| // Copyright 2016 The SwiftShader Authors. All Rights Reserved. | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //    http://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | #include "ShaderCore.hpp" | 
 |  | 
 | #include "Device/Renderer.hpp" | 
 | #include "Reactor/Assert.hpp" | 
 | #include "System/Debug.hpp" | 
 |  | 
 | #include <limits.h> | 
 |  | 
 | // TODO(chromium:1299047) | 
 | #ifndef SWIFTSHADER_LEGACY_PRECISION | 
 | #	define SWIFTSHADER_LEGACY_PRECISION false | 
 | #endif | 
 |  | 
 | namespace sw { | 
 |  | 
 | Vector4s::Vector4s() | 
 | { | 
 | } | 
 |  | 
 | Vector4s::Vector4s(unsigned short x, unsigned short y, unsigned short z, unsigned short w) | 
 | { | 
 | 	this->x = Short4(x); | 
 | 	this->y = Short4(y); | 
 | 	this->z = Short4(z); | 
 | 	this->w = Short4(w); | 
 | } | 
 |  | 
 | Vector4s::Vector4s(const Vector4s &rhs) | 
 | { | 
 | 	x = rhs.x; | 
 | 	y = rhs.y; | 
 | 	z = rhs.z; | 
 | 	w = rhs.w; | 
 | } | 
 |  | 
 | Vector4s &Vector4s::operator=(const Vector4s &rhs) | 
 | { | 
 | 	x = rhs.x; | 
 | 	y = rhs.y; | 
 | 	z = rhs.z; | 
 | 	w = rhs.w; | 
 |  | 
 | 	return *this; | 
 | } | 
 |  | 
 | Short4 &Vector4s::operator[](int i) | 
 | { | 
 | 	switch(i) | 
 | 	{ | 
 | 	case 0: return x; | 
 | 	case 1: return y; | 
 | 	case 2: return z; | 
 | 	case 3: return w; | 
 | 	} | 
 |  | 
 | 	return x; | 
 | } | 
 |  | 
 | Vector4f::Vector4f() | 
 | { | 
 | } | 
 |  | 
 | Vector4f::Vector4f(float x, float y, float z, float w) | 
 | { | 
 | 	this->x = Float4(x); | 
 | 	this->y = Float4(y); | 
 | 	this->z = Float4(z); | 
 | 	this->w = Float4(w); | 
 | } | 
 |  | 
 | Vector4f::Vector4f(const Vector4f &rhs) | 
 | { | 
 | 	x = rhs.x; | 
 | 	y = rhs.y; | 
 | 	z = rhs.z; | 
 | 	w = rhs.w; | 
 | } | 
 |  | 
 | Vector4f &Vector4f::operator=(const Vector4f &rhs) | 
 | { | 
 | 	x = rhs.x; | 
 | 	y = rhs.y; | 
 | 	z = rhs.z; | 
 | 	w = rhs.w; | 
 |  | 
 | 	return *this; | 
 | } | 
 |  | 
 | Float4 &Vector4f::operator[](int i) | 
 | { | 
 | 	switch(i) | 
 | 	{ | 
 | 	case 0: return x; | 
 | 	case 1: return y; | 
 | 	case 2: return z; | 
 | 	case 3: return w; | 
 | 	} | 
 |  | 
 | 	return x; | 
 | } | 
 |  | 
 | Vector4i::Vector4i() | 
 | { | 
 | } | 
 |  | 
 | Vector4i::Vector4i(int x, int y, int z, int w) | 
 | { | 
 | 	this->x = Int4(x); | 
 | 	this->y = Int4(y); | 
 | 	this->z = Int4(z); | 
 | 	this->w = Int4(w); | 
 | } | 
 |  | 
 | Vector4i::Vector4i(const Vector4i &rhs) | 
 | { | 
 | 	x = rhs.x; | 
 | 	y = rhs.y; | 
 | 	z = rhs.z; | 
 | 	w = rhs.w; | 
 | } | 
 |  | 
 | Vector4i &Vector4i::operator=(const Vector4i &rhs) | 
 | { | 
 | 	x = rhs.x; | 
 | 	y = rhs.y; | 
 | 	z = rhs.z; | 
 | 	w = rhs.w; | 
 |  | 
 | 	return *this; | 
 | } | 
 |  | 
 | Int4 &Vector4i::operator[](int i) | 
 | { | 
 | 	switch(i) | 
 | 	{ | 
 | 	case 0: return x; | 
 | 	case 1: return y; | 
 | 	case 2: return z; | 
 | 	case 3: return w; | 
 | 	} | 
 |  | 
 | 	return x; | 
 | } | 
 |  | 
 | // Approximation of atan in [0..1] | 
 | static RValue<SIMD::Float> Atan_01(SIMD::Float x) | 
 | { | 
 | 	// From 4.4.49, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun | 
 | 	const SIMD::Float a2(-0.3333314528f); | 
 | 	const SIMD::Float a4(0.1999355085f); | 
 | 	const SIMD::Float a6(-0.1420889944f); | 
 | 	const SIMD::Float a8(0.1065626393f); | 
 | 	const SIMD::Float a10(-0.0752896400f); | 
 | 	const SIMD::Float a12(0.0429096138f); | 
 | 	const SIMD::Float a14(-0.0161657367f); | 
 | 	const SIMD::Float a16(0.0028662257f); | 
 | 	SIMD::Float x2 = x * x; | 
 | 	return (x + x * (x2 * (a2 + x2 * (a4 + x2 * (a6 + x2 * (a8 + x2 * (a10 + x2 * (a12 + x2 * (a14 + x2 * a16))))))))); | 
 | } | 
 |  | 
 | // Polynomial approximation of order 5 for sin(x * 2 * pi) in the range [-1/4, 1/4] | 
 | static RValue<SIMD::Float> Sin5(SIMD::Float x) | 
 | { | 
 | 	// A * x^5 + B * x^3 + C * x | 
 | 	// Exact at x = 0, 1/12, 1/6, 1/4, and their negatives, which correspond to x * 2 * pi = 0, pi/6, pi/3, pi/2 | 
 | 	const SIMD::Float A = (36288 - 20736 * sqrt(3)) / 5; | 
 | 	const SIMD::Float B = 288 * sqrt(3) - 540; | 
 | 	const SIMD::Float C = (47 - 9 * sqrt(3)) / 5; | 
 |  | 
 | 	SIMD::Float x2 = x * x; | 
 |  | 
 | 	return MulAdd(MulAdd(A, x2, B), x2, C) * x; | 
 | } | 
 |  | 
 | RValue<SIMD::Float> Sin(RValue<SIMD::Float> x, bool relaxedPrecision) | 
 | { | 
 | 	const SIMD::Float q = 0.25f; | 
 | 	const SIMD::Float pi2 = 1 / (2 * 3.1415926535f); | 
 |  | 
 | 	// Range reduction and mirroring | 
 | 	SIMD::Float x_2 = MulAdd(x, -pi2, q); | 
 | 	SIMD::Float z = q - Abs(x_2 - Round(x_2)); | 
 |  | 
 | 	return Sin5(z); | 
 | } | 
 |  | 
 | RValue<SIMD::Float> Cos(RValue<SIMD::Float> x, bool relaxedPrecision) | 
 | { | 
 | 	const SIMD::Float q = 0.25f; | 
 | 	const SIMD::Float pi2 = 1 / (2 * 3.1415926535f); | 
 |  | 
 | 	// Phase shift, range reduction, and mirroring | 
 | 	SIMD::Float x_2 = x * pi2; | 
 | 	SIMD::Float z = q - Abs(x_2 - Round(x_2)); | 
 |  | 
 | 	return Sin5(z); | 
 | } | 
 |  | 
 | RValue<SIMD::Float> Tan(RValue<SIMD::Float> x, bool relaxedPrecision) | 
 | { | 
 | 	return Sin(x, relaxedPrecision) / Cos(x, relaxedPrecision); | 
 | } | 
 |  | 
 | static RValue<SIMD::Float> Asin_4_terms(RValue<SIMD::Float> x) | 
 | { | 
 | 	// From 4.4.45, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun | 
 | 	// |e(x)| <= 5e-8 | 
 | 	const SIMD::Float half_pi(1.57079632f); | 
 | 	const SIMD::Float a0(1.5707288f); | 
 | 	const SIMD::Float a1(-0.2121144f); | 
 | 	const SIMD::Float a2(0.0742610f); | 
