|  | //===-- LLParser.cpp - Parser Class ---------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file defines the parser class for .ll files. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "LLParser.h" | 
|  | #include "llvm/AutoUpgrade.h" | 
|  | #include "llvm/CallingConv.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/InlineAsm.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/Module.h" | 
|  | #include "llvm/Operator.h" | 
|  | #include "llvm/ValueSymbolTable.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | static std::string getTypeString(Type *T) { | 
|  | std::string Result; | 
|  | raw_string_ostream Tmp(Result); | 
|  | Tmp << *T; | 
|  | return Tmp.str(); | 
|  | } | 
|  |  | 
|  | /// Run: module ::= toplevelentity* | 
|  | bool LLParser::Run() { | 
|  | // Prime the lexer. | 
|  | Lex.Lex(); | 
|  |  | 
|  | return ParseTopLevelEntities() || | 
|  | ValidateEndOfModule(); | 
|  | } | 
|  |  | 
|  | /// ValidateEndOfModule - Do final validity and sanity checks at the end of the | 
|  | /// module. | 
|  | bool LLParser::ValidateEndOfModule() { | 
|  | // Handle any instruction metadata forward references. | 
|  | if (!ForwardRefInstMetadata.empty()) { | 
|  | for (DenseMap<Instruction*, std::vector<MDRef> >::iterator | 
|  | I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end(); | 
|  | I != E; ++I) { | 
|  | Instruction *Inst = I->first; | 
|  | const std::vector<MDRef> &MDList = I->second; | 
|  |  | 
|  | for (unsigned i = 0, e = MDList.size(); i != e; ++i) { | 
|  | unsigned SlotNo = MDList[i].MDSlot; | 
|  |  | 
|  | if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0) | 
|  | return Error(MDList[i].Loc, "use of undefined metadata '!" + | 
|  | Twine(SlotNo) + "'"); | 
|  | Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]); | 
|  | } | 
|  | } | 
|  | ForwardRefInstMetadata.clear(); | 
|  | } | 
|  |  | 
|  |  | 
|  | // If there are entries in ForwardRefBlockAddresses at this point, they are | 
|  | // references after the function was defined.  Resolve those now. | 
|  | while (!ForwardRefBlockAddresses.empty()) { | 
|  | // Okay, we are referencing an already-parsed function, resolve them now. | 
|  | Function *TheFn = 0; | 
|  | const ValID &Fn = ForwardRefBlockAddresses.begin()->first; | 
|  | if (Fn.Kind == ValID::t_GlobalName) | 
|  | TheFn = M->getFunction(Fn.StrVal); | 
|  | else if (Fn.UIntVal < NumberedVals.size()) | 
|  | TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]); | 
|  |  | 
|  | if (TheFn == 0) | 
|  | return Error(Fn.Loc, "unknown function referenced by blockaddress"); | 
|  |  | 
|  | // Resolve all these references. | 
|  | if (ResolveForwardRefBlockAddresses(TheFn, | 
|  | ForwardRefBlockAddresses.begin()->second, | 
|  | 0)) | 
|  | return true; | 
|  |  | 
|  | ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin()); | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) | 
|  | if (NumberedTypes[i].second.isValid()) | 
|  | return Error(NumberedTypes[i].second, | 
|  | "use of undefined type '%" + Twine(i) + "'"); | 
|  |  | 
|  | for (StringMap<std::pair<Type*, LocTy> >::iterator I = | 
|  | NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) | 
|  | if (I->second.second.isValid()) | 
|  | return Error(I->second.second, | 
|  | "use of undefined type named '" + I->getKey() + "'"); | 
|  |  | 
|  | if (!ForwardRefVals.empty()) | 
|  | return Error(ForwardRefVals.begin()->second.second, | 
|  | "use of undefined value '@" + ForwardRefVals.begin()->first + | 
|  | "'"); | 
|  |  | 
|  | if (!ForwardRefValIDs.empty()) | 
|  | return Error(ForwardRefValIDs.begin()->second.second, | 
|  | "use of undefined value '@" + | 
|  | Twine(ForwardRefValIDs.begin()->first) + "'"); | 
|  |  | 
|  | if (!ForwardRefMDNodes.empty()) | 
|  | return Error(ForwardRefMDNodes.begin()->second.second, | 
|  | "use of undefined metadata '!" + | 
|  | Twine(ForwardRefMDNodes.begin()->first) + "'"); | 
|  |  | 
|  |  | 
|  | // Look for intrinsic functions and CallInst that need to be upgraded | 
|  | for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) | 
|  | UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove | 
|  |  | 
|  | // Upgrade to new EH scheme. N.B. This will go away in 3.1. | 
|  | UpgradeExceptionHandling(M); | 
|  |  | 
|  | // Check debug info intrinsics. | 
|  | CheckDebugInfoIntrinsics(M); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn, | 
|  | std::vector<std::pair<ValID, GlobalValue*> > &Refs, | 
|  | PerFunctionState *PFS) { | 
|  | // Loop over all the references, resolving them. | 
|  | for (unsigned i = 0, e = Refs.size(); i != e; ++i) { | 
|  | BasicBlock *Res; | 
|  | if (PFS) { | 
|  | if (Refs[i].first.Kind == ValID::t_LocalName) | 
|  | Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc); | 
|  | else | 
|  | Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc); | 
|  | } else if (Refs[i].first.Kind == ValID::t_LocalID) { | 
|  | return Error(Refs[i].first.Loc, | 
|  | "cannot take address of numeric label after the function is defined"); | 
|  | } else { | 
|  | Res = dyn_cast_or_null<BasicBlock>( | 
|  | TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal)); | 
|  | } | 
|  |  | 
|  | if (Res == 0) | 
|  | return Error(Refs[i].first.Loc, | 
|  | "referenced value is not a basic block"); | 
|  |  | 
|  | // Get the BlockAddress for this and update references to use it. | 
|  | BlockAddress *BA = BlockAddress::get(TheFn, Res); | 
|  | Refs[i].second->replaceAllUsesWith(BA); | 
|  | Refs[i].second->eraseFromParent(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Top-Level Entities | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool LLParser::ParseTopLevelEntities() { | 
|  | while (1) { | 
|  | switch (Lex.getKind()) { | 
|  | default:         return TokError("expected top-level entity"); | 
|  | case lltok::Eof: return false; | 
|  | case lltok::kw_declare: if (ParseDeclare()) return true; break; | 
|  | case lltok::kw_define:  if (ParseDefine()) return true; break; | 
|  | case lltok::kw_module:  if (ParseModuleAsm()) return true; break; | 
|  | case lltok::kw_target:  if (ParseTargetDefinition()) return true; break; | 
|  | case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; | 
|  | case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; | 
|  | case lltok::LocalVar:   if (ParseNamedType()) return true; break; | 
|  | case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break; | 
|  | case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break; | 
|  | case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break; | 
|  | case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break; | 
|  |  | 
|  | // The Global variable production with no name can have many different | 
|  | // optional leading prefixes, the production is: | 
|  | // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal | 
|  | //               OptionalAddrSpace OptionalUnNammedAddr | 
|  | //               ('constant'|'global') ... | 
|  | case lltok::kw_private:             // OptionalLinkage | 
|  | case lltok::kw_linker_private:      // OptionalLinkage | 
|  | case lltok::kw_linker_private_weak: // OptionalLinkage | 
|  | case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage | 
|  | case lltok::kw_internal:            // OptionalLinkage | 
|  | case lltok::kw_weak:                // OptionalLinkage | 
|  | case lltok::kw_weak_odr:            // OptionalLinkage | 
|  | case lltok::kw_linkonce:            // OptionalLinkage | 
|  | case lltok::kw_linkonce_odr:        // OptionalLinkage | 
|  | case lltok::kw_appending:           // OptionalLinkage | 
|  | case lltok::kw_dllexport:           // OptionalLinkage | 
|  | case lltok::kw_common:              // OptionalLinkage | 
|  | case lltok::kw_dllimport:           // OptionalLinkage | 
|  | case lltok::kw_extern_weak:         // OptionalLinkage | 
|  | case lltok::kw_external: {          // OptionalLinkage | 
|  | unsigned Linkage, Visibility; | 
|  | if (ParseOptionalLinkage(Linkage) || | 
|  | ParseOptionalVisibility(Visibility) || | 
|  | ParseGlobal("", SMLoc(), Linkage, true, Visibility)) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  | case lltok::kw_default:       // OptionalVisibility | 
|  | case lltok::kw_hidden:        // OptionalVisibility | 
|  | case lltok::kw_protected: {   // OptionalVisibility | 
|  | unsigned Visibility; | 
|  | if (ParseOptionalVisibility(Visibility) || | 
|  | ParseGlobal("", SMLoc(), 0, false, Visibility)) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case lltok::kw_thread_local:  // OptionalThreadLocal | 
|  | case lltok::kw_addrspace:     // OptionalAddrSpace | 
|  | case lltok::kw_constant:      // GlobalType | 
|  | case lltok::kw_global:        // GlobalType | 
|  | if (ParseGlobal("", SMLoc(), 0, false, 0)) return true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// toplevelentity | 
|  | ///   ::= 'module' 'asm' STRINGCONSTANT | 
|  | bool LLParser::ParseModuleAsm() { | 
|  | assert(Lex.getKind() == lltok::kw_module); | 
|  | Lex.Lex(); | 
|  |  | 
|  | std::string AsmStr; | 
|  | if (ParseToken(lltok::kw_asm, "expected 'module asm'") || | 
|  | ParseStringConstant(AsmStr)) return true; | 
|  |  | 
|  | M->appendModuleInlineAsm(AsmStr); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// toplevelentity | 
|  | ///   ::= 'target' 'triple' '=' STRINGCONSTANT | 
|  | ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT | 
|  | bool LLParser::ParseTargetDefinition() { | 
|  | assert(Lex.getKind() == lltok::kw_target); | 
|  | std::string Str; | 
|  | switch (Lex.Lex()) { | 
|  | default: return TokError("unknown target property"); | 
|  | case lltok::kw_triple: | 
|  | Lex.Lex(); | 
|  | if (ParseToken(lltok::equal, "expected '=' after target triple") || | 
|  | ParseStringConstant(Str)) | 
|  | return true; | 
|  | M->setTargetTriple(Str); | 
|  | return false; | 
|  | case lltok::kw_datalayout: | 
|  | Lex.Lex(); | 
|  | if (ParseToken(lltok::equal, "expected '=' after target datalayout") || | 
|  | ParseStringConstant(Str)) | 
|  | return true; | 
|  | M->setDataLayout(Str); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// toplevelentity | 
|  | ///   ::= 'deplibs' '=' '[' ']' | 
|  | ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' | 
|  | bool LLParser::ParseDepLibs() { | 
|  | assert(Lex.getKind() == lltok::kw_deplibs); | 
|  | Lex.Lex(); | 
|  | if (ParseToken(lltok::equal, "expected '=' after deplibs") || | 
|  | ParseToken(lltok::lsquare, "expected '=' after deplibs")) | 
|  | return true; | 
|  |  | 
|  | if (EatIfPresent(lltok::rsquare)) | 
|  | return false; | 
|  |  | 
|  | std::string Str; | 
|  | if (ParseStringConstant(Str)) return true; | 
|  | M->addLibrary(Str); | 
|  |  | 
|  | while (EatIfPresent(lltok::comma)) { | 
|  | if (ParseStringConstant(Str)) return true; | 
|  | M->addLibrary(Str); | 
|  | } | 
|  |  | 
|  | return ParseToken(lltok::rsquare, "expected ']' at end of list"); | 
|  | } | 
|  |  | 
|  | /// ParseUnnamedType: | 
|  | ///   ::= LocalVarID '=' 'type' type | 
|  | bool LLParser::ParseUnnamedType() { | 
|  | LocTy TypeLoc = Lex.getLoc(); | 
|  | unsigned TypeID = Lex.getUIntVal(); | 
|  | Lex.Lex(); // eat LocalVarID; | 
|  |  | 
|  | if (ParseToken(lltok::equal, "expected '=' after name") || | 
|  | ParseToken(lltok::kw_type, "expected 'type' after '='")) | 
|  | return true; | 
|  |  | 
|  | if (TypeID >= NumberedTypes.size()) | 
|  | NumberedTypes.resize(TypeID+1); | 
|  |  | 
|  | Type *Result = 0; | 
|  | if (ParseStructDefinition(TypeLoc, "", | 
|  | NumberedTypes[TypeID], Result)) return true; | 
|  |  | 
|  | if (!isa<StructType>(Result)) { | 
|  | std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; | 
|  | if (Entry.first) | 
|  | return Error(TypeLoc, "non-struct types may not be recursive"); | 
|  | Entry.first = Result; | 
|  | Entry.second = SMLoc(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// toplevelentity | 
|  | ///   ::= LocalVar '=' 'type' type | 
|  | bool LLParser::ParseNamedType() { | 
|  | std::string Name = Lex.getStrVal(); | 
|  | LocTy NameLoc = Lex.getLoc(); | 
|  | Lex.Lex();  // eat LocalVar. | 
|  |  | 
|  | if (ParseToken(lltok::equal, "expected '=' after name") || | 
|  | ParseToken(lltok::kw_type, "expected 'type' after name")) | 
|  | return true; | 
|  |  | 
|  | Type *Result = 0; | 
|  | if (ParseStructDefinition(NameLoc, Name, | 
|  | NamedTypes[Name], Result)) return true; | 
|  |  | 
|  | if (!isa<StructType>(Result)) { | 
|  | std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; | 
|  | if (Entry.first) | 
|  | return Error(NameLoc, "non-struct types may not be recursive"); | 
|  | Entry.first = Result; | 
|  | Entry.second = SMLoc(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// toplevelentity | 
|  | ///   ::= 'declare' FunctionHeader | 
|  | bool LLParser::ParseDeclare() { | 
|  | assert(Lex.getKind() == lltok::kw_declare); | 
|  | Lex.Lex(); | 
|  |  | 
|  | Function *F; | 
|  | return ParseFunctionHeader(F, false); | 
|  | } | 
|  |  | 
|  | /// toplevelentity | 
|  | ///   ::= 'define' FunctionHeader '{' ... | 
|  | bool LLParser::ParseDefine() { | 
|  | assert(Lex.getKind() == lltok::kw_define); | 
|  | Lex.Lex(); | 
|  |  | 
|  | Function *F; | 
|  | return ParseFunctionHeader(F, true) || | 
|  | ParseFunctionBody(*F); | 
|  | } | 
|  |  | 
|  | /// ParseGlobalType | 
|  | ///   ::= 'constant' | 
|  | ///   ::= 'global' | 
|  | bool LLParser::ParseGlobalType(bool &IsConstant) { | 
|  | if (Lex.getKind() == lltok::kw_constant) | 
|  | IsConstant = true; | 
|  | else if (Lex.getKind() == lltok::kw_global) | 
|  | IsConstant = false; | 
|  | else { | 
|  | IsConstant = false; | 
|  | return TokError("expected 'global' or 'constant'"); | 
|  | } | 
|  | Lex.Lex(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseUnnamedGlobal: | 
|  | ///   OptionalVisibility ALIAS ... | 
|  | ///   OptionalLinkage OptionalVisibility ...   -> global variable | 
|  | ///   GlobalID '=' OptionalVisibility ALIAS ... | 
|  | ///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable | 
|  | bool LLParser::ParseUnnamedGlobal() { | 
|  | unsigned VarID = NumberedVals.size(); | 
|  | std::string Name; | 
|  | LocTy NameLoc = Lex.getLoc(); | 
|  |  | 
|  | // Handle the GlobalID form. | 
|  | if (Lex.getKind() == lltok::GlobalID) { | 
|  | if (Lex.getUIntVal() != VarID) | 
|  | return Error(Lex.getLoc(), "variable expected to be numbered '%" + | 
|  | Twine(VarID) + "'"); | 
|  | Lex.Lex(); // eat GlobalID; | 
|  |  | 
|  | if (ParseToken(lltok::equal, "expected '=' after name")) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HasLinkage; | 
|  | unsigned Linkage, Visibility; | 
|  | if (ParseOptionalLinkage(Linkage, HasLinkage) || | 
|  | ParseOptionalVisibility(Visibility)) | 
|  | return true; | 
|  |  | 
|  | if (HasLinkage || Lex.getKind() != lltok::kw_alias) | 
|  | return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); | 
|  | return ParseAlias(Name, NameLoc, Visibility); | 
|  | } | 
|  |  | 
|  | /// ParseNamedGlobal: | 
|  | ///   GlobalVar '=' OptionalVisibility ALIAS ... | 
|  | ///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable | 
|  | bool LLParser::ParseNamedGlobal() { | 
|  | assert(Lex.getKind() == lltok::GlobalVar); | 
|  | LocTy NameLoc = Lex.getLoc(); | 
|  | std::string Name = Lex.getStrVal(); | 
|  | Lex.Lex(); | 
|  |  | 
|  | bool HasLinkage; | 
|  | unsigned Linkage, Visibility; | 
|  | if (ParseToken(lltok::equal, "expected '=' in global variable") || | 
|  | ParseOptionalLinkage(Linkage, HasLinkage) || | 
|  | ParseOptionalVisibility(Visibility)) | 
|  | return true; | 
|  |  | 
|  | if (HasLinkage || Lex.getKind() != lltok::kw_alias) | 
|  | return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); | 
|  | return ParseAlias(Name, NameLoc, Visibility); | 
|  | } | 
|  |  | 
|  | // MDString: | 
|  | //   ::= '!' STRINGCONSTANT | 
|  | bool LLParser::ParseMDString(MDString *&Result) { | 
|  | std::string Str; | 
|  | if (ParseStringConstant(Str)) return true; | 
|  | Result = MDString::get(Context, Str); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // MDNode: | 
|  | //   ::= '!' MDNodeNumber | 
|  | // | 
|  | /// This version of ParseMDNodeID returns the slot number and null in the case | 
|  | /// of a forward reference. | 
|  | bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) { | 
|  | // !{ ..., !42, ... } | 
|  | if (ParseUInt32(SlotNo)) return true; | 
|  |  | 
|  | // Check existing MDNode. | 
|  | if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0) | 
|  | Result = NumberedMetadata[SlotNo]; | 
|  | else | 
|  | Result = 0; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool LLParser::ParseMDNodeID(MDNode *&Result) { | 
|  | // !{ ..., !42, ... } | 
|  | unsigned MID = 0; | 
|  | if (ParseMDNodeID(Result, MID)) return true; | 
|  |  | 
|  | // If not a forward reference, just return it now. | 
|  | if (Result) return false; | 
|  |  | 
|  | // Otherwise, create MDNode forward reference. | 
|  | MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>()); | 
|  | ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc()); | 
|  |  | 
|  | if (NumberedMetadata.size() <= MID) | 
|  | NumberedMetadata.resize(MID+1); | 
|  | NumberedMetadata[MID] = FwdNode; | 
|  | Result = FwdNode; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseNamedMetadata: | 
|  | ///   !foo = !{ !1, !2 } | 
|  | bool LLParser::ParseNamedMetadata() { | 
|  | assert(Lex.getKind() == lltok::MetadataVar); | 
|  | std::string Name = Lex.getStrVal(); | 
|  | Lex.Lex(); | 
|  |  | 
|  | if (ParseToken(lltok::equal, "expected '=' here") || | 
|  | ParseToken(lltok::exclaim, "Expected '!' here") || | 
|  | ParseToken(lltok::lbrace, "Expected '{' here")) | 
|  | return true; | 
|  |  | 
|  | NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); | 
|  | if (Lex.getKind() != lltok::rbrace) | 
|  | do { | 
|  | if (ParseToken(lltok::exclaim, "Expected '!' here")) | 
|  | return true; | 
|  |  | 
|  | MDNode *N = 0; | 
|  | if (ParseMDNodeID(N)) return true; | 
|  | NMD->addOperand(N); | 
|  | } while (EatIfPresent(lltok::comma)); | 
|  |  | 
|  | if (ParseToken(lltok::rbrace, "expected end of metadata node")) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseStandaloneMetadata: | 
|  | ///   !42 = !{...} | 
|  | bool LLParser::ParseStandaloneMetadata() { | 
|  | assert(Lex.getKind() == lltok::exclaim); | 
|  | Lex.Lex(); | 
|  | unsigned MetadataID = 0; | 
|  |  | 
|  | LocTy TyLoc; | 
|  | Type *Ty = 0; | 
|  | SmallVector<Value *, 16> Elts; | 
|  | if (ParseUInt32(MetadataID) || | 
|  | ParseToken(lltok::equal, "expected '=' here") || | 
|  | ParseType(Ty, TyLoc) || | 
|  | ParseToken(lltok::exclaim, "Expected '!' here") || | 
|  | ParseToken(lltok::lbrace, "Expected '{' here") || | 
