| //===- subzero/src/IceRegAlloc.cpp - Linear-scan implementation -----------===// |
| // |
| // The Subzero Code Generator |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the LinearScan class, which performs the |
| // linear-scan register allocation after liveness analysis has been |
| // performed. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "IceCfg.h" |
| #include "IceInst.h" |
| #include "IceOperand.h" |
| #include "IceRegAlloc.h" |
| #include "IceTargetLowering.h" |
| |
| namespace Ice { |
| |
| // Implements the linear-scan algorithm. Based on "Linear Scan |
| // Register Allocation in the Context of SSA Form and Register |
| // Constraints" by Hanspeter Mössenböck and Michael Pfeiffer, |
| // ftp://ftp.ssw.uni-linz.ac.at/pub/Papers/Moe02.PDF . This |
| // implementation is modified to take affinity into account and allow |
| // two interfering variables to share the same register in certain |
| // cases. |
| // |
| // Requires running Cfg::liveness(Liveness_RangesFull) in |
| // preparation. Results are assigned to Variable::RegNum for each |
| // Variable. |
| void LinearScan::scan(const llvm::SmallBitVector &RegMaskFull) { |
| assert(RegMaskFull.any()); // Sanity check |
| Unhandled.clear(); |
| Handled.clear(); |
| Inactive.clear(); |
| Active.clear(); |
| Ostream &Str = Func->getContext()->getStrDump(); |
| Func->setCurrentNode(NULL); |
| |
| // Gather the live ranges of all variables and add them to the |
| // Unhandled set. TODO: Unhandled is a set<> which is based on a |
| // balanced binary tree, so inserting live ranges for N variables is |
| // O(N log N) complexity. N may be proportional to the number of |
| // instructions, thanks to temporary generation during lowering. As |
| // a result, it may be useful to design a better data structure for |
| // storing Func->getVariables(). |
| const VarList &Vars = Func->getVariables(); |
| for (VarList::const_iterator I = Vars.begin(), E = Vars.end(); I != E; ++I) { |
| Variable *Var = *I; |
| // Explicitly don't consider zero-weight variables, which are |
| // meant to be spill slots. |
| if (Var->getWeight() == RegWeight::Zero) |
| continue; |
| // Don't bother if the variable has a null live range, which means |
| // it was never referenced. |
| if (Var->getLiveRange().isEmpty()) |
| continue; |
| Unhandled.insert(LiveRangeWrapper(Var)); |
| if (Var->hasReg()) { |
| Var->setRegNumTmp(Var->getRegNum()); |
| Var->setLiveRangeInfiniteWeight(); |
| } |
| } |
| |
| // RegUses[I] is the number of live ranges (variables) that register |
| // I is currently assigned to. It can be greater than 1 as a result |
| // of Variable::AllowRegisterOverlap. |
| std::vector<int> RegUses(RegMaskFull.size()); |
| // Unhandled is already set to all ranges in increasing order of |
| // start points. |
| assert(Active.empty()); |
| assert(Inactive.empty()); |
| assert(Handled.empty()); |
| UnorderedRanges::iterator Next; |
| |
| while (!Unhandled.empty()) { |
| LiveRangeWrapper Cur = *Unhandled.begin(); |
| Unhandled.erase(Unhandled.begin()); |
| if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| Str << "\nConsidering "; |
| Cur.dump(Func); |
| Str << "\n"; |
| } |
| const llvm::SmallBitVector RegMask = |
| RegMaskFull & |
| Func->getTarget()->getRegisterSetForType(Cur.Var->getType()); |
| |
| // Check for precolored ranges. If Cur is precolored, it |
| // definitely gets that register. Previously processed live |
| // ranges would have avoided that register due to it being |
| // precolored. Future processed live ranges won't evict that |
| // register because the live range has infinite weight. |
| if (Cur.Var->hasReg()) { |
| int32_t RegNum = Cur.Var->getRegNum(); |
| // RegNumTmp should have already been set above. |
| assert(Cur.Var->getRegNumTmp() == RegNum); |
| if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| Str << "Precoloring "; |
| Cur.dump(Func); |
| Str << "\n"; |
| } |
| Active.push_back(Cur); |
| assert(RegUses[RegNum] >= 0); |
| ++RegUses[RegNum]; |
| continue; |
| } |
| |
| // Check for active ranges that have expired or become inactive. |
