blob: 245ed812ae9e4052b61cef7c2c8e67aa6e547b1a [file] [log] [blame]
//===-- AArch64Subtarget.cpp - AArch64 Subtarget Information ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AArch64 specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//
#include "AArch64Subtarget.h"
#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "AArch64PBQPRegAlloc.h"
#include "AArch64TargetMachine.h"
#include "GISel/AArch64CallLowering.h"
#include "GISel/AArch64LegalizerInfo.h"
#include "GISel/AArch64RegisterBankInfo.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Support/AArch64TargetParser.h"
#include "llvm/Support/TargetParser.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-subtarget"
#define GET_SUBTARGETINFO_CTOR
#define GET_SUBTARGETINFO_TARGET_DESC
#include "AArch64GenSubtargetInfo.inc"
static cl::opt<bool>
EnableEarlyIfConvert("aarch64-early-ifcvt", cl::desc("Enable the early if "
"converter pass"), cl::init(true), cl::Hidden);
// If OS supports TBI, use this flag to enable it.
static cl::opt<bool>
UseAddressTopByteIgnored("aarch64-use-tbi", cl::desc("Assume that top byte of "
"an address is ignored"), cl::init(false), cl::Hidden);
static cl::opt<bool>
UseNonLazyBind("aarch64-enable-nonlazybind",
cl::desc("Call nonlazybind functions via direct GOT load"),
cl::init(false), cl::Hidden);
static cl::opt<bool> UseAA("aarch64-use-aa", cl::init(true),
cl::desc("Enable the use of AA during codegen."));
static cl::opt<unsigned> OverrideVectorInsertExtractBaseCost(
"aarch64-insert-extract-base-cost",
cl::desc("Base cost of vector insert/extract element"), cl::Hidden);
// Reserve a list of X# registers, so they are unavailable for register
// allocator, but can still be used as ABI requests, such as passing arguments
// to function call.
static cl::list<std::string>
ReservedRegsForRA("reserve-regs-for-regalloc", cl::desc("Reserve physical "
"registers, so they can't be used by register allocator. "
"Should only be used for testing register allocator."),
cl::CommaSeparated, cl::Hidden);
static cl::opt<bool>
ForceStreamingCompatibleSVE("force-streaming-compatible-sve",
cl::init(false), cl::Hidden);
unsigned AArch64Subtarget::getVectorInsertExtractBaseCost() const {
if (OverrideVectorInsertExtractBaseCost.getNumOccurrences() > 0)
return OverrideVectorInsertExtractBaseCost;
return VectorInsertExtractBaseCost;
}
AArch64Subtarget &AArch64Subtarget::initializeSubtargetDependencies(
StringRef FS, StringRef CPUString, StringRef TuneCPUString) {
// Determine default and user-specified characteristics
if (CPUString.empty())
CPUString = "generic";
if (TuneCPUString.empty())
TuneCPUString = CPUString;
ParseSubtargetFeatures(CPUString, TuneCPUString, FS);
initializeProperties();
return *this;
}
void AArch64Subtarget::initializeProperties() {
// Initialize CPU specific properties. We should add a tablegen feature for
// this in the future so we can specify it together with the subtarget
// features.
