| //===- subzero/src/IceTargetLowering.h - Lowering interface -----*- C++ -*-===// |
| // |
| // The Subzero Code Generator |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// \brief Declares the TargetLowering, LoweringContext, and TargetDataLowering |
| /// classes. |
| /// |
| /// TargetLowering is an abstract class used to drive the translation/lowering |
| /// process. LoweringContext maintains a context for lowering each instruction, |
| /// offering conveniences such as iterating over non-deleted instructions. |
| /// TargetDataLowering is an abstract class used to drive the lowering/emission |
| /// of global initializers, external global declarations, and internal constant |
| /// pools. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef SUBZERO_SRC_ICETARGETLOWERING_H |
| #define SUBZERO_SRC_ICETARGETLOWERING_H |
| |
| #include "IceBitVector.h" |
| #include "IceCfgNode.h" |
| #include "IceDefs.h" |
| #include "IceInst.h" // for the names of the Inst subtypes |
| #include "IceOperand.h" |
| #include "IceRegAlloc.h" |
| #include "IceTypes.h" |
| |
| #include <utility> |
| |
| namespace Ice { |
| |
| // UnimplementedError is defined as a macro so that we can get actual line |
| // numbers. |
| #define UnimplementedError(Flags) \ |
| do { \ |
| if (!static_cast<const ClFlags &>(Flags).getSkipUnimplemented()) { \ |
| /* Use llvm_unreachable instead of report_fatal_error, which gives \ |
| better stack traces. */ \ |
| llvm_unreachable("Not yet implemented"); \ |
| abort(); \ |
| } \ |
| } while (0) |
| |
| // UnimplementedLoweringError is similar in style to UnimplementedError. Given |
| // a TargetLowering object pointer and an Inst pointer, it adds appropriate |
| // FakeDef and FakeUse instructions to try maintain liveness consistency. |
| #define UnimplementedLoweringError(Target, Instr) \ |
| do { \ |
| if (getFlags().getSkipUnimplemented()) { \ |
| (Target)->addFakeDefUses(Instr); \ |
| } else { \ |
| /* Use llvm_unreachable instead of report_fatal_error, which gives \ |
| better stack traces. */ \ |
| llvm_unreachable( \ |
| (std::string("Not yet implemented: ") + Instr->getInstName()) \ |
| .c_str()); \ |
| abort(); \ |
| } \ |
| } while (0) |
| |
| /// LoweringContext makes it easy to iterate through non-deleted instructions in |
| /// a node, and insert new (lowered) instructions at the current point. Along |
| /// with the instruction list container and associated iterators, it holds the |
| /// current node, which is needed when inserting new instructions in order to |
| /// track whether variables are used as single-block or multi-block. |
| class LoweringContext { |
| LoweringContext(const LoweringContext &) = delete; |
| LoweringContext &operator=(const LoweringContext &) = delete; |
| |
| public: |
| LoweringContext() = default; |
| ~LoweringContext() = default; |
| void init(CfgNode *Node); |
| Inst *getNextInst() const { |
| if (Next == End) |
| return nullptr; |
| return iteratorToInst(Next); |
| } |
| Inst *getNextInst(InstList::iterator &Iter) const { |
| advanceForward(Iter); |
| if (Iter == End) |
| return nullptr; |
| return iteratorToInst(Iter); |
| } |
| CfgNode *getNode() const { return Node; } |
| bool atEnd() const { return Cur == End; } |
| InstList::iterator getCur() const { return Cur; } |
| InstList::iterator getNext() const { return Next; } |
| InstList::iterator getEnd() const { return End; } |
| void insert(Inst *Instr); |
| template <typename Inst, typename... Args> Inst *insert(Args &&... A) { |
| auto *New = Inst::create(Node->getCfg(), std::forward<Args>(A)...); |
| insert(New); |
| return New; |
| } |
| Inst *getLastInserted() const; |
| void advanceCur() { Cur = Next; } |
| void advanceNext() { advanceForward(Next); } |
| void setCur(InstList::iterator C) { Cur = C; } |
| void setNext(InstList::iterator N) { Next = N; } |
| void rewind(); |
| void setInsertPoint(const InstList::iterator &Position) { Next = Position; } |