| for (UnorderedRanges::iterator I = Active.begin(), E = Active.end(); I != E; |
| I = Next) { |
| Next = I; |
| ++Next; |
| LiveRangeWrapper Item = *I; |
| bool Moved = false; |
| if (Item.endsBefore(Cur)) { |
| // Move Item from Active to Handled list. |
| if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| Str << "Expiring "; |
| Item.dump(Func); |
| Str << "\n"; |
| } |
| Active.erase(I); |
| Handled.push_back(Item); |
| Moved = true; |
| } else if (!Item.overlapsStart(Cur)) { |
| // Move Item from Active to Inactive list. |
| if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| Str << "Inactivating "; |
| Item.dump(Func); |
| Str << "\n"; |
| } |
| Active.erase(I); |
| Inactive.push_back(Item); |
| Moved = true; |
| } |
| if (Moved) { |
| // Decrement Item from RegUses[]. |
| assert(Item.Var->hasRegTmp()); |
| int32_t RegNum = Item.Var->getRegNumTmp(); |
| --RegUses[RegNum]; |
| assert(RegUses[RegNum] >= 0); |
| } |
| } |
| |
| // Check for inactive ranges that have expired or reactivated. |
| for (UnorderedRanges::iterator I = Inactive.begin(), E = Inactive.end(); |
| I != E; I = Next) { |
| Next = I; |
| ++Next; |
| LiveRangeWrapper Item = *I; |
| if (Item.endsBefore(Cur)) { |
| // Move Item from Inactive to Handled list. |
| if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| Str << "Expiring "; |
| Item.dump(Func); |
| Str << "\n"; |
| } |
| Inactive.erase(I); |
| Handled.push_back(Item); |
| } else if (Item.overlapsStart(Cur)) { |
| // Move Item from Inactive to Active list. |
| if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| Str << "Reactivating "; |
| Item.dump(Func); |
| Str << "\n"; |
| } |
| Inactive.erase(I); |
| Active.push_back(Item); |
| // Increment Item in RegUses[]. |
| assert(Item.Var->hasRegTmp()); |
| int32_t RegNum = Item.Var->getRegNumTmp(); |
| assert(RegUses[RegNum] >= 0); |
| ++RegUses[RegNum]; |
| } |
| } |
| |
| // Calculate available registers into Free[]. |
| llvm::SmallBitVector Free = RegMask; |
| for (SizeT i = 0; i < RegMask.size(); ++i) { |
| if (RegUses[i] > 0) |
| Free[i] = false; |
| } |
| |
| // Remove registers from the Free[] list where an Inactive range |
| // overlaps with the current range. |
| for (UnorderedRanges::const_iterator I = Inactive.begin(), |
| E = Inactive.end(); |
| I != E; ++I) { |
| LiveRangeWrapper Item = *I; |
| if (Item.overlaps(Cur)) { |
| int32_t RegNum = Item.Var->getRegNumTmp(); |
| // Don't assert(Free[RegNum]) because in theory (though |
| // probably never in practice) there could be two inactive |
| // variables that were allowed marked with |
| // AllowRegisterOverlap. |
| Free[RegNum] = false; |
| } |
| } |
| |
| // Remove registers from the Free[] list where an Unhandled range |
| // overlaps with the current range and is precolored. |
| // Cur.endsBefore(*I) is an early exit check that turns a |
| // guaranteed O(N^2) algorithm into expected linear complexity. |
| llvm::SmallBitVector PrecoloredUnhandled(RegMask.size()); |
| for (OrderedRanges::const_iterator I = Unhandled.begin(), |
| E = Unhandled.end(); |
| I != E && !Cur.endsBefore(*I); ++I) { |
| LiveRangeWrapper Item = *I; |
| if (Item.Var->hasReg() && Item.overlaps(Cur)) { |
| Free[Item.Var->getRegNum()] = false; // Note: getRegNum not getRegNumTmp |
| PrecoloredUnhandled[Item.Var->getRegNum()] = true; |
| } |
| } |
| |
| // Print info about physical register availability. |
| if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| for (SizeT i = 0; i < RegMask.size(); ++i) { |
| if (RegMask[i]) { |
| Str << Func->getTarget()->getRegName(i, IceType_i32) |
| << "(U=" << RegUses[i] << ",F=" << Free[i] |
| << ",P=" << PrecoloredUnhandled[i] << ") "; |
| } |
| } |
| Str << "\n"; |
| } |
| |
| Variable *Prefer = Cur.Var->getPreferredRegister(); |
| int32_t PreferReg = Prefer && Prefer->hasRegTmp() ? Prefer->getRegNumTmp() |
| : Variable::NoRegister; |
| bool AllowedToOverlap = Cur.Var->getRegisterOverlap() && |
| PreferReg != Variable::NoRegister && |
| !PrecoloredUnhandled[PreferReg]; |
| if (PreferReg != Variable::NoRegister && |
| (AllowedToOverlap || Free[PreferReg])) { |
