blob: 58930e452eeacc539a4845f7752492c2ef0cb927 [file] [log] [blame]
// Copyright (c) 2017 Pierre Moreau
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "spirv-tools/linker.hpp"
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <memory>
#include <numeric>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "source/assembly_grammar.h"
#include "source/diagnostic.h"
#include "source/opt/build_module.h"
#include "source/opt/compact_ids_pass.h"
#include "source/opt/decoration_manager.h"
#include "source/opt/ir_loader.h"
#include "source/opt/pass_manager.h"
#include "source/opt/remove_duplicates_pass.h"
#include "source/opt/remove_unused_interface_variables_pass.h"
#include "source/opt/type_manager.h"
#include "source/spirv_constant.h"
#include "source/spirv_target_env.h"
#include "source/util/make_unique.h"
#include "source/util/string_utils.h"
#include "spirv-tools/libspirv.hpp"
namespace spvtools {
namespace {
using opt::Instruction;
using opt::IRContext;
using opt::Module;
using opt::PassManager;
using opt::RemoveDuplicatesPass;
using opt::analysis::DecorationManager;
using opt::analysis::DefUseManager;
using opt::analysis::Type;
using opt::analysis::TypeManager;
// Stores various information about an imported or exported symbol.
struct LinkageSymbolInfo {
spv::Id id; // ID of the symbol
spv::Id type_id; // ID of the type of the symbol
std::string name; // unique name defining the symbol and used for matching
// imports and exports together
std::vector<spv::Id> parameter_ids; // ID of the parameters of the symbol, if
// it is a function
};
struct LinkageEntry {
LinkageSymbolInfo imported_symbol;
LinkageSymbolInfo exported_symbol;
LinkageEntry(const LinkageSymbolInfo& import_info,
const LinkageSymbolInfo& export_info)
: imported_symbol(import_info), exported_symbol(export_info) {}
};
using LinkageTable = std::vector<LinkageEntry>;
// Shifts the IDs used in each binary of |modules| so that they occupy a
// disjoint range from the other binaries, and compute the new ID bound which
// is returned in |max_id_bound|.
//
// Both |modules| and |max_id_bound| should not be null, and |modules| should
// not be empty either. Furthermore |modules| should not contain any null
// pointers.
spv_result_t ShiftIdsInModules(const MessageConsumer& consumer,
std::vector<opt::Module*>* modules,
uint32_t* max_id_bound);
// Generates the header for the linked module and returns it in |header|.
//
// |header| should not be null, |modules| should not be empty and pointers
// should be non-null. |max_id_bound| should be strictly greater than 0.
spv_result_t GenerateHeader(const MessageConsumer& consumer,
const std::vector<opt::Module*>& modules,
uint32_t max_id_bound, opt::ModuleHeader* header,
const LinkerOptions& options);
// Merge all the modules from |in_modules| into a single module owned by
// |linked_context|.
//
// |linked_context| should not be null.
spv_result_t MergeModules(const MessageConsumer& consumer,
const std::vector<Module*>& in_modules,
const AssemblyGrammar& grammar,
IRContext* linked_context);
// Compute all pairs of import and export and return it in |linkings_to_do|.
//
// |linkings_to_do should not be null. Built-in symbols will be ignored.
//
// TODO(pierremoreau): Linkage attributes applied by a group decoration are
// currently not handled. (You could have a group being
// applied to a single ID.)
// TODO(pierremoreau): What should be the proper behaviour with built-in
// symbols?
spv_result_t GetImportExportPairs(const MessageConsumer& consumer,
const opt::IRContext& linked_context,
const DefUseManager& def_use_manager,
const DecorationManager& decoration_manager,
bool allow_partial_linkage,
LinkageTable* linkings_to_do);
// Checks that for each pair of import and export, the import and export have
// the same type as well as the same decorations.
//
// TODO(pierremoreau): Decorations on functions parameters are currently not
// checked.
spv_result_t CheckImportExportCompatibility(const MessageConsumer& consumer,
const LinkageTable& linkings_to_do,
opt::IRContext* context);
// Remove linkage specific instructions, such as prototypes of imported
// functions, declarations of imported variables, import (and export if
// necessary) linkage attributes.
//
// |linked_context| and |decoration_manager| should not be null, and the
// 'RemoveDuplicatePass' should be run first.
