blob: 6b5afa2e872122f2cac72332527379fee39f066d [file] [log] [blame]
// Copyright 2019 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "SpirvShader.hpp"
#include "SamplerCore.hpp" // TODO: Figure out what's needed.
#include "System/Math.hpp"
#include "Vulkan/VkDebug.hpp"
#include "Vulkan/VkDescriptorSetLayout.hpp"
#include "Vulkan/VkDevice.hpp"
#include "Vulkan/VkImageView.hpp"
#include "Vulkan/VkSampler.hpp"
#include "Device/Config.hpp"
#include <spirv/unified1/spirv.hpp>
#include <spirv/unified1/GLSL.std.450.h>
#include <climits>
#include <mutex>
namespace sw {
SpirvShader::ImageSampler *SpirvShader::getImageSampler(uint32_t inst, vk::SampledImageDescriptor const *imageDescriptor, const vk::Sampler *sampler)
{
ImageInstruction instruction(inst);
const auto samplerId = sampler ? sampler->id : 0;
ASSERT(imageDescriptor->imageViewId != 0 && (samplerId != 0 || instruction.samplerMethod == Fetch));
vk::Device::SamplingRoutineCache::Key key = {inst, imageDescriptor->imageViewId, samplerId};
ASSERT(imageDescriptor->device);
if(auto routine = imageDescriptor->device->findInConstCache(key))
{
return (ImageSampler*)(routine->getEntry());
}
std::unique_lock<std::mutex> lock(imageDescriptor->device->getSamplingRoutineCacheMutex());
vk::Device::SamplingRoutineCache* cache = imageDescriptor->device->getSamplingRoutineCache();
auto routine = cache->query(key);
if(routine)
{
return (ImageSampler*)(routine->getEntry());
}
auto type = imageDescriptor->type;
Sampler samplerState = {};
samplerState.textureType = type;
samplerState.textureFormat = imageDescriptor->format;
samplerState.addressingModeU = convertAddressingMode(0, sampler, type);
samplerState.addressingModeV = convertAddressingMode(1, sampler, type);
samplerState.addressingModeW = convertAddressingMode(2, sampler, type);
samplerState.mipmapFilter = convertMipmapMode(sampler);
samplerState.swizzle = imageDescriptor->swizzle;
samplerState.gatherComponent = instruction.gatherComponent;
samplerState.highPrecisionFiltering = false;
samplerState.largeTexture = (imageDescriptor->extent.width > SHRT_MAX) ||
(imageDescriptor->extent.height > SHRT_MAX) ||
(imageDescriptor->extent.depth > SHRT_MAX);
if(sampler)
{
samplerState.textureFilter = (instruction.samplerMethod == Gather) ? FILTER_GATHER : convertFilterMode(sampler);
samplerState.border = sampler->borderColor;
samplerState.mipmapFilter = convertMipmapMode(sampler);
samplerState.compareEnable = (sampler->compareEnable == VK_TRUE);
samplerState.compareOp = sampler->compareOp;
samplerState.unnormalizedCoordinates = (sampler->unnormalizedCoordinates == VK_TRUE);
if(sampler->ycbcrConversion)
{
samplerState.ycbcrModel = sampler->ycbcrConversion->ycbcrModel;
samplerState.studioSwing = (sampler->ycbcrConversion->ycbcrRange == VK_SAMPLER_YCBCR_RANGE_ITU_NARROW);
samplerState.swappedChroma = (sampler->ycbcrConversion->components.r != VK_COMPONENT_SWIZZLE_R);
}
if(sampler->anisotropyEnable != VK_FALSE)
{
UNSUPPORTED("anisotropyEnable");
}
}
routine = emitSamplerRoutine(instruction, samplerState);
cache->add(key, routine);
return (ImageSampler*)(routine->getEntry());
}
std::shared_ptr<rr::Routine> SpirvShader::emitSamplerRoutine(ImageInstruction instruction, const Sampler &samplerState)
{
// TODO(b/129523279): Hold a separate mutex lock for the sampler being built.
rr::Function<Void(Pointer<Byte>, Pointer<Byte>, Pointer<SIMD::Float>, Pointer<SIMD::Float>, Pointer<Byte>)> function;
{
Pointer<Byte> texture = function.Arg<0>();
Pointer<Byte> sampler = function.Arg<1>();
Pointer<SIMD::Float> in = function.Arg<2>();
Pointer<SIMD::Float> out = function.Arg<3>();
Pointer<Byte> constants = function.Arg<4>();
SIMD::Float uvw[4] = {0, 0, 0, 0};
SIMD::Float q = 0;
SIMD::Float lodOrBias = 0; // Explicit level-of-detail, or bias added to the implicit level-of-detail (depending on samplerMethod).
