blob: 8a84f55e33cdc9321d8b614c7df033f6eadd9b06 [file] [log] [blame]
//===-- HexagonRegisterInfo.cpp - Hexagon Register Information ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the Hexagon implementation of the TargetRegisterInfo
// class.
//
//===----------------------------------------------------------------------===//
#include "HexagonRegisterInfo.h"
#include "Hexagon.h"
#include "HexagonMachineFunctionInfo.h"
#include "HexagonSubtarget.h"
#include "HexagonTargetMachine.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveRegUnits.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/MC/MachineLocation.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#define GET_REGINFO_TARGET_DESC
#include "HexagonGenRegisterInfo.inc"
using namespace llvm;
static cl::opt<unsigned> FrameIndexSearchRange(
"hexagon-frame-index-search-range", cl::init(32), cl::Hidden,
cl::desc("Limit on instruction search range in frame index elimination"));
static cl::opt<unsigned> FrameIndexReuseLimit(
"hexagon-frame-index-reuse-limit", cl::init(~0), cl::Hidden,
cl::desc("Limit on the number of reused registers in frame index "
"elimination"));
HexagonRegisterInfo::HexagonRegisterInfo(unsigned HwMode)
: HexagonGenRegisterInfo(Hexagon::R31, 0/*DwarfFlavor*/, 0/*EHFlavor*/,
0/*PC*/, HwMode) {}
bool HexagonRegisterInfo::isEHReturnCalleeSaveReg(Register R) const {
return R == Hexagon::R0 || R == Hexagon::R1 || R == Hexagon::R2 ||
R == Hexagon::R3 || R == Hexagon::D0 || R == Hexagon::D1;
}
const MCPhysReg *
HexagonRegisterInfo::getCallerSavedRegs(const MachineFunction *MF,
const TargetRegisterClass *RC) const {
using namespace Hexagon;
static const MCPhysReg Int32[] = {
R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, 0
};
static const MCPhysReg Int64[] = {
D0, D1, D2, D3, D4, D5, D6, D7, 0
};
static const MCPhysReg Pred[] = {
P0, P1, P2, P3, 0
};
static const MCPhysReg VecSgl[] = {
V0, V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16, V17, V18, V19, V20, V21, V22, V23, V24, V25, V26, V27,
V28, V29, V30, V31, 0
};
static const MCPhysReg VecDbl[] = {
W0, W1, W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, W12, W13, W14, W15, 0
};
static const MCPhysReg VecPred[] = {
Q0, Q1, Q2, Q3, 0
};
switch (RC->getID()) {
case IntRegsRegClassID:
return Int32;
case DoubleRegsRegClassID:
return Int64;
case PredRegsRegClassID:
return Pred;
case HvxVRRegClassID:
return VecSgl;
case HvxWRRegClassID:
return VecDbl;
case HvxQRRegClassID:
return VecPred;
default:
break;
}
static const MCPhysReg Empty[] = { 0 };
#ifndef NDEBUG
dbgs() << "Register class: " << getRegClassName(RC) << "\n";
#endif
llvm_unreachable("Unexpected register class");
return Empty;
}
const MCPhysReg *
HexagonRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
static const MCPhysReg CalleeSavedRegsV3[] = {
Hexagon::R16, Hexagon::R17, Hexagon::R18, Hexagon::R19,
Hexagon::R20, Hexagon::R21, Hexagon::R22, Hexagon::R23,
Hexagon::R24, Hexagon::R25, Hexagon::R26, Hexagon::R27, 0
};
// Functions that contain a call to __builtin_eh_return also save the first 4
// parameter registers.
static const MCPhysReg CalleeSavedRegsV3EHReturn[] = {
Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3,
Hexagon::R16, Hexagon::R17, Hexagon::R18, Hexagon::R19,
Hexagon::R20, Hexagon::R21, Hexagon::R22, Hexagon::R23,
Hexagon::R24, Hexagon::R25, Hexagon::R26, Hexagon::R27, 0
};
bool HasEHReturn = MF->getInfo<HexagonMachineFunctionInfo>()->hasEHReturn();
return HasEHReturn ? CalleeSavedRegsV3EHReturn : CalleeSavedRegsV3;
}
const uint32_t *HexagonRegisterInfo::getCallPreservedMask(
const MachineFunction &MF, CallingConv::ID) const {
return HexagonCSR_RegMask;
}
BitVector HexagonRegisterInfo::getReservedRegs(const MachineFunction &MF)
const {
BitVector Reserved(getNumRegs());
Reserved.set(Hexagon::R29);
Reserved.set(Hexagon::R30);
Reserved.set(Hexagon::R31);
Reserved.set(Hexagon::VTMP);
// Guest registers.
