|  | // Copyright 2016 The SwiftShader Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //    http://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include "ShaderCore.hpp" | 
|  |  | 
|  | #include "Device/Renderer.hpp" | 
|  | #include "System/Debug.hpp" | 
|  |  | 
|  | #include <limits.h> | 
|  |  | 
|  | namespace sw { | 
|  |  | 
|  | Vector4s::Vector4s() | 
|  | { | 
|  | } | 
|  |  | 
|  | Vector4s::Vector4s(unsigned short x, unsigned short y, unsigned short z, unsigned short w) | 
|  | { | 
|  | this->x = Short4(x); | 
|  | this->y = Short4(y); | 
|  | this->z = Short4(z); | 
|  | this->w = Short4(w); | 
|  | } | 
|  |  | 
|  | Vector4s::Vector4s(const Vector4s &rhs) | 
|  | { | 
|  | x = rhs.x; | 
|  | y = rhs.y; | 
|  | z = rhs.z; | 
|  | w = rhs.w; | 
|  | } | 
|  |  | 
|  | Vector4s &Vector4s::operator=(const Vector4s &rhs) | 
|  | { | 
|  | x = rhs.x; | 
|  | y = rhs.y; | 
|  | z = rhs.z; | 
|  | w = rhs.w; | 
|  |  | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | Short4 &Vector4s::operator[](int i) | 
|  | { | 
|  | switch(i) | 
|  | { | 
|  | case 0: return x; | 
|  | case 1: return y; | 
|  | case 2: return z; | 
|  | case 3: return w; | 
|  | } | 
|  |  | 
|  | return x; | 
|  | } | 
|  |  | 
|  | Vector4f::Vector4f() | 
|  | { | 
|  | } | 
|  |  | 
|  | Vector4f::Vector4f(float x, float y, float z, float w) | 
|  | { | 
|  | this->x = Float4(x); | 
|  | this->y = Float4(y); | 
|  | this->z = Float4(z); | 
|  | this->w = Float4(w); | 
|  | } | 
|  |  | 
|  | Vector4f::Vector4f(const Vector4f &rhs) | 
|  | { | 
|  | x = rhs.x; | 
|  | y = rhs.y; | 
|  | z = rhs.z; | 
|  | w = rhs.w; | 
|  | } | 
|  |  | 
|  | Vector4f &Vector4f::operator=(const Vector4f &rhs) | 
|  | { | 
|  | x = rhs.x; | 
|  | y = rhs.y; | 
|  | z = rhs.z; | 
|  | w = rhs.w; | 
|  |  | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | Float4 &Vector4f::operator[](int i) | 
|  | { | 
|  | switch(i) | 
|  | { | 
|  | case 0: return x; | 
|  | case 1: return y; | 
|  | case 2: return z; | 
|  | case 3: return w; | 
|  | } | 
|  |  | 
|  | return x; | 
|  | } | 
|  |  | 
|  | Float4 exponential2(RValue<Float4> x, bool pp) | 
|  | { | 
|  | // This implementation is based on 2^(i + f) = 2^i * 2^f, | 
|  | // where i is the integer part of x and f is the fraction. | 
|  |  | 
|  | // For 2^i we can put the integer part directly in the exponent of | 
|  | // the IEEE-754 floating-point number. Clamp to prevent overflow | 
|  | // past the representation of infinity. | 
|  | Float4 x0 = x; | 
|  | x0 = Min(x0, As<Float4>(Int4(0x43010000)));  // 129.00000e+0f | 
|  | x0 = Max(x0, As<Float4>(Int4(0xC2FDFFFF)));  // -126.99999e+0f | 
|  |  | 
|  | Int4 i = RoundInt(x0 - Float4(0.5f)); | 
|  | Float4 ii = As<Float4>((i + Int4(127)) << 23);  // Add single-precision bias, and shift into exponent. | 
|  |  | 
|  | // For the fractional part use a polynomial | 
|  | // which approximates 2^f in the 0 to 1 range. | 
|  | Float4 f = x0 - Float4(i); | 
|  | Float4 ff = As<Float4>(Int4(0x3AF61905));    // 1.8775767e-3f | 
|  | ff = ff * f + As<Float4>(Int4(0x3C134806));  // 8.9893397e-3f | 
|  | ff = ff * f + As<Float4>(Int4(0x3D64AA23));  // 5.5826318e-2f | 
|  | ff = ff * f + As<Float4>(Int4(0x3E75EAD4));  // 2.4015361e-1f | 
|  | ff = ff * f + As<Float4>(Int4(0x3F31727B));  // 6.9315308e-1f | 
|  | ff = ff * f + Float4(1.0f); | 
|  |  | 
|  | return ii * ff; | 
|  | } | 
|  |  | 
|  | Float4 logarithm2(RValue<Float4> x, bool pp) | 
|  | { | 
|  | Float4 x0; | 
|  | Float4 x1; | 
|  | Float4 x2; | 
|  | Float4 x3; | 
|  |  | 
|  | x0 = x; | 
|  |  | 
|  | x1 = As<Float4>(As<Int4>(x0) & Int4(0x7F800000)); | 
|  | x1 = As<Float4>(As<UInt4>(x1) >> 8); | 
|  | x1 = As<Float4>(As<Int4>(x1) | As<Int4>(Float4(1.0f))); | 
|  | x1 = (x1 - Float4(1.4960938f)) * Float4(256.0f);  // FIXME: (x1 - 1.4960938f) * 256.0f; | 
|  | x0 = As<Float4>((As<Int4>(x0) & Int4(0x007FFFFF)) | As<Int4>(Float4(1.0f))); | 
|  |  | 
|  | x2 = (Float4(9.5428179e-2f) * x0 + Float4(4.7779095e-1f)) * x0 + Float4(1.9782813e-1f); | 
|  | x3 = ((Float4(1.6618466e-2f) * x0 + Float4(2.0350508e-1f)) * x0 + Float4(2.7382900e-1f)) * x0 + Float4(4.0496687e-2f); | 
|  | x2 /= x3; | 
|  |  | 
|  | x1 += (x0 - Float4(1.0f)) * x2; | 
|  |  | 
|  | Int4 pos_inf_x = CmpEQ(As<Int4>(x), Int4(0x7F800000)); | 
|  | return As<Float4>((pos_inf_x & As<Int4>(x)) | (~pos_inf_x & As<Int4>(x1))); | 
|  | } | 
|  |  | 
|  | Float4 exponential(RValue<Float4> x, bool pp) | 
|  | { | 
|  | // TODO: Propagate the constant | 
|  | return exponential2(Float4(1.44269504f) * x, pp);  // 1/ln(2) | 
|  | } | 
|  |  | 
|  | Float4 logarithm(RValue<Float4> x, bool pp) | 
|  | { | 
|  | // TODO: Propagate the constant | 
|  | return Float4(6.93147181e-1f) * logarithm2(x, pp);  // ln(2) | 
|  | } | 
|  |  | 
|  | Float4 power(RValue<Float4> x, RValue<Float4> y, bool pp) | 
