| //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the AsmPrinter class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "asm-printer" |
| #include "llvm/CodeGen/AsmPrinter.h" |
| #include "DwarfDebug.h" |
| #include "DwarfException.h" |
| #include "llvm/Module.h" |
| #include "llvm/CodeGen/GCMetadataPrinter.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/DebugInfo.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/MC/MCSection.h" |
| #include "llvm/MC/MCStreamer.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/Target/Mangler.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetLoweringObjectFile.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Format.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Timer.h" |
| using namespace llvm; |
| |
| static const char *DWARFGroupName = "DWARF Emission"; |
| static const char *DbgTimerName = "DWARF Debug Writer"; |
| static const char *EHTimerName = "DWARF Exception Writer"; |
| |
| STATISTIC(EmittedInsts, "Number of machine instrs printed"); |
| |
| char AsmPrinter::ID = 0; |
| |
| typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type; |
| static gcp_map_type &getGCMap(void *&P) { |
| if (P == 0) |
| P = new gcp_map_type(); |
| return *(gcp_map_type*)P; |
| } |
| |
| |
| /// getGVAlignmentLog2 - Return the alignment to use for the specified global |
| /// value in log2 form. This rounds up to the preferred alignment if possible |
| /// and legal. |
| static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD, |
| unsigned InBits = 0) { |
| unsigned NumBits = 0; |
| if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) |
| NumBits = TD.getPreferredAlignmentLog(GVar); |
| |
| // If InBits is specified, round it to it. |
| if (InBits > NumBits) |
| NumBits = InBits; |
| |
| // If the GV has a specified alignment, take it into account. |
| if (GV->getAlignment() == 0) |
| return NumBits; |
| |
| unsigned GVAlign = Log2_32(GV->getAlignment()); |
| |
| // If the GVAlign is larger than NumBits, or if we are required to obey |
| // NumBits because the GV has an assigned section, obey it. |
| if (GVAlign > NumBits || GV->hasSection()) |
| NumBits = GVAlign; |
| return NumBits; |
| } |
| |
| |
| |
| |
| AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer) |
| : MachineFunctionPass(ID), |
| TM(tm), MAI(tm.getMCAsmInfo()), |
| OutContext(Streamer.getContext()), |
| OutStreamer(Streamer), |
| LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) { |
| DD = 0; DE = 0; MMI = 0; LI = 0; |
| GCMetadataPrinters = 0; |
| VerboseAsm = Streamer.isVerboseAsm(); |
| } |
| |
| AsmPrinter::~AsmPrinter() { |
| assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized"); |
| |
| if (GCMetadataPrinters != 0) { |
| gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); |
| |
| for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I) |
| delete I->second; |
| delete &GCMap; |
| GCMetadataPrinters = 0; |
| } |
| |
| delete &OutStreamer; |
| } |
| |
| /// getFunctionNumber - Return a unique ID for the current function. |
| /// |
| unsigned AsmPrinter::getFunctionNumber() const { |
| return MF->getFunctionNumber(); |
| } |
| |
| const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { |
| return TM.getTargetLowering()->getObjFileLowering(); |
| } |
| |
| |
| /// getTargetData - Return information about data layout. |
| const TargetData &AsmPrinter::getTargetData() const { |
| return *TM.getTargetData(); |
| } |
| |
| /// getCurrentSection() - Return the current section we are emitting to. |
| const MCSection *AsmPrinter::getCurrentSection() const { |
| return OutStreamer.getCurrentSection(); |
| } |
| |
| |
| |
| void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| AU.addRequired<MachineModuleInfo>(); |
| AU.addRequired<GCModuleInfo>(); |
| if (isVerbose()) |
| AU.addRequired<MachineLoopInfo>(); |
| } |
| |
| bool AsmPrinter::doInitialization(Module &M) { |
| MMI = getAnalysisIfAvailable<MachineModuleInfo>(); |
| MMI->AnalyzeModule(M); |
| |
| // Initialize TargetLoweringObjectFile. |
| const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) |
| .Initialize(OutContext, TM); |
| |
| Mang = new Mangler(OutContext, *TM.getTargetData()); |
| |
| // Allow the target to emit any magic that it wants at the start of the file. |
| EmitStartOfAsmFile(M); |
| |
| // Very minimal debug info. It is ignored if we emit actual debug info. If we |
| // don't, this at least helps the user find where a global came from. |
| if (MAI->hasSingleParameterDotFile()) { |
| // .file "foo.c" |
| OutStreamer.EmitFileDirective(M.getModuleIdentifier()); |
| } |
| |
| GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); |
| assert(MI && "AsmPrinter didn't require GCModuleInfo?"); |
| for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) |
| if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) |
| MP->beginAssembly(*this); |
| |
| // Emit module-level inline asm if it exists. |
| if (!M.getModuleInlineAsm().empty()) { |
| OutStreamer.AddComment("Start of file scope inline assembly"); |
| OutStreamer.AddBlankLine(); |
| EmitInlineAsm(M.getModuleInlineAsm()+"\n"); |
| OutStreamer.AddComment("End of file scope inline assembly"); |
| OutStreamer.AddBlankLine(); |
| } |
| |
| if (MAI->doesSupportDebugInformation()) |
| DD = new DwarfDebug(this, &M); |
| |
| switch (MAI->getExceptionHandlingType()) { |
| case ExceptionHandling::None: |
| return false; |
| case ExceptionHandling::SjLj: |
| case ExceptionHandling::DwarfCFI: |
| DE = new DwarfCFIException(this); |
| return false; |
| case ExceptionHandling::ARM: |
| DE = new ARMException(this); |
| return false; |
| case ExceptionHandling::Win64: |
| DE = new Win64Exception(this); |
| return false; |
| } |
| |
| llvm_unreachable("Unknown exception type."); |
| } |
| |
| void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const { |
| switch ((GlobalValue::LinkageTypes)Linkage) { |
| case GlobalValue::CommonLinkage: |
| case GlobalValue::LinkOnceAnyLinkage: |
| case GlobalValue::LinkOnceODRLinkage: |
| case GlobalValue::WeakAnyLinkage: |
| case GlobalValue::WeakODRLinkage: |
| case GlobalValue::LinkerPrivateWeakLinkage: |
| case GlobalValue::LinkerPrivateWeakDefAutoLinkage: |
| if (MAI->getWeakDefDirective() != 0) { |
| // .globl _foo |
| OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); |
| |
| if ((GlobalValue::LinkageTypes)Linkage != |
| GlobalValue::LinkerPrivateWeakDefAutoLinkage) |
| // .weak_definition _foo |
| OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); |
| else |
| OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); |
| } else if (MAI->getLinkOnceDirective() != 0) { |
| // .globl _foo |
| OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); |
| //NOTE: linkonce is handled by the section the symbol was assigned to. |
| } else { |
| // .weak _foo |
| OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); |
| } |
| break; |
| case GlobalValue::DLLExportLinkage: |
| case GlobalValue::AppendingLinkage: |
| // FIXME: appending linkage variables should go into a section of |
| // their name or something. For now, just emit them as external. |
| case GlobalValue::ExternalLinkage: |
| // If external or appending, declare as a global symbol. |
| // .globl _foo |
| OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); |
| break; |
| case GlobalValue::PrivateLinkage: |
| case GlobalValue::InternalLinkage: |
| case GlobalValue::LinkerPrivateLinkage: |
| break; |
| default: |
| llvm_unreachable("Unknown linkage type!"); |
| } |
| } |
| |
| |
| /// EmitGlobalVariable - Emit the specified global variable to the .s file. |
| void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { |
| if (GV->hasInitializer()) { |
| // Check to see if this is a special global used by LLVM, if so, emit it. |
| if (EmitSpecialLLVMGlobal(GV)) |
| return; |
| |
| if (isVerbose()) { |
| WriteAsOperand(OutStreamer.GetCommentOS(), GV, |
| /*PrintType=*/false, GV->getParent()); |
| OutStreamer.GetCommentOS() << '\n'; |
| } |
| } |
| |
| MCSymbol *GVSym = Mang->getSymbol(GV); |
| EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); |
| |
| if (!GV->hasInitializer()) // External globals require no extra code. |
| return; |
| |
| if (MAI->hasDotTypeDotSizeDirective()) |
| OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); |
| |
| SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); |
| |
| const TargetData *TD = TM.getTargetData(); |
| uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType()); |
| |
| // If the alignment is specified, we *must* obey it. Overaligning a global |
| // with a specified alignment is a prompt way to break globals emitted to |
| // sections and expected to be contiguous (e.g. ObjC metadata). |
| unsigned AlignLog = getGVAlignmentLog2(GV, *TD); |
| |
| // Handle common and BSS local symbols (.lcomm). |
| if (GVKind.isCommon() || GVKind.isBSSLocal()) { |
| if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. |
| unsigned Align = 1 << AlignLog; |
| |
| // Handle common symbols. |
| if (GVKind.isCommon()) { |
| if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) |
| Align = 0; |
| |
| // .comm _foo, 42, 4 |
| OutStreamer.EmitCommonSymbol(GVSym, Size, Align); |
| return; |
| } |