Reserved.set(Hexagon::GELR); // G0
Reserved.set(Hexagon::GSR); // G1
Reserved.set(Hexagon::GOSP); // G2
Reserved.set(Hexagon::G3); // G3
// Control registers.
Reserved.set(Hexagon::SA0); // C0
Reserved.set(Hexagon::LC0); // C1
Reserved.set(Hexagon::SA1); // C2
Reserved.set(Hexagon::LC1); // C3
Reserved.set(Hexagon::P3_0); // C4
Reserved.set(Hexagon::USR); // C8
Reserved.set(Hexagon::PC); // C9
Reserved.set(Hexagon::UGP); // C10
Reserved.set(Hexagon::GP); // C11
Reserved.set(Hexagon::CS0); // C12
Reserved.set(Hexagon::CS1); // C13
Reserved.set(Hexagon::UPCYCLELO); // C14
Reserved.set(Hexagon::UPCYCLEHI); // C15
Reserved.set(Hexagon::FRAMELIMIT); // C16
Reserved.set(Hexagon::FRAMEKEY); // C17
Reserved.set(Hexagon::PKTCOUNTLO); // C18
Reserved.set(Hexagon::PKTCOUNTHI); // C19
Reserved.set(Hexagon::UTIMERLO); // C30
Reserved.set(Hexagon::UTIMERHI); // C31
// Out of the control registers, only C8 is explicitly defined in
// HexagonRegisterInfo.td. If others are defined, make sure to add
// them here as well.
Reserved.set(Hexagon::C8);
Reserved.set(Hexagon::USR_OVF);
// Leveraging these registers will require more work to recognize
// the new semantics posed, Hi/LoVec patterns, etc.
// Note well: if enabled, they should be restricted to only
// where `HST.useHVXOps() && HST.hasV67Ops()` is true.
for (auto Reg : Hexagon_MC::GetVectRegRev())
Reserved.set(Reg);
if (MF.getSubtarget<HexagonSubtarget>().hasReservedR19())
Reserved.set(Hexagon::R19);
Register AP =
MF.getInfo<HexagonMachineFunctionInfo>()->getStackAlignBaseReg();
if (AP.isValid())
Reserved.set(AP);
for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x))
markSuperRegs(Reserved, x);
return Reserved;
}
bool HexagonRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
int SPAdj, unsigned FIOp,
RegScavenger *RS) const {
static unsigned ReuseCount = 0;
//
// Hexagon_TODO: Do we need to enforce this for Hexagon?
assert(SPAdj == 0 && "Unexpected");
MachineInstr &MI = *II;
MachineBasicBlock &MB = *MI.getParent();
MachineFunction &MF = *MB.getParent();
auto &HST = MF.getSubtarget<HexagonSubtarget>();
auto &HII = *HST.getInstrInfo();
auto &HFI = *HST.getFrameLowering();
Register BP;
int FI = MI.getOperand(FIOp).getIndex();
// Select the base pointer (BP) and calculate the actual offset from BP
// to the beginning of the object at index FI.
int Offset = HFI.getFrameIndexReference(MF, FI, BP).getFixed();
// Add the offset from the instruction.
int RealOffset = Offset + MI.getOperand(FIOp+1).getImm();
unsigned Opc = MI.getOpcode();
switch (Opc) {
case Hexagon::PS_fia:
MI.setDesc(HII.get(Hexagon::A2_addi));
MI.getOperand(FIOp).ChangeToImmediate(RealOffset);
MI.removeOperand(FIOp+1);
return false;
case Hexagon::PS_fi:
// Set up the instruction for updating below.