|  | ParseMDNodeVector(Elts, NULL) || | 
|  | ParseToken(lltok::rbrace, "expected end of metadata node")) | 
|  | return true; | 
|  |  | 
|  | MDNode *Init = MDNode::get(Context, Elts); | 
|  |  | 
|  | // See if this was forward referenced, if so, handle it. | 
|  | std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator | 
|  | FI = ForwardRefMDNodes.find(MetadataID); | 
|  | if (FI != ForwardRefMDNodes.end()) { | 
|  | MDNode *Temp = FI->second.first; | 
|  | Temp->replaceAllUsesWith(Init); | 
|  | MDNode::deleteTemporary(Temp); | 
|  | ForwardRefMDNodes.erase(FI); | 
|  |  | 
|  | assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); | 
|  | } else { | 
|  | if (MetadataID >= NumberedMetadata.size()) | 
|  | NumberedMetadata.resize(MetadataID+1); | 
|  |  | 
|  | if (NumberedMetadata[MetadataID] != 0) | 
|  | return TokError("Metadata id is already used"); | 
|  | NumberedMetadata[MetadataID] = Init; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseAlias: | 
|  | ///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee | 
|  | /// Aliasee | 
|  | ///   ::= TypeAndValue | 
|  | ///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')' | 
|  | ///   ::= 'getelementptr' 'inbounds'? '(' ... ')' | 
|  | /// | 
|  | /// Everything through visibility has already been parsed. | 
|  | /// | 
|  | bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, | 
|  | unsigned Visibility) { | 
|  | assert(Lex.getKind() == lltok::kw_alias); | 
|  | Lex.Lex(); | 
|  | unsigned Linkage; | 
|  | LocTy LinkageLoc = Lex.getLoc(); | 
|  | if (ParseOptionalLinkage(Linkage)) | 
|  | return true; | 
|  |  | 
|  | if (Linkage != GlobalValue::ExternalLinkage && | 
|  | Linkage != GlobalValue::WeakAnyLinkage && | 
|  | Linkage != GlobalValue::WeakODRLinkage && | 
|  | Linkage != GlobalValue::InternalLinkage && | 
|  | Linkage != GlobalValue::PrivateLinkage && | 
|  | Linkage != GlobalValue::LinkerPrivateLinkage && | 
|  | Linkage != GlobalValue::LinkerPrivateWeakLinkage && | 
|  | Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage) | 
|  | return Error(LinkageLoc, "invalid linkage type for alias"); | 
|  |  | 
|  | Constant *Aliasee; | 
|  | LocTy AliaseeLoc = Lex.getLoc(); | 
|  | if (Lex.getKind() != lltok::kw_bitcast && | 
|  | Lex.getKind() != lltok::kw_getelementptr) { | 
|  | if (ParseGlobalTypeAndValue(Aliasee)) return true; | 
|  | } else { | 
|  | // The bitcast dest type is not present, it is implied by the dest type. | 
|  | ValID ID; | 
|  | if (ParseValID(ID)) return true; | 
|  | if (ID.Kind != ValID::t_Constant) | 
|  | return Error(AliaseeLoc, "invalid aliasee"); | 
|  | Aliasee = ID.ConstantVal; | 
|  | } | 
|  |  | 
|  | if (!Aliasee->getType()->isPointerTy()) | 
|  | return Error(AliaseeLoc, "alias must have pointer type"); | 
|  |  | 
|  | // Okay, create the alias but do not insert it into the module yet. | 
|  | GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), | 
|  | (GlobalValue::LinkageTypes)Linkage, Name, | 
|  | Aliasee); | 
|  | GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); | 
|  |  | 
|  | // See if this value already exists in the symbol table.  If so, it is either | 
|  | // a redefinition or a definition of a forward reference. | 
|  | if (GlobalValue *Val = M->getNamedValue(Name)) { | 
|  | // See if this was a redefinition.  If so, there is no entry in | 
|  | // ForwardRefVals. | 
|  | std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator | 
|  | I = ForwardRefVals.find(Name); | 
|  | if (I == ForwardRefVals.end()) | 
|  | return Error(NameLoc, "redefinition of global named '@" + Name + "'"); | 
|  |  | 
|  | // Otherwise, this was a definition of forward ref.  Verify that types | 
|  | // agree. | 
|  | if (Val->getType() != GA->getType()) | 
|  | return Error(NameLoc, | 
|  | "forward reference and definition of alias have different types"); | 
|  |  | 
|  | // If they agree, just RAUW the old value with the alias and remove the | 
|  | // forward ref info. | 
|  | Val->replaceAllUsesWith(GA); | 
|  | Val->eraseFromParent(); | 
|  | ForwardRefVals.erase(I); | 
|  | } | 
|  |  | 
|  | // Insert into the module, we know its name won't collide now. | 
|  | M->getAliasList().push_back(GA); | 
|  | assert(GA->getName() == Name && "Should not be a name conflict!"); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseGlobal | 
|  | ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal | 
|  | ///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const | 
|  | ///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal | 
|  | ///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const | 
|  | /// | 
|  | /// Everything through visibility has been parsed already. | 
|  | /// | 
|  | bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, | 
|  | unsigned Linkage, bool HasLinkage, | 
|  | unsigned Visibility) { | 
|  | unsigned AddrSpace; | 
|  | bool ThreadLocal, IsConstant, UnnamedAddr; | 
|  | LocTy UnnamedAddrLoc; | 
|  | LocTy TyLoc; | 
|  |  | 
|  | Type *Ty = 0; | 
|  | if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) || | 
|  | ParseOptionalAddrSpace(AddrSpace) || | 
|  | ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, | 
|  | &UnnamedAddrLoc) || | 
|  | ParseGlobalType(IsConstant) || | 
|  | ParseType(Ty, TyLoc)) | 
|  | return true; | 
|  |  | 
|  | // If the linkage is specified and is external, then no initializer is | 
|  | // present. | 
|  | Constant *Init = 0; | 
|  | if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage && | 
|  | Linkage != GlobalValue::ExternalWeakLinkage && | 
|  | Linkage != GlobalValue::ExternalLinkage)) { | 
|  | if (ParseGlobalValue(Ty, Init)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Ty->isFunctionTy() || Ty->isLabelTy()) | 
|  | return Error(TyLoc, "invalid type for global variable"); | 
|  |  | 
|  | GlobalVariable *GV = 0; | 
|  |  | 
|  | // See if the global was forward referenced, if so, use the global. | 
|  | if (!Name.empty()) { | 
|  | if (GlobalValue *GVal = M->getNamedValue(Name)) { | 
|  | if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal)) | 
|  | return Error(NameLoc, "redefinition of global '@" + Name + "'"); | 
|  | GV = cast<GlobalVariable>(GVal); | 
|  | } | 
|  | } else { | 
|  | std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator | 
|  | I = ForwardRefValIDs.find(NumberedVals.size()); | 
|  | if (I != ForwardRefValIDs.end()) { | 
|  | GV = cast<GlobalVariable>(I->second.first); | 
|  | ForwardRefValIDs.erase(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (GV == 0) { | 
|  | GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0, | 
|  | Name, 0, false, AddrSpace); | 
|  | } else { | 
|  | if (GV->getType()->getElementType() != Ty) | 
|  | return Error(TyLoc, | 
|  | "forward reference and definition of global have different types"); | 
|  |  | 
|  | // Move the forward-reference to the correct spot in the module. | 
|  | M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); | 
|  | } | 
|  |  | 
|  | if (Name.empty()) | 
|  | NumberedVals.push_back(GV); | 
|  |  | 
|  | // Set the parsed properties on the global. | 
|  | if (Init) | 
|  | GV->setInitializer(Init); | 
|  | GV->setConstant(IsConstant); | 
|  | GV->setLinkage((GlobalValue::LinkageTypes)Linkage); | 
|  | GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); | 
|  | GV->setThreadLocal(ThreadLocal); | 
|  | GV->setUnnamedAddr(UnnamedAddr); | 
|  |  | 
|  | // Parse attributes on the global. | 
|  | while (Lex.getKind() == lltok::comma) { | 
|  | Lex.Lex(); | 
|  |  | 
|  | if (Lex.getKind() == lltok::kw_section) { | 
|  | Lex.Lex(); | 
|  | GV->setSection(Lex.getStrVal()); | 
|  | if (ParseToken(lltok::StringConstant, "expected global section string")) | 
|  | return true; | 
|  | } else if (Lex.getKind() == lltok::kw_align) { | 
|  | unsigned Alignment; | 
|  | if (ParseOptionalAlignment(Alignment)) return true; | 
|  | GV->setAlignment(Alignment); | 
|  | } else { | 
|  | TokError("unknown global variable property!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // GlobalValue Reference/Resolution Routines. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// GetGlobalVal - Get a value with the specified name or ID, creating a | 
|  | /// forward reference record if needed.  This can return null if the value | 
|  | /// exists but does not have the right type. | 
|  | GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, | 
|  | LocTy Loc) { | 
|  | PointerType *PTy = dyn_cast<PointerType>(Ty); | 
|  | if (PTy == 0) { | 
|  | Error(Loc, "global variable reference must have pointer type"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Look this name up in the normal function symbol table. | 
|  | GlobalValue *Val = | 
|  | cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); | 
|  |  | 
|  | // If this is a forward reference for the value, see if we already created a | 
|  | // forward ref record. | 
|  | if (Val == 0) { | 
|  | std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator | 
|  | I = ForwardRefVals.find(Name); | 
|  | if (I != ForwardRefVals.end()) | 
|  | Val = I->second.first; | 
|  | } | 
|  |  | 
|  | // If we have the value in the symbol table or fwd-ref table, return it. | 
|  | if (Val) { | 
|  | if (Val->getType() == Ty) return Val; | 
|  | Error(Loc, "'@" + Name + "' defined with type '" + | 
|  | getTypeString(Val->getType()) + "'"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Otherwise, create a new forward reference for this value and remember it. | 
|  | GlobalValue *FwdVal; | 
|  | if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) | 
|  | FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); | 
|  | else | 
|  | FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, | 
|  | GlobalValue::ExternalWeakLinkage, 0, Name); | 
|  |  | 
|  | ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); | 
|  | return FwdVal; | 
|  | } | 
|  |  | 
|  | GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { | 
|  | PointerType *PTy = dyn_cast<PointerType>(Ty); | 
|  | if (PTy == 0) { | 
|  | Error(Loc, "global variable reference must have pointer type"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; | 
|  |  | 
|  | // If this is a forward reference for the value, see if we already created a | 
|  | // forward ref record. | 
|  | if (Val == 0) { | 
|  | std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator | 
|  | I = ForwardRefValIDs.find(ID); | 
|  | if (I != ForwardRefValIDs.end()) | 
|  | Val = I->second.first; | 
|  | } | 
|  |  | 
|  | // If we have the value in the symbol table or fwd-ref table, return it. | 
|  | if (Val) { | 
|  | if (Val->getType() == Ty) return Val; | 
|  | Error(Loc, "'@" + Twine(ID) + "' defined with type '" + | 
|  | getTypeString(Val->getType()) + "'"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Otherwise, create a new forward reference for this value and remember it. | 
|  | GlobalValue *FwdVal; | 
|  | if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) | 
|  | FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M); | 
|  | else | 
|  | FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, | 
|  | GlobalValue::ExternalWeakLinkage, 0, ""); | 
|  |  | 
|  | ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); | 
|  | return FwdVal; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Helper Routines. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ParseToken - If the current token has the specified kind, eat it and return | 
|  | /// success.  Otherwise, emit the specified error and return failure. | 
|  | bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { | 
|  | if (Lex.getKind() != T) | 
|  | return TokError(ErrMsg); | 
|  | Lex.Lex(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseStringConstant | 
|  | ///   ::= StringConstant | 
|  | bool LLParser::ParseStringConstant(std::string &Result) { | 
|  | if (Lex.getKind() != lltok::StringConstant) | 
|  | return TokError("expected string constant"); | 
|  | Result = Lex.getStrVal(); | 
|  | Lex.Lex(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseUInt32 | 
|  | ///   ::= uint32 | 
|  | bool LLParser::ParseUInt32(unsigned &Val) { | 
|  | if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) | 
|  | return TokError("expected integer"); | 
|  | uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); | 
|  | if (Val64 != unsigned(Val64)) | 
|  | return TokError("expected 32-bit integer (too large)"); | 
|  | Val = Val64; | 
|  | Lex.Lex(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ParseOptionalAddrSpace | 
|  | ///   := /*empty*/ | 
|  | ///   := 'addrspace' '(' uint32 ')' | 
|  | bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { | 
|  | AddrSpace = 0; | 
|  | if (!EatIfPresent(lltok::kw_addrspace)) | 
|  | return false; | 
|  | return ParseToken(lltok::lparen, "expected '(' in address space") || | 
|  | ParseUInt32(AddrSpace) || | 
|  | ParseToken(lltok::rparen, "expected ')' in address space"); | 
|  | } | 
|  |  | 
|  | /// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind | 
|  | /// indicates what kind of attribute list this is: 0: function arg, 1: result, | 
|  | /// 2: function attr. | 
|  | bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) { | 
|  | Attrs = Attribute::None; | 
|  | LocTy AttrLoc = Lex.getLoc(); | 
|  |  | 
|  | while (1) { | 
|  | switch (Lex.getKind()) { | 
|  | default:  // End of attributes. | 
|  | if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly)) | 
|  | return Error(AttrLoc, "invalid use of function-only attribute"); | 
|  |  | 
|  | // As a hack, we allow "align 2" on functions as a synonym for | 
|  | // "alignstack 2". | 
|  | if (AttrKind == 2 && | 
|  | (Attrs & ~(Attribute::FunctionOnly | Attribute::Alignment))) | 
|  | return Error(AttrLoc, "invalid use of attribute on a function"); | 
|  |  | 
|  | if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly)) | 
|  | return Error(AttrLoc, "invalid use of parameter-only attribute"); | 
|  |  | 
|  | return false; | 
|  | case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break; | 
|  | case lltok::kw_signext:         Attrs |= Attribute::SExt; break; | 
|  | case lltok::kw_inreg:           Attrs |= Attribute::InReg; break; | 
|  | case lltok::kw_sret:            Attrs |= Attribute::StructRet; break; | 
|  | case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break; | 
|  | case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break; | 
|  | case lltok::kw_byval:           Attrs |= Attribute::ByVal; break; | 
|  | case lltok::kw_nest:            Attrs |= Attribute::Nest; break; | 
|  |  | 
|  | case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break; | 
|  | case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break; | 
|  | case lltok::kw_uwtable:         Attrs |= Attribute::UWTable; break; | 
|  | case lltok::kw_returns_twice:   Attrs |= Attribute::ReturnsTwice; break; | 
|  | case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break; | 
|  | case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break; | 
|  | case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break; | 
|  | case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break; | 
|  | case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break; | 
|  | case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break; | 
|  | case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break; | 
|  | case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break; | 
|  | case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break; | 
|  | case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break; | 
|  | case lltok::kw_naked:           Attrs |= Attribute::Naked; break; | 
|  | case lltok::kw_nonlazybind:     Attrs |= Attribute::NonLazyBind; break; | 
|  |  | 
|  | case lltok::kw_alignstack: { | 
|  | unsigned Alignment; | 
|  | if (ParseOptionalStackAlignment(Alignment)) | 
|  | return true; | 
|  | Attrs |= Attribute::constructStackAlignmentFromInt(Alignment); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case lltok::kw_align: { | 
|  | unsigned Alignment; | 
|  | if (ParseOptionalAlignment(Alignment)) | 
|  | return true; | 
|  | Attrs |= Attribute::constructAlignmentFromInt(Alignment); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | } | 
|  | Lex.Lex(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ParseOptionalLinkage | 
|  | ///   ::= /*empty*/ | 
|  | ///   ::= 'private' | 
|  | ///   ::= 'linker_private' | 
|  | ///   ::= 'linker_private_weak' | 
|  | ///   ::= 'linker_private_weak_def_auto' | 
|  | ///   ::= 'internal' | 
|  | ///   ::= 'weak' | 
|  | ///   ::= 'weak_odr' | 
|  | ///   ::= 'linkonce' | 
|  | ///   ::= 'linkonce_odr' | 
|  | ///   ::= 'available_externally' | 
|  | ///   ::= 'appending' | 
|  | ///   ::= 'dllexport' | 
|  | ///   ::= 'common' | 
|  | ///   ::= 'dllimport' | 
|  | ///   ::= 'extern_weak' | 
|  | ///   ::= 'external' | 
|  | bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { | 
|  | HasLinkage = false; | 
|  | switch (Lex.getKind()) { | 
|  | default:                       Res=GlobalValue::ExternalLinkage; return false; | 
|  | case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break; | 
|  | case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break; | 
|  | case lltok::kw_linker_private_weak: | 
|  | Res = GlobalValue::LinkerPrivateWeakLinkage; | 
|  | break; | 
|  | case lltok::kw_linker_private_weak_def_auto: | 
|  | Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage; | 
|  | break; | 
|  | case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break; | 
|  | case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break; | 
|  | case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break; | 
|  | case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break; | 
|  | case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break; | 
|  | case lltok::kw_available_externally: | 
|  | Res = GlobalValue::AvailableExternallyLinkage; | 
|  | break; | 
|  | case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break; | 
|  | case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break; | 
|  | case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break; | 
|  | case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break; | 
|  | case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break; | 
|  | case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break; | 
|  | } | 
|  | Lex.Lex(); | 
|  | HasLinkage = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseOptionalVisibility | 
|  | ///   ::= /*empty*/ | 
|  | ///   ::= 'default' | 
|  | ///   ::= 'hidden' | 
|  | ///   ::= 'protected' | 
|  | /// | 
|  | bool LLParser::ParseOptionalVisibility(unsigned &Res) { | 
|  | switch (Lex.getKind()) { | 
|  | default:                  Res = GlobalValue::DefaultVisibility; return false; | 
