| //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that RISCV uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "RISCVISelLowering.h" |
| #include "RISCV.h" |
| #include "RISCVMachineFunctionInfo.h" |
| #include "RISCVRegisterInfo.h" |
| #include "RISCVSubtarget.h" |
| #include "RISCVTargetMachine.h" |
| #include "Utils/RISCVMatInt.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/DiagnosticPrinter.h" |
| #include "llvm/IR/IntrinsicsRISCV.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "riscv-lower" |
| |
| STATISTIC(NumTailCalls, "Number of tail calls"); |
| |
| RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, |
| const RISCVSubtarget &STI) |
| : TargetLowering(TM), Subtarget(STI) { |
| |
| if (Subtarget.isRV32E()) |
| report_fatal_error("Codegen not yet implemented for RV32E"); |
| |
| RISCVABI::ABI ABI = Subtarget.getTargetABI(); |
| assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); |
| |
| if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && |
| !Subtarget.hasStdExtF()) { |
| errs() << "Hard-float 'f' ABI can't be used for a target that " |
| "doesn't support the F instruction set extension (ignoring " |
| "target-abi)\n"; |
| ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; |
| } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && |
| !Subtarget.hasStdExtD()) { |
| errs() << "Hard-float 'd' ABI can't be used for a target that " |
| "doesn't support the D instruction set extension (ignoring " |
| "target-abi)\n"; |
| ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; |
| } |
| |
| switch (ABI) { |
| default: |
| report_fatal_error("Don't know how to lower this ABI"); |
| case RISCVABI::ABI_ILP32: |
| case RISCVABI::ABI_ILP32F: |
| case RISCVABI::ABI_ILP32D: |
| case RISCVABI::ABI_LP64: |
| case RISCVABI::ABI_LP64F: |
| case RISCVABI::ABI_LP64D: |
| break; |
| } |
| |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| // Set up the register classes. |
| addRegisterClass(XLenVT, &RISCV::GPRRegClass); |
| |
| if (Subtarget.hasStdExtF()) |
| addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); |
| if (Subtarget.hasStdExtD()) |
| addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); |
| |
| // Compute derived properties from the register classes. |
| computeRegisterProperties(STI.getRegisterInfo()); |
| |
| setStackPointerRegisterToSaveRestore(RISCV::X2); |
| |
| for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) |
| setLoadExtAction(N, XLenVT, MVT::i1, Promote); |
| |
| // TODO: add all necessary setOperationAction calls. |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); |
| |
| setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| setOperationAction(ISD::BR_CC, XLenVT, Expand); |
| setOperationAction(ISD::SELECT, XLenVT, Custom); |
| setOperationAction(ISD::SELECT_CC, XLenVT, Expand); |
| |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| |
| setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| setOperationAction(ISD::VAARG, MVT::Other, Expand); |
| setOperationAction(ISD::VACOPY, MVT::Other, Expand); |
| setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| |
| for (auto VT : {MVT::i1, MVT::i8, MVT::i16}) |
| setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); |
| |
| if (Subtarget.is64Bit()) { |
| setOperationAction(ISD::ADD, MVT::i32, Custom); |
| setOperationAction(ISD::SUB, MVT::i32, Custom); |
| setOperationAction(ISD::SHL, MVT::i32, Custom); |
| setOperationAction(ISD::SRA, MVT::i32, Custom); |
| setOperationAction(ISD::SRL, MVT::i32, Custom); |
| } |
| |
| if (!Subtarget.hasStdExtM()) { |
| setOperationAction(ISD::MUL, XLenVT, Expand); |
| setOperationAction(ISD::MULHS, XLenVT, Expand); |
| setOperationAction(ISD::MULHU, XLenVT, Expand); |
| setOperationAction(ISD::SDIV, XLenVT, Expand); |
| setOperationAction(ISD::UDIV, XLenVT, Expand); |
| setOperationAction(ISD::SREM, XLenVT, Expand); |
| setOperationAction(ISD::UREM, XLenVT, Expand); |
| } |
| |
| if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { |
| setOperationAction(ISD::MUL, MVT::i32, Custom); |
| setOperationAction(ISD::SDIV, MVT::i32, Custom); |
| setOperationAction(ISD::UDIV, MVT::i32, Custom); |
| setOperationAction(ISD::UREM, MVT::i32, Custom); |
| } |
| |
| setOperationAction(ISD::SDIVREM, XLenVT, Expand); |
| setOperationAction(ISD::UDIVREM, XLenVT, Expand); |
| setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); |
| setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); |
| |
| setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); |
| setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); |
| setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); |
| |
| setOperationAction(ISD::ROTL, XLenVT, Expand); |
| setOperationAction(ISD::ROTR, XLenVT, Expand); |
| setOperationAction(ISD::BSWAP, XLenVT, Expand); |
| setOperationAction(ISD::CTTZ, XLenVT, Expand); |
| setOperationAction(ISD::CTLZ, XLenVT, Expand); |
| setOperationAction(ISD::CTPOP, XLenVT, Expand); |
| |
| ISD::CondCode FPCCToExtend[] = { |
| ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, |
| ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, |
| ISD::SETGE, ISD::SETNE}; |
| |
| ISD::NodeType FPOpToExtend[] = { |
| ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, |
| ISD::FP_TO_FP16}; |
| |
| if (Subtarget.hasStdExtF()) { |
| setOperationAction(ISD::FMINNUM, MVT::f32, Legal); |
| setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); |
| for (auto CC : FPCCToExtend) |
| setCondCodeAction(CC, MVT::f32, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); |
| setOperationAction(ISD::SELECT, MVT::f32, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f32, Expand); |
| for (auto Op : FPOpToExtend) |
| setOperationAction(Op, MVT::f32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f32, MVT::f16, Expand); |
| } |
| |
| if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) |
| setOperationAction(ISD::BITCAST, MVT::i32, Custom); |
| |
| if (Subtarget.hasStdExtD()) { |
| setOperationAction(ISD::FMINNUM, MVT::f64, Legal); |
| setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); |
| for (auto CC : FPCCToExtend) |
| setCondCodeAction(CC, MVT::f64, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); |
| setOperationAction(ISD::SELECT, MVT::f64, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f64, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| for (auto Op : FPOpToExtend) |
| setOperationAction(Op, MVT::f64, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f64, MVT::f16, Expand); |
| } |
| |
| setOperationAction(ISD::GlobalAddress, XLenVT, Custom); |
| setOperationAction(ISD::BlockAddress, XLenVT, Custom); |
| setOperationAction(ISD::ConstantPool, XLenVT, Custom); |
| |
| setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); |
| |
| // TODO: On M-mode only targets, the cycle[h] CSR may not be present. |
| // Unfortunately this can't be determined just from the ISA naming string. |
| setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, |
| Subtarget.is64Bit() ? Legal : Custom); |
| |
| setOperationAction(ISD::TRAP, MVT::Other, Legal); |
| setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); |
| |
| if (Subtarget.hasStdExtA()) { |
| setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); |
| setMinCmpXchgSizeInBits(32); |
| } else { |
| setMaxAtomicSizeInBitsSupported(0); |
| } |
| |
| setBooleanContents(ZeroOrOneBooleanContent); |
| |
| // Function alignments. |
| const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); |
| setMinFunctionAlignment(FunctionAlignment); |
| setPrefFunctionAlignment(FunctionAlignment); |
| |
| // Effectively disable jump table generation. |
| setMinimumJumpTableEntries(INT_MAX); |
| } |
| |
| EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, |
| EVT VT) const { |
| if (!VT.isVector()) |
| return getPointerTy(DL); |
| return VT.changeVectorElementTypeToInteger(); |
| } |
| |
| bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, |
| const CallInst &I, |
| MachineFunction &MF, |
| unsigned Intrinsic) const { |
| switch (Intrinsic) { |
| default: |
| return false; |
| case Intrinsic::riscv_masked_atomicrmw_xchg_i32: |
| case Intrinsic::riscv_masked_atomicrmw_add_i32: |
| case Intrinsic::riscv_masked_atomicrmw_sub_i32: |
| case Intrinsic::riscv_masked_atomicrmw_nand_i32: |
| case Intrinsic::riscv_masked_atomicrmw_max_i32: |
| case Intrinsic::riscv_masked_atomicrmw_min_i32: |
| case Intrinsic::riscv_masked_atomicrmw_umax_i32: |
| case Intrinsic::riscv_masked_atomicrmw_umin_i32: |
| case Intrinsic::riscv_masked_cmpxchg_i32: |
| PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::getVT(PtrTy->getElementType()); |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.align = Align(4); |
| Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | |
| MachineMemOperand::MOVolatile; |
| return true; |
| } |
| } |
| |
| bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, |
| const AddrMode &AM, Type *Ty, |
| unsigned AS, |
| Instruction *I) const { |
| // No global is ever allowed as a base. |
| if (AM.BaseGV) |
| return false; |
| |
| // Require a 12-bit signed offset. |
| if (!isInt<12>(AM.BaseOffs)) |
| return false; |
| |
| switch (AM.Scale) { |
| case 0: // "r+i" or just "i", depending on HasBaseReg. |
| break; |
| case 1: |
| if (!AM.HasBaseReg) // allow "r+i". |
| break; |
| return false; // disallow "r+r" or "r+r+i". |
| default: |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { |
| return isInt<12>(Imm); |
| } |
| |
| bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { |
| return isInt<12>(Imm); |
| } |
| |
| // On RV32, 64-bit integers are split into their high and low parts and held |
| // in two different registers, so the trunc is free since the low register can |
| // just be used. |
| bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { |
| if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) |
| return false; |
| unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); |
| unsigned DestBits = DstTy->getPrimitiveSizeInBits(); |
| return (SrcBits == 64 && DestBits == 32); |
| } |
| |
| bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { |
| if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || |
| !SrcVT.isInteger() || !DstVT.isInteger()) |
| return false; |
| unsigned SrcBits = SrcVT.getSizeInBits(); |
| unsigned DestBits = DstVT.getSizeInBits(); |
| return (SrcBits == 64 && DestBits == 32); |
| } |
| |
| bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { |
| // Zexts are free if they can be combined with a load. |
| if (auto *LD = dyn_cast<LoadSDNode>(Val)) { |
| EVT MemVT = LD->getMemoryVT(); |
| if ((MemVT == MVT::i8 || MemVT == MVT::i16 || |
| (Subtarget.is64Bit() && MemVT == MVT::i32)) && |
| (LD->getExtensionType() == ISD::NON_EXTLOAD || |
| LD->getExtensionType() == ISD::ZEXTLOAD)) |
| return true; |
| } |
| |
| return TargetLowering::isZExtFree(Val, VT2); |
| } |
| |
| bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { |
| return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; |
| } |
| |
| bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { |
| return (VT == MVT::f32 && Subtarget.hasStdExtF()) || |
| (VT == MVT::f64 && Subtarget.hasStdExtD()); |
| } |
| |
| // Changes the condition code and swaps operands if necessary, so the SetCC |
| // operation matches one of the comparisons supported directly in the RISC-V |
| // ISA. |
| static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { |
| switch (CC) { |
| default: |
| break; |
| case ISD::SETGT: |
| case ISD::SETLE: |
| case ISD::SETUGT: |
| case ISD::SETULE: |
| CC = ISD::getSetCCSwappedOperands(CC); |
| std::swap(LHS, RHS); |
| break; |
| } |
| } |
| |
| // Return the RISC-V branch opcode that matches the given DAG integer |
| // condition code. The CondCode must be one of those supported by the RISC-V |
| // ISA (see normaliseSetCC). |
| static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { |
| switch (CC) { |
| default: |
| llvm_unreachable("Unsupported CondCode"); |
| case ISD::SETEQ: |
| return RISCV::BEQ; |
| case ISD::SETNE: |
| return RISCV::BNE; |
| case ISD::SETLT: |
| return RISCV::BLT; |
| case ISD::SETGE: |
| return RISCV::BGE; |
| case ISD::SETULT: |
| return RISCV::BLTU; |
| case ISD::SETUGE: |
| return RISCV::BGEU; |
| } |
| } |
| |
| SDValue RISCVTargetLowering::LowerOperation(SDValue Op, |
| SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| default: |
| report_fatal_error("unimplemented operand"); |
| case ISD::GlobalAddress: |
| return lowerGlobalAddress(Op, DAG); |
| case ISD::BlockAddress: |
| return lowerBlockAddress(Op, DAG); |
| case ISD::ConstantPool: |
| return lowerConstantPool(Op, DAG); |
| case ISD::GlobalTLSAddress: |
| return lowerGlobalTLSAddress(Op, DAG); |
| case ISD::SELECT: |
| return lowerSELECT(Op, DAG); |
| case ISD::VASTART: |