//
// TODO(pierremoreau): Linkage attributes applied by a group decoration are
// currently not handled. (You could have a group being
// applied to a single ID.)
spv_result_t RemoveLinkageSpecificInstructions(
const MessageConsumer& consumer, const LinkerOptions& options,
const LinkageTable& linkings_to_do, DecorationManager* decoration_manager,
opt::IRContext* linked_context);
// Verify that the unique ids of each instruction in |linked_context| (i.e. the
// merged module) are truly unique. Does not check the validity of other ids
spv_result_t VerifyIds(const MessageConsumer& consumer,
opt::IRContext* linked_context);
// Verify that the universal limits are not crossed, and warn the user
// otherwise.
//
// TODO(pierremoreau):
// - Verify against the limits of the environment (e.g. Vulkan limits if
// consuming vulkan1.x)
spv_result_t VerifyLimits(const MessageConsumer& consumer,
const opt::IRContext& linked_context);
spv_result_t ShiftIdsInModules(const MessageConsumer& consumer,
std::vector<opt::Module*>* modules,
uint32_t* max_id_bound) {
spv_position_t position = {};
if (modules == nullptr)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_DATA)
<< "|modules| of ShiftIdsInModules should not be null.";
if (modules->empty())
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_DATA)
<< "|modules| of ShiftIdsInModules should not be empty.";
if (max_id_bound == nullptr)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_DATA)
<< "|max_id_bound| of ShiftIdsInModules should not be null.";
const size_t id_bound =
std::accumulate(modules->begin(), modules->end(), static_cast<size_t>(1),
[](const size_t& accumulation, opt::Module* module) {
return accumulation + module->IdBound() - 1u;
});
if (id_bound > std::numeric_limits<uint32_t>::max())
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_DATA)
<< "Too many IDs (" << id_bound
<< "): combining all modules would overflow the 32-bit word of the "
"SPIR-V header.";
*max_id_bound = static_cast<uint32_t>(id_bound);
uint32_t id_offset = modules->front()->IdBound() - 1u;
for (auto module_iter = modules->begin() + 1; module_iter != modules->end();
++module_iter) {
Module* module = *module_iter;
module->ForEachInst([&id_offset](Instruction* insn) {
insn->ForEachId([&id_offset](uint32_t* id) { *id += id_offset; });
});
id_offset += module->IdBound() - 1u;
// Invalidate the DefUseManager
module->context()->InvalidateAnalyses(opt::IRContext::kAnalysisDefUse);
}
return SPV_SUCCESS;
}
spv_result_t GenerateHeader(const MessageConsumer& consumer,
const std::vector<opt::Module*>& modules,
uint32_t max_id_bound, opt::ModuleHeader* header,
const LinkerOptions& options) {
spv_position_t position = {};
if (modules.empty())
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_DATA)
<< "|modules| of GenerateHeader should not be empty.";
if (max_id_bound == 0u)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_DATA)
<< "|max_id_bound| of GenerateHeader should not be null.";
uint32_t linked_version = modules.front()->version();
for (std::size_t i = 1; i < modules.size(); ++i) {
const uint32_t module_version = modules[i]->version();
if (options.GetUseHighestVersion()) {
linked_version = std::max(linked_version, module_version);
} else if (module_version != linked_version) {
return DiagnosticStream({0, 0, 1}, consumer, "", SPV_ERROR_INTERNAL)
<< "Conflicting SPIR-V versions: "
<< SPV_SPIRV_VERSION_MAJOR_PART(linked_version) << "."
<< SPV_SPIRV_VERSION_MINOR_PART(linked_version)
<< " (input modules 1 through " << i << ") vs "
<< SPV_SPIRV_VERSION_MAJOR_PART(module_version) << "."
