICC: return "SPISD::BRICC"; |
| case SPISD::BPICC: |
| return "SPISD::BPICC"; |
| case SPISD::BPXCC: |
| return "SPISD::BPXCC"; |
| case SPISD::BRFCC: return "SPISD::BRFCC"; |
| case SPISD::BRFCC_V9: |
| return "SPISD::BRFCC_V9"; |
| case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC"; |
| case SPISD::SELECT_XCC: return "SPISD::SELECT_XCC"; |
| case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC"; |
| case SPISD::SELECT_REG: |
| return "SPISD::SELECT_REG"; |
| case SPISD::Hi: return "SPISD::Hi"; |
| case SPISD::Lo: return "SPISD::Lo"; |
| case SPISD::FTOI: return "SPISD::FTOI"; |
| case SPISD::ITOF: return "SPISD::ITOF"; |
| case SPISD::FTOX: return "SPISD::FTOX"; |
| case SPISD::XTOF: return "SPISD::XTOF"; |
| case SPISD::CALL: return "SPISD::CALL"; |
| case SPISD::RET_FLAG: return "SPISD::RET_FLAG"; |
| case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG"; |
| case SPISD::FLUSHW: return "SPISD::FLUSHW"; |
| case SPISD::TLS_ADD: return "SPISD::TLS_ADD"; |
| case SPISD::TLS_LD: return "SPISD::TLS_LD"; |
| case SPISD::TLS_CALL: return "SPISD::TLS_CALL"; |
| case SPISD::TAIL_CALL: return "SPISD::TAIL_CALL"; |
| case SPISD::LOAD_GDOP: return "SPISD::LOAD_GDOP"; |
| } |
| return nullptr; |
| } |
| |
| EVT SparcTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, |
| EVT VT) const { |
| if (!VT.isVector()) |
| return MVT::i32; |
| return VT.changeVectorElementTypeToInteger(); |
| } |
| |
| /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to |
| /// be zero. Op is expected to be a target specific node. Used by DAG |
| /// combiner. |
| void SparcTargetLowering::computeKnownBitsForTargetNode |
| (const SDValue Op, |
| KnownBits &Known, |
| const APInt &DemandedElts, |
| const SelectionDAG &DAG, |
| unsigned Depth) const { |
| KnownBits Known2; |
| Known.resetAll(); |
| |
| switch (Op.getOpcode()) { |
| default: break; |
| case SPISD::SELECT_ICC: |
| case SPISD::SELECT_XCC: |
| case SPISD::SELECT_FCC: |
| Known = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); |
| Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); |
| |
| // Only known if known in both the LHS and RHS. |
| Known = KnownBits::commonBits(Known, Known2); |
| break; |
| } |
| } |
| |
| // Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so |
| // set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition. |
| static void LookThroughSetCC(SDValue &LHS, SDValue &RHS, |
| ISD::CondCode CC, unsigned &SPCC) { |
| if (isNullConstant(RHS) && CC == ISD::SETNE && |
| (((LHS.getOpcode() == SPISD::SELECT_ICC || |
| LHS.getOpcode() == SPISD::SELECT_XCC) && |
| LHS.getOperand(3).getOpcode() == SPISD::CMPICC) || |
| (LHS.getOpcode() == SPISD::SELECT_FCC && |
| (LHS.getOperand(3).getOpcode() == SPISD::CMPFCC || |
| LHS.getOperand(3).getOpcode() == SPISD::CMPFCC_V9))) && |
| isOneConstant(LHS.getOperand(0)) && isNullConstant(LHS.getOperand(1))) { |
| SDValue CMPCC = LHS.getOperand(3); |
| SPCC = cast<ConstantSDNode>(LHS.getOperand(2))->getZExtValue(); |
| LHS = CMPCC.getOperand(0); |
| RHS = CMPCC.getOperand(1); |
| } |
| } |
| |
| // Convert to a target node and set target flags. |
| SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF, |
| SelectionDAG &DAG) const { |
| if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) |
| return DAG.getTargetGlobalAddress(GA->getGlobal(), |
| SDLoc(GA), |
| GA->getValueType(0), |
| GA->getOffset(), TF); |
| |
| if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) |
| return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0), |
| CP->getAlign(), CP->getOffset(), TF); |
| |
| if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) |
| return DAG.getTargetBlockAddress(BA->getBlockAddress(), |
| Op.getValueType(), |
| 0, |
| TF); |
| |
| if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) |
| return DAG.getTargetExternalSymbol(ES->getSymbol(), |
| ES->getValueType(0), TF); |
| |
| llvm_unreachable("Unhandled address SDNode"); |
| } |
| |
| // Split Op into high and low parts according to HiTF and LoTF. |
| // Return an ADD node combining the parts. |
| SDValue SparcTargetLowering::makeHiLoPair(SDValue Op, |
| unsigned HiTF, unsigned LoTF, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG)); |
| SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG)); |
| return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); |
| } |
| |
| // Build SDNodes for producing an address from a GlobalAddress, ConstantPool, |
| // or ExternalSymbol SDNode. |
| SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| EVT VT = getPointerTy(DAG.getDataLayout()); |
| |
| // Handle PIC mode first. SPARC needs a got load for every variable! |
| if (isPositionIndependent()) { |
| const Module *M = DAG.getMachineFunction().getFunction().getParent(); |
| PICLevel::Level picLevel = M->getPICLevel(); |
| SDValue Idx; |
| |
| if (picLevel == PICLevel::SmallPIC) { |
| // This is the pic13 code model, the GOT is known to be smaller than 8KiB. |
| Idx = DAG.getNode(SPISD::Lo, DL, Op.getValueType(), |
| withTargetFlags(Op, SparcMCExpr::VK_Sparc_GOT13, DAG)); |
| } else { |
| // This is the pic32 code model, the GOT is known to be smaller than 4GB. |
| Idx = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_GOT22, |
| SparcMCExpr::VK_Sparc_GOT10, DAG); |
| } |
| |
| SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT); |
| SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Idx); |
| // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this |
| // function has calls. |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| MFI.setHasCalls(true); |
| return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr, |
| MachinePointerInfo::getGOT(DAG.getMachineFunction())); |
| } |
| |
| // This is one of the absolute code models. |
| switch(getTargetMachine().getCodeModel()) { |
| default: |
| llvm_unreachable("Unsupported absolute code model"); |
| case CodeModel::Small: |
| // abs32. |
| return makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, |
| SparcMCExpr::VK_Sparc_LO, DAG); |
| case CodeModel::Medium: { |
| // abs44. |
| SDValue H44 = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_H44, |
| SparcMCExpr::VK_Sparc_M44, DAG); |
| H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, DL, MVT::i32)); |
| SDValue L44 = withTargetFlags(Op, SparcMCExpr::VK_Sparc_L44, DAG); |
| L44 = DAG.getNode(SPISD::Lo, DL, VT, L44); |
| return DAG.getNode(ISD::ADD, DL, VT, H44, L44); |
| } |
| case CodeModel::Large: { |
| // abs64. |
| SDValue Hi = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HH, |
| SparcMCExpr::VK_Sparc_HM, DAG); |
| Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, DL, MVT::i32)); |
| SDValue Lo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, |
| SparcMCExpr::VK_Sparc_LO, DAG); |
| return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); |
| } |
| } |
| } |
| |
| SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| return makeAddress(Op, DAG); |
| } |
| |
| SDValue SparcTargetLowering::LowerConstantPool(SDValue Op, |
| SelectionDAG &DAG) const { |
| return makeAddress(Op, DAG); |
| } |
| |
| SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| return makeAddress(Op, DAG); |
| } |
| |
| SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| |
| GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| if (DAG.getTarget().useEmulatedTLS()) |
| return LowerToTLSEmulatedModel(GA, DAG); |