|  | case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break; | 
|  | case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break; | 
|  | case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; | 
|  | } | 
|  | Lex.Lex(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseOptionalCallingConv | 
|  | ///   ::= /*empty*/ | 
|  | ///   ::= 'ccc' | 
|  | ///   ::= 'fastcc' | 
|  | ///   ::= 'coldcc' | 
|  | ///   ::= 'x86_stdcallcc' | 
|  | ///   ::= 'x86_fastcallcc' | 
|  | ///   ::= 'x86_thiscallcc' | 
|  | ///   ::= 'arm_apcscc' | 
|  | ///   ::= 'arm_aapcscc' | 
|  | ///   ::= 'arm_aapcs_vfpcc' | 
|  | ///   ::= 'msp430_intrcc' | 
|  | ///   ::= 'ptx_kernel' | 
|  | ///   ::= 'ptx_device' | 
|  | ///   ::= 'cc' UINT | 
|  | /// | 
|  | bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) { | 
|  | switch (Lex.getKind()) { | 
|  | default:                       CC = CallingConv::C; return false; | 
|  | case lltok::kw_ccc:            CC = CallingConv::C; break; | 
|  | case lltok::kw_fastcc:         CC = CallingConv::Fast; break; | 
|  | case lltok::kw_coldcc:         CC = CallingConv::Cold; break; | 
|  | case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break; | 
|  | case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; | 
|  | case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; | 
|  | case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break; | 
|  | case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break; | 
|  | case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; | 
|  | case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break; | 
|  | case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break; | 
|  | case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break; | 
|  | case lltok::kw_cc: { | 
|  | unsigned ArbitraryCC; | 
|  | Lex.Lex(); | 
|  | if (ParseUInt32(ArbitraryCC)) { | 
|  | return true; | 
|  | } else | 
|  | CC = static_cast<CallingConv::ID>(ArbitraryCC); | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | Lex.Lex(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseInstructionMetadata | 
|  | ///   ::= !dbg !42 (',' !dbg !57)* | 
|  | bool LLParser::ParseInstructionMetadata(Instruction *Inst, | 
|  | PerFunctionState *PFS) { | 
|  | do { | 
|  | if (Lex.getKind() != lltok::MetadataVar) | 
|  | return TokError("expected metadata after comma"); | 
|  |  | 
|  | std::string Name = Lex.getStrVal(); | 
|  | unsigned MDK = M->getMDKindID(Name.c_str()); | 
|  | Lex.Lex(); | 
|  |  | 
|  | MDNode *Node; | 
|  | SMLoc Loc = Lex.getLoc(); | 
|  |  | 
|  | if (ParseToken(lltok::exclaim, "expected '!' here")) | 
|  | return true; | 
|  |  | 
|  | // This code is similar to that of ParseMetadataValue, however it needs to | 
|  | // have special-case code for a forward reference; see the comments on | 
|  | // ForwardRefInstMetadata for details. Also, MDStrings are not supported | 
|  | // at the top level here. | 
|  | if (Lex.getKind() == lltok::lbrace) { | 
|  | ValID ID; | 
|  | if (ParseMetadataListValue(ID, PFS)) | 
|  | return true; | 
|  | assert(ID.Kind == ValID::t_MDNode); | 
|  | Inst->setMetadata(MDK, ID.MDNodeVal); | 
|  | } else { | 
|  | unsigned NodeID = 0; | 
|  | if (ParseMDNodeID(Node, NodeID)) | 
|  | return true; | 
|  | if (Node) { | 
|  | // If we got the node, add it to the instruction. | 
|  | Inst->setMetadata(MDK, Node); | 
|  | } else { | 
|  | MDRef R = { Loc, MDK, NodeID }; | 
|  | // Otherwise, remember that this should be resolved later. | 
|  | ForwardRefInstMetadata[Inst].push_back(R); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is the end of the list, we're done. | 
|  | } while (EatIfPresent(lltok::comma)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseOptionalAlignment | 
|  | ///   ::= /* empty */ | 
|  | ///   ::= 'align' 4 | 
|  | bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { | 
|  | Alignment = 0; | 
|  | if (!EatIfPresent(lltok::kw_align)) | 
|  | return false; | 
|  | LocTy AlignLoc = Lex.getLoc(); | 
|  | if (ParseUInt32(Alignment)) return true; | 
|  | if (!isPowerOf2_32(Alignment)) | 
|  | return Error(AlignLoc, "alignment is not a power of two"); | 
|  | if (Alignment > Value::MaximumAlignment) | 
|  | return Error(AlignLoc, "huge alignments are not supported yet"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseOptionalCommaAlign | 
|  | ///   ::= | 
|  | ///   ::= ',' align 4 | 
|  | /// | 
|  | /// This returns with AteExtraComma set to true if it ate an excess comma at the | 
|  | /// end. | 
|  | bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, | 
|  | bool &AteExtraComma) { | 
|  | AteExtraComma = false; | 
|  | while (EatIfPresent(lltok::comma)) { | 
|  | // Metadata at the end is an early exit. | 
|  | if (Lex.getKind() == lltok::MetadataVar) { | 
|  | AteExtraComma = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Lex.getKind() != lltok::kw_align) | 
|  | return Error(Lex.getLoc(), "expected metadata or 'align'"); | 
|  |  | 
|  | if (ParseOptionalAlignment(Alignment)) return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseScopeAndOrdering | 
|  | ///   if isAtomic: ::= 'singlethread'? AtomicOrdering | 
|  | ///   else: ::= | 
|  | /// | 
|  | /// This sets Scope and Ordering to the parsed values. | 
|  | bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, | 
|  | AtomicOrdering &Ordering) { | 
|  | if (!isAtomic) | 
|  | return false; | 
|  |  | 
|  | Scope = CrossThread; | 
|  | if (EatIfPresent(lltok::kw_singlethread)) | 
|  | Scope = SingleThread; | 
|  | switch (Lex.getKind()) { | 
|  | default: return TokError("Expected ordering on atomic instruction"); | 
|  | case lltok::kw_unordered: Ordering = Unordered; break; | 
|  | case lltok::kw_monotonic: Ordering = Monotonic; break; | 
|  | case lltok::kw_acquire: Ordering = Acquire; break; | 
|  | case lltok::kw_release: Ordering = Release; break; | 
|  | case lltok::kw_acq_rel: Ordering = AcquireRelease; break; | 
|  | case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break; | 
|  | } | 
|  | Lex.Lex(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseOptionalStackAlignment | 
|  | ///   ::= /* empty */ | 
|  | ///   ::= 'alignstack' '(' 4 ')' | 
|  | bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { | 
|  | Alignment = 0; | 
|  | if (!EatIfPresent(lltok::kw_alignstack)) | 
|  | return false; | 
|  | LocTy ParenLoc = Lex.getLoc(); | 
|  | if (!EatIfPresent(lltok::lparen)) | 
|  | return Error(ParenLoc, "expected '('"); | 
|  | LocTy AlignLoc = Lex.getLoc(); | 
|  | if (ParseUInt32(Alignment)) return true; | 
|  | ParenLoc = Lex.getLoc(); | 
|  | if (!EatIfPresent(lltok::rparen)) | 
|  | return Error(ParenLoc, "expected ')'"); | 
|  | if (!isPowerOf2_32(Alignment)) | 
|  | return Error(AlignLoc, "stack alignment is not a power of two"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseIndexList - This parses the index list for an insert/extractvalue | 
|  | /// instruction.  This sets AteExtraComma in the case where we eat an extra | 
|  | /// comma at the end of the line and find that it is followed by metadata. | 
|  | /// Clients that don't allow metadata can call the version of this function that | 
|  | /// only takes one argument. | 
|  | /// | 
|  | /// ParseIndexList | 
|  | ///    ::=  (',' uint32)+ | 
|  | /// | 
|  | bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, | 
|  | bool &AteExtraComma) { | 
|  | AteExtraComma = false; | 
|  |  | 
|  | if (Lex.getKind() != lltok::comma) | 
|  | return TokError("expected ',' as start of index list"); | 
|  |  | 
|  | while (EatIfPresent(lltok::comma)) { | 
|  | if (Lex.getKind() == lltok::MetadataVar) { | 
|  | AteExtraComma = true; | 
|  | return false; | 
|  | } | 
|  | unsigned Idx = 0; | 
|  | if (ParseUInt32(Idx)) return true; | 
|  | Indices.push_back(Idx); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Type Parsing. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ParseType - Parse a type. | 
|  | bool LLParser::ParseType(Type *&Result, bool AllowVoid) { | 
|  | SMLoc TypeLoc = Lex.getLoc(); | 
|  | switch (Lex.getKind()) { | 
|  | default: | 
|  | return TokError("expected type"); | 
|  | case lltok::Type: | 
|  | // Type ::= 'float' | 'void' (etc) | 
|  | Result = Lex.getTyVal(); | 
|  | Lex.Lex(); | 
|  | break; | 
|  | case lltok::lbrace: | 
|  | // Type ::= StructType | 
|  | if (ParseAnonStructType(Result, false)) | 
|  | return true; | 
|  | break; | 
|  | case lltok::lsquare: | 
|  | // Type ::= '[' ... ']' | 
|  | Lex.Lex(); // eat the lsquare. | 
|  | if (ParseArrayVectorType(Result, false)) | 
|  | return true; | 
|  | break; | 
|  | case lltok::less: // Either vector or packed struct. | 
|  | // Type ::= '<' ... '>' | 
|  | Lex.Lex(); | 
|  | if (Lex.getKind() == lltok::lbrace) { | 
|  | if (ParseAnonStructType(Result, true) || | 
|  | ParseToken(lltok::greater, "expected '>' at end of packed struct")) | 
|  | return true; | 
|  | } else if (ParseArrayVectorType(Result, true)) | 
|  | return true; | 
|  | break; | 
|  | case lltok::LocalVar: { | 
|  | // Type ::= %foo | 
|  | std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; | 
|  |  | 
|  | // If the type hasn't been defined yet, create a forward definition and | 
|  | // remember where that forward def'n was seen (in case it never is defined). | 
|  | if (Entry.first == 0) { | 
|  | Entry.first = StructType::create(Context, Lex.getStrVal()); | 
|  | Entry.second = Lex.getLoc(); | 
|  | } | 
|  | Result = Entry.first; | 
|  | Lex.Lex(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case lltok::LocalVarID: { | 
|  | // Type ::= %4 | 
|  | if (Lex.getUIntVal() >= NumberedTypes.size()) | 
|  | NumberedTypes.resize(Lex.getUIntVal()+1); | 
|  | std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; | 
|  |  | 
|  | // If the type hasn't been defined yet, create a forward definition and | 
|  | // remember where that forward def'n was seen (in case it never is defined). | 
|  | if (Entry.first == 0) { | 
|  | Entry.first = StructType::create(Context); | 
|  | Entry.second = Lex.getLoc(); | 
|  | } | 
|  | Result = Entry.first; | 
|  | Lex.Lex(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Parse the type suffixes. | 
|  | while (1) { | 
|  | switch (Lex.getKind()) { | 
|  | // End of type. | 
|  | default: | 
|  | if (!AllowVoid && Result->isVoidTy()) | 
|  | return Error(TypeLoc, "void type only allowed for function results"); | 
|  | return false; | 
|  |  | 
|  | // Type ::= Type '*' | 
|  | case lltok::star: | 
|  | if (Result->isLabelTy()) | 
|  | return TokError("basic block pointers are invalid"); | 
|  | if (Result->isVoidTy()) | 
|  | return TokError("pointers to void are invalid - use i8* instead"); | 
|  | if (!PointerType::isValidElementType(Result)) | 
|  | return TokError("pointer to this type is invalid"); | 
|  | Result = PointerType::getUnqual(Result); | 
|  | Lex.Lex(); | 
|  | break; | 
|  |  | 
|  | // Type ::= Type 'addrspace' '(' uint32 ')' '*' | 
|  | case lltok::kw_addrspace: { | 
|  | if (Result->isLabelTy()) | 
|  | return TokError("basic block pointers are invalid"); | 
|  | if (Result->isVoidTy()) | 
|  | return TokError("pointers to void are invalid; use i8* instead"); | 
|  | if (!PointerType::isValidElementType(Result)) | 
|  | return TokError("pointer to this type is invalid"); | 
|  | unsigned AddrSpace; | 
|  | if (ParseOptionalAddrSpace(AddrSpace) || | 
|  | ParseToken(lltok::star, "expected '*' in address space")) | 
|  | return true; | 
|  |  | 
|  | Result = PointerType::get(Result, AddrSpace); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /// Types '(' ArgTypeListI ')' OptFuncAttrs | 
|  | case lltok::lparen: | 
|  | if (ParseFunctionType(Result)) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ParseParameterList | 
|  | ///    ::= '(' ')' | 
|  | ///    ::= '(' Arg (',' Arg)* ')' | 
|  | ///  Arg | 
|  | ///    ::= Type OptionalAttributes Value OptionalAttributes | 
|  | bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, | 
|  | PerFunctionState &PFS) { | 
|  | if (ParseToken(lltok::lparen, "expected '(' in call")) | 
|  | return true; | 
|  |  | 
|  | while (Lex.getKind() != lltok::rparen) { | 
|  | // If this isn't the first argument, we need a comma. | 
|  | if (!ArgList.empty() && | 
|  | ParseToken(lltok::comma, "expected ',' in argument list")) | 
|  | return true; | 
|  |  | 
|  | // Parse the argument. | 
|  | LocTy ArgLoc; | 
|  | Type *ArgTy = 0; | 
|  | unsigned ArgAttrs1 = Attribute::None; | 
|  | unsigned ArgAttrs2 = Attribute::None; | 
|  | Value *V; | 
|  | if (ParseType(ArgTy, ArgLoc)) | 
|  | return true; | 
|  |  | 
|  | // Otherwise, handle normal operands. | 
|  | if (ParseOptionalAttrs(ArgAttrs1, 0) || ParseValue(ArgTy, V, PFS)) | 
|  | return true; | 
|  | ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2)); | 
|  | } | 
|  |  | 
|  | Lex.Lex();  // Lex the ')'. | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /// ParseArgumentList - Parse the argument list for a function type or function | 
|  | /// prototype. | 
|  | ///   ::= '(' ArgTypeListI ')' | 
|  | /// ArgTypeListI | 
|  | ///   ::= /*empty*/ | 
|  | ///   ::= '...' | 
|  | ///   ::= ArgTypeList ',' '...' | 
|  | ///   ::= ArgType (',' ArgType)* | 
|  | /// | 
|  | bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, | 
|  | bool &isVarArg){ | 
|  | isVarArg = false; | 
|  | assert(Lex.getKind() == lltok::lparen); | 
|  | Lex.Lex(); // eat the (. | 
|  |  | 
|  | if (Lex.getKind() == lltok::rparen) { | 
|  | // empty | 
|  | } else if (Lex.getKind() == lltok::dotdotdot) { | 
|  | isVarArg = true; | 
|  | Lex.Lex(); | 
|  | } else { | 
|  | LocTy TypeLoc = Lex.getLoc(); | 
|  | Type *ArgTy = 0; | 
|  | unsigned Attrs; | 
|  | std::string Name; | 
|  |  | 
|  | if (ParseType(ArgTy) || | 
|  | ParseOptionalAttrs(Attrs, 0)) return true; | 
|  |  | 
|  | if (ArgTy->isVoidTy()) | 
|  | return Error(TypeLoc, "argument can not have void type"); | 
|  |  | 
|  | if (Lex.getKind() == lltok::LocalVar) { | 
|  | Name = Lex.getStrVal(); | 
|  | Lex.Lex(); | 
|  | } | 
|  |  | 
|  | if (!FunctionType::isValidArgumentType(ArgTy)) | 
|  | return Error(TypeLoc, "invalid type for function argument"); | 
|  |  | 
|  | ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); | 
|  |  | 
|  | while (EatIfPresent(lltok::comma)) { | 
|  | // Handle ... at end of arg list. | 
|  | if (EatIfPresent(lltok::dotdotdot)) { | 
|  | isVarArg = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Otherwise must be an argument type. | 
|  | TypeLoc = Lex.getLoc(); | 
|  | if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true; | 
|  |  | 
|  | if (ArgTy->isVoidTy()) | 
|  | return Error(TypeLoc, "argument can not have void type"); | 
|  |  | 
|  | if (Lex.getKind() == lltok::LocalVar) { | 
|  | Name = Lex.getStrVal(); | 
|  | Lex.Lex(); | 
|  | } else { | 
|  | Name = ""; | 
|  | } | 
|  |  | 
|  | if (!ArgTy->isFirstClassType()) | 
|  | return Error(TypeLoc, "invalid type for function argument"); | 
|  |  | 
|  | ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ParseToken(lltok::rparen, "expected ')' at end of argument list"); | 
|  | } | 
|  |  | 
|  | /// ParseFunctionType | 
|  | ///  ::= Type ArgumentList OptionalAttrs | 
|  | bool LLParser::ParseFunctionType(Type *&Result) { | 
|  | assert(Lex.getKind() == lltok::lparen); | 
|  |  | 
|  | if (!FunctionType::isValidReturnType(Result)) | 
|  | return TokError("invalid function return type"); | 
|  |  | 
|  | SmallVector<ArgInfo, 8> ArgList; | 
|  | bool isVarArg; | 
|  | if (ParseArgumentList(ArgList, isVarArg)) | 
|  | return true; | 
|  |  | 
|  | // Reject names on the arguments lists. | 
|  | for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { | 
|  | if (!ArgList[i].Name.empty()) | 
|  | return Error(ArgList[i].Loc, "argument name invalid in function type"); | 
|  | if (ArgList[i].Attrs != 0) | 
|  | return Error(ArgList[i].Loc, | 
|  | "argument attributes invalid in function type"); | 
|  | } | 
|  |  | 
|  | SmallVector<Type*, 16> ArgListTy; | 
|  | for (unsigned i = 0, e = ArgList.size(); i != e; ++i) | 
|  | ArgListTy.push_back(ArgList[i].Ty); | 
|  |  | 
|  | Result = FunctionType::get(Result, ArgListTy, isVarArg); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into | 
|  | /// other structs. | 
|  | bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { | 
|  | SmallVector<Type*, 8> Elts; | 
|  | if (ParseStructBody(Elts)) return true; | 
|  |  | 
|  | Result = StructType::get(Context, Elts, Packed); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseStructDefinition - Parse a struct in a 'type' definition. | 
|  | bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, | 
|  | std::pair<Type*, LocTy> &Entry, | 
|  | Type *&ResultTy) { | 
|  | // If the type was already defined, diagnose the redefinition. | 
|  | if (Entry.first && !Entry.second.isValid()) | 
|  | return Error(TypeLoc, "redefinition of type"); | 
|  |  | 
|  | // If we have opaque, just return without filling in the definition for the | 
|  | // struct.  This counts as a definition as far as the .ll file goes. | 
|  | if (EatIfPresent(lltok::kw_opaque)) { | 
|  | // This type is being defined, so clear the location to indicate this. | 
|  | Entry.second = SMLoc(); | 
|  |  | 
|  | // If this type number has never been uttered, create it. | 
|  | if (Entry.first == 0) | 
|  | Entry.first = StructType::create(Context, Name); | 
|  | ResultTy = Entry.first; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the type starts with '<', then it is either a packed struct or a vector. | 
|  | bool isPacked = EatIfPresent(lltok::less); | 
|  |  | 
|  | // If we don't have a struct, then we have a random type alias, which we | 
|  | // accept for compatibility with old files.  These types are not allowed to be | 
|  | // forward referenced and not allowed to be recursive. | 
|  | if (Lex.getKind() != lltok::lbrace) { | 
|  | if (Entry.first) | 
|  | return Error(TypeLoc, "forward references to non-struct type"); | 
|  |  | 
|  | ResultTy = 0; | 
|  | if (isPacked) | 
|  | return ParseArrayVectorType(ResultTy, true); | 
|  | return ParseType(ResultTy); | 
|  | } | 
|  |  | 
|  | // This type is being defined, so clear the location to indicate this. | 
|  | Entry.second = SMLoc(); | 
|  |  | 
|  | // If this type number has never been uttered, create it. | 
|  | if (Entry.first == 0) | 
|  | Entry.first = StructType::create(Context, Name); | 
|  |  | 
|  | StructType *STy = cast<StructType>(Entry.first); | 
|  |  | 
|  | SmallVector<Type*, 8> Body; | 
|  | if (ParseStructBody(Body) || | 
|  | (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) | 
|  | return true; | 
|  |  | 
|  | STy->setBody(Body, isPacked); | 
|  | ResultTy = STy; | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere. | 
|  | ///   StructType | 
