| //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------===// |
| // |
| // This file implements the MemorySSAUpdater class. |
| // |
| //===----------------------------------------------------------------===// |
| #include "llvm/Analysis/MemorySSAUpdater.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/Analysis/MemorySSA.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/FormattedStream.h" |
| #include <algorithm> |
| |
| #define DEBUG_TYPE "memoryssa" |
| using namespace llvm; |
| |
| // This is the marker algorithm from "Simple and Efficient Construction of |
| // Static Single Assignment Form" |
| // The simple, non-marker algorithm places phi nodes at any join |
| // Here, we place markers, and only place phi nodes if they end up necessary. |
| // They are only necessary if they break a cycle (IE we recursively visit |
| // ourselves again), or we discover, while getting the value of the operands, |
| // that there are two or more definitions needing to be merged. |
| // This still will leave non-minimal form in the case of irreducible control |
| // flow, where phi nodes may be in cycles with themselves, but unnecessary. |
| MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive( |
| BasicBlock *BB, |
| DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { |
| // First, do a cache lookup. Without this cache, certain CFG structures |
| // (like a series of if statements) take exponential time to visit. |
| auto Cached = CachedPreviousDef.find(BB); |
| if (Cached != CachedPreviousDef.end()) { |
| return Cached->second; |
| } |
| |
| if (BasicBlock *Pred = BB->getSinglePredecessor()) { |
| // Single predecessor case, just recurse, we can only have one definition. |
| MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef); |
| CachedPreviousDef.insert({BB, Result}); |
| return Result; |
| } |
| |
| if (VisitedBlocks.count(BB)) { |
| // We hit our node again, meaning we had a cycle, we must insert a phi |
| // node to break it so we have an operand. The only case this will |
| // insert useless phis is if we have irreducible control flow. |
| MemoryAccess *Result = MSSA->createMemoryPhi(BB); |
| CachedPreviousDef.insert({BB, Result}); |
| return Result; |
| } |
| |
| if (VisitedBlocks.insert(BB).second) { |
| // Mark us visited so we can detect a cycle |
| SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps; |
| |
| // Recurse to get the values in our predecessors for placement of a |
| // potential phi node. This will insert phi nodes if we cycle in order to |
| // break the cycle and have an operand. |
| for (auto *Pred : predecessors(BB)) |
| PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef)); |
| |
| // Now try to simplify the ops to avoid placing a phi. |
| // This may return null if we never created a phi yet, that's okay |
| MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB)); |
| |
| // See if we can avoid the phi by simplifying it. |
| auto *Result = tryRemoveTrivialPhi(Phi, PhiOps); |
| // If we couldn't simplify, we may have to create a phi |
| if (Result == Phi) { |
| if (!Phi) |
| Phi = MSSA->createMemoryPhi(BB); |
| |
| // See if the existing phi operands match what we need. |
| // Unlike normal SSA, we only allow one phi node per block, so we can't just |
| // create a new one. |
| if (Phi->getNumOperands() != 0) { |
| // FIXME: Figure out whether this is dead code and if so remove it. |
| if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) { |
| // These will have been filled in by the recursive read we did above. |
| std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin()); |
| std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin()); |
| } |
| } else { |
| unsigned i = 0; |
| for (auto *Pred : predecessors(BB)) |
| Phi->addIncoming(&*PhiOps[i++], Pred); |
| InsertedPHIs.push_back(Phi); |
| } |
| Result = Phi; |
| } |
| |
| // Set ourselves up for the next variable by resetting visited state. |
| VisitedBlocks.erase(BB); |
| CachedPreviousDef.insert({BB, Result}); |
| return Result; |
| } |
| llvm_unreachable("Should have hit one of the three cases above"); |
| } |
| |
| // This starts at the memory access, and goes backwards in the block to find the |
| // previous definition. If a definition is not found the block of the access, |
| // it continues globally, creating phi nodes to ensure we have a single |
| // definition. |
| MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) { |
| if (auto *LocalResult = getPreviousDefInBlock(MA)) |
| return LocalResult; |
| DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; |
| return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef); |
| } |
| |
| // This starts at the memory access, and goes backwards in the block to the find |
| // the previous definition. If the definition is not found in the block of the |
