| //===- LazyValueInfo.cpp - Value constraint analysis ----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interface for lazy computation of value constraint |
| // information. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "lazy-value-info" |
| #include "llvm/Analysis/LazyValueInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/ConstantRange.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Support/ValueHandle.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <map> |
| #include <stack> |
| using namespace llvm; |
| |
| char LazyValueInfo::ID = 0; |
| INITIALIZE_PASS(LazyValueInfo, "lazy-value-info", |
| "Lazy Value Information Analysis", false, true) |
| |
| namespace llvm { |
| FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // LVILatticeVal |
| //===----------------------------------------------------------------------===// |
| |
| /// LVILatticeVal - This is the information tracked by LazyValueInfo for each |
| /// value. |
| /// |
| /// FIXME: This is basically just for bringup, this can be made a lot more rich |
| /// in the future. |
| /// |
| namespace { |
| class LVILatticeVal { |
| enum LatticeValueTy { |
| /// undefined - This Value has no known value yet. |
| undefined, |
| |
| /// constant - This Value has a specific constant value. |
| constant, |
| /// notconstant - This Value is known to not have the specified value. |
| notconstant, |
| |
| /// constantrange - The Value falls within this range. |
| constantrange, |
| |
| /// overdefined - This value is not known to be constant, and we know that |
| /// it has a value. |
| overdefined |
| }; |
| |
| /// Val: This stores the current lattice value along with the Constant* for |
| /// the constant if this is a 'constant' or 'notconstant' value. |
| LatticeValueTy Tag; |
| Constant *Val; |
| ConstantRange Range; |
| |
| public: |
| LVILatticeVal() : Tag(undefined), Val(0), Range(1, true) {} |
| |
| static LVILatticeVal get(Constant *C) { |
| LVILatticeVal Res; |
| if (!isa<UndefValue>(C)) |
| Res.markConstant(C); |
| return Res; |
| } |
| static LVILatticeVal getNot(Constant *C) { |
| LVILatticeVal Res; |
| if (!isa<UndefValue>(C)) |
| Res.markNotConstant(C); |
| return Res; |
| } |
| static LVILatticeVal getRange(ConstantRange CR) { |
| LVILatticeVal Res; |
| Res.markConstantRange(CR); |
| return Res; |
| } |
| |
| bool isUndefined() const { return Tag == undefined; } |
| bool isConstant() const { return Tag == constant; } |
| bool isNotConstant() const { return Tag == notconstant; } |
| bool isConstantRange() const { return Tag == constantrange; } |
| bool isOverdefined() const { return Tag == overdefined; } |
| |
| Constant *getConstant() const { |
| assert(isConstant() && "Cannot get the constant of a non-constant!"); |
| return Val; |
| } |
| |
| Constant *getNotConstant() const { |
| assert(isNotConstant() && "Cannot get the constant of a non-notconstant!"); |
| return Val; |
| } |
| |
| ConstantRange getConstantRange() const { |
| assert(isConstantRange() && |
| "Cannot get the constant-range of a non-constant-range!"); |
| return Range; |
| } |
| |
| /// markOverdefined - Return true if this is a change in status. |
| bool markOverdefined() { |
| if (isOverdefined()) |
| return false; |
| Tag = overdefined; |
| return true; |
| } |
| |
| /// markConstant - Return true if this is a change in status. |
| bool markConstant(Constant *V) { |
| assert(V && "Marking constant with NULL"); |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) |
| return markConstantRange(ConstantRange(CI->getValue())); |
| if (isa<UndefValue>(V)) |
| return false; |
| |
| assert((!isConstant() || getConstant() == V) && |
| "Marking constant with different value"); |
| assert(isUndefined()); |
| Tag = constant; |
| Val = V; |
| return true; |
| } |
| |
| /// markNotConstant - Return true if this is a change in status. |
| bool markNotConstant(Constant *V) { |
| assert(V && "Marking constant with NULL"); |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) |
| return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue())); |
| if (isa<UndefValue>(V)) |
| return false; |
| |
| assert((!isConstant() || getConstant() != V) && |
| "Marking constant !constant with same value"); |
| assert((!isNotConstant() || getNotConstant() == V) && |
| "Marking !constant with different value"); |
| assert(isUndefined() || isConstant()); |
| Tag = notconstant; |
| Val = V; |
| return true; |
| } |
| |
| /// markConstantRange - Return true if this is a change in status. |
| bool markConstantRange(const ConstantRange NewR) { |