| void availabilityReset(); |
| void availabilityUpdate(); |
| Variable *availabilityGet(Operand *Src) const; |
| |
| private: |
| /// Node is the argument to Inst::updateVars(). |
| CfgNode *Node = nullptr; |
| Inst *LastInserted = nullptr; |
| /// Cur points to the current instruction being considered. It is guaranteed |
| /// to point to a non-deleted instruction, or to be End. |
| InstList::iterator Cur; |
| /// Next doubles as a pointer to the next valid instruction (if any), and the |
| /// new-instruction insertion point. It is also updated for the caller in case |
| /// the lowering consumes more than one high-level instruction. It is |
| /// guaranteed to point to a non-deleted instruction after Cur, or to be End. |
| // TODO: Consider separating the notion of "next valid instruction" and "new |
| // instruction insertion point", to avoid confusion when previously-deleted |
| // instructions come between the two points. |
| InstList::iterator Next; |
| /// Begin is a copy of Insts.begin(), used if iterators are moved backward. |
| InstList::iterator Begin; |
| /// End is a copy of Insts.end(), used if Next needs to be advanced. |
| InstList::iterator End; |
| /// LastDest and LastSrc capture the parameters of the last "Dest=Src" simple |
| /// assignment inserted (provided Src is a variable). This is used for simple |
| /// availability analysis. |
| Variable *LastDest = nullptr; |
| Variable *LastSrc = nullptr; |
| |
| void skipDeleted(InstList::iterator &I) const; |
| void advanceForward(InstList::iterator &I) const; |
| }; |
| |
| /// A helper class to advance the LoweringContext at each loop iteration. |
| class PostIncrLoweringContext { |
| PostIncrLoweringContext() = delete; |
| PostIncrLoweringContext(const PostIncrLoweringContext &) = delete; |
| PostIncrLoweringContext &operator=(const PostIncrLoweringContext &) = delete; |
| |
| public: |
| explicit PostIncrLoweringContext(LoweringContext &Context) |
| : Context(Context) {} |
| ~PostIncrLoweringContext() { |
| Context.advanceCur(); |
| Context.advanceNext(); |
| } |
| |
| private: |
| LoweringContext &Context; |
| }; |
| |
| /// TargetLowering is the base class for all backends in Subzero. In addition to |
| /// implementing the abstract methods in this class, each concrete target must |
| /// also implement a named constructor in its own namespace. For instance, for |
| /// X8632 we have: |
| /// |
| /// namespace X8632 { |
| /// void createTargetLowering(Cfg *Func); |
| /// } |
| class TargetLowering { |
| TargetLowering() = delete; |
| TargetLowering(const TargetLowering &) = delete; |
| TargetLowering &operator=(const TargetLowering &) = delete; |
| |
| public: |
| static void staticInit(GlobalContext *Ctx); |
| // Each target must define a public static method: |
| // static void staticInit(GlobalContext *Ctx); |
| static bool shouldBePooled(const class Constant *C); |
| static Type getPointerType(); |
| |
| static std::unique_ptr<TargetLowering> createLowering(TargetArch Target, |
| Cfg *Func); |
| |
| virtual std::unique_ptr<Assembler> createAssembler() const = 0; |
| |
| void translate() { |
| switch (Func->getOptLevel()) { |
| case Opt_m1: |
| translateOm1(); |
| break; |
| case Opt_0: |
| translateO0(); |
| break; |
| case Opt_1: |
| translateO1(); |
| break; |
| case Opt_2: |
| translateO2(); |
| break; |
| } |
| } |
| virtual void translateOm1() { |
| Func->setError("Target doesn't specify Om1 lowering steps."); |
| } |
| virtual void translateO0() { |
| Func->setError("Target doesn't specify O0 lowering steps."); |
| } |
| virtual void translateO1() { |
| Func->setError("Target doesn't specify O1 lowering steps."); |
| } |
| virtual void translateO2() { |
| Func->setError("Target doesn't specify O2 lowering steps."); |
| } |
| |
| /// Generates calls to intrinsics for operations the Target can't handle. |