| return lowerVASTART(Op, DAG); |
| case ISD::FRAMEADDR: |
| return lowerFRAMEADDR(Op, DAG); |
| case ISD::RETURNADDR: |
| return lowerRETURNADDR(Op, DAG); |
| case ISD::SHL_PARTS: |
| return lowerShiftLeftParts(Op, DAG); |
| case ISD::SRA_PARTS: |
| return lowerShiftRightParts(Op, DAG, true); |
| case ISD::SRL_PARTS: |
| return lowerShiftRightParts(Op, DAG, false); |
| case ISD::BITCAST: { |
| assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() && |
| "Unexpected custom legalisation"); |
| SDLoc DL(Op); |
| SDValue Op0 = Op.getOperand(0); |
| if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32) |
| return SDValue(); |
| SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); |
| SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); |
| return FPConv; |
| } |
| } |
| } |
| |
| static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, |
| SelectionDAG &DAG, unsigned Flags) { |
| return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); |
| } |
| |
| static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, |
| SelectionDAG &DAG, unsigned Flags) { |
| return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), |
| Flags); |
| } |
| |
| static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, |
| SelectionDAG &DAG, unsigned Flags) { |
| return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(), |
| N->getOffset(), Flags); |
| } |
| |
| template <class NodeTy> |
| SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, |
| bool IsLocal) const { |
| SDLoc DL(N); |
| EVT Ty = getPointerTy(DAG.getDataLayout()); |
| |
| if (isPositionIndependent()) { |
| SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); |
| if (IsLocal) |
| // Use PC-relative addressing to access the symbol. This generates the |
| // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) |
| // %pcrel_lo(auipc)). |
| return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); |
| |
| // Use PC-relative addressing to access the GOT for this symbol, then load |
| // the address from the GOT. This generates the pattern (PseudoLA sym), |
| // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). |
| return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); |
| } |
| |
| switch (getTargetMachine().getCodeModel()) { |
| default: |
| report_fatal_error("Unsupported code model for lowering"); |
| case CodeModel::Small: { |
| // Generate a sequence for accessing addresses within the first 2 GiB of |
| // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). |
| SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); |
| SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); |
| SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); |
| return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); |
| } |
| case CodeModel::Medium: { |
| // Generate a sequence for accessing addresses within any 2GiB range within |
| // the address space. This generates the pattern (PseudoLLA sym), which |
| // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). |
| SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); |
| return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); |
| } |
| } |
| } |
| |
| SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| EVT Ty = Op.getValueType(); |
| GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); |
| int64_t Offset = N->getOffset(); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| const GlobalValue *GV = N->getGlobal(); |
| bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); |
| SDValue Addr = getAddr(N, DAG, IsLocal); |
| |
| // In order to maximise the opportunity for common subexpression elimination, |
| // emit a separate ADD node for the global address offset instead of folding |
| // it in the global address node. Later peephole optimisations may choose to |
| // fold it back in when profitable. |
| if (Offset != 0) |
| return DAG.getNode(ISD::ADD, DL, Ty, Addr, |
| DAG.getConstant(Offset, DL, XLenVT)); |
| return Addr; |
| } |
| |
| SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); |
| |
| return getAddr(N, DAG); |
| } |
| |
| SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, |
| SelectionDAG &DAG) const { |
| ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); |
| |
| return getAddr(N, DAG); |
| } |
| |
| SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, |
| SelectionDAG &DAG, |
| bool UseGOT) const { |
| SDLoc DL(N); |
| EVT Ty = getPointerTy(DAG.getDataLayout()); |
| const GlobalValue *GV = N->getGlobal(); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| if (UseGOT) { |
| // Use PC-relative addressing to access the GOT for this TLS symbol, then |
| // load the address from the GOT and add the thread pointer. This generates |
| // the pattern (PseudoLA_TLS_IE sym), which expands to |
| // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). |
| SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); |
| SDValue Load = |
| SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); |
| |
| // Add the thread pointer. |
| SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); |
| return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); |
| } |
| |
| // Generate a sequence for accessing the address relative to the thread |
| // pointer, with the appropriate adjustment for the thread pointer offset. |
| // This generates the pattern |
| // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) |
| SDValue AddrHi = |
| DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); |
| SDValue AddrAdd = |
| DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); |
| SDValue AddrLo = |
| DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); |
| |
| SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); |
| SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); |
| SDValue MNAdd = SDValue( |
| DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), |
| 0); |
| return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); |
| } |
| |
| SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, |
| SelectionDAG &DAG) const { |
| SDLoc DL(N); |
| EVT Ty = getPointerTy(DAG.getDataLayout()); |
| IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); |
| const GlobalValue *GV = N->getGlobal(); |
| |
| // Use a PC-relative addressing mode to access the global dynamic GOT address. |
| // This generates the pattern (PseudoLA_TLS_GD sym), which expands to |
| // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). |
| SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); |
| SDValue Load = |
| SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); |
| |
| // Prepare argument list to generate call. |
| ArgListTy Args; |
| ArgListEntry Entry; |
| Entry.Node = Load; |
| Entry.Ty = CallTy; |
| Args.push_back(Entry); |
| |
| // Setup call to __tls_get_addr. |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(DL) |
| .setChain(DAG.getEntryNode()) |
| .setLibCallee(CallingConv::C, CallTy, |
| DAG.getExternalSymbol("__tls_get_addr", Ty), |
| std::move(Args)); |
| |
| return LowerCallTo(CLI).first; |
| } |
| |
| SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| EVT Ty = Op.getValueType(); |
| GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); |
| int64_t Offset = N->getOffset(); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); |
| |
| SDValue Addr; |
| switch (Model) { |
| case TLSModel::LocalExec: |
| Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); |
| break; |
| case TLSModel::InitialExec: |
| Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); |
| break; |
| case TLSModel::LocalDynamic: |
| case TLSModel::GeneralDynamic: |
| Addr = getDynamicTLSAddr(N, DAG); |
| break; |
| } |
| |
| // In order to maximise the opportunity for common subexpression elimination, |
| // emit a separate ADD node for the global address offset instead of folding |
| // it in the global address node. Later peephole optimisations may choose to |
| // fold it back in when profitable. |
| if (Offset != 0) |
| return DAG.getNode(ISD::ADD, DL, Ty, Addr, |
| DAG.getConstant(Offset, DL, XLenVT)); |
| return Addr; |
| } |
| |
| SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { |
| SDValue CondV = Op.getOperand(0); |
| SDValue TrueV = Op.getOperand(1); |
| SDValue FalseV = Op.getOperand(2); |
| SDLoc DL(Op); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| // If the result type is XLenVT and CondV is the output of a SETCC node |
| // which also operated on XLenVT inputs, then merge the SETCC node into the |
| // lowered RISCVISD::SELECT_CC to take advantage of the integer |
| // compare+branch instructions. i.e.: |
| // (select (setcc lhs, rhs, cc), truev, falsev) |
| // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) |
| if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && |
| CondV.getOperand(0).getSimpleValueType() == XLenVT) { |
| SDValue LHS = CondV.getOperand(0); |
| SDValue RHS = CondV.getOperand(1); |
| auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); |
| ISD::CondCode CCVal = CC->get(); |
| |
| normaliseSetCC(LHS, RHS, CCVal); |
| |
| SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); |
| SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); |
| SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; |
| return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); |
| } |
| |
| // Otherwise: |
| // (select condv, truev, falsev) |
| // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) |
| SDValue Zero = DAG.getConstant(0, DL, XLenVT); |
| SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); |
| |
| SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); |
| SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; |
| |
| return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); |
| } |
| |
| SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); |
| |
| SDLoc DL(Op); |
| SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), |
| getPointerTy(MF.getDataLayout())); |
| |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), |
| MachinePointerInfo(SV)); |
| } |
| |
| SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, |
| SelectionDAG &DAG) const { |
| const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MFI.setFrameAddressIsTaken(true); |
| Register FrameReg = RI.getFrameRegister(MF); |
| int XLenInBytes = Subtarget.getXLen() / 8; |
| |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| while (Depth--) { |
| int Offset = -(XLenInBytes * 2); |
| SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, |
| DAG.getIntPtrConstant(Offset, DL)); |
| FrameAddr = |
| DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); |
| } |
| return FrameAddr; |
| } |
| |
| SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, |
| SelectionDAG &DAG) const { |
| const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MFI.setReturnAddressIsTaken(true); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| int XLenInBytes = Subtarget.getXLen() / 8; |
| |
| if (verifyReturnAddressArgumentIsConstant(Op, DAG)) |
| return SDValue(); |
| |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| if (Depth) { |
| int Off = -XLenInBytes; |
| SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); |
| SDValue Offset = DAG.getConstant(Off, DL, VT); |
| return DAG.getLoad(VT, DL, DAG.getEntryNode(), |
| DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), |
| MachinePointerInfo()); |
| } |
| |
| // Return the value of the return address register, marking it an implicit |
| // live-in. |
| Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); |
| return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); |
| } |
| |
| SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| SDValue Lo = Op.getOperand(0); |
| SDValue Hi = Op.getOperand(1); |
| SDValue Shamt = Op.getOperand(2); |
| EVT VT = Lo.getValueType(); |
| |
| // if Shamt-XLEN < 0: // Shamt < XLEN |
| // Lo = Lo << Shamt |
| // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) |
| // else: |
| // Lo = 0 |
| // Hi = Lo << (Shamt-XLEN) |
| |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| SDValue One = DAG.getConstant(1, DL, VT); |
| SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); |
| SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); |
| SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); |
| SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); |
| |
| SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); |
| SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); |
| SDValue ShiftRightLo = |
| DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); |
| SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); |
| SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); |
| SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); |
| |
| SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); |
| |
| Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); |
| Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); |
| |
| SDValue Parts[2] = {Lo, Hi}; |
| return DAG.getMergeValues(Parts, DL); |
| } |
| |
| SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, |
| bool IsSRA) const { |
| SDLoc DL(Op); |
| SDValue Lo = Op.getOperand(0); |
| SDValue Hi = Op.getOperand(1); |
| SDValue Shamt = Op.getOperand(2); |
| EVT VT = Lo.getValueType(); |
| |
| // SRA expansion: |
| // if Shamt-XLEN < 0: // Shamt < XLEN |
| // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) |
| // Hi = Hi >>s Shamt |
| // else: |
| // Lo = Hi >>s (Shamt-XLEN); |
| // Hi = Hi >>s (XLEN-1) |
| // |
| // SRL expansion: |
| // if Shamt-XLEN < 0: // Shamt < XLEN |
| // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) |
| // Hi = Hi >>u Shamt |
| // else: |
| // Lo = Hi >>u (Shamt-XLEN); |
| // Hi = 0; |
| |
| unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; |
| |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| SDValue One = DAG.getConstant(1, DL, VT); |
| SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); |
| SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); |
| SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); |
| SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); |
| |
| SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); |
| SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); |
| SDValue ShiftLeftHi = |
| DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); |
| SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); |
| SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); |
| SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); |
| SDValue HiFalse = |
| IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; |
| |
| SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); |
| |
| Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); |
| Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); |
| |
| SDValue Parts[2] = {Lo, Hi}; |
| return DAG.getMergeValues(Parts, DL); |
| } |
| |
| // Returns the opcode of the target-specific SDNode that implements the 32-bit |
| // form of the given Opcode. |
| static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { |
| switch (Opcode) { |
| default: |
| llvm_unreachable("Unexpected opcode"); |
| case ISD::SHL: |
| return RISCVISD::SLLW; |
| case ISD::SRA: |
| return RISCVISD::SRAW; |
| case ISD::SRL: |
| return RISCVISD::SRLW; |
| case ISD::SDIV: |
| return RISCVISD::DIVW; |
| case ISD::UDIV: |
| return RISCVISD::DIVUW; |
| case ISD::UREM: |
| return RISCVISD::REMUW; |
| } |
| } |
| |
| // Converts the given 32-bit operation to a target-specific SelectionDAG node. |
| // Because i32 isn't a legal type for RV64, these operations would otherwise |
| // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W |
| // later one because the fact the operation was originally of type i32 is |
| // lost. |
| static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) { |
| SDLoc DL(N); |
| RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); |
| SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); |
| SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); |
| SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); |
| // ReplaceNodeResults requires we maintain the same type for the return value. |
| return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); |
| } |
| |
| // Converts the given 32-bit operation to a i64 operation with signed extension |
| // semantic to reduce the signed extension instructions. |
| static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { |
| SDLoc DL(N); |
| SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); |
| SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); |
| SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); |
| SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, |
| DAG.getValueType(MVT::i32)); |
| return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); |
| } |
| |
| void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) const { |
| SDLoc DL(N); |
| switch (N->getOpcode()) { |
| default: |
| llvm_unreachable("Don't know how to custom type legalize this operation!"); |
| case ISD::READCYCLECOUNTER: { |
| assert(!Subtarget.is64Bit() && |
| "READCYCLECOUNTER only has custom type legalization on riscv32"); |
| |
| SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); |
| SDValue RCW = |
| DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); |
| |
| Results.push_back(RCW); |
| Results.push_back(RCW.getValue(1)); |
| Results.push_back(RCW.getValue(2)); |
| break; |
| } |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::MUL: |
| assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && |
| "Unexpected custom legalisation"); |
| if (N->getOperand(1).getOpcode() == ISD::Constant) |
| return; |
| Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); |
| break; |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: |
| assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && |
| "Unexpected custom legalisation"); |
| if (N->getOperand(1).getOpcode() == ISD::Constant) |
| return; |
| Results.push_back(customLegalizeToWOp(N, DAG)); |
| break; |
| case ISD::SDIV: |
| case ISD::UDIV: |
| case ISD::UREM: |
| assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && |
| Subtarget.hasStdExtM() && "Unexpected custom legalisation"); |
| if (N->getOperand(0).getOpcode() == ISD::Constant || |
| N->getOperand(1).getOpcode() == ISD::Constant) |
| return; |
| Results.push_back(customLegalizeToWOp(N, DAG)); |
| break; |
| case ISD::BITCAST: { |
| assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && |
| Subtarget.hasStdExtF() && "Unexpected custom legalisation"); |
| SDLoc DL(N); |
| SDValue Op0 = N->getOperand(0); |
| if (Op0.getValueType() != MVT::f32) |
| return; |
| SDValue FPConv = |
| DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); |
| break; |
| } |
| } |
| } |
| |
| SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| |
| switch (N->getOpcode()) { |
| default: |
| break; |
| case RISCVISD::SplitF64: { |
| SDValue Op0 = N->getOperand(0); |
| // If the input to SplitF64 is just BuildPairF64 then the operation is |
| // redundant. Instead, use BuildPairF64's operands directly. |
| if (Op0->getOpcode() == RISCVISD::BuildPairF64) |
| return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); |
| |
| SDLoc DL(N); |
| |
| // It's cheaper to materialise two 32-bit integers than to load a double |
| // from the constant pool and transfer it to integer registers through the |
| // stack. |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { |
| APInt V = C->getValueAPF().bitcastToAPInt(); |
| SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); |
| SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); |
| return DCI.CombineTo(N, Lo, Hi); |
| } |
| |
| // This is a target-specific version of a DAGCombine performed in |
| // DAGCombiner::visitBITCAST. It performs the equivalent of: |
| // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) |
| // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) |
| if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || |
| !Op0.getNode()->hasOneUse()) |
| break; |
| SDValue NewSplitF64 = |
| DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), |
| Op0.getOperand(0)); |
| SDValue Lo = NewSplitF64.getValue(0); |
| SDValue Hi = NewSplitF64.getValue(1); |
| APInt SignBit = APInt::getSignMask(32); |
| if (Op0.getOpcode() == ISD::FNEG) { |
| SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, |
| DAG.getConstant(SignBit, DL, MVT::i32)); |
| return DCI.CombineTo(N, Lo, NewHi); |
| } |
| assert(Op0.getOpcode() == ISD::FABS); |
| SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, |
| DAG.getConstant(~SignBit, DL, MVT::i32)); |
| return DCI.CombineTo(N, Lo, NewHi); |
| } |
| case RISCVISD::SLLW: |
| case RISCVISD::SRAW: |
| case RISCVISD::SRLW: { |
| // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); |
| APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); |
| if ((SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI)) || |
| (SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI))) |
| return SDValue(); |
| break; |
| } |
| case RISCVISD::FMV_X_ANYEXTW_RV64: { |
| SDLoc DL(N); |
| SDValue Op0 = N->getOperand(0); |
| // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the |
| // conversion is unnecessary and can be replaced with an ANY_EXTEND |
| // of the FMV_W_X_RV64 operand. |
| if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { |
| SDValue AExtOp = |
| DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0.getOperand(0)); |
| return DCI.CombineTo(N, AExtOp); |
| } |
| |
| // This is a target-specific version of a DAGCombine performed in |
| // DAGCombiner::visitBITCAST. It performs the equivalent of: |
| // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) |
| // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) |
| if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || |
| !Op0.getNode()->hasOneUse()) |
| break; |
| SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, |
| Op0.getOperand(0)); |
| APInt SignBit = APInt::getSignMask(32).sext(64); |
| if (Op0.getOpcode() == ISD::FNEG) { |
| return DCI.CombineTo(N, |
| DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, |
| DAG.getConstant(SignBit, DL, MVT::i64))); |
| } |
| assert(Op0.getOpcode() == ISD::FABS); |
| return DCI.CombineTo(N, |
| DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, |
| DAG.getConstant(~SignBit, DL, MVT::i64))); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| bool RISCVTargetLowering::isDesirableToCommuteWithShift( |
| const SDNode *N, CombineLevel Level) const { |
| // The following folds are only desirable if `(OP _, c1 << c2)` can be |
| // materialised in fewer instructions than `(OP _, c1)`: |
| // |
| // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) |
| // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) |
| SDValue N0 = N->getOperand(0); |
| EVT Ty = N0.getValueType(); |
| if (Ty.isScalarInteger() && |
| (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { |
| auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); |
| auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (C1 && C2) { |
| APInt C1Int = C1->getAPIntValue(); |
| APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); |
| |
| // We can materialise `c1 << c2` into an add immediate, so it's "free", |
| // and the combine should happen, to potentially allow further combines |
| // later. |
| if (ShiftedC1Int.getMinSignedBits() <= 64 && |
| isLegalAddImmediate(ShiftedC1Int.getSExtValue())) |
| return true; |
| |
| // We can materialise `c1` in an add immediate, so it's "free", and the |
| // combine should be prevented. |
| if (C1Int.getMinSignedBits() <= 64 && |
| isLegalAddImmediate(C1Int.getSExtValue())) |
| return false; |
| |
| // Neither constant will fit into an immediate, so find materialisation |
| // costs. |
| int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), |
| Subtarget.is64Bit()); |
| int ShiftedC1Cost = RISCVMatInt::getIntMatCost( |
| ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); |
| |
| // Materialising `c1` is cheaper than materialising `c1 << c2`, so the |
| // combine should be prevented. |
| if (C1Cost < ShiftedC1Cost) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( |
| SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, |
| unsigned Depth) const { |
| switch (Op.getOpcode()) { |
| default: |
| break; |
| case RISCVISD::SLLW: |
| case RISCVISD::SRAW: |
| case RISCVISD::SRLW: |
| case RISCVISD::DIVW: |
| case RISCVISD::DIVUW: |
| case RISCVISD::REMUW: |
| // TODO: As the result is sign-extended, this is conservatively correct. A |
| // more precise answer could be calculated for SRAW depending on known |
| // bits in the shift amount. |
| return 33; |
| } |
| |
| return 1; |
| } |
| |
| static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, |
| MachineBasicBlock *BB) { |
| assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); |
| |
| // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. |
| // Should the count have wrapped while it was being read, we need to try |
| // again. |
| // ... |
| // read: |
| // rdcycleh x3 # load high word of cycle |
| // rdcycle x2 # load low word of cycle |
| // rdcycleh x4 # load high word of cycle |
| // bne x3, x4, read # check if high word reads match, otherwise try again |
| // ... |
| |
| MachineFunction &MF = *BB->getParent(); |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator It = ++BB->getIterator(); |
| |
| MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); |
| MF.insert(It, LoopMBB); |
| |
| MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); |
| MF.insert(It, DoneMBB); |
| |
| // Transfer the remainder of BB and its successor edges to DoneMBB. |
| DoneMBB->splice(DoneMBB->begin(), BB, |