| // access, it returns nullptr. |
| MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) { |
| auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock()); |
| |
| // It's possible there are no defs, or we got handed the first def to start. |
| if (Defs) { |
| // If this is a def, we can just use the def iterators. |
| if (!isa<MemoryUse>(MA)) { |
| auto Iter = MA->getReverseDefsIterator(); |
| ++Iter; |
| if (Iter != Defs->rend()) |
| return &*Iter; |
| } else { |
| // Otherwise, have to walk the all access iterator. |
| auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend(); |
| for (auto &U : make_range(++MA->getReverseIterator(), End)) |
| if (!isa<MemoryUse>(U)) |
| return cast<MemoryAccess>(&U); |
| // Note that if MA comes before Defs->begin(), we won't hit a def. |
| return nullptr; |
| } |
| } |
| return nullptr; |
| } |
| |
| // This starts at the end of block |
| MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd( |
| BasicBlock *BB, |
| DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { |
| auto *Defs = MSSA->getWritableBlockDefs(BB); |
| |
| if (Defs) |
| return &*Defs->rbegin(); |
| |
| return getPreviousDefRecursive(BB, CachedPreviousDef); |
| } |
| // Recurse over a set of phi uses to eliminate the trivial ones |
| MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) { |
| if (!Phi) |
| return nullptr; |
| TrackingVH<MemoryAccess> Res(Phi); |
| SmallVector<TrackingVH<Value>, 8> Uses; |
| std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses)); |
| for (auto &U : Uses) { |
| if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) { |
| auto OperRange = UsePhi->operands(); |
| tryRemoveTrivialPhi(UsePhi, OperRange); |
| } |
| } |
| return Res; |
| } |
| |
| // Eliminate trivial phis |
| // Phis are trivial if they are defined either by themselves, or all the same |
| // argument. |
| // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c) |
| // We recursively try to remove them. |
| template <class RangeType> |
| MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi, |
| RangeType &Operands) { |
| // Bail out on non-opt Phis. |
| if (NonOptPhis.count(Phi)) |
| return Phi; |
| |
| // Detect equal or self arguments |
| MemoryAccess *Same = nullptr; |
| for (auto &Op : Operands) { |
| // If the same or self, good so far |
| if (Op == Phi || Op == Same) |
| continue; |
| // not the same, return the phi since it's not eliminatable by us |
| if (Same) |
| return Phi; |
| Same = cast<MemoryAccess>(&*Op); |
| } |
| // Never found a non-self reference, the phi is undef |
| if (Same == nullptr) |
| return MSSA->getLiveOnEntryDef(); |
| if (Phi) { |
| Phi->replaceAllUsesWith(Same); |
| removeMemoryAccess(Phi); |
| } |
| |
| // We should only end up recursing in case we replaced something, in which |
| // case, we may have made other Phis trivial. |
| return recursePhi(Same); |
| } |
| |
| void MemorySSAUpdater::insertUse(MemoryUse *MU) { |
| InsertedPHIs.clear(); |
| MU->setDefiningAccess(getPreviousDef(MU)); |
| // Unlike for defs, there is no extra work to do. Because uses do not create |
| // new may-defs, there are only two cases: |
| // |
| // 1. There was a def already below us, and therefore, we should not have |
| // created a phi node because it was already needed for the def. |
| // |
| // 2. There is no def below us, and therefore, there is no extra renaming work |
| // to do. |
| } |
| |
| // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef. |
| static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB, |
| MemoryAccess *NewDef) { |
| // Replace any operand with us an incoming block with the new defining |
| // access. |
| int i = MP->getBasicBlockIndex(BB); |
| assert(i != -1 && "Should have found the basic block in the phi"); |
| // We can't just compare i against getNumOperands since one is signed and the |
| // other not. So use it to index into the block iterator. |
| for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end(); |
| ++BBIter) { |
| if (*BBIter != BB) |
| break; |
| MP->setIncomingValue(i, NewDef); |
| ++i; |
| } |
| } |
| |
| // A brief description of the algorithm: |
| // First, we compute what should define the new def, using the SSA |
| // construction algorithm. |
| // Then, we update the defs below us (and any new phi nodes) in the graph to |
| // point to the correct new defs, to ensure we only have one variable, and no |
| // disconnected stores. |
| void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) { |
| InsertedPHIs.clear(); |
| |
| // See if we had a local def, and if not, go hunting. |
| MemoryAccess *DefBefore = getPreviousDef(MD); |
| bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock(); |
| |
| // There is a def before us, which means we can replace any store/phi uses |
