| //===---- LatencyPriorityQueue.h - A latency-oriented priority queue ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file declares the LatencyPriorityQueue class, which is a |
| // SchedulingPriorityQueue that schedules using latency information to |
| // reduce the length of the critical path through the basic block. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LATENCY_PRIORITY_QUEUE_H |
| #define LATENCY_PRIORITY_QUEUE_H |
| |
| #include "llvm/CodeGen/ScheduleDAG.h" |
| |
| namespace llvm { |
| class LatencyPriorityQueue; |
| |
| /// Sorting functions for the Available queue. |
| struct latency_sort : public std::binary_function<SUnit*, SUnit*, bool> { |
| LatencyPriorityQueue *PQ; |
| explicit latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {} |
| |
| bool operator()(const SUnit* left, const SUnit* right) const; |
| }; |
| |
| class LatencyPriorityQueue : public SchedulingPriorityQueue { |
| // SUnits - The SUnits for the current graph. |
| std::vector<SUnit> *SUnits; |
| |
| /// NumNodesSolelyBlocking - This vector contains, for every node in the |
| /// Queue, the number of nodes that the node is the sole unscheduled |
| /// predecessor for. This is used as a tie-breaker heuristic for better |
| /// mobility. |
| std::vector<unsigned> NumNodesSolelyBlocking; |
| |
| /// Queue - The queue. |
| std::vector<SUnit*> Queue; |
| latency_sort Picker; |
| |
| public: |
| LatencyPriorityQueue() : Picker(this) { |
| } |
| |
| bool isBottomUp() const { return false; } |
| |
| void initNodes(std::vector<SUnit> &sunits) { |
| SUnits = &sunits; |
| NumNodesSolelyBlocking.resize(SUnits->size(), 0); |
| } |
| |
| void addNode(const SUnit *SU) { |
| NumNodesSolelyBlocking.resize(SUnits->size(), 0); |
| } |
| |
| void updateNode(const SUnit *SU) { |
| } |
| |
| void releaseState() { |
| SUnits = 0; |
| } |
| |
| unsigned getLatency(unsigned NodeNum) const { |
| assert(NodeNum < (*SUnits).size()); |
| return (*SUnits)[NodeNum].getHeight(); |
| } |
| |
| unsigned getNumSolelyBlockNodes(unsigned NodeNum) const { |
| assert(NodeNum < NumNodesSolelyBlocking.size()); |
| return NumNodesSolelyBlocking[NodeNum]; |
| } |
| |
| bool empty() const { return Queue.empty(); } |
| |
| virtual void push(SUnit *U); |
| |
| virtual SUnit *pop(); |
| |
| virtual void remove(SUnit *SU); |
| |
| virtual void dump(ScheduleDAG* DAG) const; |
| |
| // ScheduledNode - As nodes are scheduled, we look to see if there are any |
| // successor nodes that have a single unscheduled predecessor. If so, that |
| // single predecessor has a higher priority, since scheduling it will make |
| // the node available. |
| void ScheduledNode(SUnit *Node); |
| |
| private: |
| void AdjustPriorityOfUnscheduledPreds(SUnit *SU); |
| SUnit *getSingleUnscheduledPred(SUnit *SU); |
| }; |
| } |
| |
| #endif |