| |
| // Handle local BSS symbols. |
| if (MAI->hasMachoZeroFillDirective()) { |
| const MCSection *TheSection = |
| getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); |
| // .zerofill __DATA, __bss, _foo, 400, 5 |
| OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); |
| return; |
| } |
| |
| if (MAI->getLCOMMDirectiveType() != LCOMM::None && |
| (MAI->getLCOMMDirectiveType() != LCOMM::NoAlignment || Align == 1)) { |
| // .lcomm _foo, 42 |
| OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); |
| return; |
| } |
| |
| if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) |
| Align = 0; |
| |
| // .local _foo |
| OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); |
| // .comm _foo, 42, 4 |
| OutStreamer.EmitCommonSymbol(GVSym, Size, Align); |
| return; |
| } |
| |
| const MCSection *TheSection = |
| getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); |
| |
| // Handle the zerofill directive on darwin, which is a special form of BSS |
| // emission. |
| if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { |
| if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. |
| |
| // .globl _foo |
| OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); |
| // .zerofill __DATA, __common, _foo, 400, 5 |
| OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); |
| return; |
| } |
| |
| // Handle thread local data for mach-o which requires us to output an |
| // additional structure of data and mangle the original symbol so that we |
| // can reference it later. |
| // |
| // TODO: This should become an "emit thread local global" method on TLOF. |
| // All of this macho specific stuff should be sunk down into TLOFMachO and |
| // stuff like "TLSExtraDataSection" should no longer be part of the parent |
| // TLOF class. This will also make it more obvious that stuff like |
| // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho |
| // specific code. |
| if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { |
| // Emit the .tbss symbol |
| MCSymbol *MangSym = |
| OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); |
| |
| if (GVKind.isThreadBSS()) |
| OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); |
| else if (GVKind.isThreadData()) { |
| OutStreamer.SwitchSection(TheSection); |
| |
| EmitAlignment(AlignLog, GV); |
| OutStreamer.EmitLabel(MangSym); |
| |
| EmitGlobalConstant(GV->getInitializer()); |
| } |
| |
| OutStreamer.AddBlankLine(); |
| |
| // Emit the variable struct for the runtime. |
| const MCSection *TLVSect |
| = getObjFileLowering().getTLSExtraDataSection(); |
| |
| OutStreamer.SwitchSection(TLVSect); |
| // Emit the linkage here. |
| EmitLinkage(GV->getLinkage(), GVSym); |
| OutStreamer.EmitLabel(GVSym); |
| |
| // Three pointers in size: |
| // - __tlv_bootstrap - used to make sure support exists |
| // - spare pointer, used when mapped by the runtime |
| // - pointer to mangled symbol above with initializer |
| unsigned PtrSize = TD->getPointerSizeInBits()/8; |
| OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), |
| PtrSize, 0); |
| OutStreamer.EmitIntValue(0, PtrSize, 0); |
| OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0); |
| |
| OutStreamer.AddBlankLine(); |
| return; |
| } |
| |
| OutStreamer.SwitchSection(TheSection); |
| |
| EmitLinkage(GV->getLinkage(), GVSym); |
| EmitAlignment(AlignLog, GV); |
| |
| OutStreamer.EmitLabel(GVSym); |
| |
| EmitGlobalConstant(GV->getInitializer()); |
| |
| if (MAI->hasDotTypeDotSizeDirective()) |
| // .size foo, 42 |
| OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); |
| |
| OutStreamer.AddBlankLine(); |
| } |
| |
| /// EmitFunctionHeader - This method emits the header for the current |
| /// function. |
| void AsmPrinter::EmitFunctionHeader() { |
| // Print out constants referenced by the function |
| EmitConstantPool(); |
| |
| // Print the 'header' of function. |
| const Function *F = MF->getFunction(); |
| |
| OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM)); |
| EmitVisibility(CurrentFnSym, F->getVisibility()); |
| |
| EmitLinkage(F->getLinkage(), CurrentFnSym); |
| EmitAlignment(MF->getAlignment(), F); |
| |
| if (MAI->hasDotTypeDotSizeDirective()) |
| OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); |
| |
| if (isVerbose()) { |
| WriteAsOperand(OutStreamer.GetCommentOS(), F, |
| /*PrintType=*/false, F->getParent()); |
| OutStreamer.GetCommentOS() << '\n'; |
| } |
| |
| // Emit the CurrentFnSym. This is a virtual function to allow targets to |
| // do their wild and crazy things as required. |
| EmitFunctionEntryLabel(); |
| |
| // If the function had address-taken blocks that got deleted, then we have |
| // references to the dangling symbols. Emit them at the start of the function |
| // so that we don't get references to undefined symbols. |
| std::vector<MCSymbol*> DeadBlockSyms; |
| MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); |
| for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { |
| OutStreamer.AddComment("Address taken block that was later removed"); |
| OutStreamer.EmitLabel(DeadBlockSyms[i]); |
| } |
| |
| // Add some workaround for linkonce linkage on Cygwin\MinGW. |
| if (MAI->getLinkOnceDirective() != 0 && |
| (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) { |
| // FIXME: What is this? |
| MCSymbol *FakeStub = |
| OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+ |
| CurrentFnSym->getName()); |
| OutStreamer.EmitLabel(FakeStub); |
| } |
| |
| // Emit pre-function debug and/or EH information. |
| if (DE) { |
| NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); |
| DE->BeginFunction(MF); |
| } |
| if (DD) { |
| NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); |
| DD->beginFunction(MF); |
| } |
| } |
| |
| /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the |
| /// function. This can be overridden by targets as required to do custom stuff. |
| void AsmPrinter::EmitFunctionEntryLabel() { |
| // The function label could have already been emitted if two symbols end up |
| // conflicting due to asm renaming. Detect this and emit an error. |
| if (CurrentFnSym->isUndefined()) { |
| OutStreamer.ForceCodeRegion(); |
| return OutStreamer.EmitLabel(CurrentFnSym); |
| } |
| |
| report_fatal_error("'" + Twine(CurrentFnSym->getName()) + |
| "' label emitted multiple times to assembly file"); |
| } |
| |
| |
| /// EmitComments - Pretty-print comments for instructions. |
| static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) { |
| const MachineFunction *MF = MI.getParent()->getParent(); |
| const TargetMachine &TM = MF->getTarget(); |
| |
| // Check for spills and reloads |
| int FI; |
| |
| const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); |
| |
| // We assume a single instruction only has a spill or reload, not |
| // both. |
| const MachineMemOperand *MMO; |
| if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { |
| if (FrameInfo->isSpillSlotObjectIndex(FI)) { |
| MMO = *MI.memoperands_begin(); |
| CommentOS << MMO->getSize() << "-byte Reload\n"; |
| } |
| } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { |
| if (FrameInfo->isSpillSlotObjectIndex(FI)) |
| CommentOS << MMO->getSize() << "-byte Folded Reload\n"; |
| } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { |
| if (FrameInfo->isSpillSlotObjectIndex(FI)) { |
| MMO = *MI.memoperands_begin(); |
| CommentOS << MMO->getSize() << "-byte Spill\n"; |
| } |
| } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { |
| if (FrameInfo->isSpillSlotObjectIndex(FI)) |
| CommentOS << MMO->getSize() << "-byte Folded Spill\n"; |
| } |
| |
| // Check for spill-induced copies |
| if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) |
| CommentOS << " Reload Reuse\n"; |
| } |
| |
| /// EmitImplicitDef - This method emits the specified machine instruction |
| /// that is an implicit def. |
| static void EmitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) { |
| unsigned RegNo = MI->getOperand(0).getReg(); |
| AP.OutStreamer.AddComment(Twine("implicit-def: ") + |
| AP.TM.getRegisterInfo()->getName(RegNo)); |
| AP.OutStreamer.AddBlankLine(); |
| } |
| |
| static void EmitKill(const MachineInstr *MI, AsmPrinter &AP) { |
| std::string Str = "kill:"; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &Op = MI->getOperand(i); |
| assert(Op.isReg() && "KILL instruction must have only register operands"); |
| Str += ' '; |
| Str += AP.TM.getRegisterInfo()->getName(Op.getReg()); |
| Str += (Op.isDef() ? "<def>" : "<kill>"); |
| } |
| AP.OutStreamer.AddComment(Str); |
| AP.OutStreamer.AddBlankLine(); |
| } |
| |
| /// EmitDebugValueComment - This method handles the target-independent form |
| /// of DBG_VALUE, returning true if it was able to do so. A false return |
| /// means the target will need to handle MI in EmitInstruction. |
| static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { |
| // This code handles only the 3-operand target-independent form. |
| if (MI->getNumOperands() != 3) |
| return false; |
| |
| SmallString<128> Str; |
| raw_svector_ostream OS(Str); |
| OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: "; |
| |
| // cast away const; DIetc do not take const operands for some reason. |
| DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata())); |
