| //===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file This file implements the utility functions used by the GlobalISel |
| /// pipeline. |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/GlobalISel/Utils.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/StackProtector.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/IR/Constants.h" |
| |
| #define DEBUG_TYPE "globalisel-utils" |
| |
| using namespace llvm; |
| |
| unsigned llvm::constrainRegToClass(MachineRegisterInfo &MRI, |
| const TargetInstrInfo &TII, |
| const RegisterBankInfo &RBI, unsigned Reg, |
| const TargetRegisterClass &RegClass) { |
| if (!RBI.constrainGenericRegister(Reg, RegClass, MRI)) |
| return MRI.createVirtualRegister(&RegClass); |
| |
| return Reg; |
| } |
| |
| unsigned llvm::constrainOperandRegClass( |
| const MachineFunction &MF, const TargetRegisterInfo &TRI, |
| MachineRegisterInfo &MRI, const TargetInstrInfo &TII, |
| const RegisterBankInfo &RBI, MachineInstr &InsertPt, |
| const TargetRegisterClass &RegClass, const MachineOperand &RegMO, |
| unsigned OpIdx) { |
| Register Reg = RegMO.getReg(); |
| // Assume physical registers are properly constrained. |
| assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented"); |
| |
| unsigned ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass); |
| // If we created a new virtual register because the class is not compatible |
| // then create a copy between the new and the old register. |
| if (ConstrainedReg != Reg) { |
| MachineBasicBlock::iterator InsertIt(&InsertPt); |
| MachineBasicBlock &MBB = *InsertPt.getParent(); |
| if (RegMO.isUse()) { |
| BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(), |
| TII.get(TargetOpcode::COPY), ConstrainedReg) |
| .addReg(Reg); |
| } else { |
| assert(RegMO.isDef() && "Must be a definition"); |
| BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(), |
| TII.get(TargetOpcode::COPY), Reg) |
| .addReg(ConstrainedReg); |
| } |
| } |
| return ConstrainedReg; |
| } |
| |
| unsigned llvm::constrainOperandRegClass( |
| const MachineFunction &MF, const TargetRegisterInfo &TRI, |
| MachineRegisterInfo &MRI, const TargetInstrInfo &TII, |
| const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II, |
| const MachineOperand &RegMO, unsigned OpIdx) { |
| Register Reg = RegMO.getReg(); |
| // Assume physical registers are properly constrained. |
| assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented"); |
| |
| const TargetRegisterClass *RegClass = TII.getRegClass(II, OpIdx, &TRI, MF); |
| // Some of the target independent instructions, like COPY, may not impose any |
| // register class constraints on some of their operands: If it's a use, we can |
| // skip constraining as the instruction defining the register would constrain |
| // it. |
| |
| // We can't constrain unallocatable register classes, because we can't create |
| // virtual registers for these classes, so we need to let targets handled this |
| // case. |
| if (RegClass && !RegClass->isAllocatable()) |
| RegClass = TRI.getConstrainedRegClassForOperand(RegMO, MRI); |
| |
| if (!RegClass) { |
| assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) && |
| "Register class constraint is required unless either the " |
| "instruction is target independent or the operand is a use"); |
| // FIXME: Just bailing out like this here could be not enough, unless we |
| // expect the users of this function to do the right thing for PHIs and |
| // COPY: |
| // v1 = COPY v0 |
| // v2 = COPY v1 |
| // v1 here may end up not being constrained at all. Please notice that to |
| // reproduce the issue we likely need a destination pattern of a selection |
| // rule producing such extra copies, not just an input GMIR with them as |
| // every existing target using selectImpl handles copies before calling it |
| // and they never reach this function. |
| return Reg; |
| } |
| return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *RegClass, |
| RegMO, OpIdx); |
| } |
| |
| bool llvm::constrainSelectedInstRegOperands(MachineInstr &I, |
| const TargetInstrInfo &TII, |
| const TargetRegisterInfo &TRI, |
| const RegisterBankInfo &RBI) { |
| assert(!isPreISelGenericOpcode(I.getOpcode()) && |
| "A selected instruction is expected"); |
| MachineBasicBlock &MBB = *I.getParent(); |
| MachineFunction &MF = *MBB.getParent(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) { |
| MachineOperand &MO = I.getOperand(OpI); |
| |
| // There's nothing to be done on non-register operands. |
| if (!MO.isReg()) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n'); |
| assert(MO.isReg() && "Unsupported non-reg operand"); |
| |
| Register Reg = MO.getReg(); |