| |
| SDLoc DL(GA); |
| const GlobalValue *GV = GA->getGlobal(); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| TLSModel::Model model = getTargetMachine().getTLSModel(GV); |
| |
| if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) { |
| unsigned HiTF = ((model == TLSModel::GeneralDynamic) |
| ? SparcMCExpr::VK_Sparc_TLS_GD_HI22 |
| : SparcMCExpr::VK_Sparc_TLS_LDM_HI22); |
| unsigned LoTF = ((model == TLSModel::GeneralDynamic) |
| ? SparcMCExpr::VK_Sparc_TLS_GD_LO10 |
| : SparcMCExpr::VK_Sparc_TLS_LDM_LO10); |
| unsigned addTF = ((model == TLSModel::GeneralDynamic) |
| ? SparcMCExpr::VK_Sparc_TLS_GD_ADD |
| : SparcMCExpr::VK_Sparc_TLS_LDM_ADD); |
| unsigned callTF = ((model == TLSModel::GeneralDynamic) |
| ? SparcMCExpr::VK_Sparc_TLS_GD_CALL |
| : SparcMCExpr::VK_Sparc_TLS_LDM_CALL); |
| |
| SDValue HiLo = makeHiLoPair(Op, HiTF, LoTF, DAG); |
| SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); |
| SDValue Argument = DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Base, HiLo, |
| withTargetFlags(Op, addTF, DAG)); |
| |
| SDValue Chain = DAG.getEntryNode(); |
| SDValue InFlag; |
| |
| Chain = DAG.getCALLSEQ_START(Chain, 1, 0, DL); |
| Chain = DAG.getCopyToReg(Chain, DL, SP::O0, Argument, InFlag); |
| InFlag = Chain.getValue(1); |
| SDValue Callee = DAG.getTargetExternalSymbol("__tls_get_addr", PtrVT); |
| SDValue Symbol = withTargetFlags(Op, callTF, DAG); |
| |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask( |
| DAG.getMachineFunction(), CallingConv::C); |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| SDValue Ops[] = {Chain, |
| Callee, |
| Symbol, |
| DAG.getRegister(SP::O0, PtrVT), |
| DAG.getRegisterMask(Mask), |
| InFlag}; |
| Chain = DAG.getNode(SPISD::TLS_CALL, DL, NodeTys, Ops); |
| InFlag = Chain.getValue(1); |
| Chain = DAG.getCALLSEQ_END(Chain, 1, 0, InFlag, DL); |
| InFlag = Chain.getValue(1); |
| SDValue Ret = DAG.getCopyFromReg(Chain, DL, SP::O0, PtrVT, InFlag); |
| |
| if (model != TLSModel::LocalDynamic) |
| return Ret; |
| |
| SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, |
| withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_HIX22, DAG)); |
| SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, |
| withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_LOX10, DAG)); |
| HiLo = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); |
| return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Ret, HiLo, |
| withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_ADD, DAG)); |
| } |
| |
| if (model == TLSModel::InitialExec) { |
| unsigned ldTF = ((PtrVT == MVT::i64)? SparcMCExpr::VK_Sparc_TLS_IE_LDX |
| : SparcMCExpr::VK_Sparc_TLS_IE_LD); |
| |
| SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); |
| |
| // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this |
| // function has calls. |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| MFI.setHasCalls(true); |
| |
| SDValue TGA = makeHiLoPair(Op, |
| SparcMCExpr::VK_Sparc_TLS_IE_HI22, |
| SparcMCExpr::VK_Sparc_TLS_IE_LO10, DAG); |
| SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, TGA); |
| SDValue Offset = DAG.getNode(SPISD::TLS_LD, |
| DL, PtrVT, Ptr, |
| withTargetFlags(Op, ldTF, DAG)); |
| return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, |
| DAG.getRegister(SP::G7, PtrVT), Offset, |
| withTargetFlags(Op, |
| SparcMCExpr::VK_Sparc_TLS_IE_ADD, DAG)); |
| } |
| |
| assert(model == TLSModel::LocalExec); |
| SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, |
| withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_HIX22, DAG)); |
| SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, |
| withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_LOX10, DAG)); |
| SDValue Offset = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); |
| |
| return DAG.getNode(ISD::ADD, DL, PtrVT, |
| DAG.getRegister(SP::G7, PtrVT), Offset); |
| } |
| |
| SDValue SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain, |
| ArgListTy &Args, SDValue Arg, |
| const SDLoc &DL, |
| SelectionDAG &DAG) const { |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| EVT ArgVT = Arg.getValueType(); |
| Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); |
| |
| ArgListEntry Entry; |
| Entry.Node = Arg; |
| Entry.Ty = ArgTy; |
| |
| if (ArgTy->isFP128Ty()) { |
| // Create a stack object and pass the pointer to the library function. |
| int FI = MFI.CreateStackObject(16, Align(8), false); |
| SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); |
| Chain = DAG.getStore(Chain, DL, Entry.Node, FIPtr, MachinePointerInfo(), |
| Align(8)); |
| |
| Entry.Node = FIPtr; |
| Entry.Ty = PointerType::getUnqual(ArgTy); |
| } |
| Args.push_back(Entry); |
| return Chain; |
| } |
| |
| SDValue |
| SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG, |
| const char *LibFuncName, |
| unsigned numArgs) const { |
| |
| ArgListTy Args; |
| |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| SDValue Callee = DAG.getExternalSymbol(LibFuncName, PtrVT); |
| Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext()); |
| Type *RetTyABI = RetTy; |
| SDValue Chain = DAG.getEntryNode(); |
| SDValue RetPtr; |
| |
| if (RetTy->isFP128Ty()) { |
| // Create a Stack Object to receive the return value of type f128. |
| ArgListEntry Entry; |
| int RetFI = MFI.CreateStackObject(16, Align(8), false); |
| RetPtr = DAG.getFrameIndex(RetFI, PtrVT); |
| Entry.Node = RetPtr; |
| Entry.Ty = PointerType::getUnqual(RetTy); |
| if (!Subtarget->is64Bit()) { |
| Entry.IsSRet = true; |
| Entry.IndirectType = RetTy; |
| } |
| Entry.IsReturned = false; |
| Args.push_back(Entry); |
| RetTyABI = Type::getVoidTy(*DAG.getContext()); |
| } |
| |
| assert(Op->getNumOperands() >= numArgs && "Not enough operands!"); |
| for (unsigned i = 0, e = numArgs; i != e; ++i) { |
| Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG); |
| } |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(SDLoc(Op)).setChain(Chain) |
| .setCallee(CallingConv::C, RetTyABI, Callee, std::move(Args)); |
| |
| std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); |
| |
| // chain is in second result. |
| if (RetTyABI == RetTy) |
| return CallInfo.first; |
| |
| assert (RetTy->isFP128Ty() && "Unexpected return type!"); |
| |
| Chain = CallInfo.second; |
| |
| // Load RetPtr to get the return value. |
| return DAG.getLoad(Op.getValueType(), SDLoc(Op), Chain, RetPtr, |
| MachinePointerInfo(), Align(8)); |
| } |
| |
| SDValue SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS, |
| unsigned &SPCC, const SDLoc &DL, |
| SelectionDAG &DAG) const { |
| |
| const char *LibCall = nullptr; |
| bool is64Bit = Subtarget->is64Bit(); |
| switch(SPCC) { |
| default: llvm_unreachable("Unhandled conditional code!"); |
| case SPCC::FCC_E : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break; |
| case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break; |
| case SPCC::FCC_L : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break; |
| case SPCC::FCC_G : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break; |
| case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break; |
| case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break; |
| case SPCC::FCC_UL : |
| case SPCC::FCC_ULE: |
| case SPCC::FCC_UG : |
| case SPCC::FCC_UGE: |
| case SPCC::FCC_U : |
| case SPCC::FCC_O : |
| case SPCC::FCC_LG : |
| case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break; |
