| //===-- MCJIT.cpp - MC-based Just-in-Time Compiler ------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "MCJIT.h" |
| #include "MCJITMemoryManager.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/ExecutionEngine/GenericValue.h" |
| #include "llvm/ExecutionEngine/MCJIT.h" |
| #include "llvm/ExecutionEngine/JITMemoryManager.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/DynamicLibrary.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/Target/TargetData.h" |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| static struct RegisterJIT { |
| RegisterJIT() { MCJIT::Register(); } |
| } JITRegistrator; |
| |
| } |
| |
| extern "C" void LLVMLinkInMCJIT() { |
| } |
| |
| ExecutionEngine *MCJIT::createJIT(Module *M, |
| std::string *ErrorStr, |
| JITMemoryManager *JMM, |
| CodeGenOpt::Level OptLevel, |
| bool GVsWithCode, |
| TargetMachine *TM) { |
| // Try to register the program as a source of symbols to resolve against. |
| // |
| // FIXME: Don't do this here. |
| sys::DynamicLibrary::LoadLibraryPermanently(0, NULL); |
| |
| // If the target supports JIT code generation, create the JIT. |
| if (TargetJITInfo *TJ = TM->getJITInfo()) |
| return new MCJIT(M, TM, *TJ, new MCJITMemoryManager(JMM, M), OptLevel, |
| GVsWithCode); |
| |
| if (ErrorStr) |
| *ErrorStr = "target does not support JIT code generation"; |
| return 0; |
| } |
| |
| MCJIT::MCJIT(Module *m, TargetMachine *tm, TargetJITInfo &tji, |
| RTDyldMemoryManager *MM, CodeGenOpt::Level OptLevel, |
| bool AllocateGVsWithCode) |
| : ExecutionEngine(m), TM(tm), MemMgr(MM), M(m), OS(Buffer), Dyld(MM) { |
| |
| setTargetData(TM->getTargetData()); |
| PM.add(new TargetData(*TM->getTargetData())); |
| |
| // Turn the machine code intermediate representation into bytes in memory |
| // that may be executed. |
| if (TM->addPassesToEmitMC(PM, Ctx, OS, CodeGenOpt::Default, false)) { |
| report_fatal_error("Target does not support MC emission!"); |
| } |
| |
| // Initialize passes. |
| // FIXME: When we support multiple modules, we'll want to move the code |
| // gen and finalization out of the constructor here and do it more |
| // on-demand as part of getPointerToFunction(). |
| PM.run(*M); |
| // Flush the output buffer so the SmallVector gets its data. |
| OS.flush(); |
| |
| // Load the object into the dynamic linker. |
| // FIXME: It would be nice to avoid making yet another copy. |
| MemoryBuffer *MB = MemoryBuffer::getMemBufferCopy(StringRef(Buffer.data(), |
| Buffer.size())); |
| if (Dyld.loadObject(MB)) |
| report_fatal_error(Dyld.getErrorString()); |
| // Resolve any relocations. |
| Dyld.resolveRelocations(); |
| } |
| |
| MCJIT::~MCJIT() { |
| delete MemMgr; |
| } |
| |
| void *MCJIT::getPointerToBasicBlock(BasicBlock *BB) { |
| report_fatal_error("not yet implemented"); |
| return 0; |
| } |
| |
| void *MCJIT::getPointerToFunction(Function *F) { |
| if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) { |
| bool AbortOnFailure = !F->hasExternalWeakLinkage(); |
| void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure); |
| addGlobalMapping(F, Addr); |
| return Addr; |
| } |
| |
| // FIXME: Should we be using the mangler for this? Probably. |
| StringRef BaseName = F->getName(); |
| if (BaseName[0] == '\1') |
| return (void*)Dyld.getSymbolAddress(BaseName.substr(1)); |
| return (void*)Dyld.getSymbolAddress((TM->getMCAsmInfo()->getGlobalPrefix() |
| + BaseName).str()); |
| } |
| |
| void *MCJIT::recompileAndRelinkFunction(Function *F) { |
| report_fatal_error("not yet implemented"); |
| } |
| |