switch (ARMProcFamily) {
case Others:
break;
case Carmel:
CacheLineSize = 64;
break;
case CortexA35:
case CortexA53:
case CortexA55:
PrefFunctionLogAlignment = 4;
PrefLoopLogAlignment = 4;
MaxBytesForLoopAlignment = 8;
break;
case CortexA57:
MaxInterleaveFactor = 4;
PrefFunctionLogAlignment = 4;
PrefLoopLogAlignment = 4;
MaxBytesForLoopAlignment = 8;
break;
case CortexA65:
PrefFunctionLogAlignment = 3;
break;
case CortexA72:
case CortexA73:
case CortexA75:
PrefFunctionLogAlignment = 4;
PrefLoopLogAlignment = 4;
MaxBytesForLoopAlignment = 8;
break;
case CortexA76:
case CortexA77:
case CortexA78:
case CortexA78C:
case CortexR82:
case CortexX1:
case CortexX1C:
PrefFunctionLogAlignment = 4;
PrefLoopLogAlignment = 5;
MaxBytesForLoopAlignment = 16;
break;
case CortexA510:
PrefFunctionLogAlignment = 4;
VScaleForTuning = 1;
PrefLoopLogAlignment = 4;
MaxBytesForLoopAlignment = 8;
break;
case CortexA710:
case CortexA715:
case CortexX2:
case CortexX3:
PrefFunctionLogAlignment = 4;
VScaleForTuning = 1;
PrefLoopLogAlignment = 5;
MaxBytesForLoopAlignment = 16;
break;
case A64FX:
CacheLineSize = 256;
PrefFunctionLogAlignment = 3;
PrefLoopLogAlignment = 2;
MaxInterleaveFactor = 4;
PrefetchDistance = 128;
MinPrefetchStride = 1024;
MaxPrefetchIterationsAhead = 4;
VScaleForTuning = 4;
break;
case AppleA7:
case AppleA10:
case AppleA11:
case AppleA12:
case AppleA13:
case AppleA14:
case AppleA15:
case AppleA16:
CacheLineSize = 64;
PrefetchDistance = 280;
MinPrefetchStride = 2048;
MaxPrefetchIterationsAhead = 3;
switch (ARMProcFamily) {
case AppleA14:
case AppleA15:
case AppleA16:
MaxInterleaveFactor = 4;
break;
default:
break;
}
break;
case ExynosM3:
MaxInterleaveFactor = 4;
MaxJumpTableSize = 20;
PrefFunctionLogAlignment = 5;
PrefLoopLogAlignment = 4;
break;
case Falkor:
MaxInterleaveFactor = 4;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
CacheLineSize = 128;
PrefetchDistance = 820;
MinPrefetchStride = 2048;
MaxPrefetchIterationsAhead = 8;
break;
case Kryo:
MaxInterleaveFactor = 4;
VectorInsertExtractBaseCost = 2;
CacheLineSize = 128;
PrefetchDistance = 740;
MinPrefetchStride = 1024;
MaxPrefetchIterationsAhead = 11;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case NeoverseE1:
PrefFunctionLogAlignment = 3;
break;
case NeoverseN1:
PrefFunctionLogAlignment = 4;
PrefLoopLogAlignment = 5;
MaxBytesForLoopAlignment = 16;
break;
case NeoverseN2:
case NeoverseV2:
PrefFunctionLogAlignment = 4;
PrefLoopLogAlignment = 5;
MaxBytesForLoopAlignment = 16;
VScaleForTuning = 1;
break;
case NeoverseV1:
PrefFunctionLogAlignment = 4;
PrefLoopLogAlignment = 5;
MaxBytesForLoopAlignment = 16;
VScaleForTuning = 2;
break;
case Neoverse512TVB:
PrefFunctionLogAlignment = 4;
VScaleForTuning = 1;
MaxInterleaveFactor = 4;
break;
case Saphira:
MaxInterleaveFactor = 4;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case ThunderX2T99:
CacheLineSize = 64;
PrefFunctionLogAlignment = 3;
PrefLoopLogAlignment = 2;
MaxInterleaveFactor = 4;
PrefetchDistance = 128;
MinPrefetchStride = 1024;
MaxPrefetchIterationsAhead = 4;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case ThunderX:
case ThunderXT88:
case ThunderXT81:
case ThunderXT83:
CacheLineSize = 128;
PrefFunctionLogAlignment = 3;
PrefLoopLogAlignment = 2;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case TSV110:
CacheLineSize = 64;
PrefFunctionLogAlignment = 4;
PrefLoopLogAlignment = 2;
break;
case ThunderX3T110:
CacheLineSize = 64;
PrefFunctionLogAlignment = 4;
PrefLoopLogAlignment = 2;
MaxInterleaveFactor = 4;
PrefetchDistance = 128;
MinPrefetchStride = 1024;
MaxPrefetchIterationsAhead = 4;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case Ampere1:
case Ampere1A:
CacheLineSize = 64;
PrefFunctionLogAlignment = 6;
PrefLoopLogAlignment = 6;
MaxInterleaveFactor = 4;
break;
}
}
AArch64Subtarget::AArch64Subtarget(const Triple &TT, StringRef CPU,
StringRef TuneCPU, StringRef FS,
const TargetMachine &TM, bool LittleEndian,
unsigned MinSVEVectorSizeInBitsOverride,
unsigned MaxSVEVectorSizeInBitsOverride,
bool StreamingSVEModeDisabled)
: AArch64GenSubtargetInfo(TT, CPU, TuneCPU, FS),
ReserveXRegister(AArch64::GPR64commonRegClass.getNumRegs()),
ReserveXRegisterForRA(AArch64::GPR64commonRegClass.getNumRegs()),
CustomCallSavedXRegs(AArch64::GPR64commonRegClass.getNumRegs()),
IsLittle(LittleEndian),
StreamingSVEModeDisabled(StreamingSVEModeDisabled),
MinSVEVectorSizeInBits(MinSVEVectorSizeInBitsOverride),
MaxSVEVectorSizeInBits(MaxSVEVectorSizeInBitsOverride), TargetTriple(TT),
InstrInfo(initializeSubtargetDependencies(FS, CPU, TuneCPU)),
TLInfo(TM, *this) {
if (AArch64::isX18ReservedByDefault(TT))
ReserveXRegister.set(18);
CallLoweringInfo.reset(new AArch64CallLowering(*getTargetLowering()));
InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering()));
Legalizer.reset(new AArch64LegalizerInfo(*this));
auto *RBI = new AArch64RegisterBankInfo(*getRegisterInfo());
// FIXME: At this point, we can't rely on Subtarget having RBI.
// It's awkward to mix passing RBI and the Subtarget; should we pass
// TII/TRI as well?
InstSelector.reset(createAArch64InstructionSelector(
*static_cast<const AArch64TargetMachine *>(&TM), *this, *RBI));
RegBankInfo.reset(RBI);
auto TRI = getRegisterInfo();
StringSet<> ReservedRegNames;
ReservedRegNames.insert(ReservedRegsForRA.begin(), ReservedRegsForRA.end());
for (unsigned i = 0; i < 29; ++i) {
if (ReservedRegNames.count(TRI->getName(AArch64::X0 + i)))
ReserveXRegisterForRA.set(i);
}
// X30 is named LR, so we can't use TRI->getName to check X30.
if (ReservedRegNames.count("X30") || ReservedRegNames.count("LR"))
ReserveXRegisterForRA.set(30);
// X29 is named FP, so we can't use TRI->getName to check X29.
if (ReservedRegNames.count("X29") || ReservedRegNames.count("FP"))
ReserveXRegisterForRA.set(29);
}
const CallLowering *AArch64Subtarget::getCallLowering() const {
return CallLoweringInfo.get();
}
const InlineAsmLowering *AArch64Subtarget::getInlineAsmLowering() const {
return InlineAsmLoweringInfo.get();
}
InstructionSelector *AArch64Subtarget::getInstructionSelector() const {
return InstSelector.get();
}
const LegalizerInfo *AArch64Subtarget::getLegalizerInfo() const {
return Legalizer.get();
}
const RegisterBankInfo *AArch64Subtarget::getRegBankInfo() const {
return RegBankInfo.get();
}
/// Find the target operand flags that describe how a global value should be
/// referenced for the current subtarget.
unsigned
AArch64Subtarget::ClassifyGlobalReference(const GlobalValue *GV,
const TargetMachine &TM) const {
// MachO large model always goes via a GOT, simply to get a single 8-byte
// absolute relocation on all global addresses.
if (TM.getCodeModel() == CodeModel::Large && isTargetMachO())
return AArch64II::MO_GOT;
if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) {
if (GV->hasDLLImportStorageClass()) {
if (isWindowsArm64EC() && GV->getValueType()->isFunctionTy())
return AArch64II::MO_GOT | AArch64II::MO_DLLIMPORTAUX;
return AArch64II::MO_GOT | AArch64II::MO_DLLIMPORT;
}
if (getTargetTriple().isOSWindows())
return AArch64II::MO_GOT | AArch64II::MO_COFFSTUB;
return AArch64II::MO_GOT;
}
// The small code model's direct accesses use ADRP, which cannot
// necessarily produce the value 0 (if the code is above 4GB).