| // First choice: a preferred register that is either free or is |
| // allowed to overlap with its linked variable. |
| Cur.Var->setRegNumTmp(PreferReg); |
| if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| Str << "Preferring "; |
| Cur.dump(Func); |
| Str << "\n"; |
| } |
| assert(RegUses[PreferReg] >= 0); |
| ++RegUses[PreferReg]; |
| Active.push_back(Cur); |
| } else if (Free.any()) { |
| // Second choice: any free register. TODO: After explicit |
| // affinity is considered, is there a strategy better than just |
| // picking the lowest-numbered available register? |
| int32_t RegNum = Free.find_first(); |
| Cur.Var->setRegNumTmp(RegNum); |
| if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| Str << "Allocating "; |
| Cur.dump(Func); |
| Str << "\n"; |
| } |
| assert(RegUses[RegNum] >= 0); |
| ++RegUses[RegNum]; |
| Active.push_back(Cur); |
| } else { |
| // Fallback: there are no free registers, so we look for the |
| // lowest-weight register and see if Cur has higher weight. |
| std::vector<RegWeight> Weights(RegMask.size()); |
| // Check Active ranges. |
| for (UnorderedRanges::const_iterator I = Active.begin(), E = Active.end(); |
| I != E; ++I) { |
| LiveRangeWrapper Item = *I; |
| assert(Item.overlaps(Cur)); |
| int32_t RegNum = Item.Var->getRegNumTmp(); |
| assert(Item.Var->hasRegTmp()); |
| Weights[RegNum].addWeight(Item.range().getWeight()); |
| } |
| // Same as above, but check Inactive ranges instead of Active. |
| for (UnorderedRanges::const_iterator I = Inactive.begin(), |
| E = Inactive.end(); |
| I != E; ++I) { |
| LiveRangeWrapper Item = *I; |
| int32_t RegNum = Item.Var->getRegNumTmp(); |
| assert(Item.Var->hasRegTmp()); |
| if (Item.overlaps(Cur)) |
| Weights[RegNum].addWeight(Item.range().getWeight()); |
| } |
| // Check Unhandled ranges that overlap Cur and are precolored. |
| // Cur.endsBefore(*I) is an early exit check that turns a |
| // guaranteed O(N^2) algorithm into expected linear complexity. |
| for (OrderedRanges::const_iterator I = Unhandled.begin(), |
| E = Unhandled.end(); |
| I != E && !Cur.endsBefore(*I); ++I) { |
| LiveRangeWrapper Item = *I; |
| int32_t RegNum = Item.Var->getRegNumTmp(); |
| if (RegNum < 0) |
| continue; |
| if (Item.overlaps(Cur)) |
| Weights[RegNum].setWeight(RegWeight::Inf); |
| } |
| |
| // All the weights are now calculated. Find the register with |
| // smallest weight. |
| int32_t MinWeightIndex = RegMask.find_first(); |
| // MinWeightIndex must be valid because of the initial |
| // RegMask.any() test. |
| assert(MinWeightIndex >= 0); |
| for (SizeT i = MinWeightIndex + 1; i < Weights.size(); ++i) { |
| if (RegMask[i] && Weights[i] < Weights[MinWeightIndex]) |
| MinWeightIndex = i; |
| } |
| |
| if (Cur.range().getWeight() <= Weights[MinWeightIndex]) { |
| // Cur doesn't have priority over any other live ranges, so |
| // don't allocate any register to it, and move it to the |
| // Handled state. |
| Handled.push_back(Cur); |
| if (Cur.range().getWeight().isInf()) { |
| Func->setError("Unable to find a physical register for an " |
| "infinite-weight live range"); |
| } |
| } else { |
| // Evict all live ranges in Active that register number |
| // MinWeightIndex is assigned to. |
| for (UnorderedRanges::iterator I = Active.begin(), E = Active.end(); |
| I != E; I = Next) { |
| Next = I; |
| ++Next; |
| LiveRangeWrapper Item = *I; |
| if (Item.Var->getRegNumTmp() == MinWeightIndex) { |
| if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| Str << "Evicting "; |
| Item.dump(Func); |
| Str << "\n"; |
| } |
| --RegUses[MinWeightIndex]; |
| assert(RegUses[MinWeightIndex] >= 0); |
| Item.Var->setRegNumTmp(Variable::NoRegister); |
| Active.erase(I); |
| Handled.push_back(Item); |
| } |
| } |
| // Do the same for Inactive. |
| for (UnorderedRanges::iterator I = Inactive.begin(), E = Inactive.end(); |
| I != E; I = Next) { |
| Next = I; |
| ++Next; |
| LiveRangeWrapper Item = *I; |
| // Note: The Item.overlaps(Cur) clause is not part of the |
| // description of AssignMemLoc() in the original paper. But |
| // there doesn't seem to be any need to evict an inactive |
