| //===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file contains the X86 implementation of the TargetInstrInfo class. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "X86InstrInfo.h" | 
 | #include "X86.h" | 
 | #include "X86InstrBuilder.h" | 
 | #include "X86MachineFunctionInfo.h" | 
 | #include "X86Subtarget.h" | 
 | #include "X86TargetMachine.h" | 
 | #include "llvm/DerivedTypes.h" | 
 | #include "llvm/LLVMContext.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/CodeGen/MachineConstantPool.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/LiveVariables.h" | 
 | #include "llvm/CodeGen/PseudoSourceValue.h" | 
 | #include "llvm/MC/MCInst.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Target/TargetOptions.h" | 
 | #include "llvm/MC/MCAsmInfo.h" | 
 | #include <limits> | 
 |  | 
 | #define GET_INSTRINFO_CTOR | 
 | #include "X86GenInstrInfo.inc" | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | static cl::opt<bool> | 
 | NoFusing("disable-spill-fusing", | 
 |          cl::desc("Disable fusing of spill code into instructions")); | 
 | static cl::opt<bool> | 
 | PrintFailedFusing("print-failed-fuse-candidates", | 
 |                   cl::desc("Print instructions that the allocator wants to" | 
 |                            " fuse, but the X86 backend currently can't"), | 
 |                   cl::Hidden); | 
 | static cl::opt<bool> | 
 | ReMatPICStubLoad("remat-pic-stub-load", | 
 |                  cl::desc("Re-materialize load from stub in PIC mode"), | 
 |                  cl::init(false), cl::Hidden); | 
 |  | 
 | enum { | 
 |   // Select which memory operand is being unfolded. | 
 |   // (stored in bits 0 - 7) | 
 |   TB_INDEX_0    = 0, | 
 |   TB_INDEX_1    = 1, | 
 |   TB_INDEX_2    = 2, | 
 |   TB_INDEX_MASK = 0xff, | 
 |  | 
 |   // Minimum alignment required for load/store. | 
 |   // Used for RegOp->MemOp conversion. | 
 |   // (stored in bits 8 - 15) | 
 |   TB_ALIGN_SHIFT = 8, | 
 |   TB_ALIGN_NONE  =    0 << TB_ALIGN_SHIFT, | 
 |   TB_ALIGN_16    =   16 << TB_ALIGN_SHIFT, | 
 |   TB_ALIGN_32    =   32 << TB_ALIGN_SHIFT, | 
 |   TB_ALIGN_MASK  = 0xff << TB_ALIGN_SHIFT, | 
 |  | 
 |   // Do not insert the reverse map (MemOp -> RegOp) into the table. | 
 |   // This may be needed because there is a many -> one mapping. | 
 |   TB_NO_REVERSE   = 1 << 16, | 
 |  | 
 |   // Do not insert the forward map (RegOp -> MemOp) into the table. | 
 |   // This is needed for Native Client, which prohibits branch | 
 |   // instructions from using a memory operand. | 
 |   TB_NO_FORWARD   = 1 << 17, | 
 |  | 
 |   TB_FOLDED_LOAD  = 1 << 18, | 
 |   TB_FOLDED_STORE = 1 << 19 | 
 | }; | 
 |  | 
 | X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) | 
 |   : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit() | 
 |                      ? X86::ADJCALLSTACKDOWN64 | 
 |                      : X86::ADJCALLSTACKDOWN32), | 
 |                     (tm.getSubtarget<X86Subtarget>().is64Bit() | 
 |                      ? X86::ADJCALLSTACKUP64 | 