|  | ///     ::= '{' '}' | 
|  | ///     ::= '{' Type (',' Type)* '}' | 
|  | ///     ::= '<' '{' '}' '>' | 
|  | ///     ::= '<' '{' Type (',' Type)* '}' '>' | 
|  | bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { | 
|  | assert(Lex.getKind() == lltok::lbrace); | 
|  | Lex.Lex(); // Consume the '{' | 
|  |  | 
|  | // Handle the empty struct. | 
|  | if (EatIfPresent(lltok::rbrace)) | 
|  | return false; | 
|  |  | 
|  | LocTy EltTyLoc = Lex.getLoc(); | 
|  | Type *Ty = 0; | 
|  | if (ParseType(Ty)) return true; | 
|  | Body.push_back(Ty); | 
|  |  | 
|  | if (!StructType::isValidElementType(Ty)) | 
|  | return Error(EltTyLoc, "invalid element type for struct"); | 
|  |  | 
|  | while (EatIfPresent(lltok::comma)) { | 
|  | EltTyLoc = Lex.getLoc(); | 
|  | if (ParseType(Ty)) return true; | 
|  |  | 
|  | if (!StructType::isValidElementType(Ty)) | 
|  | return Error(EltTyLoc, "invalid element type for struct"); | 
|  |  | 
|  | Body.push_back(Ty); | 
|  | } | 
|  |  | 
|  | return ParseToken(lltok::rbrace, "expected '}' at end of struct"); | 
|  | } | 
|  |  | 
|  | /// ParseArrayVectorType - Parse an array or vector type, assuming the first | 
|  | /// token has already been consumed. | 
|  | ///   Type | 
|  | ///     ::= '[' APSINTVAL 'x' Types ']' | 
|  | ///     ::= '<' APSINTVAL 'x' Types '>' | 
|  | bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { | 
|  | if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || | 
|  | Lex.getAPSIntVal().getBitWidth() > 64) | 
|  | return TokError("expected number in address space"); | 
|  |  | 
|  | LocTy SizeLoc = Lex.getLoc(); | 
|  | uint64_t Size = Lex.getAPSIntVal().getZExtValue(); | 
|  | Lex.Lex(); | 
|  |  | 
|  | if (ParseToken(lltok::kw_x, "expected 'x' after element count")) | 
|  | return true; | 
|  |  | 
|  | LocTy TypeLoc = Lex.getLoc(); | 
|  | Type *EltTy = 0; | 
|  | if (ParseType(EltTy)) return true; | 
|  |  | 
|  | if (ParseToken(isVector ? lltok::greater : lltok::rsquare, | 
|  | "expected end of sequential type")) | 
|  | return true; | 
|  |  | 
|  | if (isVector) { | 
|  | if (Size == 0) | 
|  | return Error(SizeLoc, "zero element vector is illegal"); | 
|  | if ((unsigned)Size != Size) | 
|  | return Error(SizeLoc, "size too large for vector"); | 
|  | if (!VectorType::isValidElementType(EltTy)) | 
|  | return Error(TypeLoc, "vector element type must be fp or integer"); | 
|  | Result = VectorType::get(EltTy, unsigned(Size)); | 
|  | } else { | 
|  | if (!ArrayType::isValidElementType(EltTy)) | 
|  | return Error(TypeLoc, "invalid array element type"); | 
|  | Result = ArrayType::get(EltTy, Size); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Function Semantic Analysis. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, | 
|  | int functionNumber) | 
|  | : P(p), F(f), FunctionNumber(functionNumber) { | 
|  |  | 
|  | // Insert unnamed arguments into the NumberedVals list. | 
|  | for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); | 
|  | AI != E; ++AI) | 
|  | if (!AI->hasName()) | 
|  | NumberedVals.push_back(AI); | 
|  | } | 
|  |  | 
|  | LLParser::PerFunctionState::~PerFunctionState() { | 
|  | // If there were any forward referenced non-basicblock values, delete them. | 
|  | for (std::map<std::string, std::pair<Value*, LocTy> >::iterator | 
|  | I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I) | 
|  | if (!isa<BasicBlock>(I->second.first)) { | 
|  | I->second.first->replaceAllUsesWith( | 
|  | UndefValue::get(I->second.first->getType())); | 
|  | delete I->second.first; | 
|  | I->second.first = 0; | 
|  | } | 
|  |  | 
|  | for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator | 
|  | I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I) | 
|  | if (!isa<BasicBlock>(I->second.first)) { | 
|  | I->second.first->replaceAllUsesWith( | 
|  | UndefValue::get(I->second.first->getType())); | 
|  | delete I->second.first; | 
|  | I->second.first = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool LLParser::PerFunctionState::FinishFunction() { | 
|  | // Check to see if someone took the address of labels in this block. | 
|  | if (!P.ForwardRefBlockAddresses.empty()) { | 
|  | ValID FunctionID; | 
|  | if (!F.getName().empty()) { | 
|  | FunctionID.Kind = ValID::t_GlobalName; | 
|  | FunctionID.StrVal = F.getName(); | 
|  | } else { | 
|  | FunctionID.Kind = ValID::t_GlobalID; | 
|  | FunctionID.UIntVal = FunctionNumber; | 
|  | } | 
|  |  | 
|  | std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator | 
|  | FRBAI = P.ForwardRefBlockAddresses.find(FunctionID); | 
|  | if (FRBAI != P.ForwardRefBlockAddresses.end()) { | 
|  | // Resolve all these references. | 
|  | if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this)) | 
|  | return true; | 
|  |  | 
|  | P.ForwardRefBlockAddresses.erase(FRBAI); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ForwardRefVals.empty()) | 
|  | return P.Error(ForwardRefVals.begin()->second.second, | 
|  | "use of undefined value '%" + ForwardRefVals.begin()->first + | 
|  | "'"); | 
|  | if (!ForwardRefValIDs.empty()) | 
|  | return P.Error(ForwardRefValIDs.begin()->second.second, | 
|  | "use of undefined value '%" + | 
|  | Twine(ForwardRefValIDs.begin()->first) + "'"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// GetVal - Get a value with the specified name or ID, creating a | 
|  | /// forward reference record if needed.  This can return null if the value | 
|  | /// exists but does not have the right type. | 
|  | Value *LLParser::PerFunctionState::GetVal(const std::string &Name, | 
|  | Type *Ty, LocTy Loc) { | 
|  | // Look this name up in the normal function symbol table. | 
|  | Value *Val = F.getValueSymbolTable().lookup(Name); | 
|  |  | 
|  | // If this is a forward reference for the value, see if we already created a | 
|  | // forward ref record. | 
|  | if (Val == 0) { | 
|  | std::map<std::string, std::pair<Value*, LocTy> >::iterator | 
|  | I = ForwardRefVals.find(Name); | 
|  | if (I != ForwardRefVals.end()) | 
|  | Val = I->second.first; | 
|  | } | 
|  |  | 
|  | // If we have the value in the symbol table or fwd-ref table, return it. | 
|  | if (Val) { | 
|  | if (Val->getType() == Ty) return Val; | 
|  | if (Ty->isLabelTy()) | 
|  | P.Error(Loc, "'%" + Name + "' is not a basic block"); | 
|  | else | 
|  | P.Error(Loc, "'%" + Name + "' defined with type '" + | 
|  | getTypeString(Val->getType()) + "'"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Don't make placeholders with invalid type. | 
|  | if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { | 
|  | P.Error(Loc, "invalid use of a non-first-class type"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Otherwise, create a new forward reference for this value and remember it. | 
|  | Value *FwdVal; | 
|  | if (Ty->isLabelTy()) | 
|  | FwdVal = BasicBlock::Create(F.getContext(), Name, &F); | 
|  | else | 
|  | FwdVal = new Argument(Ty, Name); | 
|  |  | 
|  | ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); | 
|  | return FwdVal; | 
|  | } | 
|  |  | 
|  | Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, | 
|  | LocTy Loc) { | 
|  | // Look this name up in the normal function symbol table. | 
|  | Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; | 
|  |  | 
|  | // If this is a forward reference for the value, see if we already created a | 
|  | // forward ref record. | 
|  | if (Val == 0) { | 
|  | std::map<unsigned, std::pair<Value*, LocTy> >::iterator | 
|  | I = ForwardRefValIDs.find(ID); | 
|  | if (I != ForwardRefValIDs.end()) | 
|  | Val = I->second.first; | 
|  | } | 
|  |  | 
|  | // If we have the value in the symbol table or fwd-ref table, return it. | 
|  | if (Val) { | 
|  | if (Val->getType() == Ty) return Val; | 
|  | if (Ty->isLabelTy()) | 
|  | P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); | 
|  | else | 
|  | P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + | 
|  | getTypeString(Val->getType()) + "'"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { | 
|  | P.Error(Loc, "invalid use of a non-first-class type"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Otherwise, create a new forward reference for this value and remember it. | 
|  | Value *FwdVal; | 
|  | if (Ty->isLabelTy()) | 
|  | FwdVal = BasicBlock::Create(F.getContext(), "", &F); | 
|  | else | 
|  | FwdVal = new Argument(Ty); | 
|  |  | 
|  | ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); | 
|  | return FwdVal; | 
|  | } | 
|  |  | 
|  | /// SetInstName - After an instruction is parsed and inserted into its | 
|  | /// basic block, this installs its name. | 
|  | bool LLParser::PerFunctionState::SetInstName(int NameID, | 
|  | const std::string &NameStr, | 
|  | LocTy NameLoc, Instruction *Inst) { | 
|  | // If this instruction has void type, it cannot have a name or ID specified. | 
|  | if (Inst->getType()->isVoidTy()) { | 
|  | if (NameID != -1 || !NameStr.empty()) | 
|  | return P.Error(NameLoc, "instructions returning void cannot have a name"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If this was a numbered instruction, verify that the instruction is the | 
|  | // expected value and resolve any forward references. | 
|  | if (NameStr.empty()) { | 
|  | // If neither a name nor an ID was specified, just use the next ID. | 
|  | if (NameID == -1) | 
|  | NameID = NumberedVals.size(); | 
|  |  | 
|  | if (unsigned(NameID) != NumberedVals.size()) | 
|  | return P.Error(NameLoc, "instruction expected to be numbered '%" + | 
|  | Twine(NumberedVals.size()) + "'"); | 
|  |  | 
|  | std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI = | 
|  | ForwardRefValIDs.find(NameID); | 
|  | if (FI != ForwardRefValIDs.end()) { | 
|  | if (FI->second.first->getType() != Inst->getType()) | 
|  | return P.Error(NameLoc, "instruction forward referenced with type '" + | 
|  | getTypeString(FI->second.first->getType()) + "'"); | 
|  | FI->second.first->replaceAllUsesWith(Inst); | 
|  | delete FI->second.first; | 
|  | ForwardRefValIDs.erase(FI); | 
|  | } | 
|  |  | 
|  | NumberedVals.push_back(Inst); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise, the instruction had a name.  Resolve forward refs and set it. | 
|  | std::map<std::string, std::pair<Value*, LocTy> >::iterator | 
|  | FI = ForwardRefVals.find(NameStr); | 
|  | if (FI != ForwardRefVals.end()) { | 
|  | if (FI->second.first->getType() != Inst->getType()) | 
|  | return P.Error(NameLoc, "instruction forward referenced with type '" + | 
|  | getTypeString(FI->second.first->getType()) + "'"); | 
|  | FI->second.first->replaceAllUsesWith(Inst); | 
|  | delete FI->second.first; | 
|  | ForwardRefVals.erase(FI); | 
|  | } | 
|  |  | 
|  | // Set the name on the instruction. | 
|  | Inst->setName(NameStr); | 
|  |  | 
|  | if (Inst->getName() != NameStr) | 
|  | return P.Error(NameLoc, "multiple definition of local value named '" + | 
|  | NameStr + "'"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// GetBB - Get a basic block with the specified name or ID, creating a | 
|  | /// forward reference record if needed. | 
|  | BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, | 
|  | LocTy Loc) { | 
|  | return cast_or_null<BasicBlock>(GetVal(Name, | 
|  | Type::getLabelTy(F.getContext()), Loc)); | 
|  | } | 
|  |  | 
|  | BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { | 
|  | return cast_or_null<BasicBlock>(GetVal(ID, | 
|  | Type::getLabelTy(F.getContext()), Loc)); | 
|  | } | 
|  |  | 
|  | /// DefineBB - Define the specified basic block, which is either named or | 
|  | /// unnamed.  If there is an error, this returns null otherwise it returns | 
|  | /// the block being defined. | 
|  | BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, | 
|  | LocTy Loc) { | 
|  | BasicBlock *BB; | 
|  | if (Name.empty()) | 
|  | BB = GetBB(NumberedVals.size(), Loc); | 
|  | else | 
|  | BB = GetBB(Name, Loc); | 
|  | if (BB == 0) return 0; // Already diagnosed error. | 
|  |  | 
|  | // Move the block to the end of the function.  Forward ref'd blocks are | 
|  | // inserted wherever they happen to be referenced. | 
|  | F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); | 
|  |  | 
|  | // Remove the block from forward ref sets. | 
|  | if (Name.empty()) { | 
|  | ForwardRefValIDs.erase(NumberedVals.size()); | 
|  | NumberedVals.push_back(BB); | 
|  | } else { | 
|  | // BB forward references are already in the function symbol table. | 
|  | ForwardRefVals.erase(Name); | 
|  | } | 
|  |  | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Constants. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ParseValID - Parse an abstract value that doesn't necessarily have a | 
|  | /// type implied.  For example, if we parse "4" we don't know what integer type | 
|  | /// it has.  The value will later be combined with its type and checked for | 
|  | /// sanity.  PFS is used to convert function-local operands of metadata (since | 
|  | /// metadata operands are not just parsed here but also converted to values). | 
|  | /// PFS can be null when we are not parsing metadata values inside a function. | 
|  | bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { | 
|  | ID.Loc = Lex.getLoc(); | 
|  | switch (Lex.getKind()) { | 
|  | default: return TokError("expected value token"); | 
|  | case lltok::GlobalID:  // @42 | 
|  | ID.UIntVal = Lex.getUIntVal(); | 
|  | ID.Kind = ValID::t_GlobalID; | 
|  | break; | 
|  | case lltok::GlobalVar:  // @foo | 
|  | ID.StrVal = Lex.getStrVal(); | 
|  | ID.Kind = ValID::t_GlobalName; | 
|  | break; | 
|  | case lltok::LocalVarID:  // %42 | 
|  | ID.UIntVal = Lex.getUIntVal(); | 
|  | ID.Kind = ValID::t_LocalID; | 
|  | break; | 
|  | case lltok::LocalVar:  // %foo | 
|  | ID.StrVal = Lex.getStrVal(); | 
|  | ID.Kind = ValID::t_LocalName; | 
|  | break; | 
|  | case lltok::exclaim:   // !42, !{...}, or !"foo" | 
|  | return ParseMetadataValue(ID, PFS); | 
|  | case lltok::APSInt: | 
|  | ID.APSIntVal = Lex.getAPSIntVal(); | 
|  | ID.Kind = ValID::t_APSInt; | 
|  | break; | 
|  | case lltok::APFloat: | 
|  | ID.APFloatVal = Lex.getAPFloatVal(); | 
|  | ID.Kind = ValID::t_APFloat; | 
|  | break; | 
|  | case lltok::kw_true: | 
|  | ID.ConstantVal = ConstantInt::getTrue(Context); | 
|  | ID.Kind = ValID::t_Constant; | 
|  | break; | 
|  | case lltok::kw_false: | 
|  | ID.ConstantVal = ConstantInt::getFalse(Context); | 
|  | ID.Kind = ValID::t_Constant; | 
|  | break; | 
|  | case lltok::kw_null: ID.Kind = ValID::t_Null; break; | 
|  | case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; | 
|  | case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; | 
|  |  | 
|  | case lltok::lbrace: { | 
|  | // ValID ::= '{' ConstVector '}' | 
|  | Lex.Lex(); | 
|  | SmallVector<Constant*, 16> Elts; | 
|  | if (ParseGlobalValueVector(Elts) || | 
|  | ParseToken(lltok::rbrace, "expected end of struct constant")) | 
|  | return true; | 
|  |  | 
|  | ID.ConstantStructElts = new Constant*[Elts.size()]; | 
|  | ID.UIntVal = Elts.size(); | 
|  | memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); | 
|  | ID.Kind = ValID::t_ConstantStruct; | 
|  | return false; | 
|  | } | 
|  | case lltok::less: { | 
|  | // ValID ::= '<' ConstVector '>'         --> Vector. | 
|  | // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. | 
|  | Lex.Lex(); | 
|  | bool isPackedStruct = EatIfPresent(lltok::lbrace); | 
|  |  | 
|  | SmallVector<Constant*, 16> Elts; | 
|  | LocTy FirstEltLoc = Lex.getLoc(); | 
|  | if (ParseGlobalValueVector(Elts) || | 
|  | (isPackedStruct && | 
|  | ParseToken(lltok::rbrace, "expected end of packed struct")) || | 
|  | ParseToken(lltok::greater, "expected end of constant")) | 
|  | return true; | 
|  |  | 
|  | if (isPackedStruct) { | 
|  | ID.ConstantStructElts = new Constant*[Elts.size()]; | 
|  | memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); | 
|  | ID.UIntVal = Elts.size(); | 
|  | ID.Kind = ValID::t_PackedConstantStruct; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Elts.empty()) | 
|  | return Error(ID.Loc, "constant vector must not be empty"); | 
|  |  | 
|  | if (!Elts[0]->getType()->isIntegerTy() && | 
|  | !Elts[0]->getType()->isFloatingPointTy()) | 
|  | return Error(FirstEltLoc, | 
|  | "vector elements must have integer or floating point type"); | 
|  |  | 
|  | // Verify that all the vector elements have the same type. | 
|  | for (unsigned i = 1, e = Elts.size(); i != e; ++i) | 
|  | if (Elts[i]->getType() != Elts[0]->getType()) | 
|  | return Error(FirstEltLoc, | 
|  | "vector element #" + Twine(i) + | 
|  | " is not of type '" + getTypeString(Elts[0]->getType())); | 
|  |  | 
|  | ID.ConstantVal = ConstantVector::get(Elts); | 
|  | ID.Kind = ValID::t_Constant; | 
|  | return false; | 
|  | } | 
|  | case lltok::lsquare: {   // Array Constant | 
|  | Lex.Lex(); | 
|  | SmallVector<Constant*, 16> Elts; | 
|  | LocTy FirstEltLoc = Lex.getLoc(); | 
|  | if (ParseGlobalValueVector(Elts) || | 
|  | ParseToken(lltok::rsquare, "expected end of array constant")) | 
|  | return true; | 
|  |  | 
|  | // Handle empty element. | 
|  | if (Elts.empty()) { | 
|  | // Use undef instead of an array because it's inconvenient to determine | 
|  | // the element type at this point, there being no elements to examine. | 
|  | ID.Kind = ValID::t_EmptyArray; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!Elts[0]->getType()->isFirstClassType()) | 
|  | return Error(FirstEltLoc, "invalid array element type: " + | 
|  | getTypeString(Elts[0]->getType())); | 
|  |  | 
|  | ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); | 
|  |  | 
|  | // Verify all elements are correct type! | 
|  | for (unsigned i = 0, e = Elts.size(); i != e; ++i) { | 
|  | if (Elts[i]->getType() != Elts[0]->getType()) | 
|  | return Error(FirstEltLoc, | 
|  | "array element #" + Twine(i) + | 
|  | " is not of type '" + getTypeString(Elts[0]->getType())); | 
|  | } | 
|  |  | 
|  | ID.ConstantVal = ConstantArray::get(ATy, Elts); | 
|  | ID.Kind = ValID::t_Constant; | 
|  | return false; | 
|  | } | 
|  | case lltok::kw_c:  // c "foo" | 
|  | Lex.Lex(); | 
|  | ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false); | 
|  | if (ParseToken(lltok::StringConstant, "expected string")) return true; | 
|  | ID.Kind = ValID::t_Constant; | 
|  | return false; | 
|  |  | 
|  | case lltok::kw_asm: { | 
|  | // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT | 
|  | bool HasSideEffect, AlignStack; | 
|  | Lex.Lex(); | 
|  | if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || | 
|  | ParseOptionalToken(lltok::kw_alignstack, AlignStack) || | 
|  | ParseStringConstant(ID.StrVal) || | 
|  | ParseToken(lltok::comma, "expected comma in inline asm expression") || | 
|  | ParseToken(lltok::StringConstant, "expected constraint string")) | 
|  | return true; | 
|  | ID.StrVal2 = Lex.getStrVal(); | 