| if (V.getContext().isSubprogram()) |
| OS << DISubprogram(V.getContext()).getDisplayName() << ":"; |
| OS << V.getName() << " <- "; |
| |
| // Register or immediate value. Register 0 means undef. |
| if (MI->getOperand(0).isFPImm()) { |
| APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); |
| if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { |
| OS << (double)APF.convertToFloat(); |
| } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { |
| OS << APF.convertToDouble(); |
| } else { |
| // There is no good way to print long double. Convert a copy to |
| // double. Ah well, it's only a comment. |
| bool ignored; |
| APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, |
| &ignored); |
| OS << "(long double) " << APF.convertToDouble(); |
| } |
| } else if (MI->getOperand(0).isImm()) { |
| OS << MI->getOperand(0).getImm(); |
| } else if (MI->getOperand(0).isCImm()) { |
| MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); |
| } else { |
| assert(MI->getOperand(0).isReg() && "Unknown operand type"); |
| if (MI->getOperand(0).getReg() == 0) { |
| // Suppress offset, it is not meaningful here. |
| OS << "undef"; |
| // NOTE: Want this comment at start of line, don't emit with AddComment. |
| AP.OutStreamer.EmitRawText(OS.str()); |
| return true; |
| } |
| OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg()); |
| } |
| |
| OS << '+' << MI->getOperand(1).getImm(); |
| // NOTE: Want this comment at start of line, don't emit with AddComment. |
| AP.OutStreamer.EmitRawText(OS.str()); |
| return true; |
| } |
| |
| AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { |
| if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && |
| MF->getFunction()->needsUnwindTableEntry()) |
| return CFI_M_EH; |
| |
| if (MMI->hasDebugInfo()) |
| return CFI_M_Debug; |
| |
| return CFI_M_None; |
| } |
| |
| bool AsmPrinter::needsSEHMoves() { |
| return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 && |
| MF->getFunction()->needsUnwindTableEntry(); |
| } |
| |
| void AsmPrinter::emitPrologLabel(const MachineInstr &MI) { |
| MCSymbol *Label = MI.getOperand(0).getMCSymbol(); |
| |
| if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) |
| return; |
| |
| if (needsCFIMoves() == CFI_M_None) |
| return; |
| |
| if (MMI->getCompactUnwindEncoding() != 0) |
| OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding()); |
| |
| MachineModuleInfo &MMI = MF->getMMI(); |
| std::vector<MachineMove> &Moves = MMI.getFrameMoves(); |
| bool FoundOne = false; |
| (void)FoundOne; |
| for (std::vector<MachineMove>::iterator I = Moves.begin(), |
| E = Moves.end(); I != E; ++I) { |
| if (I->getLabel() == Label) { |
| EmitCFIFrameMove(*I); |
| FoundOne = true; |
| } |
| } |
| assert(FoundOne); |
| } |
| |
| /// EmitFunctionBody - This method emits the body and trailer for a |
| /// function. |
| void AsmPrinter::EmitFunctionBody() { |
| // Emit target-specific gunk before the function body. |
| EmitFunctionBodyStart(); |
| |
| bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo(); |
| |
| // Print out code for the function. |
| bool HasAnyRealCode = false; |
| const MachineInstr *LastMI = 0; |
| for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); |
| I != E; ++I) { |
| // Print a label for the basic block. |
| EmitBasicBlockStart(I); |
| for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); |
| II != IE; ++II) { |
| LastMI = II; |
| |
| // Print the assembly for the instruction. |
| if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() && |
| !II->isDebugValue()) { |
| HasAnyRealCode = true; |
| ++EmittedInsts; |
| } |
| |
| if (ShouldPrintDebugScopes) { |
| NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); |
| DD->beginInstruction(II); |
| } |
| |
| if (isVerbose()) |
| EmitComments(*II, OutStreamer.GetCommentOS()); |
| |
| switch (II->getOpcode()) { |
| case TargetOpcode::PROLOG_LABEL: |
| emitPrologLabel(*II); |
| break; |
| |
| case TargetOpcode::EH_LABEL: |
| case TargetOpcode::GC_LABEL: |
| OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol()); |
| break; |
| case TargetOpcode::INLINEASM: |
| EmitInlineAsm(II); |
| break; |
| case TargetOpcode::DBG_VALUE: |
| if (isVerbose()) { |
| if (!EmitDebugValueComment(II, *this)) |
| EmitInstruction(II); |
| } |
| break; |
| case TargetOpcode::IMPLICIT_DEF: |
| if (isVerbose()) EmitImplicitDef(II, *this); |
| break; |
| case TargetOpcode::KILL: |
| if (isVerbose()) EmitKill(II, *this); |
| break; |
| default: |
| if (!TM.hasMCUseLoc()) |
| MCLineEntry::Make(&OutStreamer, getCurrentSection()); |
| |
| EmitInstruction(II); |
| break; |
| } |
| |
| if (ShouldPrintDebugScopes) { |
| NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); |
| DD->endInstruction(II); |
| } |
| } |
| } |
| |
| // If the last instruction was a prolog label, then we have a situation where |
| // we emitted a prolog but no function body. This results in the ending prolog |
| // label equaling the end of function label and an invalid "row" in the |
| // FDE. We need to emit a noop in this situation so that the FDE's rows are |
| // valid. |
| bool RequiresNoop = LastMI && LastMI->isPrologLabel(); |
| |
| // If the function is empty and the object file uses .subsections_via_symbols, |
| // then we need to emit *something* to the function body to prevent the |
| // labels from collapsing together. Just emit a noop. |
| if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) { |
| MCInst Noop; |
| TM.getInstrInfo()->getNoopForMachoTarget(Noop); |
| if (Noop.getOpcode()) { |
| OutStreamer.AddComment("avoids zero-length function"); |
| OutStreamer.EmitInstruction(Noop); |
| } else // Target not mc-ized yet. |
| OutStreamer.EmitRawText(StringRef("\tnop\n")); |
| } |
| |
| // Emit target-specific gunk after the function body. |
| EmitFunctionBodyEnd(); |
| |
| // If the target wants a .size directive for the size of the function, emit |
| // it. |
| if (MAI->hasDotTypeDotSizeDirective()) { |
| // Create a symbol for the end of function, so we can get the size as |
| // difference between the function label and the temp label. |
| MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); |
| OutStreamer.EmitLabel(FnEndLabel); |
| |
| const MCExpr *SizeExp = |
| MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), |
| MCSymbolRefExpr::Create(CurrentFnSym, OutContext), |
| OutContext); |
| OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); |
| } |
| |
| // Emit post-function debug information. |
| if (DD) { |
| NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); |
| DD->endFunction(MF); |
| } |
| if (DE) { |
| NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); |
| DE->EndFunction(); |
| } |
| MMI->EndFunction(); |
| |
| // Print out jump tables referenced by the function. |
| EmitJumpTableInfo(); |
| |
| OutStreamer.AddBlankLine(); |
| } |
| |
| /// getDebugValueLocation - Get location information encoded by DBG_VALUE |
| /// operands. |
| MachineLocation AsmPrinter:: |
| getDebugValueLocation(const MachineInstr *MI) const { |
| // Target specific DBG_VALUE instructions are handled by each target. |
| return MachineLocation(); |
| } |
| |
| /// EmitDwarfRegOp - Emit dwarf register operation. |
| void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const { |
| const TargetRegisterInfo *TRI = TM.getRegisterInfo(); |
| int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false); |
| |
| for (const unsigned *SR = TRI->getSuperRegisters(MLoc.getReg()); |
| *SR && Reg < 0; ++SR) { |
| Reg = TRI->getDwarfRegNum(*SR, false); |
| // FIXME: Get the bit range this register uses of the superregister |
| // so that we can produce a DW_OP_bit_piece |
| } |
| |
| // FIXME: Handle cases like a super register being encoded as |
| // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33 |
| |
| // FIXME: We have no reasonable way of handling errors in here. The |
| // caller might be in the middle of an dwarf expression. We should |
| // probably assert that Reg >= 0 once debug info generation is more mature. |
| |
| if (int Offset = MLoc.getOffset()) { |
| if (Reg < 32) { |
| OutStreamer.AddComment( |
| dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg)); |
| EmitInt8(dwarf::DW_OP_breg0 + Reg); |
| } else { |
| OutStreamer.AddComment("DW_OP_bregx"); |
| EmitInt8(dwarf::DW_OP_bregx); |
| OutStreamer.AddComment(Twine(Reg)); |
| EmitULEB128(Reg); |
| } |
| EmitSLEB128(Offset); |
| } else { |
| if (Reg < 32) { |
| OutStreamer.AddComment( |
| dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg)); |
| EmitInt8(dwarf::DW_OP_reg0 + Reg); |
| } else { |
| OutStreamer.AddComment("DW_OP_regx"); |
| EmitInt8(dwarf::DW_OP_regx); |
| OutStreamer.AddComment(Twine(Reg)); |
| EmitULEB128(Reg); |
| } |
| } |
| |
| // FIXME: Produce a DW_OP_bit_piece if we used a superregister |
| } |
| |
| bool AsmPrinter::doFinalization(Module &M) { |
| // Emit global variables. |
| for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) |
| EmitGlobalVariable(I); |
| |
| // Emit visibility info for declarations |
| for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { |
| const Function &F = *I; |
| if (!F.isDeclaration()) |
| continue; |
| GlobalValue::VisibilityTypes V = F.getVisibility(); |