 |                      : X86::ADJCALLSTACKUP32)), | 
 |     TM(tm), RI(tm, *this) { | 
 |  | 
 |   static const unsigned OpTbl2Addr[][3] = { | 
 |     { X86::ADC32ri,     X86::ADC32mi,    0 }, | 
 |     { X86::ADC32ri8,    X86::ADC32mi8,   0 }, | 
 |     { X86::ADC32rr,     X86::ADC32mr,    0 }, | 
 |     { X86::ADC64ri32,   X86::ADC64mi32,  0 }, | 
 |     { X86::ADC64ri8,    X86::ADC64mi8,   0 }, | 
 |     { X86::ADC64rr,     X86::ADC64mr,    0 }, | 
 |     { X86::ADD16ri,     X86::ADD16mi,    0 }, | 
 |     { X86::ADD16ri8,    X86::ADD16mi8,   0 }, | 
 |     { X86::ADD16ri_DB,  X86::ADD16mi,    TB_NO_REVERSE }, | 
 |     { X86::ADD16ri8_DB, X86::ADD16mi8,   TB_NO_REVERSE }, | 
 |     { X86::ADD16rr,     X86::ADD16mr,    0 }, | 
 |     { X86::ADD16rr_DB,  X86::ADD16mr,    TB_NO_REVERSE }, | 
 |     { X86::ADD32ri,     X86::ADD32mi,    0 }, | 
 |     { X86::ADD32ri8,    X86::ADD32mi8,   0 }, | 
 |     { X86::ADD32ri_DB,  X86::ADD32mi,    TB_NO_REVERSE }, | 
 |     { X86::ADD32ri8_DB, X86::ADD32mi8,   TB_NO_REVERSE }, | 
 |     { X86::ADD32rr,     X86::ADD32mr,    0 }, | 
 |     { X86::ADD32rr_DB,  X86::ADD32mr,    TB_NO_REVERSE }, | 
 |     { X86::ADD64ri32,   X86::ADD64mi32,  0 }, | 
 |     { X86::ADD64ri8,    X86::ADD64mi8,   0 }, | 
 |     { X86::ADD64ri32_DB,X86::ADD64mi32,  TB_NO_REVERSE }, | 
 |     { X86::ADD64ri8_DB, X86::ADD64mi8,   TB_NO_REVERSE }, | 
 |     { X86::ADD64rr,     X86::ADD64mr,    0 }, | 
 |     { X86::ADD64rr_DB,  X86::ADD64mr,    TB_NO_REVERSE }, | 
 |     { X86::ADD8ri,      X86::ADD8mi,     0 }, | 
 |     { X86::ADD8rr,      X86::ADD8mr,     0 }, | 
 |     { X86::AND16ri,     X86::AND16mi,    0 }, | 
 |     { X86::AND16ri8,    X86::AND16mi8,   0 }, | 
 |     { X86::AND16rr,     X86::AND16mr,    0 }, | 
 |     { X86::AND32ri,     X86::AND32mi,    0 }, | 
 |     { X86::AND32ri8,    X86::AND32mi8,   0 }, | 
 |     { X86::AND32rr,     X86::AND32mr,    0 }, | 
 |     { X86::AND64ri32,   X86::AND64mi32,  0 }, | 
 |     { X86::AND64ri8,    X86::AND64mi8,   0 }, | 
 |     { X86::AND64rr,     X86::AND64mr,    0 }, | 
 |     { X86::AND8ri,      X86::AND8mi,     0 }, | 
 |     { X86::AND8rr,      X86::AND8mr,     0 }, | 
 |     { X86::DEC16r,      X86::DEC16m,     0 }, | 
 |     { X86::DEC32r,      X86::DEC32m,     0 }, | 
 |     { X86::DEC64_16r,   X86::DEC64_16m,  0 }, | 
 |     { X86::DEC64_32r,   X86::DEC64_32m,  0 }, | 
 |     { X86::DEC64r,      X86::DEC64m,     0 }, | 
 |     { X86::DEC8r,       X86::DEC8m,      0 }, | 
 |     { X86::INC16r,      X86::INC16m,     0 }, | 
 |     { X86::INC32r,      X86::INC32m,     0 }, | 
 |     { X86::INC64_16r,   X86::INC64_16m,  0 }, | 
 |     { X86::INC64_32r,   X86::INC64_32m,  0 }, | 
 |     { X86::INC64r,      X86::INC64m,     0 }, | 
 |     { X86::INC8r,       X86::INC8m,      0 }, | 
 |     { X86::NEG16r,      X86::NEG16m,     0 }, | 
 |     { X86::NEG32r,      X86::NEG32m,     0 }, | 
 |     { X86::NEG64r,      X86::NEG64m,     0 }, | 
 |     { X86::NEG8r,       X86::NEG8m,      0 }, | 
 |     { X86::NOT16r,      X86::NOT16m,     0 }, | 