<< SPV_SPIRV_VERSION_MINOR_PART(module_version)
<< " (input module " << (i + 1) << ").";
}
}
header->magic_number = spv::MagicNumber;
header->version = linked_version;
header->generator = SPV_GENERATOR_WORD(SPV_GENERATOR_KHRONOS_LINKER, 0);
header->bound = max_id_bound;
header->schema = 0u;
return SPV_SUCCESS;
}
spv_result_t MergeModules(const MessageConsumer& consumer,
const std::vector<Module*>& input_modules,
const AssemblyGrammar& grammar,
IRContext* linked_context) {
spv_position_t position = {};
if (linked_context == nullptr)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_DATA)
<< "|linked_module| of MergeModules should not be null.";
Module* linked_module = linked_context->module();
if (input_modules.empty()) return SPV_SUCCESS;
for (const auto& module : input_modules)
for (const auto& inst : module->capabilities())
linked_module->AddCapability(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
for (const auto& module : input_modules)
for (const auto& inst : module->extensions())
linked_module->AddExtension(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
for (const auto& module : input_modules)
for (const auto& inst : module->ext_inst_imports())
linked_module->AddExtInstImport(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
const Instruction* linked_memory_model_inst =
input_modules.front()->GetMemoryModel();
if (linked_memory_model_inst == nullptr) {
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_BINARY)
<< "Input module 1 is lacking an OpMemoryModel instruction.";
}
const uint32_t linked_addressing_model =
linked_memory_model_inst->GetSingleWordOperand(0u);
const uint32_t linked_memory_model =
linked_memory_model_inst->GetSingleWordOperand(1u);
for (std::size_t i = 1; i < input_modules.size(); ++i) {
const Module* module = input_modules[i];
const Instruction* memory_model_inst = module->GetMemoryModel();
if (memory_model_inst == nullptr)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_BINARY)
<< "Input module " << (i + 1)
<< " is lacking an OpMemoryModel instruction.";
const uint32_t module_addressing_model =
memory_model_inst->GetSingleWordOperand(0u);
if (module_addressing_model != linked_addressing_model) {
spv_operand_desc linked_desc = nullptr, module_desc = nullptr;
grammar.lookupOperand(SPV_OPERAND_TYPE_ADDRESSING_MODEL,
linked_addressing_model, &linked_desc);
grammar.lookupOperand(SPV_OPERAND_TYPE_ADDRESSING_MODEL,
module_addressing_model, &module_desc);
return DiagnosticStream(position, consumer, "", SPV_ERROR_INTERNAL)
<< "Conflicting addressing models: " << linked_desc->name
<< " (input modules 1 through " << i << ") vs "
<< module_desc->name << " (input module " << (i + 1) << ").";
}
const uint32_t module_memory_model =
memory_model_inst->GetSingleWordOperand(1u);
if (module_memory_model != linked_memory_model) {
spv_operand_desc linked_desc = nullptr, module_desc = nullptr;
grammar.lookupOperand(SPV_OPERAND_TYPE_MEMORY_MODEL, linked_memory_model,
&linked_desc);
grammar.lookupOperand(SPV_OPERAND_TYPE_MEMORY_MODEL, module_memory_model,
&module_desc);
return DiagnosticStream(position, consumer, "", SPV_ERROR_INTERNAL)
<< "Conflicting memory models: " << linked_desc->name
<< " (input modules 1 through " << i << ") vs "
<< module_desc->name << " (input module " << (i + 1) << ").";
}
}
linked_module->SetMemoryModel(std::unique_ptr<Instruction>(
linked_memory_model_inst->Clone(linked_context)));
std::vector<std::pair<uint32_t, std::string>> entry_points;
for (const auto& module : input_modules)
for (const auto& inst : module->entry_points()) {
const uint32_t model = inst.GetSingleWordInOperand(0);
const std::string name = inst.GetInOperand(2).AsString();
const auto i = std::find_if(
entry_points.begin(), entry_points.end(),
[model, name](const std::pair<uint32_t, std::string>& v) {
return v.first == model && v.second == name;
});
if (i != entry_points.end()) {
spv_operand_desc desc = nullptr;
grammar.lookupOperand(SPV_OPERAND_TYPE_EXECUTION_MODEL, model, &desc);
return DiagnosticStream(position, consumer, "", SPV_ERROR_INTERNAL)
<< "The entry point \"" << name << "\", with execution model "
<< desc->name << ", was already defined.";
}
linked_module->AddEntryPoint(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
entry_points.emplace_back(model, name);
}
for (const auto& module : input_modules)
for (const auto& inst : module->execution_modes())
linked_module->AddExecutionMode(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
for (const auto& module : input_modules)
for (const auto& inst : module->debugs1())
linked_module->AddDebug1Inst(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
for (const auto& module : input_modules)
for (const auto& inst : module->debugs2())
linked_module->AddDebug2Inst(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
for (const auto& module : input_modules)
for (const auto& inst : module->debugs3())
linked_module->AddDebug3Inst(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
for (const auto& module : input_modules)
for (const auto& inst : module->ext_inst_debuginfo())
linked_module->AddExtInstDebugInfo(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
// If the generated module uses SPIR-V 1.1 or higher, add an
// OpModuleProcessed instruction about the linking step.
