| ; Test 32-bit ANDs in which the second operand is constant. |
| ; |
| ; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z196 | FileCheck %s |
| |
| ; ANDs with 1 can use NILF. |
| define i32 @f1(i32 %a) { |
| ; CHECK-LABEL: f1: |
| ; CHECK: nilf %r2, 1 |
| ; CHECK: br %r14 |
| %and = and i32 %a, 1 |
| ret i32 %and |
| } |
| |
| ; ...but RISBLG is available as a three-address form. |
| define i32 @f2(i32 %a, i32 %b) { |
| ; CHECK-LABEL: f2: |
| ; CHECK: risblg %r2, %r3, 31, 159, 0 |
| ; CHECK: br %r14 |
| %and = and i32 %b, 1 |
| ret i32 %and |
| } |
| |
| ; ...same for 4. |
| define i32 @f3(i32 %a, i32 %b) { |
| ; CHECK-LABEL: f3: |
| ; CHECK: risblg %r2, %r3, 29, 157, 0 |
| ; CHECK: br %r14 |
| %and = and i32 %b, 4 |
| ret i32 %and |
| } |
| |
| ; ANDs with 5 must use NILF. |
| define i32 @f4(i32 %a) { |
| ; CHECK-LABEL: f4: |
| ; CHECK: nilf %r2, 5 |
| ; CHECK: br %r14 |
| %and = and i32 %a, 5 |
| ret i32 %and |
| } |
| |
| ; ...a single RISBLG isn't enough. |
| define i32 @f5(i32 %a, i32 %b) { |
| ; CHECK-LABEL: f5: |
| ; CHECK-NOT: risb |
| ; CHECK: br %r14 |
| %and = and i32 %b, 5 |
| ret i32 %and |
| } |
| |
| ; Check the highest 16-bit constant that must be handled by NILF. |
| define i32 @f6(i32 %a) { |
| ; CHECK-LABEL: f6: |
| ; CHECK: nilf %r2, 65533 |
| ; CHECK: br %r14 |
| %and = and i32 %a, 65533 |
| ret i32 %and |
| } |
| |
| ; ...a single RISBLG isn't enough. |
| define i32 @f7(i32 %a, i32 %b) { |
| ; CHECK-LABEL: f7: |
| ; CHECK-NOT: risb |
| ; CHECK: br %r14 |
| %and = and i32 %b, 65533 |
| ret i32 %and |
| } |
| |
| ; Check the next highest value, which can use NILF. |
| define i32 @f8(i32 %a) { |
| ; CHECK-LABEL: f8: |
| ; CHECK: nilf %r2, 65534 |
| ; CHECK: br %r14 |
| %and = and i32 %a, 65534 |
| ret i32 %and |
| } |
| |
| ; ...although the three-address case should use RISBLG. |
| define i32 @f9(i32 %a, i32 %b) { |
| ; CHECK-LABEL: f9: |
| ; CHECK: risblg %r2, %r3, 16, 158, 0 |
| ; CHECK: br %r14 |
| %and = and i32 %b, 65534 |
| ret i32 %and |
| } |
| |
| ; ANDs of 0xffff are zero extensions from i16. |
| define i32 @f10(i32 %a, i32 %b) { |
| ; CHECK-LABEL: f10: |
| ; CHECK: llhr %r2, %r3 |
| ; CHECK: br %r14 |
| %and = and i32 %b, 65535 |
| ret i32 %and |
| } |
| |
| ; Check the next value up, which must again use NILF. |
| define i32 @f11(i32 %a) { |
| ; CHECK-LABEL: f11: |
| ; CHECK: nilf %r2, 65536 |
| ; CHECK: br %r14 |
| %and = and i32 %a, 65536 |
| ret i32 %and |
| } |
| |
| ; ...but the three-address case can use RISBLG. |
| define i32 @f12(i32 %a, i32 %b) { |
| ; CHECK-LABEL: f12: |
| ; CHECK: risblg %r2, %r3, 15, 143, 0 |
| ; CHECK: br %r14 |
| %and = and i32 %b, 65536 |
| ret i32 %and |
| } |
| |
| ; Check the lowest useful NILH value. |
| define i32 @f13(i32 %a) { |
| ; CHECK-LABEL: f13: |
| ; CHECK: nilh %r2, 1 |
