| //===-- Uops.cpp ------------------------------------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Uops.h" |
| |
| #include "Assembler.h" |
| #include "BenchmarkRunner.h" |
| #include "MCInstrDescView.h" |
| #include "PerfHelper.h" |
| |
| // FIXME: Load constants into registers (e.g. with fld1) to not break |
| // instructions like x87. |
| |
| // Ideally we would like the only limitation on executing uops to be the issue |
| // ports. Maximizing port pressure increases the likelihood that the load is |
| // distributed evenly across possible ports. |
| |
| // To achieve that, one approach is to generate instructions that do not have |
| // data dependencies between them. |
| // |
| // For some instructions, this is trivial: |
| // mov rax, qword ptr [rsi] |
| // mov rax, qword ptr [rsi] |
| // mov rax, qword ptr [rsi] |
| // mov rax, qword ptr [rsi] |
| // For the above snippet, haswell just renames rax four times and executes the |
| // four instructions two at a time on P23 and P0126. |
| // |
| // For some instructions, we just need to make sure that the source is |
| // different from the destination. For example, IDIV8r reads from GPR and |
| // writes to AX. We just need to ensure that the Var is assigned a |
| // register which is different from AX: |
| // idiv bx |
| // idiv bx |
| // idiv bx |
| // idiv bx |
| // The above snippet will be able to fully saturate the ports, while the same |
| // with ax would issue one uop every `latency(IDIV8r)` cycles. |
| // |
| // Some instructions make this harder because they both read and write from |
| // the same register: |
| // inc rax |
| // inc rax |
| // inc rax |
| // inc rax |
| // This has a data dependency from each instruction to the next, limit the |
| // number of instructions that can be issued in parallel. |
| // It turns out that this is not a big issue on recent Intel CPUs because they |
| // have heuristics to balance port pressure. In the snippet above, subsequent |
| // instructions will end up evenly distributed on {P0,P1,P5,P6}, but some CPUs |
| // might end up executing them all on P0 (just because they can), or try |
| // avoiding P5 because it's usually under high pressure from vector |
| // instructions. |
| // This issue is even more important for high-latency instructions because |
| // they increase the idle time of the CPU, e.g. : |
| // imul rax, rbx |
| // imul rax, rbx |
| // imul rax, rbx |
| // imul rax, rbx |
| // |
| // To avoid that, we do the renaming statically by generating as many |
| // independent exclusive assignments as possible (until all possible registers |
| // are exhausted) e.g.: |
| // imul rax, rbx |
| // imul rcx, rbx |
| // imul rdx, rbx |
| // imul r8, rbx |
| // |
| // Some instruction even make the above static renaming impossible because |
| // they implicitly read and write from the same operand, e.g. ADC16rr reads |
| // and writes from EFLAGS. |
| // In that case we just use a greedy register assignment and hope for the |
| // best. |
| |
| namespace exegesis { |
| |
| static bool hasUnknownOperand(const llvm::MCOperandInfo &OpInfo) { |
| return OpInfo.OperandType == llvm::MCOI::OPERAND_UNKNOWN; |
| } |
| |
| // FIXME: Handle memory, see PR36905. |
| static bool hasMemoryOperand(const llvm::MCOperandInfo &OpInfo) { |
| return OpInfo.OperandType == llvm::MCOI::OPERAND_MEMORY; |
| } |
| |
| llvm::Error |
| UopsBenchmarkRunner::isInfeasible(const llvm::MCInstrDesc &MCInstrDesc) const { |
| if (llvm::any_of(MCInstrDesc.operands(), hasUnknownOperand)) |
| return llvm::make_error<BenchmarkFailure>( |
| "Infeasible : has unknown operands"); |
| if (llvm::any_of(MCInstrDesc.operands(), hasMemoryOperand)) |
| return llvm::make_error<BenchmarkFailure>( |
| "Infeasible : has memory operands"); |
| return llvm::Error::success(); |
| } |
| |
| // Returns whether this Variable ties Use and Def operands together. |
| static bool hasTiedOperands(const Instruction &Instr, const Variable &Var) { |
| bool HasUse = false; |
| bool HasDef = false; |
| for (const unsigned OpIndex : Var.TiedOperands) { |
| const Operand &Op = Instr.Operands[OpIndex]; |
| if (Op.IsDef) |
| HasDef = true; |
| else |
| HasUse = true; |
| } |
| return HasUse && HasDef; |
| } |
| |
| static llvm::SmallVector<const Variable *, 8> |
| getTiedVariables(const Instruction &Instr) { |
| llvm::SmallVector<const Variable *, 8> Result; |
| for (const auto &Var : Instr.Variables) |
| if (hasTiedOperands(Instr, Var)) |
