| /****************************************************************************** |
| |
| @File PVRTQuaternionX.cpp |
| |
| @Title PVRTQuaternionX |
| |
| @Version |
| |
| @Copyright Copyright (c) Imagination Technologies Limited. |
| |
| @Platform ANSI compatible |
| |
| @Description Set of mathematical functions for quaternions. |
| |
| ******************************************************************************/ |
| #include "PVRTContext.h" |
| #include <math.h> |
| #include <string.h> |
| |
| #include "PVRTFixedPoint.h" |
| #include "PVRTQuaternion.h" |
| |
| |
| /**************************************************************************** |
| ** Functions |
| ****************************************************************************/ |
| |
| /*!*************************************************************************** |
| @Function PVRTMatrixQuaternionIdentityX |
| @Output qOut Identity quaternion |
| @Description Sets the quaternion to (0, 0, 0, 1), the identity quaternion. |
| *****************************************************************************/ |
| void PVRTMatrixQuaternionIdentityX(PVRTQUATERNIONx &qOut) |
| { |
| qOut.x = PVRTF2X(0.0f); |
| qOut.y = PVRTF2X(0.0f); |
| qOut.z = PVRTF2X(0.0f); |
| qOut.w = PVRTF2X(1.0f); |
| } |
| |
| /*!*************************************************************************** |
| @Function PVRTMatrixQuaternionRotationAxisX |
| @Output qOut Rotation quaternion |
| @Input vAxis Axis to rotate around |
| @Input fAngle Angle to rotate |
| @Description Create quaternion corresponding to a rotation of fAngle |
| radians around submitted vector. |
| *****************************************************************************/ |
| void PVRTMatrixQuaternionRotationAxisX( |
| PVRTQUATERNIONx &qOut, |
| const PVRTVECTOR3x &vAxis, |
| const int fAngle) |
| { |
| int fSin, fCos; |
| |
| fSin = PVRTXSIN(fAngle>>1); |
| fCos = PVRTXCOS(fAngle>>1); |
| |
| /* Create quaternion */ |
| qOut.x = PVRTXMUL(vAxis.x, fSin); |
| qOut.y = PVRTXMUL(vAxis.y, fSin); |
| qOut.z = PVRTXMUL(vAxis.z, fSin); |
| qOut.w = fCos; |
| |
| /* Normalise it */ |
| PVRTMatrixQuaternionNormalizeX(qOut); |
| } |
| |
| /*!*************************************************************************** |
| @Function PVRTMatrixQuaternionToAxisAngleX |
| @Input qIn Quaternion to transform |
| @Output vAxis Axis of rotation |
| @Output fAngle Angle of rotation |
| @Description Convert a quaternion to an axis and angle. Expects a unit |
| quaternion. |
| *****************************************************************************/ |
| void PVRTMatrixQuaternionToAxisAngleX( |
| const PVRTQUATERNIONx &qIn, |
| PVRTVECTOR3x &vAxis, |
| int &fAngle) |
| { |
| int fCosAngle, fSinAngle; |
| int temp; |
| |
| /* Compute some values */ |
| fCosAngle = qIn.w; |
| temp = PVRTF2X(1.0f) - PVRTXMUL(fCosAngle, fCosAngle); |
| fAngle = PVRTXMUL(PVRTXACOS(fCosAngle), PVRTF2X(2.0f)); |
| fSinAngle = PVRTF2X(((float)sqrt(PVRTX2F(temp)))); |
| |
| /* This is to avoid a division by zero */ |
| if (PVRTABS(fSinAngle)<PVRTF2X(0.0005f)) |
| { |
| fSinAngle = PVRTF2X(1.0f); |
| } |
| |
| /* Get axis vector */ |
| vAxis.x = PVRTXDIV(qIn.x, fSinAngle); |
| vAxis.y = PVRTXDIV(qIn.y, fSinAngle); |
| vAxis.z = PVRTXDIV(qIn.z, fSinAngle); |
| } |
| |
| /*!*************************************************************************** |
| @Function PVRTMatrixQuaternionSlerpX |
| @Output qOut Result of the interpolation |
| @Input qA First quaternion to interpolate from |
| @Input qB Second quaternion to interpolate from |
| @Input t Coefficient of interpolation |