 | 	const SIMD::Float a3(-0.0187293f); | 
 | 	SIMD::Float absx = Abs(x); | 
 | 	return As<SIMD::Float>(As<SIMD::Int>(half_pi - Sqrt<Highp>(1.0f - absx) * (a0 + absx * (a1 + absx * (a2 + absx * a3)))) ^ | 
 | 	                       (As<SIMD::Int>(x) & SIMD::Int(0x80000000))); | 
 | } | 
 |  | 
 | static RValue<SIMD::Float> Asin_8_terms(RValue<SIMD::Float> x) | 
 | { | 
 | 	// From 4.4.46, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun | 
 | 	// |e(x)| <= 0e-8 | 
 | 	const SIMD::Float half_pi(1.5707963268f); | 
 | 	const SIMD::Float a0(1.5707963050f); | 
 | 	const SIMD::Float a1(-0.2145988016f); | 
 | 	const SIMD::Float a2(0.0889789874f); | 
 | 	const SIMD::Float a3(-0.0501743046f); | 
 | 	const SIMD::Float a4(0.0308918810f); | 
 | 	const SIMD::Float a5(-0.0170881256f); | 
 | 	const SIMD::Float a6(0.006700901f); | 
 | 	const SIMD::Float a7(-0.0012624911f); | 
 | 	SIMD::Float absx = Abs(x); | 
 | 	return As<SIMD::Float>(As<SIMD::Int>(half_pi - Sqrt<Highp>(1.0f - absx) * (a0 + absx * (a1 + absx * (a2 + absx * (a3 + absx * (a4 + absx * (a5 + absx * (a6 + absx * a7)))))))) ^ | 
 | 	                       (As<SIMD::Int>(x) & SIMD::Int(0x80000000))); | 
 | } | 
 |  | 
 | RValue<SIMD::Float> Asin(RValue<SIMD::Float> x, bool relaxedPrecision) | 
 | { | 
 | 	// TODO(b/169755566): Surprisingly, deqp-vk's precision.acos.highp/mediump tests pass when using the 4-term polynomial | 
 | 	// approximation version of acos, unlike for Asin, which requires higher precision algorithms. | 
 |  | 
 | 	if(!relaxedPrecision) | 
 | 	{ | 
 | 		return Asin(x); | 
 | 	} | 
 |  | 
 | 	return Asin_8_terms(x); | 
 | } | 
 |  | 
 | RValue<SIMD::Float> Acos(RValue<SIMD::Float> x, bool relaxedPrecision) | 
 | { | 
 | 	// pi/2 - arcsin(x) | 
 | 	return 1.57079632e+0f - Asin_4_terms(x); | 
 | } | 
 |  | 
 | RValue<SIMD::Float> Atan(RValue<SIMD::Float> x, bool relaxedPrecision) | 
 | { | 
 | 	SIMD::Float absx = Abs(x); | 
 | 	SIMD::Int O = CmpNLT(absx, 1.0f); | 
 | 	SIMD::Float y = As<SIMD::Float>((O & As<SIMD::Int>(1.0f / absx)) | (~O & As<SIMD::Int>(absx)));  // FIXME: Vector select | 
 |  | 
 | 	const SIMD::Float half_pi(1.57079632f); | 
 | 	SIMD::Float theta = Atan_01(y); | 
 | 	return As<SIMD::Float>(((O & As<SIMD::Int>(half_pi - theta)) | (~O & As<SIMD::Int>(theta))) ^  // FIXME: Vector select | 
 | 	                       (As<SIMD::Int>(x) & SIMD::Int(0x80000000))); | 
 | } | 
 |  | 
 | RValue<SIMD::Float> Atan2(RValue<SIMD::Float> y, RValue<SIMD::Float> x, bool relaxedPrecision) | 
 | { | 
 | 	const SIMD::Float pi(3.14159265f);             // pi | 
 | 	const SIMD::Float minus_pi(-3.14159265f);      // -pi | 
 | 	const SIMD::Float half_pi(1.57079632f);        // pi/2 | 
 | 	const SIMD::Float quarter_pi(7.85398163e-1f);  // pi/4 | 
 |  | 
 | 	// Rotate to upper semicircle when in lower semicircle | 
 | 	SIMD::Int S = CmpLT(y, 0.0f); | 
 | 	SIMD::Float theta = As<SIMD::Float>(S & As<SIMD::Int>(minus_pi)); | 
 | 	SIMD::Float x0 = As<SIMD::Float>((As<SIMD::Int>(y) & SIMD::Int(0x80000000)) ^ As<SIMD::Int>(x)); | 
 | 	SIMD::Float y0 = Abs(y); | 
 |  | 
 | 	// Rotate to right quadrant when in left quadrant | 
 | 	SIMD::Int Q = CmpLT(x0, 0.0f); | 
 | 	theta += As<SIMD::Float>(Q & As<SIMD::Int>(half_pi)); | 
 | 	SIMD::Float x1 = As<SIMD::Float>((Q & As<SIMD::Int>(y0)) | (~Q & As<SIMD::Int>(x0)));   // FIXME: Vector select | 
 | 	SIMD::Float y1 = As<SIMD::Float>((Q & As<SIMD::Int>(-x0)) | (~Q & As<SIMD::Int>(y0)));  // FIXME: Vector select | 
 |  | 
 | 	// Mirror to first octant when in second octant | 
 | 	SIMD::Int O = CmpNLT(y1, x1); | 
 | 	SIMD::Float x2 = As<SIMD::Float>((O & As<SIMD::Int>(y1)) | (~O & As<SIMD::Int>(x1)));  // FIXME: Vector select | 
 | 	SIMD::Float y2 = As<SIMD::Float>((O & As<SIMD::Int>(x1)) | (~O & As<SIMD::Int>(y1)));  // FIXME: Vector select | 
 |  | 
 | 	// Approximation of atan in [0..1] | 
 | 	SIMD::Int zero_x = CmpEQ(x2, 0.0f); | 
 | 	SIMD::Int inf_y = IsInf(y2);  // Since x2 >= y2, this means x2 == y2 == inf, so we use 45 degrees or pi/4 | 
 | 	SIMD::Float atan2_theta = Atan_01(y2 / x2); | 
 | 	theta += As<SIMD::Float>((~zero_x & ~inf_y & ((O & As<SIMD::Int>(half_pi - atan2_theta)) | (~O & (As<SIMD::Int>(atan2_theta))))) |  // FIXME: Vector select | 
 | 	                         (inf_y & As<SIMD::Int>(quarter_pi))); | 
 |  | 
 | 	// Recover loss of precision for tiny theta angles | 
 | 	// This combination results in (-pi + half_pi + half_pi - atan2_theta) which is equivalent to -atan2_theta | 
 | 	SIMD::Int precision_loss = S & Q & O & ~inf_y; | 
 |  | 
 | 	return As<SIMD::Float>((precision_loss & As<SIMD::Int>(-atan2_theta)) | (~precision_loss & As<SIMD::Int>(theta)));  // FIXME: Vector select | 
 | } | 
 |  | 
 | // TODO(chromium:1299047) | 
 | static RValue<SIMD::Float> Exp2_legacy(RValue<SIMD::Float> x0) | 
 | { | 
 | 	SIMD::Int i = RoundInt(x0 - 0.5f); | 
 | 	SIMD::Float ii = As<SIMD::Float>((i + SIMD::Int(127)) << 23); | 
 |  | 
 | 	SIMD::Float f = x0 - SIMD::Float(i); | 
 | 	SIMD::Float ff = As<SIMD::Float>(SIMD::Int(0x3AF61905)); | 
 | 	ff = ff * f + As<SIMD::Float>(SIMD::Int(0x3C134806)); | 
 | 	ff = ff * f + As<SIMD::Float>(SIMD::Int(0x3D64AA23)); | 
 | 	ff = ff * f + As<SIMD::Float>(SIMD::Int(0x3E75EAD4)); | 
 | 	ff = ff * f + As<SIMD::Float>(SIMD::Int(0x3F31727B)); | 
 | 	ff = ff * f + 1.0f; | 
 |  | 
 | 	return ii * ff; | 
 | } | 
 |  | 
 | RValue<SIMD::Float> Exp2(RValue<SIMD::Float> x, bool relaxedPrecision) | 
 | { | 