| std::next(MachineBasicBlock::iterator(MI)), BB->end()); |
| DoneMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| BB->addSuccessor(LoopMBB); |
| |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); |
| Register LoReg = MI.getOperand(0).getReg(); |
| Register HiReg = MI.getOperand(1).getReg(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); |
| BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) |
| .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) |
| .addReg(RISCV::X0); |
| BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) |
| .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) |
| .addReg(RISCV::X0); |
| BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) |
| .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) |
| .addReg(RISCV::X0); |
| |
| BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) |
| .addReg(HiReg) |
| .addReg(ReadAgainReg) |
| .addMBB(LoopMBB); |
| |
| LoopMBB->addSuccessor(LoopMBB); |
| LoopMBB->addSuccessor(DoneMBB); |
| |
| MI.eraseFromParent(); |
| |
| return DoneMBB; |
| } |
| |
| static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, |
| MachineBasicBlock *BB) { |
| assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); |
| |
| MachineFunction &MF = *BB->getParent(); |
| DebugLoc DL = MI.getDebugLoc(); |
| const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); |
| const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); |
| Register LoReg = MI.getOperand(0).getReg(); |
| Register HiReg = MI.getOperand(1).getReg(); |
| Register SrcReg = MI.getOperand(2).getReg(); |
| const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; |
| int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); |
| |
| TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, |
| RI); |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), |
| MachineMemOperand::MOLoad, 8, 8); |
| BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO); |
| BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) |
| .addFrameIndex(FI) |
| .addImm(4) |
| .addMemOperand(MMO); |
| MI.eraseFromParent(); // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, |
| MachineBasicBlock *BB) { |
| assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && |
| "Unexpected instruction"); |
| |
| MachineFunction &MF = *BB->getParent(); |
| DebugLoc DL = MI.getDebugLoc(); |
| const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); |
| const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); |
| Register DstReg = MI.getOperand(0).getReg(); |
| Register LoReg = MI.getOperand(1).getReg(); |
| Register HiReg = MI.getOperand(2).getReg(); |
| const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; |
| int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); |
| |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), |
| MachineMemOperand::MOStore, 8, 8); |
| BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) |
| .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO); |
| BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) |
| .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) |
| .addFrameIndex(FI) |
| .addImm(4) |
| .addMemOperand(MMO); |
| TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); |
| MI.eraseFromParent(); // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| static bool isSelectPseudo(MachineInstr &MI) { |
| switch (MI.getOpcode()) { |
| default: |
| return false; |
| case RISCV::Select_GPR_Using_CC_GPR: |
| case RISCV::Select_FPR32_Using_CC_GPR: |
| case RISCV::Select_FPR64_Using_CC_GPR: |
| return true; |
| } |
| } |
| |
| static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, |
| MachineBasicBlock *BB) { |
| // To "insert" Select_* instructions, we actually have to insert the triangle |
| // control-flow pattern. The incoming instructions know the destination vreg |
| // to set, the condition code register to branch on, the true/false values to |
| // select between, and the condcode to use to select the appropriate branch. |
| // |
| // We produce the following control flow: |
| // HeadMBB |
| // | \ |
| // | IfFalseMBB |
| // | / |
| // TailMBB |
| // |
| // When we find a sequence of selects we attempt to optimize their emission |
| // by sharing the control flow. Currently we only handle cases where we have |
| // multiple selects with the exact same condition (same LHS, RHS and CC). |
| // The selects may be interleaved with other instructions if the other |
| // instructions meet some requirements we deem safe: |
| // - They are debug instructions. Otherwise, |
| // - They do not have side-effects, do not access memory and their inputs do |
| // not depend on the results of the select pseudo-instructions. |
| // The TrueV/FalseV operands of the selects cannot depend on the result of |
| // previous selects in the sequence. |
| // These conditions could be further relaxed. See the X86 target for a |
| // related approach and more information. |
| Register LHS = MI.getOperand(1).getReg(); |
| Register RHS = MI.getOperand(2).getReg(); |
| auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); |
| |
| SmallVector<MachineInstr *, 4> SelectDebugValues; |
| SmallSet<Register, 4> SelectDests; |
| SelectDests.insert(MI.getOperand(0).getReg()); |
| |
| MachineInstr *LastSelectPseudo = &MI; |
| |
| for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); |
| SequenceMBBI != E; ++SequenceMBBI) { |
| if (SequenceMBBI->isDebugInstr()) |
| continue; |
| else if (isSelectPseudo(*SequenceMBBI)) { |
| if (SequenceMBBI->getOperand(1).getReg() != LHS || |
| SequenceMBBI->getOperand(2).getReg() != RHS || |
| SequenceMBBI->getOperand(3).getImm() != CC || |
| SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || |
| SelectDests.count(SequenceMBBI->getOperand(5).getReg())) |
| break; |
| LastSelectPseudo = &*SequenceMBBI; |
| SequenceMBBI->collectDebugValues(SelectDebugValues); |
| SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); |
| } else { |
| if (SequenceMBBI->hasUnmodeledSideEffects() || |
| SequenceMBBI->mayLoadOrStore()) |
| break; |
| if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { |
| return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); |
| })) |
| break; |
| } |
| } |
| |
| const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| DebugLoc DL = MI.getDebugLoc(); |
| MachineFunction::iterator I = ++BB->getIterator(); |
| |
| MachineBasicBlock *HeadMBB = BB; |
| MachineFunction *F = BB->getParent(); |
| MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| |
| F->insert(I, IfFalseMBB); |
| F->insert(I, TailMBB); |
| |
| // Transfer debug instructions associated with the selects to TailMBB. |
| for (MachineInstr *DebugInstr : SelectDebugValues) { |
| TailMBB->push_back(DebugInstr->removeFromParent()); |
| } |
| |
| // Move all instructions after the sequence to TailMBB. |
| TailMBB->splice(TailMBB->end(), HeadMBB, |
| std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); |
| // Update machine-CFG edges by transferring all successors of the current |
| // block to the new block which will contain the Phi nodes for the selects. |
| TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); |
| // Set the successors for HeadMBB. |
| HeadMBB->addSuccessor(IfFalseMBB); |
| HeadMBB->addSuccessor(TailMBB); |
| |
| // Insert appropriate branch. |
| unsigned Opcode = getBranchOpcodeForIntCondCode(CC); |
| |
| BuildMI(HeadMBB, DL, TII.get(Opcode)) |
| .addReg(LHS) |
| .addReg(RHS) |
| .addMBB(TailMBB); |
| |
| // IfFalseMBB just falls through to TailMBB. |
| IfFalseMBB->addSuccessor(TailMBB); |
| |
| // Create PHIs for all of the select pseudo-instructions. |
| auto SelectMBBI = MI.getIterator(); |
| auto SelectEnd = std::next(LastSelectPseudo->getIterator()); |
| auto InsertionPoint = TailMBB->begin(); |
| while (SelectMBBI != SelectEnd) { |
| auto Next = std::next(SelectMBBI); |
| if (isSelectPseudo(*SelectMBBI)) { |
| // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] |
| BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), |
| TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) |
| .addReg(SelectMBBI->getOperand(4).getReg()) |
| .addMBB(HeadMBB) |
| .addReg(SelectMBBI->getOperand(5).getReg()) |
| .addMBB(IfFalseMBB); |
| SelectMBBI->eraseFromParent(); |
| } |
| SelectMBBI = Next; |
| } |
| |
| F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); |
| return TailMBB; |
| } |
| |
| MachineBasicBlock * |
| RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| switch (MI.getOpcode()) { |
| default: |
| llvm_unreachable("Unexpected instr type to insert"); |
| case RISCV::ReadCycleWide: |
| assert(!Subtarget.is64Bit() && |
| "ReadCycleWrite is only to be used on riscv32"); |
| return emitReadCycleWidePseudo(MI, BB); |
| case RISCV::Select_GPR_Using_CC_GPR: |
| case RISCV::Select_FPR32_Using_CC_GPR: |
| case RISCV::Select_FPR64_Using_CC_GPR: |
| return emitSelectPseudo(MI, BB); |
| case RISCV::BuildPairF64Pseudo: |
| return emitBuildPairF64Pseudo(MI, BB); |
| case RISCV::SplitF64Pseudo: |
| return emitSplitF64Pseudo(MI, BB); |
| } |
| } |
| |
| // Calling Convention Implementation. |
| // The expectations for frontend ABI lowering vary from target to target. |
| // Ideally, an LLVM frontend would be able to avoid worrying about many ABI |
| // details, but this is a longer term goal. For now, we simply try to keep the |
| // role of the frontend as simple and well-defined as possible. The rules can |
| // be summarised as: |
| // * Never split up large scalar arguments. We handle them here. |
| // * If a hardfloat calling convention is being used, and the struct may be |
| // passed in a pair of registers (fp+fp, int+fp), and both registers are |
| // available, then pass as two separate arguments. If either the GPRs or FPRs |
| // are exhausted, then pass according to the rule below. |
| // * If a struct could never be passed in registers or directly in a stack |
| // slot (as it is larger than 2*XLEN and the floating point rules don't |
| // apply), then pass it using a pointer with the byval attribute. |
| // * If a struct is less than 2*XLEN, then coerce to either a two-element |
| // word-sized array or a 2*XLEN scalar (depending on alignment). |
| // * The frontend can determine whether a struct is returned by reference or |
| // not based on its size and fields. If it will be returned by reference, the |
| // frontend must modify the prototype so a pointer with the sret annotation is |
| // passed as the first argument. This is not necessary for large scalar |
| // returns. |
| // * Struct return values and varargs should be coerced to structs containing |
| // register-size fields in the same situations they would be for fixed |
| // arguments. |
| |
| static const MCPhysReg ArgGPRs[] = { |
| RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, |
| RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 |
| }; |
| static const MCPhysReg ArgFPR32s[] = { |
| RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, |
| RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F |
| }; |
| static const MCPhysReg ArgFPR64s[] = { |
| RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, |
| RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D |
| }; |
| |
| // Pass a 2*XLEN argument that has been split into two XLEN values through |
| // registers or the stack as necessary. |
| static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, |
| ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, |
| MVT ValVT2, MVT LocVT2, |
| ISD::ArgFlagsTy ArgFlags2) { |
| unsigned XLenInBytes = XLen / 8; |
| if (Register Reg = State.AllocateReg(ArgGPRs)) { |
| // At least one half can be passed via register. |
| State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, |
| VA1.getLocVT(), CCValAssign::Full)); |
| } else { |
| // Both halves must be passed on the stack, with proper alignment. |
| unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign()); |
| State.addLoc( |
| CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), |
| State.AllocateStack(XLenInBytes, StackAlign), |
| VA1.getLocVT(), CCValAssign::Full)); |
| State.addLoc(CCValAssign::getMem( |
| ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, |
| CCValAssign::Full)); |
| return false; |
| } |
| |
| if (Register Reg = State.AllocateReg(ArgGPRs)) { |
| // The second half can also be passed via register. |
| State.addLoc( |
| CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); |
| } else { |
| // The second half is passed via the stack, without additional alignment. |
| State.addLoc(CCValAssign::getMem( |
| ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, |
| CCValAssign::Full)); |
| } |
| |
| return false; |
| } |
| |
| // Implements the RISC-V calling convention. Returns true upon failure. |
| static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, |
| MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, |
| bool IsRet, Type *OrigTy) { |
| unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); |
| assert(XLen == 32 || XLen == 64); |
| MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; |
| |
| // Any return value split in to more than two values can't be returned |
| // directly. |
| if (IsRet && ValNo > 1) |
| return true; |
| |
| // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a |
| // variadic argument, or if no F32 argument registers are available. |
| bool UseGPRForF32 = true; |
| // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a |
| // variadic argument, or if no F64 argument registers are available. |
| bool UseGPRForF64 = true; |
| |
| switch (ABI) { |
| default: |
| llvm_unreachable("Unexpected ABI"); |
| case RISCVABI::ABI_ILP32: |
| case RISCVABI::ABI_LP64: |
| break; |
| case RISCVABI::ABI_ILP32F: |
| case RISCVABI::ABI_LP64F: |
| UseGPRForF32 = !IsFixed; |
| break; |
| case RISCVABI::ABI_ILP32D: |
| case RISCVABI::ABI_LP64D: |
| UseGPRForF32 = !IsFixed; |
| UseGPRForF64 = !IsFixed; |
| break; |
| } |
| |
| if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) |
| UseGPRForF32 = true; |
| if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s)) |
| UseGPRForF64 = true; |
| |
| // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local |
| // variables rather than directly checking against the target ABI. |
| |
| if (UseGPRForF32 && ValVT == MVT::f32) { |
| LocVT = XLenVT; |
| LocInfo = CCValAssign::BCvt; |
| } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { |
| LocVT = MVT::i64; |
| LocInfo = CCValAssign::BCvt; |
| } |
| |
| // If this is a variadic argument, the RISC-V calling convention requires |
| // that it is assigned an 'even' or 'aligned' register if it has 8-byte |
| // alignment (RV32) or 16-byte alignment (RV64). An aligned register should |
| // be used regardless of whether the original argument was split during |
| // legalisation or not. The argument will not be passed by registers if the |
| // original type is larger than 2*XLEN, so the register alignment rule does |
| // not apply. |
| unsigned TwoXLenInBytes = (2 * XLen) / 8; |
| if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes && |
| DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { |
| unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); |
| // Skip 'odd' register if necessary. |
| if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) |
| State.AllocateReg(ArgGPRs); |
| } |
| |
| SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); |
| SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = |
| State.getPendingArgFlags(); |
| |
| assert(PendingLocs.size() == PendingArgFlags.size() && |
| "PendingLocs and PendingArgFlags out of sync"); |
| |
| // Handle passing f64 on RV32D with a soft float ABI or when floating point |
| // registers are exhausted. |
| if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { |
| assert(!ArgFlags.isSplit() && PendingLocs.empty() && |
| "Can't lower f64 if it is split"); |
| // Depending on available argument GPRS, f64 may be passed in a pair of |
| // GPRs, split between a GPR and the stack, or passed completely on the |
| // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these |
| // cases. |
| Register Reg = State.AllocateReg(ArgGPRs); |
| LocVT = MVT::i32; |
| if (!Reg) { |
| unsigned StackOffset = State.AllocateStack(8, 8); |
| State.addLoc( |
| CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); |
| return false; |
| } |
| if (!State.AllocateReg(ArgGPRs)) |
| State.AllocateStack(4, 4); |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return false; |
| } |
| |
| // Split arguments might be passed indirectly, so keep track of the pending |
| // values. |
| if (ArgFlags.isSplit() || !PendingLocs.empty()) { |
| LocVT = XLenVT; |
| LocInfo = CCValAssign::Indirect; |
| PendingLocs.push_back( |
| CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); |
| PendingArgFlags.push_back(ArgFlags); |
| if (!ArgFlags.isSplitEnd()) { |
| return false; |
| } |
| } |
| |
| // If the split argument only had two elements, it should be passed directly |
| // in registers or on the stack. |
| if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { |
| assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); |
| // Apply the normal calling convention rules to the first half of the |
| // split argument. |
| CCValAssign VA = PendingLocs[0]; |
| ISD::ArgFlagsTy AF = PendingArgFlags[0]; |
| PendingLocs.clear(); |
| PendingArgFlags.clear(); |
| return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, |
| ArgFlags); |
| } |
| |
| // Allocate to a register if possible, or else a stack slot. |
| Register Reg; |
| if (ValVT == MVT::f32 && !UseGPRForF32) |
| Reg = State.AllocateReg(ArgFPR32s, ArgFPR64s); |
| else if (ValVT == MVT::f64 && !UseGPRForF64) |
| Reg = State.AllocateReg(ArgFPR64s, ArgFPR32s); |
| else |
| Reg = State.AllocateReg(ArgGPRs); |
| unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8); |
| |
| // If we reach this point and PendingLocs is non-empty, we must be at the |
| // end of a split argument that must be passed indirectly. |
| if (!PendingLocs.empty()) { |
| assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); |
| assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); |
| |
| for (auto &It : PendingLocs) { |
| if (Reg) |
| It.convertToReg(Reg); |
| else |
| It.convertToMem(StackOffset); |
| State.addLoc(It); |
| } |
| PendingLocs.clear(); |
| PendingArgFlags.clear(); |
| return false; |
| } |
| |
| assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) && |
| "Expected an XLenVT at this stage"); |
| |
| if (Reg) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return false; |
| } |
| |
| // When an f32 or f64 is passed on the stack, no bit-conversion is needed. |
| if (ValVT == MVT::f32 || ValVT == MVT::f64) { |
| LocVT = ValVT; |
| LocInfo = CCValAssign::Full; |
| } |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); |
| return false; |
| } |
| |
| void RISCVTargetLowering::analyzeInputArgs( |
| MachineFunction &MF, CCState &CCInfo, |
| const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { |
| unsigned NumArgs = Ins.size(); |
| FunctionType *FType = MF.getFunction().getFunctionType(); |
| |
| for (unsigned i = 0; i != NumArgs; ++i) { |
| MVT ArgVT = Ins[i].VT; |
| ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; |
| |
| Type *ArgTy = nullptr; |
| if (IsRet) |
| ArgTy = FType->getReturnType(); |
| else if (Ins[i].isOrigArg()) |
| ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); |
| |
| RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); |
| if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, |
| ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) { |
| LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " |
| << EVT(ArgVT).getEVTString() << '\n'); |
| llvm_unreachable(nullptr); |
| } |
| } |
| } |
| |
| void RISCVTargetLowering::analyzeOutputArgs( |
| MachineFunction &MF, CCState &CCInfo, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, |
| CallLoweringInfo *CLI) const { |
| unsigned NumArgs = Outs.size(); |
| |
| for (unsigned i = 0; i != NumArgs; i++) { |
| MVT ArgVT = Outs[i].VT; |
| ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; |
| Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; |
| |
| RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); |
| if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, |
| ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) { |
| LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " |
| << EVT(ArgVT).getEVTString() << "\n"); |
| llvm_unreachable(nullptr); |
| } |
| } |
| } |
| |
| // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect |
| // values. |
| static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, |
| const CCValAssign &VA, const SDLoc &DL) { |
| switch (VA.getLocInfo()) { |
| default: |
| llvm_unreachable("Unexpected CCValAssign::LocInfo"); |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::BCvt: |
| if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { |
| Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); |
| break; |
| } |
| Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); |
| break; |
| } |
| return Val; |
| } |
| |
| // The caller is responsible for loading the full value if the argument is |
| // passed with CCValAssign::Indirect. |
| static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, |
| const CCValAssign &VA, const SDLoc &DL) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| EVT LocVT = VA.getLocVT(); |
| SDValue Val; |
| const TargetRegisterClass *RC; |
| |
| switch (LocVT.getSimpleVT().SimpleTy) { |
| default: |
| llvm_unreachable("Unexpected register type"); |
| case MVT::i32: |
| case MVT::i64: |
| RC = &RISCV::GPRRegClass; |
| break; |
| case MVT::f32: |
| RC = &RISCV::FPR32RegClass; |
| break; |
| case MVT::f64: |
| RC = &RISCV::FPR64RegClass; |
| break; |
| } |
| |
| Register VReg = RegInfo.createVirtualRegister(RC); |
| RegInfo.addLiveIn(VA.getLocReg(), VReg); |
| Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); |
| |
| if (VA.getLocInfo() == CCValAssign::Indirect) |
| return Val; |
| |
| return convertLocVTToValVT(DAG, Val, VA, DL); |
| } |
| |
| static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, |
| const CCValAssign &VA, const SDLoc &DL) { |
| EVT LocVT = VA.getLocVT(); |
| |
| switch (VA.getLocInfo()) { |
| default: |
| llvm_unreachable("Unexpected CCValAssign::LocInfo"); |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::BCvt: |
| if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { |
| Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); |
| break; |
| } |
| Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); |
| break; |
| } |
| return Val; |
| } |
| |
| // The caller is responsible for loading the full value if the argument is |
| // passed with CCValAssign::Indirect. |
| static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, |
| const CCValAssign &VA, const SDLoc &DL) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| EVT LocVT = VA.getLocVT(); |
| EVT ValVT = VA.getValVT(); |
| EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); |
| int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, |
| VA.getLocMemOffset(), /*Immutable=*/true); |
| SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| SDValue Val; |
| |
| ISD::LoadExtType ExtType; |
| switch (VA.getLocInfo()) { |
| default: |
| llvm_unreachable("Unexpected CCValAssign::LocInfo"); |
| case CCValAssign::Full: |
| case CCValAssign::Indirect: |
| case CCValAssign::BCvt: |
| ExtType = ISD::NON_EXTLOAD; |
| break; |
| } |
| Val = DAG.getExtLoad( |
| ExtType, DL, LocVT, Chain, FIN, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); |
| return Val; |
| } |
| |
| static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, |
| const CCValAssign &VA, const SDLoc &DL) { |
| assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && |
| "Unexpected VA"); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| |
| if (VA.isMemLoc()) { |
| // f64 is passed on the stack. |
| int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); |
| SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); |
| return DAG.getLoad(MVT::f64, DL, Chain, FIN, |
| MachinePointerInfo::getFixedStack(MF, FI)); |
| } |
| |
| assert(VA.isRegLoc() && "Expected register VA assignment"); |
| |
| Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); |
| RegInfo.addLiveIn(VA.getLocReg(), LoVReg); |
| SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); |
| SDValue Hi; |
| if (VA.getLocReg() == RISCV::X17) { |
| // Second half of f64 is passed on the stack. |
| int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); |
| SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); |
| Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, |
| MachinePointerInfo::getFixedStack(MF, FI)); |
| } else { |
| // Second half of f64 is passed in another GPR. |
| Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); |
| RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); |
| Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); |
| } |
| return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); |
| } |
| |
| // FastCC has less than 1% performance improvement for some particular |
| // benchmark. But theoretically, it may has benenfit for some cases. |
| static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, |
| CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State) { |
| |
| if (LocVT == MVT::i32 || LocVT == MVT::i64) { |
| // X5 and X6 might be used for save-restore libcall. |
| static const MCPhysReg GPRList[] = { |
| RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, |
| RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, |