MI.setDesc(HII.get(Hexagon::A2_addi));
break;
}
if (!HII.isValidOffset(Opc, RealOffset, this)) {
// If the offset is not valid, calculate the address in a temporary
// register and use it with offset 0.
int InstOffset = 0;
// The actual base register (BP) is typically shared between many
// instructions where frame indices are being replaced. In scalar
// instructions the offset range is large, and the need for an extra
// add instruction is infrequent. Vector loads/stores, however, have
// a much smaller offset range: [-8, 7), or #s4. In those cases it
// makes sense to "standardize" the immediate in the "addi" instruction
// so that multiple loads/stores could be based on it.
bool IsPair = false;
switch (MI.getOpcode()) {
// All of these instructions have the same format: base+#s4.
case Hexagon::PS_vloadrw_ai:
case Hexagon::PS_vloadrw_nt_ai:
case Hexagon::PS_vstorerw_ai:
case Hexagon::PS_vstorerw_nt_ai:
IsPair = true;
[[fallthrough]];
case Hexagon::PS_vloadrv_ai:
case Hexagon::PS_vloadrv_nt_ai:
case Hexagon::PS_vstorerv_ai:
case Hexagon::PS_vstorerv_nt_ai:
case Hexagon::V6_vL32b_ai:
case Hexagon::V6_vS32b_ai: {
unsigned HwLen = HST.getVectorLength();
if (RealOffset % HwLen == 0) {
int VecOffset = RealOffset / HwLen;
// Rewrite the offset as "base + [-8, 7)".
VecOffset += 8;
// Pairs are expanded into two instructions: make sure that both
// can use the same base (i.e. VecOffset+1 is not a different
// multiple of 16 than VecOffset).
if (!IsPair || (VecOffset + 1) % 16 != 0) {
RealOffset = (VecOffset & -16) * HwLen;
InstOffset = (VecOffset % 16 - 8) * HwLen;
}
}
}
}
// Search backwards in the block for "Reg = A2_addi BP, RealOffset".
// This will give us a chance to avoid creating a new register.
Register ReuseBP;
if (ReuseCount < FrameIndexReuseLimit) {
unsigned SearchCount = 0, SearchRange = FrameIndexSearchRange;
SmallSet<Register,2> SeenVRegs;
bool PassedCall = false;
LiveRegUnits Defs(*this), Uses(*this);
for (auto I = std::next(II.getReverse()), E = MB.rend(); I != E; ++I) {
if (SearchCount == SearchRange)
break;
++SearchCount;
const MachineInstr &BI = *I;
LiveRegUnits::accumulateUsedDefed(BI, Defs, Uses, this);
PassedCall |= BI.isCall();
for (const MachineOperand &Op : BI.operands()) {
if (SeenVRegs.size() > 1)
break;
if (Op.isReg() && Op.getReg().isVirtual())
SeenVRegs.insert(Op.getReg());
}
if (BI.getOpcode() != Hexagon::A2_addi)
continue;
if (BI.getOperand(1).getReg() != BP)
continue;
const auto &Op2 = BI.getOperand(2);
if (!Op2.isImm() || Op2.getImm() != RealOffset)
continue;
Register R = BI.getOperand(0).getReg();
if (R.isPhysical()) {
if (Defs.available(R))
ReuseBP = R;
} else if (R.isVirtual()) {
// Extending a range of a virtual register can be dangerous,
// since the scavenger will need to find a physical register
// for it. Avoid extending the range past a function call,
// and avoid overlapping it with another virtual register.
if (!PassedCall && SeenVRegs.size() <= 1)
ReuseBP = R;
}
break;
}
if (ReuseBP)
++ReuseCount;
}
auto &MRI = MF.getRegInfo();
if (!ReuseBP) {
ReuseBP = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
const DebugLoc &DL = MI.getDebugLoc();
BuildMI(MB, II, DL, HII.get(Hexagon::A2_addi), ReuseBP)
.addReg(BP)
.addImm(RealOffset);
}
BP = ReuseBP;
RealOffset = InstOffset;
}
MI.getOperand(FIOp).ChangeToRegister(BP, false, false, false);
MI.getOperand(FIOp+1).ChangeToImmediate(RealOffset);
return false;
}
bool HexagonRegisterInfo::shouldCoalesce(MachineInstr *MI,
const TargetRegisterClass *SrcRC, unsigned SubReg,
const TargetRegisterClass *DstRC, unsigned DstSubReg,
const TargetRegisterClass *NewRC, LiveIntervals &LIS) const {
// Coalescing will extend the live interval of the destination register.