 | 	// Clamp to prevent overflow past the representation of infinity. | 
 | 	SIMD::Float x0 = x; | 
 | 	x0 = Min(x0, 128.0f); | 
 | 	x0 = Max(x0, As<SIMD::Float>(SIMD::Int(0xC2FDFFFF)));  // -126.999992 | 
 |  | 
 | 	if(SWIFTSHADER_LEGACY_PRECISION)  // TODO(chromium:1299047) | 
 | 	{ | 
 | 		return Exp2_legacy(x0); | 
 | 	} | 
 |  | 
 | 	SIMD::Float xi = Floor(x0); | 
 | 	SIMD::Float f = x0 - xi; | 
 |  | 
 | 	if(!relaxedPrecision)  // highp | 
 | 	{ | 
 | 		// Polynomial which approximates (2^x-x-1)/x. Multiplying with x | 
 | 		// gives us a correction term to be added to 1+x to obtain 2^x. | 
 | 		const SIMD::Float a = 1.8852974e-3f; | 
 | 		const SIMD::Float b = 8.9733787e-3f; | 
 | 		const SIMD::Float c = 5.5835927e-2f; | 
 | 		const SIMD::Float d = 2.4015281e-1f; | 
 | 		const SIMD::Float e = -3.0684753e-1f; | 
 |  | 
 | 		SIMD::Float r = MulAdd(MulAdd(MulAdd(MulAdd(a, f, b), f, c), f, d), f, e); | 
 |  | 
 | 		// bit_cast<float>(int(x * 2^23)) is a piecewise linear approximation of 2^x. | 
 | 		// See "Fast Exponential Computation on SIMD Architectures" by Malossi et al. | 
 | 		SIMD::Float y = MulAdd(r, f, x0); | 
 | 		SIMD::Int i = SIMD::Int(y * (1 << 23)) + (127 << 23); | 
 |  | 
 | 		return As<SIMD::Float>(i); | 
 | 	} | 
 | 	else  // RelaxedPrecision / mediump | 
 | 	{ | 
 | 		// Polynomial which approximates (2^x-x-1)/x. Multiplying with x | 
 | 		// gives us a correction term to be added to 1+x to obtain 2^x. | 
 | 		const SIMD::Float a = 7.8145574e-2f; | 
 | 		const SIMD::Float b = 2.2617357e-1f; | 
 | 		const SIMD::Float c = -3.0444314e-1f; | 
 |  | 
 | 		SIMD::Float r = MulAdd(MulAdd(a, f, b), f, c); | 
 |  | 
 | 		// bit_cast<float>(int(x * 2^23)) is a piecewise linear approximation of 2^x. | 
 | 		// See "Fast Exponential Computation on SIMD Architectures" by Malossi et al. | 
 | 		SIMD::Float y = MulAdd(r, f, x0); | 
 | 		SIMD::Int i = SIMD::Int(MulAdd((1 << 23), y, (127 << 23))); | 
 |  | 
 | 		return As<SIMD::Float>(i); | 
 | 	} | 
 | } | 
 |  | 
 | RValue<SIMD::Float> Log2_legacy(RValue<SIMD::Float> x) | 
 | { | 
 | 	SIMD::Float x1 = As<SIMD::Float>(As<SIMD::Int>(x) & SIMD::Int(0x7F800000)); | 
 | 	x1 = As<SIMD::Float>(As<SIMD::UInt>(x1) >> 8); | 
 | 	x1 = As<SIMD::Float>(As<SIMD::Int>(x1) | As<SIMD::Int>(SIMD::Float(1.0f))); | 
 | 	x1 = (x1 - 1.4960938f) * 256.0f; | 
 | 	SIMD::Float x0 = As<SIMD::Float>((As<SIMD::Int>(x) & SIMD::Int(0x007FFFFF)) | As<SIMD::Int>(SIMD::Float(1.0f))); | 
 |  | 
 | 	SIMD::Float x2 = MulAdd(MulAdd(9.5428179e-2f, x0, 4.7779095e-1f), x0, 1.9782813e-1f); | 
 | 	SIMD::Float x3 = MulAdd(MulAdd(MulAdd(1.6618466e-2f, x0, 2.0350508e-1f), x0, 2.7382900e-1f), x0, 4.0496687e-2f); | 
 |  | 
 | 	x1 += (x0 - 1.0f) * (x2 / x3); | 
 |  | 
 | 	SIMD::Int pos_inf_x = CmpEQ(As<SIMD::Int>(x), SIMD::Int(0x7F800000)); | 
 | 	return As<SIMD::Float>((pos_inf_x & As<SIMD::Int>(x)) | (~pos_inf_x & As<SIMD::Int>(x1))); | 
 | } | 
 |  | 
 | RValue<SIMD::Float> Log2(RValue<SIMD::Float> x, bool relaxedPrecision) | 
 | { | 
 | 	if(SWIFTSHADER_LEGACY_PRECISION)  // TODO(chromium:1299047) | 
 | 	{ | 
 | 		return Log2_legacy(x); | 
 | 	} | 
 |  | 
 | 	if(!relaxedPrecision)  // highp | 
 | 	{ | 
 | 		// Reinterpretation as an integer provides a piecewise linear | 
 | 		// approximation of log2(). Scale to the radix and subtract exponent bias. | 
 | 		SIMD::Int im = As<SIMD::Int>(x); | 
 | 		SIMD::Float y = SIMD::Float(im - (127 << 23)) * (1.0f / (1 << 23)); | 
 |  | 
 | 		// Handle log2(inf) = inf. | 
 | 		y = As<SIMD::Float>(As<SIMD::Int>(y) | (CmpEQ(im, 0x7F800000) & As<SIMD::Int>(SIMD::Float::infinity()))); | 
 |  | 
 | 		SIMD::Float m = SIMD::Float(im & 0x007FFFFF) * (1.0f / (1 << 23));  // Normalized mantissa of x. | 
 |  | 
 | 		// Add a polynomial approximation of log2(m+1)-m to the result's mantissa. | 
 | 		const SIMD::Float a = -9.3091638e-3f; | 
 | 		const SIMD::Float b = 5.2059003e-2f; | 
 | 		const SIMD::Float c = -1.3752135e-1f; | 
 | 		const SIMD::Float d = 2.4186478e-1f; | 
 | 		const SIMD::Float e = -3.4730109e-1f; | 
 | 		const SIMD::Float f = 4.786837e-1f; | 
 | 		const SIMD::Float g = -7.2116581e-1f; | 
 | 		const SIMD::Float h = 4.4268988e-1f; | 
 |  | 
 | 		SIMD::Float z = MulAdd(MulAdd(MulAdd(MulAdd(MulAdd(MulAdd(MulAdd(a, m, b), m, c), m, d), m, e), m, f), m, g), m, h); | 
 |  | 
 | 		return MulAdd(z, m, y); | 
 | 	} | 
 | 	else  // RelaxedPrecision / mediump | 
 | 	{ | 
 | 		// Reinterpretation as an integer provides a piecewise linear | 
 | 		// approximation of log2(). Scale to the radix and subtract exponent bias. | 
 | 		SIMD::Int im = As<SIMD::Int>(x); | 
 | 		SIMD::Float y = MulAdd(SIMD::Float(im), (1.0f / (1 << 23)), -127.0f); | 
 |  | 
 | 		// Handle log2(inf) = inf. | 
 | 		y = As<SIMD::Float>(As<SIMD::Int>(y) | (CmpEQ(im, 0x7F800000) & As<SIMD::Int>(SIMD::Float::infinity()))); | 
 |  | 
 | 		SIMD::Float m = SIMD::Float(im & 0x007FFFFF);  // Unnormalized mantissa of x. | 
 |  | 
 | 		// Add a polynomial approximation of log2(m+1)-m to the result's mantissa. | 
 | 		const SIMD::Float a = 2.8017103e-22f; | 
 | 		const SIMD::Float b = -8.373131e-15f; | 
 | 		const SIMD::Float c = 5.0615534e-8f; | 
 |  | 
 | 		SIMD::Float f = MulAdd(MulAdd(a, m, b), m, c); | 
 |  | 
 | 		return MulAdd(f, m, y); | 
 | 	} | 
 | } | 
 |  | 
 | RValue<SIMD::Float> Exp(RValue<SIMD::Float> x, bool relaxedPrecision) | 
 | { | 
 | 	return Exp2(1.44269504f * x, relaxedPrecision);  // 1/ln(2) | 
 | } | 
 |  | 
 | RValue<SIMD::Float> Log(RValue<SIMD::Float> x, bool relaxedPrecision) | 