| // live range that doesn't overlap with the live range |
| // currently being considered. It's especially bad if we |
| // would end up evicting an infinite-weight but |
| // currently-inactive live range. The most common situation |
| // for this would be a scratch register kill set for call |
| // instructions. |
| if (Item.Var->getRegNumTmp() == MinWeightIndex && |
| Item.overlaps(Cur)) { |
| if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| Str << "Evicting "; |
| Item.dump(Func); |
| Str << "\n"; |
| } |
| Item.Var->setRegNumTmp(Variable::NoRegister); |
| Inactive.erase(I); |
| Handled.push_back(Item); |
| } |
| } |
| // Assign the register to Cur. |
| Cur.Var->setRegNumTmp(MinWeightIndex); |
| assert(RegUses[MinWeightIndex] >= 0); |
| ++RegUses[MinWeightIndex]; |
| Active.push_back(Cur); |
| if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| Str << "Allocating "; |
| Cur.dump(Func); |
| Str << "\n"; |
| } |
| } |
| } |
| dump(Func); |
| } |
| // Move anything Active or Inactive to Handled for easier handling. |
| for (UnorderedRanges::iterator I = Active.begin(), E = Active.end(); I != E; |
| I = Next) { |
| Next = I; |
| ++Next; |
| Handled.push_back(*I); |
| Active.erase(I); |
| } |
| for (UnorderedRanges::iterator I = Inactive.begin(), E = Inactive.end(); |
| I != E; I = Next) { |
| Next = I; |
| ++Next; |
| Handled.push_back(*I); |
| Inactive.erase(I); |
| } |
| dump(Func); |
| |
| // Finish up by assigning RegNumTmp->RegNum for each Variable. |
| for (UnorderedRanges::const_iterator I = Handled.begin(), E = Handled.end(); |
| I != E; ++I) { |
| LiveRangeWrapper Item = *I; |
| int32_t RegNum = Item.Var->getRegNumTmp(); |
| if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
| if (!Item.Var->hasRegTmp()) { |
| Str << "Not assigning "; |
| Item.Var->dump(Func); |
| Str << "\n"; |
| } else { |
| Str << (RegNum == Item.Var->getRegNum() ? "Reassigning " : "Assigning ") |
| << Func->getTarget()->getRegName(RegNum, IceType_i32) << "(r" |
| << RegNum << ") to "; |
| Item.Var->dump(Func); |
| Str << "\n"; |
| } |
| } |
| Item.Var->setRegNum(Item.Var->getRegNumTmp()); |
| } |
| |
| // TODO: Consider running register allocation one more time, with |
| // infinite registers, for two reasons. First, evicted live ranges |
| // get a second chance for a register. Second, it allows coalescing |
| // of stack slots. If there is no time budget for the second |
| // register allocation run, each unallocated variable just gets its |
| // own slot. |
| // |
| // Another idea for coalescing stack slots is to initialize the |
| // Unhandled list with just the unallocated variables, saving time |
| // but not offering second-chance opportunities. |
| } |
| |
| // ======================== Dump routines ======================== // |
| |
| void LiveRangeWrapper::dump(const Cfg *Func) const { |
| Ostream &Str = Func->getContext()->getStrDump(); |
| const static size_t BufLen = 30; |
| char buf[BufLen]; |
| snprintf(buf, BufLen, "%2d", Var->getRegNumTmp()); |
| Str << "R=" << buf << " V="; |
| Var->dump(Func); |
| Str << " Range=" << range(); |
| } |
| |
| void LinearScan::dump(Cfg *Func) const { |
| Ostream &Str = Func->getContext()->getStrDump(); |
| if (!Func->getContext()->isVerbose(IceV_LinearScan)) |
| return; |
| Func->setCurrentNode(NULL); |
| Str << "**** Current regalloc state:\n"; |
| Str << "++++++ Handled:\n"; |
| for (UnorderedRanges::const_iterator I = Handled.begin(), E = Handled.end(); |
| I != E; ++I) { |
| I->dump(Func); |
| Str << "\n"; |
| } |
| Str << "++++++ Unhandled:\n"; |
| for (OrderedRanges::const_iterator I = Unhandled.begin(), E = Unhandled.end(); |
| I != E; ++I) { |
| I->dump(Func); |
| Str << "\n"; |
| } |
| Str << "++++++ Active:\n"; |
| for (UnorderedRanges::const_iterator I = Active.begin(), E = Active.end(); |
| I != E; ++I) { |
| I->dump(Func); |
| Str << "\n"; |
| } |
| Str << "++++++ Inactive:\n"; |
| for (UnorderedRanges::const_iterator I = Inactive.begin(), E = Inactive.end(); |
| I != E; ++I) { |
| I->dump(Func); |
| Str << "\n"; |
| } |
| } |
| |
| } // end of namespace Ice |