| //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This file implements the RegBankSelect class. |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" |
| #include "llvm/CodeGen/GlobalISel/RegisterBank.h" |
| #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" |
| #include "llvm/CodeGen/GlobalISel/Utils.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/BlockFrequency.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <limits> |
| #include <memory> |
| #include <utility> |
| |
| #define DEBUG_TYPE "regbankselect" |
| |
| using namespace llvm; |
| |
| static cl::opt<RegBankSelect::Mode> RegBankSelectMode( |
| cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional, |
| cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast", |
| "Run the Fast mode (default mapping)"), |
| clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy", |
| "Use the Greedy mode (best local mapping)"))); |
| |
| char RegBankSelect::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE, |
| "Assign register bank of generic virtual registers", |
| false, false); |
| INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) |
| INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) |
| INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) |
| INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, |
| "Assign register bank of generic virtual registers", false, |
| false) |
| |
| RegBankSelect::RegBankSelect(Mode RunningMode) |
| : MachineFunctionPass(ID), OptMode(RunningMode) { |
| initializeRegBankSelectPass(*PassRegistry::getPassRegistry()); |
| if (RegBankSelectMode.getNumOccurrences() != 0) { |
| OptMode = RegBankSelectMode; |
| if (RegBankSelectMode != RunningMode) |
| LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n"); |
| } |
| } |
| |
| void RegBankSelect::init(MachineFunction &MF) { |
| RBI = MF.getSubtarget().getRegBankInfo(); |
| assert(RBI && "Cannot work without RegisterBankInfo"); |
| MRI = &MF.getRegInfo(); |
| TRI = MF.getSubtarget().getRegisterInfo(); |
| TPC = &getAnalysis<TargetPassConfig>(); |
| if (OptMode != Mode::Fast) { |
| MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); |
| MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); |
| } else { |
| MBFI = nullptr; |
| MBPI = nullptr; |
| } |
| MIRBuilder.setMF(MF); |
| MORE = llvm::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI); |
| } |
| |
| void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const { |
| if (OptMode != Mode::Fast) { |
| // We could preserve the information from these two analysis but |
| // the APIs do not allow to do so yet. |
| AU.addRequired<MachineBlockFrequencyInfo>(); |
| AU.addRequired<MachineBranchProbabilityInfo>(); |
| } |
| AU.addRequired<TargetPassConfig>(); |
| getSelectionDAGFallbackAnalysisUsage(AU); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool RegBankSelect::assignmentMatch( |
| unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping, |
| bool &OnlyAssign) const { |
| // By default we assume we will have to repair something. |
| OnlyAssign = false; |
| // Each part of a break down needs to end up in a different register. |
| // In other word, Reg assignement does not match. |
| if (ValMapping.NumBreakDowns > 1) |
| return false; |
| |
| const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI); |
| const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; |
| // Reg is free of assignment, a simple assignment will make the |
| // register bank to match. |
| OnlyAssign = CurRegBank == nullptr; |
| LLVM_DEBUG(dbgs() << "Does assignment already match: "; |
| if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none"; |
| dbgs() << " against "; |
| assert(DesiredRegBrank && "The mapping must be valid"); |
| dbgs() << *DesiredRegBrank << '\n';); |
| return CurRegBank == DesiredRegBrank; |
| } |
| |
| bool RegBankSelect::repairReg( |
| MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping, |
| RegBankSelect::RepairingPlacement &RepairPt, |
| const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) { |
| if (ValMapping.NumBreakDowns != 1 && !TPC->isGlobalISelAbortEnabled()) |
| return false; |
| assert(ValMapping.NumBreakDowns == 1 && "Not yet implemented"); |
| // An empty range of new register means no repairing. |
| assert(NewVRegs.begin() != NewVRegs.end() && "We should not have to repair"); |
| |
| // Assume we are repairing a use and thus, the original reg will be |
| // the source of the repairing. |
| unsigned Src = MO.getReg(); |
| unsigned Dst = *NewVRegs.begin(); |
| |
| // If we repair a definition, swap the source and destination for |
| // the repairing. |
| if (MO.isDef()) |
| std::swap(Src, Dst); |
| |
| assert((RepairPt.getNumInsertPoints() == 1 || |
| TargetRegisterInfo::isPhysicalRegister(Dst)) && |
| "We are about to create several defs for Dst"); |