| RISCV::X29, RISCV::X30, RISCV::X31}; |
| if (unsigned Reg = State.AllocateReg(GPRList)) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return false; |
| } |
| } |
| |
| if (LocVT == MVT::f32) { |
| static const MCPhysReg FPR32List[] = { |
| RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, |
| RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, |
| RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, |
| RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; |
| if (unsigned Reg = State.AllocateReg(FPR32List)) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return false; |
| } |
| } |
| |
| if (LocVT == MVT::f64) { |
| static const MCPhysReg FPR64List[] = { |
| RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, |
| RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, |
| RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, |
| RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; |
| if (unsigned Reg = State.AllocateReg(FPR64List)) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return false; |
| } |
| } |
| |
| if (LocVT == MVT::i32 || LocVT == MVT::f32) { |
| unsigned Offset4 = State.AllocateStack(4, 4); |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); |
| return false; |
| } |
| |
| if (LocVT == MVT::i64 || LocVT == MVT::f64) { |
| unsigned Offset5 = State.AllocateStack(8, 8); |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); |
| return false; |
| } |
| |
| return true; // CC didn't match. |
| } |
| |
| // Transform physical registers into virtual registers. |
| SDValue RISCVTargetLowering::LowerFormalArguments( |
| SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| |
| switch (CallConv) { |
| default: |
| report_fatal_error("Unsupported calling convention"); |
| case CallingConv::C: |
| case CallingConv::Fast: |
| break; |
| } |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| const Function &Func = MF.getFunction(); |
| if (Func.hasFnAttribute("interrupt")) { |
| if (!Func.arg_empty()) |
| report_fatal_error( |
| "Functions with the interrupt attribute cannot have arguments!"); |
| |
| StringRef Kind = |
| MF.getFunction().getFnAttribute("interrupt").getValueAsString(); |
| |
| if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) |
| report_fatal_error( |
| "Function interrupt attribute argument not supported!"); |
| } |
| |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| unsigned XLenInBytes = Subtarget.getXLen() / 8; |
| // Used with vargs to acumulate store chains. |
| std::vector<SDValue> OutChains; |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); |
| |
| if (CallConv == CallingConv::Fast) |
| CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); |
| else |
| analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); |
| |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| SDValue ArgValue; |
| // Passing f64 on RV32D with a soft float ABI must be handled as a special |
| // case. |
| if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) |
| ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); |
| else if (VA.isRegLoc()) |
| ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL); |
| else |
| ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); |
| |
| if (VA.getLocInfo() == CCValAssign::Indirect) { |
| // If the original argument was split and passed by reference (e.g. i128 |
| // on RV32), we need to load all parts of it here (using the same |
| // address). |
| InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, |
| MachinePointerInfo())); |
| unsigned ArgIndex = Ins[i].OrigArgIndex; |
| assert(Ins[i].PartOffset == 0); |
| while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { |
| CCValAssign &PartVA = ArgLocs[i + 1]; |
| unsigned PartOffset = Ins[i + 1].PartOffset; |
| SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, |
| DAG.getIntPtrConstant(PartOffset, DL)); |
| InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, |
| MachinePointerInfo())); |
| ++i; |
| } |
| continue; |
| } |
| InVals.push_back(ArgValue); |
| } |
| |
| if (IsVarArg) { |
| ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); |
| unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); |
| const TargetRegisterClass *RC = &RISCV::GPRRegClass; |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); |
| |
| // Offset of the first variable argument from stack pointer, and size of |
| // the vararg save area. For now, the varargs save area is either zero or |
| // large enough to hold a0-a7. |
| int VaArgOffset, VarArgsSaveSize; |
| |
| // If all registers are allocated, then all varargs must be passed on the |
| // stack and we don't need to save any argregs. |
| if (ArgRegs.size() == Idx) { |
| VaArgOffset = CCInfo.getNextStackOffset(); |
| VarArgsSaveSize = 0; |
| } else { |
| VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); |
| VaArgOffset = -VarArgsSaveSize; |
| } |
| |
| // Record the frame index of the first variable argument |
| // which is a value necessary to VASTART. |
| int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); |
| RVFI->setVarArgsFrameIndex(FI); |
| |
| // If saving an odd number of registers then create an extra stack slot to |
| // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures |
| // offsets to even-numbered registered remain 2*XLEN-aligned. |
| if (Idx % 2) { |
| MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); |
| VarArgsSaveSize += XLenInBytes; |
| } |
| |
| // Copy the integer registers that may have been used for passing varargs |
| // to the vararg save area. |
| for (unsigned I = Idx; I < ArgRegs.size(); |
| ++I, VaArgOffset += XLenInBytes) { |
| const Register Reg = RegInfo.createVirtualRegister(RC); |
| RegInfo.addLiveIn(ArgRegs[I], Reg); |
| SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); |
| FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); |
| SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); |
| SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, |
| MachinePointerInfo::getFixedStack(MF, FI)); |
| cast<StoreSDNode>(Store.getNode()) |
| ->getMemOperand() |
| ->setValue((Value *)nullptr); |
| OutChains.push_back(Store); |
| } |
| RVFI->setVarArgsSaveSize(VarArgsSaveSize); |
| } |
| |
| // All stores are grouped in one node to allow the matching between |
| // the size of Ins and InVals. This only happens for vararg functions. |
| if (!OutChains.empty()) { |
| OutChains.push_back(Chain); |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); |
| } |
| |
| return Chain; |
| } |
| |
| /// isEligibleForTailCallOptimization - Check whether the call is eligible |
| /// for tail call optimization. |
| /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. |
| bool RISCVTargetLowering::isEligibleForTailCallOptimization( |
| CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, |
| const SmallVector<CCValAssign, 16> &ArgLocs) const { |
| |
| auto &Callee = CLI.Callee; |
| auto CalleeCC = CLI.CallConv; |
| auto &Outs = CLI.Outs; |
| auto &Caller = MF.getFunction(); |
| auto CallerCC = Caller.getCallingConv(); |
| |
| // Exception-handling functions need a special set of instructions to |
| // indicate a return to the hardware. Tail-calling another function would |
| // probably break this. |
| // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This |
| // should be expanded as new function attributes are introduced. |
| if (Caller.hasFnAttribute("interrupt")) |
| return false; |
| |
| // Do not tail call opt if the stack is used to pass parameters. |
| if (CCInfo.getNextStackOffset() != 0) |
| return false; |
| |
| // Do not tail call opt if any parameters need to be passed indirectly. |
| // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are |
| // passed indirectly. So the address of the value will be passed in a |
| // register, or if not available, then the address is put on the stack. In |
| // order to pass indirectly, space on the stack often needs to be allocated |
| // in order to store the value. In this case the CCInfo.getNextStackOffset() |
| // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs |
| // are passed CCValAssign::Indirect. |
| for (auto &VA : ArgLocs) |
| if (VA.getLocInfo() == CCValAssign::Indirect) |
| return false; |
| |
| // Do not tail call opt if either caller or callee uses struct return |
| // semantics. |
| auto IsCallerStructRet = Caller.hasStructRetAttr(); |
| auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); |
| if (IsCallerStructRet || IsCalleeStructRet) |
| return false; |
| |
| // Externally-defined functions with weak linkage should not be |
| // tail-called. The behaviour of branch instructions in this situation (as |
| // used for tail calls) is implementation-defined, so we cannot rely on the |
| // linker replacing the tail call with a return. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| const GlobalValue *GV = G->getGlobal(); |
| if (GV->hasExternalWeakLinkage()) |
| return false; |
| } |
| |
| // The callee has to preserve all registers the caller needs to preserve. |
| const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); |
| if (CalleeCC != CallerCC) { |
| const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); |
| if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) |
| return false; |
| } |
| |
| // Byval parameters hand the function a pointer directly into the stack area |
| // we want to reuse during a tail call. Working around this *is* possible |
| // but less efficient and uglier in LowerCall. |
| for (auto &Arg : Outs) |
| if (Arg.Flags.isByVal()) |
| return false; |
| |
| return true; |
| } |
| |
| // Lower a call to a callseq_start + CALL + callseq_end chain, and add input |
| // and output parameter nodes. |
| SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| SDLoc &DL = CLI.DL; |
| SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; |
| SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; |
| SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| bool &IsTailCall = CLI.IsTailCall; |
| CallingConv::ID CallConv = CLI.CallConv; |
| bool IsVarArg = CLI.IsVarArg; |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| // Analyze the operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); |
| |
| if (CallConv == CallingConv::Fast) |
| ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); |
| else |
| analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); |
| |
| // Check if it's really possible to do a tail call. |
| if (IsTailCall) |
| IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); |
| |
| if (IsTailCall) |
| ++NumTailCalls; |
| else if (CLI.CS && CLI.CS.isMustTailCall()) |
| report_fatal_error("failed to perform tail call elimination on a call " |
| "site marked musttail"); |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = ArgCCInfo.getNextStackOffset(); |
| |
| // Create local copies for byval args |
| SmallVector<SDValue, 8> ByValArgs; |
| for (unsigned i = 0, e = Outs.size(); i != e; ++i) { |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| if (!Flags.isByVal()) |
| continue; |
| |
| SDValue Arg = OutVals[i]; |
| unsigned Size = Flags.getByValSize(); |
| unsigned Align = Flags.getByValAlign(); |
| |
| int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false); |
| SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); |
| SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); |
| |
| Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align, |
| /*IsVolatile=*/false, |
| /*AlwaysInline=*/false, |
| IsTailCall, MachinePointerInfo(), |
| MachinePointerInfo()); |
| ByValArgs.push_back(FIPtr); |
| } |
| |
| if (!IsTailCall) |
| Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); |
| |
| // Copy argument values to their designated locations. |
| SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; |
| SmallVector<SDValue, 8> MemOpChains; |
| SDValue StackPtr; |
| for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| SDValue ArgValue = OutVals[i]; |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| |
| // Handle passing f64 on RV32D with a soft float ABI as a special case. |
| bool IsF64OnRV32DSoftABI = |
| VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; |
| if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { |
| SDValue SplitF64 = DAG.getNode( |
| RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); |
| SDValue Lo = SplitF64.getValue(0); |
| SDValue Hi = SplitF64.getValue(1); |
| |
| Register RegLo = VA.getLocReg(); |
| RegsToPass.push_back(std::make_pair(RegLo, Lo)); |
| |
| if (RegLo == RISCV::X17) { |
| // Second half of f64 is passed on the stack. |
| // Work out the address of the stack slot. |
| if (!StackPtr.getNode()) |
| StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); |
| // Emit the store. |
| MemOpChains.push_back( |
| DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); |