// Same for the tiny code model, where we have a pc relative LDR.
if ((useSmallAddressing() || TM.getCodeModel() == CodeModel::Tiny) &&
GV->hasExternalWeakLinkage())
return AArch64II::MO_GOT;
// References to tagged globals are marked with MO_NC | MO_TAGGED to indicate
// that their nominal addresses are tagged and outside of the code model. In
// AArch64ExpandPseudo::expandMI we emit an additional instruction to set the
// tag if necessary based on MO_TAGGED.
if (AllowTaggedGlobals && !isa<FunctionType>(GV->getValueType()))
return AArch64II::MO_NC | AArch64II::MO_TAGGED;
return AArch64II::MO_NO_FLAG;
}
unsigned AArch64Subtarget::classifyGlobalFunctionReference(
const GlobalValue *GV, const TargetMachine &TM) const {
// MachO large model always goes via a GOT, because we don't have the
// relocations available to do anything else..
if (TM.getCodeModel() == CodeModel::Large && isTargetMachO() &&
!GV->hasInternalLinkage())
return AArch64II::MO_GOT;
// NonLazyBind goes via GOT unless we know it's available locally.
auto *F = dyn_cast<Function>(GV);
if (UseNonLazyBind && F && F->hasFnAttribute(Attribute::NonLazyBind) &&
!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
return AArch64II::MO_GOT;
if (getTargetTriple().isOSWindows()) {
if (isWindowsArm64EC() && GV->getValueType()->isFunctionTy() &&
GV->hasDLLImportStorageClass()) {
// On Arm64EC, if we're calling a function directly, use MO_DLLIMPORT,
// not MO_DLLIMPORTAUX.
return AArch64II::MO_GOT | AArch64II::MO_DLLIMPORT;
}
// Use ClassifyGlobalReference for setting MO_DLLIMPORT/MO_COFFSTUB.
return ClassifyGlobalReference(GV, TM);
}
return AArch64II::MO_NO_FLAG;
}
void AArch64Subtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
unsigned NumRegionInstrs) const {
// LNT run (at least on Cyclone) showed reasonably significant gains for
// bi-directional scheduling. 253.perlbmk.
Policy.OnlyTopDown = false;
Policy.OnlyBottomUp = false;
// Enabling or Disabling the latency heuristic is a close call: It seems to
// help nearly no benchmark on out-of-order architectures, on the other hand
// it regresses register pressure on a few benchmarking.
Policy.DisableLatencyHeuristic = DisableLatencySchedHeuristic;
}
bool AArch64Subtarget::enableEarlyIfConversion() const {
return EnableEarlyIfConvert;
}
bool AArch64Subtarget::supportsAddressTopByteIgnored() const {
if (!UseAddressTopByteIgnored)
return false;
if (TargetTriple.isDriverKit())
return true;
if (TargetTriple.isiOS()) {
return TargetTriple.getiOSVersion() >= VersionTuple(8);
}
return false;
}
std::unique_ptr<PBQPRAConstraint>
AArch64Subtarget::getCustomPBQPConstraints() const {
return balanceFPOps() ? std::make_unique<A57ChainingConstraint>() : nullptr;
}
void AArch64Subtarget::mirFileLoaded(MachineFunction &MF) const {
// We usually compute max call frame size after ISel. Do the computation now
// if the .mir file didn't specify it. Note that this will probably give you
// bogus values after PEI has eliminated the callframe setup/destroy pseudo
// instructions, specify explicitly if you need it to be correct.
MachineFrameInfo &MFI = MF.getFrameInfo();
if (!MFI.isMaxCallFrameSizeComputed())
MFI.computeMaxCallFrameSize(MF);
}
bool AArch64Subtarget::useAA() const { return UseAA; }
bool AArch64Subtarget::forceStreamingCompatibleSVE() const {
if (ForceStreamingCompatibleSVE) {
assert(hasSVEorSME() && "Expected SVE to be available");
return hasSVEorSME();
}
return false;
}