| // Physical registers don't need to be constrained. |
| if (Register::isPhysicalRegister(Reg)) |
| continue; |
| |
| // Register operands with a value of 0 (e.g. predicate operands) don't need |
| // to be constrained. |
| if (Reg == 0) |
| continue; |
| |
| // If the operand is a vreg, we should constrain its regclass, and only |
| // insert COPYs if that's impossible. |
| // constrainOperandRegClass does that for us. |
| MO.setReg(constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), |
| MO, OpI)); |
| |
| // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been |
| // done. |
| if (MO.isUse()) { |
| int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO); |
| if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx)) |
| I.tieOperands(DefIdx, OpI); |
| } |
| } |
| return true; |
| } |
| |
| bool llvm::isTriviallyDead(const MachineInstr &MI, |
| const MachineRegisterInfo &MRI) { |
| // If we can move an instruction, we can remove it. Otherwise, it has |
| // a side-effect of some sort. |
| bool SawStore = false; |
| if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI()) |
| return false; |
| |
| // Instructions without side-effects are dead iff they only define dead vregs. |
| for (auto &MO : MI.operands()) { |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| |
| Register Reg = MO.getReg(); |
| if (Register::isPhysicalRegister(Reg) || !MRI.use_nodbg_empty(Reg)) |
| return false; |
| } |
| return true; |
| } |
| |
| void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, |
| MachineOptimizationRemarkEmitter &MORE, |
| MachineOptimizationRemarkMissed &R) { |
| MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); |
| |
| // Print the function name explicitly if we don't have a debug location (which |
| // makes the diagnostic less useful) or if we're going to emit a raw error. |
| if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) |
| R << (" (in function: " + MF.getName() + ")").str(); |
| |
| if (TPC.isGlobalISelAbortEnabled()) |
| report_fatal_error(R.getMsg()); |
| else |
| MORE.emit(R); |
| } |
| |
| void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, |
| MachineOptimizationRemarkEmitter &MORE, |
| const char *PassName, StringRef Msg, |
| const MachineInstr &MI) { |
| MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ", |
| MI.getDebugLoc(), MI.getParent()); |
| R << Msg; |
| // Printing MI is expensive; only do it if expensive remarks are enabled. |
| if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName)) |
| R << ": " << ore::MNV("Inst", MI); |
| reportGISelFailure(MF, TPC, MORE, R); |
| } |
| |
| Optional<int64_t> llvm::getConstantVRegVal(unsigned VReg, |
| const MachineRegisterInfo &MRI) { |
| Optional<ValueAndVReg> ValAndVReg = |
| getConstantVRegValWithLookThrough(VReg, MRI, /*LookThroughInstrs*/ false); |
| assert((!ValAndVReg || ValAndVReg->VReg == VReg) && |
| "Value found while looking through instrs"); |
| if (!ValAndVReg) |
| return None; |
| return ValAndVReg->Value; |
| } |
| |
| Optional<ValueAndVReg> llvm::getConstantVRegValWithLookThrough( |
| unsigned VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs, |
| bool HandleFConstant) { |
| SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes; |
| MachineInstr *MI; |
| auto IsConstantOpcode = [HandleFConstant](unsigned Opcode) { |
| return Opcode == TargetOpcode::G_CONSTANT || |
| (HandleFConstant && Opcode == TargetOpcode::G_FCONSTANT); |
| }; |
| auto GetImmediateValue = [HandleFConstant, |
| &MRI](const MachineInstr &MI) -> Optional<APInt> { |
| const MachineOperand &CstVal = MI.getOperand(1); |
| if (!CstVal.isImm() && !CstVal.isCImm() && |
| (!HandleFConstant || !CstVal.isFPImm())) |
| return None; |
| if (!CstVal.isFPImm()) { |
| unsigned BitWidth = |
| MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| APInt Val = CstVal.isImm() ? APInt(BitWidth, CstVal.getImm()) |
| : CstVal.getCImm()->getValue(); |
| assert(Val.getBitWidth() == BitWidth && |
| "Value bitwidth doesn't match definition type"); |
| return Val; |
| } |
| return CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); |
| }; |
| while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI->getOpcode()) && |
| LookThroughInstrs) { |
| switch (MI->getOpcode()) { |
| case TargetOpcode::G_TRUNC: |
| case TargetOpcode::G_SEXT: |
| case TargetOpcode::G_ZEXT: |
| SeenOpcodes.push_back(std::make_pair( |
| MI->getOpcode(), |
| MRI.getType(MI->getOperand(0).getReg()).getSizeInBits())); |
| VReg = MI->getOperand(1).getReg(); |
| break; |
| case TargetOpcode::COPY: |
| VReg = MI->getOperand(1).getReg(); |
| if (Register::isPhysicalRegister(VReg)) |
| return None; |
| break; |
| case TargetOpcode::G_INTTOPTR: |
| VReg = MI->getOperand(1).getReg(); |