| if (isConstantRange()) { |
| if (NewR.isEmptySet()) |
| return markOverdefined(); |
| |
| bool changed = Range == NewR; |
| Range = NewR; |
| return changed; |
| } |
| |
| assert(isUndefined()); |
| if (NewR.isEmptySet()) |
| return markOverdefined(); |
| |
| Tag = constantrange; |
| Range = NewR; |
| return true; |
| } |
| |
| /// mergeIn - Merge the specified lattice value into this one, updating this |
| /// one and returning true if anything changed. |
| bool mergeIn(const LVILatticeVal &RHS) { |
| if (RHS.isUndefined() || isOverdefined()) return false; |
| if (RHS.isOverdefined()) return markOverdefined(); |
| |
| if (isUndefined()) { |
| Tag = RHS.Tag; |
| Val = RHS.Val; |
| Range = RHS.Range; |
| return true; |
| } |
| |
| if (isConstant()) { |
| if (RHS.isConstant()) { |
| if (Val == RHS.Val) |
| return false; |
| return markOverdefined(); |
| } |
| |
| if (RHS.isNotConstant()) { |
| if (Val == RHS.Val) |
| return markOverdefined(); |
| |
| // Unless we can prove that the two Constants are different, we must |
| // move to overdefined. |
| // FIXME: use TargetData for smarter constant folding. |
| if (ConstantInt *Res = dyn_cast<ConstantInt>( |
| ConstantFoldCompareInstOperands(CmpInst::ICMP_NE, |
| getConstant(), |
| RHS.getNotConstant()))) |
| if (Res->isOne()) |
| return markNotConstant(RHS.getNotConstant()); |
| |
| return markOverdefined(); |
| } |
| |
| // RHS is a ConstantRange, LHS is a non-integer Constant. |
| |
| // FIXME: consider the case where RHS is a range [1, 0) and LHS is |
| // a function. The correct result is to pick up RHS. |
| |
| return markOverdefined(); |
| } |
| |
| if (isNotConstant()) { |
| if (RHS.isConstant()) { |
| if (Val == RHS.Val) |
| return markOverdefined(); |
| |
| // Unless we can prove that the two Constants are different, we must |
| // move to overdefined. |
| // FIXME: use TargetData for smarter constant folding. |
| if (ConstantInt *Res = dyn_cast<ConstantInt>( |
| ConstantFoldCompareInstOperands(CmpInst::ICMP_NE, |
| getNotConstant(), |
| RHS.getConstant()))) |
| if (Res->isOne()) |
| return false; |
| |
| return markOverdefined(); |
| } |
| |
| if (RHS.isNotConstant()) { |
| if (Val == RHS.Val) |
| return false; |
| return markOverdefined(); |
| } |
| |
| return markOverdefined(); |
| } |
| |
| assert(isConstantRange() && "New LVILattice type?"); |
| if (!RHS.isConstantRange()) |
| return markOverdefined(); |
| |
| ConstantRange NewR = Range.unionWith(RHS.getConstantRange()); |
| if (NewR.isFullSet()) |
| return markOverdefined(); |
| return markConstantRange(NewR); |
| } |
| }; |
| |
| } // end anonymous namespace. |
| |
| namespace llvm { |
| raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) |
| LLVM_ATTRIBUTE_USED; |
| raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) { |
| if (Val.isUndefined()) |
| return OS << "undefined"; |
| if (Val.isOverdefined()) |
| return OS << "overdefined"; |
| |
| if (Val.isNotConstant()) |
| return OS << "notconstant<" << *Val.getNotConstant() << '>'; |
| else if (Val.isConstantRange()) |
| return OS << "constantrange<" << Val.getConstantRange().getLower() << ", " |
| << Val.getConstantRange().getUpper() << '>'; |
| return OS << "constant<" << *Val.getConstant() << '>'; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LazyValueInfoCache Decl |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// LVIValueHandle - A callback value handle update the cache when |
| /// values are erased. |
| class LazyValueInfoCache; |
| struct LVIValueHandle : public CallbackVH { |
| LazyValueInfoCache *Parent; |
| |
| LVIValueHandle(Value *V, LazyValueInfoCache *P) |
| : CallbackVH(V), Parent(P) { } |
| |
| void deleted(); |
| void allUsesReplacedWith(Value *V) { |
| deleted(); |
| } |
| }; |
| } |
| |
| namespace llvm { |
| template<> |
| struct DenseMapInfo<LVIValueHandle> { |
| typedef DenseMapInfo<Value*> PointerInfo; |
| static inline LVIValueHandle getEmptyKey() { |
| return LVIValueHandle(PointerInfo::getEmptyKey(), |
| static_cast<LazyValueInfoCache*>(0)); |
| } |
| static inline LVIValueHandle getTombstoneKey() { |
| return LVIValueHandle(PointerInfo::getTombstoneKey(), |
| static_cast<LazyValueInfoCache*>(0)); |
| } |
| static unsigned getHashValue(const LVIValueHandle &Val) { |
| return PointerInfo::getHashValue(Val); |
| } |
| static bool isEqual(const LVIValueHandle &LHS, const LVIValueHandle &RHS) { |
| return LHS == RHS; |
| } |
| }; |
| |
| template<> |
| struct DenseMapInfo<std::pair<AssertingVH<BasicBlock>, Value*> > { |
| typedef std::pair<AssertingVH<BasicBlock>, Value*> PairTy; |