| } |
| |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDValue Callee = DAG.getExternalSymbol(LibCall, PtrVT); |
| Type *RetTy = Type::getInt32Ty(*DAG.getContext()); |
| ArgListTy Args; |
| SDValue Chain = DAG.getEntryNode(); |
| Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG); |
| Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG); |
| |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(DL).setChain(Chain) |
| .setCallee(CallingConv::C, RetTy, Callee, std::move(Args)); |
| |
| std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); |
| |
| // result is in first, and chain is in second result. |
| SDValue Result = CallInfo.first; |
| |
| switch(SPCC) { |
| default: { |
| SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); |
| SPCC = SPCC::ICC_NE; |
| return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); |
| } |
| case SPCC::FCC_UL : { |
| SDValue Mask = DAG.getConstant(1, DL, Result.getValueType()); |
| Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); |
| SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); |
| SPCC = SPCC::ICC_NE; |
| return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); |
| } |
| case SPCC::FCC_ULE: { |
| SDValue RHS = DAG.getConstant(2, DL, Result.getValueType()); |
| SPCC = SPCC::ICC_NE; |
| return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); |
| } |
| case SPCC::FCC_UG : { |
| SDValue RHS = DAG.getConstant(1, DL, Result.getValueType()); |
| SPCC = SPCC::ICC_G; |
| return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); |
| } |
| case SPCC::FCC_UGE: { |
| SDValue RHS = DAG.getConstant(1, DL, Result.getValueType()); |
| SPCC = SPCC::ICC_NE; |
| return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); |
| } |
| |
| case SPCC::FCC_U : { |
| SDValue RHS = DAG.getConstant(3, DL, Result.getValueType()); |
| SPCC = SPCC::ICC_E; |
| return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); |
| } |
| case SPCC::FCC_O : { |
| SDValue RHS = DAG.getConstant(3, DL, Result.getValueType()); |
| SPCC = SPCC::ICC_NE; |
| return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); |
| } |
| case SPCC::FCC_LG : { |
| SDValue Mask = DAG.getConstant(3, DL, Result.getValueType()); |
| Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); |
| SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); |
| SPCC = SPCC::ICC_NE; |
| return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); |
| } |
| case SPCC::FCC_UE : { |
| SDValue Mask = DAG.getConstant(3, DL, Result.getValueType()); |
| Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); |
| SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); |
| SPCC = SPCC::ICC_E; |
| return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); |
| } |
| } |
| } |
| |
| static SDValue |
| LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG, |
| const SparcTargetLowering &TLI) { |
| |
| if (Op.getOperand(0).getValueType() == MVT::f64) |
| return TLI.LowerF128Op(Op, DAG, |
| TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1); |
| |
| if (Op.getOperand(0).getValueType() == MVT::f32) |
| return TLI.LowerF128Op(Op, DAG, |
| TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1); |
| |
| llvm_unreachable("fpextend with non-float operand!"); |
| return SDValue(); |
| } |
| |
| static SDValue |
| LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG, |
| const SparcTargetLowering &TLI) { |
| // FP_ROUND on f64 and f32 are legal. |
| if (Op.getOperand(0).getValueType() != MVT::f128) |
| return Op; |
| |
| if (Op.getValueType() == MVT::f64) |
| return TLI.LowerF128Op(Op, DAG, |
| TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1); |
| if (Op.getValueType() == MVT::f32) |
| return TLI.LowerF128Op(Op, DAG, |
| TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1); |
| |
| llvm_unreachable("fpround to non-float!"); |
| return SDValue(); |
| } |
| |
| static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG, |
| const SparcTargetLowering &TLI, |
| bool hasHardQuad) { |
| SDLoc dl(Op); |
| EVT VT = Op.getValueType(); |
| assert(VT == MVT::i32 || VT == MVT::i64); |
| |
| // Expand f128 operations to fp128 abi calls. |
| if (Op.getOperand(0).getValueType() == MVT::f128 |
| && (!hasHardQuad || !TLI.isTypeLegal(VT))) { |
| const char *libName = TLI.getLibcallName(VT == MVT::i32 |
| ? RTLIB::FPTOSINT_F128_I32 |
| : RTLIB::FPTOSINT_F128_I64); |
| return TLI.LowerF128Op(Op, DAG, libName, 1); |
| } |
| |
| // Expand if the resulting type is illegal. |
| if (!TLI.isTypeLegal(VT)) |
| return SDValue(); |
| |
| // Otherwise, Convert the fp value to integer in an FP register. |
| if (VT == MVT::i32) |
| Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0)); |
| else |
| Op = DAG.getNode(SPISD::FTOX, dl, MVT::f64, Op.getOperand(0)); |
| |
| return DAG.getNode(ISD::BITCAST, dl, VT, Op); |
| } |
| |
| static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG, |
| const SparcTargetLowering &TLI, |
| bool hasHardQuad) { |
| SDLoc dl(Op); |
| EVT OpVT = Op.getOperand(0).getValueType(); |
| assert(OpVT == MVT::i32 || (OpVT == MVT::i64)); |
| |
| EVT floatVT = (OpVT == MVT::i32) ? MVT::f32 : MVT::f64; |
| |
| // Expand f128 operations to fp128 ABI calls. |
| if (Op.getValueType() == MVT::f128 |
| && (!hasHardQuad || !TLI.isTypeLegal(OpVT))) { |
| const char *libName = TLI.getLibcallName(OpVT == MVT::i32 |
| ? RTLIB::SINTTOFP_I32_F128 |
| : RTLIB::SINTTOFP_I64_F128); |
| return TLI.LowerF128Op(Op, DAG, libName, 1); |
| } |
| |
| // Expand if the operand type is illegal. |
| if (!TLI.isTypeLegal(OpVT)) |
| return SDValue(); |
| |
| // Otherwise, Convert the int value to FP in an FP register. |
| SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, floatVT, Op.getOperand(0)); |
| unsigned opcode = (OpVT == MVT::i32)? SPISD::ITOF : SPISD::XTOF; |
| return DAG.getNode(opcode, dl, Op.getValueType(), Tmp); |
| } |
| |
| static SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG, |
| const SparcTargetLowering &TLI, |
| bool hasHardQuad) { |
| SDLoc dl(Op); |
| EVT VT = Op.getValueType(); |
| |
| // Expand if it does not involve f128 or the target has support for |
| // quad floating point instructions and the resulting type is legal. |
| if (Op.getOperand(0).getValueType() != MVT::f128 || |
| (hasHardQuad && TLI.isTypeLegal(VT))) |
| return SDValue(); |
| |
| assert(VT == MVT::i32 || VT == MVT::i64); |
| |
| return TLI.LowerF128Op(Op, DAG, |
| TLI.getLibcallName(VT == MVT::i32 |
| ? RTLIB::FPTOUINT_F128_I32 |
| : RTLIB::FPTOUINT_F128_I64), |
| 1); |
| } |
| |
| static SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG, |
| const SparcTargetLowering &TLI, |
| bool hasHardQuad) { |
| SDLoc dl(Op); |
| EVT OpVT = Op.getOperand(0).getValueType(); |
| assert(OpVT == MVT::i32 || OpVT == MVT::i64); |
| |
| // Expand if it does not involve f128 or the target has support for |
| // quad floating point instructions and the operand type is legal. |
| if (Op.getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(OpVT))) |
| return SDValue(); |
| |
| return TLI.LowerF128Op(Op, DAG, |
| TLI.getLibcallName(OpVT == MVT::i32 |
| ? RTLIB::UINTTOFP_I32_F128 |
| : RTLIB::UINTTOFP_I64_F128), |
| 1); |
| } |
| |
| static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG, |
| const SparcTargetLowering &TLI, bool hasHardQuad, |
| bool isV9) { |
| SDValue Chain = Op.getOperand(0); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); |