| |
| // Build the instruction used to repair, then clone it at the right |
| // places. Avoiding buildCopy bypasses the check that Src and Dst have the |
| // same types because the type is a placeholder when this function is called. |
| MachineInstr *MI = |
| MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY).addDef(Dst).addUse(Src); |
| LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst) |
| << '\n'); |
| // TODO: |
| // Check if MI is legal. if not, we need to legalize all the |
| // instructions we are going to insert. |
| std::unique_ptr<MachineInstr *[]> NewInstrs( |
| new MachineInstr *[RepairPt.getNumInsertPoints()]); |
| bool IsFirst = true; |
| unsigned Idx = 0; |
| for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { |
| MachineInstr *CurMI; |
| if (IsFirst) |
| CurMI = MI; |
| else |
| CurMI = MIRBuilder.getMF().CloneMachineInstr(MI); |
| InsertPt->insert(*CurMI); |
| NewInstrs[Idx++] = CurMI; |
| IsFirst = false; |
| } |
| // TODO: |
| // Legalize NewInstrs if need be. |
| return true; |
| } |
| |
| uint64_t RegBankSelect::getRepairCost( |
| const MachineOperand &MO, |
| const RegisterBankInfo::ValueMapping &ValMapping) const { |
| assert(MO.isReg() && "We should only repair register operand"); |
| assert(ValMapping.NumBreakDowns && "Nothing to map??"); |
| |
| bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1; |
| const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI); |
| // If MO does not have a register bank, we should have just been |
| // able to set one unless we have to break the value down. |
| assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair"); |
| // Def: Val <- NewDefs |
| // Same number of values: copy |
| // Different number: Val = build_sequence Defs1, Defs2, ... |
| // Use: NewSources <- Val. |
| // Same number of values: copy. |
| // Different number: Src1, Src2, ... = |
| // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ... |
| // We should remember that this value is available somewhere else to |
| // coalesce the value. |
| |
| if (IsSameNumOfValues) { |
| const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; |
| // If we repair a definition, swap the source and destination for |
| // the repairing. |
| if (MO.isDef()) |
| std::swap(CurRegBank, DesiredRegBrank); |
| // TODO: It may be possible to actually avoid the copy. |
| // If we repair something where the source is defined by a copy |
| // and the source of that copy is on the right bank, we can reuse |
| // it for free. |
| // E.g., |
| // RegToRepair<BankA> = copy AlternativeSrc<BankB> |
| // = op RegToRepair<BankA> |
| // We can simply propagate AlternativeSrc instead of copying RegToRepair |
| // into a new virtual register. |
| // We would also need to propagate this information in the |
| // repairing placement. |
| unsigned Cost = RBI->copyCost(*DesiredRegBrank, *CurRegBank, |
| RBI->getSizeInBits(MO.getReg(), *MRI, *TRI)); |
| // TODO: use a dedicated constant for ImpossibleCost. |
| if (Cost != std::numeric_limits<unsigned>::max()) |
| return Cost; |
| // Return the legalization cost of that repairing. |
| } |
| return std::numeric_limits<unsigned>::max(); |
| } |
| |
| const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping( |
| MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings, |
| SmallVectorImpl<RepairingPlacement> &RepairPts) { |
| assert(!PossibleMappings.empty() && |
| "Do not know how to map this instruction"); |
| |
| const RegisterBankInfo::InstructionMapping *BestMapping = nullptr; |
| MappingCost Cost = MappingCost::ImpossibleCost(); |
| SmallVector<RepairingPlacement, 4> LocalRepairPts; |
| for (const RegisterBankInfo::InstructionMapping *CurMapping : |
| PossibleMappings) { |
| MappingCost CurCost = |
| computeMapping(MI, *CurMapping, LocalRepairPts, &Cost); |
| if (CurCost < Cost) { |
| LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n'); |
| Cost = CurCost; |
| BestMapping = CurMapping; |
| RepairPts.clear(); |
| for (RepairingPlacement &RepairPt : LocalRepairPts) |
| RepairPts.emplace_back(std::move(RepairPt)); |
| } |
| } |
| if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) { |
| // If none of the mapping worked that means they are all impossible. |
| // Thus, pick the first one and set an impossible repairing point. |
| // It will trigger the failed isel mode. |
| BestMapping = *PossibleMappings.begin(); |
| RepairPts.emplace_back( |
| RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible)); |
| } else |
| assert(BestMapping && "No suitable mapping for instruction"); |
| return *BestMapping; |
| } |
| |
| void RegBankSelect::tryAvoidingSplit( |
| RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO, |
| const RegisterBankInfo::ValueMapping &ValMapping) const { |
| const MachineInstr &MI = *MO.getParent(); |