|  | ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1); | 
|  | ID.Kind = ValID::t_InlineAsm; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case lltok::kw_blockaddress: { | 
|  | // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' | 
|  | Lex.Lex(); | 
|  |  | 
|  | ValID Fn, Label; | 
|  | LocTy FnLoc, LabelLoc; | 
|  |  | 
|  | if (ParseToken(lltok::lparen, "expected '(' in block address expression") || | 
|  | ParseValID(Fn) || | 
|  | ParseToken(lltok::comma, "expected comma in block address expression")|| | 
|  | ParseValID(Label) || | 
|  | ParseToken(lltok::rparen, "expected ')' in block address expression")) | 
|  | return true; | 
|  |  | 
|  | if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) | 
|  | return Error(Fn.Loc, "expected function name in blockaddress"); | 
|  | if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) | 
|  | return Error(Label.Loc, "expected basic block name in blockaddress"); | 
|  |  | 
|  | // Make a global variable as a placeholder for this reference. | 
|  | GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), | 
|  | false, GlobalValue::InternalLinkage, | 
|  | 0, ""); | 
|  | ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef)); | 
|  | ID.ConstantVal = FwdRef; | 
|  | ID.Kind = ValID::t_Constant; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case lltok::kw_trunc: | 
|  | case lltok::kw_zext: | 
|  | case lltok::kw_sext: | 
|  | case lltok::kw_fptrunc: | 
|  | case lltok::kw_fpext: | 
|  | case lltok::kw_bitcast: | 
|  | case lltok::kw_uitofp: | 
|  | case lltok::kw_sitofp: | 
|  | case lltok::kw_fptoui: | 
|  | case lltok::kw_fptosi: | 
|  | case lltok::kw_inttoptr: | 
|  | case lltok::kw_ptrtoint: { | 
|  | unsigned Opc = Lex.getUIntVal(); | 
|  | Type *DestTy = 0; | 
|  | Constant *SrcVal; | 
|  | Lex.Lex(); | 
|  | if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || | 
|  | ParseGlobalTypeAndValue(SrcVal) || | 
|  | ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || | 
|  | ParseType(DestTy) || | 
|  | ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) | 
|  | return true; | 
|  | if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) | 
|  | return Error(ID.Loc, "invalid cast opcode for cast from '" + | 
|  | getTypeString(SrcVal->getType()) + "' to '" + | 
|  | getTypeString(DestTy) + "'"); | 
|  | ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, | 
|  | SrcVal, DestTy); | 
|  | ID.Kind = ValID::t_Constant; | 
|  | return false; | 
|  | } | 
|  | case lltok::kw_extractvalue: { | 
|  | Lex.Lex(); | 
|  | Constant *Val; | 
|  | SmallVector<unsigned, 4> Indices; | 
|  | if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| | 
|  | ParseGlobalTypeAndValue(Val) || | 
|  | ParseIndexList(Indices) || | 
|  | ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) | 
|  | return true; | 
|  |  | 
|  | if (!Val->getType()->isAggregateType()) | 
|  | return Error(ID.Loc, "extractvalue operand must be aggregate type"); | 
|  | if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) | 
|  | return Error(ID.Loc, "invalid indices for extractvalue"); | 
|  | ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); | 
|  | ID.Kind = ValID::t_Constant; | 
|  | return false; | 
|  | } | 
|  | case lltok::kw_insertvalue: { | 
|  | Lex.Lex(); | 
|  | Constant *Val0, *Val1; | 
|  | SmallVector<unsigned, 4> Indices; | 
|  | if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| | 
|  | ParseGlobalTypeAndValue(Val0) || | 
|  | ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| | 
|  | ParseGlobalTypeAndValue(Val1) || | 
|  | ParseIndexList(Indices) || | 
|  | ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) | 
|  | return true; | 
|  | if (!Val0->getType()->isAggregateType()) | 
|  | return Error(ID.Loc, "insertvalue operand must be aggregate type"); | 
|  | if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) | 
|  | return Error(ID.Loc, "invalid indices for insertvalue"); | 
|  | ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); | 
|  | ID.Kind = ValID::t_Constant; | 
|  | return false; | 
|  | } | 
|  | case lltok::kw_icmp: | 
|  | case lltok::kw_fcmp: { | 
|  | unsigned PredVal, Opc = Lex.getUIntVal(); | 
|  | Constant *Val0, *Val1; | 
|  | Lex.Lex(); | 
|  | if (ParseCmpPredicate(PredVal, Opc) || | 
|  | ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || | 
|  | ParseGlobalTypeAndValue(Val0) || | 
|  | ParseToken(lltok::comma, "expected comma in compare constantexpr") || | 
|  | ParseGlobalTypeAndValue(Val1) || | 
|  | ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) | 
|  | return true; | 
|  |  | 
|  | if (Val0->getType() != Val1->getType()) | 
|  | return Error(ID.Loc, "compare operands must have the same type"); | 
|  |  | 
|  | CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; | 
|  |  | 
|  | if (Opc == Instruction::FCmp) { | 
|  | if (!Val0->getType()->isFPOrFPVectorTy()) | 
|  | return Error(ID.Loc, "fcmp requires floating point operands"); | 
|  | ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); | 
|  | } else { | 
|  | assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); | 
|  | if (!Val0->getType()->isIntOrIntVectorTy() && | 
|  | !Val0->getType()->isPointerTy()) | 
|  | return Error(ID.Loc, "icmp requires pointer or integer operands"); | 
|  | ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); | 
|  | } | 
|  | ID.Kind = ValID::t_Constant; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Binary Operators. | 
|  | case lltok::kw_add: | 
|  | case lltok::kw_fadd: | 
|  | case lltok::kw_sub: | 
|  | case lltok::kw_fsub: | 
|  | case lltok::kw_mul: | 
|  | case lltok::kw_fmul: | 
|  | case lltok::kw_udiv: | 
|  | case lltok::kw_sdiv: | 
|  | case lltok::kw_fdiv: | 
|  | case lltok::kw_urem: | 
|  | case lltok::kw_srem: | 
|  | case lltok::kw_frem: | 
|  | case lltok::kw_shl: | 
|  | case lltok::kw_lshr: | 
|  | case lltok::kw_ashr: { | 
|  | bool NUW = false; | 
|  | bool NSW = false; | 
|  | bool Exact = false; | 
|  | unsigned Opc = Lex.getUIntVal(); | 
|  | Constant *Val0, *Val1; | 
|  | Lex.Lex(); | 
|  | LocTy ModifierLoc = Lex.getLoc(); | 
|  | if (Opc == Instruction::Add || Opc == Instruction::Sub || | 
|  | Opc == Instruction::Mul || Opc == Instruction::Shl) { | 
|  | if (EatIfPresent(lltok::kw_nuw)) | 
|  | NUW = true; | 
|  | if (EatIfPresent(lltok::kw_nsw)) { | 
|  | NSW = true; | 
|  | if (EatIfPresent(lltok::kw_nuw)) | 
|  | NUW = true; | 
|  | } | 
|  | } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || | 
|  | Opc == Instruction::LShr || Opc == Instruction::AShr) { | 
|  | if (EatIfPresent(lltok::kw_exact)) | 
|  | Exact = true; | 
|  | } | 
|  | if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || | 
|  | ParseGlobalTypeAndValue(Val0) || | 
|  | ParseToken(lltok::comma, "expected comma in binary constantexpr") || | 
|  | ParseGlobalTypeAndValue(Val1) || | 
|  | ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) | 
|  | return true; | 
|  | if (Val0->getType() != Val1->getType()) | 
|  | return Error(ID.Loc, "operands of constexpr must have same type"); | 
|  | if (!Val0->getType()->isIntOrIntVectorTy()) { | 
|  | if (NUW) | 
|  | return Error(ModifierLoc, "nuw only applies to integer operations"); | 
|  | if (NSW) | 
|  | return Error(ModifierLoc, "nsw only applies to integer operations"); | 
|  | } | 
|  | // Check that the type is valid for the operator. | 
|  | switch (Opc) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | case Instruction::Shl: | 
|  | case Instruction::AShr: | 
|  | case Instruction::LShr: | 
|  | if (!Val0->getType()->isIntOrIntVectorTy()) | 
|  | return Error(ID.Loc, "constexpr requires integer operands"); | 
|  | break; | 
|  | case Instruction::FAdd: | 
|  | case Instruction::FSub: | 
|  | case Instruction::FMul: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::FRem: | 
|  | if (!Val0->getType()->isFPOrFPVectorTy()) | 
|  | return Error(ID.Loc, "constexpr requires fp operands"); | 
|  | break; | 
|  | default: llvm_unreachable("Unknown binary operator!"); | 
|  | } | 
|  | unsigned Flags = 0; | 
|  | if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap; | 
|  | if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap; | 
|  | if (Exact) Flags |= PossiblyExactOperator::IsExact; | 
|  | Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); | 
|  | ID.ConstantVal = C; | 
|  | ID.Kind = ValID::t_Constant; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Logical Operations | 
|  | case lltok::kw_and: | 
|  | case lltok::kw_or: | 
|  | case lltok::kw_xor: { | 
|  | unsigned Opc = Lex.getUIntVal(); | 
|  | Constant *Val0, *Val1; | 
|  | Lex.Lex(); | 
|  | if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || | 
|  | ParseGlobalTypeAndValue(Val0) || | 
|  | ParseToken(lltok::comma, "expected comma in logical constantexpr") || | 
|  | ParseGlobalTypeAndValue(Val1) || | 
|  | ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) | 
|  | return true; | 
|  | if (Val0->getType() != Val1->getType()) | 
|  | return Error(ID.Loc, "operands of constexpr must have same type"); | 
|  | if (!Val0->getType()->isIntOrIntVectorTy()) | 
|  | return Error(ID.Loc, | 
|  | "constexpr requires integer or integer vector operands"); | 
|  | ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); | 
|  | ID.Kind = ValID::t_Constant; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case lltok::kw_getelementptr: | 
|  | case lltok::kw_shufflevector: | 
|  | case lltok::kw_insertelement: | 
|  | case lltok::kw_extractelement: | 
|  | case lltok::kw_select: { | 
|  | unsigned Opc = Lex.getUIntVal(); | 
|  | SmallVector<Constant*, 16> Elts; | 
|  | bool InBounds = false; | 
|  | Lex.Lex(); | 
|  | if (Opc == Instruction::GetElementPtr) | 
|  | InBounds = EatIfPresent(lltok::kw_inbounds); | 
|  | if (ParseToken(lltok::lparen, "expected '(' in constantexpr") || | 
|  | ParseGlobalValueVector(Elts) || | 
|  | ParseToken(lltok::rparen, "expected ')' in constantexpr")) | 
|  | return true; | 
|  |  | 
|  | if (Opc == Instruction::GetElementPtr) { | 
|  | if (Elts.size() == 0 || !Elts[0]->getType()->isPointerTy()) | 
|  | return Error(ID.Loc, "getelementptr requires pointer operand"); | 
|  |  | 
|  | ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); | 
|  | if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices)) | 
|  | return Error(ID.Loc, "invalid indices for getelementptr"); | 
|  | ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices, | 
|  | InBounds); | 
|  | } else if (Opc == Instruction::Select) { | 
|  | if (Elts.size() != 3) | 
|  | return Error(ID.Loc, "expected three operands to select"); | 
|  | if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], | 
|  | Elts[2])) | 
|  | return Error(ID.Loc, Reason); | 
|  | ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); | 
|  | } else if (Opc == Instruction::ShuffleVector) { | 
|  | if (Elts.size() != 3) | 
|  | return Error(ID.Loc, "expected three operands to shufflevector"); | 
|  | if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) | 
|  | return Error(ID.Loc, "invalid operands to shufflevector"); | 
|  | ID.ConstantVal = | 
|  | ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); | 
|  | } else if (Opc == Instruction::ExtractElement) { | 
|  | if (Elts.size() != 2) | 
|  | return Error(ID.Loc, "expected two operands to extractelement"); | 
|  | if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) | 
|  | return Error(ID.Loc, "invalid extractelement operands"); | 
|  | ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); | 
|  | } else { | 
|  | assert(Opc == Instruction::InsertElement && "Unknown opcode"); | 
|  | if (Elts.size() != 3) | 
|  | return Error(ID.Loc, "expected three operands to insertelement"); | 
|  | if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) | 
|  | return Error(ID.Loc, "invalid insertelement operands"); | 
|  | ID.ConstantVal = | 
|  | ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); | 
|  | } | 
|  |  | 
|  | ID.Kind = ValID::t_Constant; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | Lex.Lex(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseGlobalValue - Parse a global value with the specified type. | 
|  | bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { | 
|  | C = 0; | 
|  | ValID ID; | 
|  | Value *V = NULL; | 
|  | bool Parsed = ParseValID(ID) || | 
|  | ConvertValIDToValue(Ty, ID, V, NULL); | 
|  | if (V && !(C = dyn_cast<Constant>(V))) | 
|  | return Error(ID.Loc, "global values must be constants"); | 
|  | return Parsed; | 
|  | } | 
|  |  | 
|  | bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { | 
|  | Type *Ty = 0; | 
|  | return ParseType(Ty) || | 
|  | ParseGlobalValue(Ty, V); | 
|  | } | 
|  |  | 
|  | /// ParseGlobalValueVector | 
|  | ///   ::= /*empty*/ | 
|  | ///   ::= TypeAndValue (',' TypeAndValue)* | 
|  | bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) { | 
|  | // Empty list. | 
|  | if (Lex.getKind() == lltok::rbrace || | 
|  | Lex.getKind() == lltok::rsquare || | 
|  | Lex.getKind() == lltok::greater || | 
|  | Lex.getKind() == lltok::rparen) | 
|  | return false; | 
|  |  | 
|  | Constant *C; | 
|  | if (ParseGlobalTypeAndValue(C)) return true; | 
|  | Elts.push_back(C); | 
|  |  | 
|  | while (EatIfPresent(lltok::comma)) { | 
|  | if (ParseGlobalTypeAndValue(C)) return true; | 
|  | Elts.push_back(C); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) { | 
|  | assert(Lex.getKind() == lltok::lbrace); | 
|  | Lex.Lex(); | 
|  |  | 
|  | SmallVector<Value*, 16> Elts; | 
|  | if (ParseMDNodeVector(Elts, PFS) || | 
|  | ParseToken(lltok::rbrace, "expected end of metadata node")) | 
|  | return true; | 
|  |  | 
|  | ID.MDNodeVal = MDNode::get(Context, Elts); | 
|  | ID.Kind = ValID::t_MDNode; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseMetadataValue | 
|  | ///  ::= !42 | 
|  | ///  ::= !{...} | 
|  | ///  ::= !"string" | 
|  | bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) { | 
|  | assert(Lex.getKind() == lltok::exclaim); | 
|  | Lex.Lex(); | 
|  |  | 
|  | // MDNode: | 
|  | // !{ ... } | 
|  | if (Lex.getKind() == lltok::lbrace) | 
|  | return ParseMetadataListValue(ID, PFS); | 
|  |  | 
|  | // Standalone metadata reference | 
|  | // !42 | 
|  | if (Lex.getKind() == lltok::APSInt) { | 
|  | if (ParseMDNodeID(ID.MDNodeVal)) return true; | 
|  | ID.Kind = ValID::t_MDNode; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // MDString: | 
|  | //   ::= '!' STRINGCONSTANT | 
|  | if (ParseMDString(ID.MDStringVal)) return true; | 
|  | ID.Kind = ValID::t_MDString; | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Function Parsing. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, | 
|  | PerFunctionState *PFS) { | 
|  | if (Ty->isFunctionTy()) | 
|  | return Error(ID.Loc, "functions are not values, refer to them as pointers"); | 
|  |  | 
|  | switch (ID.Kind) { | 
|  | default: llvm_unreachable("Unknown ValID!"); | 
|  | case ValID::t_LocalID: | 
|  | if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); | 
|  | V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); | 
|  | return (V == 0); | 
|  | case ValID::t_LocalName: | 
|  | if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); | 
|  | V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); | 
|  | return (V == 0); | 
|  | case ValID::t_InlineAsm: { | 
|  | PointerType *PTy = dyn_cast<PointerType>(Ty); | 
|  | FunctionType *FTy = | 
|  | PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0; | 
|  | if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2)) | 
|  | return Error(ID.Loc, "invalid type for inline asm constraint string"); | 
|  | V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1); | 
|  | return false; | 
|  | } | 
|  | case ValID::t_MDNode: | 
|  | if (!Ty->isMetadataTy()) | 
|  | return Error(ID.Loc, "metadata value must have metadata type"); | 
|  | V = ID.MDNodeVal; | 
|  | return false; | 
|  | case ValID::t_MDString: | 
|  | if (!Ty->isMetadataTy()) | 
|  | return Error(ID.Loc, "metadata value must have metadata type"); | 
|  | V = ID.MDStringVal; | 
|  | return false; | 
|  | case ValID::t_GlobalName: | 
|  | V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); | 
|  | return V == 0; | 
|  | case ValID::t_GlobalID: | 
|  | V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); | 
|  | return V == 0; | 
|  | case ValID::t_APSInt: | 
|  | if (!Ty->isIntegerTy()) | 
|  | return Error(ID.Loc, "integer constant must have integer type"); | 
|  | ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); | 
|  | V = ConstantInt::get(Context, ID.APSIntVal); | 
|  | return false; | 
|  | case ValID::t_APFloat: | 
|  | if (!Ty->isFloatingPointTy() || | 
|  | !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) | 
|  | return Error(ID.Loc, "floating point constant invalid for type"); | 
|  |  | 
|  | // The lexer has no type info, so builds all float and double FP constants | 
|  | // as double.  Fix this here.  Long double does not need this. | 
|  | if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble && | 
|  | Ty->isFloatTy()) { | 
|  | bool Ignored; | 
|  | ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, | 
|  | &Ignored); | 
|  | } | 
|  | V = ConstantFP::get(Context, ID.APFloatVal); | 
|  |  | 
|  | if (V->getType() != Ty) | 
|  | return Error(ID.Loc, "floating point constant does not have type '" + | 
|  | getTypeString(Ty) + "'"); | 
|  |  | 
|  | return false; | 
|  | case ValID::t_Null: | 
|  | if (!Ty->isPointerTy()) | 
|  | return Error(ID.Loc, "null must be a pointer type"); | 
|  | V = ConstantPointerNull::get(cast<PointerType>(Ty)); | 
|  | return false; | 
|  | case ValID::t_Undef: | 
|  | // FIXME: LabelTy should not be a first-class type. | 
|  | if (!Ty->isFirstClassType() || Ty->isLabelTy()) | 
|  | return Error(ID.Loc, "invalid type for undef constant"); | 
|  | V = UndefValue::get(Ty); | 
|  | return false; | 
|  | case ValID::t_EmptyArray: | 
|  | if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) | 
|  | return Error(ID.Loc, "invalid empty array initializer"); | 
|  | V = UndefValue::get(Ty); | 
|  | return false; | 
|  | case ValID::t_Zero: | 
|  | // FIXME: LabelTy should not be a first-class type. | 
|  | if (!Ty->isFirstClassType() || Ty->isLabelTy()) | 
|  | return Error(ID.Loc, "invalid type for null constant"); | 
|  | V = Constant::getNullValue(Ty); | 
|  | return false; | 
|  | case ValID::t_Constant: | 
|  | if (ID.ConstantVal->getType() != Ty) | 
|  | return Error(ID.Loc, "constant expression type mismatch"); | 
|  |  | 
|  | V = ID.ConstantVal; | 
|  | return false; | 
|  | case ValID::t_ConstantStruct: | 
|  | case ValID::t_PackedConstantStruct: | 
|  | if (StructType *ST = dyn_cast<StructType>(Ty)) { | 
|  | if (ST->getNumElements() != ID.UIntVal) | 
|  | return Error(ID.Loc, | 
|  | "initializer with struct type has wrong # elements"); | 