|  | { | 
|  | Float4 log = logarithm2(x, pp); | 
|  | log *= y; | 
|  | return exponential2(log, pp); | 
|  | } | 
|  |  | 
|  | Float4 reciprocal(RValue<Float4> x, bool pp, bool finite, bool exactAtPow2) | 
|  | { | 
|  | Float4 rcp = Rcp_pp(x, exactAtPow2); | 
|  |  | 
|  | if(!pp) | 
|  | { | 
|  | rcp = (rcp + rcp) - (x * rcp * rcp); | 
|  | } | 
|  |  | 
|  | if(finite) | 
|  | { | 
|  | int big = 0x7F7FFFFF; | 
|  | rcp = Min(rcp, Float4((float &)big)); | 
|  | } | 
|  |  | 
|  | return rcp; | 
|  | } | 
|  |  | 
|  | Float4 reciprocalSquareRoot(RValue<Float4> x, bool absolute, bool pp) | 
|  | { | 
|  | Float4 abs = x; | 
|  |  | 
|  | if(absolute) | 
|  | { | 
|  | abs = Abs(abs); | 
|  | } | 
|  |  | 
|  | Float4 rsq; | 
|  |  | 
|  | if(!pp) | 
|  | { | 
|  | rsq = Float4(1.0f) / Sqrt(abs); | 
|  | } | 
|  | else | 
|  | { | 
|  | rsq = RcpSqrt_pp(abs); | 
|  |  | 
|  | if(!pp) | 
|  | { | 
|  | rsq = rsq * (Float4(3.0f) - rsq * rsq * abs) * Float4(0.5f); | 
|  | } | 
|  |  | 
|  | rsq = As<Float4>(CmpNEQ(As<Int4>(abs), Int4(0x7F800000)) & As<Int4>(rsq)); | 
|  | } | 
|  |  | 
|  | return rsq; | 
|  | } | 
|  |  | 
|  | Float4 modulo(RValue<Float4> x, RValue<Float4> y) | 
|  | { | 
|  | return x - y * Floor(x / y); | 
|  | } | 
|  |  | 
|  | Float4 sine_pi(RValue<Float4> x, bool pp) | 
|  | { | 
|  | const Float4 A = Float4(-4.05284734e-1f);  // -4/pi^2 | 
|  | const Float4 B = Float4(1.27323954e+0f);   // 4/pi | 
|  | const Float4 C = Float4(7.75160950e-1f); | 
|  | const Float4 D = Float4(2.24839049e-1f); | 
|  |  | 
|  | // Parabola approximating sine | 
|  | Float4 sin = x * (Abs(x) * A + B); | 
|  |  | 
|  | // Improve precision from 0.06 to 0.001 | 
|  | if(true) | 
|  | { | 
|  | sin = sin * (Abs(sin) * D + C); | 
|  | } | 
|  |  | 
|  | return sin; | 
|  | } | 
|  |  | 
|  | Float4 cosine_pi(RValue<Float4> x, bool pp) | 
|  | { | 
|  | // cos(x) = sin(x + pi/2) | 
|  | Float4 y = x + Float4(1.57079632e+0f); | 
|  |  | 
|  | // Wrap around | 
|  | y -= As<Float4>(CmpNLT(y, Float4(3.14159265e+0f)) & As<Int4>(Float4(6.28318530e+0f))); | 
|  |  | 
|  | return sine_pi(y, pp); | 
|  | } | 
|  |  | 
|  | Float4 sine(RValue<Float4> x, bool pp) | 
|  | { | 
|  | // Reduce to [-0.5, 0.5] range | 
|  | Float4 y = x * Float4(1.59154943e-1f);  // 1/2pi | 
|  | y = y - Round(y); | 
|  |  | 
|  | if(!pp) | 
|  | { | 
|  | // From the paper: "A Fast, Vectorizable Algorithm for Producing Single-Precision Sine-Cosine Pairs" | 
|  | // This implementation passes OpenGL ES 3.0 precision requirements, at the cost of more operations: | 
|  | // !pp : 17 mul, 7 add, 1 sub, 1 reciprocal | 
|  | //  pp : 4 mul, 2 add, 2 abs | 
|  |  | 
|  | Float4 y2 = y * y; | 
|  | Float4 c1 = y2 * (y2 * (y2 * Float4(-0.0204391631f) + Float4(0.2536086171f)) + Float4(-1.2336977925f)) + Float4(1.0f); | 
|  | Float4 s1 = y * (y2 * (y2 * (y2 * Float4(-0.0046075748f) + Float4(0.0796819754f)) + Float4(-0.645963615f)) + Float4(1.5707963235f)); | 
|  | Float4 c2 = (c1 * c1) - (s1 * s1); | 
|  | Float4 s2 = Float4(2.0f) * s1 * c1; | 
|  | return Float4(2.0f) * s2 * c2 * reciprocal(s2 * s2 + c2 * c2, pp, true); | 
|  | } | 
|  |  | 
|  | const Float4 A = Float4(-16.0f); | 
|  | const Float4 B = Float4(8.0f); | 
|  | const Float4 C = Float4(7.75160950e-1f); | 
|  | const Float4 D = Float4(2.24839049e-1f); | 
|  |  | 
|  | // Parabola approximating sine | 
|  | Float4 sin = y * (Abs(y) * A + B); | 
|  |  | 
|  | // Improve precision from 0.06 to 0.001 | 
|  | if(true) | 
|  | { | 
|  | sin = sin * (Abs(sin) * D + C); | 
|  | } | 
|  |  | 
|  | return sin; | 
|  | } | 
|  |  | 
|  | Float4 cosine(RValue<Float4> x, bool pp) | 
|  | { | 
|  | // cos(x) = sin(x + pi/2) | 
|  | Float4 y = x + Float4(1.57079632e+0f); | 
|  | return sine(y, pp); | 
|  | } | 
|  |  | 
|  | Float4 tangent(RValue<Float4> x, bool pp) | 
|  | { | 
|  | return sine(x, pp) / cosine(x, pp); | 
|  | } | 
|  |  | 
|  | Float4 arccos(RValue<Float4> x, bool pp) | 
|  | { | 
|  | // pi/2 - arcsin(x) | 
|  | return Float4(1.57079632e+0f) - arcsin(x); | 
|  | } | 
|  |  | 
|  | Float4 arcsin(RValue<Float4> x, bool pp) | 
|  | { | 
|  | if(false)  // Simpler implementation fails even lowp precision tests | 
|  | { | 
|  | // x*(pi/2-sqrt(1-x*x)*pi/5) | 
|  | return x * (Float4(1.57079632e+0f) - Sqrt(Float4(1.0f) - x * x) * Float4(6.28318531e-1f)); | 
|  | } | 
|  | else | 
|  | { | 
|  | // From 4.4.45, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun | 
|  | const Float4 half_pi(1.57079632f); | 
|  | const Float4 a0(1.5707288f); | 
|  | const Float4 a1(-0.2121144f); | 
|  | const Float4 a2(0.0742610f); | 
|  | const Float4 a3(-0.0187293f); | 
|  | Float4 absx = Abs(x); | 
|  | return As<Float4>(As<Int4>(half_pi - Sqrt(Float4(1.0f) - absx) * (a0 + absx * (a1 + absx * (a2 + absx * a3)))) ^ | 