| if (V == GlobalValue::DefaultVisibility) |
| continue; |
| |
| MCSymbol *Name = Mang->getSymbol(&F); |
| EmitVisibility(Name, V, false); |
| } |
| |
| // Finalize debug and EH information. |
| if (DE) { |
| { |
| NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); |
| DE->EndModule(); |
| } |
| delete DE; DE = 0; |
| } |
| if (DD) { |
| { |
| NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); |
| DD->endModule(); |
| } |
| delete DD; DD = 0; |
| } |
| |
| // If the target wants to know about weak references, print them all. |
| if (MAI->getWeakRefDirective()) { |
| // FIXME: This is not lazy, it would be nice to only print weak references |
| // to stuff that is actually used. Note that doing so would require targets |
| // to notice uses in operands (due to constant exprs etc). This should |
| // happen with the MC stuff eventually. |
| |
| // Print out module-level global variables here. |
| for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) { |
| if (!I->hasExternalWeakLinkage()) continue; |
| OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); |
| } |
| |
| for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { |
| if (!I->hasExternalWeakLinkage()) continue; |
| OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); |
| } |
| } |
| |
| if (MAI->hasSetDirective()) { |
| OutStreamer.AddBlankLine(); |
| for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); |
| I != E; ++I) { |
| MCSymbol *Name = Mang->getSymbol(I); |
| |
| const GlobalValue *GV = I->getAliasedGlobal(); |
| MCSymbol *Target = Mang->getSymbol(GV); |
| |
| if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) |
| OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); |
| else if (I->hasWeakLinkage()) |
| OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); |
| else |
| assert(I->hasLocalLinkage() && "Invalid alias linkage"); |
| |
| EmitVisibility(Name, I->getVisibility()); |
| |
| // Emit the directives as assignments aka .set: |
| OutStreamer.EmitAssignment(Name, |
| MCSymbolRefExpr::Create(Target, OutContext)); |
| } |
| } |
| |
| GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); |
| assert(MI && "AsmPrinter didn't require GCModuleInfo?"); |
| for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) |
| if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) |
| MP->finishAssembly(*this); |
| |
| // If we don't have any trampolines, then we don't require stack memory |
| // to be executable. Some targets have a directive to declare this. |
| Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); |
| if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) |
| if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) |
| OutStreamer.SwitchSection(S); |
| |
| // Allow the target to emit any magic that it wants at the end of the file, |
| // after everything else has gone out. |
| EmitEndOfAsmFile(M); |
| |
| delete Mang; Mang = 0; |
| MMI = 0; |
| |
| OutStreamer.Finish(); |
| return false; |
| } |
| |
| void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { |
| this->MF = &MF; |
| // Get the function symbol. |
| CurrentFnSym = Mang->getSymbol(MF.getFunction()); |
| |
| if (isVerbose()) |
| LI = &getAnalysis<MachineLoopInfo>(); |
| } |
| |
| namespace { |
| // SectionCPs - Keep track the alignment, constpool entries per Section. |
| struct SectionCPs { |
| const MCSection *S; |
| unsigned Alignment; |
| SmallVector<unsigned, 4> CPEs; |
| SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} |
| }; |
| } |
| |
| /// EmitConstantPool - Print to the current output stream assembly |
| /// representations of the constants in the constant pool MCP. This is |
| /// used to print out constants which have been "spilled to memory" by |
| /// the code generator. |
| /// |
| void AsmPrinter::EmitConstantPool() { |
| const MachineConstantPool *MCP = MF->getConstantPool(); |
| const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); |
| if (CP.empty()) return; |
| |
| // Calculate sections for constant pool entries. We collect entries to go into |
| // the same section together to reduce amount of section switch statements. |
| SmallVector<SectionCPs, 4> CPSections; |
| for (unsigned i = 0, e = CP.size(); i != e; ++i) { |
| const MachineConstantPoolEntry &CPE = CP[i]; |
| unsigned Align = CPE.getAlignment(); |
| |
| SectionKind Kind; |
| switch (CPE.getRelocationInfo()) { |
| default: llvm_unreachable("Unknown section kind"); |
| case 2: Kind = SectionKind::getReadOnlyWithRel(); break; |
| case 1: |
| Kind = SectionKind::getReadOnlyWithRelLocal(); |
| break; |
| case 0: |
| switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { |
| case 4: Kind = SectionKind::getMergeableConst4(); break; |
| case 8: Kind = SectionKind::getMergeableConst8(); break; |
| case 16: Kind = SectionKind::getMergeableConst16();break; |
| default: Kind = SectionKind::getMergeableConst(); break; |
| } |
| } |
| |
| const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); |
| |
| // The number of sections are small, just do a linear search from the |
| // last section to the first. |
| bool Found = false; |
| unsigned SecIdx = CPSections.size(); |
| while (SecIdx != 0) { |
| if (CPSections[--SecIdx].S == S) { |
| Found = true; |
| break; |
| } |
| } |
| if (!Found) { |
| SecIdx = CPSections.size(); |
| CPSections.push_back(SectionCPs(S, Align)); |
| } |
| |
| if (Align > CPSections[SecIdx].Alignment) |
| CPSections[SecIdx].Alignment = Align; |
| CPSections[SecIdx].CPEs.push_back(i); |
| } |
| |
| // Now print stuff into the calculated sections. |
| for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { |
| OutStreamer.SwitchSection(CPSections[i].S); |
| EmitAlignment(Log2_32(CPSections[i].Alignment)); |
| |
| unsigned Offset = 0; |
| for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { |
| unsigned CPI = CPSections[i].CPEs[j]; |
| MachineConstantPoolEntry CPE = CP[CPI]; |
| |
| // Emit inter-object padding for alignment. |
| unsigned AlignMask = CPE.getAlignment() - 1; |
| unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; |
| OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/); |
| |
| Type *Ty = CPE.getType(); |
| Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); |
| OutStreamer.EmitLabel(GetCPISymbol(CPI)); |
| |
| if (CPE.isMachineConstantPoolEntry()) |
| EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); |
| else |
| EmitGlobalConstant(CPE.Val.ConstVal); |
| } |
| } |
| } |
| |
| /// EmitJumpTableInfo - Print assembly representations of the jump tables used |
| /// by the current function to the current output stream. |
| /// |
| void AsmPrinter::EmitJumpTableInfo() { |
| const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); |
| if (MJTI == 0) return; |
| if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| if (JT.empty()) return; |
| |
| // Pick the directive to use to print the jump table entries, and switch to |
| // the appropriate section. |
| const Function *F = MF->getFunction(); |
| bool JTInDiffSection = false; |
| if (// In PIC mode, we need to emit the jump table to the same section as the |
| // function body itself, otherwise the label differences won't make sense. |
| // FIXME: Need a better predicate for this: what about custom entries? |
| MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || |
| // We should also do if the section name is NULL or function is declared |
| // in discardable section |
| // FIXME: this isn't the right predicate, should be based on the MCSection |
| // for the function. |
| F->isWeakForLinker()) { |
| OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM)); |
| } else { |
| // Otherwise, drop it in the readonly section. |
| const MCSection *ReadOnlySection = |
| getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); |
| OutStreamer.SwitchSection(ReadOnlySection); |
| JTInDiffSection = true; |
| } |
| |
| EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData()))); |
| |
| // If we know the form of the jump table, go ahead and tag it as such. |
| if (!JTInDiffSection) { |
| if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32) { |
| OutStreamer.EmitJumpTable32Region(); |
| } else { |
| OutStreamer.EmitDataRegion(); |
| } |
| } |
| |
| for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { |
| const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; |
| |
| // If this jump table was deleted, ignore it. |
| if (JTBBs.empty()) continue; |
| |
| // For the EK_LabelDifference32 entry, if the target supports .set, emit a |
| // .set directive for each unique entry. This reduces the number of |
| // relocations the assembler will generate for the jump table. |
| if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && |
| MAI->hasSetDirective()) { |
| SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; |
| const TargetLowering *TLI = TM.getTargetLowering(); |
| const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); |
| for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { |
| const MachineBasicBlock *MBB = JTBBs[ii]; |
| if (!EmittedSets.insert(MBB)) continue; |
| |
| // .set LJTSet, LBB32-base |
| const MCExpr *LHS = |
| MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); |
| OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), |
| MCBinaryExpr::CreateSub(LHS, Base, OutContext)); |
| } |
| } |
| |
| // On some targets (e.g. Darwin) we want to emit two consecutive labels |
| // before each jump table. The first label is never referenced, but tells |
| // the assembler and linker the extents of the jump table object. The |
| // second label is actually referenced by the code. |
| if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) |
| // FIXME: This doesn't have to have any specific name, just any randomly |
| // named and numbered 'l' label would work. Simplify GetJTISymbol. |
| OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); |
| |
| OutStreamer.EmitLabel(GetJTISymbol(JTI)); |
| |
| for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) |
| EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); |
| } |
| } |
| |
| /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the |
| /// current stream. |
| void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, |
| const MachineBasicBlock *MBB, |
| unsigned UID) const { |
| assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); |
| const MCExpr *Value = 0; |
| switch (MJTI->getEntryKind()) { |
| case MachineJumpTableInfo::EK_Inline: |
| llvm_unreachable("Cannot emit EK_Inline jump table entry"); break; |
| case MachineJumpTableInfo::EK_Custom32: |
| Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID, |
| OutContext); |
| break; |
| case MachineJumpTableInfo::EK_BlockAddress: |
| // EK_BlockAddress - Each entry is a plain address of block, e.g.: |
| // .word LBB123 |
| Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); |
| break; |
| case MachineJumpTableInfo::EK_GPRel32BlockAddress: { |
| // EK_GPRel32BlockAddress - Each entry is an address of block, encoded |
| // with a relocation as gp-relative, e.g.: |
| // .gprel32 LBB123 |
| MCSymbol *MBBSym = MBB->getSymbol(); |
| OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); |
| return; |
| } |
| |
| case MachineJumpTableInfo::EK_LabelDifference32: { |
| // EK_LabelDifference32 - Each entry is the address of the block minus |
| // the address of the jump table. This is used for PIC jump tables where |
| // gprel32 is not supported. e.g.: |
| // .word LBB123 - LJTI1_2 |
| // If the .set directive is supported, this is emitted as: |
| // .set L4_5_set_123, LBB123 - LJTI1_2 |
| // .word L4_5_set_123 |
| |
| // If we have emitted set directives for the jump table entries, print |
| // them rather than the entries themselves. If we're emitting PIC, then |
| // emit the table entries as differences between two text section labels. |
| if (MAI->hasSetDirective()) { |
| // If we used .set, reference the .set's symbol. |
| Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), |
| OutContext); |
| break; |
| } |
| // Otherwise, use the difference as the jump table entry. |
| Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); |
| const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); |
| Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); |
| break; |
| } |
| } |
| |
| assert(Value && "Unknown entry kind!"); |
| |
| unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData()); |
| OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0); |
| } |
| |
| |
| /// EmitSpecialLLVMGlobal - Check to see if the specified global is a |
| /// special global used by LLVM. If so, emit it and return true, otherwise |
| /// do nothing and return false. |
| bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { |
| if (GV->getName() == "llvm.used") { |
| if (MAI->hasNoDeadStrip()) // No need to emit this at all. |
| EmitLLVMUsedList(GV->getInitializer()); |
| return true; |
| } |
| |
| // Ignore debug and non-emitted data. This handles llvm.compiler.used. |
| if (GV->getSection() == "llvm.metadata" || |
| GV->hasAvailableExternallyLinkage()) |
| return true; |
| |
| if (!GV->hasAppendingLinkage()) return false; |
| |
| assert(GV->hasInitializer() && "Not a special LLVM global!"); |
| |
| const TargetData *TD = TM.getTargetData(); |
| unsigned Align = Log2_32(TD->getPointerPrefAlignment()); |
| if (GV->getName() == "llvm.global_ctors") { |
| OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection()); |
| EmitAlignment(Align); |
| EmitXXStructorList(GV->getInitializer()); |
| |
| if (TM.getRelocationModel() == Reloc::Static && |
| MAI->hasStaticCtorDtorReferenceInStaticMode()) { |
| StringRef Sym(".constructors_used"); |
| OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), |
| MCSA_Reference); |
| } |
| return true; |
| } |
| |
| if (GV->getName() == "llvm.global_dtors") { |
| OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection()); |
| EmitAlignment(Align); |
| EmitXXStructorList(GV->getInitializer()); |
| |
| if (TM.getRelocationModel() == Reloc::Static && |
| MAI->hasStaticCtorDtorReferenceInStaticMode()) { |
| StringRef Sym(".destructors_used"); |
| OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), |
| MCSA_Reference); |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each |
| /// global in the specified llvm.used list for which emitUsedDirectiveFor |
| /// is true, as being used with this directive. |
| void AsmPrinter::EmitLLVMUsedList(const Constant *List) { |
| // Should be an array of 'i8*'. |
| const ConstantArray *InitList = dyn_cast<ConstantArray>(List); |
| if (InitList == 0) return; |
| |
| for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { |
| const GlobalValue *GV = |
| dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); |
| if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) |
| OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip); |
| } |
| } |
| |
| typedef std::pair<int, Constant*> Structor; |
| |
| static bool priority_order(const Structor& lhs, const Structor& rhs) { |
| return lhs.first < rhs.first; |
| } |
| |
| /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init |
| /// priority. |
| void AsmPrinter::EmitXXStructorList(const Constant *List) { |
| // Should be an array of '{ int, void ()* }' structs. The first value is the |
| // init priority. |
| if (!isa<ConstantArray>(List)) return; |
| |
| // Sanity check the structors list. |
| const ConstantArray *InitList = dyn_cast<ConstantArray>(List); |
| if (!InitList) return; // Not an array! |
| StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); |
| if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs! |
| if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || |
| !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). |
| |
| // Gather the structors in a form that's convenient for sorting by priority. |
| SmallVector<Structor, 8> Structors; |
| for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { |
| ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); |
| if (!CS) continue; // Malformed. |
| if (CS->getOperand(1)->isNullValue()) |
| break; // Found a null terminator, skip the rest. |
| ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); |
| if (!Priority) continue; // Malformed. |
| Structors.push_back(std::make_pair(Priority->getLimitedValue(65535), |
| CS->getOperand(1))); |
| } |
| |
| // Emit the function pointers in reverse priority order. |
| switch (MAI->getStructorOutputOrder()) { |
| case Structors::None: |
| break; |
| case Structors::PriorityOrder: |
| std::sort(Structors.begin(), Structors.end(), priority_order); |
| break; |
| case Structors::ReversePriorityOrder: |
| std::sort(Structors.rbegin(), Structors.rend(), priority_order); |
| break; |
| } |
| for (unsigned i = 0, e = Structors.size(); i != e; ++i) |
| EmitGlobalConstant(Structors[i].second); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Emission and print routines |
| // |
| |
| /// EmitInt8 - Emit a byte directive and value. |
| /// |
| void AsmPrinter::EmitInt8(int Value) const { |
| OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/); |
| } |
| |
| /// EmitInt16 - Emit a short directive and value. |
| /// |
| void AsmPrinter::EmitInt16(int Value) const { |
| OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/); |
| } |
| |
| /// EmitInt32 - Emit a long directive and value. |
| /// |
| void AsmPrinter::EmitInt32(int Value) const { |
| OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/); |
| } |
| |
| /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size |
| /// in bytes of the directive is specified by Size and Hi/Lo specify the |
| /// labels. This implicitly uses .set if it is available. |
| void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, |
| unsigned Size) const { |
| // Get the Hi-Lo expression. |
| const MCExpr *Diff = |
| MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), |
| MCSymbolRefExpr::Create(Lo, OutContext), |
| OutContext); |
| |
| if (!MAI->hasSetDirective()) { |
| OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/); |
| return; |
| } |
| |
| // Otherwise, emit with .set (aka assignment). |
| MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); |
| OutStreamer.EmitAssignment(SetLabel, Diff); |
| OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/); |
| } |
| |
| /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo" |
| /// where the size in bytes of the directive is specified by Size and Hi/Lo |