| SDValue LHS = Op.getOperand(2); |
| SDValue RHS = Op.getOperand(3); |
| SDValue Dest = Op.getOperand(4); |
| SDLoc dl(Op); |
| unsigned Opc, SPCC = ~0U; |
| |
| // If this is a br_cc of a "setcc", and if the setcc got lowered into |
| // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. |
| LookThroughSetCC(LHS, RHS, CC, SPCC); |
| assert(LHS.getValueType() == RHS.getValueType()); |
| |
| // Get the condition flag. |
| SDValue CompareFlag; |
| if (LHS.getValueType().isInteger()) { |
| CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); |
| if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); |
| if (isV9) |
| // 32-bit compares use the icc flags, 64-bit uses the xcc flags. |
| Opc = LHS.getValueType() == MVT::i32 ? SPISD::BPICC : SPISD::BPXCC; |
| else |
| // Non-v9 targets don't have xcc. |
| Opc = SPISD::BRICC; |
| } else { |
| if (!hasHardQuad && LHS.getValueType() == MVT::f128) { |
| if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); |
| CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); |
| Opc = isV9 ? SPISD::BPICC : SPISD::BRICC; |
| } else { |
| unsigned CmpOpc = isV9 ? SPISD::CMPFCC_V9 : SPISD::CMPFCC; |
| CompareFlag = DAG.getNode(CmpOpc, dl, MVT::Glue, LHS, RHS); |
| if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); |
| Opc = isV9 ? SPISD::BRFCC_V9 : SPISD::BRFCC; |
| } |
| } |
| return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest, |
| DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); |
| } |
| |
| static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG, |
| const SparcTargetLowering &TLI, bool hasHardQuad, |
| bool isV9, bool is64Bit) { |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); |
| SDValue TrueVal = Op.getOperand(2); |
| SDValue FalseVal = Op.getOperand(3); |
| SDLoc dl(Op); |
| unsigned Opc, SPCC = ~0U; |
| |
| // If this is a select_cc of a "setcc", and if the setcc got lowered into |
| // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. |
| LookThroughSetCC(LHS, RHS, CC, SPCC); |
| assert(LHS.getValueType() == RHS.getValueType()); |
| |
| SDValue CompareFlag; |
| if (LHS.getValueType().isInteger()) { |
| // On V9 processors running in 64-bit mode, if CC compares two `i64`s |
| // and the RHS is zero we might be able to use a specialized select. |
| // All SELECT_CC between any two scalar integer types are eligible for |
| // lowering to specialized instructions. Additionally, f32 and f64 types |
| // are also eligible, but for f128 we can only use the specialized |
| // instruction when we have hardquad. |
| EVT ValType = TrueVal.getValueType(); |
| bool IsEligibleType = ValType.isScalarInteger() || ValType == MVT::f32 || |
| ValType == MVT::f64 || |
| (ValType == MVT::f128 && hasHardQuad); |
| if (is64Bit && isV9 && LHS.getValueType() == MVT::i64 && |
| isNullConstant(RHS) && !ISD::isUnsignedIntSetCC(CC) && IsEligibleType) |
| return DAG.getNode( |
| SPISD::SELECT_REG, dl, TrueVal.getValueType(), TrueVal, FalseVal, |
| DAG.getConstant(intCondCCodeToRcond(CC), dl, MVT::i32), LHS); |
| |
| CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); |
| Opc = LHS.getValueType() == MVT::i32 ? |
| SPISD::SELECT_ICC : SPISD::SELECT_XCC; |
| if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); |
| } else { |
| if (!hasHardQuad && LHS.getValueType() == MVT::f128) { |
| if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); |
| CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); |
| Opc = SPISD::SELECT_ICC; |
| } else { |
| unsigned CmpOpc = isV9 ? SPISD::CMPFCC_V9 : SPISD::CMPFCC; |
| CompareFlag = DAG.getNode(CmpOpc, dl, MVT::Glue, LHS, RHS); |
| Opc = SPISD::SELECT_FCC; |
| if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); |
| } |
| } |
| return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal, |
| DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); |
| } |
| |
| static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG, |
| const SparcTargetLowering &TLI) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); |
| auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); |
| |
| // Need frame address to find the address of VarArgsFrameIndex. |
| MF.getFrameInfo().setFrameAddressIsTaken(true); |
| |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| SDLoc DL(Op); |
| SDValue Offset = |
| DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(SP::I6, PtrVT), |
| DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL)); |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1), |
| MachinePointerInfo(SV)); |
| } |
| |
| static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) { |
| SDNode *Node = Op.getNode(); |
| EVT VT = Node->getValueType(0); |
| SDValue InChain = Node->getOperand(0); |
| SDValue VAListPtr = Node->getOperand(1); |
| EVT PtrVT = VAListPtr.getValueType(); |
| const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); |
| SDLoc DL(Node); |
| SDValue VAList = |
| DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV)); |
| // Increment the pointer, VAList, to the next vaarg. |
| SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, |
| DAG.getIntPtrConstant(VT.getSizeInBits()/8, |
| DL)); |
| // Store the incremented VAList to the legalized pointer. |
| InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr, VAListPtr, |
| MachinePointerInfo(SV)); |
| // Load the actual argument out of the pointer VAList. |
| // We can't count on greater alignment than the word size. |
| return DAG.getLoad( |
| VT, DL, InChain, VAList, MachinePointerInfo(), |
| Align(std::min(PtrVT.getFixedSizeInBits(), VT.getFixedSizeInBits()) / 8)); |
| } |
| |
| static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG, |
| const SparcSubtarget *Subtarget) { |
| SDValue Chain = Op.getOperand(0); // Legalize the chain. |
| SDValue Size = Op.getOperand(1); // Legalize the size. |
| MaybeAlign Alignment = |
| cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue(); |
| Align StackAlign = Subtarget->getFrameLowering()->getStackAlign(); |
| EVT VT = Size->getValueType(0); |
| SDLoc dl(Op); |
| |
| // TODO: implement over-aligned alloca. (Note: also implies |
| // supporting support for overaligned function frames + dynamic |
| // allocations, at all, which currently isn't supported) |
| if (Alignment && *Alignment > StackAlign) { |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| report_fatal_error("Function \"" + Twine(MF.getName()) + "\": " |
| "over-aligned dynamic alloca not supported."); |
| } |
| |
| // The resultant pointer needs to be above the register spill area |
| // at the bottom of the stack. |
| unsigned regSpillArea; |
| if (Subtarget->is64Bit()) { |
| regSpillArea = 128; |
| } else { |
| // On Sparc32, the size of the spill area is 92. Unfortunately, |
| // that's only 4-byte aligned, not 8-byte aligned (the stack |
| // pointer is 8-byte aligned). So, if the user asked for an 8-byte |
| // aligned dynamic allocation, we actually need to add 96 to the |
| // bottom of the stack, instead of 92, to ensure 8-byte alignment. |
| |
| // That also means adding 4 to the size of the allocation -- |
| // before applying the 8-byte rounding. Unfortunately, we the |
| // value we get here has already had rounding applied. So, we need |
| // to add 8, instead, wasting a bit more memory. |
| |
| // Further, this only actually needs to be done if the required |