 | { | 
 | 	return 6.93147181e-1f * Log2(x, relaxedPrecision);  // ln(2) | 
 | } | 
 |  | 
 | RValue<SIMD::Float> Pow(RValue<SIMD::Float> x, RValue<SIMD::Float> y, bool relaxedPrecision) | 
 | { | 
 | 	SIMD::Float log = Log2(x, relaxedPrecision); | 
 | 	log *= y; | 
 | 	return Exp2(log, relaxedPrecision); | 
 | } | 
 |  | 
 | RValue<SIMD::Float> Sinh(RValue<SIMD::Float> x, bool relaxedPrecision) | 
 | { | 
 | 	return (Exp(x, relaxedPrecision) - Exp(-x, relaxedPrecision)) * 0.5f; | 
 | } | 
 |  | 
 | RValue<SIMD::Float> Cosh(RValue<SIMD::Float> x, bool relaxedPrecision) | 
 | { | 
 | 	return (Exp(x, relaxedPrecision) + Exp(-x, relaxedPrecision)) * 0.5f; | 
 | } | 
 |  | 
 | RValue<SIMD::Float> Tanh(RValue<SIMD::Float> x, bool relaxedPrecision) | 
 | { | 
 | 	SIMD::Float e_x = Exp(x, relaxedPrecision); | 
 | 	SIMD::Float e_minus_x = Exp(-x, relaxedPrecision); | 
 | 	return (e_x - e_minus_x) / (e_x + e_minus_x); | 
 | } | 
 |  | 
 | RValue<SIMD::Float> Asinh(RValue<SIMD::Float> x, bool relaxedPrecision) | 
 | { | 
 | 	return Log(x + Sqrt(x * x + 1.0f, relaxedPrecision), relaxedPrecision); | 
 | } | 
 |  | 
 | RValue<SIMD::Float> Acosh(RValue<SIMD::Float> x, bool relaxedPrecision) | 
 | { | 
 | 	return Log(x + Sqrt(x + 1.0f, relaxedPrecision) * Sqrt(x - 1.0f, relaxedPrecision), relaxedPrecision); | 
 | } | 
 |  | 
 | RValue<SIMD::Float> Atanh(RValue<SIMD::Float> x, bool relaxedPrecision) | 
 | { | 
 | 	return Log((1.0f + x) / (1.0f - x), relaxedPrecision) * 0.5f; | 
 | } | 
 |  | 
 | RValue<SIMD::Float> Sqrt(RValue<SIMD::Float> x, bool relaxedPrecision) | 
 | { | 
 | 	return Sqrt(x);  // TODO(b/222218659): Optimize for relaxed precision. | 
 | } | 
 |  | 
 | std::pair<SIMD::Float, SIMD::Int> Frexp(RValue<SIMD::Float> val) | 
 | { | 
 | 	// Assumes IEEE 754 | 
 | 	auto isNotZero = CmpNEQ(val, 0.0f); | 
 | 	auto v = As<SIMD::Int>(val); | 
 | 	auto significand = As<SIMD::Float>((v & 0x807FFFFF) | (0x3F000000 & isNotZero)); | 
 |  | 
 | 	auto exponent = (((v >> 23) & 0xFF) - 126) & isNotZero; | 
 |  | 
 | 	return std::make_pair(significand, exponent); | 
 | } | 
 |  | 
 | RValue<SIMD::Float> Ldexp(RValue<SIMD::Float> significand, RValue<SIMD::Int> exponent) | 
 | { | 
 | 	// "load exponent" | 
 | 	// Ldexp(significand,exponent) computes | 
 | 	//     significand * 2**exponent | 
 | 	// with edge case handling as permitted by the spec. | 
 | 	// | 
 | 	// The interesting cases are: | 
 | 	// - significand is subnormal and the exponent is positive. The mantissa | 
 | 	//   bits of the significand shift left. The result *may* be normal, and | 
 | 	//   in that case the leading 1 bit in the mantissa is no longer explicitly | 
 | 	//   represented. Computing the result with bit operations would be quite | 
 | 	//   complex. | 
 | 	// - significand has very small magnitude, and exponent is large. | 
 | 	//   Example:  significand = 0x1p-125,  exponent = 250, result 0x1p125 | 
 | 	//   If we compute the result directly with the reference formula, then | 
 | 	//   the intermediate value 2.0**exponent overflows, and then the result | 
 | 	//   would overflow. Instead, it is sufficient to split the exponent | 
 | 	//   and use two multiplies: | 
 | 	//       (significand * 2**(exponent/2)) * (2**(exponent - exponent/2)) | 
 | 	//   In this formulation, the intermediates will not overflow when the | 
 | 	//   correct result does not overflow. Also, this method naturally handles | 
 | 	//   underflows, infinities, and NaNs. | 
 | 	// | 
 | 	// This implementation uses the two-multiplies approach described above, | 
 | 	// and also used by Mesa. | 
 | 	// | 
 | 	// The SPIR-V GLSL.std.450 extended instruction spec says: | 
 | 	// | 
 | 	//  if exponent < -126 the result may be flushed to zero | 
 | 	//  if exponent > 128 the result may be undefined | 
 | 	// | 
 | 	// Clamping exponent to [-254,254] allows us implement well beyond | 
 | 	// what is required by the spec, but still use simple algorithms. | 
 | 	// | 
 | 	// We decompose as follows: | 
 | 	//        2 ** exponent = powA * powB | 
 | 	// where | 
 | 	//        powA = 2 ** (exponent / 2) | 
 | 	//        powB = 2 ** (exponent - exponent / 2) | 
 | 	// | 
 | 	// We use a helper expression to compute these powers of two as float | 
 | 	// numbers using bit shifts, where X is an unbiased integer exponent | 
 | 	// in range [-127,127]: | 
 | 	// | 
 | 	//        pow2i(X) = As<SIMD::Float>((X + 127)<<23) | 
 | 	// | 
 | 	// This places the biased exponent into position, and places all | 
 | 	// zeroes in the mantissa bit positions. The implicit 1 bit in the | 
 | 	// mantissa is hidden. When X = -127, the result is float 0.0, as | 
 | 	// if the value was flushed to zero. Otherwise X is in [-126,127] | 
 | 	// and the biased exponent is in [1,254] and the result is a normal | 
 | 	// float number with value 2**X. | 
 | 	// | 
 | 	// So we have: | 
 | 	// | 
 | 	//        powA = pow2i(exponent/2) | 
 | 	//        powB = pow2i(exponent - exponent/2) | 
 | 	// | 
 | 	// With exponent in [-254,254], we split into cases: | 
 | 	// | 
 | 	//     exponent = -254: | 
 | 	//        exponent/2 = -127 | 
 | 	//        exponent - exponent/2 = -127 | 
 | 	//        powA = pow2i(exponent/2) = pow2i(-127) = 0.0 | 
 | 	//        powA * powB is 0.0, which is a permitted flush-to-zero case. | 
 | 	// | 
 | 	//     exponent = -253: | 
 | 	//        exponent/2 = -126 | 
 | 	//        (exponent - exponent/2) = -127 | 
