| //===- lib/CodeGen/GlobalISel/GISelKnownBits.cpp --------------*- C++ *-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// Provides analysis for querying information about KnownBits during GISel |
| /// passes. |
| // |
| //===------------------ |
| #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/CodeGen/GlobalISel/Utils.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| |
| #define DEBUG_TYPE "gisel-known-bits" |
| |
| using namespace llvm; |
| |
| char llvm::GISelKnownBitsAnalysis::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(GISelKnownBitsAnalysis, DEBUG_TYPE, |
| "Analysis for ComputingKnownBits", false, true) |
| INITIALIZE_PASS_END(GISelKnownBitsAnalysis, DEBUG_TYPE, |
| "Analysis for ComputingKnownBits", false, true) |
| |
| GISelKnownBits::GISelKnownBits(MachineFunction &MF) |
| : MF(MF), MRI(MF.getRegInfo()), TL(*MF.getSubtarget().getTargetLowering()), |
| DL(MF.getFunction().getParent()->getDataLayout()) {} |
| |
| Align GISelKnownBits::inferAlignmentForFrameIdx(int FrameIdx, int Offset, |
| const MachineFunction &MF) { |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| return commonAlignment(Align(MFI.getObjectAlignment(FrameIdx)), Offset); |
| // TODO: How to handle cases with Base + Offset? |
| } |
| |
| MaybeAlign GISelKnownBits::inferPtrAlignment(const MachineInstr &MI) { |
| if (MI.getOpcode() == TargetOpcode::G_FRAME_INDEX) { |
| int FrameIdx = MI.getOperand(1).getIndex(); |
| return inferAlignmentForFrameIdx(FrameIdx, 0, *MI.getMF()); |
| } |
| return None; |
| } |
| |
| void GISelKnownBits::computeKnownBitsForFrameIndex(Register R, KnownBits &Known, |
| const APInt &DemandedElts, |
| unsigned Depth) { |
| const MachineInstr &MI = *MRI.getVRegDef(R); |
| computeKnownBitsForAlignment(Known, inferPtrAlignment(MI)); |
| } |
| |
| void GISelKnownBits::computeKnownBitsForAlignment(KnownBits &Known, |
| MaybeAlign Alignment) { |
| if (Alignment) |
| // The low bits are known zero if the pointer is aligned. |
| Known.Zero.setLowBits(Log2(Alignment)); |
| } |
| |
| KnownBits GISelKnownBits::getKnownBits(MachineInstr &MI) { |
| return getKnownBits(MI.getOperand(0).getReg()); |
| } |
| |
| KnownBits GISelKnownBits::getKnownBits(Register R) { |
| KnownBits Known; |
| LLT Ty = MRI.getType(R); |
| APInt DemandedElts = |
| Ty.isVector() ? APInt::getAllOnesValue(Ty.getNumElements()) : APInt(1, 1); |
| computeKnownBitsImpl(R, Known, DemandedElts); |
| return Known; |
| } |
| |
| bool GISelKnownBits::signBitIsZero(Register R) { |
| LLT Ty = MRI.getType(R); |
| unsigned BitWidth = Ty.getScalarSizeInBits(); |
| return maskedValueIsZero(R, APInt::getSignMask(BitWidth)); |
| } |
| |
| APInt GISelKnownBits::getKnownZeroes(Register R) { |
| return getKnownBits(R).Zero; |
| } |
| |
| APInt GISelKnownBits::getKnownOnes(Register R) { return getKnownBits(R).One; } |
| |
| void GISelKnownBits::computeKnownBitsImpl(Register R, KnownBits &Known, |
| const APInt &DemandedElts, |
| unsigned Depth) { |
| MachineInstr &MI = *MRI.getVRegDef(R); |
| unsigned Opcode = MI.getOpcode(); |
| LLT DstTy = MRI.getType(R); |
| |
| // Handle the case where this is called on a register that does not have a |
| // type constraint (i.e. it has a register class constraint instead). This is |
| // unlikely to occur except by looking through copies but it is possible for |
| // the initial register being queried to be in this state. |
| if (!DstTy.isValid()) { |
| Known = KnownBits(); |
| return; |
| } |
| |
| unsigned BitWidth = DstTy.getSizeInBits(); |
| Known = KnownBits(BitWidth); // Don't know anything |
| |
| if (DstTy.isVector()) |
| return; // TODO: Handle vectors. |
| |
| if (Depth == getMaxDepth()) |
| return; |
| |
| if (!DemandedElts) |
| return; // No demanded elts, better to assume we don't know anything. |
| |
| KnownBits Known2; |
| |
| switch (Opcode) { |
| default: |