| assert(RepairPt.hasSplit() && "We should not have to adjust for split"); |
| // Splitting should only occur for PHIs or between terminators, |
| // because we only do local repairing. |
| assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?"); |
| |
| assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO && |
| "Repairing placement does not match operand"); |
| |
| // If we need splitting for phis, that means it is because we |
| // could not find an insertion point before the terminators of |
| // the predecessor block for this argument. In other words, |
| // the input value is defined by one of the terminators. |
| assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?"); |
| |
| // We split to repair the use of a phi or a terminator. |
| if (!MO.isDef()) { |
| if (MI.isTerminator()) { |
| assert(&MI != &(*MI.getParent()->getFirstTerminator()) && |
| "Need to split for the first terminator?!"); |
| } else { |
| // For the PHI case, the split may not be actually required. |
| // In the copy case, a phi is already a copy on the incoming edge, |
| // therefore there is no need to split. |
| if (ValMapping.NumBreakDowns == 1) |
| // This is a already a copy, there is nothing to do. |
| RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign); |
| } |
| return; |
| } |
| |
| // At this point, we need to repair a defintion of a terminator. |
| |
| // Technically we need to fix the def of MI on all outgoing |
| // edges of MI to keep the repairing local. In other words, we |
| // will create several definitions of the same register. This |
| // does not work for SSA unless that definition is a physical |
| // register. |
| // However, there are other cases where we can get away with |
| // that while still keeping the repairing local. |
| assert(MI.isTerminator() && MO.isDef() && |
| "This code is for the def of a terminator"); |
| |
| // Since we use RPO traversal, if we need to repair a definition |
| // this means this definition could be: |
| // 1. Used by PHIs (i.e., this VReg has been visited as part of the |
| // uses of a phi.), or |
| // 2. Part of a target specific instruction (i.e., the target applied |
| // some register class constraints when creating the instruction.) |
| // If the constraints come for #2, the target said that another mapping |
| // is supported so we may just drop them. Indeed, if we do not change |
| // the number of registers holding that value, the uses will get fixed |
| // when we get to them. |
| // Uses in PHIs may have already been proceeded though. |
| // If the constraints come for #1, then, those are weak constraints and |
| // no actual uses may rely on them. However, the problem remains mainly |
| // the same as for #2. If the value stays in one register, we could |
| // just switch the register bank of the definition, but we would need to |
| // account for a repairing cost for each phi we silently change. |
| // |
| // In any case, if the value needs to be broken down into several |
| // registers, the repairing is not local anymore as we need to patch |
| // every uses to rebuild the value in just one register. |
| // |
| // To summarize: |
| // - If the value is in a physical register, we can do the split and |
| // fix locally. |
| // Otherwise if the value is in a virtual register: |
| // - If the value remains in one register, we do not have to split |
| // just switching the register bank would do, but we need to account |
| // in the repairing cost all the phi we changed. |
| // - If the value spans several registers, then we cannot do a local |
| // repairing. |
| |
| // Check if this is a physical or virtual register. |
| unsigned Reg = MO.getReg(); |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| // We are going to split every outgoing edges. |
| // Check that this is possible. |
| // FIXME: The machine representation is currently broken |
| // since it also several terminators in one basic block. |
| // Because of that we would technically need a way to get |
| // the targets of just one terminator to know which edges |
| // we have to split. |
| // Assert that we do not hit the ill-formed representation. |
| |
| // If there are other terminators before that one, some of |
| // the outgoing edges may not be dominated by this definition. |
| assert(&MI == &(*MI.getParent()->getFirstTerminator()) && |
| "Do not know which outgoing edges are relevant"); |
| const MachineInstr *Next = MI.getNextNode(); |
| assert((!Next || Next->isUnconditionalBranch()) && |
| "Do not know where each terminator ends up"); |
| if (Next) |
| // If the next terminator uses Reg, this means we have |
| // to split right after MI and thus we need a way to ask |
| // which outgoing edges are affected. |
| assert(!Next->readsRegister(Reg) && "Need to split between terminators"); |