| break; |
| default: |
| return None; |
| } |
| } |
| if (!MI || !IsConstantOpcode(MI->getOpcode())) |
| return None; |
| |
| Optional<APInt> MaybeVal = GetImmediateValue(*MI); |
| if (!MaybeVal) |
| return None; |
| APInt &Val = *MaybeVal; |
| while (!SeenOpcodes.empty()) { |
| std::pair<unsigned, unsigned> OpcodeAndSize = SeenOpcodes.pop_back_val(); |
| switch (OpcodeAndSize.first) { |
| case TargetOpcode::G_TRUNC: |
| Val = Val.trunc(OpcodeAndSize.second); |
| break; |
| case TargetOpcode::G_SEXT: |
| Val = Val.sext(OpcodeAndSize.second); |
| break; |
| case TargetOpcode::G_ZEXT: |
| Val = Val.zext(OpcodeAndSize.second); |
| break; |
| } |
| } |
| |
| if (Val.getBitWidth() > 64) |
| return None; |
| |
| return ValueAndVReg{Val.getSExtValue(), VReg}; |
| } |
| |
| const llvm::ConstantFP* llvm::getConstantFPVRegVal(unsigned VReg, |
| const MachineRegisterInfo &MRI) { |
| MachineInstr *MI = MRI.getVRegDef(VReg); |
| if (TargetOpcode::G_FCONSTANT != MI->getOpcode()) |
| return nullptr; |
| return MI->getOperand(1).getFPImm(); |
| } |
| |
| llvm::MachineInstr *llvm::getDefIgnoringCopies(Register Reg, |
| const MachineRegisterInfo &MRI) { |
| auto *DefMI = MRI.getVRegDef(Reg); |
| auto DstTy = MRI.getType(DefMI->getOperand(0).getReg()); |
| if (!DstTy.isValid()) |
| return nullptr; |
| while (DefMI->getOpcode() == TargetOpcode::COPY) { |
| Register SrcReg = DefMI->getOperand(1).getReg(); |
| auto SrcTy = MRI.getType(SrcReg); |
| if (!SrcTy.isValid() || SrcTy != DstTy) |
| break; |
| DefMI = MRI.getVRegDef(SrcReg); |
| } |
| return DefMI; |
| } |
| |
| llvm::MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg, |
| const MachineRegisterInfo &MRI) { |
| MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI); |
| return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr; |
| } |
| |
| APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) { |
| if (Size == 32) |
| return APFloat(float(Val)); |
| if (Size == 64) |
| return APFloat(Val); |
| if (Size != 16) |
| llvm_unreachable("Unsupported FPConstant size"); |
| bool Ignored; |
| APFloat APF(Val); |
| APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored); |
| return APF; |
| } |
| |
| Optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, const unsigned Op1, |
| const unsigned Op2, |
| const MachineRegisterInfo &MRI) { |
| auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI); |
| auto MaybeOp2Cst = getConstantVRegVal(Op2, MRI); |
| if (MaybeOp1Cst && MaybeOp2Cst) { |
| LLT Ty = MRI.getType(Op1); |
| APInt C1(Ty.getSizeInBits(), *MaybeOp1Cst, true); |
| APInt C2(Ty.getSizeInBits(), *MaybeOp2Cst, true); |
| switch (Opcode) { |
| default: |
| break; |
| case TargetOpcode::G_ADD: |
| return C1 + C2; |
| case TargetOpcode::G_AND: |
| return C1 & C2; |
| case TargetOpcode::G_ASHR: |
| return C1.ashr(C2); |
| case TargetOpcode::G_LSHR: |
| return C1.lshr(C2); |
| case TargetOpcode::G_MUL: |
| return C1 * C2; |
| case TargetOpcode::G_OR: |
| return C1 | C2; |
| case TargetOpcode::G_SHL: |
| return C1 << C2; |
| case TargetOpcode::G_SUB: |
| return C1 - C2; |
| case TargetOpcode::G_XOR: |
| return C1 ^ C2; |
| case TargetOpcode::G_UDIV: |
| if (!C2.getBoolValue()) |
| break; |
| return C1.udiv(C2); |
| case TargetOpcode::G_SDIV: |
| if (!C2.getBoolValue()) |
| break; |
| return C1.sdiv(C2); |
| case TargetOpcode::G_UREM: |
| if (!C2.getBoolValue()) |
| break; |
| return C1.urem(C2); |
| case TargetOpcode::G_SREM: |
| if (!C2.getBoolValue()) |
| break; |
| return C1.srem(C2); |
| } |
| } |
| return None; |
| } |
| |
| bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI, |
| bool SNaN) { |
| const MachineInstr *DefMI = MRI.getVRegDef(Val); |
| if (!DefMI) |
| return false; |
| |
| if (DefMI->getFlag(MachineInstr::FmNoNans)) |
| return true; |
| |
| if (SNaN) { |
| // FP operations quiet. For now, just handle the ones inserted during |
| // legalization. |
| switch (DefMI->getOpcode()) { |
| case TargetOpcode::G_FPEXT: |
| case TargetOpcode::G_FPTRUNC: |
| case TargetOpcode::G_FCANONICALIZE: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| return false; |
| } |
| |
| Optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, const unsigned Op1, |
| uint64_t Imm, |
| const MachineRegisterInfo &MRI) { |
| auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI); |
| if (MaybeOp1Cst) { |
| LLT Ty = MRI.getType(Op1); |
| APInt C1(Ty.getSizeInBits(), *MaybeOp1Cst, true); |
| switch (Opcode) { |
| default: |
| break; |
| case TargetOpcode::G_SEXT_INREG: |
| return C1.trunc(Imm).sext(C1.getBitWidth()); |
| } |
| } |
| return None; |
| } |
| |
| void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) { |
| AU.addPreserved<StackProtector>(); |
| } |