| typedef DenseMapInfo<AssertingVH<BasicBlock> > APointerInfo; |
| typedef DenseMapInfo<Value*> BPointerInfo; |
| static inline PairTy getEmptyKey() { |
| return std::make_pair(APointerInfo::getEmptyKey(), |
| BPointerInfo::getEmptyKey()); |
| } |
| static inline PairTy getTombstoneKey() { |
| return std::make_pair(APointerInfo::getTombstoneKey(), |
| BPointerInfo::getTombstoneKey()); |
| } |
| static unsigned getHashValue( const PairTy &Val) { |
| return APointerInfo::getHashValue(Val.first) ^ |
| BPointerInfo::getHashValue(Val.second); |
| } |
| static bool isEqual(const PairTy &LHS, const PairTy &RHS) { |
| return APointerInfo::isEqual(LHS.first, RHS.first) && |
| BPointerInfo::isEqual(LHS.second, RHS.second); |
| } |
| }; |
| } |
| |
| namespace { |
| /// LazyValueInfoCache - This is the cache kept by LazyValueInfo which |
| /// maintains information about queries across the clients' queries. |
| class LazyValueInfoCache { |
| /// ValueCacheEntryTy - This is all of the cached block information for |
| /// exactly one Value*. The entries are sorted by the BasicBlock* of the |
| /// entries, allowing us to do a lookup with a binary search. |
| typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy; |
| |
| /// ValueCache - This is all of the cached information for all values, |
| /// mapped from Value* to key information. |
| DenseMap<LVIValueHandle, ValueCacheEntryTy> ValueCache; |
| |
| /// OverDefinedCache - This tracks, on a per-block basis, the set of |
| /// values that are over-defined at the end of that block. This is required |
| /// for cache updating. |
| typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy; |
| DenseSet<OverDefinedPairTy> OverDefinedCache; |
| |
| /// BlockValueStack - This stack holds the state of the value solver |
| /// during a query. It basically emulates the callstack of the naive |
| /// recursive value lookup process. |
| std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack; |
| |
| friend struct LVIValueHandle; |
| |
| /// OverDefinedCacheUpdater - A helper object that ensures that the |
| /// OverDefinedCache is updated whenever solveBlockValue returns. |
| struct OverDefinedCacheUpdater { |
| LazyValueInfoCache *Parent; |
| Value *Val; |
| BasicBlock *BB; |
| LVILatticeVal &BBLV; |
| |
| OverDefinedCacheUpdater(Value *V, BasicBlock *B, LVILatticeVal &LV, |
| LazyValueInfoCache *P) |
| : Parent(P), Val(V), BB(B), BBLV(LV) { } |
| |
| bool markResult(bool changed) { |
| if (changed && BBLV.isOverdefined()) |
| Parent->OverDefinedCache.insert(std::make_pair(BB, Val)); |
| return changed; |
| } |
| }; |
| |
| |
| |
| LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB); |
| bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T, |
| LVILatticeVal &Result); |
| bool hasBlockValue(Value *Val, BasicBlock *BB); |
| |
| // These methods process one work item and may add more. A false value |
| // returned means that the work item was not completely processed and must |
| // be revisited after going through the new items. |
| bool solveBlockValue(Value *Val, BasicBlock *BB); |
| bool solveBlockValueNonLocal(LVILatticeVal &BBLV, |
| Value *Val, BasicBlock *BB); |
| bool solveBlockValuePHINode(LVILatticeVal &BBLV, |
| PHINode *PN, BasicBlock *BB); |
| bool solveBlockValueConstantRange(LVILatticeVal &BBLV, |
| Instruction *BBI, BasicBlock *BB); |
| |
| void solve(); |
| |
| ValueCacheEntryTy &lookup(Value *V) { |
| return ValueCache[LVIValueHandle(V, this)]; |
| } |
| |
| public: |
| /// getValueInBlock - This is the query interface to determine the lattice |
| /// value for the specified Value* at the end of the specified block. |
| LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB); |
| |
| /// getValueOnEdge - This is the query interface to determine the lattice |
| /// value for the specified Value* that is true on the specified edge. |
| LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB); |
| |
| /// threadEdge - This is the update interface to inform the cache that an |
| /// edge from PredBB to OldSucc has been threaded to be from PredBB to |
| /// NewSucc. |
| void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); |
| |
| /// eraseBlock - This is part of the update interface to inform the cache |
| /// that a block has been deleted. |
| void eraseBlock(BasicBlock *BB); |
| |
| /// clear - Empty the cache. |
| void clear() { |
| ValueCache.clear(); |
| OverDefinedCache.clear(); |
| } |
| }; |
| } // end anonymous namespace |
| |
| void LVIValueHandle::deleted() { |
| typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy; |
| |
| SmallVector<OverDefinedPairTy, 4> ToErase; |
| for (DenseSet<OverDefinedPairTy>::iterator |
| I = Parent->OverDefinedCache.begin(), |
| E = Parent->OverDefinedCache.end(); |
| I != E; ++I) { |
| if (I->second == getValPtr()) |
| ToErase.push_back(*I); |
| } |
| |
| for (SmallVector<OverDefinedPairTy, 4>::iterator I = ToErase.begin(), |
| E = ToErase.end(); I != E; ++I) |
| Parent->OverDefinedCache.erase(*I); |
| |
| // This erasure deallocates *this, so it MUST happen after we're done |
| // using any and all members of *this. |
| Parent->ValueCache.erase(*this); |
| } |
| |
| void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { |
| SmallVector<OverDefinedPairTy, 4> ToErase; |
| for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(), |
| E = OverDefinedCache.end(); I != E; ++I) { |
| if (I->first == BB) |
| ToErase.push_back(*I); |
| } |
| |
| for (SmallVector<OverDefinedPairTy, 4>::iterator I = ToErase.begin(), |
| E = ToErase.end(); I != E; ++I) |
| OverDefinedCache.erase(*I); |
| |
| for (DenseMap<LVIValueHandle, ValueCacheEntryTy>::iterator |
| I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I) |
| I->second.erase(BB); |
| } |
| |
| void LazyValueInfoCache::solve() { |
| while (!BlockValueStack.empty()) { |
| std::pair<BasicBlock*, Value*> &e = BlockValueStack.top(); |
| if (solveBlockValue(e.second, e.first)) |
| BlockValueStack.pop(); |
| } |
| } |
| |
| bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) { |
| // If already a constant, there is nothing to compute. |
| if (isa<Constant>(Val)) |
| return true; |
| |
| LVIValueHandle ValHandle(Val, this); |
| if (!ValueCache.count(ValHandle)) return false; |
| return ValueCache[ValHandle].count(BB); |
| } |
| |
| LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) { |
| // If already a constant, there is nothing to compute. |
| if (Constant *VC = dyn_cast<Constant>(Val)) |
| return LVILatticeVal::get(VC); |
| |
| return lookup(Val)[BB]; |
| } |
| |
| bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) { |
| if (isa<Constant>(Val)) |
| return true; |
| |
| ValueCacheEntryTy &Cache = lookup(Val); |
| LVILatticeVal &BBLV = Cache[BB]; |
| |
| // OverDefinedCacheUpdater is a helper object that will update |
| // the OverDefinedCache for us when this method exits. Make sure to |
| // call markResult on it as we exist, passing a bool to indicate if the |
| // cache needs updating, i.e. if we have solve a new value or not. |
| OverDefinedCacheUpdater ODCacheUpdater(Val, BB, BBLV, this); |
| |
| // If we've already computed this block's value, return it. |
| if (!BBLV.isUndefined()) { |
| DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n'); |
| |
| // Since we're reusing a cached value here, we don't need to update the |
| // OverDefinedCahce. The cache will have been properly updated |
| // whenever the cached value was inserted. |
| ODCacheUpdater.markResult(false); |
| return true; |
| } |
| |
| // Otherwise, this is the first time we're seeing this block. Reset the |
| // lattice value to overdefined, so that cycles will terminate and be |
| // conservatively correct. |
| BBLV.markOverdefined(); |
| |
| Instruction *BBI = dyn_cast<Instruction>(Val); |
| if (BBI == 0 || BBI->getParent() != BB) { |
| return ODCacheUpdater.markResult(solveBlockValueNonLocal(BBLV, Val, BB)); |
| } |
| |
| if (PHINode *PN = dyn_cast<PHINode>(BBI)) { |
| return ODCacheUpdater.markResult(solveBlockValuePHINode(BBLV, PN, BB)); |
| } |
| |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(BBI)) { |
| BBLV = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType())); |
| return ODCacheUpdater.markResult(true); |
| } |
| |
| // We can only analyze the definitions of certain classes of instructions |
| // (integral binops and casts at the moment), so bail if this isn't one. |
| LVILatticeVal Result; |
| if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) || |
| !BBI->getType()->isIntegerTy()) { |
| DEBUG(dbgs() << " compute BB '" << BB->getName() |
| << "' - overdefined because inst def found.\n"); |
| BBLV.markOverdefined(); |
| return ODCacheUpdater.markResult(true); |
| } |
| |
| // FIXME: We're currently limited to binops with a constant RHS. This should |
| // be improved. |
| BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI); |
| if (BO && !isa<ConstantInt>(BO->getOperand(1))) { |
| DEBUG(dbgs() << " compute BB '" << BB->getName() |
| << "' - overdefined because inst def found.\n"); |
| |
| BBLV.markOverdefined(); |
| return ODCacheUpdater.markResult(true); |