| void MCJIT::freeMachineCodeForFunction(Function *F) { |
| report_fatal_error("not yet implemented"); |
| } |
| |
| GenericValue MCJIT::runFunction(Function *F, |
| const std::vector<GenericValue> &ArgValues) { |
| assert(F && "Function *F was null at entry to run()"); |
| |
| void *FPtr = getPointerToFunction(F); |
| assert(FPtr && "Pointer to fn's code was null after getPointerToFunction"); |
| FunctionType *FTy = F->getFunctionType(); |
| Type *RetTy = FTy->getReturnType(); |
| |
| assert((FTy->getNumParams() == ArgValues.size() || |
| (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) && |
| "Wrong number of arguments passed into function!"); |
| assert(FTy->getNumParams() == ArgValues.size() && |
| "This doesn't support passing arguments through varargs (yet)!"); |
| |
| // Handle some common cases first. These cases correspond to common `main' |
| // prototypes. |
| if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) { |
| switch (ArgValues.size()) { |
| case 3: |
| if (FTy->getParamType(0)->isIntegerTy(32) && |
| FTy->getParamType(1)->isPointerTy() && |
| FTy->getParamType(2)->isPointerTy()) { |
| int (*PF)(int, char **, const char **) = |
| (int(*)(int, char **, const char **))(intptr_t)FPtr; |
| |
| // Call the function. |
| GenericValue rv; |
| rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), |
| (char **)GVTOP(ArgValues[1]), |
| (const char **)GVTOP(ArgValues[2]))); |
| return rv; |
| } |
| break; |
| case 2: |
| if (FTy->getParamType(0)->isIntegerTy(32) && |
| FTy->getParamType(1)->isPointerTy()) { |
| int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr; |
| |
| // Call the function. |
| GenericValue rv; |
| rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), |
| (char **)GVTOP(ArgValues[1]))); |
| return rv; |
| } |
| break; |
| case 1: |
| if (FTy->getNumParams() == 1 && |
| FTy->getParamType(0)->isIntegerTy(32)) { |
| GenericValue rv; |
| int (*PF)(int) = (int(*)(int))(intptr_t)FPtr; |
| rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue())); |
| return rv; |
| } |
| break; |
| } |
| } |
| |
| // Handle cases where no arguments are passed first. |
| if (ArgValues.empty()) { |
| GenericValue rv; |
| switch (RetTy->getTypeID()) { |
| default: llvm_unreachable("Unknown return type for function call!"); |
| case Type::IntegerTyID: { |
| unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth(); |
| if (BitWidth == 1) |
| rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)()); |
| else if (BitWidth <= 8) |
| rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)()); |
| else if (BitWidth <= 16) |
| rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)()); |
| else if (BitWidth <= 32) |
| rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)()); |
| else if (BitWidth <= 64) |
| rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)()); |
| else |
| llvm_unreachable("Integer types > 64 bits not supported"); |
| return rv; |
| } |
| case Type::VoidTyID: |
| rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)()); |
| return rv; |
| case Type::FloatTyID: |
| rv.FloatVal = ((float(*)())(intptr_t)FPtr)(); |
| return rv; |
| case Type::DoubleTyID: |
| rv.DoubleVal = ((double(*)())(intptr_t)FPtr)(); |
| return rv; |
| case Type::X86_FP80TyID: |
| case Type::FP128TyID: |
| case Type::PPC_FP128TyID: |
| llvm_unreachable("long double not supported yet"); |
| return rv; |
| case Type::PointerTyID: |
| return PTOGV(((void*(*)())(intptr_t)FPtr)()); |
| } |
| } |
| |
| assert(0 && "Full-featured argument passing not supported yet!"); |
| return GenericValue(); |
| } |