| // alignment is > 4, but, we've lost that info by this point, too, |
| // so we always apply it. |
| |
| // (An alternative approach would be to always reserve 96 bytes |
| // instead of the required 92, but then we'd waste 4 extra bytes |
| // in every frame, not just those with dynamic stack allocations) |
| |
| // TODO: modify code in SelectionDAGBuilder to make this less sad. |
| |
| Size = DAG.getNode(ISD::ADD, dl, VT, Size, |
| DAG.getConstant(8, dl, VT)); |
| regSpillArea = 96; |
| } |
| |
| unsigned SPReg = SP::O6; |
| SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); |
| SDValue NewSP = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value |
| Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP); // Output chain |
| |
| regSpillArea += Subtarget->getStackPointerBias(); |
| |
| SDValue NewVal = DAG.getNode(ISD::ADD, dl, VT, NewSP, |
| DAG.getConstant(regSpillArea, dl, VT)); |
| SDValue Ops[2] = { NewVal, Chain }; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| |
| |
| static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) { |
| SDLoc dl(Op); |
| SDValue Chain = DAG.getNode(SPISD::FLUSHW, |
| dl, MVT::Other, DAG.getEntryNode()); |
| return Chain; |
| } |
| |
| static SDValue getFRAMEADDR(uint64_t depth, SDValue Op, SelectionDAG &DAG, |
| const SparcSubtarget *Subtarget, |
| bool AlwaysFlush = false) { |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| MFI.setFrameAddressIsTaken(true); |
| |
| EVT VT = Op.getValueType(); |
| SDLoc dl(Op); |
| unsigned FrameReg = SP::I6; |
| unsigned stackBias = Subtarget->getStackPointerBias(); |
| |
| SDValue FrameAddr; |
| SDValue Chain; |
| |
| // flush first to make sure the windowed registers' values are in stack |
| Chain = (depth || AlwaysFlush) ? getFLUSHW(Op, DAG) : DAG.getEntryNode(); |
| |
| FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT); |
| |
| unsigned Offset = (Subtarget->is64Bit()) ? (stackBias + 112) : 56; |
| |
| while (depth--) { |
| SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, |
| DAG.getIntPtrConstant(Offset, dl)); |
| FrameAddr = DAG.getLoad(VT, dl, Chain, Ptr, MachinePointerInfo()); |
| } |
| if (Subtarget->is64Bit()) |
| FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, |
| DAG.getIntPtrConstant(stackBias, dl)); |
| return FrameAddr; |
| } |
| |
| |
| static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, |
| const SparcSubtarget *Subtarget) { |
| |
| uint64_t depth = Op.getConstantOperandVal(0); |
| |
| return getFRAMEADDR(depth, Op, DAG, Subtarget); |
| |
| } |
| |
| static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG, |
| const SparcTargetLowering &TLI, |
| const SparcSubtarget *Subtarget) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MFI.setReturnAddressIsTaken(true); |
| |
| if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG)) |
| return SDValue(); |
| |
| EVT VT = Op.getValueType(); |
| SDLoc dl(Op); |
| uint64_t depth = Op.getConstantOperandVal(0); |
| |
| SDValue RetAddr; |
| if (depth == 0) { |
| auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); |
| Register RetReg = MF.addLiveIn(SP::I7, TLI.getRegClassFor(PtrVT)); |
| RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT); |
| return RetAddr; |
| } |
| |
| // Need frame address to find return address of the caller. |
| SDValue FrameAddr = getFRAMEADDR(depth - 1, Op, DAG, Subtarget, true); |
| |
| unsigned Offset = (Subtarget->is64Bit()) ? 120 : 60; |
| SDValue Ptr = DAG.getNode(ISD::ADD, |
| dl, VT, |
| FrameAddr, |
| DAG.getIntPtrConstant(Offset, dl)); |
| RetAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), Ptr, MachinePointerInfo()); |
| |
| return RetAddr; |
| } |
| |
| static SDValue LowerF64Op(SDValue SrcReg64, const SDLoc &dl, SelectionDAG &DAG, |
| unsigned opcode) { |
| assert(SrcReg64.getValueType() == MVT::f64 && "LowerF64Op called on non-double!"); |
| assert(opcode == ISD::FNEG || opcode == ISD::FABS); |
| |
| // Lower fneg/fabs on f64 to fneg/fabs on f32. |
| // fneg f64 => fneg f32:sub_even, fmov f32:sub_odd. |
| // fabs f64 => fabs f32:sub_even, fmov f32:sub_odd. |
| |
| // Note: in little-endian, the floating-point value is stored in the |
| // registers are in the opposite order, so the subreg with the sign |
| // bit is the highest-numbered (odd), rather than the |
| // lowest-numbered (even). |
| |
| SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32, |
| SrcReg64); |
| SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32, |
| SrcReg64); |
| |
| if (DAG.getDataLayout().isLittleEndian()) |
| Lo32 = DAG.getNode(opcode, dl, MVT::f32, Lo32); |
| else |
| Hi32 = DAG.getNode(opcode, dl, MVT::f32, Hi32); |
| |
| SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, |
| dl, MVT::f64), 0); |
| DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64, |
| DstReg64, Hi32); |
| DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64, |
| DstReg64, Lo32); |
| return DstReg64; |
| } |
| |
| // Lower a f128 load into two f64 loads. |
| static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG) |
| { |
| SDLoc dl(Op); |
| LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); |
| assert(LdNode->getOffset().isUndef() && "Unexpected node type"); |
| |
| Align Alignment = commonAlignment(LdNode->getOriginalAlign(), 8); |
| |
| SDValue Hi64 = |
| DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LdNode->getBasePtr(), |
| LdNode->getPointerInfo(), Alignment); |
| EVT addrVT = LdNode->getBasePtr().getValueType(); |
| SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, |
| LdNode->getBasePtr(), |
| DAG.getConstant(8, dl, addrVT)); |
| SDValue Lo64 = DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LoPtr, |
| LdNode->getPointerInfo().getWithOffset(8), |
| Alignment); |
| |
| SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); |
| SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); |
| |
| SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, |
| dl, MVT::f128); |
| InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, |
| MVT::f128, |
| SDValue(InFP128, 0), |
| Hi64, |
| SubRegEven); |
| InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, |
| MVT::f128, |
| SDValue(InFP128, 0), |
| Lo64, |
| SubRegOdd); |
| SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1), |
| SDValue(Lo64.getNode(), 1) }; |
| SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); |
| SDValue Ops[2] = {SDValue(InFP128,0), OutChain}; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| |
| static SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) |
| { |
| LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); |
| |
| EVT MemVT = LdNode->getMemoryVT(); |
| if (MemVT == MVT::f128) |
| return LowerF128Load(Op, DAG); |
| |
| return Op; |
| } |
| |
| // Lower a f128 store into two f64 stores. |
| static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) { |
| SDLoc dl(Op); |
| StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode()); |
| assert(StNode->getOffset().isUndef() && "Unexpected node type"); |
| |
| SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); |
| SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); |
| |
| SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, |
| dl, |
| MVT::f64, |
| StNode->getValue(), |
| SubRegEven); |
| SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, |
| dl, |
| MVT::f64, |
| StNode->getValue(), |
| SubRegOdd); |
| |