| } else { |
| // Second half of f64 is passed in another GPR. |
| assert(RegLo < RISCV::X31 && "Invalid register pair"); |
| Register RegHigh = RegLo + 1; |
| RegsToPass.push_back(std::make_pair(RegHigh, Hi)); |
| } |
| continue; |
| } |
| |
| // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way |
| // as any other MemLoc. |
| |
| // Promote the value if needed. |
| // For now, only handle fully promoted and indirect arguments. |
| if (VA.getLocInfo() == CCValAssign::Indirect) { |
| // Store the argument in a stack slot and pass its address. |
| SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); |
| int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); |
| MemOpChains.push_back( |
| DAG.getStore(Chain, DL, ArgValue, SpillSlot, |
| MachinePointerInfo::getFixedStack(MF, FI))); |
| // If the original argument was split (e.g. i128), we need |
| // to store all parts of it here (and pass just one address). |
| unsigned ArgIndex = Outs[i].OrigArgIndex; |
| assert(Outs[i].PartOffset == 0); |
| while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { |
| SDValue PartValue = OutVals[i + 1]; |
| unsigned PartOffset = Outs[i + 1].PartOffset; |
| SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, |
| DAG.getIntPtrConstant(PartOffset, DL)); |
| MemOpChains.push_back( |
| DAG.getStore(Chain, DL, PartValue, Address, |
| MachinePointerInfo::getFixedStack(MF, FI))); |
| ++i; |
| } |
| ArgValue = SpillSlot; |
| } else { |
| ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); |
| } |
| |
| // Use local copy if it is a byval arg. |
| if (Flags.isByVal()) |
| ArgValue = ByValArgs[j++]; |
| |
| if (VA.isRegLoc()) { |
| // Queue up the argument copies and emit them at the end. |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); |
| } else { |
| assert(VA.isMemLoc() && "Argument not register or memory"); |
| assert(!IsTailCall && "Tail call not allowed if stack is used " |
| "for passing parameters"); |
| |
| // Work out the address of the stack slot. |
| if (!StackPtr.getNode()) |
| StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); |
| SDValue Address = |
| DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, |
| DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); |
| |
| // Emit the store. |
| MemOpChains.push_back( |
| DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); |
| } |
| } |
| |
| // Join the stores, which are independent of one another. |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); |
| |
| SDValue Glue; |
| |
| // Build a sequence of copy-to-reg nodes, chained and glued together. |
| for (auto &Reg : RegsToPass) { |
| Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); |
| Glue = Chain.getValue(1); |
| } |
| |
| // Validate that none of the argument registers have been marked as |
| // reserved, if so report an error. Do the same for the return address if this |
| // is not a tailcall. |
| validateCCReservedRegs(RegsToPass, MF); |
| if (!IsTailCall && |
| MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) |
| MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ |
| MF.getFunction(), |
| "Return address register required, but has been reserved."}); |
| |
| // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a |
| // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't |
| // split it and then direct call can be matched by PseudoCALL. |
| if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| const GlobalValue *GV = S->getGlobal(); |
| |
| unsigned OpFlags = RISCVII::MO_CALL; |
| if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) |
| OpFlags = RISCVII::MO_PLT; |
| |
| Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); |
| } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| unsigned OpFlags = RISCVII::MO_CALL; |
| |
| if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), |
| nullptr)) |
| OpFlags = RISCVII::MO_PLT; |
| |
| Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); |
| } |
| |
| // The first call operand is the chain and the second is the target address. |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| // Add argument registers to the end of the list so that they are |
| // known live into the call. |
| for (auto &Reg : RegsToPass) |
| Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); |
| |
| if (!IsTailCall) { |
| // Add a register mask operand representing the call-preserved registers. |
| const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| Ops.push_back(DAG.getRegisterMask(Mask)); |
| } |
| |
| // Glue the call to the argument copies, if any. |
| if (Glue.getNode()) |
| Ops.push_back(Glue); |
| |
| // Emit the call. |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| |
| if (IsTailCall) { |
| MF.getFrameInfo().setHasTailCall(); |
| return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); |
| } |
| |
| Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); |
| Glue = Chain.getValue(1); |
| |
| // Mark the end of the call, which is glued to the call itself. |
| Chain = DAG.getCALLSEQ_END(Chain, |
| DAG.getConstant(NumBytes, DL, PtrVT, true), |
| DAG.getConstant(0, DL, PtrVT, true), |
| Glue, DL); |
| Glue = Chain.getValue(1); |
| |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); |
| analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (auto &VA : RVLocs) { |
| // Copy the value out |
| SDValue RetValue = |
| DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); |
| // Glue the RetValue to the end of the call sequence |
| Chain = RetValue.getValue(1); |
| Glue = RetValue.getValue(2); |
| |
| if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { |
| assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); |
| SDValue RetValue2 = |
| DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); |
| Chain = RetValue2.getValue(1); |
| Glue = RetValue2.getValue(2); |
| RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, |
| RetValue2); |
| } |
| |
| RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); |
| |
| InVals.push_back(RetValue); |
| } |
| |
| return Chain; |
| } |
| |
| bool RISCVTargetLowering::CanLowerReturn( |
| CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); |
| for (unsigned i = 0, e = Outs.size(); i != e; ++i) { |
| MVT VT = Outs[i].VT; |
| ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; |
| RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); |
| if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, |
| ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr)) |
| return false; |
| } |
| return true; |
| } |
| |
| SDValue |
| RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| bool IsVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &DL, SelectionDAG &DAG) const { |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); |
| |
| // Stores the assignment of the return value to a location. |
| SmallVector<CCValAssign, 16> RVLocs; |
| |
| // Info about the registers and stack slot. |
| CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| |
| analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, |
| nullptr); |
| |
| SDValue Glue; |
| SmallVector<SDValue, 4> RetOps(1, Chain); |
| |
| // Copy the result values into the output registers. |
| for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { |
| SDValue Val = OutVals[i]; |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| |
| if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { |
| // Handle returning f64 on RV32D with a soft float ABI. |
| assert(VA.isRegLoc() && "Expected return via registers"); |
| SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, |
| DAG.getVTList(MVT::i32, MVT::i32), Val); |
| SDValue Lo = SplitF64.getValue(0); |
| SDValue Hi = SplitF64.getValue(1); |
| Register RegLo = VA.getLocReg(); |
| assert(RegLo < RISCV::X31 && "Invalid register pair"); |
| Register RegHi = RegLo + 1; |
| |
| if (STI.isRegisterReservedByUser(RegLo) || |
| STI.isRegisterReservedByUser(RegHi)) |
| MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ |
| MF.getFunction(), |
| "Return value register required, but has been reserved."}); |
| |
| Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); |
| Glue = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); |
| Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); |
| Glue = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); |
| } else { |
| // Handle a 'normal' return. |
| Val = convertValVTToLocVT(DAG, Val, VA, DL); |
| Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); |
| |
| if (STI.isRegisterReservedByUser(VA.getLocReg())) |
| MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ |
| MF.getFunction(), |
| "Return value register required, but has been reserved."}); |
| |
| // Guarantee that all emitted copies are stuck together. |
| Glue = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| } |
| } |
| |
| RetOps[0] = Chain; // Update chain. |
| |
| // Add the glue node if we have it. |
| if (Glue.getNode()) { |
| RetOps.push_back(Glue); |
| } |
| |
| // Interrupt service routines use different return instructions. |
| const Function &Func = DAG.getMachineFunction().getFunction(); |
| if (Func.hasFnAttribute("interrupt")) { |
| if (!Func.getReturnType()->isVoidTy()) |
| report_fatal_error( |
| "Functions with the interrupt attribute must have void return type!"); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| StringRef Kind = |
| MF.getFunction().getFnAttribute("interrupt").getValueAsString(); |
| |
| unsigned RetOpc; |
| if (Kind == "user") |
| RetOpc = RISCVISD::URET_FLAG; |
| else if (Kind == "supervisor") |
| RetOpc = RISCVISD::SRET_FLAG; |
| else |
| RetOpc = RISCVISD::MRET_FLAG; |
| |
| return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); |
| } |
| |
| return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); |
| } |
| |
| void RISCVTargetLowering::validateCCReservedRegs( |
| const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, |
| MachineFunction &MF) const { |
| const Function &F = MF.getFunction(); |
| const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); |
| |
| if (std::any_of(std::begin(Regs), std::end(Regs), [&STI](auto Reg) { |
| return STI.isRegisterReservedByUser(Reg.first); |
| })) |
| F.getContext().diagnose(DiagnosticInfoUnsupported{ |
| F, "Argument register required, but has been reserved."}); |
| } |
| |
| const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch ((RISCVISD::NodeType)Opcode) { |
| case RISCVISD::FIRST_NUMBER: |
| break; |
| case RISCVISD::RET_FLAG: |
| return "RISCVISD::RET_FLAG"; |
| case RISCVISD::URET_FLAG: |
| return "RISCVISD::URET_FLAG"; |
| case RISCVISD::SRET_FLAG: |
| return "RISCVISD::SRET_FLAG"; |
| case RISCVISD::MRET_FLAG: |
| return "RISCVISD::MRET_FLAG"; |
| case RISCVISD::CALL: |
| return "RISCVISD::CALL"; |
| case RISCVISD::SELECT_CC: |
| return "RISCVISD::SELECT_CC"; |
| case RISCVISD::BuildPairF64: |
| return "RISCVISD::BuildPairF64"; |
| case RISCVISD::SplitF64: |
| return "RISCVISD::SplitF64"; |
| case RISCVISD::TAIL: |
| return "RISCVISD::TAIL"; |
| case RISCVISD::SLLW: |
| return "RISCVISD::SLLW"; |
| case RISCVISD::SRAW: |
| return "RISCVISD::SRAW"; |
| case RISCVISD::SRLW: |
| return "RISCVISD::SRLW"; |
| case RISCVISD::DIVW: |
| return "RISCVISD::DIVW"; |
| case RISCVISD::DIVUW: |
| return "RISCVISD::DIVUW"; |
| case RISCVISD::REMUW: |
| return "RISCVISD::REMUW"; |
| case RISCVISD::FMV_W_X_RV64: |
| return "RISCVISD::FMV_W_X_RV64"; |
| case RISCVISD::FMV_X_ANYEXTW_RV64: |
| return "RISCVISD::FMV_X_ANYEXTW_RV64"; |
| case RISCVISD::READ_CYCLE_WIDE: |
| return "RISCVISD::READ_CYCLE_WIDE"; |
| } |
| return nullptr; |
| } |
| |
| /// getConstraintType - Given a constraint letter, return the type of |
| /// constraint it is for this target. |
| RISCVTargetLowering::ConstraintType |
| RISCVTargetLowering::getConstraintType(StringRef Constraint) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| default: |
| break; |
| case 'f': |
| return C_RegisterClass; |
| case 'I': |
| case 'J': |
| case 'K': |
| return C_Immediate; |
| case 'A': |
| return C_Memory; |
| } |
| } |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass *> |
| RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, |
| StringRef Constraint, |
| MVT VT) const { |
| // First, see if this is a constraint that directly corresponds to a |
| // RISCV register class. |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'r': |
| return std::make_pair(0U, &RISCV::GPRRegClass); |
| case 'f': |
| if (Subtarget.hasStdExtF() && VT == MVT::f32) |
| return std::make_pair(0U, &RISCV::FPR32RegClass); |
| if (Subtarget.hasStdExtD() && VT == MVT::f64) |
| return std::make_pair(0U, &RISCV::FPR64RegClass); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| // Clang will correctly decode the usage of register name aliases into their |
| // official names. However, other frontends like `rustc` do not. This allows |