| // We will split all the edges and repair there. |
| } else { |
| // This is a virtual register defined by a terminator. |
| if (ValMapping.NumBreakDowns == 1) { |
| // There is nothing to repair, but we may actually lie on |
| // the repairing cost because of the PHIs already proceeded |
| // as already stated. |
| // Though the code will be correct. |
| assert(false && "Repairing cost may not be accurate"); |
| } else { |
| // We need to do non-local repairing. Basically, patch all |
| // the uses (i.e., phis) that we already proceeded. |
| // For now, just say this mapping is not possible. |
| RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible); |
| } |
| } |
| } |
| |
| RegBankSelect::MappingCost RegBankSelect::computeMapping( |
| MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, |
| SmallVectorImpl<RepairingPlacement> &RepairPts, |
| const RegBankSelect::MappingCost *BestCost) { |
| assert((MBFI || !BestCost) && "Costs comparison require MBFI"); |
| |
| if (!InstrMapping.isValid()) |
| return MappingCost::ImpossibleCost(); |
| |
| // If mapped with InstrMapping, MI will have the recorded cost. |
| MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1); |
| bool Saturated = Cost.addLocalCost(InstrMapping.getCost()); |
| assert(!Saturated && "Possible mapping saturated the cost"); |
| LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI); |
| LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n'); |
| RepairPts.clear(); |
| if (BestCost && Cost > *BestCost) { |
| LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n"); |
| return Cost; |
| } |
| |
| // Moreover, to realize this mapping, the register bank of each operand must |
| // match this mapping. In other words, we may need to locally reassign the |
| // register banks. Account for that repairing cost as well. |
| // In this context, local means in the surrounding of MI. |
| for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands(); |
| OpIdx != EndOpIdx; ++OpIdx) { |
| const MachineOperand &MO = MI.getOperand(OpIdx); |
| if (!MO.isReg()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (!Reg) |
| continue; |
| LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n'); |
| const RegisterBankInfo::ValueMapping &ValMapping = |
| InstrMapping.getOperandMapping(OpIdx); |
| // If Reg is already properly mapped, this is free. |
| bool Assign; |
| if (assignmentMatch(Reg, ValMapping, Assign)) { |
| LLVM_DEBUG(dbgs() << "=> is free (match).\n"); |
| continue; |
| } |
| if (Assign) { |
| LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n"); |
| RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this, |
| RepairingPlacement::Reassign)); |
| continue; |
| } |
| |
| // Find the insertion point for the repairing code. |
| RepairPts.emplace_back( |
| RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert)); |
| RepairingPlacement &RepairPt = RepairPts.back(); |
| |
| // If we need to split a basic block to materialize this insertion point, |
| // we may give a higher cost to this mapping. |
| // Nevertheless, we may get away with the split, so try that first. |
| if (RepairPt.hasSplit()) |
| tryAvoidingSplit(RepairPt, MO, ValMapping); |
| |
| // Check that the materialization of the repairing is possible. |
| if (!RepairPt.canMaterialize()) { |
| LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n"); |
| return MappingCost::ImpossibleCost(); |
| } |
| |
| // Account for the split cost and repair cost. |
| // Unless the cost is already saturated or we do not care about the cost. |
| if (!BestCost || Saturated) |
| continue; |
| |
| // To get accurate information we need MBFI and MBPI. |
| // Thus, if we end up here this information should be here. |
| assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI"); |
| |
| // FIXME: We will have to rework the repairing cost model. |
| // The repairing cost depends on the register bank that MO has. |
| // However, when we break down the value into different values, |
| // MO may not have a register bank while still needing repairing. |
| // For the fast mode, we don't compute the cost so that is fine, |
| // but still for the repairing code, we will have to make a choice. |
| // For the greedy mode, we should choose greedily what is the best |
| // choice based on the next use of MO. |
| |
| // Sums up the repairing cost of MO at each insertion point. |
| uint64_t RepairCost = getRepairCost(MO, ValMapping); |
| |
| // This is an impossible to repair cost. |
| if (RepairCost == std::numeric_limits<unsigned>::max()) |
| return MappingCost::ImpossibleCost(); |
| |
| // Bias used for splitting: 5%. |
| const uint64_t PercentageForBias = 5; |
| uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100; |
| // We should not need more than a couple of instructions to repair |
