| // Copyright 2016 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "VertexProcessor.hpp" |
| |
| #include "Pipeline/VertexProgram.hpp" |
| #include "Pipeline/VertexShader.hpp" |
| #include "Pipeline/PixelShader.hpp" |
| #include "Pipeline/Constants.hpp" |
| #include "System/Math.hpp" |
| #include "System/Debug.hpp" |
| |
| #include <string.h> |
| |
| namespace sw |
| { |
| bool precacheVertex = false; |
| |
| void VertexCache::clear() |
| { |
| for(int i = 0; i < 16; i++) |
| { |
| tag[i] = 0x80000000; |
| } |
| } |
| |
| unsigned int VertexProcessor::States::computeHash() |
| { |
| unsigned int *state = (unsigned int*)this; |
| unsigned int hash = 0; |
| |
| for(unsigned int i = 0; i < sizeof(States) / 4; i++) |
| { |
| hash ^= state[i]; |
| } |
| |
| return hash; |
| } |
| |
| VertexProcessor::State::State() |
| { |
| memset(this, 0, sizeof(State)); |
| } |
| |
| bool VertexProcessor::State::operator==(const State &state) const |
| { |
| if(hash != state.hash) |
| { |
| return false; |
| } |
| |
| return memcmp(static_cast<const States*>(this), static_cast<const States*>(&state), sizeof(States)) == 0; |
| } |
| |
| VertexProcessor::TransformFeedbackInfo::TransformFeedbackInfo() |
| { |
| buffer = nullptr; |
| offset = 0; |
| reg = 0; |
| row = 0; |
| col = 0; |
| stride = 0; |
| } |
| |
| VertexProcessor::UniformBufferInfo::UniformBufferInfo() |
| { |
| buffer = nullptr; |
| offset = 0; |
| } |
| |
| VertexProcessor::VertexProcessor(Context *context) : context(context) |
| { |
| routineCache = nullptr; |
| setRoutineCacheSize(1024); |
| } |
| |
| VertexProcessor::~VertexProcessor() |
| { |
| delete routineCache; |
| routineCache = nullptr; |
| } |
| |
| void VertexProcessor::setInputStream(int index, const Stream &stream) |
| { |
| context->input[index] = stream; |
| } |
| |
| void VertexProcessor::resetInputStreams() |
| { |
| for(int i = 0; i < MAX_VERTEX_INPUTS; i++) |
| { |
| context->input[i].defaults(); |
| } |
| } |
| |
| void VertexProcessor::setFloatConstant(unsigned int index, const float value[4]) |
| { |
| if(index < VERTEX_UNIFORM_VECTORS) |
| { |
| c[index][0] = value[0]; |
| c[index][1] = value[1]; |
| c[index][2] = value[2]; |
| c[index][3] = value[3]; |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setIntegerConstant(unsigned int index, const int integer[4]) |
| { |
| if(index < 16) |
| { |
| i[index][0] = integer[0]; |
| i[index][1] = integer[1]; |
| i[index][2] = integer[2]; |
| i[index][3] = integer[3]; |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setBooleanConstant(unsigned int index, int boolean) |
| { |
| if(index < 16) |
| { |
| b[index] = boolean != 0; |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setUniformBuffer(int index, sw::Resource* buffer, int offset) |
| { |
| uniformBufferInfo[index].buffer = buffer; |
| uniformBufferInfo[index].offset = offset; |
| } |
| |
| void VertexProcessor::lockUniformBuffers(byte** u, sw::Resource* uniformBuffers[]) |
| { |
| for(int i = 0; i < MAX_UNIFORM_BUFFER_BINDINGS; ++i) |
| { |
| u[i] = uniformBufferInfo[i].buffer ? static_cast<byte*>(uniformBufferInfo[i].buffer->lock(PUBLIC, PRIVATE)) + uniformBufferInfo[i].offset : nullptr; |
| uniformBuffers[i] = uniformBufferInfo[i].buffer; |
| } |
| } |
| |
| void VertexProcessor::setTransformFeedbackBuffer(int index, sw::Resource* buffer, int offset, unsigned int reg, unsigned int row, unsigned int col, unsigned int stride) |
| { |
| transformFeedbackInfo[index].buffer = buffer; |
| transformFeedbackInfo[index].offset = offset; |
| transformFeedbackInfo[index].reg = reg; |
| transformFeedbackInfo[index].row = row; |
| transformFeedbackInfo[index].col = col; |
| transformFeedbackInfo[index].stride = stride; |
| } |
| |
| void VertexProcessor::lockTransformFeedbackBuffers(byte** t, unsigned int* v, unsigned int* r, unsigned int* c, unsigned int* s, sw::Resource* transformFeedbackBuffers[]) |
| { |