 | 	//        powB = pow2i(exponent - exponent/2) = pow2i(-127) = 0.0 | 
 | 	//        powA * powB is 0.0, which is a permitted flush-to-zero case. | 
 | 	// | 
 | 	//     exponent in [-252,254]: | 
 | 	//        exponent/2 is in [-126, 127] | 
 | 	//        (exponent - exponent/2) is in [-126, 127] | 
 | 	// | 
 | 	//        powA = pow2i(exponent/2), a normal number | 
 | 	//        powB = pow2i(exponent - exponent/2), a normal number | 
 | 	// | 
 | 	// For the Mesa implementation, see | 
 | 	// https://gitlab.freedesktop.org/mesa/mesa/-/blob/1eb7a85b55f0c7c2de6f5dac7b5f6209a6eb401c/src/compiler/nir/nir_opt_algebraic.py#L2241 | 
 |  | 
 | 	// Clamp exponent to limits | 
 | 	auto exp = Min(Max(exponent, -254), 254); | 
 |  | 
 | 	// Split exponent into two terms | 
 | 	auto expA = exp >> 1; | 
 | 	auto expB = exp - expA; | 
 | 	// Construct two powers of 2 with the exponents above | 
 | 	auto powA = As<SIMD::Float>((expA + 127) << 23); | 
 | 	auto powB = As<SIMD::Float>((expB + 127) << 23); | 
 |  | 
 | 	// Multiply the input value by the two powers to get the final value. | 
 | 	// Note that multiplying powA and powB together may result in an overflow, | 
 | 	// so ensure that significand is multiplied by powA, *then* the result of that with powB. | 
 | 	return (significand * powA) * powB; | 
 | } | 
 |  | 
 | UInt4 halfToFloatBits(RValue<UInt4> halfBits) | 
 | { | 
 | 	auto magic = UInt4(126 << 23); | 
 |  | 
 | 	auto sign16 = halfBits & UInt4(0x8000); | 
 | 	auto man16 = halfBits & UInt4(0x03FF); | 
 | 	auto exp16 = halfBits & UInt4(0x7C00); | 
 |  | 
 | 	auto isDnormOrZero = CmpEQ(exp16, UInt4(0)); | 
 | 	auto isInfOrNaN = CmpEQ(exp16, UInt4(0x7C00)); | 
 |  | 
 | 	auto sign32 = sign16 << 16; | 
 | 	auto man32 = man16 << 13; | 
 | 	auto exp32 = (exp16 + UInt4(0x1C000)) << 13; | 
 | 	auto norm32 = (man32 | exp32) | (isInfOrNaN & UInt4(0x7F800000)); | 
 |  | 
 | 	auto denorm32 = As<UInt4>(As<Float4>(magic + man16) - As<Float4>(magic)); | 
 |  | 
 | 	return sign32 | (norm32 & ~isDnormOrZero) | (denorm32 & isDnormOrZero); | 
 | } | 
 |  | 
 | UInt4 floatToHalfBits(RValue<UInt4> floatBits, bool storeInUpperBits) | 
 | { | 
 | 	UInt4 sign = floatBits & UInt4(0x80000000); | 
 | 	UInt4 abs = floatBits & UInt4(0x7FFFFFFF); | 
 |  | 
 | 	UInt4 normal = CmpNLE(abs, UInt4(0x38800000)); | 
 |  | 
 | 	UInt4 mantissa = (abs & UInt4(0x007FFFFF)) | UInt4(0x00800000); | 
 | 	UInt4 e = UInt4(113) - (abs >> 23); | 
 | 	UInt4 denormal = CmpLT(e, UInt4(24)) & (mantissa >> e); | 
 |  | 
 | 	UInt4 base = (normal & abs) | (~normal & denormal);  // TODO: IfThenElse() | 
 |  | 
 | 	// float exponent bias is 127, half bias is 15, so adjust by -112 | 
 | 	UInt4 bias = normal & UInt4(0xC8000000); | 
 |  | 
 | 	UInt4 rounded = base + bias + UInt4(0x00000FFF) + ((base >> 13) & UInt4(1)); | 
 | 	UInt4 fp16u = rounded >> 13; | 
 |  | 
 | 	// Infinity | 
 | 	fp16u |= CmpNLE(abs, UInt4(0x47FFEFFF)) & UInt4(0x7FFF); | 
 |  | 
 | 	return storeInUpperBits ? (sign | (fp16u << 16)) : ((sign >> 16) | fp16u); | 
 | } | 
 |  | 
 | SIMD::Float linearToSRGB(const SIMD::Float &c) | 
 | { | 
 | 	SIMD::Float lc = c * 12.92f; | 
 | 	SIMD::Float ec = MulAdd(1.055f, Pow<Mediump>(c, (1.0f / 2.4f)), -0.055f);  // TODO(b/149574741): Use a custom approximation. | 
 |  | 
 | 	SIMD::Int linear = CmpLT(c, 0.0031308f); | 
 | 	return As<SIMD::Float>((linear & As<SIMD::Int>(lc)) | (~linear & As<SIMD::Int>(ec)));  // TODO: IfThenElse() | 
 | } | 
 |  | 
 | SIMD::Float sRGBtoLinear(const SIMD::Float &c) | 
 | { | 
 | 	SIMD::Float lc = c * (1.0f / 12.92f); | 
 | 	SIMD::Float ec = Pow<Mediump>(MulAdd(c, 1.0f / 1.055f, 0.055f / 1.055f), 2.4f);  // TODO(b/149574741): Use a custom approximation. | 
 |  | 
 | 	SIMD::Int linear = CmpLT(c, 0.04045f); | 
 | 	return As<SIMD::Float>((linear & As<SIMD::Int>(lc)) | (~linear & As<SIMD::Int>(ec)));  // TODO: IfThenElse() | 
 | } | 
 |  | 
 | RValue<Float4> reciprocal(RValue<Float4> x, bool pp, bool exactAtPow2) | 
 | { | 
 | 	return Rcp(x, pp, exactAtPow2); | 
 | } | 
 |  | 
 | RValue<SIMD::Float> reciprocal(RValue<SIMD::Float> x, bool pp, bool exactAtPow2) | 
 | { | 
 | 	return Rcp(x, pp, exactAtPow2); | 
 | } | 
 |  | 
 | RValue<Float4> reciprocalSquareRoot(RValue<Float4> x, bool absolute, bool pp) | 
 | { | 
 | 	Float4 abs = x; | 
 |  | 
 | 	if(absolute) | 
 | 	{ | 
 | 		abs = Abs(abs); | 
 | 	} | 
 |  | 
 | 	return Rcp(abs, pp); | 
 | } | 
 |  | 
 | // TODO(chromium:1299047): Eliminate when Chromium tests accept both fused and unfused multiply-add. | 
 | RValue<SIMD::Float> mulAdd(RValue<SIMD::Float> x, RValue<SIMD::Float> y, RValue<SIMD::Float> z) | 
 | { | 
 | 	if(SWIFTSHADER_LEGACY_PRECISION) | 
 | 	{ | 
 | 		return x * y + z; | 
 | 	} | 
 |  | 
 | 	return MulAdd(x, y, z); | 
 | } | 
 |  | 
 | RValue<Float4> Pow(RValue<Float4> x, RValue<Float4> y, bool relaxedPrecision) | 
 | { | 
 | 	// TODO(b/214588983): Eliminate by using only the wide SIMD variant (or specialize or templatize the implementation). | 
 | 	SIMD::Float xx; | 
 | 	SIMD::Float yy; | 
 | 	xx = Insert128(xx, x, 0); | 
 | 	yy = Insert128(yy, y, 0); | 
 | 	return Extract128(Pow(xx, yy, relaxedPrecision), 0); | 
 | } | 
 |  | 
 | RValue<Float4> Sqrt(RValue<Float4> x, bool relaxedPrecision) | 
 | { | 
 | 	// TODO(b/214588983): Eliminate by using only the wide SIMD variant (or specialize or templatize the implementation). | 
 | 	SIMD::Float xx; | 
 | 	xx = Insert128(xx, x, 0); | 
 | 	return Extract128(Sqrt(xx, relaxedPrecision), 0); | 