| } |
| |
| return ODCacheUpdater.markResult(solveBlockValueConstantRange(BBLV, BBI, BB)); |
| } |
| |
| static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) { |
| if (LoadInst *L = dyn_cast<LoadInst>(I)) { |
| return L->getPointerAddressSpace() == 0 && |
| GetUnderlyingObject(L->getPointerOperand()) == |
| GetUnderlyingObject(Ptr); |
| } |
| if (StoreInst *S = dyn_cast<StoreInst>(I)) { |
| return S->getPointerAddressSpace() == 0 && |
| GetUnderlyingObject(S->getPointerOperand()) == |
| GetUnderlyingObject(Ptr); |
| } |
| if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { |
| if (MI->isVolatile()) return false; |
| |
| // FIXME: check whether it has a valuerange that excludes zero? |
| ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); |
| if (!Len || Len->isZero()) return false; |
| |
| if (MI->getDestAddressSpace() == 0) |
| if (MI->getRawDest() == Ptr || MI->getDest() == Ptr) |
| return true; |
| if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) |
| if (MTI->getSourceAddressSpace() == 0) |
| if (MTI->getRawSource() == Ptr || MTI->getSource() == Ptr) |
| return true; |
| } |
| return false; |
| } |
| |
| bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV, |
| Value *Val, BasicBlock *BB) { |
| LVILatticeVal Result; // Start Undefined. |
| |
| // If this is a pointer, and there's a load from that pointer in this BB, |
| // then we know that the pointer can't be NULL. |
| bool NotNull = false; |
| if (Val->getType()->isPointerTy()) { |
| if (isa<AllocaInst>(Val)) { |
| NotNull = true; |
| } else { |
| for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();BI != BE;++BI){ |
| if (InstructionDereferencesPointer(BI, Val)) { |
| NotNull = true; |
| break; |
| } |
| } |
| } |
| } |
| |
| // If this is the entry block, we must be asking about an argument. The |
| // value is overdefined. |
| if (BB == &BB->getParent()->getEntryBlock()) { |
| assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); |
| if (NotNull) { |
| PointerType *PTy = cast<PointerType>(Val->getType()); |
| Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy)); |
| } else { |
| Result.markOverdefined(); |
| } |
| BBLV = Result; |
| return true; |
| } |
| |
| // Loop over all of our predecessors, merging what we know from them into |
| // result. |
| bool EdgesMissing = false; |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { |
| LVILatticeVal EdgeResult; |
| EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult); |
| if (EdgesMissing) |
| continue; |
| |
| Result.mergeIn(EdgeResult); |
| |
| // If we hit overdefined, exit early. The BlockVals entry is already set |
| // to overdefined. |
| if (Result.isOverdefined()) { |
| DEBUG(dbgs() << " compute BB '" << BB->getName() |
| << "' - overdefined because of pred.\n"); |
| // If we previously determined that this is a pointer that can't be null |
| // then return that rather than giving up entirely. |
| if (NotNull) { |
| PointerType *PTy = cast<PointerType>(Val->getType()); |
| Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy)); |
| } |
| |
| BBLV = Result; |
| return true; |
| } |
| } |
| if (EdgesMissing) |
| return false; |
| |
| // Return the merged value, which is more precise than 'overdefined'. |
| assert(!Result.isOverdefined()); |
| BBLV = Result; |
| return true; |
| } |
| |
| bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV, |
| PHINode *PN, BasicBlock *BB) { |
| LVILatticeVal Result; // Start Undefined. |
| |
| // Loop over all of our predecessors, merging what we know from them into |
| // result. |
| bool EdgesMissing = false; |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| BasicBlock *PhiBB = PN->getIncomingBlock(i); |
| Value *PhiVal = PN->getIncomingValue(i); |
| LVILatticeVal EdgeResult; |
| EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult); |
| if (EdgesMissing) |
| continue; |
| |
| Result.mergeIn(EdgeResult); |
| |
| // If we hit overdefined, exit early. The BlockVals entry is already set |
| // to overdefined. |
| if (Result.isOverdefined()) { |
| DEBUG(dbgs() << " compute BB '" << BB->getName() |
| << "' - overdefined because of pred.\n"); |
| |
| BBLV = Result; |
| return true; |
| } |
| } |
| if (EdgesMissing) |
| return false; |
| |
| // Return the merged value, which is more precise than 'overdefined'. |
| assert(!Result.isOverdefined() && "Possible PHI in entry block?"); |
| BBLV = Result; |
| return true; |
| } |
| |
| bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV, |
| Instruction *BBI, |
| BasicBlock *BB) { |
| // Figure out the range of the LHS. If that fails, bail. |