| TL.computeKnownBitsForTargetInstr(*this, R, Known, DemandedElts, MRI, |
| Depth); |
| break; |
| case TargetOpcode::COPY: { |
| MachineOperand Dst = MI.getOperand(0); |
| MachineOperand Src = MI.getOperand(1); |
| // Look through trivial copies but don't look through trivial copies of the |
| // form `%1:(s32) = OP %0:gpr32` known-bits analysis is currently unable to |
| // determine the bit width of a register class. |
| // |
| // We can't use NoSubRegister by name as it's defined by each target but |
| // it's always defined to be 0 by tablegen. |
| if (Dst.getSubReg() == 0 /*NoSubRegister*/ && Src.getReg().isVirtual() && |
| Src.getSubReg() == 0 /*NoSubRegister*/ && |
| MRI.getType(Src.getReg()).isValid()) { |
| // Don't increment Depth for this one since we didn't do any work. |
| computeKnownBitsImpl(Src.getReg(), Known, DemandedElts, Depth); |
| } |
| break; |
| } |
| case TargetOpcode::G_CONSTANT: { |
| auto CstVal = getConstantVRegVal(R, MRI); |
| if (!CstVal) |
| break; |
| Known.One = *CstVal; |
| Known.Zero = ~Known.One; |
| break; |
| } |
| case TargetOpcode::G_FRAME_INDEX: { |
| computeKnownBitsForFrameIndex(R, Known, DemandedElts); |
| break; |
| } |
| case TargetOpcode::G_SUB: { |
| // If low bits are known to be zero in both operands, then we know they are |
| // going to be 0 in the result. Both addition and complement operations |
| // preserve the low zero bits. |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts, |
| Depth + 1); |
| unsigned KnownZeroLow = Known2.countMinTrailingZeros(); |
| if (KnownZeroLow == 0) |
| break; |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts, |
| Depth + 1); |
| KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); |
| Known.Zero.setLowBits(KnownZeroLow); |
| break; |
| } |
| case TargetOpcode::G_XOR: { |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts, |
| Depth + 1); |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts, |
| Depth + 1); |
| |
| // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); |
| // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); |
| Known.Zero = KnownZeroOut; |
| break; |
| } |
| case TargetOpcode::G_PTR_ADD: { |
| // G_PTR_ADD is like G_ADD. FIXME: Is this true for all targets? |
| LLT Ty = MRI.getType(MI.getOperand(1).getReg()); |
| if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) |
| break; |
| LLVM_FALLTHROUGH; |
| } |
| case TargetOpcode::G_ADD: { |
| // Output known-0 bits are known if clear or set in both the low clear bits |
| // common to both LHS & RHS. For example, 8+(X<<3) is known to have the |
| // low 3 bits clear. |
| // Output known-0 bits are also known if the top bits of each input are |
| // known to be clear. For example, if one input has the top 10 bits clear |
| // and the other has the top 8 bits clear, we know the top 7 bits of the |
| // output must be clear. |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts, |
| Depth + 1); |
| unsigned KnownZeroHigh = Known2.countMinLeadingZeros(); |
| unsigned KnownZeroLow = Known2.countMinTrailingZeros(); |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts, |
| Depth + 1); |
| KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros()); |
| KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); |
| Known.Zero.setLowBits(KnownZeroLow); |
| if (KnownZeroHigh > 1) |
| Known.Zero.setHighBits(KnownZeroHigh - 1); |
| break; |
| } |
| case TargetOpcode::G_AND: { |
| // If either the LHS or the RHS are Zero, the result is zero. |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts, |
| Depth + 1); |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts, |
| Depth + 1); |
| |
| // Output known-1 bits are only known if set in both the LHS & RHS. |
| Known.One &= Known2.One; |
| // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| Known.Zero |= Known2.Zero; |
| break; |
| } |
| case TargetOpcode::G_OR: { |