| ; CHECK: br %r14 |
| %and = and i32 %a, 131071 |
| ret i32 %and |
| } |
| |
| ; ...but RISBLG is OK in the three-address case. |
| define i32 @f14(i32 %a, i32 %b) { |
| ; CHECK-LABEL: f14: |
| ; CHECK: risblg %r2, %r3, 15, 159, 0 |
| ; CHECK: br %r14 |
| %and = and i32 %b, 131071 |
| ret i32 %and |
| } |
| |
| ; Check the highest useful NILF value. |
| define i32 @f15(i32 %a) { |
| ; CHECK-LABEL: f15: |
| ; CHECK: nilf %r2, 4294901758 |
| ; CHECK: br %r14 |
| %and = and i32 %a, -65538 |
| ret i32 %and |
| } |
| |
| ; Check the next value up, which is the highest useful NILH value. |
| define i32 @f16(i32 %a) { |
| ; CHECK-LABEL: f16: |
| ; CHECK: nilh %r2, 65534 |
| ; CHECK: br %r14 |
| %and = and i32 %a, -65537 |
| ret i32 %and |
| } |
| |
| ; Check the next value up, which is the first useful NILL value. |
| define i32 @f17(i32 %a) { |
| ; CHECK-LABEL: f17: |
| ; CHECK: nill %r2, 0 |
| ; CHECK: br %r14 |
| %and = and i32 %a, -65536 |
| ret i32 %and |
| } |
| |
| ; ...although the three-address case should use RISBLG. |
| define i32 @f18(i32 %a, i32 %b) { |
| ; CHECK-LABEL: f18: |
| ; CHECK: risblg %r2, %r3, 0, 143, 0 |
| ; CHECK: br %r14 |
| %and = and i32 %b, -65536 |
| ret i32 %and |
| } |
| |
| ; Check the next value up again, which can still use NILL. |
| define i32 @f19(i32 %a) { |
| ; CHECK-LABEL: f19: |
| ; CHECK: nill %r2, 1 |
| ; CHECK: br %r14 |
| %and = and i32 %a, -65535 |
| ret i32 %and |
| } |
| |
| ; Check the next value up again, which cannot use RISBLG. |
| define i32 @f20(i32 %a, i32 %b) { |
| ; CHECK-LABEL: f20: |
| ; CHECK-NOT: risb |
| ; CHECK: br %r14 |
| %and = and i32 %b, -65534 |
| ret i32 %and |
| } |
| |
| ; Check the last useful mask, which can use NILL. |
| define i32 @f21(i32 %a) { |
| ; CHECK-LABEL: f21: |
| ; CHECK: nill %r2, 65534 |
| ; CHECK: br %r14 |
| %and = and i32 %a, -2 |
| ret i32 %and |
| } |
| |
| ; ...or RISBLG for the three-address case. |
| define i32 @f22(i32 %a, i32 %b) { |
| ; CHECK-LABEL: f22: |
| ; CHECK: risblg %r2, %r3, 0, 158, 0 |
| ; CHECK: br %r14 |
| %and = and i32 %b, -2 |
| ret i32 %and |
| } |
| |
| ; Test that RISBLG can be used when inserting a non-wraparound mask |
| ; into another register. |
| define i64 @f23(i64 %a, i32 %b) { |
| ; CHECK-LABEL: f23: |
| ; CHECK: risblg %r2, %r3, 30, 158, 0 |
| ; CHECK: br %r14 |
| %and1 = and i64 %a, -4294967296 |
| %and2 = and i32 %b, 2 |
| %ext = zext i32 %and2 to i64 |
| %or = or i64 %and1, %ext |
| ret i64 %or |
| } |
| |
| ; ...and when inserting a wrap-around mask. |
| define i64 @f24(i64 %a, i32 %b) { |
| ; CHECK-LABEL: f24: |
| ; CHECK: risblg %r2, %r3, 30, 156 |
| ; CHECK: br %r14 |
| %and1 = and i64 %a, -4294967296 |
| %and2 = and i32 %b, -5 |
| %ext = zext i32 %and2 to i64 |
| %or = or i64 %and1, %ext |
| ret i64 %or |
| } |