| void genTargetHelperCalls(); |
| /// Tries to do address mode optimization on a single instruction. |
| void doAddressOpt(); |
| /// Randomly insert NOPs. |
| void doNopInsertion(RandomNumberGenerator &RNG); |
| /// Lowers a single non-Phi instruction. |
| void lower(); |
| /// Inserts and lowers a single high-level instruction at a specific insertion |
| /// point. |
| void lowerInst(CfgNode *Node, InstList::iterator Next, InstHighLevel *Instr); |
| /// Does preliminary lowering of the set of Phi instructions in the current |
| /// node. The main intention is to do what's needed to keep the unlowered Phi |
| /// instructions consistent with the lowered non-Phi instructions, e.g. to |
| /// lower 64-bit operands on a 32-bit target. |
| virtual void prelowerPhis() {} |
| /// Tries to do branch optimization on a single instruction. Returns true if |
| /// some optimization was done. |
| virtual bool doBranchOpt(Inst * /*I*/, const CfgNode * /*NextNode*/) { |
| return false; |
| } |
| |
| virtual SizeT getNumRegisters() const = 0; |
| /// Returns a variable pre-colored to the specified physical register. This is |
| /// generally used to get very direct access to the register such as in the |
| /// prolog or epilog or for marking scratch registers as killed by a call. If |
| /// a Type is not provided, a target-specific default type is used. |
| virtual Variable *getPhysicalRegister(RegNumT RegNum, |
| Type Ty = IceType_void) = 0; |
| /// Returns a printable name for the register. |
| virtual const char *getRegName(RegNumT RegNum, Type Ty) const = 0; |
| |
| virtual bool hasFramePointer() const { return false; } |
| virtual void setHasFramePointer() = 0; |
| virtual RegNumT getStackReg() const = 0; |
| virtual RegNumT getFrameReg() const = 0; |
| virtual RegNumT getFrameOrStackReg() const = 0; |
| virtual size_t typeWidthInBytesOnStack(Type Ty) const = 0; |
| virtual uint32_t getStackAlignment() const = 0; |
| virtual bool needsStackPointerAlignment() const { return false; } |
| virtual void reserveFixedAllocaArea(size_t Size, size_t Align) = 0; |
| virtual int32_t getFrameFixedAllocaOffset() const = 0; |
| virtual uint32_t maxOutArgsSizeBytes() const { return 0; } |
| // Addressing relative to frame pointer differs in MIPS compared to X86/ARM |
| // since MIPS decrements its stack pointer prior to saving it in the frame |
| // pointer register. |
| virtual uint32_t getFramePointerOffset(uint32_t CurrentOffset, |
| uint32_t Size) const { |
| return -(CurrentOffset + Size); |
| } |
| /// Return whether a 64-bit Variable should be split into a Variable64On32. |
| virtual bool shouldSplitToVariable64On32(Type Ty) const = 0; |
| |
| /// Return whether a Vector Variable should be split into a VariableVecOn32. |
| virtual bool shouldSplitToVariableVecOn32(Type Ty) const { |
| (void)Ty; |
| return false; |
| } |
| |
| bool hasComputedFrame() const { return HasComputedFrame; } |
| /// Returns true if this function calls a function that has the "returns |
| /// twice" attribute. |
| bool callsReturnsTwice() const { return CallsReturnsTwice; } |
| void setCallsReturnsTwice(bool RetTwice) { CallsReturnsTwice = RetTwice; } |
| SizeT makeNextLabelNumber() { return NextLabelNumber++; } |
| SizeT makeNextJumpTableNumber() { return NextJumpTableNumber++; } |
| LoweringContext &getContext() { return Context; } |
| Cfg *getFunc() const { return Func; } |
| GlobalContext *getGlobalContext() const { return Ctx; } |
| |
| enum RegSet { |
| RegSet_None = 0, |
| RegSet_CallerSave = 1 << 0, |
| RegSet_CalleeSave = 1 << 1, |
| RegSet_StackPointer = 1 << 2, |
| RegSet_FramePointer = 1 << 3, |
| RegSet_All = ~RegSet_None |
| }; |
| using RegSetMask = uint32_t; |
| |
| virtual SmallBitVector getRegisterSet(RegSetMask Include, |
| RegSetMask Exclude) const = 0; |
| /// Get the set of physical registers available for the specified Variable's |