| // an assignment. In other words, the computation should not |
| // overflow because the repairing cost is free of basic block |
| // frequency. |
| assert(((RepairCost < RepairCost * PercentageForBias) && |
| (RepairCost * PercentageForBias < |
| RepairCost * PercentageForBias + 99)) && |
| "Repairing involves more than a billion of instructions?!"); |
| for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { |
| assert(InsertPt->canMaterialize() && "We should not have made it here"); |
| // We will applied some basic block frequency and those uses uint64_t. |
| if (!InsertPt->isSplit()) |
| Saturated = Cost.addLocalCost(RepairCost); |
| else { |
| uint64_t CostForInsertPt = RepairCost; |
| // Again we shouldn't overflow here givent that |
| // CostForInsertPt is frequency free at this point. |
| assert(CostForInsertPt + Bias > CostForInsertPt && |
| "Repairing + split bias overflows"); |
| CostForInsertPt += Bias; |
| uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt; |
| // Check if we just overflowed. |
| if ((Saturated = PtCost < CostForInsertPt)) |
| Cost.saturate(); |
| else |
| Saturated = Cost.addNonLocalCost(PtCost); |
| } |
| |
| // Stop looking into what it takes to repair, this is already |
| // too expensive. |
| if (BestCost && Cost > *BestCost) { |
| LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n"); |
| return Cost; |
| } |
| |
| // No need to accumulate more cost information. |
| // We need to still gather the repairing information though. |
| if (Saturated) |
| break; |
| } |
| } |
| LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n"); |
| return Cost; |
| } |
| |
| bool RegBankSelect::applyMapping( |
| MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, |
| SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) { |
| // OpdMapper will hold all the information needed for the rewritting. |
| RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI); |
| |
| // First, place the repairing code. |
| for (RepairingPlacement &RepairPt : RepairPts) { |
| if (!RepairPt.canMaterialize() || |
| RepairPt.getKind() == RepairingPlacement::Impossible) |
| return false; |
| assert(RepairPt.getKind() != RepairingPlacement::None && |
| "This should not make its way in the list"); |
| unsigned OpIdx = RepairPt.getOpIdx(); |
| MachineOperand &MO = MI.getOperand(OpIdx); |
| const RegisterBankInfo::ValueMapping &ValMapping = |
| InstrMapping.getOperandMapping(OpIdx); |
| unsigned Reg = MO.getReg(); |
| |
| switch (RepairPt.getKind()) { |
| case RepairingPlacement::Reassign: |
| assert(ValMapping.NumBreakDowns == 1 && |
| "Reassignment should only be for simple mapping"); |
| MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank); |
| break; |
| case RepairingPlacement::Insert: |
| OpdMapper.createVRegs(OpIdx); |
| if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx))) |
| return false; |
| break; |
| default: |
| llvm_unreachable("Other kind should not happen"); |
| } |
| } |
| |
| // Second, rewrite the instruction. |
| LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n'); |
| RBI->applyMapping(OpdMapper); |
| |
| return true; |
| } |
| |
| bool RegBankSelect::assignInstr(MachineInstr &MI) { |
| LLVM_DEBUG(dbgs() << "Assign: " << MI); |
| // Remember the repairing placement for all the operands. |
| SmallVector<RepairingPlacement, 4> RepairPts; |
| |
| const RegisterBankInfo::InstructionMapping *BestMapping; |
| if (OptMode == RegBankSelect::Mode::Fast) { |
| BestMapping = &RBI->getInstrMapping(MI); |
| MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts); |
| (void)DefaultCost; |
| if (DefaultCost == MappingCost::ImpossibleCost()) |
| return false; |
| } else { |
| RegisterBankInfo::InstructionMappings PossibleMappings = |
| RBI->getInstrPossibleMappings(MI); |
| if (PossibleMappings.empty()) |
| return false; |
| BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts); |
| } |
| // Make sure the mapping is valid for MI. |
| assert(BestMapping->verify(MI) && "Invalid instruction mapping"); |
| |
| LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n'); |
| |
| // After this call, MI may not be valid anymore. |
| // Do not use it. |
| return applyMapping(MI, *BestMapping, RepairPts); |
| } |
| |
| bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) { |
| // If the ISel pipeline failed, do not bother running that pass. |
| if (MF.getProperties().hasProperty( |
| MachineFunctionProperties::Property::FailedISel)) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n'); |
| const Function &F = MF.getFunction(); |
| Mode SaveOptMode = OptMode; |
| if (F.hasFnAttribute(Attribute::OptimizeNone)) |
| OptMode = Mode::Fast; |
| init(MF); |
| |
| #ifndef NDEBUG |
| // Check that our input is fully legal: we require the function to have the |