| if (!hasBlockValue(BBI->getOperand(0), BB)) { |
| BlockValueStack.push(std::make_pair(BB, BBI->getOperand(0))); |
| return false; |
| } |
| |
| LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB); |
| if (!LHSVal.isConstantRange()) { |
| BBLV.markOverdefined(); |
| return true; |
| } |
| |
| ConstantRange LHSRange = LHSVal.getConstantRange(); |
| ConstantRange RHSRange(1); |
| IntegerType *ResultTy = cast<IntegerType>(BBI->getType()); |
| if (isa<BinaryOperator>(BBI)) { |
| if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) { |
| RHSRange = ConstantRange(RHS->getValue()); |
| } else { |
| BBLV.markOverdefined(); |
| return true; |
| } |
| } |
| |
| // NOTE: We're currently limited by the set of operations that ConstantRange |
| // can evaluate symbolically. Enhancing that set will allows us to analyze |
| // more definitions. |
| LVILatticeVal Result; |
| switch (BBI->getOpcode()) { |
| case Instruction::Add: |
| Result.markConstantRange(LHSRange.add(RHSRange)); |
| break; |
| case Instruction::Sub: |
| Result.markConstantRange(LHSRange.sub(RHSRange)); |
| break; |
| case Instruction::Mul: |
| Result.markConstantRange(LHSRange.multiply(RHSRange)); |
| break; |
| case Instruction::UDiv: |
| Result.markConstantRange(LHSRange.udiv(RHSRange)); |
| break; |
| case Instruction::Shl: |
| Result.markConstantRange(LHSRange.shl(RHSRange)); |
| break; |
| case Instruction::LShr: |
| Result.markConstantRange(LHSRange.lshr(RHSRange)); |
| break; |
| case Instruction::Trunc: |
| Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth())); |
| break; |
| case Instruction::SExt: |
| Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth())); |
| break; |
| case Instruction::ZExt: |
| Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth())); |
| break; |
| case Instruction::BitCast: |
| Result.markConstantRange(LHSRange); |
| break; |
| case Instruction::And: |
| Result.markConstantRange(LHSRange.binaryAnd(RHSRange)); |
| break; |
| case Instruction::Or: |
| Result.markConstantRange(LHSRange.binaryOr(RHSRange)); |
| break; |
| |
| // Unhandled instructions are overdefined. |
| default: |
| DEBUG(dbgs() << " compute BB '" << BB->getName() |
| << "' - overdefined because inst def found.\n"); |
| Result.markOverdefined(); |
| break; |
| } |
| |
| BBLV = Result; |
| return true; |
| } |
| |
| /// getEdgeValue - This method attempts to infer more complex |
| bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom, |
| BasicBlock *BBTo, LVILatticeVal &Result) { |
| // If already a constant, there is nothing to compute. |
| if (Constant *VC = dyn_cast<Constant>(Val)) { |
| Result = LVILatticeVal::get(VC); |
| return true; |
| } |
| |
| // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we |
| // know that v != 0. |
| if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { |
| // If this is a conditional branch and only one successor goes to BBTo, then |
| // we maybe able to infer something from the condition. |
| if (BI->isConditional() && |
| BI->getSuccessor(0) != BI->getSuccessor(1)) { |
| bool isTrueDest = BI->getSuccessor(0) == BBTo; |
| assert(BI->getSuccessor(!isTrueDest) == BBTo && |
| "BBTo isn't a successor of BBFrom"); |
| |
| // If V is the condition of the branch itself, then we know exactly what |
| // it is. |
| if (BI->getCondition() == Val) { |
| Result = LVILatticeVal::get(ConstantInt::get( |
| Type::getInt1Ty(Val->getContext()), isTrueDest)); |
| return true; |
| } |
| |
| // If the condition of the branch is an equality comparison, we may be |
| // able to infer the value. |
| ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()); |
| if (ICI && ICI->getOperand(0) == Val && |
| isa<Constant>(ICI->getOperand(1))) { |
| if (ICI->isEquality()) { |
| // We know that V has the RHS constant if this is a true SETEQ or |
| // false SETNE. |
| if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ)) |
| Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1))); |
| else |
| Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1))); |
| return true; |
| } |
| |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1))) { |
| // Calculate the range of values that would satisfy the comparison. |
| ConstantRange CmpRange(CI->getValue(), CI->getValue()+1); |
| ConstantRange TrueValues = |
| ConstantRange::makeICmpRegion(ICI->getPredicate(), CmpRange); |
| |
| // If we're interested in the false dest, invert the condition. |
| if (!isTrueDest) TrueValues = TrueValues.inverse(); |
| |
| // Figure out the possible values of the query BEFORE this branch. |