| // of that thing with us, since we are in the way of whatever was there |
| // before. |
| // We now define that def's memorydefs and memoryphis |
| if (DefBeforeSameBlock) { |
| for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end(); |
| UI != UE;) { |
| Use &U = *UI++; |
| // Leave the uses alone |
| if (isa<MemoryUse>(U.getUser())) |
| continue; |
| U.set(MD); |
| } |
| } |
| |
| // and that def is now our defining access. |
| // We change them in this order otherwise we will appear in the use list |
| // above and reset ourselves. |
| MD->setDefiningAccess(DefBefore); |
| |
| SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end()); |
| if (!DefBeforeSameBlock) { |
| // If there was a local def before us, we must have the same effect it |
| // did. Because every may-def is the same, any phis/etc we would create, it |
| // would also have created. If there was no local def before us, we |
| // performed a global update, and have to search all successors and make |
| // sure we update the first def in each of them (following all paths until |
| // we hit the first def along each path). This may also insert phi nodes. |
| // TODO: There are other cases we can skip this work, such as when we have a |
| // single successor, and only used a straight line of single pred blocks |
| // backwards to find the def. To make that work, we'd have to track whether |
| // getDefRecursive only ever used the single predecessor case. These types |
| // of paths also only exist in between CFG simplifications. |
| FixupList.push_back(MD); |
| } |
| |
| while (!FixupList.empty()) { |
| unsigned StartingPHISize = InsertedPHIs.size(); |
| fixupDefs(FixupList); |
| FixupList.clear(); |
| // Put any new phis on the fixup list, and process them |
| FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end()); |
| } |
| // Now that all fixups are done, rename all uses if we are asked. |
| if (RenameUses) { |
| SmallPtrSet<BasicBlock *, 16> Visited; |
| BasicBlock *StartBlock = MD->getBlock(); |
| // We are guaranteed there is a def in the block, because we just got it |
| // handed to us in this function. |
| MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin(); |
| // Convert to incoming value if it's a memorydef. A phi *is* already an |
| // incoming value. |
| if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) |
| FirstDef = MD->getDefiningAccess(); |
| |
| MSSA->renamePass(MD->getBlock(), FirstDef, Visited); |
| // We just inserted a phi into this block, so the incoming value will become |
| // the phi anyway, so it does not matter what we pass. |
| for (auto &MP : InsertedPHIs) { |
| MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP); |
| if (Phi) |
| MSSA->renamePass(Phi->getBlock(), nullptr, Visited); |
| } |
| } |
| } |
| |
| void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) { |
| SmallPtrSet<const BasicBlock *, 8> Seen; |
| SmallVector<const BasicBlock *, 16> Worklist; |
| for (auto &Var : Vars) { |
| MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var); |
| if (!NewDef) |
| continue; |
| // First, see if there is a local def after the operand. |
| auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock()); |
| auto DefIter = NewDef->getDefsIterator(); |
| |
| // The temporary Phi is being fixed, unmark it for not to optimize. |
| if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef)) |
| NonOptPhis.erase(Phi); |
| |
| // If there is a local def after us, we only have to rename that. |
| if (++DefIter != Defs->end()) { |
| cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef); |
| continue; |
| } |
| |
| // Otherwise, we need to search down through the CFG. |
| // For each of our successors, handle it directly if their is a phi, or |
| // place on the fixup worklist. |
| for (const auto *S : successors(NewDef->getBlock())) { |
| if (auto *MP = MSSA->getMemoryAccess(S)) |
| setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef); |
| else |
| Worklist.push_back(S); |
| } |
| |
| while (!Worklist.empty()) { |
| const BasicBlock *FixupBlock = Worklist.back(); |
| Worklist.pop_back(); |
| |
| // Get the first def in the block that isn't a phi node. |
| if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) { |
| auto *FirstDef = &*Defs->begin(); |
| // The loop above and below should have taken care of phi nodes |
| assert(!isa<MemoryPhi>(FirstDef) && |
| "Should have already handled phi nodes!"); |
| // We are now this def's defining access, make sure we actually dominate |
| // it |
| assert(MSSA->dominates(NewDef, FirstDef) && |
| "Should have dominated the new access"); |
| |
| // This may insert new phi nodes, because we are not guaranteed the |
| // block we are processing has a single pred, and depending where the |