// If the destination register is a vector pair, avoid introducing function
// calls into the interval, since it could result in a spilling of a pair
// instead of a single vector.
MachineFunction &MF = *MI->getParent()->getParent();
const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>();
if (!HST.useHVXOps() || NewRC->getID() != Hexagon::HvxWRRegClass.getID())
return true;
bool SmallSrc = SrcRC->getID() == Hexagon::HvxVRRegClass.getID();
bool SmallDst = DstRC->getID() == Hexagon::HvxVRRegClass.getID();
if (!SmallSrc && !SmallDst)
return true;
Register DstReg = MI->getOperand(0).getReg();
Register SrcReg = MI->getOperand(1).getReg();
const SlotIndexes &Indexes = *LIS.getSlotIndexes();
auto HasCall = [&Indexes] (const LiveInterval::Segment &S) {
for (SlotIndex I = S.start.getBaseIndex(), E = S.end.getBaseIndex();
I != E; I = I.getNextIndex()) {
if (const MachineInstr *MI = Indexes.getInstructionFromIndex(I))
if (MI->isCall())
return true;
}
return false;
};
if (SmallSrc == SmallDst) {
// Both must be true, because the case for both being false was
// checked earlier. Both registers will be coalesced into a register
// of a wider class (HvxWR), and we don't want its live range to
// span over calls.
return !any_of(LIS.getInterval(DstReg), HasCall) &&
!any_of(LIS.getInterval(SrcReg), HasCall);
}
// If one register is large (HvxWR) and the other is small (HvxVR), then
// coalescing is ok if the large is already live across a function call,
// or if the small one is not.
Register SmallReg = SmallSrc ? SrcReg : DstReg;
Register LargeReg = SmallSrc ? DstReg : SrcReg;
return any_of(LIS.getInterval(LargeReg), HasCall) ||
!any_of(LIS.getInterval(SmallReg), HasCall);
}
Register HexagonRegisterInfo::getFrameRegister(const MachineFunction
&MF) const {
const HexagonFrameLowering *TFI = getFrameLowering(MF);
if (TFI->hasFP(MF))
return getFrameRegister();
return getStackRegister();
}
Register HexagonRegisterInfo::getFrameRegister() const {
return Hexagon::R30;
}
Register HexagonRegisterInfo::getStackRegister() const {
return Hexagon::R29;
}
unsigned HexagonRegisterInfo::getHexagonSubRegIndex(
const TargetRegisterClass &RC, unsigned GenIdx) const {
assert(GenIdx == Hexagon::ps_sub_lo || GenIdx == Hexagon::ps_sub_hi);
static const unsigned ISub[] = { Hexagon::isub_lo, Hexagon::isub_hi };
static const unsigned VSub[] = { Hexagon::vsub_lo, Hexagon::vsub_hi };
static const unsigned WSub[] = { Hexagon::wsub_lo, Hexagon::wsub_hi };
switch (RC.getID()) {
case Hexagon::CtrRegs64RegClassID:
case Hexagon::DoubleRegsRegClassID:
return ISub[GenIdx];
case Hexagon::HvxWRRegClassID:
return VSub[GenIdx];
case Hexagon::HvxVQRRegClassID:
return WSub[GenIdx];
}
if (const TargetRegisterClass *SuperRC = *RC.getSuperClasses())
return getHexagonSubRegIndex(*SuperRC, GenIdx);
llvm_unreachable("Invalid register class");
}
bool HexagonRegisterInfo::useFPForScavengingIndex(const MachineFunction &MF)
const {
return MF.getSubtarget<HexagonSubtarget>().getFrameLowering()->hasFP(MF);
}
const TargetRegisterClass *
HexagonRegisterInfo::getPointerRegClass(const MachineFunction &MF,
unsigned Kind) const {
return &Hexagon::IntRegsRegClass;
}
Register HexagonRegisterInfo::getFirstCallerSavedNonParamReg() const {
return Hexagon::R6;
}