if (linked_module->version() >= SPV_SPIRV_VERSION_WORD(1, 1)) {
const std::string processed_string("Linked by SPIR-V Tools Linker");
std::vector<uint32_t> processed_words =
spvtools::utils::MakeVector(processed_string);
linked_module->AddDebug3Inst(std::unique_ptr<Instruction>(
new Instruction(linked_context, spv::Op::OpModuleProcessed, 0u, 0u,
{{SPV_OPERAND_TYPE_LITERAL_STRING, processed_words}})));
}
for (const auto& module : input_modules)
for (const auto& inst : module->annotations())
linked_module->AddAnnotationInst(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
// TODO(pierremoreau): Since the modules have not been validate, should we
// expect spv::StorageClass::Function variables outside
// functions?
for (const auto& module : input_modules) {
for (const auto& inst : module->types_values()) {
linked_module->AddType(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
}
}
// Process functions and their basic blocks
for (const auto& module : input_modules) {
for (const auto& func : *module) {
std::unique_ptr<opt::Function> cloned_func(func.Clone(linked_context));
linked_module->AddFunction(std::move(cloned_func));
}
}
return SPV_SUCCESS;
}
spv_result_t GetImportExportPairs(const MessageConsumer& consumer,
const opt::IRContext& linked_context,
const DefUseManager& def_use_manager,
const DecorationManager& decoration_manager,
bool allow_partial_linkage,
LinkageTable* linkings_to_do) {
spv_position_t position = {};
if (linkings_to_do == nullptr)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_DATA)
<< "|linkings_to_do| of GetImportExportPairs should not be empty.";
std::vector<LinkageSymbolInfo> imports;
std::unordered_map<std::string, std::vector<LinkageSymbolInfo>> exports;
// Figure out the imports and exports
for (const auto& decoration : linked_context.annotations()) {
if (decoration.opcode() != spv::Op::OpDecorate ||
spv::Decoration(decoration.GetSingleWordInOperand(1u)) !=
spv::Decoration::LinkageAttributes)
continue;
const spv::Id id = decoration.GetSingleWordInOperand(0u);
// Ignore if the targeted symbol is a built-in
bool is_built_in = false;
for (const auto& id_decoration :
decoration_manager.GetDecorationsFor(id, false)) {
if (spv::Decoration(id_decoration->GetSingleWordInOperand(1u)) ==
spv::Decoration::BuiltIn) {
is_built_in = true;
break;
}
}
if (is_built_in) {
continue;
}
const uint32_t type = decoration.GetSingleWordInOperand(3u);
LinkageSymbolInfo symbol_info;
symbol_info.name = decoration.GetInOperand(2u).AsString();
symbol_info.id = id;
symbol_info.type_id = 0u;
// Retrieve the type of the current symbol. This information will be used
// when checking that the imported and exported symbols have the same
// types.
const Instruction* def_inst = def_use_manager.GetDef(id);
if (def_inst == nullptr)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_BINARY)
<< "ID " << id << " is never defined:\n";
if (def_inst->opcode() == spv::Op::OpVariable) {
symbol_info.type_id = def_inst->type_id();
} else if (def_inst->opcode() == spv::Op::OpFunction) {
symbol_info.type_id = def_inst->GetSingleWordInOperand(1u);
// range-based for loop calls begin()/end(), but never cbegin()/cend(),
// which will not work here.
for (auto func_iter = linked_context.module()->cbegin();
func_iter != linked_context.module()->cend(); ++func_iter) {
if (func_iter->result_id() != id) continue;
func_iter->ForEachParam([&symbol_info](const Instruction* inst) {
symbol_info.parameter_ids.push_back(inst->result_id());
});
}
} else {
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_BINARY)
<< "Only global variables and functions can be decorated using"
<< " LinkageAttributes; " << id << " is neither of them.\n";
}
if (spv::LinkageType(type) == spv::LinkageType::Import)
imports.push_back(symbol_info);
else if (spv::LinkageType(type) == spv::LinkageType::Export)
exports[symbol_info.name].push_back(symbol_info);
}
// Find the import/export pairs
for (const auto& import : imports) {
std::vector<LinkageSymbolInfo> possible_exports;
const auto& exp = exports.find(import.name);
if (exp != exports.end()) possible_exports = exp->second;
if (possible_exports.empty() && !allow_partial_linkage)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_BINARY)
<< "Unresolved external reference to \"" << import.name << "\".";
else if (possible_exports.size() > 1u)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_BINARY)
<< "Too many external references, " << possible_exports.size()
<< ", were found for \"" << import.name << "\".";
if (!possible_exports.empty())
linkings_to_do->emplace_back(import, possible_exports.front());
}
return SPV_SUCCESS;
}
spv_result_t CheckImportExportCompatibility(const MessageConsumer& consumer,
const LinkageTable& linkings_to_do,
opt::IRContext* context) {
spv_position_t position = {};
// Ensure the import and export types are the same.