| // users of these frontends to use the ABI names for registers in LLVM-style |
| // register constraints. |
| Register XRegFromAlias = StringSwitch<Register>(Constraint.lower()) |
| .Case("{zero}", RISCV::X0) |
| .Case("{ra}", RISCV::X1) |
| .Case("{sp}", RISCV::X2) |
| .Case("{gp}", RISCV::X3) |
| .Case("{tp}", RISCV::X4) |
| .Case("{t0}", RISCV::X5) |
| .Case("{t1}", RISCV::X6) |
| .Case("{t2}", RISCV::X7) |
| .Cases("{s0}", "{fp}", RISCV::X8) |
| .Case("{s1}", RISCV::X9) |
| .Case("{a0}", RISCV::X10) |
| .Case("{a1}", RISCV::X11) |
| .Case("{a2}", RISCV::X12) |
| .Case("{a3}", RISCV::X13) |
| .Case("{a4}", RISCV::X14) |
| .Case("{a5}", RISCV::X15) |
| .Case("{a6}", RISCV::X16) |
| .Case("{a7}", RISCV::X17) |
| .Case("{s2}", RISCV::X18) |
| .Case("{s3}", RISCV::X19) |
| .Case("{s4}", RISCV::X20) |
| .Case("{s5}", RISCV::X21) |
| .Case("{s6}", RISCV::X22) |
| .Case("{s7}", RISCV::X23) |
| .Case("{s8}", RISCV::X24) |
| .Case("{s9}", RISCV::X25) |
| .Case("{s10}", RISCV::X26) |
| .Case("{s11}", RISCV::X27) |
| .Case("{t3}", RISCV::X28) |
| .Case("{t4}", RISCV::X29) |
| .Case("{t5}", RISCV::X30) |
| .Case("{t6}", RISCV::X31) |
| .Default(RISCV::NoRegister); |
| if (XRegFromAlias != RISCV::NoRegister) |
| return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); |
| |
| // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the |
| // TableGen record rather than the AsmName to choose registers for InlineAsm |
| // constraints, plus we want to match those names to the widest floating point |
| // register type available, manually select floating point registers here. |
| // |
| // The second case is the ABI name of the register, so that frontends can also |
| // use the ABI names in register constraint lists. |
| if (Subtarget.hasStdExtF() || Subtarget.hasStdExtD()) { |
| std::pair<Register, Register> FReg = |
| StringSwitch<std::pair<Register, Register>>(Constraint.lower()) |
| .Cases("{f0}", "{ft0}", {RISCV::F0_F, RISCV::F0_D}) |
| .Cases("{f1}", "{ft1}", {RISCV::F1_F, RISCV::F1_D}) |
| .Cases("{f2}", "{ft2}", {RISCV::F2_F, RISCV::F2_D}) |
| .Cases("{f3}", "{ft3}", {RISCV::F3_F, RISCV::F3_D}) |
| .Cases("{f4}", "{ft4}", {RISCV::F4_F, RISCV::F4_D}) |
| .Cases("{f5}", "{ft5}", {RISCV::F5_F, RISCV::F5_D}) |
| .Cases("{f6}", "{ft6}", {RISCV::F6_F, RISCV::F6_D}) |
| .Cases("{f7}", "{ft7}", {RISCV::F7_F, RISCV::F7_D}) |
| .Cases("{f8}", "{fs0}", {RISCV::F8_F, RISCV::F8_D}) |
| .Cases("{f9}", "{fs1}", {RISCV::F9_F, RISCV::F9_D}) |
| .Cases("{f10}", "{fa0}", {RISCV::F10_F, RISCV::F10_D}) |
| .Cases("{f11}", "{fa1}", {RISCV::F11_F, RISCV::F11_D}) |
| .Cases("{f12}", "{fa2}", {RISCV::F12_F, RISCV::F12_D}) |
| .Cases("{f13}", "{fa3}", {RISCV::F13_F, RISCV::F13_D}) |
| .Cases("{f14}", "{fa4}", {RISCV::F14_F, RISCV::F14_D}) |
| .Cases("{f15}", "{fa5}", {RISCV::F15_F, RISCV::F15_D}) |
| .Cases("{f16}", "{fa6}", {RISCV::F16_F, RISCV::F16_D}) |
| .Cases("{f17}", "{fa7}", {RISCV::F17_F, RISCV::F17_D}) |
| .Cases("{f18}", "{fs2}", {RISCV::F18_F, RISCV::F18_D}) |
| .Cases("{f19}", "{fs3}", {RISCV::F19_F, RISCV::F19_D}) |
| .Cases("{f20}", "{fs4}", {RISCV::F20_F, RISCV::F20_D}) |
| .Cases("{f21}", "{fs5}", {RISCV::F21_F, RISCV::F21_D}) |
| .Cases("{f22}", "{fs6}", {RISCV::F22_F, RISCV::F22_D}) |
| .Cases("{f23}", "{fs7}", {RISCV::F23_F, RISCV::F23_D}) |
| .Cases("{f24}", "{fs8}", {RISCV::F24_F, RISCV::F24_D}) |
| .Cases("{f25}", "{fs9}", {RISCV::F25_F, RISCV::F25_D}) |
| .Cases("{f26}", "{fs10}", {RISCV::F26_F, RISCV::F26_D}) |
| .Cases("{f27}", "{fs11}", {RISCV::F27_F, RISCV::F27_D}) |
| .Cases("{f28}", "{ft8}", {RISCV::F28_F, RISCV::F28_D}) |
| .Cases("{f29}", "{ft9}", {RISCV::F29_F, RISCV::F29_D}) |
| .Cases("{f30}", "{ft10}", {RISCV::F30_F, RISCV::F30_D}) |
| .Cases("{f31}", "{ft11}", {RISCV::F31_F, RISCV::F31_D}) |
| .Default({RISCV::NoRegister, RISCV::NoRegister}); |
| if (FReg.first != RISCV::NoRegister) |
| return Subtarget.hasStdExtD() |
| ? std::make_pair(FReg.second, &RISCV::FPR64RegClass) |
| : std::make_pair(FReg.first, &RISCV::FPR32RegClass); |
| } |
| |
| return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| } |
| |
| unsigned |
| RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { |
| // Currently only support length 1 constraints. |
| if (ConstraintCode.size() == 1) { |
| switch (ConstraintCode[0]) { |
| case 'A': |
| return InlineAsm::Constraint_A; |
| default: |
| break; |
| } |
| } |
| |
| return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); |
| } |
| |
| void RISCVTargetLowering::LowerAsmOperandForConstraint( |
| SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, |
| SelectionDAG &DAG) const { |
| // Currently only support length 1 constraints. |
| if (Constraint.length() == 1) { |
| switch (Constraint[0]) { |
| case 'I': |
| // Validate & create a 12-bit signed immediate operand. |
| if (auto *C = dyn_cast<ConstantSDNode>(Op)) { |
| uint64_t CVal = C->getSExtValue(); |
| if (isInt<12>(CVal)) |
| Ops.push_back( |
| DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); |
| } |
| return; |
| case 'J': |
| // Validate & create an integer zero operand. |
| if (auto *C = dyn_cast<ConstantSDNode>(Op)) |
| if (C->getZExtValue() == 0) |
| Ops.push_back( |
| DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); |
| return; |
| case 'K': |
| // Validate & create a 5-bit unsigned immediate operand. |
| if (auto *C = dyn_cast<ConstantSDNode>(Op)) { |
| uint64_t CVal = C->getZExtValue(); |
| if (isUInt<5>(CVal)) |
| Ops.push_back( |
| DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); |
| } |
| return; |
| default: |
| break; |
| } |
| } |
| TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| } |
| |
| Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, |
| Instruction *Inst, |
| AtomicOrdering Ord) const { |
| if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) |
| return Builder.CreateFence(Ord); |
| if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) |
| return Builder.CreateFence(AtomicOrdering::Release); |
| return nullptr; |
| } |
| |
| Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, |
| Instruction *Inst, |
| AtomicOrdering Ord) const { |
| if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) |
| return Builder.CreateFence(AtomicOrdering::Acquire); |
| return nullptr; |
| } |
| |
| TargetLowering::AtomicExpansionKind |
| RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { |
| // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating |
| // point operations can't be used in an lr/sc sequence without breaking the |
| // forward-progress guarantee. |
| if (AI->isFloatingPointOperation()) |
| return AtomicExpansionKind::CmpXChg; |
| |
| unsigned Size = AI->getType()->getPrimitiveSizeInBits(); |
| if (Size == 8 || Size == 16) |
| return AtomicExpansionKind::MaskedIntrinsic; |
| return AtomicExpansionKind::None; |
| } |
| |
| static Intrinsic::ID |
| getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { |
| if (XLen == 32) { |
| switch (BinOp) { |
| default: |
| llvm_unreachable("Unexpected AtomicRMW BinOp"); |
| case AtomicRMWInst::Xchg: |
| return Intrinsic::riscv_masked_atomicrmw_xchg_i32; |
| case AtomicRMWInst::Add: |
| return Intrinsic::riscv_masked_atomicrmw_add_i32; |
| case AtomicRMWInst::Sub: |
| return Intrinsic::riscv_masked_atomicrmw_sub_i32; |
| case AtomicRMWInst::Nand: |
| return Intrinsic::riscv_masked_atomicrmw_nand_i32; |
| case AtomicRMWInst::Max: |
| return Intrinsic::riscv_masked_atomicrmw_max_i32; |
| case AtomicRMWInst::Min: |
| return Intrinsic::riscv_masked_atomicrmw_min_i32; |
| case AtomicRMWInst::UMax: |
| return Intrinsic::riscv_masked_atomicrmw_umax_i32; |
| case AtomicRMWInst::UMin: |
| return Intrinsic::riscv_masked_atomicrmw_umin_i32; |
| } |
| } |
| |
| if (XLen == 64) { |
| switch (BinOp) { |
| default: |
| llvm_unreachable("Unexpected AtomicRMW BinOp"); |
| case AtomicRMWInst::Xchg: |
| return Intrinsic::riscv_masked_atomicrmw_xchg_i64; |
| case AtomicRMWInst::Add: |
| return Intrinsic::riscv_masked_atomicrmw_add_i64; |
| case AtomicRMWInst::Sub: |
| return Intrinsic::riscv_masked_atomicrmw_sub_i64; |
| case AtomicRMWInst::Nand: |
| return Intrinsic::riscv_masked_atomicrmw_nand_i64; |
| case AtomicRMWInst::Max: |
| return Intrinsic::riscv_masked_atomicrmw_max_i64; |
| case AtomicRMWInst::Min: |
| return Intrinsic::riscv_masked_atomicrmw_min_i64; |
| case AtomicRMWInst::UMax: |
| return Intrinsic::riscv_masked_atomicrmw_umax_i64; |
| case AtomicRMWInst::UMin: |
| return Intrinsic::riscv_masked_atomicrmw_umin_i64; |
| } |
| } |
| |
| llvm_unreachable("Unexpected XLen\n"); |
| } |
| |
| Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( |
| IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, |
| Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { |
| unsigned XLen = Subtarget.getXLen(); |
| Value *Ordering = |
| Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); |
| Type *Tys[] = {AlignedAddr->getType()}; |
| Function *LrwOpScwLoop = Intrinsic::getDeclaration( |
| AI->getModule(), |
| getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); |
| |
| if (XLen == 64) { |
| Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); |
| Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); |
| ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); |
| } |
| |
| Value *Result; |
| |
| // Must pass the shift amount needed to sign extend the loaded value prior |
| // to performing a signed comparison for min/max. ShiftAmt is the number of |
| // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which |
| // is the number of bits to left+right shift the value in order to |
| // sign-extend. |
| if (AI->getOperation() == AtomicRMWInst::Min || |
| AI->getOperation() == AtomicRMWInst::Max) { |
| const DataLayout &DL = AI->getModule()->getDataLayout(); |
| unsigned ValWidth = |
| DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); |
| Value *SextShamt = |
| Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); |
| Result = Builder.CreateCall(LrwOpScwLoop, |
| {AlignedAddr, Incr, Mask, SextShamt, Ordering}); |
| } else { |
| Result = |
| Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); |
| } |
| |
| if (XLen == 64) |
| Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); |
| return Result; |
| } |
| |
| TargetLowering::AtomicExpansionKind |
| RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( |
| AtomicCmpXchgInst *CI) const { |
| unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); |
| if (Size == 8 || Size == 16) |
| return AtomicExpansionKind::MaskedIntrinsic; |
| return AtomicExpansionKind::None; |
| } |
| |
| Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( |
| IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, |
| Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { |
| unsigned XLen = Subtarget.getXLen(); |
| Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); |
| Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; |
| if (XLen == 64) { |
| CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); |
| NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); |
| Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); |
| CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; |
| } |
| Type *Tys[] = {AlignedAddr->getType()}; |
| Function *MaskedCmpXchg = |
| Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); |
| Value *Result = Builder.CreateCall( |
| MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); |
| if (XLen == 64) |
| Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); |
| return Result; |
| } |
| |
| unsigned RISCVTargetLowering::getExceptionPointerRegister( |
| const Constant *PersonalityFn) const { |
| return RISCV::X10; |
| } |
| |
| unsigned RISCVTargetLowering::getExceptionSelectorRegister( |
| const Constant *PersonalityFn) const { |
| return RISCV::X11; |
| } |
| |
| bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { |
| // Return false to suppress the unnecessary extensions if the LibCall |
| // arguments or return value is f32 type for LP64 ABI. |
| RISCVABI::ABI ABI = Subtarget.getTargetABI(); |
| if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) |
| return false; |
| |
| return true; |
| } |
| |
| #define GET_REGISTER_MATCHER |
| #include "RISCVGenAsmMatcher.inc" |
| |
| Register |
| RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, |
| const MachineFunction &MF) const { |
| Register Reg = MatchRegisterAltName(RegName); |
| if (Reg == RISCV::NoRegister) |
| Reg = MatchRegisterName(RegName); |
| if (Reg == RISCV::NoRegister) |
| report_fatal_error( |
| Twine("Invalid register name \"" + StringRef(RegName) + "\".")); |
| BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); |
| if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) |
| report_fatal_error(Twine("Trying to obtain non-reserved register \"" + |
| StringRef(RegName) + "\".")); |
| return Reg; |
| } |