| /// register class, applying register restrictions from the command line. |
| virtual const SmallBitVector & |
| getRegistersForVariable(const Variable *Var) const = 0; |
| /// Get the set of *all* physical registers available for the specified |
| /// Variable's register class, *not* applying register restrictions from the |
| /// command line. |
| virtual const SmallBitVector & |
| getAllRegistersForVariable(const Variable *Var) const = 0; |
| virtual const SmallBitVector &getAliasesForRegister(RegNumT) const = 0; |
| |
| void regAlloc(RegAllocKind Kind); |
| void postRegallocSplitting(const SmallBitVector &RegMask); |
| |
| virtual void |
| makeRandomRegisterPermutation(llvm::SmallVectorImpl<RegNumT> &Permutation, |
| const SmallBitVector &ExcludeRegisters, |
| uint64_t Salt) const = 0; |
| |
| /// Get the minimum number of clusters required for a jump table to be |
| /// considered. |
| virtual SizeT getMinJumpTableSize() const = 0; |
| virtual void emitJumpTable(const Cfg *Func, |
| const InstJumpTable *JumpTable) const = 0; |
| |
| virtual void emitVariable(const Variable *Var) const = 0; |
| |
| void emitWithoutPrefix(const ConstantRelocatable *CR, |
| const char *Suffix = "") const; |
| |
| virtual void emit(const ConstantInteger32 *C) const = 0; |
| virtual void emit(const ConstantInteger64 *C) const = 0; |
| virtual void emit(const ConstantFloat *C) const = 0; |
| virtual void emit(const ConstantDouble *C) const = 0; |
| virtual void emit(const ConstantUndef *C) const = 0; |
| virtual void emit(const ConstantRelocatable *CR) const = 0; |
| |
| /// Performs target-specific argument lowering. |
| virtual void lowerArguments() = 0; |
| |
| virtual void initNodeForLowering(CfgNode *) {} |
| virtual void addProlog(CfgNode *Node) = 0; |
| virtual void addEpilog(CfgNode *Node) = 0; |
| |
| /// Create a properly-typed "mov" instruction. This is primarily for local |
| /// variable splitting. |
| virtual Inst *createLoweredMove(Variable *Dest, Variable *SrcVar) { |
| // TODO(stichnot): make pure virtual by implementing for all targets |
| (void)Dest; |
| (void)SrcVar; |
| llvm::report_fatal_error("createLoweredMove() unimplemented"); |
| return nullptr; |
| } |
| |
| virtual ~TargetLowering() = default; |
| |
| private: |
| // This control variable is used by AutoBundle (RAII-style bundle |
| // locking/unlocking) to prevent nested bundles. |
| bool AutoBundling = false; |
| |
| /// This indicates whether we are in the genTargetHelperCalls phase, and |
| /// therefore can do things like scalarization. |
| bool GeneratingTargetHelpers = false; |
| |
| // _bundle_lock(), and _bundle_unlock(), were made private to force subtargets |
| // to use the AutoBundle helper. |
| void |
| _bundle_lock(InstBundleLock::Option BundleOption = InstBundleLock::Opt_None) { |
| Context.insert<InstBundleLock>(BundleOption); |
| } |
| void _bundle_unlock() { Context.insert<InstBundleUnlock>(); } |
| |
| protected: |
| /// AutoBundle provides RIAA-style bundling. Sub-targets are expected to use |
| /// it when emitting NaCl Bundles to ensure proper bundle_unlocking, and |
| /// prevent nested bundles. |
| /// |
| /// AutoBundle objects will emit a _bundle_lock during construction (but only |
| /// if sandboxed code generation was requested), and a bundle_unlock() during |
| /// destruction. By carefully scoping objects of this type, Subtargets can |
| /// ensure proper bundle emission. |
| class AutoBundle { |
| AutoBundle() = delete; |
| AutoBundle(const AutoBundle &) = delete; |
| AutoBundle &operator=(const AutoBundle &) = delete; |
| |
| public: |
| explicit AutoBundle(TargetLowering *Target, InstBundleLock::Option Option = |
| InstBundleLock::Opt_None); |
| ~AutoBundle(); |
| |
| private: |
| TargetLowering *const Target; |
| const bool NeedSandboxing; |
| }; |
| |
| explicit TargetLowering(Cfg *Func); |
| // Applies command line filters to TypeToRegisterSet array. |