|  | if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) | 
|  | return Error(ID.Loc, "packed'ness of initializer and type don't match"); | 
|  |  | 
|  | // Verify that the elements are compatible with the structtype. | 
|  | for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) | 
|  | if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) | 
|  | return Error(ID.Loc, "element " + Twine(i) + | 
|  | " of struct initializer doesn't match struct element type"); | 
|  |  | 
|  | V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts, | 
|  | ID.UIntVal)); | 
|  | } else | 
|  | return Error(ID.Loc, "constant expression type mismatch"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { | 
|  | V = 0; | 
|  | ValID ID; | 
|  | return ParseValID(ID, PFS) || | 
|  | ConvertValIDToValue(Ty, ID, V, PFS); | 
|  | } | 
|  |  | 
|  | bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { | 
|  | Type *Ty = 0; | 
|  | return ParseType(Ty) || | 
|  | ParseValue(Ty, V, PFS); | 
|  | } | 
|  |  | 
|  | bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, | 
|  | PerFunctionState &PFS) { | 
|  | Value *V; | 
|  | Loc = Lex.getLoc(); | 
|  | if (ParseTypeAndValue(V, PFS)) return true; | 
|  | if (!isa<BasicBlock>(V)) | 
|  | return Error(Loc, "expected a basic block"); | 
|  | BB = cast<BasicBlock>(V); | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// FunctionHeader | 
|  | ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs | 
|  | ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection | 
|  | ///       OptionalAlign OptGC | 
|  | bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { | 
|  | // Parse the linkage. | 
|  | LocTy LinkageLoc = Lex.getLoc(); | 
|  | unsigned Linkage; | 
|  |  | 
|  | unsigned Visibility, RetAttrs; | 
|  | CallingConv::ID CC; | 
|  | Type *RetType = 0; | 
|  | LocTy RetTypeLoc = Lex.getLoc(); | 
|  | if (ParseOptionalLinkage(Linkage) || | 
|  | ParseOptionalVisibility(Visibility) || | 
|  | ParseOptionalCallingConv(CC) || | 
|  | ParseOptionalAttrs(RetAttrs, 1) || | 
|  | ParseType(RetType, RetTypeLoc, true /*void allowed*/)) | 
|  | return true; | 
|  |  | 
|  | // Verify that the linkage is ok. | 
|  | switch ((GlobalValue::LinkageTypes)Linkage) { | 
|  | case GlobalValue::ExternalLinkage: | 
|  | break; // always ok. | 
|  | case GlobalValue::DLLImportLinkage: | 
|  | case GlobalValue::ExternalWeakLinkage: | 
|  | if (isDefine) | 
|  | return Error(LinkageLoc, "invalid linkage for function definition"); | 
|  | break; | 
|  | case GlobalValue::PrivateLinkage: | 
|  | case GlobalValue::LinkerPrivateLinkage: | 
|  | case GlobalValue::LinkerPrivateWeakLinkage: | 
|  | case GlobalValue::LinkerPrivateWeakDefAutoLinkage: | 
|  | case GlobalValue::InternalLinkage: | 
|  | case GlobalValue::AvailableExternallyLinkage: | 
|  | case GlobalValue::LinkOnceAnyLinkage: | 
|  | case GlobalValue::LinkOnceODRLinkage: | 
|  | case GlobalValue::WeakAnyLinkage: | 
|  | case GlobalValue::WeakODRLinkage: | 
|  | case GlobalValue::DLLExportLinkage: | 
|  | if (!isDefine) | 
|  | return Error(LinkageLoc, "invalid linkage for function declaration"); | 
|  | break; | 
|  | case GlobalValue::AppendingLinkage: | 
|  | case GlobalValue::CommonLinkage: | 
|  | return Error(LinkageLoc, "invalid function linkage type"); | 
|  | } | 
|  |  | 
|  | if (!FunctionType::isValidReturnType(RetType)) | 
|  | return Error(RetTypeLoc, "invalid function return type"); | 
|  |  | 
|  | LocTy NameLoc = Lex.getLoc(); | 
|  |  | 
|  | std::string FunctionName; | 
|  | if (Lex.getKind() == lltok::GlobalVar) { | 
|  | FunctionName = Lex.getStrVal(); | 
|  | } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok. | 
|  | unsigned NameID = Lex.getUIntVal(); | 
|  |  | 
|  | if (NameID != NumberedVals.size()) | 
|  | return TokError("function expected to be numbered '%" + | 
|  | Twine(NumberedVals.size()) + "'"); | 
|  | } else { | 
|  | return TokError("expected function name"); | 
|  | } | 
|  |  | 
|  | Lex.Lex(); | 
|  |  | 
|  | if (Lex.getKind() != lltok::lparen) | 
|  | return TokError("expected '(' in function argument list"); | 
|  |  | 
|  | SmallVector<ArgInfo, 8> ArgList; | 
|  | bool isVarArg; | 
|  | unsigned FuncAttrs; | 
|  | std::string Section; | 
|  | unsigned Alignment; | 
|  | std::string GC; | 
|  | bool UnnamedAddr; | 
|  | LocTy UnnamedAddrLoc; | 
|  |  | 
|  | if (ParseArgumentList(ArgList, isVarArg) || | 
|  | ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, | 
|  | &UnnamedAddrLoc) || | 
|  | ParseOptionalAttrs(FuncAttrs, 2) || | 
|  | (EatIfPresent(lltok::kw_section) && | 
|  | ParseStringConstant(Section)) || | 
|  | ParseOptionalAlignment(Alignment) || | 
|  | (EatIfPresent(lltok::kw_gc) && | 
|  | ParseStringConstant(GC))) | 
|  | return true; | 
|  |  | 
|  | // If the alignment was parsed as an attribute, move to the alignment field. | 
|  | if (FuncAttrs & Attribute::Alignment) { | 
|  | Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs); | 
|  | FuncAttrs &= ~Attribute::Alignment; | 
|  | } | 
|  |  | 
|  | // Okay, if we got here, the function is syntactically valid.  Convert types | 
|  | // and do semantic checks. | 
|  | std::vector<Type*> ParamTypeList; | 
|  | SmallVector<AttributeWithIndex, 8> Attrs; | 
|  |  | 
|  | if (RetAttrs != Attribute::None) | 
|  | Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); | 
|  |  | 
|  | for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { | 
|  | ParamTypeList.push_back(ArgList[i].Ty); | 
|  | if (ArgList[i].Attrs != Attribute::None) | 
|  | Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); | 
|  | } | 
|  |  | 
|  | if (FuncAttrs != Attribute::None) | 
|  | Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs)); | 
|  |  | 
|  | AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); | 
|  |  | 
|  | if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy()) | 
|  | return Error(RetTypeLoc, "functions with 'sret' argument must return void"); | 
|  |  | 
|  | FunctionType *FT = | 
|  | FunctionType::get(RetType, ParamTypeList, isVarArg); | 
|  | PointerType *PFT = PointerType::getUnqual(FT); | 
|  |  | 
|  | Fn = 0; | 
|  | if (!FunctionName.empty()) { | 
|  | // If this was a definition of a forward reference, remove the definition | 
|  | // from the forward reference table and fill in the forward ref. | 
|  | std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI = | 
|  | ForwardRefVals.find(FunctionName); | 
|  | if (FRVI != ForwardRefVals.end()) { | 
|  | Fn = M->getFunction(FunctionName); | 
|  | if (Fn->getType() != PFT) | 
|  | return Error(FRVI->second.second, "invalid forward reference to " | 
|  | "function '" + FunctionName + "' with wrong type!"); | 
|  |  | 
|  | ForwardRefVals.erase(FRVI); | 
|  | } else if ((Fn = M->getFunction(FunctionName))) { | 
|  | // Reject redefinitions. | 
|  | return Error(NameLoc, "invalid redefinition of function '" + | 
|  | FunctionName + "'"); | 
|  | } else if (M->getNamedValue(FunctionName)) { | 
|  | return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); | 
|  | } | 
|  |  | 
|  | } else { | 
|  | // If this is a definition of a forward referenced function, make sure the | 
|  | // types agree. | 
|  | std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I | 
|  | = ForwardRefValIDs.find(NumberedVals.size()); | 
|  | if (I != ForwardRefValIDs.end()) { | 
|  | Fn = cast<Function>(I->second.first); | 
|  | if (Fn->getType() != PFT) | 
|  | return Error(NameLoc, "type of definition and forward reference of '@" + | 
|  | Twine(NumberedVals.size()) + "' disagree"); | 
|  | ForwardRefValIDs.erase(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Fn == 0) | 
|  | Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); | 
|  | else // Move the forward-reference to the correct spot in the module. | 
|  | M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); | 
|  |  | 
|  | if (FunctionName.empty()) | 
|  | NumberedVals.push_back(Fn); | 
|  |  | 
|  | Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); | 
|  | Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); | 
|  | Fn->setCallingConv(CC); | 
|  | Fn->setAttributes(PAL); | 
|  | Fn->setUnnamedAddr(UnnamedAddr); | 
|  | Fn->setAlignment(Alignment); | 
|  | Fn->setSection(Section); | 
|  | if (!GC.empty()) Fn->setGC(GC.c_str()); | 
|  |  | 
|  | // Add all of the arguments we parsed to the function. | 
|  | Function::arg_iterator ArgIt = Fn->arg_begin(); | 
|  | for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { | 
|  | // If the argument has a name, insert it into the argument symbol table. | 
|  | if (ArgList[i].Name.empty()) continue; | 
|  |  | 
|  | // Set the name, if it conflicted, it will be auto-renamed. | 
|  | ArgIt->setName(ArgList[i].Name); | 
|  |  | 
|  | if (ArgIt->getName() != ArgList[i].Name) | 
|  | return Error(ArgList[i].Loc, "redefinition of argument '%" + | 
|  | ArgList[i].Name + "'"); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ParseFunctionBody | 
|  | ///   ::= '{' BasicBlock+ '}' | 
|  | /// | 
|  | bool LLParser::ParseFunctionBody(Function &Fn) { | 
|  | if (Lex.getKind() != lltok::lbrace) | 
|  | return TokError("expected '{' in function body"); | 
|  | Lex.Lex();  // eat the {. | 
|  |  | 
|  | int FunctionNumber = -1; | 
|  | if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; | 
|  |  | 
|  | PerFunctionState PFS(*this, Fn, FunctionNumber); | 
|  |  | 
|  | // We need at least one basic block. | 
|  | if (Lex.getKind() == lltok::rbrace) | 
|  | return TokError("function body requires at least one basic block"); | 
|  |  | 
|  | while (Lex.getKind() != lltok::rbrace) | 
|  | if (ParseBasicBlock(PFS)) return true; | 
|  |  | 
|  | // Eat the }. | 
|  | Lex.Lex(); | 
|  |  | 
|  | // Verify function is ok. | 
|  | return PFS.FinishFunction(); | 
|  | } | 
|  |  | 
|  | /// ParseBasicBlock | 
|  | ///   ::= LabelStr? Instruction* | 
|  | bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { | 
|  | // If this basic block starts out with a name, remember it. | 
|  | std::string Name; | 
|  | LocTy NameLoc = Lex.getLoc(); | 
|  | if (Lex.getKind() == lltok::LabelStr) { | 
|  | Name = Lex.getStrVal(); | 
|  | Lex.Lex(); | 
|  | } | 
|  |  | 
|  | BasicBlock *BB = PFS.DefineBB(Name, NameLoc); | 
|  | if (BB == 0) return true; | 
|  |  | 
|  | std::string NameStr; | 
|  |  | 
|  | // Parse the instructions in this block until we get a terminator. | 
|  | Instruction *Inst; | 
|  | SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst; | 
|  | do { | 
|  | // This instruction may have three possibilities for a name: a) none | 
|  | // specified, b) name specified "%foo =", c) number specified: "%4 =". | 
|  | LocTy NameLoc = Lex.getLoc(); | 
|  | int NameID = -1; | 
|  | NameStr = ""; | 
|  |  | 
|  | if (Lex.getKind() == lltok::LocalVarID) { | 
|  | NameID = Lex.getUIntVal(); | 
|  | Lex.Lex(); | 
|  | if (ParseToken(lltok::equal, "expected '=' after instruction id")) | 
|  | return true; | 
|  | } else if (Lex.getKind() == lltok::LocalVar) { | 
|  | NameStr = Lex.getStrVal(); | 
|  | Lex.Lex(); | 
|  | if (ParseToken(lltok::equal, "expected '=' after instruction name")) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | switch (ParseInstruction(Inst, BB, PFS)) { | 
|  | default: assert(0 && "Unknown ParseInstruction result!"); | 
|  | case InstError: return true; | 
|  | case InstNormal: | 
|  | BB->getInstList().push_back(Inst); | 
|  |  | 
|  | // With a normal result, we check to see if the instruction is followed by | 
|  | // a comma and metadata. | 
|  | if (EatIfPresent(lltok::comma)) | 
|  | if (ParseInstructionMetadata(Inst, &PFS)) | 
|  | return true; | 
|  | break; | 
|  | case InstExtraComma: | 
|  | BB->getInstList().push_back(Inst); | 
|  |  | 
|  | // If the instruction parser ate an extra comma at the end of it, it | 
|  | // *must* be followed by metadata. | 
|  | if (ParseInstructionMetadata(Inst, &PFS)) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Set the name on the instruction. | 
|  | if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; | 
|  | } while (!isa<TerminatorInst>(Inst)); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Instruction Parsing. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ParseInstruction - Parse one of the many different instructions. | 
|  | /// | 
|  | int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, | 
|  | PerFunctionState &PFS) { | 
|  | lltok::Kind Token = Lex.getKind(); | 
|  | if (Token == lltok::Eof) | 
|  | return TokError("found end of file when expecting more instructions"); | 
|  | LocTy Loc = Lex.getLoc(); | 
|  | unsigned KeywordVal = Lex.getUIntVal(); | 
|  | Lex.Lex();  // Eat the keyword. | 
|  |  | 
|  | switch (Token) { | 
|  | default:                    return Error(Loc, "expected instruction opcode"); | 
|  | // Terminator Instructions. | 
|  | case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false; | 
|  | case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; | 
|  | case lltok::kw_ret:         return ParseRet(Inst, BB, PFS); | 
|  | case lltok::kw_br:          return ParseBr(Inst, PFS); | 
|  | case lltok::kw_switch:      return ParseSwitch(Inst, PFS); | 
|  | case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS); | 
|  | case lltok::kw_invoke:      return ParseInvoke(Inst, PFS); | 
|  | case lltok::kw_resume:      return ParseResume(Inst, PFS); | 
|  | // Binary Operators. | 
|  | case lltok::kw_add: | 
|  | case lltok::kw_sub: | 
|  | case lltok::kw_mul: | 
|  | case lltok::kw_shl: { | 
|  | bool NUW = EatIfPresent(lltok::kw_nuw); | 
|  | bool NSW = EatIfPresent(lltok::kw_nsw); | 
|  | if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); | 
|  |  | 
|  | if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; | 
|  |  | 
|  | if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); | 
|  | if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); | 
|  | return false; | 
|  | } | 
|  | case lltok::kw_fadd: | 
|  | case lltok::kw_fsub: | 
|  | case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2); | 
|  |  | 
|  | case lltok::kw_sdiv: | 
|  | case lltok::kw_udiv: | 
|  | case lltok::kw_lshr: | 
|  | case lltok::kw_ashr: { | 
|  | bool Exact = EatIfPresent(lltok::kw_exact); | 
|  |  | 
|  | if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; | 
|  | if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case lltok::kw_urem: | 
|  | case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1); | 
|  | case lltok::kw_fdiv: | 
|  | case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2); | 
|  | case lltok::kw_and: | 
|  | case lltok::kw_or: | 
|  | case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal); | 
|  | case lltok::kw_icmp: | 
|  | case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal); | 
|  | // Casts. | 
|  | case lltok::kw_trunc: | 
|  | case lltok::kw_zext: | 
|  | case lltok::kw_sext: | 
|  | case lltok::kw_fptrunc: | 
|  | case lltok::kw_fpext: | 
|  | case lltok::kw_bitcast: | 
|  | case lltok::kw_uitofp: | 
|  | case lltok::kw_sitofp: | 
|  | case lltok::kw_fptoui: | 
|  | case lltok::kw_fptosi: | 
|  | case lltok::kw_inttoptr: | 
|  | case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal); | 
|  | // Other. | 
|  | case lltok::kw_select:         return ParseSelect(Inst, PFS); | 
|  | case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS); | 
|  | case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); | 
|  | case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS); | 
|  | case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS); | 
|  | case lltok::kw_phi:            return ParsePHI(Inst, PFS); | 
|  | case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS); | 
|  | case lltok::kw_call:           return ParseCall(Inst, PFS, false); | 
|  | case lltok::kw_tail:           return ParseCall(Inst, PFS, true); | 
|  | // Memory. | 
|  | case lltok::kw_alloca:         return ParseAlloc(Inst, PFS); | 
|  | case lltok::kw_load:           return ParseLoad(Inst, PFS, false); | 
|  | case lltok::kw_store:          return ParseStore(Inst, PFS, false); | 
|  | case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS); | 
|  | case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS); | 
|  | case lltok::kw_fence:          return ParseFence(Inst, PFS); | 
|  | case lltok::kw_volatile: | 
|  | // For compatibility; canonical location is after load | 
|  | if (EatIfPresent(lltok::kw_load)) | 
|  | return ParseLoad(Inst, PFS, true); | 
|  | else if (EatIfPresent(lltok::kw_store)) | 
|  | return ParseStore(Inst, PFS, true); | 
|  | else | 
|  | return TokError("expected 'load' or 'store'"); | 
|  | case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); | 
|  | case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS); | 
|  | case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. | 
|  | bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { | 
|  | if (Opc == Instruction::FCmp) { | 
|  | switch (Lex.getKind()) { | 
|  | default: TokError("expected fcmp predicate (e.g. 'oeq')"); | 
|  | case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; | 
|  | case lltok::kw_one: P = CmpInst::FCMP_ONE; break; | 
|  | case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; | 
|  | case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; | 
|  | case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; | 
|  | case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; | 
|  | case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; | 
|  | case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; | 
|  | case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; | 
|  | case lltok::kw_une: P = CmpInst::FCMP_UNE; break; | 
|  | case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; | 
|  | case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; | 
|  | case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; | 
|  | case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; | 
|  | case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; | 
|  | case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; | 
|  | } | 
|  | } else { | 
|  | switch (Lex.getKind()) { | 
|  | default: TokError("expected icmp predicate (e.g. 'eq')"); | 
|  | case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break; | 
|  | case lltok::kw_ne:  P = CmpInst::ICMP_NE; break; | 
|  | case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; | 
|  | case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; | 
|  | case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; | 
|  | case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; | 
|  | case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; | 
|  | case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; | 
|  | case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; | 