|  | (As<Int4>(x) & Int4(0x80000000))); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Approximation of atan in [0..1] | 
|  | Float4 arctan_01(Float4 x, bool pp) | 
|  | { | 
|  | if(pp) | 
|  | { | 
|  | return x * (Float4(-0.27f) * x + Float4(1.05539816f)); | 
|  | } | 
|  | else | 
|  | { | 
|  | // From 4.4.49, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun | 
|  | const Float4 a2(-0.3333314528f); | 
|  | const Float4 a4(0.1999355085f); | 
|  | const Float4 a6(-0.1420889944f); | 
|  | const Float4 a8(0.1065626393f); | 
|  | const Float4 a10(-0.0752896400f); | 
|  | const Float4 a12(0.0429096138f); | 
|  | const Float4 a14(-0.0161657367f); | 
|  | const Float4 a16(0.0028662257f); | 
|  | Float4 x2 = x * x; | 
|  | return (x + x * (x2 * (a2 + x2 * (a4 + x2 * (a6 + x2 * (a8 + x2 * (a10 + x2 * (a12 + x2 * (a14 + x2 * a16))))))))); | 
|  | } | 
|  | } | 
|  |  | 
|  | Float4 arctan(RValue<Float4> x, bool pp) | 
|  | { | 
|  | Float4 absx = Abs(x); | 
|  | Int4 O = CmpNLT(absx, Float4(1.0f)); | 
|  | Float4 y = As<Float4>((O & As<Int4>(Float4(1.0f) / absx)) | (~O & As<Int4>(absx)));  // FIXME: Vector select | 
|  |  | 
|  | const Float4 half_pi(1.57079632f); | 
|  | Float4 theta = arctan_01(y, pp); | 
|  | return As<Float4>(((O & As<Int4>(half_pi - theta)) | (~O & As<Int4>(theta))) ^  // FIXME: Vector select | 
|  | (As<Int4>(x) & Int4(0x80000000))); | 
|  | } | 
|  |  | 
|  | Float4 arctan(RValue<Float4> y, RValue<Float4> x, bool pp) | 
|  | { | 
|  | const Float4 pi(3.14159265f);             // pi | 
|  | const Float4 minus_pi(-3.14159265f);      // -pi | 
|  | const Float4 half_pi(1.57079632f);        // pi/2 | 
|  | const Float4 quarter_pi(7.85398163e-1f);  // pi/4 | 
|  |  | 
|  | // Rotate to upper semicircle when in lower semicircle | 
|  | Int4 S = CmpLT(y, Float4(0.0f)); | 
|  | Float4 theta = As<Float4>(S & As<Int4>(minus_pi)); | 
|  | Float4 x0 = As<Float4>((As<Int4>(y) & Int4(0x80000000)) ^ As<Int4>(x)); | 
|  | Float4 y0 = Abs(y); | 
|  |  | 
|  | // Rotate to right quadrant when in left quadrant | 
|  | Int4 Q = CmpLT(x0, Float4(0.0f)); | 
|  | theta += As<Float4>(Q & As<Int4>(half_pi)); | 
|  | Float4 x1 = As<Float4>((Q & As<Int4>(y0)) | (~Q & As<Int4>(x0)));   // FIXME: Vector select | 
|  | Float4 y1 = As<Float4>((Q & As<Int4>(-x0)) | (~Q & As<Int4>(y0)));  // FIXME: Vector select | 
|  |  | 
|  | // Mirror to first octant when in second octant | 
|  | Int4 O = CmpNLT(y1, x1); | 
|  | Float4 x2 = As<Float4>((O & As<Int4>(y1)) | (~O & As<Int4>(x1)));  // FIXME: Vector select | 
|  | Float4 y2 = As<Float4>((O & As<Int4>(x1)) | (~O & As<Int4>(y1)));  // FIXME: Vector select | 
|  |  | 
|  | // Approximation of atan in [0..1] | 
|  | Int4 zero_x = CmpEQ(x2, Float4(0.0f)); | 
|  | Int4 inf_y = IsInf(y2);  // Since x2 >= y2, this means x2 == y2 == inf, so we use 45 degrees or pi/4 | 
|  | Float4 atan2_theta = arctan_01(y2 / x2, pp); | 
|  | theta += As<Float4>((~zero_x & ~inf_y & ((O & As<Int4>(half_pi - atan2_theta)) | (~O & (As<Int4>(atan2_theta))))) |  // FIXME: Vector select | 
|  | (inf_y & As<Int4>(quarter_pi))); | 
|  |  | 
|  | // Recover loss of precision for tiny theta angles | 
|  | Int4 precision_loss = S & Q & O & ~inf_y;                                                            // This combination results in (-pi + half_pi + half_pi - atan2_theta) which is equivalent to -atan2_theta | 
|  | return As<Float4>((precision_loss & As<Int4>(-atan2_theta)) | (~precision_loss & As<Int4>(theta)));  // FIXME: Vector select | 
|  | } | 
|  |  | 
|  | Float4 sineh(RValue<Float4> x, bool pp) | 
|  | { | 
|  | return (exponential(x, pp) - exponential(-x, pp)) * Float4(0.5f); | 
|  | } | 
|  |  | 
|  | Float4 cosineh(RValue<Float4> x, bool pp) | 
|  | { | 
|  | return (exponential(x, pp) + exponential(-x, pp)) * Float4(0.5f); | 
|  | } | 
|  |  | 
|  | Float4 tangenth(RValue<Float4> x, bool pp) | 
|  | { | 
|  | Float4 e_x = exponential(x, pp); | 
|  | Float4 e_minus_x = exponential(-x, pp); | 
|  | return (e_x - e_minus_x) / (e_x + e_minus_x); | 
|  | } | 
|  |  | 
|  | Float4 arccosh(RValue<Float4> x, bool pp) | 
|  | { | 
|  | return logarithm(x + Sqrt(x + Float4(1.0f)) * Sqrt(x - Float4(1.0f)), pp); | 
|  | } | 
|  |  | 
|  | Float4 arcsinh(RValue<Float4> x, bool pp) | 
|  | { | 
|  | return logarithm(x + Sqrt(x * x + Float4(1.0f)), pp); | 
|  | } | 
|  |  | 
|  | Float4 arctanh(RValue<Float4> x, bool pp) | 
|  | { | 
|  | return logarithm((Float4(1.0f) + x) / (Float4(1.0f) - x), pp) * Float4(0.5f); | 
|  | } | 
|  |  | 
|  | Float4 dot2(const Vector4f &v0, const Vector4f &v1) | 
|  | { | 
|  | return v0.x * v1.x + v0.y * v1.y; | 
|  | } | 
|  |  | 
|  | Float4 dot3(const Vector4f &v0, const Vector4f &v1) | 
|  | { | 
|  | return v0.x * v1.x + v0.y * v1.y + v0.z * v1.z; | 
|  | } | 
|  |  | 
|  | Float4 dot4(const Vector4f &v0, const Vector4f &v1) | 