| @Description Perform a Spherical Linear intERPolation between quaternion A |
| and quaternion B at time t. t must be between 0.0f and 1.0f |
| Requires input quaternions to be normalized |
| *****************************************************************************/ |
| void PVRTMatrixQuaternionSlerpX( |
| PVRTQUATERNIONx &qOut, |
| const PVRTQUATERNIONx &qA, |
| const PVRTQUATERNIONx &qB, |
| const int t) |
| { |
| int fCosine, fAngle, A, B; |
| |
| /* Parameter checking */ |
| if (t<PVRTF2X(0.0f) || t>PVRTF2X(1.0f)) |
| { |
| _RPT0(_CRT_WARN, "PVRTMatrixQuaternionSlerp : Bad parameters\n"); |
| qOut.x = PVRTF2X(0.0f); |
| qOut.y = PVRTF2X(0.0f); |
| qOut.z = PVRTF2X(0.0f); |
| qOut.w = PVRTF2X(1.0f); |
| return; |
| } |
| |
| /* Find sine of Angle between Quaternion A and B (dot product between quaternion A and B) */ |
| fCosine = PVRTXMUL(qA.w, qB.w) + |
| PVRTXMUL(qA.x, qB.x) + PVRTXMUL(qA.y, qB.y) + PVRTXMUL(qA.z, qB.z); |
| |
| if(fCosine < PVRTF2X(0.0f)) |
| { |
| PVRTQUATERNIONx qi; |
| |
| /* |
| <http://www.magic-software.com/Documentation/Quaternions.pdf> |
| |
| "It is important to note that the quaternions q and -q represent |
| the same rotation... while either quaternion will do, the |
| interpolation methods require choosing one over the other. |
| |
| "Although q1 and -q1 represent the same rotation, the values of |
| Slerp(t; q0, q1) and Slerp(t; q0,-q1) are not the same. It is |
| customary to choose the sign... on q1 so that... the angle |
| between q0 and q1 is acute. This choice avoids extra |
| spinning caused by the interpolated rotations." |
| */ |
| qi.x = -qB.x; |
| qi.y = -qB.y; |
| qi.z = -qB.z; |
| qi.w = -qB.w; |
| |
| PVRTMatrixQuaternionSlerpX(qOut, qA, qi, t); |
| return; |
| } |
| |
| fCosine = PVRT_MIN(fCosine, PVRTF2X(1.0f)); |
| fAngle = PVRTXACOS(fCosine); |
| |
| /* Avoid a division by zero */ |
| if (fAngle==PVRTF2X(0.0f)) |
| { |
| qOut = qA; |
| return; |
| } |
| |
| /* Precompute some values */ |
| A = PVRTXDIV(PVRTXSIN(PVRTXMUL((PVRTF2X(1.0f)-t), fAngle)), PVRTXSIN(fAngle)); |
| B = PVRTXDIV(PVRTXSIN(PVRTXMUL(t, fAngle)), PVRTXSIN(fAngle)); |
| |
| /* Compute resulting quaternion */ |
| qOut.x = PVRTXMUL(A, qA.x) + PVRTXMUL(B, qB.x); |
| qOut.y = PVRTXMUL(A, qA.y) + PVRTXMUL(B, qB.y); |
| qOut.z = PVRTXMUL(A, qA.z) + PVRTXMUL(B, qB.z); |
| qOut.w = PVRTXMUL(A, qA.w) + PVRTXMUL(B, qB.w); |
| |
| /* Normalise result */ |
| PVRTMatrixQuaternionNormalizeX(qOut); |
| } |
| |
| /*!*************************************************************************** |
| @Function PVRTMatrixQuaternionNormalizeX |
| @Modified quat Vector to normalize |
| @Description Normalize quaternion. |
| Original quaternion is scaled down prior to be normalized in |
| order to avoid overflow issues. |
| *****************************************************************************/ |
| void PVRTMatrixQuaternionNormalizeX(PVRTQUATERNIONx &quat) |
| { |
| PVRTQUATERNIONx qTemp; |
| int f, n; |
| |
| /* Scale vector by uniform value */ |
| n = PVRTABS(quat.w) + PVRTABS(quat.x) + PVRTABS(quat.y) + PVRTABS(quat.z); |
| qTemp.w = PVRTXDIV(quat.w, n); |
| qTemp.x = PVRTXDIV(quat.x, n); |
| qTemp.y = PVRTXDIV(quat.y, n); |
| qTemp.z = PVRTXDIV(quat.z, n); |
| |
| /* Compute quaternion magnitude */ |
| f = PVRTXMUL(qTemp.w, qTemp.w) + PVRTXMUL(qTemp.x, qTemp.x) + PVRTXMUL(qTemp.y, qTemp.y) + PVRTXMUL(qTemp.z, qTemp.z); |
| f = PVRTXDIV(PVRTF2X(1.0f), PVRTF2X(sqrt(PVRTX2F(f)))); |
| |
| /* Multiply vector components by f */ |
| quat.x = PVRTXMUL(qTemp.x, f); |
| quat.y = PVRTXMUL(qTemp.y, f); |
| quat.z = PVRTXMUL(qTemp.z, f); |