| // If either the LHS or the RHS are Zero, the result is zero. |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts, |
| Depth + 1); |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts, |
| Depth + 1); |
| |
| // Output known-0 bits are only known if clear in both the LHS & RHS. |
| Known.Zero &= Known2.Zero; |
| // Output known-1 are known to be set if set in either the LHS | RHS. |
| Known.One |= Known2.One; |
| break; |
| } |
| case TargetOpcode::G_MUL: { |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts, |
| Depth + 1); |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts, |
| Depth + 1); |
| // If low bits are zero in either operand, output low known-0 bits. |
| // Also compute a conservative estimate for high known-0 bits. |
| // More trickiness is possible, but this is sufficient for the |
| // interesting case of alignment computation. |
| unsigned TrailZ = |
| Known.countMinTrailingZeros() + Known2.countMinTrailingZeros(); |
| unsigned LeadZ = |
| std::max(Known.countMinLeadingZeros() + Known2.countMinLeadingZeros(), |
| BitWidth) - |
| BitWidth; |
| |
| Known.resetAll(); |
| Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); |
| Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); |
| break; |
| } |
| case TargetOpcode::G_SELECT: { |
| computeKnownBitsImpl(MI.getOperand(3).getReg(), Known, DemandedElts, |
| Depth + 1); |
| // If we don't know any bits, early out. |
| if (Known.isUnknown()) |
| break; |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts, |
| Depth + 1); |
| // Only known if known in both the LHS and RHS. |
| Known.One &= Known2.One; |
| Known.Zero &= Known2.Zero; |
| break; |
| } |
| case TargetOpcode::G_FCMP: |
| case TargetOpcode::G_ICMP: { |
| if (TL.getBooleanContents(DstTy.isVector(), |
| Opcode == TargetOpcode::G_FCMP) == |
| TargetLowering::ZeroOrOneBooleanContent && |
| BitWidth > 1) |
| Known.Zero.setBitsFrom(1); |
| break; |
| } |
| case TargetOpcode::G_SEXT: { |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts, |
| Depth + 1); |
| // If the sign bit is known to be zero or one, then sext will extend |
| // it to the top bits, else it will just zext. |
| Known = Known.sext(BitWidth); |
| break; |
| } |
| case TargetOpcode::G_ANYEXT: { |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts, |
| Depth + 1); |
| Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); |
| break; |
| } |
| case TargetOpcode::G_LOAD: { |
| if (MI.hasOneMemOperand()) { |
| const MachineMemOperand *MMO = *MI.memoperands_begin(); |
| if (const MDNode *Ranges = MMO->getRanges()) { |
| computeKnownBitsFromRangeMetadata(*Ranges, Known); |
| } |
| } |
| break; |
| } |
| case TargetOpcode::G_ZEXTLOAD: { |
| // Everything above the retrieved bits is zero |
| if (MI.hasOneMemOperand()) |
| Known.Zero.setBitsFrom((*MI.memoperands_begin())->getSizeInBits()); |
| break; |
| } |
| case TargetOpcode::G_ASHR: |
| case TargetOpcode::G_LSHR: |
| case TargetOpcode::G_SHL: { |
| KnownBits RHSKnown; |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts, |
| Depth + 1); |
| if (!RHSKnown.isConstant()) { |
| LLVM_DEBUG( |
| MachineInstr *RHSMI = MRI.getVRegDef(MI.getOperand(2).getReg()); |
| dbgs() << '[' << Depth << "] Shift not known constant: " << *RHSMI); |
| break; |
| } |
| uint64_t Shift = RHSKnown.getConstant().getZExtValue(); |
| LLVM_DEBUG(dbgs() << '[' << Depth << "] Shift is " << Shift << '\n'); |
| |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts, |
| Depth + 1); |
| |
| switch (Opcode) { |
| case TargetOpcode::G_ASHR: |
| Known.Zero = Known.Zero.ashr(Shift); |
| Known.One = Known.One.ashr(Shift); |
| break; |
| case TargetOpcode::G_LSHR: |
| Known.Zero = Known.Zero.lshr(Shift); |
| Known.One = Known.One.lshr(Shift); |
| Known.Zero.setBitsFrom(Known.Zero.getBitWidth() - Shift); |
| break; |
| case TargetOpcode::G_SHL: |