 | } | 
 |  | 
 | void transpose4x4(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3) | 
 | { | 
 | 	Int2 tmp0 = UnpackHigh(row0, row1); | 
 | 	Int2 tmp1 = UnpackHigh(row2, row3); | 
 | 	Int2 tmp2 = UnpackLow(row0, row1); | 
 | 	Int2 tmp3 = UnpackLow(row2, row3); | 
 |  | 
 | 	row0 = UnpackLow(tmp2, tmp3); | 
 | 	row1 = UnpackHigh(tmp2, tmp3); | 
 | 	row2 = UnpackLow(tmp0, tmp1); | 
 | 	row3 = UnpackHigh(tmp0, tmp1); | 
 | } | 
 |  | 
 | void transpose4x3(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3) | 
 | { | 
 | 	Int2 tmp0 = UnpackHigh(row0, row1); | 
 | 	Int2 tmp1 = UnpackHigh(row2, row3); | 
 | 	Int2 tmp2 = UnpackLow(row0, row1); | 
 | 	Int2 tmp3 = UnpackLow(row2, row3); | 
 |  | 
 | 	row0 = UnpackLow(tmp2, tmp3); | 
 | 	row1 = UnpackHigh(tmp2, tmp3); | 
 | 	row2 = UnpackLow(tmp0, tmp1); | 
 | } | 
 |  | 
 | void transpose4x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) | 
 | { | 
 | 	Float4 tmp0 = UnpackLow(row0, row1); | 
 | 	Float4 tmp1 = UnpackLow(row2, row3); | 
 | 	Float4 tmp2 = UnpackHigh(row0, row1); | 
 | 	Float4 tmp3 = UnpackHigh(row2, row3); | 
 |  | 
 | 	row0 = Float4(tmp0.xy, tmp1.xy); | 
 | 	row1 = Float4(tmp0.zw, tmp1.zw); | 
 | 	row2 = Float4(tmp2.xy, tmp3.xy); | 
 | 	row3 = Float4(tmp2.zw, tmp3.zw); | 
 | } | 
 |  | 
 | void transpose4x4zyxw(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) | 
 | { | 
 | 	Float4 tmp0 = UnpackLow(row0, row1); | 
 | 	Float4 tmp1 = UnpackLow(row2, row3); | 
 | 	Float4 tmp2 = UnpackHigh(row0, row1); | 
 | 	Float4 tmp3 = UnpackHigh(row2, row3); | 
 |  | 
 | 	row2 = Float4(tmp0.xy, tmp1.xy); | 
 | 	row1 = Float4(tmp0.zw, tmp1.zw); | 
 | 	row0 = Float4(tmp2.xy, tmp3.xy); | 
 | 	row3 = Float4(tmp2.zw, tmp3.zw); | 
 | } | 
 |  | 
 | void transpose4x3(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) | 
 | { | 
 | 	Float4 tmp0 = UnpackLow(row0, row1); | 
 | 	Float4 tmp1 = UnpackLow(row2, row3); | 
 | 	Float4 tmp2 = UnpackHigh(row0, row1); | 
 | 	Float4 tmp3 = UnpackHigh(row2, row3); | 
 |  | 
 | 	row0 = Float4(tmp0.xy, tmp1.xy); | 
 | 	row1 = Float4(tmp0.zw, tmp1.zw); | 
 | 	row2 = Float4(tmp2.xy, tmp3.xy); | 
 | } | 
 |  | 
 | void transpose4x2(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) | 
 | { | 
 | 	Float4 tmp0 = UnpackLow(row0, row1); | 
 | 	Float4 tmp1 = UnpackLow(row2, row3); | 
 |  | 
 | 	row0 = Float4(tmp0.xy, tmp1.xy); | 
 | 	row1 = Float4(tmp0.zw, tmp1.zw); | 
 | } | 
 |  | 
 | void transpose4x1(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) | 
 | { | 
 | 	Float4 tmp0 = UnpackLow(row0, row1); | 
 | 	Float4 tmp1 = UnpackLow(row2, row3); | 
 |  | 
 | 	row0 = Float4(tmp0.xy, tmp1.xy); | 
 | } | 
 |  | 
 | void transpose2x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) | 
 | { | 
 | 	Float4 tmp01 = UnpackLow(row0, row1); | 
 | 	Float4 tmp23 = UnpackHigh(row0, row1); | 
 |  | 
 | 	row0 = tmp01; | 
 | 	row1 = Float4(tmp01.zw, row1.zw); | 
 | 	row2 = tmp23; | 
 | 	row3 = Float4(tmp23.zw, row3.zw); | 
 | } | 
 |  | 
 | void transpose4xN(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3, int N) | 
 | { | 
 | 	switch(N) | 
 | 	{ | 
 | 	case 1: transpose4x1(row0, row1, row2, row3); break; | 
 | 	case 2: transpose4x2(row0, row1, row2, row3); break; | 
 | 	case 3: transpose4x3(row0, row1, row2, row3); break; | 
 | 	case 4: transpose4x4(row0, row1, row2, row3); break; | 
 | 	} | 
 | } | 
 |  | 
 | SIMD::UInt halfToFloatBits(SIMD::UInt halfBits) | 
 | { | 
 | 	auto magic = SIMD::UInt(126 << 23); | 
 |  | 
 | 	auto sign16 = halfBits & SIMD::UInt(0x8000); | 
 | 	auto man16 = halfBits & SIMD::UInt(0x03FF); | 
 | 	auto exp16 = halfBits & SIMD::UInt(0x7C00); | 
 |  | 
 | 	auto isDnormOrZero = CmpEQ(exp16, SIMD::UInt(0)); | 
 | 	auto isInfOrNaN = CmpEQ(exp16, SIMD::UInt(0x7C00)); | 
 |  | 
 | 	auto sign32 = sign16 << 16; | 
 | 	auto man32 = man16 << 13; | 
 | 	auto exp32 = (exp16 + SIMD::UInt(0x1C000)) << 13; | 
 | 	auto norm32 = (man32 | exp32) | (isInfOrNaN & SIMD::UInt(0x7F800000)); | 
 |  | 
 | 	auto denorm32 = As<SIMD::UInt>(As<SIMD::Float>(magic + man16) - As<SIMD::Float>(magic)); | 
 |  | 
 | 	return sign32 | (norm32 & ~isDnormOrZero) | (denorm32 & isDnormOrZero); | 
 | } | 
 |  | 
 | SIMD::UInt floatToHalfBits(SIMD::UInt floatBits, bool storeInUpperBits) | 
 | { | 
 | 	SIMD::UInt sign = floatBits & SIMD::UInt(0x80000000); | 
 | 	SIMD::UInt abs = floatBits & SIMD::UInt(0x7FFFFFFF); | 
 |  | 
 | 	SIMD::UInt normal = CmpNLE(abs, SIMD::UInt(0x38800000)); | 
 |  | 
 | 	SIMD::UInt mantissa = (abs & SIMD::UInt(0x007FFFFF)) | SIMD::UInt(0x00800000); | 
 | 	SIMD::UInt e = SIMD::UInt(113) - (abs >> 23); | 
 | 	SIMD::UInt denormal = CmpLT(e, SIMD::UInt(24)) & (mantissa >> e); | 
 |  | 
 | 	SIMD::UInt base = (normal & abs) | (~normal & denormal);  // TODO: IfThenElse() | 
 |  | 
 | 	// float exponent bias is 127, half bias is 15, so adjust by -112 | 
 | 	SIMD::UInt bias = normal & SIMD::UInt(0xC8000000); | 
 |  | 
 | 	SIMD::UInt rounded = base + bias + SIMD::UInt(0x00000FFF) + ((base >> 13) & SIMD::UInt(1)); | 
 | 	SIMD::UInt fp16u = rounded >> 13; | 
 |  | 
 | 	// Infinity | 
 | 	fp16u |= CmpNLE(abs, SIMD::UInt(0x47FFEFFF)) & SIMD::UInt(0x7FFF); | 
 |  | 
 | 	return storeInUpperBits ? (sign | (fp16u << 16)) : ((sign >> 16) | fp16u); | 
 | } | 
 |  | 
 | Float4 r11g11b10Unpack(UInt r11g11b10bits) | 
 | { | 
 | 	// 10 (or 11) bit float formats are unsigned formats with a 5 bit exponent and a 5 (or 6) bit mantissa. | 