| quat.w = PVRTXMUL(qTemp.w, f); |
| } |
| |
| /*!*************************************************************************** |
| @Function PVRTMatrixRotationQuaternionX |
| @Output mOut Resulting rotation matrix |
| @Input quat Quaternion to transform |
| @Description Create rotation matrix from submitted quaternion. |
| Assuming the quaternion is of the form [X Y Z W]: |
| |
| | 2 2 | |
| | 1 - 2Y - 2Z 2XY - 2ZW 2XZ + 2YW 0 | |
| | | |
| | 2 2 | |
| M = | 2XY + 2ZW 1 - 2X - 2Z 2YZ - 2XW 0 | |
| | | |
| | 2 2 | |
| | 2XZ - 2YW 2YZ + 2XW 1 - 2X - 2Y 0 | |
| | | |
| | 0 0 0 1 | |
| *****************************************************************************/ |
| void PVRTMatrixRotationQuaternionX( |
| PVRTMATRIXx &mOut, |
| const PVRTQUATERNIONx &quat) |
| { |
| const PVRTQUATERNIONx *pQ; |
| |
| #if defined(BUILD_DX11) |
| PVRTQUATERNIONx qInv; |
| |
| qInv.x = -quat.x; |
| qInv.y = -quat.y; |
| qInv.z = -quat.z; |
| qInv.w = quat.w; |
| |
| pQ = &qInv; |
| #else |
| pQ = &quat; |
| #endif |
| |
| /* Fill matrix members */ |
| mOut.f[0] = PVRTF2X(1.0f) - (PVRTXMUL(pQ->y, pQ->y)<<1) - (PVRTXMUL(pQ->z, pQ->z)<<1); |
| mOut.f[1] = (PVRTXMUL(pQ->x, pQ->y)<<1) - (PVRTXMUL(pQ->z, pQ->w)<<1); |
| mOut.f[2] = (PVRTXMUL(pQ->x, pQ->z)<<1) + (PVRTXMUL(pQ->y, pQ->w)<<1); |
| mOut.f[3] = PVRTF2X(0.0f); |
| |
| mOut.f[4] = (PVRTXMUL(pQ->x, pQ->y)<<1) + (PVRTXMUL(pQ->z, pQ->w)<<1); |
| mOut.f[5] = PVRTF2X(1.0f) - (PVRTXMUL(pQ->x, pQ->x)<<1) - (PVRTXMUL(pQ->z, pQ->z)<<1); |
| mOut.f[6] = (PVRTXMUL(pQ->y, pQ->z)<<1) - (PVRTXMUL(pQ->x, pQ->w)<<1); |
| mOut.f[7] = PVRTF2X(0.0f); |
| |
| mOut.f[8] = (PVRTXMUL(pQ->x, pQ->z)<<1) - (PVRTXMUL(pQ->y, pQ->w)<<1); |
| mOut.f[9] = (PVRTXMUL(pQ->y, pQ->z)<<1) + (PVRTXMUL(pQ->x, pQ->w)<<1); |
| mOut.f[10] = PVRTF2X(1.0f) - (PVRTXMUL(pQ->x, pQ->x)<<1) - (PVRTXMUL(pQ->y, pQ->y)<<1); |
| mOut.f[11] = PVRTF2X(0.0f); |
| |
| mOut.f[12] = PVRTF2X(0.0f); |
| mOut.f[13] = PVRTF2X(0.0f); |
| mOut.f[14] = PVRTF2X(0.0f); |
| mOut.f[15] = PVRTF2X(1.0f); |
| } |
| |
| /*!*************************************************************************** |
| @Function PVRTMatrixQuaternionMultiplyX |
| @Output qOut Resulting quaternion |
| @Input qA First quaternion to multiply |
| @Input qB Second quaternion to multiply |
| @Description Multiply quaternion A with quaternion B and return the |
| result in qOut. |
| Input quaternions must be normalized. |
| *****************************************************************************/ |
| void PVRTMatrixQuaternionMultiplyX( |
| PVRTQUATERNIONx &qOut, |
| const PVRTQUATERNIONx &qA, |
| const PVRTQUATERNIONx &qB) |
| { |
| PVRTVECTOR3x CrossProduct; |
| |
| /* Compute scalar component */ |
| qOut.w = PVRTXMUL(qA.w, qB.w) - |
| (PVRTXMUL(qA.x, qB.x) + PVRTXMUL(qA.y, qB.y) + PVRTXMUL(qA.z, qB.z)); |
| |
| /* Compute cross product */ |
| CrossProduct.x = PVRTXMUL(qA.y, qB.z) - PVRTXMUL(qA.z, qB.y); |
| CrossProduct.y = PVRTXMUL(qA.z, qB.x) - PVRTXMUL(qA.x, qB.z); |
| CrossProduct.z = PVRTXMUL(qA.x, qB.y) - PVRTXMUL(qA.y, qB.x); |
| |
| /* Compute result vector */ |
| qOut.x = PVRTXMUL(qA.w, qB.x) + PVRTXMUL(qB.w, qA.x) + CrossProduct.x; |
| qOut.y = PVRTXMUL(qA.w, qB.y) + PVRTXMUL(qB.w, qA.y) + CrossProduct.y; |
| qOut.z = PVRTXMUL(qA.w, qB.z) + PVRTXMUL(qB.w, qA.z) + CrossProduct.z; |
| |
| /* Normalize resulting quaternion */ |
| PVRTMatrixQuaternionNormalizeX(qOut); |
| } |
| |
| /***************************************************************************** |
| End of file (PVRTQuaternionX.cpp) |
| *****************************************************************************/ |
| |