| // Legalized property, so it should be. |
| // FIXME: This should be in the MachineVerifier. |
| if (!DisableGISelLegalityCheck) |
| if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) { |
| reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", |
| "instruction is not legal", *MI); |
| return false; |
| } |
| #endif |
| |
| // Walk the function and assign register banks to all operands. |
| // Use a RPOT to make sure all registers are assigned before we choose |
| // the best mapping of the current instruction. |
| ReversePostOrderTraversal<MachineFunction*> RPOT(&MF); |
| for (MachineBasicBlock *MBB : RPOT) { |
| // Set a sensible insertion point so that subsequent calls to |
| // MIRBuilder. |
| MIRBuilder.setMBB(*MBB); |
| for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end(); |
| MII != End;) { |
| // MI might be invalidated by the assignment, so move the |
| // iterator before hand. |
| MachineInstr &MI = *MII++; |
| |
| // Ignore target-specific instructions: they should use proper regclasses. |
| if (isTargetSpecificOpcode(MI.getOpcode())) |
| continue; |
| |
| if (!assignInstr(MI)) { |
| reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", |
| "unable to map instruction", MI); |
| return false; |
| } |
| } |
| } |
| OptMode = SaveOptMode; |
| return false; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Helper Classes Implementation |
| //------------------------------------------------------------------------------ |
| RegBankSelect::RepairingPlacement::RepairingPlacement( |
| MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P, |
| RepairingPlacement::RepairingKind Kind) |
| // Default is, we are going to insert code to repair OpIdx. |
| : Kind(Kind), OpIdx(OpIdx), |
| CanMaterialize(Kind != RepairingKind::Impossible), P(P) { |
| const MachineOperand &MO = MI.getOperand(OpIdx); |
| assert(MO.isReg() && "Trying to repair a non-reg operand"); |
| |
| if (Kind != RepairingKind::Insert) |
| return; |
| |
| // Repairings for definitions happen after MI, uses happen before. |
| bool Before = !MO.isDef(); |
| |
| // Check if we are done with MI. |
| if (!MI.isPHI() && !MI.isTerminator()) { |
| addInsertPoint(MI, Before); |
| // We are done with the initialization. |
| return; |
| } |
| |
| // Now, look for the special cases. |
| if (MI.isPHI()) { |
| // - PHI must be the first instructions: |
| // * Before, we have to split the related incoming edge. |
| // * After, move the insertion point past the last phi. |
| if (!Before) { |
| MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI(); |
| if (It != MI.getParent()->end()) |
| addInsertPoint(*It, /*Before*/ true); |
| else |
| addInsertPoint(*(--It), /*Before*/ false); |
| return; |
| } |
| // We repair a use of a phi, we may need to split the related edge. |
| MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB(); |
| // Check if we can move the insertion point prior to the |
| // terminators of the predecessor. |
| unsigned Reg = MO.getReg(); |
| MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr(); |
| for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It) |
| if (It->modifiesRegister(Reg, &TRI)) { |
| // We cannot hoist the repairing code in the predecessor. |
| // Split the edge. |
| addInsertPoint(Pred, *MI.getParent()); |
| return; |
| } |
| // At this point, we can insert in Pred. |
| |
| // - If It is invalid, Pred is empty and we can insert in Pred |
| // wherever we want. |
| // - If It is valid, It is the first non-terminator, insert after It. |
| if (It == Pred.end()) |
| addInsertPoint(Pred, /*Beginning*/ false); |
| else |
| addInsertPoint(*It, /*Before*/ false); |
| } else { |
| // - Terminators must be the last instructions: |
| // * Before, move the insert point before the first terminator. |
| // * After, we have to split the outcoming edges. |
| unsigned Reg = MO.getReg(); |
| if (Before) { |
| // Check whether Reg is defined by any terminator. |
| MachineBasicBlock::iterator It = MI; |
| for (auto Begin = MI.getParent()->begin(); |
| --It != Begin && It->isTerminator();) |
| if (It->modifiesRegister(Reg, &TRI)) { |
| // Insert the repairing code right after the definition. |
| addInsertPoint(*It, /*Before*/ false); |
| return; |
| } |
| addInsertPoint(*It, /*Before*/ true); |
| return; |
| } |
| // Make sure Reg is not redefined by other terminators, otherwise |
| // we do not know how to split. |
| for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end(); |
| ++It != End;) |
| // The machine verifier should reject this kind of code. |
| assert(It->modifiesRegister(Reg, &TRI) && "Do not know where to split"); |
| // Split each outcoming edges. |
| MachineBasicBlock &Src = *MI.getParent(); |
| for (auto &Succ : Src.successors()) |
| addInsertPoint(Src, Succ); |
| } |
| } |
| |
| void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI, |