| /// specify the labels. This implicitly uses .set if it is available. |
| void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset, |
| const MCSymbol *Lo, unsigned Size) |
| const { |
| |
| // Emit Hi+Offset - Lo |
| // Get the Hi+Offset expression. |
| const MCExpr *Plus = |
| MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext), |
| MCConstantExpr::Create(Offset, OutContext), |
| OutContext); |
| |
| // Get the Hi+Offset-Lo expression. |
| const MCExpr *Diff = |
| MCBinaryExpr::CreateSub(Plus, |
| MCSymbolRefExpr::Create(Lo, OutContext), |
| OutContext); |
| |
| if (!MAI->hasSetDirective()) |
| OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/); |
| else { |
| // Otherwise, emit with .set (aka assignment). |
| MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); |
| OutStreamer.EmitAssignment(SetLabel, Diff); |
| OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/); |
| } |
| } |
| |
| /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" |
| /// where the size in bytes of the directive is specified by Size and Label |
| /// specifies the label. This implicitly uses .set if it is available. |
| void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, |
| unsigned Size) |
| const { |
| |
| // Emit Label+Offset |
| const MCExpr *Plus = |
| MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Label, OutContext), |
| MCConstantExpr::Create(Offset, OutContext), |
| OutContext); |
| |
| OutStreamer.EmitValue(Plus, 4, 0/*AddrSpace*/); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| |
| // EmitAlignment - Emit an alignment directive to the specified power of |
| // two boundary. For example, if you pass in 3 here, you will get an 8 |
| // byte alignment. If a global value is specified, and if that global has |
| // an explicit alignment requested, it will override the alignment request |
| // if required for correctness. |
| // |
| void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const { |
| if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits); |
| |
| if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. |
| |
| if (getCurrentSection()->getKind().isText()) |
| OutStreamer.EmitCodeAlignment(1 << NumBits); |
| else |
| OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Constant emission. |
| //===----------------------------------------------------------------------===// |
| |
| /// LowerConstant - Lower the specified LLVM Constant to an MCExpr. |
| /// |
| static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) { |
| MCContext &Ctx = AP.OutContext; |
| |
| if (CV->isNullValue() || isa<UndefValue>(CV)) |
| return MCConstantExpr::Create(0, Ctx); |
| |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) |
| return MCConstantExpr::Create(CI->getZExtValue(), Ctx); |
| |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) |
| return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx); |
| |
| if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) |
| return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); |
| |
| const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); |
| if (CE == 0) { |
| llvm_unreachable("Unknown constant value to lower!"); |
| return MCConstantExpr::Create(0, Ctx); |
| } |
| |
| switch (CE->getOpcode()) { |
| default: |
| // If the code isn't optimized, there may be outstanding folding |
| // opportunities. Attempt to fold the expression using TargetData as a |
| // last resort before giving up. |
| if (Constant *C = |
| ConstantFoldConstantExpression(CE, AP.TM.getTargetData())) |
| if (C != CE) |
| return LowerConstant(C, AP); |
| |
| // Otherwise report the problem to the user. |
| { |
| std::string S; |
| raw_string_ostream OS(S); |
| OS << "Unsupported expression in static initializer: "; |
| WriteAsOperand(OS, CE, /*PrintType=*/false, |
| !AP.MF ? 0 : AP.MF->getFunction()->getParent()); |
| report_fatal_error(OS.str()); |
| } |
| return MCConstantExpr::Create(0, Ctx); |
| case Instruction::GetElementPtr: { |
| const TargetData &TD = *AP.TM.getTargetData(); |
| // Generate a symbolic expression for the byte address |
| const Constant *PtrVal = CE->getOperand(0); |
| SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end()); |
| int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec); |
| |
| const MCExpr *Base = LowerConstant(CE->getOperand(0), AP); |
| if (Offset == 0) |
| return Base; |
| |
| // Truncate/sext the offset to the pointer size. |
| if (TD.getPointerSizeInBits() != 64) { |
| int SExtAmount = 64-TD.getPointerSizeInBits(); |
| Offset = (Offset << SExtAmount) >> SExtAmount; |
| } |
| |
| return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), |
| Ctx); |
| } |
| |
| case Instruction::Trunc: |
| // We emit the value and depend on the assembler to truncate the generated |
| // expression properly. This is important for differences between |
| // blockaddress labels. Since the two labels are in the same function, it |
| // is reasonable to treat their delta as a 32-bit value. |
| // FALL THROUGH. |
| case Instruction::BitCast: |
| return LowerConstant(CE->getOperand(0), AP); |
| |
| case Instruction::IntToPtr: { |
| const TargetData &TD = *AP.TM.getTargetData(); |
| // Handle casts to pointers by changing them into casts to the appropriate |
| // integer type. This promotes constant folding and simplifies this code. |
| Constant *Op = CE->getOperand(0); |
| Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()), |
| false/*ZExt*/); |
| return LowerConstant(Op, AP); |
| } |
| |
| case Instruction::PtrToInt: { |
| const TargetData &TD = *AP.TM.getTargetData(); |
| // Support only foldable casts to/from pointers that can be eliminated by |
| // changing the pointer to the appropriately sized integer type. |
| Constant *Op = CE->getOperand(0); |
| Type *Ty = CE->getType(); |
| |
| const MCExpr *OpExpr = LowerConstant(Op, AP); |
| |
| // We can emit the pointer value into this slot if the slot is an |
| // integer slot equal to the size of the pointer. |
| if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType())) |
| return OpExpr; |
| |
| // Otherwise the pointer is smaller than the resultant integer, mask off |
| // the high bits so we are sure to get a proper truncation if the input is |
| // a constant expr. |
| unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType()); |
| const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); |
| return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); |
| } |
| |
| // The MC library also has a right-shift operator, but it isn't consistently |
| // signed or unsigned between different targets. |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| case Instruction::SDiv: |
| case Instruction::SRem: |
| case Instruction::Shl: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: { |
| const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP); |
| const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP); |
| switch (CE->getOpcode()) { |
| default: llvm_unreachable("Unknown binary operator constant cast expr"); |
| case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); |
| case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); |
| case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); |
| case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); |
| case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); |
| case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); |
| case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); |
| case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); |
| case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); |
| } |
| } |
| } |
| } |
| |
| static void EmitGlobalConstantImpl(const Constant *C, unsigned AddrSpace, |
| AsmPrinter &AP); |
| |
| /// isRepeatedByteSequence - Determine whether the given value is |
| /// composed of a repeated sequence of identical bytes and return the |
| /// byte value. If it is not a repeated sequence, return -1. |
| static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { |
| |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { |
| if (CI->getBitWidth() > 64) return -1; |
| |
| uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType()); |
| uint64_t Value = CI->getZExtValue(); |
| |
| // Make sure the constant is at least 8 bits long and has a power |
| // of 2 bit width. This guarantees the constant bit width is |
| // always a multiple of 8 bits, avoiding issues with padding out |
| // to Size and other such corner cases. |
| if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; |
| |
| uint8_t Byte = static_cast<uint8_t>(Value); |
| |
| for (unsigned i = 1; i < Size; ++i) { |
| Value >>= 8; |
| if (static_cast<uint8_t>(Value) != Byte) return -1; |
| } |
| return Byte; |
| } |
| if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { |
| // Make sure all array elements are sequences of the same repeated |
| // byte. |
| if (CA->getNumOperands() == 0) return -1; |
| |
| int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); |
| if (Byte == -1) return -1; |
| |
| for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { |
| int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); |
| if (ThisByte == -1) return -1; |