 |     { X86::NOT32r,      X86::NOT32m,     0 }, | 
 |     { X86::NOT64r,      X86::NOT64m,     0 }, | 
 |     { X86::NOT8r,       X86::NOT8m,      0 }, | 
 |     { X86::OR16ri,      X86::OR16mi,     0 }, | 
 |     { X86::OR16ri8,     X86::OR16mi8,    0 }, | 
 |     { X86::OR16rr,      X86::OR16mr,     0 }, | 
 |     { X86::OR32ri,      X86::OR32mi,     0 }, | 
 |     { X86::OR32ri8,     X86::OR32mi8,    0 }, | 
 |     { X86::OR32rr,      X86::OR32mr,     0 }, | 
 |     { X86::OR64ri32,    X86::OR64mi32,   0 }, | 
 |     { X86::OR64ri8,     X86::OR64mi8,    0 }, | 
 |     { X86::OR64rr,      X86::OR64mr,     0 }, | 
 |     { X86::OR8ri,       X86::OR8mi,      0 }, | 
 |     { X86::OR8rr,       X86::OR8mr,      0 }, | 
 |     { X86::ROL16r1,     X86::ROL16m1,    0 }, | 
 |     { X86::ROL16rCL,    X86::ROL16mCL,   0 }, | 
 |     { X86::ROL16ri,     X86::ROL16mi,    0 }, | 
 |     { X86::ROL32r1,     X86::ROL32m1,    0 }, | 
 |     { X86::ROL32rCL,    X86::ROL32mCL,   0 }, | 
 |     { X86::ROL32ri,     X86::ROL32mi,    0 }, | 
 |     { X86::ROL64r1,     X86::ROL64m1,    0 }, | 
 |     { X86::ROL64rCL,    X86::ROL64mCL,   0 }, | 
 |     { X86::ROL64ri,     X86::ROL64mi,    0 }, | 
 |     { X86::ROL8r1,      X86::ROL8m1,     0 }, | 
 |     { X86::ROL8rCL,     X86::ROL8mCL,    0 }, | 
 |     { X86::ROL8ri,      X86::ROL8mi,     0 }, | 
 |     { X86::ROR16r1,     X86::ROR16m1,    0 }, | 
 |     { X86::ROR16rCL,    X86::ROR16mCL,   0 }, | 
 |     { X86::ROR16ri,     X86::ROR16mi,    0 }, | 
 |     { X86::ROR32r1,     X86::ROR32m1,    0 }, | 
 |     { X86::ROR32rCL,    X86::ROR32mCL,   0 }, | 
 |     { X86::ROR32ri,     X86::ROR32mi,    0 }, | 
 |     { X86::ROR64r1,     X86::ROR64m1,    0 }, | 
 |     { X86::ROR64rCL,    X86::ROR64mCL,   0 }, | 
 |     { X86::ROR64ri,     X86::ROR64mi,    0 }, | 
 |     { X86::ROR8r1,      X86::ROR8m1,     0 }, | 
 |     { X86::ROR8rCL,     X86::ROR8mCL,    0 }, | 
 |     { X86::ROR8ri,      X86::ROR8mi,     0 }, | 
 |     { X86::SAR16r1,     X86::SAR16m1,    0 }, | 
 |     { X86::SAR16rCL,    X86::SAR16mCL,   0 }, | 
 |     { X86::SAR16ri,     X86::SAR16mi,    0 }, | 
 |     { X86::SAR32r1,     X86::SAR32m1,    0 }, | 
 |     { X86::SAR32rCL,    X86::SAR32mCL,   0 }, | 
 |     { X86::SAR32ri,     X86::SAR32mi,    0 }, | 
 |     { X86::SAR64r1,     X86::SAR64m1,    0 }, | 
 |     { X86::SAR64rCL,    X86::SAR64mCL,   0 }, | 
 |     { X86::SAR64ri,     X86::SAR64mi,    0 }, | 
 |     { X86::SAR8r1,      X86::SAR8m1,     0 }, | 
 |     { X86::SAR8rCL,     X86::SAR8mCL,    0 }, | 
 |     { X86::SAR8ri,      X86::SAR8mi,     0 }, | 
 |     { X86::SBB32ri,     X86::SBB32mi,    0 }, | 
 |     { X86::SBB32ri8,    X86::SBB32mi8,   0 }, | 
 |     { X86::SBB32rr,     X86::SBB32mr,    0 }, | 
 |     { X86::SBB64ri32,   X86::SBB64mi32,  0 }, | 
 |     { X86::SBB64ri8,    X86::SBB64mi8,   0 }, | 
 |     { X86::SBB64rr,     X86::SBB64mr,    0 }, | 
 |     { X86::SHL16rCL,    X86::SHL16mCL,   0 }, | 
 |     { X86::SHL16ri,     X86::SHL16mi,    0 }, | 
 |     { X86::SHL32rCL,    X86::SHL32mCL,   0 }, | 