Vector4f dsx = {0, 0, 0, 0};
Vector4f dsy = {0, 0, 0, 0};
Vector4f offset = {0, 0, 0, 0};
SamplerFunction samplerFunction = instruction.getSamplerFunction();
uint32_t i = 0;
for( ; i < instruction.coordinates; i++)
{
uvw[i] = in[i];
}
if (instruction.isDref())
{
q = in[i];
i++;
}
// TODO(b/134669567): Currently 1D textures are treated as 2D by setting the second coordinate to 0.
// Implement optimized 1D sampling.
if(samplerState.textureType == VK_IMAGE_VIEW_TYPE_1D)
{
uvw[1] = SIMD::Float(0);
}
else if(samplerState.textureType == VK_IMAGE_VIEW_TYPE_1D_ARRAY)
{
uvw[1] = SIMD::Float(0);
uvw[2] = in[1]; // Move 1D layer coordinate to 2D layer coordinate index.
}
if(instruction.samplerMethod == Lod || instruction.samplerMethod == Bias || instruction.samplerMethod == Fetch)
{
lodOrBias = in[i];
i++;
}
else if(instruction.samplerMethod == Grad)
{
for(uint32_t j = 0; j < instruction.grad; j++, i++)
{
dsx[j] = in[i];
}
for(uint32_t j = 0; j < instruction.grad; j++, i++)
{
dsy[j] = in[i];
}
}
for(uint32_t j = 0; j < instruction.offset; j++, i++)
{
offset[j] = in[i];
}
// TODO(b/133868964): Handle 'Sample' operand.
SamplerCore s(constants, samplerState);
// For explicit-lod instructions the LOD can be different per SIMD lane. SamplerCore currently assumes
// a single LOD per four elements, so we sample the image again for each LOD separately.
if(samplerFunction.method == Lod || samplerFunction.method == Grad) // TODO(b/133868964): Also handle divergent Bias and Fetch with Lod.
{
auto lod = Pointer<Float>(&lodOrBias);
For(Int i = 0, i < SIMD::Width, i++)
{
SIMD::Float dPdx;
SIMD::Float dPdy;
dPdx.x = Pointer<Float>(&dsx.x)[i];
dPdx.y = Pointer<Float>(&dsx.y)[i];
dPdx.z = Pointer<Float>(&dsx.z)[i];
dPdy.x = Pointer<Float>(&dsy.x)[i];
dPdy.y = Pointer<Float>(&dsy.y)[i];
dPdy.z = Pointer<Float>(&dsy.z)[i];
// 1D textures are treated as 2D texture with second coordinate 0, so we also need to zero out the second grad component. TODO(b/134669567)
if(samplerState.textureType == VK_IMAGE_VIEW_TYPE_1D || samplerState.textureType == VK_IMAGE_VIEW_TYPE_1D_ARRAY)
{
dPdx.y = Float(0.0f);
dPdy.y = Float(0.0f);
}
Vector4f sample = s.sampleTexture(texture, sampler, uvw[0], uvw[1], uvw[2], q, lod[i], dPdx, dPdy, offset, samplerFunction);
Pointer<Float> rgba = out;
rgba[0 * SIMD::Width + i] = Pointer<Float>(&sample.x)[i];
rgba[1 * SIMD::Width + i] = Pointer<Float>(&sample.y)[i];
rgba[2 * SIMD::Width + i] = Pointer<Float>(&sample.z)[i];
rgba[3 * SIMD::Width + i] = Pointer<Float>(&sample.w)[i];
}
}
else
{
Vector4f sample = s.sampleTexture(texture, sampler, uvw[0], uvw[1], uvw[2], q, lodOrBias.x, (dsx.x), (dsy.x), offset, samplerFunction);
Pointer<SIMD::Float> rgba = out;
rgba[0] = sample.x;
rgba[1] = sample.y;
rgba[2] = sample.z;
rgba[3] = sample.w;
}
}
return function("sampler");
}
sw::FilterType SpirvShader::convertFilterMode(const vk::Sampler *sampler)
{
switch(sampler->magFilter)
{
case VK_FILTER_NEAREST:
switch(sampler->minFilter)
{
case VK_FILTER_NEAREST: return FILTER_POINT;
case VK_FILTER_LINEAR: return FILTER_MIN_LINEAR_MAG_POINT;
default:
UNIMPLEMENTED("minFilter %d", sampler->minFilter);
return FILTER_POINT;
}
break;
case VK_FILTER_LINEAR:
switch(sampler->minFilter)
{
case VK_FILTER_NEAREST: return FILTER_MIN_POINT_MAG_LINEAR;
case VK_FILTER_LINEAR: return FILTER_LINEAR;
default:
UNIMPLEMENTED("minFilter %d", sampler->minFilter);
return FILTER_POINT;
}
break;
default:
break;
}
UNIMPLEMENTED("magFilter %d", sampler->magFilter);
return FILTER_POINT;
}
sw::MipmapType SpirvShader::convertMipmapMode(const vk::Sampler *sampler)
{
if(!sampler)
{
return MIPMAP_POINT; // Samplerless operations (OpImageFetch) can take an integer Lod operand.