const DecorationManager& decoration_manager = *context->get_decoration_mgr();
const TypeManager& type_manager = *context->get_type_mgr();
for (const auto& linking_entry : linkings_to_do) {
Type* imported_symbol_type =
type_manager.GetType(linking_entry.imported_symbol.type_id);
Type* exported_symbol_type =
type_manager.GetType(linking_entry.exported_symbol.type_id);
if (!(*imported_symbol_type == *exported_symbol_type))
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_BINARY)
<< "Type mismatch on symbol \""
<< linking_entry.imported_symbol.name
<< "\" between imported variable/function %"
<< linking_entry.imported_symbol.id
<< " and exported variable/function %"
<< linking_entry.exported_symbol.id << ".";
}
// Ensure the import and export decorations are similar
for (const auto& linking_entry : linkings_to_do) {
if (!decoration_manager.HaveTheSameDecorations(
linking_entry.imported_symbol.id, linking_entry.exported_symbol.id))
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_BINARY)
<< "Decorations mismatch on symbol \""
<< linking_entry.imported_symbol.name
<< "\" between imported variable/function %"
<< linking_entry.imported_symbol.id
<< " and exported variable/function %"
<< linking_entry.exported_symbol.id << ".";
// TODO(pierremoreau): Decorations on function parameters should probably
// match, except for FuncParamAttr if I understand the
// spec correctly.
// TODO(pierremoreau): Decorations on the function return type should
// match, except for FuncParamAttr.
}
return SPV_SUCCESS;
}
spv_result_t RemoveLinkageSpecificInstructions(
const MessageConsumer& consumer, const LinkerOptions& options,
const LinkageTable& linkings_to_do, DecorationManager* decoration_manager,
opt::IRContext* linked_context) {
spv_position_t position = {};
if (decoration_manager == nullptr)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_DATA)
<< "|decoration_manager| of RemoveLinkageSpecificInstructions "
"should not be empty.";
if (linked_context == nullptr)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_DATA)
<< "|linked_module| of RemoveLinkageSpecificInstructions should not "
"be empty.";
// TODO(pierremoreau): Remove FuncParamAttr decorations of imported
// functions' return type.
// Remove prototypes of imported functions
for (const auto& linking_entry : linkings_to_do) {
for (auto func_iter = linked_context->module()->begin();
func_iter != linked_context->module()->end();) {
if (func_iter->result_id() == linking_entry.imported_symbol.id)
func_iter = func_iter.Erase();
else
++func_iter;
}
}
// Remove declarations of imported variables
for (const auto& linking_entry : linkings_to_do) {
auto next = linked_context->types_values_begin();
for (auto inst = next; inst != linked_context->types_values_end();
inst = next) {
++next;
if (inst->result_id() == linking_entry.imported_symbol.id) {
linked_context->KillInst(&*inst);
}
}
}
// If partial linkage is allowed, we need an efficient way to check whether
// an imported ID had a corresponding export symbol. As uses of the imported
// symbol have already been replaced by the exported symbol, use the exported
// symbol ID.
// TODO(pierremoreau): This will not work if the decoration is applied
// through a group, but the linker does not support that
// either.
std::unordered_set<spv::Id> imports;
if (options.GetAllowPartialLinkage()) {
imports.reserve(linkings_to_do.size());
for (const auto& linking_entry : linkings_to_do)
imports.emplace(linking_entry.exported_symbol.id);
}
// Remove import linkage attributes
auto next = linked_context->annotation_begin();
for (auto inst = next; inst != linked_context->annotation_end();
inst = next) {
++next;
// If this is an import annotation:
// * if we do not allow partial linkage, remove all import annotations;
// * otherwise, remove the annotation only if there was a corresponding
// export.