| if (Byte != ThisByte) return -1; |
| } |
| return Byte; |
| } |
| |
| return -1; |
| } |
| |
| static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace, |
| AsmPrinter &AP) { |
| if (AddrSpace != 0 || !CA->isString()) { |
| // Not a string. Print the values in successive locations. |
| |
| // See if we can aggregate some values. Make sure it can be |
| // represented as a series of bytes of the constant value. |
| int Value = isRepeatedByteSequence(CA, AP.TM); |
| |
| if (Value != -1) { |
| uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType()); |
| AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace); |
| } |
| else { |
| for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) |
| EmitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP); |
| } |
| return; |
| } |
| |
| // Otherwise, it can be emitted as .ascii. |
| SmallVector<char, 128> TmpVec; |
| TmpVec.reserve(CA->getNumOperands()); |
| for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) |
| TmpVec.push_back(cast<ConstantInt>(CA->getOperand(i))->getZExtValue()); |
| |
| AP.OutStreamer.EmitBytes(StringRef(TmpVec.data(), TmpVec.size()), AddrSpace); |
| } |
| |
| static void EmitGlobalConstantVector(const ConstantVector *CV, |
| unsigned AddrSpace, AsmPrinter &AP) { |
| for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) |
| EmitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP); |
| |
| const TargetData &TD = *AP.TM.getTargetData(); |
| unsigned Size = TD.getTypeAllocSize(CV->getType()); |
| unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) * |
| CV->getType()->getNumElements(); |
| if (unsigned Padding = Size - EmittedSize) |
| AP.OutStreamer.EmitZeros(Padding, AddrSpace); |
| } |
| |
| static void EmitGlobalConstantStruct(const ConstantStruct *CS, |
| unsigned AddrSpace, AsmPrinter &AP) { |
| // Print the fields in successive locations. Pad to align if needed! |
| const TargetData *TD = AP.TM.getTargetData(); |
| unsigned Size = TD->getTypeAllocSize(CS->getType()); |
| const StructLayout *Layout = TD->getStructLayout(CS->getType()); |
| uint64_t SizeSoFar = 0; |
| for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { |
| const Constant *Field = CS->getOperand(i); |
| |
| // Check if padding is needed and insert one or more 0s. |
| uint64_t FieldSize = TD->getTypeAllocSize(Field->getType()); |
| uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) |
| - Layout->getElementOffset(i)) - FieldSize; |
| SizeSoFar += FieldSize + PadSize; |
| |
| // Now print the actual field value. |
| EmitGlobalConstantImpl(Field, AddrSpace, AP); |
| |
| // Insert padding - this may include padding to increase the size of the |
| // current field up to the ABI size (if the struct is not packed) as well |
| // as padding to ensure that the next field starts at the right offset. |
| AP.OutStreamer.EmitZeros(PadSize, AddrSpace); |
| } |
| assert(SizeSoFar == Layout->getSizeInBytes() && |
| "Layout of constant struct may be incorrect!"); |
| } |
| |
| static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace, |
| AsmPrinter &AP) { |
| // FP Constants are printed as integer constants to avoid losing |
| // precision. |
| if (CFP->getType()->isDoubleTy()) { |
| if (AP.isVerbose()) { |
| double Val = CFP->getValueAPF().convertToDouble(); |
| AP.OutStreamer.GetCommentOS() << "double " << Val << '\n'; |
| } |
| |
| uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); |
| AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); |
| return; |
| } |
| |
| if (CFP->getType()->isFloatTy()) { |
| if (AP.isVerbose()) { |
| float Val = CFP->getValueAPF().convertToFloat(); |
| AP.OutStreamer.GetCommentOS() << "float " << Val << '\n'; |
| } |
| uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); |
| AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace); |
| return; |
| } |
| |
| if (CFP->getType()->isX86_FP80Ty()) { |
| // all long double variants are printed as hex |
| // API needed to prevent premature destruction |
| APInt API = CFP->getValueAPF().bitcastToAPInt(); |
| const uint64_t *p = API.getRawData(); |
| if (AP.isVerbose()) { |
| // Convert to double so we can print the approximate val as a comment. |
| APFloat DoubleVal = CFP->getValueAPF(); |
| bool ignored; |
| DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, |
| &ignored); |
| AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= " |
| << DoubleVal.convertToDouble() << '\n'; |
| } |
| |
| if (AP.TM.getTargetData()->isBigEndian()) { |
| AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); |
| AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); |
| } else { |
| AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); |
| AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); |
| } |
| |
| // Emit the tail padding for the long double. |
| const TargetData &TD = *AP.TM.getTargetData(); |
| AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) - |
| TD.getTypeStoreSize(CFP->getType()), AddrSpace); |
| return; |
| } |
| |
| assert(CFP->getType()->isPPC_FP128Ty() && |
| "Floating point constant type not handled"); |
| // All long double variants are printed as hex |
| // API needed to prevent premature destruction. |
| APInt API = CFP->getValueAPF().bitcastToAPInt(); |
| const uint64_t *p = API.getRawData(); |
| if (AP.TM.getTargetData()->isBigEndian()) { |
| AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); |
| AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); |
| } else { |
| AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); |
| AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); |
| } |
| } |
| |
| static void EmitGlobalConstantLargeInt(const ConstantInt *CI, |
| unsigned AddrSpace, AsmPrinter &AP) { |
| const TargetData *TD = AP.TM.getTargetData(); |
| unsigned BitWidth = CI->getBitWidth(); |
| assert((BitWidth & 63) == 0 && "only support multiples of 64-bits"); |
| |
| // We don't expect assemblers to support integer data directives |
| // for more than 64 bits, so we emit the data in at most 64-bit |
| // quantities at a time. |
| const uint64_t *RawData = CI->getValue().getRawData(); |
| for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { |
| uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i]; |
| AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); |
| } |
| } |
| |
| static void EmitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace, |
| AsmPrinter &AP) { |
| if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) { |
| uint64_t Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType()); |
| return AP.OutStreamer.EmitZeros(Size, AddrSpace); |
| } |
| |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { |
| unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType()); |
| switch (Size) { |
| case 1: |
| case 2: |
| case 4: |
| case 8: |
| if (AP.isVerbose()) |
| AP.OutStreamer.GetCommentOS() << format("0x%llx\n", CI->getZExtValue()); |
| AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace); |
| return; |
| default: |
| EmitGlobalConstantLargeInt(CI, AddrSpace, AP); |
| return; |
| } |
| } |
| |
| if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) |
| return EmitGlobalConstantArray(CVA, AddrSpace, AP); |
| |
| if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) |
| return EmitGlobalConstantStruct(CVS, AddrSpace, AP); |
| |
| if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) |
| return EmitGlobalConstantFP(CFP, AddrSpace, AP); |
| |
| if (isa<ConstantPointerNull>(CV)) { |
| unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType()); |
| AP.OutStreamer.EmitIntValue(0, Size, AddrSpace); |
| return; |
| } |
| |
| if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) |
| return EmitGlobalConstantVector(V, AddrSpace, AP); |
| |
| // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it |
| // thread the streamer with EmitValue. |
| AP.OutStreamer.EmitValue(LowerConstant(CV, AP), |
| AP.TM.getTargetData()->getTypeAllocSize(CV->getType()), |
| AddrSpace); |
| } |
| |
| /// EmitGlobalConstant - Print a general LLVM constant to the .s file. |
| void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { |
| uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType()); |
| if (Size) |
| EmitGlobalConstantImpl(CV, AddrSpace, *this); |
| else if (MAI->hasSubsectionsViaSymbols()) { |
| // If the global has zero size, emit a single byte so that two labels don't |
| // look like they are at the same location. |
| OutStreamer.EmitIntValue(0, 1, AddrSpace); |
| } |
| } |
| |
| void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { |
| // Target doesn't support this yet! |
| llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); |
| } |
| |
| void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { |
| if (Offset > 0) |
| OS << '+' << Offset; |
| else if (Offset < 0) |
| OS << Offset; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Symbol Lowering Routines. |
| //===----------------------------------------------------------------------===// |
| |
| /// GetTempSymbol - Return the MCSymbol corresponding to the assembler |
| /// temporary label with the specified stem and unique ID. |
| MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const { |
| return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) + |