|  | case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; | 
|  | } | 
|  | } | 
|  | Lex.Lex(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Terminator Instructions. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ParseRet - Parse a return instruction. | 
|  | ///   ::= 'ret' void (',' !dbg, !1)* | 
|  | ///   ::= 'ret' TypeAndValue (',' !dbg, !1)* | 
|  | bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, | 
|  | PerFunctionState &PFS) { | 
|  | SMLoc TypeLoc = Lex.getLoc(); | 
|  | Type *Ty = 0; | 
|  | if (ParseType(Ty, true /*void allowed*/)) return true; | 
|  |  | 
|  | Type *ResType = PFS.getFunction().getReturnType(); | 
|  |  | 
|  | if (Ty->isVoidTy()) { | 
|  | if (!ResType->isVoidTy()) | 
|  | return Error(TypeLoc, "value doesn't match function result type '" + | 
|  | getTypeString(ResType) + "'"); | 
|  |  | 
|  | Inst = ReturnInst::Create(Context); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Value *RV; | 
|  | if (ParseValue(Ty, RV, PFS)) return true; | 
|  |  | 
|  | if (ResType != RV->getType()) | 
|  | return Error(TypeLoc, "value doesn't match function result type '" + | 
|  | getTypeString(ResType) + "'"); | 
|  |  | 
|  | Inst = ReturnInst::Create(Context, RV); | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ParseBr | 
|  | ///   ::= 'br' TypeAndValue | 
|  | ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue | 
|  | bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { | 
|  | LocTy Loc, Loc2; | 
|  | Value *Op0; | 
|  | BasicBlock *Op1, *Op2; | 
|  | if (ParseTypeAndValue(Op0, Loc, PFS)) return true; | 
|  |  | 
|  | if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { | 
|  | Inst = BranchInst::Create(BB); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Op0->getType() != Type::getInt1Ty(Context)) | 
|  | return Error(Loc, "branch condition must have 'i1' type"); | 
|  |  | 
|  | if (ParseToken(lltok::comma, "expected ',' after branch condition") || | 
|  | ParseTypeAndBasicBlock(Op1, Loc, PFS) || | 
|  | ParseToken(lltok::comma, "expected ',' after true destination") || | 
|  | ParseTypeAndBasicBlock(Op2, Loc2, PFS)) | 
|  | return true; | 
|  |  | 
|  | Inst = BranchInst::Create(Op1, Op2, Op0); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseSwitch | 
|  | ///  Instruction | 
|  | ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' | 
|  | ///  JumpTable | 
|  | ///    ::= (TypeAndValue ',' TypeAndValue)* | 
|  | bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { | 
|  | LocTy CondLoc, BBLoc; | 
|  | Value *Cond; | 
|  | BasicBlock *DefaultBB; | 
|  | if (ParseTypeAndValue(Cond, CondLoc, PFS) || | 
|  | ParseToken(lltok::comma, "expected ',' after switch condition") || | 
|  | ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || | 
|  | ParseToken(lltok::lsquare, "expected '[' with switch table")) | 
|  | return true; | 
|  |  | 
|  | if (!Cond->getType()->isIntegerTy()) | 
|  | return Error(CondLoc, "switch condition must have integer type"); | 
|  |  | 
|  | // Parse the jump table pairs. | 
|  | SmallPtrSet<Value*, 32> SeenCases; | 
|  | SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; | 
|  | while (Lex.getKind() != lltok::rsquare) { | 
|  | Value *Constant; | 
|  | BasicBlock *DestBB; | 
|  |  | 
|  | if (ParseTypeAndValue(Constant, CondLoc, PFS) || | 
|  | ParseToken(lltok::comma, "expected ',' after case value") || | 
|  | ParseTypeAndBasicBlock(DestBB, PFS)) | 
|  | return true; | 
|  |  | 
|  | if (!SeenCases.insert(Constant)) | 
|  | return Error(CondLoc, "duplicate case value in switch"); | 
|  | if (!isa<ConstantInt>(Constant)) | 
|  | return Error(CondLoc, "case value is not a constant integer"); | 
|  |  | 
|  | Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); | 
|  | } | 
|  |  | 
|  | Lex.Lex();  // Eat the ']'. | 
|  |  | 
|  | SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); | 
|  | for (unsigned i = 0, e = Table.size(); i != e; ++i) | 
|  | SI->addCase(Table[i].first, Table[i].second); | 
|  | Inst = SI; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseIndirectBr | 
|  | ///  Instruction | 
|  | ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' | 
|  | bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { | 
|  | LocTy AddrLoc; | 
|  | Value *Address; | 
|  | if (ParseTypeAndValue(Address, AddrLoc, PFS) || | 
|  | ParseToken(lltok::comma, "expected ',' after indirectbr address") || | 
|  | ParseToken(lltok::lsquare, "expected '[' with indirectbr")) | 
|  | return true; | 
|  |  | 
|  | if (!Address->getType()->isPointerTy()) | 
|  | return Error(AddrLoc, "indirectbr address must have pointer type"); | 
|  |  | 
|  | // Parse the destination list. | 
|  | SmallVector<BasicBlock*, 16> DestList; | 
|  |  | 
|  | if (Lex.getKind() != lltok::rsquare) { | 
|  | BasicBlock *DestBB; | 
|  | if (ParseTypeAndBasicBlock(DestBB, PFS)) | 
|  | return true; | 
|  | DestList.push_back(DestBB); | 
|  |  | 
|  | while (EatIfPresent(lltok::comma)) { | 
|  | if (ParseTypeAndBasicBlock(DestBB, PFS)) | 
|  | return true; | 
|  | DestList.push_back(DestBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) | 
|  | return true; | 
|  |  | 
|  | IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); | 
|  | for (unsigned i = 0, e = DestList.size(); i != e; ++i) | 
|  | IBI->addDestination(DestList[i]); | 
|  | Inst = IBI; | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ParseInvoke | 
|  | ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList | 
|  | ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue | 
|  | bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { | 
|  | LocTy CallLoc = Lex.getLoc(); | 
|  | unsigned RetAttrs, FnAttrs; | 
|  | CallingConv::ID CC; | 
|  | Type *RetType = 0; | 
|  | LocTy RetTypeLoc; | 
|  | ValID CalleeID; | 
|  | SmallVector<ParamInfo, 16> ArgList; | 
|  |  | 
|  | BasicBlock *NormalBB, *UnwindBB; | 
|  | if (ParseOptionalCallingConv(CC) || | 
|  | ParseOptionalAttrs(RetAttrs, 1) || | 
|  | ParseType(RetType, RetTypeLoc, true /*void allowed*/) || | 
|  | ParseValID(CalleeID) || | 
|  | ParseParameterList(ArgList, PFS) || | 
|  | ParseOptionalAttrs(FnAttrs, 2) || | 
|  | ParseToken(lltok::kw_to, "expected 'to' in invoke") || | 
|  | ParseTypeAndBasicBlock(NormalBB, PFS) || | 
|  | ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || | 
|  | ParseTypeAndBasicBlock(UnwindBB, PFS)) | 
|  | return true; | 
|  |  | 
|  | // If RetType is a non-function pointer type, then this is the short syntax | 
|  | // for the call, which means that RetType is just the return type.  Infer the | 
|  | // rest of the function argument types from the arguments that are present. | 
|  | PointerType *PFTy = 0; | 
|  | FunctionType *Ty = 0; | 
|  | if (!(PFTy = dyn_cast<PointerType>(RetType)) || | 
|  | !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { | 
|  | // Pull out the types of all of the arguments... | 
|  | std::vector<Type*> ParamTypes; | 
|  | for (unsigned i = 0, e = ArgList.size(); i != e; ++i) | 
|  | ParamTypes.push_back(ArgList[i].V->getType()); | 
|  |  | 
|  | if (!FunctionType::isValidReturnType(RetType)) | 
|  | return Error(RetTypeLoc, "Invalid result type for LLVM function"); | 
|  |  | 
|  | Ty = FunctionType::get(RetType, ParamTypes, false); | 
|  | PFTy = PointerType::getUnqual(Ty); | 
|  | } | 
|  |  | 
|  | // Look up the callee. | 
|  | Value *Callee; | 
|  | if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; | 
|  |  | 
|  | // Set up the Attributes for the function. | 
|  | SmallVector<AttributeWithIndex, 8> Attrs; | 
|  | if (RetAttrs != Attribute::None) | 
|  | Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); | 
|  |  | 
|  | SmallVector<Value*, 8> Args; | 
|  |  | 
|  | // Loop through FunctionType's arguments and ensure they are specified | 
|  | // correctly.  Also, gather any parameter attributes. | 
|  | FunctionType::param_iterator I = Ty->param_begin(); | 
|  | FunctionType::param_iterator E = Ty->param_end(); | 
|  | for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { | 
|  | Type *ExpectedTy = 0; | 
|  | if (I != E) { | 
|  | ExpectedTy = *I++; | 
|  | } else if (!Ty->isVarArg()) { | 
|  | return Error(ArgList[i].Loc, "too many arguments specified"); | 
|  | } | 
|  |  | 
|  | if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) | 
|  | return Error(ArgList[i].Loc, "argument is not of expected type '" + | 
|  | getTypeString(ExpectedTy) + "'"); | 
|  | Args.push_back(ArgList[i].V); | 
|  | if (ArgList[i].Attrs != Attribute::None) | 
|  | Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); | 
|  | } | 
|  |  | 
|  | if (I != E) | 
|  | return Error(CallLoc, "not enough parameters specified for call"); | 
|  |  | 
|  | if (FnAttrs != Attribute::None) | 
|  | Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); | 
|  |  | 
|  | // Finish off the Attributes and check them | 
|  | AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); | 
|  |  | 
|  | InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args); | 
|  | II->setCallingConv(CC); | 
|  | II->setAttributes(PAL); | 
|  | Inst = II; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseResume | 
|  | ///   ::= 'resume' TypeAndValue | 
|  | bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { | 
|  | Value *Exn; LocTy ExnLoc; | 
|  | if (ParseTypeAndValue(Exn, ExnLoc, PFS)) | 
|  | return true; | 
|  |  | 
|  | ResumeInst *RI = ResumeInst::Create(Exn); | 
|  | Inst = RI; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Binary Operators. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ParseArithmetic | 
|  | ///  ::= ArithmeticOps TypeAndValue ',' Value | 
|  | /// | 
|  | /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1, | 
|  | /// then any integer operand is allowed, if it is 2, any fp operand is allowed. | 
|  | bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, | 
|  | unsigned Opc, unsigned OperandType) { | 
|  | LocTy Loc; Value *LHS, *RHS; | 
|  | if (ParseTypeAndValue(LHS, Loc, PFS) || | 
|  | ParseToken(lltok::comma, "expected ',' in arithmetic operation") || | 
|  | ParseValue(LHS->getType(), RHS, PFS)) | 
|  | return true; | 
|  |  | 
|  | bool Valid; | 
|  | switch (OperandType) { | 
|  | default: llvm_unreachable("Unknown operand type!"); | 
|  | case 0: // int or FP. | 
|  | Valid = LHS->getType()->isIntOrIntVectorTy() || | 
|  | LHS->getType()->isFPOrFPVectorTy(); | 
|  | break; | 
|  | case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; | 
|  | case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; | 
|  | } | 
|  |  | 
|  | if (!Valid) | 
|  | return Error(Loc, "invalid operand type for instruction"); | 
|  |  | 
|  | Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseLogical | 
|  | ///  ::= ArithmeticOps TypeAndValue ',' Value { | 
|  | bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, | 
|  | unsigned Opc) { | 
|  | LocTy Loc; Value *LHS, *RHS; | 
|  | if (ParseTypeAndValue(LHS, Loc, PFS) || | 
|  | ParseToken(lltok::comma, "expected ',' in logical operation") || | 
|  | ParseValue(LHS->getType(), RHS, PFS)) | 
|  | return true; | 
|  |  | 
|  | if (!LHS->getType()->isIntOrIntVectorTy()) | 
|  | return Error(Loc,"instruction requires integer or integer vector operands"); | 
|  |  | 
|  | Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ParseCompare | 
|  | ///  ::= 'icmp' IPredicates TypeAndValue ',' Value | 
|  | ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value | 
|  | bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, | 
|  | unsigned Opc) { | 
|  | // Parse the integer/fp comparison predicate. | 
|  | LocTy Loc; | 
|  | unsigned Pred; | 
|  | Value *LHS, *RHS; | 
|  | if (ParseCmpPredicate(Pred, Opc) || | 
|  | ParseTypeAndValue(LHS, Loc, PFS) || | 
|  | ParseToken(lltok::comma, "expected ',' after compare value") || | 
|  | ParseValue(LHS->getType(), RHS, PFS)) | 
|  | return true; | 
|  |  | 
|  | if (Opc == Instruction::FCmp) { | 
|  | if (!LHS->getType()->isFPOrFPVectorTy()) | 
|  | return Error(Loc, "fcmp requires floating point operands"); | 
|  | Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); | 
|  | } else { | 
|  | assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); | 
|  | if (!LHS->getType()->isIntOrIntVectorTy() && | 
|  | !LHS->getType()->isPointerTy()) | 
|  | return Error(Loc, "icmp requires integer operands"); | 
|  | Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Other Instructions. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  |  | 
|  | /// ParseCast | 
|  | ///   ::= CastOpc TypeAndValue 'to' Type | 
|  | bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, | 
|  | unsigned Opc) { | 
|  | LocTy Loc; | 
|  | Value *Op; | 
|  | Type *DestTy = 0; | 
|  | if (ParseTypeAndValue(Op, Loc, PFS) || | 
|  | ParseToken(lltok::kw_to, "expected 'to' after cast value") || | 
|  | ParseType(DestTy)) | 
|  | return true; | 
|  |  | 
|  | if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { | 
|  | CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); | 
|  | return Error(Loc, "invalid cast opcode for cast from '" + | 
|  | getTypeString(Op->getType()) + "' to '" + | 
|  | getTypeString(DestTy) + "'"); | 
|  | } | 
|  | Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseSelect | 
|  | ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue | 
|  | bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { | 
|  | LocTy Loc; | 
|  | Value *Op0, *Op1, *Op2; | 
|  | if (ParseTypeAndValue(Op0, Loc, PFS) || | 
|  | ParseToken(lltok::comma, "expected ',' after select condition") || | 
|  | ParseTypeAndValue(Op1, PFS) || | 
|  | ParseToken(lltok::comma, "expected ',' after select value") || | 
|  | ParseTypeAndValue(Op2, PFS)) | 
|  | return true; | 
|  |  | 
|  | if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) | 
|  | return Error(Loc, Reason); | 
|  |  | 
|  | Inst = SelectInst::Create(Op0, Op1, Op2); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseVA_Arg | 
|  | ///   ::= 'va_arg' TypeAndValue ',' Type | 
|  | bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { | 
|  | Value *Op; | 
|  | Type *EltTy = 0; | 
|  | LocTy TypeLoc; | 
|  | if (ParseTypeAndValue(Op, PFS) || | 
|  | ParseToken(lltok::comma, "expected ',' after vaarg operand") || | 
|  | ParseType(EltTy, TypeLoc)) | 
|  | return true; | 
|  |  | 
|  | if (!EltTy->isFirstClassType()) | 
|  | return Error(TypeLoc, "va_arg requires operand with first class type"); | 
|  |  | 
|  | Inst = new VAArgInst(Op, EltTy); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseExtractElement | 
|  | ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue | 
|  | bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { | 
|  | LocTy Loc; | 
|  | Value *Op0, *Op1; | 
|  | if (ParseTypeAndValue(Op0, Loc, PFS) || | 
|  | ParseToken(lltok::comma, "expected ',' after extract value") || | 
|  | ParseTypeAndValue(Op1, PFS)) | 
|  | return true; | 
|  |  | 
|  | if (!ExtractElementInst::isValidOperands(Op0, Op1)) | 
|  | return Error(Loc, "invalid extractelement operands"); | 
|  |  | 
|  | Inst = ExtractElementInst::Create(Op0, Op1); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseInsertElement | 
|  | ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue | 
|  | bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { | 
|  | LocTy Loc; | 
|  | Value *Op0, *Op1, *Op2; | 
|  | if (ParseTypeAndValue(Op0, Loc, PFS) || | 
|  | ParseToken(lltok::comma, "expected ',' after insertelement value") || | 
|  | ParseTypeAndValue(Op1, PFS) || | 
|  | ParseToken(lltok::comma, "expected ',' after insertelement value") || | 
|  | ParseTypeAndValue(Op2, PFS)) | 
|  | return true; | 
|  |  | 
|  | if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) | 
|  | return Error(Loc, "invalid insertelement operands"); | 
|  |  | 
|  | Inst = InsertElementInst::Create(Op0, Op1, Op2); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseShuffleVector | 
|  | ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue | 
|  | bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { | 
|  | LocTy Loc; | 
|  | Value *Op0, *Op1, *Op2; | 
|  | if (ParseTypeAndValue(Op0, Loc, PFS) || | 
|  | ParseToken(lltok::comma, "expected ',' after shuffle mask") || | 
|  | ParseTypeAndValue(Op1, PFS) || | 
|  | ParseToken(lltok::comma, "expected ',' after shuffle value") || | 
|  | ParseTypeAndValue(Op2, PFS)) | 
|  | return true; | 
|  |  | 
|  | if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) | 
|  | return Error(Loc, "invalid extractelement operands"); | 
|  |  | 
|  | Inst = new ShuffleVectorInst(Op0, Op1, Op2); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParsePHI | 
|  | ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* | 
|  | int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { | 
|  | Type *Ty = 0;  LocTy TypeLoc; | 
|  | Value *Op0, *Op1; | 
|  |  | 
|  | if (ParseType(Ty, TypeLoc) || | 
|  | ParseToken(lltok::lsquare, "expected '[' in phi value list") || | 
|  | ParseValue(Ty, Op0, PFS) || | 
|  | ParseToken(lltok::comma, "expected ',' after insertelement value") || | 
|  | ParseValue(Type::getLabelTy(Context), Op1, PFS) || | 
|  | ParseToken(lltok::rsquare, "expected ']' in phi value list")) | 
|  | return true; | 
|  |  | 
|  | bool AteExtraComma = false; | 
|  | SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; | 
|  | while (1) { | 
|  | PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); | 
|  |  | 
|  | if (!EatIfPresent(lltok::comma)) | 
|  | break; | 
|  |  | 
|  | if (Lex.getKind() == lltok::MetadataVar) { | 
|  | AteExtraComma = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || | 
|  | ParseValue(Ty, Op0, PFS) || | 
|  | ParseToken(lltok::comma, "expected ',' after insertelement value") || | 
|  | ParseValue(Type::getLabelTy(Context), Op1, PFS) || | 
|  | ParseToken(lltok::rsquare, "expected ']' in phi value list")) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!Ty->isFirstClassType()) | 
|  | return Error(TypeLoc, "phi node must have first class type"); | 
|  |  | 
|  | PHINode *PN = PHINode::Create(Ty, PHIVals.size()); | 
|  | for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) | 
|  | PN->addIncoming(PHIVals[i].first, PHIVals[i].second); | 
|  | Inst = PN; | 
|  | return AteExtraComma ? InstExtraComma : InstNormal; | 
|  | } | 
|  |  | 
|  | /// ParseLandingPad | 
|  | ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ | 
|  | /// Clause | 
|  | ///   ::= 'catch' TypeAndValue | 
|  | ///   ::= 'filter' | 
|  | ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )* | 
|  | bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { | 
|  | Type *Ty = 0; LocTy TyLoc; | 
|  | Value *PersFn; LocTy PersFnLoc; | 
|  |  | 
|  | if (ParseType(Ty, TyLoc) || | 
|  | ParseToken(lltok::kw_personality, "expected 'personality'") || | 
|  | ParseTypeAndValue(PersFn, PersFnLoc, PFS)) | 
|  | return true; | 