| Align Alignment = commonAlignment(StNode->getOriginalAlign(), 8); |
| |
| SDValue OutChains[2]; |
| OutChains[0] = |
| DAG.getStore(StNode->getChain(), dl, SDValue(Hi64, 0), |
| StNode->getBasePtr(), StNode->getPointerInfo(), |
| Alignment); |
| EVT addrVT = StNode->getBasePtr().getValueType(); |
| SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, |
| StNode->getBasePtr(), |
| DAG.getConstant(8, dl, addrVT)); |
| OutChains[1] = DAG.getStore(StNode->getChain(), dl, SDValue(Lo64, 0), LoPtr, |
| StNode->getPointerInfo().getWithOffset(8), |
| Alignment); |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); |
| } |
| |
| static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) |
| { |
| SDLoc dl(Op); |
| StoreSDNode *St = cast<StoreSDNode>(Op.getNode()); |
| |
| EVT MemVT = St->getMemoryVT(); |
| if (MemVT == MVT::f128) |
| return LowerF128Store(Op, DAG); |
| |
| if (MemVT == MVT::i64) { |
| // Custom handling for i64 stores: turn it into a bitcast and a |
| // v2i32 store. |
| SDValue Val = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, St->getValue()); |
| SDValue Chain = DAG.getStore( |
| St->getChain(), dl, Val, St->getBasePtr(), St->getPointerInfo(), |
| St->getOriginalAlign(), St->getMemOperand()->getFlags(), |
| St->getAAInfo()); |
| return Chain; |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue LowerFNEGorFABS(SDValue Op, SelectionDAG &DAG, bool isV9) { |
| assert((Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS) |
| && "invalid opcode"); |
| |
| SDLoc dl(Op); |
| |
| if (Op.getValueType() == MVT::f64) |
| return LowerF64Op(Op.getOperand(0), dl, DAG, Op.getOpcode()); |
| if (Op.getValueType() != MVT::f128) |
| return Op; |
| |
| // Lower fabs/fneg on f128 to fabs/fneg on f64 |
| // fabs/fneg f128 => fabs/fneg f64:sub_even64, fmov f64:sub_odd64 |
| // (As with LowerF64Op, on little-endian, we need to negate the odd |
| // subreg) |
| |
| SDValue SrcReg128 = Op.getOperand(0); |
| SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64, |
| SrcReg128); |
| SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64, |
| SrcReg128); |
| |
| if (DAG.getDataLayout().isLittleEndian()) { |
| if (isV9) |
| Lo64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Lo64); |
| else |
| Lo64 = LowerF64Op(Lo64, dl, DAG, Op.getOpcode()); |
| } else { |
| if (isV9) |
| Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64); |
| else |
| Hi64 = LowerF64Op(Hi64, dl, DAG, Op.getOpcode()); |
| } |
| |
| SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, |
| dl, MVT::f128), 0); |
| DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128, |
| DstReg128, Hi64); |
| DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128, |
| DstReg128, Lo64); |
| return DstReg128; |
| } |
| |
| static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { |
| |
| if (Op.getValueType() != MVT::i64) |
| return Op; |
| |
| SDLoc dl(Op); |
| SDValue Src1 = Op.getOperand(0); |
| SDValue Src1Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1); |
| SDValue Src1Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src1, |
| DAG.getConstant(32, dl, MVT::i64)); |
| Src1Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1Hi); |
| |
| SDValue Src2 = Op.getOperand(1); |
| SDValue Src2Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2); |
| SDValue Src2Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src2, |
| DAG.getConstant(32, dl, MVT::i64)); |
| Src2Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2Hi); |
| |
| |
| bool hasChain = false; |
| unsigned hiOpc = Op.getOpcode(); |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Invalid opcode"); |
| case ISD::ADDC: hiOpc = ISD::ADDE; break; |
| case ISD::ADDE: hasChain = true; break; |
| case ISD::SUBC: hiOpc = ISD::SUBE; break; |
| case ISD::SUBE: hasChain = true; break; |
| } |
| SDValue Lo; |
| SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Glue); |
| if (hasChain) { |
| Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo, |
| Op.getOperand(2)); |
| } else { |
| Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo); |
| } |
| SDValue Hi = DAG.getNode(hiOpc, dl, VTs, Src1Hi, Src2Hi, Lo.getValue(1)); |
| SDValue Carry = Hi.getValue(1); |
| |
| Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Lo); |
| Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Hi); |
| Hi = DAG.getNode(ISD::SHL, dl, MVT::i64, Hi, |
| DAG.getConstant(32, dl, MVT::i64)); |
| |
| SDValue Dst = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, Lo); |
| SDValue Ops[2] = { Dst, Carry }; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| |
| // Custom lower UMULO/SMULO for SPARC. This code is similar to ExpandNode() |
| // in LegalizeDAG.cpp except the order of arguments to the library function. |
| static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG, |
| const SparcTargetLowering &TLI) |
| { |
| unsigned opcode = Op.getOpcode(); |
| assert((opcode == ISD::UMULO || opcode == ISD::SMULO) && "Invalid Opcode."); |
| |
| bool isSigned = (opcode == ISD::SMULO); |
| EVT VT = MVT::i64; |
| EVT WideVT = MVT::i128; |
| SDLoc dl(Op); |
| SDValue LHS = Op.getOperand(0); |
| |
| if (LHS.getValueType() != VT) |
| return Op; |
| |
| SDValue ShiftAmt = DAG.getConstant(63, dl, VT); |
| |
| SDValue RHS = Op.getOperand(1); |
| SDValue HiLHS, HiRHS; |
| if (isSigned) { |
| HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, ShiftAmt); |
| HiRHS = DAG.getNode(ISD::SRA, dl, MVT::i64, RHS, ShiftAmt); |
| } else { |
| HiLHS = DAG.getConstant(0, dl, VT); |
| HiRHS = DAG.getConstant(0, dl, MVT::i64); |
| } |
| |
| SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; |
| |
| TargetLowering::MakeLibCallOptions CallOptions; |
| CallOptions.setSExt(isSigned); |
| SDValue MulResult = TLI.makeLibCall(DAG, |
| RTLIB::MUL_I128, WideVT, |
| Args, CallOptions, dl).first; |
| SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, |
| MulResult, DAG.getIntPtrConstant(0, dl)); |
| SDValue TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, |
| MulResult, DAG.getIntPtrConstant(1, dl)); |
| if (isSigned) { |
| SDValue Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); |
| TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, Tmp1, ISD::SETNE); |
| } else { |
| TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, DAG.getConstant(0, dl, VT), |
| ISD::SETNE); |
| } |
| // MulResult is a node with an illegal type. Because such things are not |
| // generally permitted during this phase of legalization, ensure that |
| // nothing is left using the node. The above EXTRACT_ELEMENT nodes should have |
| // been folded. |
| assert(MulResult->use_empty() && "Illegally typed node still in use!"); |
| |
| SDValue Ops[2] = { BottomHalf, TopHalf } ; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| |
| static SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) { |
| if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getSuccessOrdering())) { |
| // Expand with a fence. |
| return SDValue(); |
| } |
| |
| // Monotonic load/stores are legal. |
| return Op; |
| } |
| |
| SDValue SparcTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, |
| SelectionDAG &DAG) const { |
| unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| SDLoc dl(Op); |
| switch (IntNo) { |
| default: return SDValue(); // Don't custom lower most intrinsics. |
| case Intrinsic::thread_pointer: { |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| return DAG.getRegister(SP::G7, PtrVT); |