| bool Before) { |
| addInsertPoint(*new InstrInsertPoint(MI, Before)); |
| } |
| |
| void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB, |
| bool Beginning) { |
| addInsertPoint(*new MBBInsertPoint(MBB, Beginning)); |
| } |
| |
| void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src, |
| MachineBasicBlock &Dst) { |
| addInsertPoint(*new EdgeInsertPoint(Src, Dst, P)); |
| } |
| |
| void RegBankSelect::RepairingPlacement::addInsertPoint( |
| RegBankSelect::InsertPoint &Point) { |
| CanMaterialize &= Point.canMaterialize(); |
| HasSplit |= Point.isSplit(); |
| InsertPoints.emplace_back(&Point); |
| } |
| |
| RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr, |
| bool Before) |
| : InsertPoint(), Instr(Instr), Before(Before) { |
| // Since we do not support splitting, we do not need to update |
| // liveness and such, so do not do anything with P. |
| assert((!Before || !Instr.isPHI()) && |
| "Splitting before phis requires more points"); |
| assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) && |
| "Splitting between phis does not make sense"); |
| } |
| |
| void RegBankSelect::InstrInsertPoint::materialize() { |
| if (isSplit()) { |
| // Slice and return the beginning of the new block. |
| // If we need to split between the terminators, we theoritically |
| // need to know where the first and second set of terminators end |
| // to update the successors properly. |
| // Now, in pratice, we should have a maximum of 2 branch |
| // instructions; one conditional and one unconditional. Therefore |
| // we know how to update the successor by looking at the target of |
| // the unconditional branch. |
| // If we end up splitting at some point, then, we should update |
| // the liveness information and such. I.e., we would need to |
| // access P here. |
| // The machine verifier should actually make sure such cases |
| // cannot happen. |
| llvm_unreachable("Not yet implemented"); |
| } |
| // Otherwise the insertion point is just the current or next |
| // instruction depending on Before. I.e., there is nothing to do |
| // here. |
| } |
| |
| bool RegBankSelect::InstrInsertPoint::isSplit() const { |
| // If the insertion point is after a terminator, we need to split. |
| if (!Before) |
| return Instr.isTerminator(); |
| // If we insert before an instruction that is after a terminator, |
| // we are still after a terminator. |
| return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator(); |
| } |
| |
| uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const { |
| // Even if we need to split, because we insert between terminators, |
| // this split has actually the same frequency as the instruction. |
| const MachineBlockFrequencyInfo *MBFI = |
| P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); |
| if (!MBFI) |
| return 1; |
| return MBFI->getBlockFreq(Instr.getParent()).getFrequency(); |
| } |
| |
| uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const { |
| const MachineBlockFrequencyInfo *MBFI = |
| P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); |
| if (!MBFI) |
| return 1; |
| return MBFI->getBlockFreq(&MBB).getFrequency(); |
| } |
| |
| void RegBankSelect::EdgeInsertPoint::materialize() { |
| // If we end up repairing twice at the same place before materializing the |
| // insertion point, we may think we have to split an edge twice. |
| // We should have a factory for the insert point such that identical points |
| // are the same instance. |
| assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) && |
| "This point has already been split"); |
| MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P); |
| assert(NewBB && "Invalid call to materialize"); |
| // We reuse the destination block to hold the information of the new block. |
| DstOrSplit = NewBB; |
| } |
| |
| uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const { |
| const MachineBlockFrequencyInfo *MBFI = |
| P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); |
| if (!MBFI) |
| return 1; |
| if (WasMaterialized) |
| return MBFI->getBlockFreq(DstOrSplit).getFrequency(); |
| |
| const MachineBranchProbabilityInfo *MBPI = |
| P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>(); |
| if (!MBPI) |
| return 1; |
| // The basic block will be on the edge. |
| return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit)) |
| .getFrequency(); |
| } |
| |
| bool RegBankSelect::EdgeInsertPoint::canMaterialize() const { |
| // If this is not a critical edge, we should not have used this insert |
| // point. Indeed, either the successor or the predecessor should |
| // have do. |
| assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 && |
| "Edge is not critical"); |
| return Src.canSplitCriticalEdge(DstOrSplit); |
| } |
| |
| RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq) |
| : LocalFreq(LocalFreq.getFrequency()) {} |
| |
| bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) { |
| // Check if this overflows. |
| if (LocalCost + Cost < LocalCost) { |
| saturate(); |
| return true; |
| } |
| LocalCost += Cost; |
| return isSaturated(); |
| } |
| |
| bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) { |
| // Check if this overflows. |
| if (NonLocalCost + Cost < NonLocalCost) { |
| saturate(); |
| return true; |
| } |
| NonLocalCost += Cost; |
| return isSaturated(); |
| } |
| |
| bool RegBankSelect::MappingCost::isSaturated() const { |
| return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX && |
| LocalFreq == UINT64_MAX; |
| } |
| |
| void RegBankSelect::MappingCost::saturate() { |
| *this = ImpossibleCost(); |
| --LocalCost; |
| } |
| |
| RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() { |
| return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX); |
| } |
| |
| bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const { |
| // Sort out the easy cases. |
| if (*this == Cost) |
| return false; |
| // If one is impossible to realize the other is cheaper unless it is |
| // impossible as well. |
| if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost())) |
| return (*this == ImpossibleCost()) < (Cost == ImpossibleCost()); |
| // If one is saturated the other is cheaper, unless it is saturated |
| // as well. |
| if (isSaturated() || Cost.isSaturated()) |
| return isSaturated() < Cost.isSaturated(); |
| // At this point we know both costs hold sensible values. |
| |
| // If both values have a different base frequency, there is no much |
| // we can do but to scale everything. |
| // However, if they have the same base frequency we can avoid making |
| // complicated computation. |
| uint64_t ThisLocalAdjust; |
| uint64_t OtherLocalAdjust; |
| if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) { |
| |
| // At this point, we know the local costs are comparable. |
| // Do the case that do not involve potential overflow first. |
| if (NonLocalCost == Cost.NonLocalCost) |
| // Since the non-local costs do not discriminate on the result, |
| // just compare the local costs. |
| return LocalCost < Cost.LocalCost; |
| |
| // The base costs are comparable so we may only keep the relative |
| // value to increase our chances of avoiding overflows. |
| ThisLocalAdjust = 0; |
| OtherLocalAdjust = 0; |
| if (LocalCost < Cost.LocalCost) |
| OtherLocalAdjust = Cost.LocalCost - LocalCost; |
| else |
| ThisLocalAdjust = LocalCost - Cost.LocalCost; |
| } else { |
| ThisLocalAdjust = LocalCost; |
| OtherLocalAdjust = Cost.LocalCost; |
| } |
| |
| // The non-local costs are comparable, just keep the relative value. |
| uint64_t ThisNonLocalAdjust = 0; |
| uint64_t OtherNonLocalAdjust = 0; |
| if (NonLocalCost < Cost.NonLocalCost) |
| OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost; |
| else |
| ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost; |
| // Scale everything to make them comparable. |
| uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq; |
| // Check for overflow on that operation. |
| bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust || |
| ThisScaledCost < LocalFreq); |
| uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq; |
| // Check for overflow on the last operation. |
| bool OtherOverflows = |
| OtherLocalAdjust && |
| (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq); |
| // Add the non-local costs. |
| ThisOverflows |= ThisNonLocalAdjust && |
| ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust; |
| ThisScaledCost += ThisNonLocalAdjust; |
| OtherOverflows |= OtherNonLocalAdjust && |
| OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust; |
| OtherScaledCost += OtherNonLocalAdjust; |
| // If both overflows, we cannot compare without additional |
| // precision, e.g., APInt. Just give up on that case. |
| if (ThisOverflows && OtherOverflows) |
| return false; |
| // If one overflows but not the other, we can still compare. |
| if (ThisOverflows || OtherOverflows) |
| return ThisOverflows < OtherOverflows; |
| // Otherwise, just compare the values. |
| return ThisScaledCost < OtherScaledCost; |
| } |
| |
| bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const { |
| return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost && |
| LocalFreq == Cost.LocalFreq; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const { |
| print(dbgs()); |
| dbgs() << '\n'; |
| } |
| #endif |
| |
| void RegBankSelect::MappingCost::print(raw_ostream &OS) const { |
| if (*this == ImpossibleCost()) { |
| OS << "impossible"; |
| return; |
| } |
| if (isSaturated()) { |
| OS << "saturated"; |
| return; |
| } |
| OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost; |
| } |