|  | { | 
|  | return v0.x * v1.x + v0.y * v1.y + v0.z * v1.z + v0.w * v1.w; | 
|  | } | 
|  |  | 
|  | void transpose4x4(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3) | 
|  | { | 
|  | Int2 tmp0 = UnpackHigh(row0, row1); | 
|  | Int2 tmp1 = UnpackHigh(row2, row3); | 
|  | Int2 tmp2 = UnpackLow(row0, row1); | 
|  | Int2 tmp3 = UnpackLow(row2, row3); | 
|  |  | 
|  | row0 = UnpackLow(tmp2, tmp3); | 
|  | row1 = UnpackHigh(tmp2, tmp3); | 
|  | row2 = UnpackLow(tmp0, tmp1); | 
|  | row3 = UnpackHigh(tmp0, tmp1); | 
|  | } | 
|  |  | 
|  | void transpose4x3(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3) | 
|  | { | 
|  | Int2 tmp0 = UnpackHigh(row0, row1); | 
|  | Int2 tmp1 = UnpackHigh(row2, row3); | 
|  | Int2 tmp2 = UnpackLow(row0, row1); | 
|  | Int2 tmp3 = UnpackLow(row2, row3); | 
|  |  | 
|  | row0 = UnpackLow(tmp2, tmp3); | 
|  | row1 = UnpackHigh(tmp2, tmp3); | 
|  | row2 = UnpackLow(tmp0, tmp1); | 
|  | } | 
|  |  | 
|  | void transpose4x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) | 
|  | { | 
|  | Float4 tmp0 = UnpackLow(row0, row1); | 
|  | Float4 tmp1 = UnpackLow(row2, row3); | 
|  | Float4 tmp2 = UnpackHigh(row0, row1); | 
|  | Float4 tmp3 = UnpackHigh(row2, row3); | 
|  |  | 
|  | row0 = Float4(tmp0.xy, tmp1.xy); | 
|  | row1 = Float4(tmp0.zw, tmp1.zw); | 
|  | row2 = Float4(tmp2.xy, tmp3.xy); | 
|  | row3 = Float4(tmp2.zw, tmp3.zw); | 
|  | } | 
|  |  | 
|  | void transpose4x3(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) | 
|  | { | 
|  | Float4 tmp0 = UnpackLow(row0, row1); | 
|  | Float4 tmp1 = UnpackLow(row2, row3); | 
|  | Float4 tmp2 = UnpackHigh(row0, row1); | 
|  | Float4 tmp3 = UnpackHigh(row2, row3); | 
|  |  | 
|  | row0 = Float4(tmp0.xy, tmp1.xy); | 
|  | row1 = Float4(tmp0.zw, tmp1.zw); | 
|  | row2 = Float4(tmp2.xy, tmp3.xy); | 
|  | } | 
|  |  | 
|  | void transpose4x2(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) | 
|  | { | 
|  | Float4 tmp0 = UnpackLow(row0, row1); | 
|  | Float4 tmp1 = UnpackLow(row2, row3); | 
|  |  | 
|  | row0 = Float4(tmp0.xy, tmp1.xy); | 
|  | row1 = Float4(tmp0.zw, tmp1.zw); | 
|  | } | 
|  |  | 
|  | void transpose4x1(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) | 
|  | { | 
|  | Float4 tmp0 = UnpackLow(row0, row1); | 
|  | Float4 tmp1 = UnpackLow(row2, row3); | 
|  |  | 
|  | row0 = Float4(tmp0.xy, tmp1.xy); | 
|  | } | 
|  |  | 
|  | void transpose2x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) | 
|  | { | 
|  | Float4 tmp01 = UnpackLow(row0, row1); | 
|  | Float4 tmp23 = UnpackHigh(row0, row1); | 
|  |  | 
|  | row0 = tmp01; | 
|  | row1 = Float4(tmp01.zw, row1.zw); | 
|  | row2 = tmp23; | 
|  | row3 = Float4(tmp23.zw, row3.zw); | 
|  | } | 
|  |  | 
|  | void transpose4xN(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3, int N) | 
|  | { | 
|  | switch(N) | 
|  | { | 
|  | case 1: transpose4x1(row0, row1, row2, row3); break; | 
|  | case 2: transpose4x2(row0, row1, row2, row3); break; | 
|  | case 3: transpose4x3(row0, row1, row2, row3); break; | 
|  | case 4: transpose4x4(row0, row1, row2, row3); break; | 
|  | } | 
|  | } | 
|  |  | 
|  | SIMD::UInt halfToFloatBits(SIMD::UInt halfBits) | 
|  | { | 
|  | auto magic = SIMD::UInt(126 << 23); | 
|  |  | 
|  | auto sign16 = halfBits & SIMD::UInt(0x8000); | 
|  | auto man16 = halfBits & SIMD::UInt(0x03FF); | 
|  | auto exp16 = halfBits & SIMD::UInt(0x7C00); | 
|  |  | 
|  | auto isDnormOrZero = CmpEQ(exp16, SIMD::UInt(0)); | 
|  | auto isInfOrNaN = CmpEQ(exp16, SIMD::UInt(0x7C00)); | 
|  |  | 
|  | auto sign32 = sign16 << 16; | 
|  | auto man32 = man16 << 13; | 
|  | auto exp32 = (exp16 + SIMD::UInt(0x1C000)) << 13; | 
|  | auto norm32 = (man32 | exp32) | (isInfOrNaN & SIMD::UInt(0x7F800000)); | 
|  |  | 
|  | auto denorm32 = As<SIMD::UInt>(As<SIMD::Float>(magic + man16) - As<SIMD::Float>(magic)); | 
|  |  | 
|  | return sign32 | (norm32 & ~isDnormOrZero) | (denorm32 & isDnormOrZero); | 
|  | } | 
|  |  | 
|  | SIMD::UInt floatToHalfBits(SIMD::UInt floatBits, bool storeInUpperBits) | 
|  | { | 
|  | SIMD::UInt sign = floatBits & SIMD::UInt(0x80000000); | 
|  | SIMD::UInt abs = floatBits & SIMD::UInt(0x7FFFFFFF); | 
|  |  | 
|  | SIMD::UInt normal = CmpNLE(abs, SIMD::UInt(0x38800000)); | 
|  |  | 
|  | SIMD::UInt mantissa = (abs & SIMD::UInt(0x007FFFFF)) | SIMD::UInt(0x00800000); | 
|  | SIMD::UInt e = SIMD::UInt(113) - (abs >> 23); | 
|  | SIMD::UInt denormal = CmpLT(e, SIMD::UInt(24)) & (mantissa >> e); | 
|  |  | 
|  | SIMD::UInt base = (normal & abs) | (~normal & denormal);  // TODO: IfThenElse() | 
|  |  | 
|  | // float exponent bias is 127, half bias is 15, so adjust by -112 | 
|  | SIMD::UInt bias = normal & SIMD::UInt(0xC8000000); | 
|  |  | 
|  | SIMD::UInt rounded = base + bias + SIMD::UInt(0x00000FFF) + ((base >> 13) & SIMD::UInt(1)); | 
|  | SIMD::UInt fp16u = rounded >> 13; | 