| Known.Zero = Known.Zero.shl(Shift); |
| Known.One = Known.One.shl(Shift); |
| Known.Zero.setBits(0, Shift); |
| break; |
| } |
| break; |
| } |
| case TargetOpcode::G_INTTOPTR: |
| case TargetOpcode::G_PTRTOINT: |
| // Fall through and handle them the same as zext/trunc. |
| LLVM_FALLTHROUGH; |
| case TargetOpcode::G_ZEXT: |
| case TargetOpcode::G_TRUNC: { |
| Register SrcReg = MI.getOperand(1).getReg(); |
| LLT SrcTy = MRI.getType(SrcReg); |
| unsigned SrcBitWidth = SrcTy.isPointer() |
| ? DL.getIndexSizeInBits(SrcTy.getAddressSpace()) |
| : SrcTy.getSizeInBits(); |
| assert(SrcBitWidth && "SrcBitWidth can't be zero"); |
| Known = Known.zextOrTrunc(SrcBitWidth, true); |
| computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1); |
| Known = Known.zextOrTrunc(BitWidth, true); |
| if (BitWidth > SrcBitWidth) |
| Known.Zero.setBitsFrom(SrcBitWidth); |
| break; |
| } |
| } |
| |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| LLVM_DEBUG(dbgs() << "[" << Depth << "] Compute known bits: " << MI << "[" |
| << Depth << "] Computed for: " << MI << "[" << Depth |
| << "] Known: 0x" |
| << (Known.Zero | Known.One).toString(16, false) << "\n" |
| << "[" << Depth << "] Zero: 0x" |
| << Known.Zero.toString(16, false) << "\n" |
| << "[" << Depth << "] One: 0x" |
| << Known.One.toString(16, false) << "\n"); |
| } |
| |
| unsigned GISelKnownBits::computeNumSignBits(Register R, |
| const APInt &DemandedElts, |
| unsigned Depth) { |
| MachineInstr &MI = *MRI.getVRegDef(R); |
| unsigned Opcode = MI.getOpcode(); |
| |
| if (Opcode == TargetOpcode::G_CONSTANT) |
| return MI.getOperand(1).getCImm()->getValue().getNumSignBits(); |
| |
| if (Depth == getMaxDepth()) |
| return 1; |
| |
| if (!DemandedElts) |
| return 1; // No demanded elts, better to assume we don't know anything. |
| |
| LLT DstTy = MRI.getType(R); |
| |
| // Handle the case where this is called on a register that does not have a |
| // type constraint. This is unlikely to occur except by looking through copies |
| // but it is possible for the initial register being queried to be in this |
| // state. |
| if (!DstTy.isValid()) |
| return 1; |
| |
| switch (Opcode) { |
| case TargetOpcode::COPY: { |
| MachineOperand &Src = MI.getOperand(1); |
| if (Src.getReg().isVirtual() && Src.getSubReg() == 0 && |
| MRI.getType(Src.getReg()).isValid()) { |
| // Don't increment Depth for this one since we didn't do any work. |
| return computeNumSignBits(Src.getReg(), DemandedElts, Depth); |
| } |
| |
| return 1; |
| } |
| case TargetOpcode::G_SEXT: { |
| Register Src = MI.getOperand(1).getReg(); |
| LLT SrcTy = MRI.getType(Src); |
| unsigned Tmp = DstTy.getScalarSizeInBits() - SrcTy.getScalarSizeInBits(); |
| return computeNumSignBits(Src, DemandedElts, Depth + 1) + Tmp; |
| } |
| case TargetOpcode::G_TRUNC: { |
| Register Src = MI.getOperand(1).getReg(); |
| LLT SrcTy = MRI.getType(Src); |
| |
| // Check if the sign bits of source go down as far as the truncated value. |
| unsigned DstTyBits = DstTy.getScalarSizeInBits(); |
| unsigned NumSrcBits = SrcTy.getScalarSizeInBits(); |
| unsigned NumSrcSignBits = computeNumSignBits(Src, DemandedElts, Depth + 1); |
| if (NumSrcSignBits > (NumSrcBits - DstTyBits)) |
| return NumSrcSignBits - (NumSrcBits - DstTyBits); |
| break; |
| } |
| default: |
| break; |
| } |
| |
| // TODO: Handle target instructions |
| // TODO: Fall back to known bits |
| return 1; |
| } |
| |
| unsigned GISelKnownBits::computeNumSignBits(Register R, unsigned Depth) { |
| LLT Ty = MRI.getType(R); |
| APInt DemandedElts = Ty.isVector() |
| ? APInt::getAllOnesValue(Ty.getNumElements()) |
| : APInt(1, 1); |
| return computeNumSignBits(R, DemandedElts, Depth); |
| } |
| |
| void GISelKnownBitsAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool GISelKnownBitsAnalysis::runOnMachineFunction(MachineFunction &MF) { |
| return false; |
| } |