 | 	// Since the Half float format also has a 5 bit exponent, we can convert these formats to half by | 
 | 	// copy/pasting the bits so the the exponent bits and top mantissa bits are aligned to the half format. | 
 | 	// In this case, we have: | 
 | 	// MSB | B B B B B B B B B B G G G G G G G G G G G R R R R R R R R R R R | LSB | 
 | 	UInt4 halfBits; | 
 | 	halfBits = Insert(halfBits, (r11g11b10bits & UInt(0x000007FFu)) << 4, 0); | 
 | 	halfBits = Insert(halfBits, (r11g11b10bits & UInt(0x003FF800u)) >> 7, 1); | 
 | 	halfBits = Insert(halfBits, (r11g11b10bits & UInt(0xFFC00000u)) >> 17, 2); | 
 | 	halfBits = Insert(halfBits, UInt(0x00003C00u), 3); | 
 | 	return As<Float4>(halfToFloatBits(halfBits)); | 
 | } | 
 |  | 
 | UInt r11g11b10Pack(const Float4 &value) | 
 | { | 
 | 	// 10 and 11 bit floats are unsigned, so their minimal value is 0 | 
 | 	auto halfBits = floatToHalfBits(As<UInt4>(Max(value, Float4(0.0f))), true); | 
 | 	// Truncates instead of rounding. See b/147900455 | 
 | 	UInt4 truncBits = halfBits & UInt4(0x7FF00000, 0x7FF00000, 0x7FE00000, 0); | 
 | 	return (UInt(truncBits.x) >> 20) | (UInt(truncBits.y) >> 9) | (UInt(truncBits.z) << 1); | 
 | } | 
 |  | 
 | Float4 linearToSRGB(const Float4 &c) | 
 | { | 
 | 	Float4 lc = c * 12.92f; | 
 | 	Float4 ec = MulAdd(1.055f, Pow<Mediump>(c, (1.0f / 2.4f)), -0.055f);  // TODO(b/149574741): Use a custom approximation. | 
 |  | 
 | 	Int4 linear = CmpLT(c, 0.0031308f); | 
 | 	return As<Float4>((linear & As<Int4>(lc)) | (~linear & As<Int4>(ec)));  // TODO: IfThenElse() | 
 | } | 
 |  | 
 | Float4 sRGBtoLinear(const Float4 &c) | 
 | { | 
 | 	Float4 lc = c * (1.0f / 12.92f); | 
 | 	Float4 ec = Pow<Mediump>(MulAdd(c, 1.0f / 1.055f, 0.055f / 1.055f), 2.4f);  // TODO(b/149574741): Use a custom approximation. | 
 |  | 
 | 	Int4 linear = CmpLT(c, 0.04045f); | 
 | 	return As<Float4>((linear & As<Int4>(lc)) | (~linear & As<Int4>(ec)));  // TODO: IfThenElse() | 
 | } | 
 |  | 
 | rr::RValue<SIMD::Float> Sign(const rr::RValue<SIMD::Float> &val) | 
 | { | 
 | 	return rr::As<SIMD::Float>((rr::As<SIMD::UInt>(val) & SIMD::UInt(0x80000000)) | SIMD::UInt(0x3f800000)); | 
 | } | 
 |  | 
 | // Returns the <whole, frac> of val. | 
 | // Both whole and frac will have the same sign as val. | 
 | std::pair<rr::RValue<SIMD::Float>, rr::RValue<SIMD::Float>> | 
 | Modf(const rr::RValue<SIMD::Float> &val) | 
 | { | 
 | 	auto abs = Abs(val); | 
 | 	auto sign = Sign(val); | 
 | 	auto whole = Floor(abs) * sign; | 
 | 	auto frac = Frac(abs) * sign; | 
 | 	return std::make_pair(whole, frac); | 
 | } | 
 |  | 
 | // Returns the number of 1s in bits, per lane. | 
 | SIMD::UInt CountBits(const rr::RValue<SIMD::UInt> &bits) | 
 | { | 
 | 	// TODO: Add an intrinsic to reactor. Even if there isn't a | 
 | 	// single vector instruction, there may be target-dependent | 
 | 	// ways to make this faster. | 
 | 	// https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel | 
 | 	SIMD::UInt c = bits - ((bits >> 1) & SIMD::UInt(0x55555555)); | 
 | 	c = ((c >> 2) & SIMD::UInt(0x33333333)) + (c & SIMD::UInt(0x33333333)); | 
 | 	c = ((c >> 4) + c) & SIMD::UInt(0x0F0F0F0F); | 
 | 	c = ((c >> 8) + c) & SIMD::UInt(0x00FF00FF); | 
 | 	c = ((c >> 16) + c) & SIMD::UInt(0x0000FFFF); | 
 | 	return c; | 
 | } | 
 |  | 
 | // Returns 1 << bits. | 
 | // If the resulting bit overflows a 32 bit integer, 0 is returned. | 
 | rr::RValue<SIMD::UInt> NthBit32(const rr::RValue<SIMD::UInt> &bits) | 
 | { | 
 | 	return ((SIMD::UInt(1) << bits) & CmpLT(bits, SIMD::UInt(32))); | 
 | } | 
 |  | 
 | // Returns bitCount number of of 1's starting from the LSB. | 
 | rr::RValue<SIMD::UInt> Bitmask32(const rr::RValue<SIMD::UInt> &bitCount) | 
 | { | 
 | 	return NthBit32(bitCount) - SIMD::UInt(1); | 
 | } | 
 |  | 
 | // Returns y if y < x; otherwise result is x. | 
 | // If one operand is a NaN, the other operand is the result. | 
 | // If both operands are NaN, the result is a NaN. | 
 | rr::RValue<SIMD::Float> NMin(const rr::RValue<SIMD::Float> &x, const rr::RValue<SIMD::Float> &y) | 
 | { | 
 | 	auto xIsNan = IsNan(x); | 
 | 	auto yIsNan = IsNan(y); | 
 | 	return As<SIMD::Float>( | 
 | 	    // If neither are NaN, return min | 
 | 	    ((~xIsNan & ~yIsNan) & As<SIMD::Int>(Min(x, y))) | | 
 | 	    // If one operand is a NaN, the other operand is the result | 
 | 	    // If both operands are NaN, the result is a NaN. | 
 | 	    ((~xIsNan & yIsNan) & As<SIMD::Int>(x)) | | 
 | 	    (xIsNan & As<SIMD::Int>(y))); | 
 | } | 
 |  | 
 | // Returns y if y > x; otherwise result is x. | 
 | // If one operand is a NaN, the other operand is the result. | 
 | // If both operands are NaN, the result is a NaN. | 
 | rr::RValue<SIMD::Float> NMax(const rr::RValue<SIMD::Float> &x, const rr::RValue<SIMD::Float> &y) | 
 | { | 
 | 	auto xIsNan = IsNan(x); | 
 | 	auto yIsNan = IsNan(y); | 
 | 	return As<SIMD::Float>( | 
 | 	    // If neither are NaN, return max | 
 | 	    ((~xIsNan & ~yIsNan) & As<SIMD::Int>(Max(x, y))) | | 
 | 	    // If one operand is a NaN, the other operand is the result | 
 | 	    // If both operands are NaN, the result is a NaN. | 
 | 	    ((~xIsNan & yIsNan) & As<SIMD::Int>(x)) | | 
 | 	    (xIsNan & As<SIMD::Int>(y))); | 
 | } | 
 |  | 
 | // Returns the determinant of a 2x2 matrix. | 
 | rr::RValue<SIMD::Float> Determinant( | 
 |     const rr::RValue<SIMD::Float> &a, const rr::RValue<SIMD::Float> &b, | 
 |     const rr::RValue<SIMD::Float> &c, const rr::RValue<SIMD::Float> &d) | 
 | { | 
 | 	return a * d - b * c; | 
 | } | 
 |  | 