|  |  | 
|  | // Infinity | 
|  | fp16u |= CmpNLE(abs, SIMD::UInt(0x47FFEFFF)) & SIMD::UInt(0x7FFF); | 
|  |  | 
|  | return storeInUpperBits ? (sign | (fp16u << 16)) : ((sign >> 16) | fp16u); | 
|  | } | 
|  |  | 
|  | Float4 r11g11b10Unpack(UInt r11g11b10bits) | 
|  | { | 
|  | // 10 (or 11) bit float formats are unsigned formats with a 5 bit exponent and a 5 (or 6) bit mantissa. | 
|  | // Since the Half float format also has a 5 bit exponent, we can convert these formats to half by | 
|  | // copy/pasting the bits so the the exponent bits and top mantissa bits are aligned to the half format. | 
|  | // In this case, we have: | 
|  | // MSB | B B B B B B B B B B G G G G G G G G G G G R R R R R R R R R R R | LSB | 
|  | UInt4 halfBits; | 
|  | halfBits = Insert(halfBits, (r11g11b10bits & UInt(0x000007FFu)) << 4, 0); | 
|  | halfBits = Insert(halfBits, (r11g11b10bits & UInt(0x003FF800u)) >> 7, 1); | 
|  | halfBits = Insert(halfBits, (r11g11b10bits & UInt(0xFFC00000u)) >> 17, 2); | 
|  | halfBits = Insert(halfBits, UInt(0x00003C00u), 3); | 
|  | return As<Float4>(halfToFloatBits(halfBits)); | 
|  | } | 
|  |  | 
|  | UInt r11g11b10Pack(const Float4 &value) | 
|  | { | 
|  | // 10 and 11 bit floats are unsigned, so their minimal value is 0 | 
|  | auto halfBits = floatToHalfBits(As<UInt4>(Max(value, Float4(0.0f))), true); | 
|  | // Truncates instead of rounding. See b/147900455 | 
|  | UInt4 truncBits = halfBits & UInt4(0x7FF00000, 0x7FF00000, 0x7FE00000, 0); | 
|  | return (UInt(truncBits.x) >> 20) | (UInt(truncBits.y) >> 9) | (UInt(truncBits.z) << 1); | 
|  | } | 
|  |  | 
|  | Vector4s a2b10g10r10Unpack(const Int4 &value) | 
|  | { | 
|  | Vector4s result; | 
|  |  | 
|  | result.x = Short4(value << 6) & Short4(0xFFC0u); | 
|  | result.y = Short4(value >> 4) & Short4(0xFFC0u); | 
|  | result.z = Short4(value >> 14) & Short4(0xFFC0u); | 
|  | result.w = Short4(value >> 16) & Short4(0xC000u); | 
|  |  | 
|  | // Expand to 16 bit range | 
|  | result.x |= As<Short4>(As<UShort4>(result.x) >> 10); | 
|  | result.y |= As<Short4>(As<UShort4>(result.y) >> 10); | 
|  | result.z |= As<Short4>(As<UShort4>(result.z) >> 10); | 
|  | result.w |= As<Short4>(As<UShort4>(result.w) >> 2); | 
|  | result.w |= As<Short4>(As<UShort4>(result.w) >> 4); | 
|  | result.w |= As<Short4>(As<UShort4>(result.w) >> 8); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | Vector4s a2r10g10b10Unpack(const Int4 &value) | 
|  | { | 
|  | Vector4s result; | 
|  |  | 
|  | result.x = Short4(value >> 14) & Short4(0xFFC0u); | 
|  | result.y = Short4(value >> 4) & Short4(0xFFC0u); | 
|  | result.z = Short4(value << 6) & Short4(0xFFC0u); | 
|  | result.w = Short4(value >> 16) & Short4(0xC000u); | 
|  |  | 
|  | // Expand to 16 bit range | 
|  | result.x |= As<Short4>(As<UShort4>(result.x) >> 10); | 
|  | result.y |= As<Short4>(As<UShort4>(result.y) >> 10); | 
|  | result.z |= As<Short4>(As<UShort4>(result.z) >> 10); | 
|  | result.w |= As<Short4>(As<UShort4>(result.w) >> 2); | 
|  | result.w |= As<Short4>(As<UShort4>(result.w) >> 4); | 
|  | result.w |= As<Short4>(As<UShort4>(result.w) >> 8); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | rr::RValue<rr::Bool> AnyTrue(rr::RValue<sw::SIMD::Int> const &ints) | 
|  | { | 
|  | return rr::SignMask(ints) != 0; | 
|  | } | 
|  |  | 
|  | rr::RValue<rr::Bool> AnyFalse(rr::RValue<sw::SIMD::Int> const &ints) | 
|  | { | 
|  | return rr::SignMask(~ints) != 0; | 
|  | } | 
|  |  | 
|  | rr::RValue<sw::SIMD::Float> Sign(rr::RValue<sw::SIMD::Float> const &val) | 
|  | { | 
|  | return rr::As<sw::SIMD::Float>((rr::As<sw::SIMD::UInt>(val) & sw::SIMD::UInt(0x80000000)) | sw::SIMD::UInt(0x3f800000)); | 
|  | } | 
|  |  | 
|  | // Returns the <whole, frac> of val. | 
|  | // Both whole and frac will have the same sign as val. | 
|  | std::pair<rr::RValue<sw::SIMD::Float>, rr::RValue<sw::SIMD::Float>> | 
|  | Modf(rr::RValue<sw::SIMD::Float> const &val) | 
|  | { | 
|  | auto abs = Abs(val); | 
|  | auto sign = Sign(val); | 
|  | auto whole = Floor(abs) * sign; | 
|  | auto frac = Frac(abs) * sign; | 
|  | return std::make_pair(whole, frac); | 
|  | } | 
|  |  | 
|  | // Returns the number of 1s in bits, per lane. | 
|  | sw::SIMD::UInt CountBits(rr::RValue<sw::SIMD::UInt> const &bits) | 
|  | { | 
|  | // TODO: Add an intrinsic to reactor. Even if there isn't a | 
|  | // single vector instruction, there may be target-dependent | 
|  | // ways to make this faster. | 
|  | // https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel | 
|  | sw::SIMD::UInt c = bits - ((bits >> 1) & sw::SIMD::UInt(0x55555555)); | 
|  | c = ((c >> 2) & sw::SIMD::UInt(0x33333333)) + (c & sw::SIMD::UInt(0x33333333)); | 
|  | c = ((c >> 4) + c) & sw::SIMD::UInt(0x0F0F0F0F); | 
|  | c = ((c >> 8) + c) & sw::SIMD::UInt(0x00FF00FF); | 
|  | c = ((c >> 16) + c) & sw::SIMD::UInt(0x0000FFFF); | 