| } |
| } |
| } |
| |
| SDValue SparcTargetLowering:: |
| LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| |
| bool hasHardQuad = Subtarget->hasHardQuad(); |
| bool isV9 = Subtarget->isV9(); |
| bool is64Bit = Subtarget->is64Bit(); |
| |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Should not custom lower this!"); |
| |
| case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG, *this, |
| Subtarget); |
| case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG, |
| Subtarget); |
| case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); |
| case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); |
| case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); |
| case ISD::ConstantPool: return LowerConstantPool(Op, DAG); |
| case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG, *this, |
| hasHardQuad); |
| case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG, *this, |
| hasHardQuad); |
| case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG, *this, |
| hasHardQuad); |
| case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG, *this, |
| hasHardQuad); |
| case ISD::BR_CC: |
| return LowerBR_CC(Op, DAG, *this, hasHardQuad, isV9); |
| case ISD::SELECT_CC: |
| return LowerSELECT_CC(Op, DAG, *this, hasHardQuad, isV9, is64Bit); |
| case ISD::VASTART: return LowerVASTART(Op, DAG, *this); |
| case ISD::VAARG: return LowerVAARG(Op, DAG); |
| case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG, |
| Subtarget); |
| |
| case ISD::LOAD: return LowerLOAD(Op, DAG); |
| case ISD::STORE: return LowerSTORE(Op, DAG); |
| case ISD::FADD: return LowerF128Op(Op, DAG, |
| getLibcallName(RTLIB::ADD_F128), 2); |
| case ISD::FSUB: return LowerF128Op(Op, DAG, |
| getLibcallName(RTLIB::SUB_F128), 2); |
| case ISD::FMUL: return LowerF128Op(Op, DAG, |
| getLibcallName(RTLIB::MUL_F128), 2); |
| case ISD::FDIV: return LowerF128Op(Op, DAG, |
| getLibcallName(RTLIB::DIV_F128), 2); |
| case ISD::FSQRT: return LowerF128Op(Op, DAG, |
| getLibcallName(RTLIB::SQRT_F128),1); |
| case ISD::FABS: |
| case ISD::FNEG: return LowerFNEGorFABS(Op, DAG, isV9); |
| case ISD::FP_EXTEND: return LowerF128_FPEXTEND(Op, DAG, *this); |
| case ISD::FP_ROUND: return LowerF128_FPROUND(Op, DAG, *this); |
| case ISD::ADDC: |
| case ISD::ADDE: |
| case ISD::SUBC: |
| case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); |
| case ISD::UMULO: |
| case ISD::SMULO: return LowerUMULO_SMULO(Op, DAG, *this); |
| case ISD::ATOMIC_LOAD: |
| case ISD::ATOMIC_STORE: return LowerATOMIC_LOAD_STORE(Op, DAG); |
| case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); |
| } |
| } |
| |
| SDValue SparcTargetLowering::bitcastConstantFPToInt(ConstantFPSDNode *C, |
| const SDLoc &DL, |
| SelectionDAG &DAG) const { |
| APInt V = C->getValueAPF().bitcastToAPInt(); |
| SDValue Lo = DAG.getConstant(V.zextOrTrunc(32), DL, MVT::i32); |
| SDValue Hi = DAG.getConstant(V.lshr(32).zextOrTrunc(32), DL, MVT::i32); |
| if (DAG.getDataLayout().isLittleEndian()) |
| std::swap(Lo, Hi); |
| return DAG.getBuildVector(MVT::v2i32, DL, {Hi, Lo}); |
| } |
| |
| SDValue SparcTargetLowering::PerformBITCASTCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SDLoc dl(N); |
| SDValue Src = N->getOperand(0); |
| |
| if (isa<ConstantFPSDNode>(Src) && N->getSimpleValueType(0) == MVT::v2i32 && |
| Src.getSimpleValueType() == MVT::f64) |
| return bitcastConstantFPToInt(cast<ConstantFPSDNode>(Src), dl, DCI.DAG); |
| |
| return SDValue(); |
| } |
| |
| SDValue SparcTargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| switch (N->getOpcode()) { |
| default: |
| break; |
| case ISD::BITCAST: |
| return PerformBITCASTCombine(N, DCI); |
| } |
| return SDValue(); |
| } |
| |
| MachineBasicBlock * |
| SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| switch (MI.getOpcode()) { |
| default: llvm_unreachable("Unknown SELECT_CC!"); |
| case SP::SELECT_CC_Int_ICC: |
| case SP::SELECT_CC_FP_ICC: |
| case SP::SELECT_CC_DFP_ICC: |
| case SP::SELECT_CC_QFP_ICC: |
| if (Subtarget->isV9()) |
| return expandSelectCC(MI, BB, SP::BPICC); |
| return expandSelectCC(MI, BB, SP::BCOND); |
| case SP::SELECT_CC_Int_XCC: |
| case SP::SELECT_CC_FP_XCC: |
| case SP::SELECT_CC_DFP_XCC: |
| case SP::SELECT_CC_QFP_XCC: |
| return expandSelectCC(MI, BB, SP::BPXCC); |
| case SP::SELECT_CC_Int_FCC: |
| case SP::SELECT_CC_FP_FCC: |
| case SP::SELECT_CC_DFP_FCC: |
| case SP::SELECT_CC_QFP_FCC: |
| if (Subtarget->isV9()) |
| return expandSelectCC(MI, BB, SP::FBCOND_V9); |
| return expandSelectCC(MI, BB, SP::FBCOND); |
| } |
| } |
| |
| MachineBasicBlock * |
| SparcTargetLowering::expandSelectCC(MachineInstr &MI, MachineBasicBlock *BB, |
| unsigned BROpcode) const { |
| const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); |
| DebugLoc dl = MI.getDebugLoc(); |
| unsigned CC = (SPCC::CondCodes)MI.getOperand(3).getImm(); |
| |
| // To "insert" a SELECT_CC instruction, we actually have to insert the |
| // triangle control-flow pattern. The incoming instruction knows the |
| // destination vreg to set, the condition code register to branch on, the |
| // true/false values to select between, and the condition code for the branch. |
| // |
| // We produce the following control flow: |
| // ThisMBB |
| // | \ |
| // | IfFalseMBB |
| // | / |
| // SinkMBB |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator It = ++BB->getIterator(); |
| |
| MachineBasicBlock *ThisMBB = BB; |
| MachineFunction *F = BB->getParent(); |
| MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| F->insert(It, IfFalseMBB); |
| F->insert(It, SinkMBB); |
| |
| // Transfer the remainder of ThisMBB and its successor edges to SinkMBB. |
| SinkMBB->splice(SinkMBB->begin(), ThisMBB, |
| std::next(MachineBasicBlock::iterator(MI)), ThisMBB->end()); |
| SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB); |
| |
| // Set the new successors for ThisMBB. |
| ThisMBB->addSuccessor(IfFalseMBB); |
| ThisMBB->addSuccessor(SinkMBB); |
| |
| BuildMI(ThisMBB, dl, TII.get(BROpcode)) |
| .addMBB(SinkMBB) |
| .addImm(CC); |
| |
| // IfFalseMBB just falls through to SinkMBB. |
| IfFalseMBB->addSuccessor(SinkMBB); |
| |
| // %Result = phi [ %TrueValue, ThisMBB ], [ %FalseValue, IfFalseMBB ] |
| BuildMI(*SinkMBB, SinkMBB->begin(), dl, TII.get(SP::PHI), |
| MI.getOperand(0).getReg()) |
| .addReg(MI.getOperand(1).getReg()) |
| .addMBB(ThisMBB) |
| .addReg(MI.getOperand(2).getReg()) |
| .addMBB(IfFalseMBB); |
| |
| MI.eraseFromParent(); // The pseudo instruction is gone now. |
| return SinkMBB; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Sparc Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| /// getConstraintType - Given a constraint letter, return the type of |
| /// constraint it is for this target. |
| SparcTargetLowering::ConstraintType |
| SparcTargetLowering::getConstraintType(StringRef Constraint) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| default: break; |
| case 'r': |
| case 'f': |
| case 'e': |
| return C_RegisterClass; |
| case 'I': // SIMM13 |
| return C_Immediate; |
| } |
| } |
| |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| TargetLowering::ConstraintWeight SparcTargetLowering:: |
| getSingleConstraintMatchWeight(AsmOperandInfo &info, |
| const char *constraint) const { |
| ConstraintWeight weight = CW_Invalid; |
| Value *CallOperandVal = info.CallOperandVal; |