| // store was inserted, it may require phi nodes below it. |
| cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef)); |
| return; |
| } |
| // We didn't find a def, so we must continue. |
| for (const auto *S : successors(FixupBlock)) { |
| // If there is a phi node, handle it. |
| // Otherwise, put the block on the worklist |
| if (auto *MP = MSSA->getMemoryAccess(S)) |
| setMemoryPhiValueForBlock(MP, FixupBlock, NewDef); |
| else { |
| // If we cycle, we should have ended up at a phi node that we already |
| // processed. FIXME: Double check this |
| if (!Seen.insert(S).second) |
| continue; |
| Worklist.push_back(S); |
| } |
| } |
| } |
| } |
| } |
| |
| // Move What before Where in the MemorySSA IR. |
| template <class WhereType> |
| void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB, |
| WhereType Where) { |
| // Mark MemoryPhi users of What not to be optimized. |
| for (auto *U : What->users()) |
| if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U)) |
| NonOptPhis.insert(PhiUser); |
| |
| // Replace all our users with our defining access. |
| What->replaceAllUsesWith(What->getDefiningAccess()); |
| |
| // Let MemorySSA take care of moving it around in the lists. |
| MSSA->moveTo(What, BB, Where); |
| |
| // Now reinsert it into the IR and do whatever fixups needed. |
| if (auto *MD = dyn_cast<MemoryDef>(What)) |
| insertDef(MD); |
| else |
| insertUse(cast<MemoryUse>(What)); |
| |
| // Clear dangling pointers. We added all MemoryPhi users, but not all |
| // of them are removed by fixupDefs(). |
| NonOptPhis.clear(); |
| } |
| |
| // Move What before Where in the MemorySSA IR. |
| void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) { |
| moveTo(What, Where->getBlock(), Where->getIterator()); |
| } |
| |
| // Move What after Where in the MemorySSA IR. |
| void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) { |
| moveTo(What, Where->getBlock(), ++Where->getIterator()); |
| } |
| |
| void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, |
| MemorySSA::InsertionPlace Where) { |
| return moveTo(What, BB, Where); |
| } |
| |
| // All accesses in To used to be in From. Move to end and update access lists. |
| void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To, |
| Instruction *Start) { |
| |
| MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From); |
| if (!Accs) |
| return; |
| |
| MemoryAccess *FirstInNew = nullptr; |
| for (Instruction &I : make_range(Start->getIterator(), To->end())) |
| if ((FirstInNew = MSSA->getMemoryAccess(&I))) |
| break; |
| if (!FirstInNew) |
| return; |
| |
| auto *MUD = cast<MemoryUseOrDef>(FirstInNew); |
| do { |
| auto NextIt = ++MUD->getIterator(); |
| MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end()) |
| ? nullptr |
| : cast<MemoryUseOrDef>(&*NextIt); |
| MSSA->moveTo(MUD, To, MemorySSA::End); |
| // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to |
| // retrieve it again. |
| Accs = MSSA->getWritableBlockAccesses(From); |
| MUD = NextMUD; |
| } while (MUD); |
| } |
| |
| void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From, |
| BasicBlock *To, |
| Instruction *Start) { |
| assert(MSSA->getBlockAccesses(To) == nullptr && |
| "To block is expected to be free of MemoryAccesses."); |
| moveAllAccesses(From, To, Start); |
| for (BasicBlock *Succ : successors(To)) |
| if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) |
| MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); |
| } |
| |
| void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To, |
| Instruction *Start) { |
| assert(From->getSinglePredecessor() == To && |
| "From block is expected to have a single predecessor (To)."); |
| moveAllAccesses(From, To, Start); |
| for (BasicBlock *Succ : successors(From)) |
| if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) |
| MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); |
| } |
| |
| /// If all arguments of a MemoryPHI are defined by the same incoming |
| /// argument, return that argument. |
| static MemoryAccess *onlySingleValue(MemoryPhi *MP) { |
| MemoryAccess *MA = nullptr; |
| |
| for (auto &Arg : MP->operands()) { |
| if (!MA) |
| MA = cast<MemoryAccess>(Arg); |
| else if (MA != Arg) |
| return nullptr; |
| } |
| return MA; |
| } |
| |
| void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor( |
| BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds) { |
| assert(!MSSA->getWritableBlockAccesses(New) && |
| "Access list should be null for a new block."); |
| MemoryPhi *Phi = MSSA->getMemoryAccess(Old); |
| if (!Phi) |
| return; |
| if (pred_size(Old) == 1) { |
| assert(pred_size(New) == Preds.size() && |
| "Should have moved all predecessors."); |
| MSSA->moveTo(Phi, New, MemorySSA::Beginning); |
| } else { |
| assert(!Preds.empty() && "Must be moving at least one predecessor to the " |