|  | return c; | 
|  | } | 
|  |  | 
|  | // Returns 1 << bits. | 
|  | // If the resulting bit overflows a 32 bit integer, 0 is returned. | 
|  | rr::RValue<sw::SIMD::UInt> NthBit32(rr::RValue<sw::SIMD::UInt> const &bits) | 
|  | { | 
|  | return ((sw::SIMD::UInt(1) << bits) & rr::CmpLT(bits, sw::SIMD::UInt(32))); | 
|  | } | 
|  |  | 
|  | // Returns bitCount number of of 1's starting from the LSB. | 
|  | rr::RValue<sw::SIMD::UInt> Bitmask32(rr::RValue<sw::SIMD::UInt> const &bitCount) | 
|  | { | 
|  | return NthBit32(bitCount) - sw::SIMD::UInt(1); | 
|  | } | 
|  |  | 
|  | // Performs a fused-multiply add, returning a * b + c. | 
|  | rr::RValue<sw::SIMD::Float> FMA( | 
|  | rr::RValue<sw::SIMD::Float> const &a, | 
|  | rr::RValue<sw::SIMD::Float> const &b, | 
|  | rr::RValue<sw::SIMD::Float> const &c) | 
|  | { | 
|  | return a * b + c; | 
|  | } | 
|  |  | 
|  | // Returns the exponent of the floating point number f. | 
|  | // Assumes IEEE 754 | 
|  | rr::RValue<sw::SIMD::Int> Exponent(rr::RValue<sw::SIMD::Float> f) | 
|  | { | 
|  | auto v = rr::As<sw::SIMD::UInt>(f); | 
|  | return (sw::SIMD::Int((v >> sw::SIMD::UInt(23)) & sw::SIMD::UInt(0xFF)) - sw::SIMD::Int(126)); | 
|  | } | 
|  |  | 
|  | // Returns y if y < x; otherwise result is x. | 
|  | // If one operand is a NaN, the other operand is the result. | 
|  | // If both operands are NaN, the result is a NaN. | 
|  | rr::RValue<sw::SIMD::Float> NMin(rr::RValue<sw::SIMD::Float> const &x, rr::RValue<sw::SIMD::Float> const &y) | 
|  | { | 
|  | using namespace rr; | 
|  | auto xIsNan = IsNan(x); | 
|  | auto yIsNan = IsNan(y); | 
|  | return As<sw::SIMD::Float>( | 
|  | // If neither are NaN, return min | 
|  | ((~xIsNan & ~yIsNan) & As<sw::SIMD::Int>(Min(x, y))) | | 
|  | // If one operand is a NaN, the other operand is the result | 
|  | // If both operands are NaN, the result is a NaN. | 
|  | ((~xIsNan & yIsNan) & As<sw::SIMD::Int>(x)) | | 
|  | (xIsNan & As<sw::SIMD::Int>(y))); | 
|  | } | 
|  |  | 
|  | // Returns y if y > x; otherwise result is x. | 
|  | // If one operand is a NaN, the other operand is the result. | 
|  | // If both operands are NaN, the result is a NaN. | 
|  | rr::RValue<sw::SIMD::Float> NMax(rr::RValue<sw::SIMD::Float> const &x, rr::RValue<sw::SIMD::Float> const &y) | 
|  | { | 
|  | using namespace rr; | 
|  | auto xIsNan = IsNan(x); | 
|  | auto yIsNan = IsNan(y); | 
|  | return As<sw::SIMD::Float>( | 
|  | // If neither are NaN, return max | 
|  | ((~xIsNan & ~yIsNan) & As<sw::SIMD::Int>(Max(x, y))) | | 
|  | // If one operand is a NaN, the other operand is the result | 
|  | // If both operands are NaN, the result is a NaN. | 
|  | ((~xIsNan & yIsNan) & As<sw::SIMD::Int>(x)) | | 
|  | (xIsNan & As<sw::SIMD::Int>(y))); | 
|  | } | 
|  |  | 
|  | // Returns the determinant of a 2x2 matrix. | 
|  | rr::RValue<sw::SIMD::Float> Determinant( | 
|  | rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, | 
|  | rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d) | 
|  | { | 
|  | return a * d - b * c; | 
|  | } | 
|  |  | 
|  | // Returns the determinant of a 3x3 matrix. | 
|  | rr::RValue<sw::SIMD::Float> Determinant( | 
|  | rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c, | 
|  | rr::RValue<sw::SIMD::Float> const &d, rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f, | 
|  | rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h, rr::RValue<sw::SIMD::Float> const &i) | 
|  | { | 
|  | return a * e * i + b * f * g + c * d * h - c * e * g - b * d * i - a * f * h; | 
|  | } | 
|  |  | 
|  | // Returns the determinant of a 4x4 matrix. | 
|  | rr::RValue<sw::SIMD::Float> Determinant( | 
|  | rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d, | 
|  | rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f, rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h, | 
|  | rr::RValue<sw::SIMD::Float> const &i, rr::RValue<sw::SIMD::Float> const &j, rr::RValue<sw::SIMD::Float> const &k, rr::RValue<sw::SIMD::Float> const &l, | 
|  | rr::RValue<sw::SIMD::Float> const &m, rr::RValue<sw::SIMD::Float> const &n, rr::RValue<sw::SIMD::Float> const &o, rr::RValue<sw::SIMD::Float> const &p) | 
|  | { | 
|  | return a * Determinant(f, g, h, | 
|  | j, k, l, | 
|  | n, o, p) - | 
|  | b * Determinant(e, g, h, | 
|  | i, k, l, | 
|  | m, o, p) + | 
|  | c * Determinant(e, f, h, | 
|  | i, j, l, | 
|  | m, n, p) - | 
|  | d * Determinant(e, f, g, | 
|  | i, j, k, | 
|  | m, n, o); | 
|  | } | 
|  |  | 
|  | // Returns the inverse of a 2x2 matrix. | 
|  | std::array<rr::RValue<sw::SIMD::Float>, 4> MatrixInverse( | 
|  | rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, | 
|  | rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d) | 
|  | { | 
|  | auto s = sw::SIMD::Float(1.0f) / Determinant(a, b, c, d); | 
|  | return { { s * d, -s * b, -s * c, s * a } }; | 