if (inst->opcode() == spv::Op::OpDecorate &&
spv::Decoration(inst->GetSingleWordOperand(1u)) ==
spv::Decoration::LinkageAttributes &&
spv::LinkageType(inst->GetSingleWordOperand(3u)) ==
spv::LinkageType::Import &&
(!options.GetAllowPartialLinkage() ||
imports.find(inst->GetSingleWordOperand(0u)) != imports.end())) {
linked_context->KillInst(&*inst);
}
}
// Remove export linkage attributes if making an executable
if (!options.GetCreateLibrary()) {
next = linked_context->annotation_begin();
for (auto inst = next; inst != linked_context->annotation_end();
inst = next) {
++next;
if (inst->opcode() == spv::Op::OpDecorate &&
spv::Decoration(inst->GetSingleWordOperand(1u)) ==
spv::Decoration::LinkageAttributes &&
spv::LinkageType(inst->GetSingleWordOperand(3u)) ==
spv::LinkageType::Export) {
linked_context->KillInst(&*inst);
}
}
}
// Remove Linkage capability if making an executable and partial linkage is
// not allowed
if (!options.GetCreateLibrary() && !options.GetAllowPartialLinkage()) {
for (auto& inst : linked_context->capabilities())
if (spv::Capability(inst.GetSingleWordInOperand(0u)) ==
spv::Capability::Linkage) {
linked_context->KillInst(&inst);
// The RemoveDuplicatesPass did remove duplicated capabilities, so we
// now there aren’t more spv::Capability::Linkage further down.
break;
}
}
return SPV_SUCCESS;
}
spv_result_t VerifyIds(const MessageConsumer& consumer,
opt::IRContext* linked_context) {
std::unordered_set<uint32_t> ids;
bool ok = true;
linked_context->module()->ForEachInst(
[&ids, &ok](const opt::Instruction* inst) {
ok &= ids.insert(inst->unique_id()).second;
});
if (!ok) {
consumer(SPV_MSG_INTERNAL_ERROR, "", {}, "Non-unique id in merged module");
return SPV_ERROR_INVALID_ID;
}
return SPV_SUCCESS;
}
spv_result_t VerifyLimits(const MessageConsumer& consumer,
const opt::IRContext& linked_context) {
spv_position_t position = {};
const uint32_t max_id_bound = linked_context.module()->id_bound();
if (max_id_bound >= SPV_LIMIT_RESULT_ID_BOUND)
DiagnosticStream({0u, 0u, 4u}, consumer, "", SPV_WARNING)
<< "The minimum limit of IDs, " << (SPV_LIMIT_RESULT_ID_BOUND - 1)
<< ", was exceeded:"
<< " " << max_id_bound << " is the current ID bound.\n"
<< "The resulting module might not be supported by all "
"implementations.";
size_t num_global_values = 0u;
for (const auto& inst : linked_context.module()->types_values()) {
num_global_values += inst.opcode() == spv::Op::OpVariable;
}
if (num_global_values >= SPV_LIMIT_GLOBAL_VARIABLES_MAX)
DiagnosticStream(position, consumer, "", SPV_WARNING)
<< "The minimum limit of global values, "
<< (SPV_LIMIT_GLOBAL_VARIABLES_MAX - 1) << ", was exceeded;"
<< " " << num_global_values << " global values were found.\n"
<< "The resulting module might not be supported by all "
"implementations.";
return SPV_SUCCESS;
}
} // namespace
spv_result_t Link(const Context& context,
const std::vector<std::vector<uint32_t>>& binaries,
std::vector<uint32_t>* linked_binary,
const LinkerOptions& options) {
std::vector<const uint32_t*> binary_ptrs;
binary_ptrs.reserve(binaries.size());
std::vector<size_t> binary_sizes;
binary_sizes.reserve(binaries.size());
for (const auto& binary : binaries) {
binary_ptrs.push_back(binary.data());
binary_sizes.push_back(binary.size());
}
return Link(context, binary_ptrs.data(), binary_sizes.data(), binaries.size(),
linked_binary, options);
}
spv_result_t Link(const Context& context, const uint32_t* const* binaries,
const size_t* binary_sizes, size_t num_binaries,
std::vector<uint32_t>* linked_binary,
const LinkerOptions& options) {
spv_position_t position = {};
const spv_context& c_context = context.CContext();
const MessageConsumer& consumer = c_context->consumer;
linked_binary->clear();
if (num_binaries == 0u)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_BINARY)
<< "No modules were given.";
std::vector<std::unique_ptr<IRContext>> ir_contexts;
std::vector<Module*> modules;
modules.reserve(num_binaries);
for (size_t i = 0u; i < num_binaries; ++i) {
const uint32_t schema = binaries[i][4u];
if (schema != 0u) {
position.index = 4u;
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_BINARY)
<< "Schema is non-zero for module " << i + 1 << ".";
}
std::unique_ptr<IRContext> ir_context = BuildModule(
c_context->target_env, consumer, binaries[i], binary_sizes[i]);
if (ir_context == nullptr)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_BINARY)
<< "Failed to build module " << i + 1 << " out of " << num_binaries
<< ".";
modules.push_back(ir_context->module());
ir_contexts.push_back(std::move(ir_context));
}
// Phase 1: Shift the IDs used in each binary so that they occupy a disjoint
// range from the other binaries, and compute the new ID bound.