| "new immediate predecessor."); |
| MemoryPhi *NewPhi = MSSA->createMemoryPhi(New); |
| SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end()); |
| Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) { |
| if (PredsSet.count(B)) { |
| NewPhi->addIncoming(MA, B); |
| return true; |
| } |
| return false; |
| }); |
| Phi->addIncoming(NewPhi, New); |
| if (onlySingleValue(NewPhi)) |
| removeMemoryAccess(NewPhi); |
| } |
| } |
| |
| void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA) { |
| assert(!MSSA->isLiveOnEntryDef(MA) && |
| "Trying to remove the live on entry def"); |
| // We can only delete phi nodes if they have no uses, or we can replace all |
| // uses with a single definition. |
| MemoryAccess *NewDefTarget = nullptr; |
| if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) { |
| // Note that it is sufficient to know that all edges of the phi node have |
| // the same argument. If they do, by the definition of dominance frontiers |
| // (which we used to place this phi), that argument must dominate this phi, |
| // and thus, must dominate the phi's uses, and so we will not hit the assert |
| // below. |
| NewDefTarget = onlySingleValue(MP); |
| assert((NewDefTarget || MP->use_empty()) && |
| "We can't delete this memory phi"); |
| } else { |
| NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess(); |
| } |
| |
| // Re-point the uses at our defining access |
| if (!isa<MemoryUse>(MA) && !MA->use_empty()) { |
| // Reset optimized on users of this store, and reset the uses. |
| // A few notes: |
| // 1. This is a slightly modified version of RAUW to avoid walking the |
| // uses twice here. |
| // 2. If we wanted to be complete, we would have to reset the optimized |
| // flags on users of phi nodes if doing the below makes a phi node have all |
| // the same arguments. Instead, we prefer users to removeMemoryAccess those |
| // phi nodes, because doing it here would be N^3. |
| if (MA->hasValueHandle()) |
| ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget); |
| // Note: We assume MemorySSA is not used in metadata since it's not really |
| // part of the IR. |
| |
| while (!MA->use_empty()) { |
| Use &U = *MA->use_begin(); |
| if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser())) |
| MUD->resetOptimized(); |
| U.set(NewDefTarget); |
| } |
| } |
| |
| // The call below to erase will destroy MA, so we can't change the order we |
| // are doing things here |
| MSSA->removeFromLookups(MA); |
| MSSA->removeFromLists(MA); |
| } |
| |
| void MemorySSAUpdater::removeBlocks( |
| const SmallPtrSetImpl<BasicBlock *> &DeadBlocks) { |
| // First delete all uses of BB in MemoryPhis. |
| for (BasicBlock *BB : DeadBlocks) { |
| TerminatorInst *TI = BB->getTerminator(); |
| assert(TI && "Basic block expected to have a terminator instruction"); |
| for (BasicBlock *Succ : TI->successors()) |
| if (!DeadBlocks.count(Succ)) |
| if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) { |
| MP->unorderedDeleteIncomingBlock(BB); |
| if (MP->getNumIncomingValues() == 1) |
| removeMemoryAccess(MP); |
| } |
| // Drop all references of all accesses in BB |
| if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB)) |
| for (MemoryAccess &MA : *Acc) |
| MA.dropAllReferences(); |
| } |
| |
| // Next, delete all memory accesses in each block |
| for (BasicBlock *BB : DeadBlocks) { |
| MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB); |
| if (!Acc) |
| continue; |
| for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) { |
| MemoryAccess *MA = &*AB; |
| ++AB; |
| MSSA->removeFromLookups(MA); |
| MSSA->removeFromLists(MA); |
| } |
| } |
| } |
| |
| MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB( |
| Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, |
| MemorySSA::InsertionPlace Point) { |
| MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); |
| MSSA->insertIntoListsForBlock(NewAccess, BB, Point); |
| return NewAccess; |
| } |
| |
| MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore( |
| Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) { |
| assert(I->getParent() == InsertPt->getBlock() && |
| "New and old access must be in the same block"); |
| MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); |
| MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), |
| InsertPt->getIterator()); |
| return NewAccess; |
| } |
| |
| MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter( |
| Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { |
| assert(I->getParent() == InsertPt->getBlock() && |
| "New and old access must be in the same block"); |
| MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); |
| MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), |
| ++InsertPt->getIterator()); |
| return NewAccess; |
| } |