| if (!hasBlockValue(Val, BBFrom)) { |
| BlockValueStack.push(std::make_pair(BBFrom, Val)); |
| return false; |
| } |
| |
| LVILatticeVal InBlock = getBlockValue(Val, BBFrom); |
| if (!InBlock.isConstantRange()) { |
| Result = LVILatticeVal::getRange(TrueValues); |
| return true; |
| } |
| |
| // Find all potential values that satisfy both the input and output |
| // conditions. |
| ConstantRange PossibleValues = |
| TrueValues.intersectWith(InBlock.getConstantRange()); |
| |
| Result = LVILatticeVal::getRange(PossibleValues); |
| return true; |
| } |
| } |
| } |
| } |
| |
| // If the edge was formed by a switch on the value, then we may know exactly |
| // what it is. |
| if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { |
| if (SI->getCondition() == Val) { |
| // We don't know anything in the default case. |
| if (SI->getDefaultDest() == BBTo) { |
| Result.markOverdefined(); |
| return true; |
| } |
| |
| // We only know something if there is exactly one value that goes from |
| // BBFrom to BBTo. |
| unsigned NumEdges = 0; |
| ConstantInt *EdgeVal = 0; |
| for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) { |
| if (SI->getSuccessor(i) != BBTo) continue; |
| if (NumEdges++) break; |
| EdgeVal = SI->getCaseValue(i); |
| } |
| assert(EdgeVal && "Missing successor?"); |
| if (NumEdges == 1) { |
| Result = LVILatticeVal::get(EdgeVal); |
| return true; |
| } |
| } |
| } |
| |
| // Otherwise see if the value is known in the block. |
| if (hasBlockValue(Val, BBFrom)) { |
| Result = getBlockValue(Val, BBFrom); |
| return true; |
| } |
| BlockValueStack.push(std::make_pair(BBFrom, Val)); |
| return false; |
| } |
| |
| LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) { |
| DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" |
| << BB->getName() << "'\n"); |
| |
| BlockValueStack.push(std::make_pair(BB, V)); |
| solve(); |
| LVILatticeVal Result = getBlockValue(V, BB); |
| |
| DEBUG(dbgs() << " Result = " << Result << "\n"); |
| return Result; |
| } |
| |
| LVILatticeVal LazyValueInfoCache:: |
| getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) { |
| DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" |
| << FromBB->getName() << "' to '" << ToBB->getName() << "'\n"); |
| |
| LVILatticeVal Result; |
| if (!getEdgeValue(V, FromBB, ToBB, Result)) { |
| solve(); |
| bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result); |
| (void)WasFastQuery; |
| assert(WasFastQuery && "More work to do after problem solved?"); |
| } |
| |
| DEBUG(dbgs() << " Result = " << Result << "\n"); |
| return Result; |
| } |
| |
| void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, |
| BasicBlock *NewSucc) { |
| // When an edge in the graph has been threaded, values that we could not |
| // determine a value for before (i.e. were marked overdefined) may be possible |
| // to solve now. We do NOT try to proactively update these values. Instead, |
| // we clear their entries from the cache, and allow lazy updating to recompute |
| // them when needed. |
| |
| // The updating process is fairly simple: we need to dropped cached info |
| // for all values that were marked overdefined in OldSucc, and for those same |
| // values in any successor of OldSucc (except NewSucc) in which they were |
| // also marked overdefined. |
| std::vector<BasicBlock*> worklist; |
| worklist.push_back(OldSucc); |
| |
| DenseSet<Value*> ClearSet; |
| for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(), |
| E = OverDefinedCache.end(); I != E; ++I) { |
| if (I->first == OldSucc) |
| ClearSet.insert(I->second); |
| } |
| |
| // Use a worklist to perform a depth-first search of OldSucc's successors. |
| // NOTE: We do not need a visited list since any blocks we have already |
| // visited will have had their overdefined markers cleared already, and we |
| // thus won't loop to their successors. |
| while (!worklist.empty()) { |
| BasicBlock *ToUpdate = worklist.back(); |
| worklist.pop_back(); |
| |
| // Skip blocks only accessible through NewSucc. |
| if (ToUpdate == NewSucc) continue; |
| |
| bool changed = false; |
| for (DenseSet<Value*>::iterator I = ClearSet.begin(), E = ClearSet.end(); |
| I != E; ++I) { |
| // If a value was marked overdefined in OldSucc, and is here too... |
| DenseSet<OverDefinedPairTy>::iterator OI = |
| OverDefinedCache.find(std::make_pair(ToUpdate, *I)); |
| if (OI == OverDefinedCache.end()) continue; |
| |
| // Remove it from the caches. |
| ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(*I, this)]; |
| ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate); |