|  |  | 
|  | LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0); | 
|  | LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); | 
|  |  | 
|  | while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ | 
|  | LandingPadInst::ClauseType CT; | 
|  | if (EatIfPresent(lltok::kw_catch)) | 
|  | CT = LandingPadInst::Catch; | 
|  | else if (EatIfPresent(lltok::kw_filter)) | 
|  | CT = LandingPadInst::Filter; | 
|  | else | 
|  | return TokError("expected 'catch' or 'filter' clause type"); | 
|  |  | 
|  | Value *V; LocTy VLoc; | 
|  | if (ParseTypeAndValue(V, VLoc, PFS)) { | 
|  | delete LP; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // A 'catch' type expects a non-array constant. A filter clause expects an | 
|  | // array constant. | 
|  | if (CT == LandingPadInst::Catch) { | 
|  | if (isa<ArrayType>(V->getType())) | 
|  | Error(VLoc, "'catch' clause has an invalid type"); | 
|  | } else { | 
|  | if (!isa<ArrayType>(V->getType())) | 
|  | Error(VLoc, "'filter' clause has an invalid type"); | 
|  | } | 
|  |  | 
|  | LP->addClause(V); | 
|  | } | 
|  |  | 
|  | Inst = LP; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ParseCall | 
|  | ///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value | 
|  | ///       ParameterList OptionalAttrs | 
|  | bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, | 
|  | bool isTail) { | 
|  | unsigned RetAttrs, FnAttrs; | 
|  | CallingConv::ID CC; | 
|  | Type *RetType = 0; | 
|  | LocTy RetTypeLoc; | 
|  | ValID CalleeID; | 
|  | SmallVector<ParamInfo, 16> ArgList; | 
|  | LocTy CallLoc = Lex.getLoc(); | 
|  |  | 
|  | if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) || | 
|  | ParseOptionalCallingConv(CC) || | 
|  | ParseOptionalAttrs(RetAttrs, 1) || | 
|  | ParseType(RetType, RetTypeLoc, true /*void allowed*/) || | 
|  | ParseValID(CalleeID) || | 
|  | ParseParameterList(ArgList, PFS) || | 
|  | ParseOptionalAttrs(FnAttrs, 2)) | 
|  | return true; | 
|  |  | 
|  | // If RetType is a non-function pointer type, then this is the short syntax | 
|  | // for the call, which means that RetType is just the return type.  Infer the | 
|  | // rest of the function argument types from the arguments that are present. | 
|  | PointerType *PFTy = 0; | 
|  | FunctionType *Ty = 0; | 
|  | if (!(PFTy = dyn_cast<PointerType>(RetType)) || | 
|  | !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { | 
|  | // Pull out the types of all of the arguments... | 
|  | std::vector<Type*> ParamTypes; | 
|  | for (unsigned i = 0, e = ArgList.size(); i != e; ++i) | 
|  | ParamTypes.push_back(ArgList[i].V->getType()); | 
|  |  | 
|  | if (!FunctionType::isValidReturnType(RetType)) | 
|  | return Error(RetTypeLoc, "Invalid result type for LLVM function"); | 
|  |  | 
|  | Ty = FunctionType::get(RetType, ParamTypes, false); | 
|  | PFTy = PointerType::getUnqual(Ty); | 
|  | } | 
|  |  | 
|  | // Look up the callee. | 
|  | Value *Callee; | 
|  | if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; | 
|  |  | 
|  | // Set up the Attributes for the function. | 
|  | SmallVector<AttributeWithIndex, 8> Attrs; | 
|  | if (RetAttrs != Attribute::None) | 
|  | Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); | 
|  |  | 
|  | SmallVector<Value*, 8> Args; | 
|  |  | 
|  | // Loop through FunctionType's arguments and ensure they are specified | 
|  | // correctly.  Also, gather any parameter attributes. | 
|  | FunctionType::param_iterator I = Ty->param_begin(); | 
|  | FunctionType::param_iterator E = Ty->param_end(); | 
|  | for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { | 
|  | Type *ExpectedTy = 0; | 
|  | if (I != E) { | 
|  | ExpectedTy = *I++; | 
|  | } else if (!Ty->isVarArg()) { | 
|  | return Error(ArgList[i].Loc, "too many arguments specified"); | 
|  | } | 
|  |  | 
|  | if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) | 
|  | return Error(ArgList[i].Loc, "argument is not of expected type '" + | 
|  | getTypeString(ExpectedTy) + "'"); | 
|  | Args.push_back(ArgList[i].V); | 
|  | if (ArgList[i].Attrs != Attribute::None) | 
|  | Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); | 
|  | } | 
|  |  | 
|  | if (I != E) | 
|  | return Error(CallLoc, "not enough parameters specified for call"); | 
|  |  | 
|  | if (FnAttrs != Attribute::None) | 
|  | Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); | 
|  |  | 
|  | // Finish off the Attributes and check them | 
|  | AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); | 
|  |  | 
|  | CallInst *CI = CallInst::Create(Callee, Args); | 
|  | CI->setTailCall(isTail); | 
|  | CI->setCallingConv(CC); | 
|  | CI->setAttributes(PAL); | 
|  | Inst = CI; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Memory Instructions. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ParseAlloc | 
|  | ///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)? | 
|  | int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { | 
|  | Value *Size = 0; | 
|  | LocTy SizeLoc; | 
|  | unsigned Alignment = 0; | 
|  | Type *Ty = 0; | 
|  | if (ParseType(Ty)) return true; | 
|  |  | 
|  | bool AteExtraComma = false; | 
|  | if (EatIfPresent(lltok::comma)) { | 
|  | if (Lex.getKind() == lltok::kw_align) { | 
|  | if (ParseOptionalAlignment(Alignment)) return true; | 
|  | } else if (Lex.getKind() == lltok::MetadataVar) { | 
|  | AteExtraComma = true; | 
|  | } else { | 
|  | if (ParseTypeAndValue(Size, SizeLoc, PFS) || | 
|  | ParseOptionalCommaAlign(Alignment, AteExtraComma)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Size && !Size->getType()->isIntegerTy()) | 
|  | return Error(SizeLoc, "element count must have integer type"); | 
|  |  | 
|  | Inst = new AllocaInst(Ty, Size, Alignment); | 
|  | return AteExtraComma ? InstExtraComma : InstNormal; | 
|  | } | 
|  |  | 
|  | /// ParseLoad | 
|  | ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? | 
|  | ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue | 
|  | ///       'singlethread'? AtomicOrdering (',' 'align' i32)? | 
|  | ///   Compatibility: | 
|  | ///   ::= 'volatile' 'load' TypeAndValue (',' 'align' i32)? | 
|  | int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS, | 
|  | bool isVolatile) { | 
|  | Value *Val; LocTy Loc; | 
|  | unsigned Alignment = 0; | 
|  | bool AteExtraComma = false; | 
|  | bool isAtomic = false; | 
|  | AtomicOrdering Ordering = NotAtomic; | 
|  | SynchronizationScope Scope = CrossThread; | 
|  |  | 
|  | if (Lex.getKind() == lltok::kw_atomic) { | 
|  | if (isVolatile) | 
|  | return TokError("mixing atomic with old volatile placement"); | 
|  | isAtomic = true; | 
|  | Lex.Lex(); | 
|  | } | 
|  |  | 
|  | if (Lex.getKind() == lltok::kw_volatile) { | 
|  | if (isVolatile) | 
|  | return TokError("duplicate volatile before and after store"); | 
|  | isVolatile = true; | 
|  | Lex.Lex(); | 
|  | } | 
|  |  | 
|  | if (ParseTypeAndValue(Val, Loc, PFS) || | 
|  | ParseScopeAndOrdering(isAtomic, Scope, Ordering) || | 
|  | ParseOptionalCommaAlign(Alignment, AteExtraComma)) | 
|  | return true; | 
|  |  | 
|  | if (!Val->getType()->isPointerTy() || | 
|  | !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType()) | 
|  | return Error(Loc, "load operand must be a pointer to a first class type"); | 
|  | if (isAtomic && !Alignment) | 
|  | return Error(Loc, "atomic load must have explicit non-zero alignment"); | 
|  | if (Ordering == Release || Ordering == AcquireRelease) | 
|  | return Error(Loc, "atomic load cannot use Release ordering"); | 
|  |  | 
|  | Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope); | 
|  | return AteExtraComma ? InstExtraComma : InstNormal; | 
|  | } | 
|  |  | 
|  | /// ParseStore | 
|  |  | 
|  | ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? | 
|  | ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue | 
|  | ///       'singlethread'? AtomicOrdering (',' 'align' i32)? | 
|  | ///   Compatibility: | 
|  | ///   ::= 'volatile' 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)? | 
|  | int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS, | 
|  | bool isVolatile) { | 
|  | Value *Val, *Ptr; LocTy Loc, PtrLoc; | 
|  | unsigned Alignment = 0; | 
|  | bool AteExtraComma = false; | 
|  | bool isAtomic = false; | 
|  | AtomicOrdering Ordering = NotAtomic; | 
|  | SynchronizationScope Scope = CrossThread; | 
|  |  | 
|  | if (Lex.getKind() == lltok::kw_atomic) { | 
|  | if (isVolatile) | 
|  | return TokError("mixing atomic with old volatile placement"); | 
|  | isAtomic = true; | 
|  | Lex.Lex(); | 
|  | } | 
|  |  | 
|  | if (Lex.getKind() == lltok::kw_volatile) { | 
|  | if (isVolatile) | 
|  | return TokError("duplicate volatile before and after store"); | 
|  | isVolatile = true; | 
|  | Lex.Lex(); | 
|  | } | 
|  |  | 
|  | if (ParseTypeAndValue(Val, Loc, PFS) || | 
|  | ParseToken(lltok::comma, "expected ',' after store operand") || | 
|  | ParseTypeAndValue(Ptr, PtrLoc, PFS) || | 
|  | ParseScopeAndOrdering(isAtomic, Scope, Ordering) || | 
|  | ParseOptionalCommaAlign(Alignment, AteExtraComma)) | 
|  | return true; | 
|  |  | 
|  | if (!Ptr->getType()->isPointerTy()) | 
|  | return Error(PtrLoc, "store operand must be a pointer"); | 
|  | if (!Val->getType()->isFirstClassType()) | 
|  | return Error(Loc, "store operand must be a first class value"); | 
|  | if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) | 
|  | return Error(Loc, "stored value and pointer type do not match"); | 
|  | if (isAtomic && !Alignment) | 
|  | return Error(Loc, "atomic store must have explicit non-zero alignment"); | 
|  | if (Ordering == Acquire || Ordering == AcquireRelease) | 
|  | return Error(Loc, "atomic store cannot use Acquire ordering"); | 
|  |  | 
|  | Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); | 
|  | return AteExtraComma ? InstExtraComma : InstNormal; | 
|  | } | 
|  |  | 
|  | /// ParseCmpXchg | 
|  | ///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue | 
|  | ///       'singlethread'? AtomicOrdering | 
|  | int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { | 
|  | Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; | 
|  | bool AteExtraComma = false; | 
|  | AtomicOrdering Ordering = NotAtomic; | 
|  | SynchronizationScope Scope = CrossThread; | 
|  | bool isVolatile = false; | 
|  |  | 
|  | if (EatIfPresent(lltok::kw_volatile)) | 
|  | isVolatile = true; | 
|  |  | 
|  | if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || | 
|  | ParseToken(lltok::comma, "expected ',' after cmpxchg address") || | 
|  | ParseTypeAndValue(Cmp, CmpLoc, PFS) || | 
|  | ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || | 
|  | ParseTypeAndValue(New, NewLoc, PFS) || | 
|  | ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) | 
|  | return true; | 
|  |  | 
|  | if (Ordering == Unordered) | 
|  | return TokError("cmpxchg cannot be unordered"); | 
|  | if (!Ptr->getType()->isPointerTy()) | 
|  | return Error(PtrLoc, "cmpxchg operand must be a pointer"); | 
|  | if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) | 
|  | return Error(CmpLoc, "compare value and pointer type do not match"); | 
|  | if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) | 
|  | return Error(NewLoc, "new value and pointer type do not match"); | 
|  | if (!New->getType()->isIntegerTy()) | 
|  | return Error(NewLoc, "cmpxchg operand must be an integer"); | 
|  | unsigned Size = New->getType()->getPrimitiveSizeInBits(); | 
|  | if (Size < 8 || (Size & (Size - 1))) | 
|  | return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized" | 
|  | " integer"); | 
|  |  | 
|  | AtomicCmpXchgInst *CXI = | 
|  | new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope); | 
|  | CXI->setVolatile(isVolatile); | 
|  | Inst = CXI; | 
|  | return AteExtraComma ? InstExtraComma : InstNormal; | 
|  | } | 
|  |  | 
|  | /// ParseAtomicRMW | 
|  | ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue | 
|  | ///       'singlethread'? AtomicOrdering | 
|  | int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { | 
|  | Value *Ptr, *Val; LocTy PtrLoc, ValLoc; | 
|  | bool AteExtraComma = false; | 
|  | AtomicOrdering Ordering = NotAtomic; | 
|  | SynchronizationScope Scope = CrossThread; | 
|  | bool isVolatile = false; | 
|  | AtomicRMWInst::BinOp Operation; | 
|  |  | 
|  | if (EatIfPresent(lltok::kw_volatile)) | 
|  | isVolatile = true; | 
|  |  | 
|  | switch (Lex.getKind()) { | 
|  | default: return TokError("expected binary operation in atomicrmw"); | 
|  | case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; | 
|  | case lltok::kw_add: Operation = AtomicRMWInst::Add; break; | 
|  | case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; | 
|  | case lltok::kw_and: Operation = AtomicRMWInst::And; break; | 
|  | case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; | 
|  | case lltok::kw_or: Operation = AtomicRMWInst::Or; break; | 
|  | case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; | 
|  | case lltok::kw_max: Operation = AtomicRMWInst::Max; break; | 
|  | case lltok::kw_min: Operation = AtomicRMWInst::Min; break; | 
|  | case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; | 
|  | case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; | 
|  | } | 
|  | Lex.Lex();  // Eat the operation. | 
|  |  | 
|  | if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || | 
|  | ParseToken(lltok::comma, "expected ',' after atomicrmw address") || | 
|  | ParseTypeAndValue(Val, ValLoc, PFS) || | 
|  | ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) | 
|  | return true; | 
|  |  | 
|  | if (Ordering == Unordered) | 
|  | return TokError("atomicrmw cannot be unordered"); | 
|  | if (!Ptr->getType()->isPointerTy()) | 
|  | return Error(PtrLoc, "atomicrmw operand must be a pointer"); | 
|  | if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) | 
|  | return Error(ValLoc, "atomicrmw value and pointer type do not match"); | 
|  | if (!Val->getType()->isIntegerTy()) | 
|  | return Error(ValLoc, "atomicrmw operand must be an integer"); | 
|  | unsigned Size = Val->getType()->getPrimitiveSizeInBits(); | 
|  | if (Size < 8 || (Size & (Size - 1))) | 
|  | return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" | 
|  | " integer"); | 
|  |  | 
|  | AtomicRMWInst *RMWI = | 
|  | new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); | 
|  | RMWI->setVolatile(isVolatile); | 
|  | Inst = RMWI; | 
|  | return AteExtraComma ? InstExtraComma : InstNormal; | 
|  | } | 
|  |  | 
|  | /// ParseFence | 
|  | ///   ::= 'fence' 'singlethread'? AtomicOrdering | 
|  | int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { | 
|  | AtomicOrdering Ordering = NotAtomic; | 
|  | SynchronizationScope Scope = CrossThread; | 
|  | if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) | 
|  | return true; | 
|  |  | 
|  | if (Ordering == Unordered) | 
|  | return TokError("fence cannot be unordered"); | 
|  | if (Ordering == Monotonic) | 
|  | return TokError("fence cannot be monotonic"); | 
|  |  | 
|  | Inst = new FenceInst(Context, Ordering, Scope); | 
|  | return InstNormal; | 
|  | } | 
|  |  | 
|  | /// ParseGetElementPtr | 
|  | ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* | 
|  | int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { | 
|  | Value *Ptr, *Val; LocTy Loc, EltLoc; | 
|  |  | 
|  | bool InBounds = EatIfPresent(lltok::kw_inbounds); | 
|  |  | 
|  | if (ParseTypeAndValue(Ptr, Loc, PFS)) return true; | 
|  |  | 
|  | if (!Ptr->getType()->isPointerTy()) | 
|  | return Error(Loc, "base of getelementptr must be a pointer"); | 
|  |  | 
|  | SmallVector<Value*, 16> Indices; | 
|  | bool AteExtraComma = false; | 
|  | while (EatIfPresent(lltok::comma)) { | 
|  | if (Lex.getKind() == lltok::MetadataVar) { | 
|  | AteExtraComma = true; | 
|  | break; | 
|  | } | 
|  | if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; | 
|  | if (!Val->getType()->isIntegerTy()) | 
|  | return Error(EltLoc, "getelementptr index must be an integer"); | 
|  | Indices.push_back(Val); | 
|  | } | 
|  |  | 
|  | if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices)) | 
|  | return Error(Loc, "invalid getelementptr indices"); | 
|  | Inst = GetElementPtrInst::Create(Ptr, Indices); | 
|  | if (InBounds) | 
|  | cast<GetElementPtrInst>(Inst)->setIsInBounds(true); | 
|  | return AteExtraComma ? InstExtraComma : InstNormal; | 
|  | } | 
|  |  | 
|  | /// ParseExtractValue | 
|  | ///   ::= 'extractvalue' TypeAndValue (',' uint32)+ | 
|  | int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { | 
|  | Value *Val; LocTy Loc; | 
|  | SmallVector<unsigned, 4> Indices; | 
|  | bool AteExtraComma; | 
|  | if (ParseTypeAndValue(Val, Loc, PFS) || | 
|  | ParseIndexList(Indices, AteExtraComma)) | 
|  | return true; | 
|  |  | 
|  | if (!Val->getType()->isAggregateType()) | 
|  | return Error(Loc, "extractvalue operand must be aggregate type"); | 
|  |  | 
|  | if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) | 
|  | return Error(Loc, "invalid indices for extractvalue"); | 
|  | Inst = ExtractValueInst::Create(Val, Indices); | 
|  | return AteExtraComma ? InstExtraComma : InstNormal; | 
|  | } | 
|  |  | 
|  | /// ParseInsertValue | 
|  | ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ | 
|  | int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { | 
|  | Value *Val0, *Val1; LocTy Loc0, Loc1; | 
|  | SmallVector<unsigned, 4> Indices; | 
|  | bool AteExtraComma; | 
|  | if (ParseTypeAndValue(Val0, Loc0, PFS) || | 
|  | ParseToken(lltok::comma, "expected comma after insertvalue operand") || | 
|  | ParseTypeAndValue(Val1, Loc1, PFS) || | 
|  | ParseIndexList(Indices, AteExtraComma)) | 
|  | return true; | 
|  |  | 
|  | if (!Val0->getType()->isAggregateType()) | 
|  | return Error(Loc0, "insertvalue operand must be aggregate type"); | 
|  |  | 
|  | if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) | 
|  | return Error(Loc0, "invalid indices for insertvalue"); | 
|  | Inst = InsertValueInst::Create(Val0, Val1, Indices); | 
|  | return AteExtraComma ? InstExtraComma : InstNormal; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Embedded metadata. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ParseMDNodeVector | 
|  | ///   ::= Element (',' Element)* | 
|  | /// Element | 
|  | ///   ::= 'null' | TypeAndValue | 
|  | bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts, | 
|  | PerFunctionState *PFS) { | 
|  | // Check for an empty list. | 
|  | if (Lex.getKind() == lltok::rbrace) | 
|  | return false; | 
|  |  | 
|  | do { | 
|  | // Null is a special case since it is typeless. | 
|  | if (EatIfPresent(lltok::kw_null)) { | 
|  | Elts.push_back(0); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Value *V = 0; | 
|  | if (ParseTypeAndValue(V, PFS)) return true; | 
|  | Elts.push_back(V); | 
|  | } while (EatIfPresent(lltok::comma)); | 
|  |  | 
|  | return false; | 
|  | } |