|  | } | 
|  |  | 
|  | // Returns the inverse of a 3x3 matrix. | 
|  | std::array<rr::RValue<sw::SIMD::Float>, 9> MatrixInverse( | 
|  | rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c, | 
|  | rr::RValue<sw::SIMD::Float> const &d, rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f, | 
|  | rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h, rr::RValue<sw::SIMD::Float> const &i) | 
|  | { | 
|  | auto s = sw::SIMD::Float(1.0f) / Determinant( | 
|  | a, b, c, | 
|  | d, e, f, | 
|  | g, h, i);  // TODO: duplicate arithmetic calculating the det and below. | 
|  |  | 
|  | return { { | 
|  | s * (e * i - f * h), | 
|  | s * (c * h - b * i), | 
|  | s * (b * f - c * e), | 
|  | s * (f * g - d * i), | 
|  | s * (a * i - c * g), | 
|  | s * (c * d - a * f), | 
|  | s * (d * h - e * g), | 
|  | s * (b * g - a * h), | 
|  | s * (a * e - b * d), | 
|  | } }; | 
|  | } | 
|  |  | 
|  | // Returns the inverse of a 4x4 matrix. | 
|  | std::array<rr::RValue<sw::SIMD::Float>, 16> MatrixInverse( | 
|  | rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d, | 
|  | rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f, rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h, | 
|  | rr::RValue<sw::SIMD::Float> const &i, rr::RValue<sw::SIMD::Float> const &j, rr::RValue<sw::SIMD::Float> const &k, rr::RValue<sw::SIMD::Float> const &l, | 
|  | rr::RValue<sw::SIMD::Float> const &m, rr::RValue<sw::SIMD::Float> const &n, rr::RValue<sw::SIMD::Float> const &o, rr::RValue<sw::SIMD::Float> const &p) | 
|  | { | 
|  | auto s = sw::SIMD::Float(1.0f) / Determinant( | 
|  | a, b, c, d, | 
|  | e, f, g, h, | 
|  | i, j, k, l, | 
|  | m, n, o, p);  // TODO: duplicate arithmetic calculating the det and below. | 
|  |  | 
|  | auto kplo = k * p - l * o, jpln = j * p - l * n, jokn = j * o - k * n; | 
|  | auto gpho = g * p - h * o, fphn = f * p - h * n, fogn = f * o - g * n; | 
|  | auto glhk = g * l - h * k, flhj = f * l - h * j, fkgj = f * k - g * j; | 
|  | auto iplm = i * p - l * m, iokm = i * o - k * m, ephm = e * p - h * m; | 
|  | auto eogm = e * o - g * m, elhi = e * l - h * i, ekgi = e * k - g * i; | 
|  | auto injm = i * n - j * m, enfm = e * n - f * m, ejfi = e * j - f * i; | 
|  |  | 
|  | return { { | 
|  | s * (f * kplo - g * jpln + h * jokn), | 
|  | s * (-b * kplo + c * jpln - d * jokn), | 
|  | s * (b * gpho - c * fphn + d * fogn), | 
|  | s * (-b * glhk + c * flhj - d * fkgj), | 
|  |  | 
|  | s * (-e * kplo + g * iplm - h * iokm), | 
|  | s * (a * kplo - c * iplm + d * iokm), | 
|  | s * (-a * gpho + c * ephm - d * eogm), | 
|  | s * (a * glhk - c * elhi + d * ekgi), | 
|  |  | 
|  | s * (e * jpln - f * iplm + h * injm), | 
|  | s * (-a * jpln + b * iplm - d * injm), | 
|  | s * (a * fphn - b * ephm + d * enfm), | 
|  | s * (-a * flhj + b * elhi - d * ejfi), | 
|  |  | 
|  | s * (-e * jokn + f * iokm - g * injm), | 
|  | s * (a * jokn - b * iokm + c * injm), | 
|  | s * (-a * fogn + b * eogm - c * enfm), | 
|  | s * (a * fkgj - b * ekgi + c * ejfi), | 
|  | } }; | 
|  | } | 
|  |  | 
|  | namespace SIMD { | 
|  |  | 
|  | Pointer::Pointer(rr::Pointer<Byte> base, rr::Int limit) | 
|  | : base(base) | 
|  | , dynamicLimit(limit) | 
|  | , staticLimit(0) | 
|  | , dynamicOffsets(0) | 
|  | , staticOffsets{} | 
|  | , hasDynamicLimit(true) | 
|  | , hasDynamicOffsets(false) | 
|  | {} | 
|  |  | 
|  | Pointer::Pointer(rr::Pointer<Byte> base, unsigned int limit) | 
|  | : base(base) | 
|  | , dynamicLimit(0) | 
|  | , staticLimit(limit) | 
|  | , dynamicOffsets(0) | 
|  | , staticOffsets{} | 
|  | , hasDynamicLimit(false) | 
|  | , hasDynamicOffsets(false) | 
|  | {} | 
|  |  | 
|  | Pointer::Pointer(rr::Pointer<Byte> base, rr::Int limit, SIMD::Int offset) | 
|  | : base(base) | 
|  | , dynamicLimit(limit) | 
|  | , staticLimit(0) | 
|  | , dynamicOffsets(offset) | 
|  | , staticOffsets{} | 
|  | , hasDynamicLimit(true) | 
|  | , hasDynamicOffsets(true) | 
|  | {} | 
|  |  | 
|  | Pointer::Pointer(rr::Pointer<Byte> base, unsigned int limit, SIMD::Int offset) | 
|  | : base(base) | 
|  | , dynamicLimit(0) | 
|  | , staticLimit(limit) | 
|  | , dynamicOffsets(offset) | 
|  | , staticOffsets{} | 
|  | , hasDynamicLimit(false) | 
|  | , hasDynamicOffsets(true) | 
|  | {} | 
|  |  | 
|  | Pointer &Pointer::operator+=(Int i) | 
|  | { | 
|  | dynamicOffsets += i; | 
|  | hasDynamicOffsets = true; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | Pointer &Pointer::operator*=(Int i) | 
|  | { | 
|  | dynamicOffsets = offsets() * i; | 
|  | staticOffsets = {}; | 
|  | hasDynamicOffsets = true; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | Pointer Pointer::operator+(SIMD::Int i) | 
|  | { | 
|  | Pointer p = *this; | 
|  | p += i; | 
|  | return p; | 
|  | } | 
|  | Pointer Pointer::operator*(SIMD::Int i) | 
|  | { | 
|  | Pointer p = *this; | 