| static void filterTypeToRegisterSet( |
| GlobalContext *Ctx, int32_t NumRegs, SmallBitVector TypeToRegisterSet[], |
| size_t TypeToRegisterSetSize, |
| std::function<std::string(RegNumT)> getRegName, |
| std::function<const char *(RegClass)> getRegClassName); |
| virtual void lowerAlloca(const InstAlloca *Instr) = 0; |
| virtual void lowerArithmetic(const InstArithmetic *Instr) = 0; |
| virtual void lowerAssign(const InstAssign *Instr) = 0; |
| virtual void lowerBr(const InstBr *Instr) = 0; |
| virtual void lowerBreakpoint(const InstBreakpoint *Instr) = 0; |
| virtual void lowerCall(const InstCall *Instr) = 0; |
| virtual void lowerCast(const InstCast *Instr) = 0; |
| virtual void lowerFcmp(const InstFcmp *Instr) = 0; |
| virtual void lowerExtractElement(const InstExtractElement *Instr) = 0; |
| virtual void lowerIcmp(const InstIcmp *Instr) = 0; |
| virtual void lowerInsertElement(const InstInsertElement *Instr) = 0; |
| virtual void lowerIntrinsicCall(const InstIntrinsicCall *Instr) = 0; |
| virtual void lowerLoad(const InstLoad *Instr) = 0; |
| virtual void lowerPhi(const InstPhi *Instr) = 0; |
| virtual void lowerRet(const InstRet *Instr) = 0; |
| virtual void lowerSelect(const InstSelect *Instr) = 0; |
| virtual void lowerShuffleVector(const InstShuffleVector *Instr) = 0; |
| virtual void lowerStore(const InstStore *Instr) = 0; |
| virtual void lowerSwitch(const InstSwitch *Instr) = 0; |
| virtual void lowerUnreachable(const InstUnreachable *Instr) = 0; |
| virtual void lowerOther(const Inst *Instr); |
| |
| virtual void genTargetHelperCallFor(Inst *Instr) = 0; |
| virtual uint32_t getCallStackArgumentsSizeBytes(const InstCall *Instr) = 0; |
| |
| /// Opportunity to modify other instructions to help Address Optimization |
| virtual void doAddressOptOther() {} |
| virtual void doAddressOptLoad() {} |
| virtual void doAddressOptStore() {} |
| virtual void doAddressOptLoadSubVector() {} |
| virtual void doAddressOptStoreSubVector() {} |
| virtual void doMockBoundsCheck(Operand *) {} |
| virtual void randomlyInsertNop(float Probability, |
| RandomNumberGenerator &RNG) = 0; |
| /// This gives the target an opportunity to post-process the lowered expansion |
| /// before returning. |
| virtual void postLower() {} |
| |
| /// When the SkipUnimplemented flag is set, addFakeDefUses() gets invoked by |
| /// the UnimplementedLoweringError macro to insert fake uses of all the |
| /// instruction variables and a fake def of the instruction dest, in order to |
| /// preserve integrity of liveness analysis. |
| void addFakeDefUses(const Inst *Instr); |
| |
| /// Find (non-SSA) instructions where the Dest variable appears in some source |
| /// operand, and set the IsDestRedefined flag. This keeps liveness analysis |
| /// consistent. |
| void markRedefinitions(); |
| |
| /// Make a pass over the Cfg to determine which variables need stack slots and |
| /// place them in a sorted list (SortedSpilledVariables). Among those, vars, |
| /// classify the spill variables as local to the basic block vs global |
| /// (multi-block) in order to compute the parameters GlobalsSize and |
| /// SpillAreaSizeBytes (represents locals or general vars if the coalescing of |
| /// locals is disallowed) along with alignments required for variables in each |
| /// area. We rely on accurate VMetadata in order to classify a variable as |
| /// global vs local (otherwise the variable is conservatively global). The |
| /// in-args should be initialized to 0. |
| /// |
| /// This is only a pre-pass and the actual stack slot assignment is handled |
| /// separately. |
| /// |
| /// There may be target-specific Variable types, which will be handled by |
| /// TargetVarHook. If the TargetVarHook returns true, then the variable is |
| /// skipped and not considered with the rest of the spilled variables. |
| void getVarStackSlotParams(VarList &SortedSpilledVariables, |