}
if(sampler->ycbcrConversion)
{
return MIPMAP_NONE; // YCbCr images can only have one mipmap level.
}
switch(sampler->mipmapMode)
{
case VK_SAMPLER_MIPMAP_MODE_NEAREST: return MIPMAP_POINT;
case VK_SAMPLER_MIPMAP_MODE_LINEAR: return MIPMAP_LINEAR;
default:
UNIMPLEMENTED("mipmapMode %d", sampler->mipmapMode);
return MIPMAP_POINT;
}
}
sw::AddressingMode SpirvShader::convertAddressingMode(int coordinateIndex, const vk::Sampler *sampler, VkImageViewType imageViewType)
{
switch(imageViewType)
{
case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY:
UNSUPPORTED("SPIR-V ImageCubeArray Capability (imageViewType: %d)", int(imageViewType));
if(coordinateIndex == 3)
{
return ADDRESSING_LAYER;
}
// Fall through to CUBE case:
case VK_IMAGE_VIEW_TYPE_CUBE:
if(coordinateIndex <= 1) // Cube faces themselves are addressed as 2D images.
{
// Vulkan 1.1 spec:
// "Cube images ignore the wrap modes specified in the sampler. Instead, if VK_FILTER_NEAREST is used within a mip level then
// VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE is used, and if VK_FILTER_LINEAR is used within a mip level then sampling at the edges
// is performed as described earlier in the Cube map edge handling section."
// This corresponds with our 'SEAMLESS' addressing mode.
return ADDRESSING_SEAMLESS;
}
else if(coordinateIndex == 2)
{
// The cube face is an index into array layers.
return ADDRESSING_CUBEFACE;
}
else
{
return ADDRESSING_UNUSED;
}
break;
case VK_IMAGE_VIEW_TYPE_1D: // Treated as 2D texture with second coordinate 0. TODO(b/134669567)
if(coordinateIndex == 1)
{
return ADDRESSING_WRAP;
}
else if(coordinateIndex >= 2)
{
return ADDRESSING_UNUSED;
}
break;
case VK_IMAGE_VIEW_TYPE_3D:
if(coordinateIndex >= 3)
{
return ADDRESSING_UNUSED;
}
break;
case VK_IMAGE_VIEW_TYPE_1D_ARRAY: // Treated as 2D texture with second coordinate 0. TODO(b/134669567)
if(coordinateIndex == 1)
{
return ADDRESSING_WRAP;
}
// Fall through to 2D_ARRAY case:
case VK_IMAGE_VIEW_TYPE_2D_ARRAY:
if(coordinateIndex == 2)
{
return ADDRESSING_LAYER;
}
else if(coordinateIndex >= 3)
{
return ADDRESSING_UNUSED;
}
// Fall through to 2D case:
case VK_IMAGE_VIEW_TYPE_2D:
if(coordinateIndex >= 2)
{
return ADDRESSING_UNUSED;
}
break;
default:
UNIMPLEMENTED("imageViewType %d", imageViewType);
return ADDRESSING_WRAP;
}
if(!sampler)
{
// OpImageFetch does not take a sampler descriptor, but still needs a valid,
// arbitrary addressing mode that prevents out-of-bounds accesses:
// "The value returned by a read of an invalid texel is undefined, unless that
// read operation is from a buffer resource and the robustBufferAccess feature
// is enabled. In that case, an invalid texel is replaced as described by the
// robustBufferAccess feature." - Vulkan 1.1
return ADDRESSING_WRAP;
}
VkSamplerAddressMode addressMode = VK_SAMPLER_ADDRESS_MODE_REPEAT;
switch(coordinateIndex)
{
case 0: addressMode = sampler->addressModeU; break;
case 1: addressMode = sampler->addressModeV; break;
case 2: addressMode = sampler->addressModeW; break;
default: UNSUPPORTED("coordinateIndex: %d", coordinateIndex);
}
switch(addressMode)
{
case VK_SAMPLER_ADDRESS_MODE_REPEAT: return ADDRESSING_WRAP;
case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT: return ADDRESSING_MIRROR;
case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE: return ADDRESSING_CLAMP;
case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER: return ADDRESSING_BORDER;
case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE: return ADDRESSING_MIRRORONCE;
default:
UNIMPLEMENTED("addressMode %d", addressMode);
return ADDRESSING_WRAP;
}
}
} // namespace sw