 | // Returns the determinant of a 3x3 matrix. | 
 | rr::RValue<SIMD::Float> Determinant( | 
 |     const rr::RValue<SIMD::Float> &a, const rr::RValue<SIMD::Float> &b, const rr::RValue<SIMD::Float> &c, | 
 |     const rr::RValue<SIMD::Float> &d, const rr::RValue<SIMD::Float> &e, const rr::RValue<SIMD::Float> &f, | 
 |     const rr::RValue<SIMD::Float> &g, const rr::RValue<SIMD::Float> &h, const rr::RValue<SIMD::Float> &i) | 
 | { | 
 | 	return a * e * i + b * f * g + c * d * h - c * e * g - b * d * i - a * f * h; | 
 | } | 
 |  | 
 | // Returns the determinant of a 4x4 matrix. | 
 | rr::RValue<SIMD::Float> Determinant( | 
 |     const rr::RValue<SIMD::Float> &a, const rr::RValue<SIMD::Float> &b, const rr::RValue<SIMD::Float> &c, const rr::RValue<SIMD::Float> &d, | 
 |     const rr::RValue<SIMD::Float> &e, const rr::RValue<SIMD::Float> &f, const rr::RValue<SIMD::Float> &g, const rr::RValue<SIMD::Float> &h, | 
 |     const rr::RValue<SIMD::Float> &i, const rr::RValue<SIMD::Float> &j, const rr::RValue<SIMD::Float> &k, const rr::RValue<SIMD::Float> &l, | 
 |     const rr::RValue<SIMD::Float> &m, const rr::RValue<SIMD::Float> &n, const rr::RValue<SIMD::Float> &o, const rr::RValue<SIMD::Float> &p) | 
 | { | 
 | 	return a * Determinant(f, g, h, | 
 | 	                       j, k, l, | 
 | 	                       n, o, p) - | 
 | 	       b * Determinant(e, g, h, | 
 | 	                       i, k, l, | 
 | 	                       m, o, p) + | 
 | 	       c * Determinant(e, f, h, | 
 | 	                       i, j, l, | 
 | 	                       m, n, p) - | 
 | 	       d * Determinant(e, f, g, | 
 | 	                       i, j, k, | 
 | 	                       m, n, o); | 
 | } | 
 |  | 
 | // Returns the inverse of a 2x2 matrix. | 
 | std::array<rr::RValue<SIMD::Float>, 4> MatrixInverse( | 
 |     const rr::RValue<SIMD::Float> &a, const rr::RValue<SIMD::Float> &b, | 
 |     const rr::RValue<SIMD::Float> &c, const rr::RValue<SIMD::Float> &d) | 
 | { | 
 | 	auto s = SIMD::Float(1.0f) / Determinant(a, b, c, d); | 
 | 	return { { s * d, -s * b, -s * c, s * a } }; | 
 | } | 
 |  | 
 | // Returns the inverse of a 3x3 matrix. | 
 | std::array<rr::RValue<SIMD::Float>, 9> MatrixInverse( | 
 |     const rr::RValue<SIMD::Float> &a, const rr::RValue<SIMD::Float> &b, const rr::RValue<SIMD::Float> &c, | 
 |     const rr::RValue<SIMD::Float> &d, const rr::RValue<SIMD::Float> &e, const rr::RValue<SIMD::Float> &f, | 
 |     const rr::RValue<SIMD::Float> &g, const rr::RValue<SIMD::Float> &h, const rr::RValue<SIMD::Float> &i) | 
 | { | 
 | 	auto s = SIMD::Float(1.0f) / Determinant( | 
 | 	                                 a, b, c, | 
 | 	                                 d, e, f, | 
 | 	                                 g, h, i);  // TODO: duplicate arithmetic calculating the det and below. | 
 |  | 
 | 	return { { | 
 | 		s * (e * i - f * h), | 
 | 		s * (c * h - b * i), | 
 | 		s * (b * f - c * e), | 
 | 		s * (f * g - d * i), | 
 | 		s * (a * i - c * g), | 
 | 		s * (c * d - a * f), | 
 | 		s * (d * h - e * g), | 
 | 		s * (b * g - a * h), | 
 | 		s * (a * e - b * d), | 
 | 	} }; | 
 | } | 
 |  | 
 | // Returns the inverse of a 4x4 matrix. | 
 | std::array<rr::RValue<SIMD::Float>, 16> MatrixInverse( | 
 |     const rr::RValue<SIMD::Float> &a, const rr::RValue<SIMD::Float> &b, const rr::RValue<SIMD::Float> &c, const rr::RValue<SIMD::Float> &d, | 
 |     const rr::RValue<SIMD::Float> &e, const rr::RValue<SIMD::Float> &f, const rr::RValue<SIMD::Float> &g, const rr::RValue<SIMD::Float> &h, | 
 |     const rr::RValue<SIMD::Float> &i, const rr::RValue<SIMD::Float> &j, const rr::RValue<SIMD::Float> &k, const rr::RValue<SIMD::Float> &l, | 
 |     const rr::RValue<SIMD::Float> &m, const rr::RValue<SIMD::Float> &n, const rr::RValue<SIMD::Float> &o, const rr::RValue<SIMD::Float> &p) | 
 | { | 
 | 	auto s = SIMD::Float(1.0f) / Determinant( | 
 | 	                                 a, b, c, d, | 
 | 	                                 e, f, g, h, | 
 | 	                                 i, j, k, l, | 
 | 	                                 m, n, o, p);  // TODO: duplicate arithmetic calculating the det and below. | 
 |  | 
 | 	auto kplo = k * p - l * o, jpln = j * p - l * n, jokn = j * o - k * n; | 
 | 	auto gpho = g * p - h * o, fphn = f * p - h * n, fogn = f * o - g * n; | 
 | 	auto glhk = g * l - h * k, flhj = f * l - h * j, fkgj = f * k - g * j; | 
 | 	auto iplm = i * p - l * m, iokm = i * o - k * m, ephm = e * p - h * m; | 
 | 	auto eogm = e * o - g * m, elhi = e * l - h * i, ekgi = e * k - g * i; | 
 | 	auto injm = i * n - j * m, enfm = e * n - f * m, ejfi = e * j - f * i; | 
 |  | 
 | 	return { { | 
 | 		s * (f * kplo - g * jpln + h * jokn), | 
 | 		s * (-b * kplo + c * jpln - d * jokn), | 
 | 		s * (b * gpho - c * fphn + d * fogn), | 
 | 		s * (-b * glhk + c * flhj - d * fkgj), | 
 |  | 
 | 		s * (-e * kplo + g * iplm - h * iokm), | 
 | 		s * (a * kplo - c * iplm + d * iokm), | 
 | 		s * (-a * gpho + c * ephm - d * eogm), | 
 | 		s * (a * glhk - c * elhi + d * ekgi), | 
 |  | 
 | 		s * (e * jpln - f * iplm + h * injm), | 
 | 		s * (-a * jpln + b * iplm - d * injm), | 
 | 		s * (a * fphn - b * ephm + d * enfm), | 
 | 		s * (-a * flhj + b * elhi - d * ejfi), | 
 |  | 
 | 		s * (-e * jokn + f * iokm - g * injm), | 
 | 		s * (a * jokn - b * iokm + c * injm), | 
 | 		s * (-a * fogn + b * eogm - c * enfm), | 
 | 		s * (a * fkgj - b * ekgi + c * ejfi), | 
 | 	} }; | 
 | } | 
 |  | 
 | }  // namespace sw |