| SmallBitVector &RegsUsed, size_t *GlobalsSize, |
| size_t *SpillAreaSizeBytes, |
| uint32_t *SpillAreaAlignmentBytes, |
| uint32_t *LocalsSlotsAlignmentBytes, |
| std::function<bool(Variable *)> TargetVarHook); |
| |
| /// Calculate the amount of padding needed to align the local and global areas |
| /// to the required alignment. This assumes the globals/locals layout used by |
| /// getVarStackSlotParams and assignVarStackSlots. |
| void alignStackSpillAreas(uint32_t SpillAreaStartOffset, |
| uint32_t SpillAreaAlignmentBytes, |
| size_t GlobalsSize, |
| uint32_t LocalsSlotsAlignmentBytes, |
| uint32_t *SpillAreaPaddingBytes, |
| uint32_t *LocalsSlotsPaddingBytes); |
| |
| /// Make a pass through the SortedSpilledVariables and actually assign stack |
| /// slots. SpillAreaPaddingBytes takes into account stack alignment padding. |
| /// The SpillArea starts after that amount of padding. This matches the scheme |
| /// in getVarStackSlotParams, where there may be a separate multi-block global |
| /// var spill area and a local var spill area. |
| void assignVarStackSlots(VarList &SortedSpilledVariables, |
| size_t SpillAreaPaddingBytes, |
| size_t SpillAreaSizeBytes, |
| size_t GlobalsAndSubsequentPaddingSize, |
| bool UsesFramePointer); |
| |
| /// Sort the variables in Source based on required alignment. The variables |
| /// with the largest alignment need are placed in the front of the Dest list. |
| void sortVarsByAlignment(VarList &Dest, const VarList &Source) const; |
| |
| InstCall *makeHelperCall(RuntimeHelper FuncID, Variable *Dest, SizeT MaxSrcs); |
| |
| void _set_dest_redefined() { Context.getLastInserted()->setDestRedefined(); } |
| |
| bool shouldOptimizeMemIntrins(); |
| |
| void scalarizeArithmetic(InstArithmetic::OpKind K, Variable *Dest, |
| Operand *Src0, Operand *Src1); |
| |
| /// Generalizes scalarizeArithmetic to support other instruction types. |
| /// |
| /// insertScalarInstruction is a function-like object with signature |
| /// (Variable *Dest, Variable *Src0, Variable *Src1) -> Instr *. |
| template <typename... Operands, |
| typename F = std::function<Inst *(Variable *, Operands *...)>> |
| void scalarizeInstruction(Variable *Dest, F insertScalarInstruction, |
| Operands *... Srcs) { |
| assert(GeneratingTargetHelpers && |
| "scalarizeInstruction called during incorrect phase"); |
| const Type DestTy = Dest->getType(); |
| assert(isVectorType(DestTy)); |
| const Type DestElementTy = typeElementType(DestTy); |
| const SizeT NumElements = typeNumElements(DestTy); |
| |
| Variable *T = Func->makeVariable(DestTy); |
| if (auto *VarVecOn32 = llvm::dyn_cast<VariableVecOn32>(T)) { |
| VarVecOn32->initVecElement(Func); |
| auto *Undef = ConstantUndef::create(Ctx, DestTy); |
| Context.insert<InstAssign>(T, Undef); |
| } else { |
| Context.insert<InstFakeDef>(T); |
| } |
| |
| for (SizeT I = 0; I < NumElements; ++I) { |
| auto *Index = Ctx->getConstantInt32(I); |
| |
| auto makeExtractThunk = [this, Index, NumElements](Operand *Src) { |
| return [this, Index, NumElements, Src]() { |
| assert(typeNumElements(Src->getType()) == NumElements); |
| |
| const auto ElementTy = typeElementType(Src->getType()); |
| auto *Op = Func->makeVariable(ElementTy); |
| Context.insert<InstExtractElement>(Op, Src, Index); |
| return Op; |
| }; |
| }; |
| |
| // Perform the operation as a scalar operation. |
| auto *Res = Func->makeVariable(DestElementTy); |
| auto *Arith = applyToThunkedArgs(insertScalarInstruction, Res, |
| makeExtractThunk(Srcs)...); |
| genTargetHelperCallFor(Arith); |
| |
| Variable *DestT = Func->makeVariable(DestTy); |
| Context.insert<InstInsertElement>(DestT, T, Res, Index); |
| T = DestT; |
| } |
| Context.insert<InstAssign>(Dest, T); |
| } |
| |
| // applyToThunkedArgs is used by scalarizeInstruction. Ideally, we would just |
| // call insertScalarInstruction(Res, Srcs...), but C++ does not specify |