| Name + Twine(ID)); |
| } |
| |
| /// GetTempSymbol - Return an assembler temporary label with the specified |
| /// stem. |
| MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const { |
| return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+ |
| Name); |
| } |
| |
| |
| MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { |
| return MMI->getAddrLabelSymbol(BA->getBasicBlock()); |
| } |
| |
| MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { |
| return MMI->getAddrLabelSymbol(BB); |
| } |
| |
| /// GetCPISymbol - Return the symbol for the specified constant pool entry. |
| MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { |
| return OutContext.GetOrCreateSymbol |
| (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) |
| + "_" + Twine(CPID)); |
| } |
| |
| /// GetJTISymbol - Return the symbol for the specified jump table entry. |
| MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { |
| return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); |
| } |
| |
| /// GetJTSetSymbol - Return the symbol for the specified jump table .set |
| /// FIXME: privatize to AsmPrinter. |
| MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { |
| return OutContext.GetOrCreateSymbol |
| (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + |
| Twine(UID) + "_set_" + Twine(MBBID)); |
| } |
| |
| /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with |
| /// global value name as its base, with the specified suffix, and where the |
| /// symbol is forced to have private linkage if ForcePrivate is true. |
| MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV, |
| StringRef Suffix, |
| bool ForcePrivate) const { |
| SmallString<60> NameStr; |
| Mang->getNameWithPrefix(NameStr, GV, ForcePrivate); |
| NameStr.append(Suffix.begin(), Suffix.end()); |
| return OutContext.GetOrCreateSymbol(NameStr.str()); |
| } |
| |
| /// GetExternalSymbolSymbol - Return the MCSymbol for the specified |
| /// ExternalSymbol. |
| MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { |
| SmallString<60> NameStr; |
| Mang->getNameWithPrefix(NameStr, Sym); |
| return OutContext.GetOrCreateSymbol(NameStr.str()); |
| } |
| |
| |
| |
| /// PrintParentLoopComment - Print comments about parent loops of this one. |
| static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, |
| unsigned FunctionNumber) { |
| if (Loop == 0) return; |
| PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); |
| OS.indent(Loop->getLoopDepth()*2) |
| << "Parent Loop BB" << FunctionNumber << "_" |
| << Loop->getHeader()->getNumber() |
| << " Depth=" << Loop->getLoopDepth() << '\n'; |
| } |
| |
| |
| /// PrintChildLoopComment - Print comments about child loops within |
| /// the loop for this basic block, with nesting. |
| static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, |
| unsigned FunctionNumber) { |
| // Add child loop information |
| for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){ |
| OS.indent((*CL)->getLoopDepth()*2) |
| << "Child Loop BB" << FunctionNumber << "_" |
| << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth() |
| << '\n'; |
| PrintChildLoopComment(OS, *CL, FunctionNumber); |
| } |
| } |
| |
| /// EmitBasicBlockLoopComments - Pretty-print comments for basic blocks. |
| static void EmitBasicBlockLoopComments(const MachineBasicBlock &MBB, |
| const MachineLoopInfo *LI, |
| const AsmPrinter &AP) { |
| // Add loop depth information |
| const MachineLoop *Loop = LI->getLoopFor(&MBB); |
| if (Loop == 0) return; |
| |
| MachineBasicBlock *Header = Loop->getHeader(); |
| assert(Header && "No header for loop"); |
| |
| // If this block is not a loop header, just print out what is the loop header |
| // and return. |
| if (Header != &MBB) { |
| AP.OutStreamer.AddComment(" in Loop: Header=BB" + |
| Twine(AP.getFunctionNumber())+"_" + |
| Twine(Loop->getHeader()->getNumber())+ |
| " Depth="+Twine(Loop->getLoopDepth())); |
| return; |
| } |
| |
| // Otherwise, it is a loop header. Print out information about child and |
| // parent loops. |
| raw_ostream &OS = AP.OutStreamer.GetCommentOS(); |
| |
| PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); |
| |
| OS << "=>"; |
| OS.indent(Loop->getLoopDepth()*2-2); |
| |
| OS << "This "; |
| if (Loop->empty()) |
| OS << "Inner "; |
| OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; |
| |
| PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); |
| } |
| |
| |
| /// EmitBasicBlockStart - This method prints the label for the specified |
| /// MachineBasicBlock, an alignment (if present) and a comment describing |
| /// it if appropriate. |
| void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { |
| // Emit an alignment directive for this block, if needed. |
| if (unsigned Align = MBB->getAlignment()) |
| EmitAlignment(Log2_32(Align)); |
| |
| // If the block has its address taken, emit any labels that were used to |
| // reference the block. It is possible that there is more than one label |
| // here, because multiple LLVM BB's may have been RAUW'd to this block after |
| // the references were generated. |
| if (MBB->hasAddressTaken()) { |
| const BasicBlock *BB = MBB->getBasicBlock(); |
| if (isVerbose()) |
| OutStreamer.AddComment("Block address taken"); |
| |
| std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB); |
| |
| for (unsigned i = 0, e = Syms.size(); i != e; ++i) |
| OutStreamer.EmitLabel(Syms[i]); |
| } |
| |
| // Print the main label for the block. |
| if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) { |
| if (isVerbose() && OutStreamer.hasRawTextSupport()) { |
| if (const BasicBlock *BB = MBB->getBasicBlock()) |
| if (BB->hasName()) |
| OutStreamer.AddComment("%" + BB->getName()); |
| |
| EmitBasicBlockLoopComments(*MBB, LI, *this); |
| |
| // NOTE: Want this comment at start of line, don't emit with AddComment. |
| OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" + |
| Twine(MBB->getNumber()) + ":"); |
| } |
| } else { |
| if (isVerbose()) { |
| if (const BasicBlock *BB = MBB->getBasicBlock()) |
| if (BB->hasName()) |
| OutStreamer.AddComment("%" + BB->getName()); |
| EmitBasicBlockLoopComments(*MBB, LI, *this); |
| } |
| |
| OutStreamer.EmitLabel(MBB->getSymbol()); |
| } |
| } |
| |
| void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, |
| bool IsDefinition) const { |
| MCSymbolAttr Attr = MCSA_Invalid; |
| |
| switch (Visibility) { |
| default: break; |
| case GlobalValue::HiddenVisibility: |
| if (IsDefinition) |
| Attr = MAI->getHiddenVisibilityAttr(); |
| else |
| Attr = MAI->getHiddenDeclarationVisibilityAttr(); |
| break; |
| case GlobalValue::ProtectedVisibility: |
| Attr = MAI->getProtectedVisibilityAttr(); |
| break; |
| } |
| |
| if (Attr != MCSA_Invalid) |
| OutStreamer.EmitSymbolAttribute(Sym, Attr); |
| } |
| |
| /// isBlockOnlyReachableByFallthough - Return true if the basic block has |
| /// exactly one predecessor and the control transfer mechanism between |
| /// the predecessor and this block is a fall-through. |
| bool AsmPrinter:: |
| isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { |
| // If this is a landing pad, it isn't a fall through. If it has no preds, |
| // then nothing falls through to it. |
| if (MBB->isLandingPad() || MBB->pred_empty()) |
| return false; |
| |
| // If there isn't exactly one predecessor, it can't be a fall through. |
| MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; |
| ++PI2; |
| if (PI2 != MBB->pred_end()) |
| return false; |
| |
| // The predecessor has to be immediately before this block. |
| MachineBasicBlock *Pred = *PI; |
| |
| if (!Pred->isLayoutSuccessor(MBB)) |
| return false; |
| |
| // If the block is completely empty, then it definitely does fall through. |
| if (Pred->empty()) |
| return true; |
| |
| // Check the terminators in the previous blocks |
| for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(), |
| IE = Pred->end(); II != IE; ++II) { |
| MachineInstr &MI = *II; |
| |
| // If it is not a simple branch, we are in a table somewhere. |
| if (!MI.getDesc().isBranch() || MI.getDesc().isIndirectBranch()) |
| return false; |
| |
| // If we are the operands of one of the branches, this is not |
| // a fall through. |
| for (MachineInstr::mop_iterator OI = MI.operands_begin(), |
| OE = MI.operands_end(); OI != OE; ++OI) { |
| const MachineOperand& OP = *OI; |
| if (OP.isJTI()) |
| return false; |
| if (OP.isMBB() && OP.getMBB() == MBB) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| |
| |
| GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { |
| if (!S->usesMetadata()) |
| return 0; |
| |
| gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); |
| gcp_map_type::iterator GCPI = GCMap.find(S); |
| if (GCPI != GCMap.end()) |
| return GCPI->second; |
| |
| const char *Name = S->getName().c_str(); |
| |
| for (GCMetadataPrinterRegistry::iterator |
| I = GCMetadataPrinterRegistry::begin(), |
| E = GCMetadataPrinterRegistry::end(); I != E; ++I) |
| if (strcmp(Name, I->getName()) == 0) { |
| GCMetadataPrinter *GMP = I->instantiate(); |
| GMP->S = S; |
| GCMap.insert(std::make_pair(S, GMP)); |
| return GMP; |
| } |
| |
| report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); |
| return 0; |
| } |
| |