| // If we don't have a value, we can't do a match, |
| // but allow it at the lowest weight. |
| if (!CallOperandVal) |
| return CW_Default; |
| |
| // Look at the constraint type. |
| switch (*constraint) { |
| default: |
| weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); |
| break; |
| case 'I': // SIMM13 |
| if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) { |
| if (isInt<13>(C->getSExtValue())) |
| weight = CW_Constant; |
| } |
| break; |
| } |
| return weight; |
| } |
| |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops |
| /// vector. If it is invalid, don't add anything to Ops. |
| void SparcTargetLowering:: |
| LowerAsmOperandForConstraint(SDValue Op, |
| std::string &Constraint, |
| std::vector<SDValue> &Ops, |
| SelectionDAG &DAG) const { |
| SDValue Result; |
| |
| // Only support length 1 constraints for now. |
| if (Constraint.length() > 1) |
| return; |
| |
| char ConstraintLetter = Constraint[0]; |
| switch (ConstraintLetter) { |
| default: break; |
| case 'I': |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (isInt<13>(C->getSExtValue())) { |
| Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), |
| Op.getValueType()); |
| break; |
| } |
| return; |
| } |
| } |
| |
| if (Result.getNode()) { |
| Ops.push_back(Result); |
| return; |
| } |
| TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass *> |
| SparcTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, |
| StringRef Constraint, |
| MVT VT) const { |
| if (Constraint.empty()) |
| return std::make_pair(0U, nullptr); |
| |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'r': |
| if (VT == MVT::v2i32) |
| return std::make_pair(0U, &SP::IntPairRegClass); |
| else if (Subtarget->is64Bit()) |
| return std::make_pair(0U, &SP::I64RegsRegClass); |
| else |
| return std::make_pair(0U, &SP::IntRegsRegClass); |
| case 'f': |
| if (VT == MVT::f32 || VT == MVT::i32) |
| return std::make_pair(0U, &SP::FPRegsRegClass); |
| else if (VT == MVT::f64 || VT == MVT::i64) |
| return std::make_pair(0U, &SP::LowDFPRegsRegClass); |
| else if (VT == MVT::f128) |
| return std::make_pair(0U, &SP::LowQFPRegsRegClass); |
| // This will generate an error message |
| return std::make_pair(0U, nullptr); |
| case 'e': |
| if (VT == MVT::f32 || VT == MVT::i32) |
| return std::make_pair(0U, &SP::FPRegsRegClass); |
| else if (VT == MVT::f64 || VT == MVT::i64 ) |
| return std::make_pair(0U, &SP::DFPRegsRegClass); |
| else if (VT == MVT::f128) |
| return std::make_pair(0U, &SP::QFPRegsRegClass); |
| // This will generate an error message |
| return std::make_pair(0U, nullptr); |
| } |
| } |
| |
| if (Constraint.front() != '{') |
| return std::make_pair(0U, nullptr); |
| |
| assert(Constraint.back() == '}' && "Not a brace enclosed constraint?"); |
| StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); |
| if (RegName.empty()) |
| return std::make_pair(0U, nullptr); |
| |
| unsigned long long RegNo; |
| // Handle numbered register aliases. |
| if (RegName[0] == 'r' && |
| getAsUnsignedInteger(RegName.begin() + 1, 10, RegNo)) { |
| // r0-r7 -> g0-g7 |
| // r8-r15 -> o0-o7 |
| // r16-r23 -> l0-l7 |
| // r24-r31 -> i0-i7 |
| if (RegNo > 31) |
| return std::make_pair(0U, nullptr); |
| const char RegTypes[] = {'g', 'o', 'l', 'i'}; |
| char RegType = RegTypes[RegNo / 8]; |
| char RegIndex = '0' + (RegNo % 8); |
| char Tmp[] = {'{', RegType, RegIndex, '}', 0}; |
| return getRegForInlineAsmConstraint(TRI, Tmp, VT); |
| } |
| |
| // Rewrite the fN constraint according to the value type if needed. |
| if (VT != MVT::f32 && VT != MVT::Other && RegName[0] == 'f' && |
| getAsUnsignedInteger(RegName.begin() + 1, 10, RegNo)) { |
| if (VT == MVT::f64 && (RegNo % 2 == 0)) { |
| return getRegForInlineAsmConstraint( |
| TRI, StringRef("{d" + utostr(RegNo / 2) + "}"), VT); |
| } else if (VT == MVT::f128 && (RegNo % 4 == 0)) { |
| return getRegForInlineAsmConstraint( |
| TRI, StringRef("{q" + utostr(RegNo / 4) + "}"), VT); |
| } else { |
| return std::make_pair(0U, nullptr); |
| } |
| } |
| |
| auto ResultPair = |
| TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| if (!ResultPair.second) |
| return std::make_pair(0U, nullptr); |
| |
| // Force the use of I64Regs over IntRegs for 64-bit values. |
| if (Subtarget->is64Bit() && VT == MVT::i64) { |
| assert(ResultPair.second == &SP::IntRegsRegClass && |
| "Unexpected register class"); |
| return std::make_pair(ResultPair.first, &SP::I64RegsRegClass); |
| } |
| |
| return ResultPair; |
| } |
| |
| bool |
| SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { |
| // The Sparc target isn't yet aware of offsets. |
| return false; |
| } |
| |
| void SparcTargetLowering::ReplaceNodeResults(SDNode *N, |
| SmallVectorImpl<SDValue>& Results, |
| SelectionDAG &DAG) const { |
| |
| SDLoc dl(N); |
| |
| RTLIB::Libcall libCall = RTLIB::UNKNOWN_LIBCALL; |
| |
| switch (N->getOpcode()) { |
| default: |
| llvm_unreachable("Do not know how to custom type legalize this operation!"); |
| |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| // Custom lower only if it involves f128 or i64. |
| if (N->getOperand(0).getValueType() != MVT::f128 |
| || N->getValueType(0) != MVT::i64) |
| return; |
| libCall = ((N->getOpcode() == ISD::FP_TO_SINT) |
| ? RTLIB::FPTOSINT_F128_I64 |
| : RTLIB::FPTOUINT_F128_I64); |
| |
| Results.push_back(LowerF128Op(SDValue(N, 0), |
| DAG, |
| getLibcallName(libCall), |
| 1)); |
| return; |
| case ISD::READCYCLECOUNTER: { |
| assert(Subtarget->hasLeonCycleCounter()); |
| SDValue Lo = DAG.getCopyFromReg(N->getOperand(0), dl, SP::ASR23, MVT::i32); |
| SDValue Hi = DAG.getCopyFromReg(Lo, dl, SP::G0, MVT::i32); |
| SDValue Ops[] = { Lo, Hi }; |
| SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops); |
| Results.push_back(Pair); |
| Results.push_back(N->getOperand(0)); |
| return; |
| } |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| // Custom lower only if it involves f128 or i64. |
| if (N->getValueType(0) != MVT::f128 |
| || N->getOperand(0).getValueType() != MVT::i64) |
| return; |
| |
| libCall = ((N->getOpcode() == ISD::SINT_TO_FP) |
| ? RTLIB::SINTTOFP_I64_F128 |
| : RTLIB::UINTTOFP_I64_F128); |
| |
| Results.push_back(LowerF128Op(SDValue(N, 0), |
| DAG, |
| getLibcallName(libCall), |
| 1)); |
| return; |
| case ISD::LOAD: { |
| LoadSDNode *Ld = cast<LoadSDNode>(N); |
| // Custom handling only for i64: turn i64 load into a v2i32 load, |
| // and a bitcast. |
| if (Ld->getValueType(0) != MVT::i64 || Ld->getMemoryVT() != MVT::i64) |
| return; |
| |
| SDLoc dl(N); |
| SDValue LoadRes = DAG.getExtLoad( |
| Ld->getExtensionType(), dl, MVT::v2i32, Ld->getChain(), |
| Ld->getBasePtr(), Ld->getPointerInfo(), MVT::v2i32, |
| Ld->getOriginalAlign(), Ld->getMemOperand()->getFlags(), |
| Ld->getAAInfo()); |
| |
| SDValue Res = DAG.getNode(ISD::BITCAST, dl, MVT::i64, LoadRes); |
| Results.push_back(Res); |
| Results.push_back(LoadRes.getValue(1)); |
| return; |
| } |
| } |
| } |
| |
| // Override to enable LOAD_STACK_GUARD lowering on Linux. |
| bool SparcTargetLowering::useLoadStackGuardNode() const { |
| if (!Subtarget->isTargetLinux()) |
| return TargetLowering::useLoadStackGuardNode(); |
| return true; |
| } |
| |
| // Override to disable global variable loading on Linux. |
| void SparcTargetLowering::insertSSPDeclarations(Module &M) const { |
| if (!Subtarget->isTargetLinux()) |
| return TargetLowering::insertSSPDeclarations(M); |
| } |