| |
| assert(CI != Entry.end() && "Couldn't find entry to update?"); |
| Entry.erase(CI); |
| OverDefinedCache.erase(OI); |
| |
| // If we removed anything, then we potentially need to update |
| // blocks successors too. |
| changed = true; |
| } |
| |
| if (!changed) continue; |
| |
| worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate)); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LazyValueInfo Impl |
| //===----------------------------------------------------------------------===// |
| |
| /// getCache - This lazily constructs the LazyValueInfoCache. |
| static LazyValueInfoCache &getCache(void *&PImpl) { |
| if (!PImpl) |
| PImpl = new LazyValueInfoCache(); |
| return *static_cast<LazyValueInfoCache*>(PImpl); |
| } |
| |
| bool LazyValueInfo::runOnFunction(Function &F) { |
| if (PImpl) |
| getCache(PImpl).clear(); |
| |
| TD = getAnalysisIfAvailable<TargetData>(); |
| // Fully lazy. |
| return false; |
| } |
| |
| void LazyValueInfo::releaseMemory() { |
| // If the cache was allocated, free it. |
| if (PImpl) { |
| delete &getCache(PImpl); |
| PImpl = 0; |
| } |
| } |
| |
| Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) { |
| LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB); |
| |
| if (Result.isConstant()) |
| return Result.getConstant(); |
| if (Result.isConstantRange()) { |
| ConstantRange CR = Result.getConstantRange(); |
| if (const APInt *SingleVal = CR.getSingleElement()) |
| return ConstantInt::get(V->getContext(), *SingleVal); |
| } |
| return 0; |
| } |
| |
| /// getConstantOnEdge - Determine whether the specified value is known to be a |
| /// constant on the specified edge. Return null if not. |
| Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, |
| BasicBlock *ToBB) { |
| LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB); |
| |
| if (Result.isConstant()) |
| return Result.getConstant(); |
| if (Result.isConstantRange()) { |
| ConstantRange CR = Result.getConstantRange(); |
| if (const APInt *SingleVal = CR.getSingleElement()) |
| return ConstantInt::get(V->getContext(), *SingleVal); |
| } |
| return 0; |
| } |
| |
| /// getPredicateOnEdge - Determine whether the specified value comparison |
| /// with a constant is known to be true or false on the specified CFG edge. |
| /// Pred is a CmpInst predicate. |
| LazyValueInfo::Tristate |
| LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, |
| BasicBlock *FromBB, BasicBlock *ToBB) { |
| LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB); |
| |
| // If we know the value is a constant, evaluate the conditional. |
| Constant *Res = 0; |
| if (Result.isConstant()) { |
| Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD); |
| if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res)) |
| return ResCI->isZero() ? False : True; |
| return Unknown; |
| } |
| |
| if (Result.isConstantRange()) { |
| ConstantInt *CI = dyn_cast<ConstantInt>(C); |
| if (!CI) return Unknown; |
| |
| ConstantRange CR = Result.getConstantRange(); |
| if (Pred == ICmpInst::ICMP_EQ) { |
| if (!CR.contains(CI->getValue())) |
| return False; |
| |
| if (CR.isSingleElement() && CR.contains(CI->getValue())) |
| return True; |
| } else if (Pred == ICmpInst::ICMP_NE) { |
| if (!CR.contains(CI->getValue())) |
| return True; |
| |
| if (CR.isSingleElement() && CR.contains(CI->getValue())) |
| return False; |
| } |
| |
| // Handle more complex predicates. |
| ConstantRange TrueValues = |
| ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue()); |
| if (TrueValues.contains(CR)) |
| return True; |
| if (TrueValues.inverse().contains(CR)) |
| return False; |
| return Unknown; |
| } |
| |
| if (Result.isNotConstant()) { |
| // If this is an equality comparison, we can try to fold it knowing that |
| // "V != C1". |
| if (Pred == ICmpInst::ICMP_EQ) { |
| // !C1 == C -> false iff C1 == C. |
| Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, |
| Result.getNotConstant(), C, TD); |
| if (Res->isNullValue()) |
| return False; |
| } else if (Pred == ICmpInst::ICMP_NE) { |
| // !C1 != C -> true iff C1 == C. |
| Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, |
| Result.getNotConstant(), C, TD); |
| if (Res->isNullValue()) |
| return True; |
| } |
| return Unknown; |
| } |
| |
| return Unknown; |
| } |
| |
| void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, |
| BasicBlock *NewSucc) { |
| if (PImpl) getCache(PImpl).threadEdge(PredBB, OldSucc, NewSucc); |
| } |
| |
| void LazyValueInfo::eraseBlock(BasicBlock *BB) { |
| if (PImpl) getCache(PImpl).eraseBlock(BB); |
| } |