| Result.push_back(&Var); |
| return Result; |
| } |
| |
| static void remove(llvm::BitVector &a, const llvm::BitVector &b) { |
| assert(a.size() == b.size()); |
| for (auto I : b.set_bits()) |
| a.reset(I); |
| } |
| |
| UopsBenchmarkRunner::~UopsBenchmarkRunner() = default; |
| |
| llvm::Expected<SnippetPrototype> |
| UopsBenchmarkRunner::generatePrototype(unsigned Opcode) const { |
| const auto &InstrDesc = State.getInstrInfo().get(Opcode); |
| if (auto E = isInfeasible(InstrDesc)) |
| return std::move(E); |
| const Instruction Instr(InstrDesc, RATC); |
| const AliasingConfigurations SelfAliasing(Instr, Instr); |
| if (SelfAliasing.empty()) { |
| return generateUnconstrainedPrototype(Instr, "instruction is parallel"); |
| } |
| if (SelfAliasing.hasImplicitAliasing()) { |
| return generateUnconstrainedPrototype(Instr, "instruction is serial"); |
| } |
| const auto TiedVariables = getTiedVariables(Instr); |
| if (!TiedVariables.empty()) { |
| if (TiedVariables.size() > 1) |
| return llvm::make_error<llvm::StringError>( |
| "Infeasible : don't know how to handle several tied variables", |
| llvm::inconvertibleErrorCode()); |
| const Variable *Var = TiedVariables.front(); |
| assert(Var); |
| assert(!Var->TiedOperands.empty()); |
| const Operand &Op = Instr.Operands[Var->TiedOperands.front()]; |
| assert(Op.Tracker); |
| SnippetPrototype Prototype; |
| Prototype.Explanation = |
| "instruction has tied variables using static renaming."; |
| for (const llvm::MCPhysReg Reg : Op.Tracker->sourceBits().set_bits()) { |
| Prototype.Snippet.emplace_back(Instr); |
| Prototype.Snippet.back().getValueFor(*Var) = |
| llvm::MCOperand::createReg(Reg); |
| } |
| return std::move(Prototype); |
| } |
| InstructionInstance II(Instr); |
| // No tied variables, we pick random values for defs. |
| llvm::BitVector Defs(State.getRegInfo().getNumRegs()); |
| for (const auto &Op : Instr.Operands) { |
| if (Op.Tracker && Op.IsExplicit && Op.IsDef) { |
| auto PossibleRegisters = Op.Tracker->sourceBits(); |
| remove(PossibleRegisters, RATC.reservedRegisters()); |
| assert(PossibleRegisters.any() && "No register left to choose from"); |
| const auto RandomReg = randomBit(PossibleRegisters); |
| Defs.set(RandomReg); |
| II.getValueFor(Op) = llvm::MCOperand::createReg(RandomReg); |
| } |
| } |
| // And pick random use values that are not reserved and don't alias with defs. |
| const auto DefAliases = getAliasedBits(State.getRegInfo(), Defs); |
| for (const auto &Op : Instr.Operands) { |
| if (Op.Tracker && Op.IsExplicit && !Op.IsDef) { |
| auto PossibleRegisters = Op.Tracker->sourceBits(); |
| remove(PossibleRegisters, RATC.reservedRegisters()); |
| remove(PossibleRegisters, DefAliases); |
| assert(PossibleRegisters.any() && "No register left to choose from"); |
| const auto RandomReg = randomBit(PossibleRegisters); |
| II.getValueFor(Op) = llvm::MCOperand::createReg(RandomReg); |
| } |
| } |
| SnippetPrototype Prototype; |
| Prototype.Explanation = |
| "instruction has no tied variables picking Uses different from defs"; |
| Prototype.Snippet.push_back(std::move(II)); |
| return std::move(Prototype); |
| } |
| |
| std::vector<BenchmarkMeasure> |
| UopsBenchmarkRunner::runMeasurements(const ExecutableFunction &Function, |
| const unsigned NumRepetitions) const { |
| const auto &SchedModel = State.getSubtargetInfo().getSchedModel(); |
| |
| std::vector<BenchmarkMeasure> Result; |
| for (unsigned ProcResIdx = 1; |
| ProcResIdx < SchedModel.getNumProcResourceKinds(); ++ProcResIdx) { |
| const char *const PfmCounters = SchedModel.getExtraProcessorInfo() |
| .PfmCounters.IssueCounters[ProcResIdx]; |
| if (!PfmCounters) |
| continue; |
| // We sum counts when there are several counters for a single ProcRes |
| // (e.g. P23 on SandyBridge). |
| int64_t CounterValue = 0; |
| llvm::SmallVector<llvm::StringRef, 2> CounterNames; |
| llvm::StringRef(PfmCounters).split(CounterNames, ','); |
| for (const auto &CounterName : CounterNames) { |
| pfm::PerfEvent UopPerfEvent(CounterName); |
| if (!UopPerfEvent.valid()) |
| llvm::report_fatal_error( |
| llvm::Twine("invalid perf event ").concat(PfmCounters)); |
| pfm::Counter Counter(UopPerfEvent); |
| Counter.start(); |
| Function(); |
| Counter.stop(); |
| CounterValue += Counter.read(); |
| } |
| Result.push_back({llvm::itostr(ProcResIdx), |
| static_cast<double>(CounterValue) / NumRepetitions, |
| SchedModel.getProcResource(ProcResIdx)->Name}); |
| } |
| return Result; |
| } |
| |
| } // namespace exegesis |