| for(int i = 0; i < MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS; ++i) |
| { |
| t[i] = transformFeedbackInfo[i].buffer ? static_cast<byte*>(transformFeedbackInfo[i].buffer->lock(PUBLIC, PRIVATE)) + transformFeedbackInfo[i].offset : nullptr; |
| transformFeedbackBuffers[i] = transformFeedbackInfo[i].buffer; |
| v[i] = transformFeedbackInfo[i].reg; |
| r[i] = transformFeedbackInfo[i].row; |
| c[i] = transformFeedbackInfo[i].col; |
| s[i] = transformFeedbackInfo[i].stride; |
| } |
| } |
| |
| void VertexProcessor::setInstanceID(int instanceID) |
| { |
| context->instanceID = instanceID; |
| } |
| |
| void VertexProcessor::setTextureFilter(unsigned int sampler, FilterType textureFilter) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setTextureFilter(textureFilter); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setMipmapFilter(unsigned int sampler, MipmapType mipmapFilter) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setMipmapFilter(mipmapFilter); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setGatherEnable(unsigned int sampler, bool enable) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setGatherEnable(enable); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setAddressingModeU(unsigned int sampler, AddressingMode addressMode) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setAddressingModeU(addressMode); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setAddressingModeV(unsigned int sampler, AddressingMode addressMode) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setAddressingModeV(addressMode); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setAddressingModeW(unsigned int sampler, AddressingMode addressMode) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setAddressingModeW(addressMode); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setReadSRGB(unsigned int sampler, bool sRGB) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setReadSRGB(sRGB); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setMipmapLOD(unsigned int sampler, float bias) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setMipmapLOD(bias); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setBorderColor(unsigned int sampler, const Color<float> &borderColor) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setBorderColor(borderColor); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setMaxAnisotropy(unsigned int sampler, float maxAnisotropy) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setMaxAnisotropy(maxAnisotropy); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setHighPrecisionFiltering(unsigned int sampler, bool highPrecisionFiltering) |
| { |
| if(sampler < TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[sampler].setHighPrecisionFiltering(highPrecisionFiltering); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setSwizzleR(unsigned int sampler, SwizzleType swizzleR) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setSwizzleR(swizzleR); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setSwizzleG(unsigned int sampler, SwizzleType swizzleG) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setSwizzleG(swizzleG); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setSwizzleB(unsigned int sampler, SwizzleType swizzleB) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setSwizzleB(swizzleB); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setSwizzleA(unsigned int sampler, SwizzleType swizzleA) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setSwizzleA(swizzleA); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setCompareFunc(unsigned int sampler, CompareFunc compFunc) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setCompareFunc(compFunc); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setBaseLevel(unsigned int sampler, int baseLevel) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setBaseLevel(baseLevel); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setMaxLevel(unsigned int sampler, int maxLevel) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setMaxLevel(maxLevel); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setMinLod(unsigned int sampler, float minLod) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setMinLod(minLod); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setMaxLod(unsigned int sampler, float maxLod) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setMaxLod(maxLod); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setPointSizeMin(float pointSizeMin) |