uint32_t max_id_bound = 0u;
spv_result_t res = ShiftIdsInModules(consumer, &modules, &max_id_bound);
if (res != SPV_SUCCESS) return res;
// Phase 2: Generate the header
opt::ModuleHeader header;
res = GenerateHeader(consumer, modules, max_id_bound, &header, options);
if (res != SPV_SUCCESS) return res;
IRContext linked_context(c_context->target_env, consumer);
linked_context.module()->SetHeader(header);
// Phase 3: Merge all the binaries into a single one.
AssemblyGrammar grammar(c_context);
res = MergeModules(consumer, modules, grammar, &linked_context);
if (res != SPV_SUCCESS) return res;
if (options.GetVerifyIds()) {
res = VerifyIds(consumer, &linked_context);
if (res != SPV_SUCCESS) return res;
}
// Phase 4: Find the import/export pairs
LinkageTable linkings_to_do;
res = GetImportExportPairs(consumer, linked_context,
*linked_context.get_def_use_mgr(),
*linked_context.get_decoration_mgr(),
options.GetAllowPartialLinkage(), &linkings_to_do);
if (res != SPV_SUCCESS) return res;
// Phase 5: Ensure the import and export have the same types and decorations.
res =
CheckImportExportCompatibility(consumer, linkings_to_do, &linked_context);
if (res != SPV_SUCCESS) return res;
// Phase 6: Remove duplicates
PassManager manager;
manager.SetMessageConsumer(consumer);
manager.AddPass<RemoveDuplicatesPass>();
opt::Pass::Status pass_res = manager.Run(&linked_context);
if (pass_res == opt::Pass::Status::Failure) return SPV_ERROR_INVALID_DATA;
// Phase 7: Remove all names and decorations of import variables/functions
for (const auto& linking_entry : linkings_to_do) {
linked_context.KillNamesAndDecorates(linking_entry.imported_symbol.id);
for (const auto parameter_id :
linking_entry.imported_symbol.parameter_ids) {
linked_context.KillNamesAndDecorates(parameter_id);
}
}
// Phase 8: Rematch import variables/functions to export variables/functions
for (const auto& linking_entry : linkings_to_do) {
linked_context.ReplaceAllUsesWith(linking_entry.imported_symbol.id,
linking_entry.exported_symbol.id);
}
// Phase 9: Remove linkage specific instructions, such as import/export
// attributes, linkage capability, etc. if applicable
res = RemoveLinkageSpecificInstructions(consumer, options, linkings_to_do,
linked_context.get_decoration_mgr(),
&linked_context);
if (res != SPV_SUCCESS) return res;
// Phase 10: Compact the IDs used in the module
manager.AddPass<opt::CompactIdsPass>();
pass_res = manager.Run(&linked_context);
if (pass_res == opt::Pass::Status::Failure) return SPV_ERROR_INVALID_DATA;
// Phase 11: Recompute EntryPoint variables
manager.AddPass<opt::RemoveUnusedInterfaceVariablesPass>();
pass_res = manager.Run(&linked_context);
if (pass_res == opt::Pass::Status::Failure) return SPV_ERROR_INVALID_DATA;
// Phase 12: Warn if SPIR-V limits were exceeded
res = VerifyLimits(consumer, linked_context);
if (res != SPV_SUCCESS) return res;
// Phase 13: Output the module
linked_context.module()->ToBinary(linked_binary, true);
return SPV_SUCCESS;
}
} // namespace spvtools