|  | p *= i; | 
|  | return p; | 
|  | } | 
|  |  | 
|  | Pointer &Pointer::operator+=(int i) | 
|  | { | 
|  | for(int el = 0; el < SIMD::Width; el++) { staticOffsets[el] += i; } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | Pointer &Pointer::operator*=(int i) | 
|  | { | 
|  | for(int el = 0; el < SIMD::Width; el++) { staticOffsets[el] *= i; } | 
|  | if(hasDynamicOffsets) | 
|  | { | 
|  | dynamicOffsets *= SIMD::Int(i); | 
|  | } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | Pointer Pointer::operator+(int i) | 
|  | { | 
|  | Pointer p = *this; | 
|  | p += i; | 
|  | return p; | 
|  | } | 
|  | Pointer Pointer::operator*(int i) | 
|  | { | 
|  | Pointer p = *this; | 
|  | p *= i; | 
|  | return p; | 
|  | } | 
|  |  | 
|  | SIMD::Int Pointer::offsets() const | 
|  | { | 
|  | static_assert(SIMD::Width == 4, "Expects SIMD::Width to be 4"); | 
|  | return dynamicOffsets + SIMD::Int(staticOffsets[0], staticOffsets[1], staticOffsets[2], staticOffsets[3]); | 
|  | } | 
|  |  | 
|  | SIMD::Int Pointer::isInBounds(unsigned int accessSize, OutOfBoundsBehavior robustness) const | 
|  | { | 
|  | ASSERT(accessSize > 0); | 
|  |  | 
|  | if(isStaticallyInBounds(accessSize, robustness)) | 
|  | { | 
|  | return SIMD::Int(0xffffffff); | 
|  | } | 
|  |  | 
|  | if(!hasDynamicOffsets && !hasDynamicLimit) | 
|  | { | 
|  | // Common fast paths. | 
|  | static_assert(SIMD::Width == 4, "Expects SIMD::Width to be 4"); | 
|  | return SIMD::Int( | 
|  | (staticOffsets[0] + accessSize - 1 < staticLimit) ? 0xffffffff : 0, | 
|  | (staticOffsets[1] + accessSize - 1 < staticLimit) ? 0xffffffff : 0, | 
|  | (staticOffsets[2] + accessSize - 1 < staticLimit) ? 0xffffffff : 0, | 
|  | (staticOffsets[3] + accessSize - 1 < staticLimit) ? 0xffffffff : 0); | 
|  | } | 
|  |  | 
|  | return CmpLT(offsets() + SIMD::Int(accessSize - 1), SIMD::Int(limit())); | 
|  | } | 
|  |  | 
|  | bool Pointer::isStaticallyInBounds(unsigned int accessSize, OutOfBoundsBehavior robustness) const | 
|  | { | 
|  | if(hasDynamicOffsets) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if(hasDynamicLimit) | 
|  | { | 
|  | if(hasStaticEqualOffsets() || hasStaticSequentialOffsets(accessSize)) | 
|  | { | 
|  | switch(robustness) | 
|  | { | 
|  | case OutOfBoundsBehavior::UndefinedBehavior: | 
|  | // With this robustness setting the application/compiler guarantees in-bounds accesses on active lanes, | 
|  | // but since it can't know in advance which branches are taken this must be true even for inactives lanes. | 
|  | return true; | 
|  | case OutOfBoundsBehavior::Nullify: | 
|  | case OutOfBoundsBehavior::RobustBufferAccess: | 
|  | case OutOfBoundsBehavior::UndefinedValue: | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for(int i = 0; i < SIMD::Width; i++) | 
|  | { | 
|  | if(staticOffsets[i] + accessSize - 1 >= staticLimit) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Int Pointer::limit() const | 
|  | { | 
|  | return dynamicLimit + staticLimit; | 
|  | } | 
|  |  | 
|  | // Returns true if all offsets are sequential | 
|  | // (N+0*step, N+1*step, N+2*step, N+3*step) | 
|  | rr::Bool Pointer::hasSequentialOffsets(unsigned int step) const | 
|  | { | 
|  | if(hasDynamicOffsets) | 
|  | { | 
|  | auto o = offsets(); | 
|  | static_assert(SIMD::Width == 4, "Expects SIMD::Width to be 4"); | 
|  | return rr::SignMask(~CmpEQ(o.yzww, o + SIMD::Int(1 * step, 2 * step, 3 * step, 0))) == 0; | 
|  | } | 
|  | return hasStaticSequentialOffsets(step); | 
|  | } | 
|  |  | 
|  | // Returns true if all offsets are are compile-time static and | 
|  | // sequential (N+0*step, N+1*step, N+2*step, N+3*step) | 
|  | bool Pointer::hasStaticSequentialOffsets(unsigned int step) const | 
|  | { | 
|  | if(hasDynamicOffsets) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | for(int i = 1; i < SIMD::Width; i++) | 
|  | { | 
|  | if(staticOffsets[i - 1] + int32_t(step) != staticOffsets[i]) { return false; } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Returns true if all offsets are equal (N, N, N, N) | 
|  | rr::Bool Pointer::hasEqualOffsets() const | 
|  | { | 
|  | if(hasDynamicOffsets) | 
|  | { | 
|  | auto o = offsets(); | 
|  | static_assert(SIMD::Width == 4, "Expects SIMD::Width to be 4"); | 
|  | return rr::SignMask(~CmpEQ(o, o.yzwx)) == 0; | 
|  | } | 
|  | return hasStaticEqualOffsets(); | 
|  | } | 
|  |  | 
|  | // Returns true if all offsets are compile-time static and are equal | 
|  | // (N, N, N, N) | 
|  | bool Pointer::hasStaticEqualOffsets() const | 
|  | { | 
|  | if(hasDynamicOffsets) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | for(int i = 1; i < SIMD::Width; i++) | 
|  | { | 
|  | if(staticOffsets[i - 1] != staticOffsets[i]) { return false; } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | }  // namespace SIMD | 
|  |  | 
|  | }  // namespace sw |