| { |
| this->pointSizeMin = pointSizeMin; |
| } |
| |
| void VertexProcessor::setPointSizeMax(float pointSizeMax) |
| { |
| this->pointSizeMax = pointSizeMax; |
| } |
| |
| void VertexProcessor::setTransformFeedbackQueryEnabled(bool enable) |
| { |
| context->transformFeedbackQueryEnabled = enable; |
| } |
| |
| void VertexProcessor::enableTransformFeedback(uint64_t enable) |
| { |
| context->transformFeedbackEnabled = enable; |
| } |
| |
| void VertexProcessor::setRoutineCacheSize(int cacheSize) |
| { |
| delete routineCache; |
| routineCache = new RoutineCache<State>(clamp(cacheSize, 1, 65536), precacheVertex ? "sw-vertex" : 0); |
| } |
| |
| const VertexProcessor::State VertexProcessor::update(DrawType drawType) |
| { |
| State state; |
| |
| state.shaderID = context->vertexShader->getSerialID(); |
| |
| state.fixedFunction = !context->vertexShader && context->pixelShaderModel() < 0x0300; |
| state.textureSampling = context->vertexShader ? context->vertexShader->containsTextureSampling() : false; |
| state.positionRegister = context->vertexShader ? context->vertexShader->getPositionRegister() : Pos; |
| state.pointSizeRegister = context->vertexShader ? context->vertexShader->getPointSizeRegister() : Pts; |
| |
| state.multiSampling = context->getMultiSampleCount() > 1; |
| |
| state.transformFeedbackQueryEnabled = context->transformFeedbackQueryEnabled; |
| state.transformFeedbackEnabled = context->transformFeedbackEnabled; |
| |
| // Note: Quads aren't handled for verticesPerPrimitive, but verticesPerPrimitive is used for transform feedback, |
| // which is an OpenGL ES 3.0 feature, and OpenGL ES 3.0 doesn't support quads as a primitive type. |
| DrawType type = static_cast<DrawType>(static_cast<unsigned int>(drawType) & 0xF); |
| state.verticesPerPrimitive = 1 + (type >= DRAW_LINELIST) + (type >= DRAW_TRIANGLELIST); |
| |
| for(int i = 0; i < MAX_VERTEX_INPUTS; i++) |
| { |
| state.input[i].type = context->input[i].type; |
| state.input[i].count = context->input[i].count; |
| state.input[i].normalized = context->input[i].normalized; |
| state.input[i].attribType = context->vertexShader ? context->vertexShader->getAttribType(i) : SpirvShader::ATTRIBTYPE_FLOAT; |
| } |
| |
| for(unsigned int i = 0; i < VERTEX_TEXTURE_IMAGE_UNITS; i++) |
| { |
| if(context->vertexShader->usesSampler(i)) |
| { |
| state.sampler[i] = context->sampler[TEXTURE_IMAGE_UNITS + i].samplerState(); |
| } |
| } |
| |
| if(context->vertexShader) // FIXME: Also when pre-transformed? |
| { |
| for(int i = 0; i < MAX_VERTEX_OUTPUTS; i++) |
| { |
| state.output[i].xWrite = context->vertexShader->getOutput(i, 0).active(); |
| state.output[i].yWrite = context->vertexShader->getOutput(i, 1).active(); |
| state.output[i].zWrite = context->vertexShader->getOutput(i, 2).active(); |
| state.output[i].wWrite = context->vertexShader->getOutput(i, 3).active(); |
| } |
| } |
| |
| state.hash = state.computeHash(); |
| |
| return state; |
| } |
| |
| Routine *VertexProcessor::routine(const State &state) |
| { |
| Routine *routine = routineCache->query(state); |
| |
| if(!routine) // Create one |
| { |
| VertexRoutine *generator = new VertexProgram(state, context->vertexShader); |
| generator->generate(); |
| routine = (*generator)(L"VertexRoutine_%0.8X", state.shaderID); |
| delete generator; |
| |
| routineCache->add(state, routine); |
| } |
| |
| return routine; |
| } |
| } |