| // evaluation order which means this leads to an unpredictable final |
| // output. Instead, we wrap each of the Srcs in a thunk and these |
| // applyToThunkedArgs functions apply the thunks in a well defined order so we |
| // still get well-defined output. |
| Inst *applyToThunkedArgs( |
| std::function<Inst *(Variable *, Variable *)> insertScalarInstruction, |
| Variable *Res, std::function<Variable *()> thunk0) { |
| auto *Src0 = thunk0(); |
| return insertScalarInstruction(Res, Src0); |
| } |
| |
| Inst * |
| applyToThunkedArgs(std::function<Inst *(Variable *, Variable *, Variable *)> |
| insertScalarInstruction, |
| Variable *Res, std::function<Variable *()> thunk0, |
| std::function<Variable *()> thunk1) { |
| auto *Src0 = thunk0(); |
| auto *Src1 = thunk1(); |
| return insertScalarInstruction(Res, Src0, Src1); |
| } |
| |
| Inst *applyToThunkedArgs( |
| std::function<Inst *(Variable *, Variable *, Variable *, Variable *)> |
| insertScalarInstruction, |
| Variable *Res, std::function<Variable *()> thunk0, |
| std::function<Variable *()> thunk1, std::function<Variable *()> thunk2) { |
| auto *Src0 = thunk0(); |
| auto *Src1 = thunk1(); |
| auto *Src2 = thunk2(); |
| return insertScalarInstruction(Res, Src0, Src1, Src2); |
| } |
| |
| /// SandboxType enumerates all possible sandboxing strategies that |
| enum SandboxType { |
| ST_None, |
| ST_NaCl, |
| ST_Nonsfi, |
| }; |
| |
| static SandboxType determineSandboxTypeFromFlags(const ClFlags &Flags); |
| |
| Cfg *Func; |
| GlobalContext *Ctx; |
| bool HasComputedFrame = false; |
| bool CallsReturnsTwice = false; |
| SizeT NextLabelNumber = 0; |
| SizeT NextJumpTableNumber = 0; |
| LoweringContext Context; |
| const SandboxType SandboxingType = ST_None; |
| |
| const static constexpr char *H_getIP_prefix = "__Sz_getIP_"; |
| }; |
| |
| /// TargetDataLowering is used for "lowering" data including initializers for |
| /// global variables, and the internal constant pools. It is separated out from |
| /// TargetLowering because it does not require a Cfg. |
| class TargetDataLowering { |
| TargetDataLowering() = delete; |
| TargetDataLowering(const TargetDataLowering &) = delete; |
| TargetDataLowering &operator=(const TargetDataLowering &) = delete; |
| |
| public: |
| static std::unique_ptr<TargetDataLowering> createLowering(GlobalContext *Ctx); |
| virtual ~TargetDataLowering(); |
| |
| virtual void lowerGlobals(const VariableDeclarationList &Vars, |
| const std::string &SectionSuffix) = 0; |
| virtual void lowerConstants() = 0; |
| virtual void lowerJumpTables() = 0; |
| virtual void emitTargetRODataSections() {} |
| |
| protected: |
| void emitGlobal(const VariableDeclaration &Var, |
| const std::string &SectionSuffix); |
| |
| /// For now, we assume .long is the right directive for emitting 4 byte emit |
| /// global relocations. However, LLVM MIPS usually uses .4byte instead. |
| /// Perhaps there is some difference when the location is unaligned. |
| static const char *getEmit32Directive() { return ".long"; } |
| |
| explicit TargetDataLowering(GlobalContext *Ctx) : Ctx(Ctx) {} |
| GlobalContext *Ctx; |
| }; |
| |
| /// TargetHeaderLowering is used to "lower" the header of an output file. It |
| /// writes out the target-specific header attributes. E.g., for ARM this writes |
| /// out the build attributes (float ABI, etc.). |
| class TargetHeaderLowering { |
| TargetHeaderLowering() = delete; |
| TargetHeaderLowering(const TargetHeaderLowering &) = delete; |
| TargetHeaderLowering &operator=(const TargetHeaderLowering &) = delete; |
| |
| public: |
| static std::unique_ptr<TargetHeaderLowering> |
| createLowering(GlobalContext *Ctx); |
| virtual ~TargetHeaderLowering(); |
| |
| virtual void lower() {} |
| |
| protected: |
| explicit TargetHeaderLowering(GlobalContext *Ctx) : Ctx(Ctx) {} |
| GlobalContext *Ctx; |
| }; |
| |
| } // end of namespace Ice |
| |
| #endif // SUBZERO_SRC_ICETARGETLOWERING_H |