 |     { X86::SHL32ri,     X86::SHL32mi,    0 }, | 
 |     { X86::SHL64rCL,    X86::SHL64mCL,   0 }, | 
 |     { X86::SHL64ri,     X86::SHL64mi,    0 }, | 
 |     { X86::SHL8rCL,     X86::SHL8mCL,    0 }, | 
 |     { X86::SHL8ri,      X86::SHL8mi,     0 }, | 
 |     { X86::SHLD16rrCL,  X86::SHLD16mrCL, 0 }, | 
 |     { X86::SHLD16rri8,  X86::SHLD16mri8, 0 }, | 
 |     { X86::SHLD32rrCL,  X86::SHLD32mrCL, 0 }, | 
 |     { X86::SHLD32rri8,  X86::SHLD32mri8, 0 }, | 
 |     { X86::SHLD64rrCL,  X86::SHLD64mrCL, 0 }, | 
 |     { X86::SHLD64rri8,  X86::SHLD64mri8, 0 }, | 
 |     { X86::SHR16r1,     X86::SHR16m1,    0 }, | 
 |     { X86::SHR16rCL,    X86::SHR16mCL,   0 }, | 
 |     { X86::SHR16ri,     X86::SHR16mi,    0 }, | 
 |     { X86::SHR32r1,     X86::SHR32m1,    0 }, | 
 |     { X86::SHR32rCL,    X86::SHR32mCL,   0 }, | 
 |     { X86::SHR32ri,     X86::SHR32mi,    0 }, | 
 |     { X86::SHR64r1,     X86::SHR64m1,    0 }, | 
 |     { X86::SHR64rCL,    X86::SHR64mCL,   0 }, | 
 |     { X86::SHR64ri,     X86::SHR64mi,    0 }, | 
 |     { X86::SHR8r1,      X86::SHR8m1,     0 }, | 
 |     { X86::SHR8rCL,     X86::SHR8mCL,    0 }, | 
 |     { X86::SHR8ri,      X86::SHR8mi,     0 }, | 
 |     { X86::SHRD16rrCL,  X86::SHRD16mrCL, 0 }, | 
 |     { X86::SHRD16rri8,  X86::SHRD16mri8, 0 }, | 
 |     { X86::SHRD32rrCL,  X86::SHRD32mrCL, 0 }, | 
 |     { X86::SHRD32rri8,  X86::SHRD32mri8, 0 }, | 
 |     { X86::SHRD64rrCL,  X86::SHRD64mrCL, 0 }, | 
 |     { X86::SHRD64rri8,  X86::SHRD64mri8, 0 }, | 
 |     { X86::SUB16ri,     X86::SUB16mi,    0 }, | 
 |     { X86::SUB16ri8,    X86::SUB16mi8,   0 }, | 
 |     { X86::SUB16rr,     X86::SUB16mr,    0 }, | 
 |     { X86::SUB32ri,     X86::SUB32mi,    0 }, | 
 |     { X86::SUB32ri8,    X86::SUB32mi8,   0 }, | 
 |     { X86::SUB32rr,     X86::SUB32mr,    0 }, | 
 |     { X86::SUB64ri32,   X86::SUB64mi32,  0 }, | 
 |     { X86::SUB64ri8,    X86::SUB64mi8,   0 }, | 
 |     { X86::SUB64rr,     X86::SUB64mr,    0 }, | 
 |     { X86::SUB8ri,      X86::SUB8mi,     0 }, | 
 |     { X86::SUB8rr,      X86::SUB8mr,     0 }, | 
 |     { X86::XOR16ri,     X86::XOR16mi,    0 }, | 
 |     { X86::XOR16ri8,    X86::XOR16mi8,   0 }, | 
 |     { X86::XOR16rr,     X86::XOR16mr,    0 }, | 
 |     { X86::XOR32ri,     X86::XOR32mi,    0 }, | 
 |     { X86::XOR32ri8,    X86::XOR32mi8,   0 }, | 
 |     { X86::XOR32rr,     X86::XOR32mr,    0 }, | 
 |     { X86::XOR64ri32,   X86::XOR64mi32,  0 }, | 
 |     { X86::XOR64ri8,    X86::XOR64mi8,   0 }, | 
 |     { X86::XOR64rr,     X86::XOR64mr,    0 }, | 
 |     { X86::XOR8ri,      X86::XOR8mi,     0 }, | 
 |     { X86::XOR8rr,      X86::XOR8mr,     0 } | 
 |   }; | 
 |  | 
 |   for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) { | 
 |     unsigned RegOp = OpTbl2Addr[i][0]; | 
 |     unsigned MemOp = OpTbl2Addr[i][1]; | 
 |     unsigned Flags = OpTbl2Addr[i][2]; | 
 |     AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable, | 
 |                   RegOp, MemOp, | 
 |                   // Index 0, folded load and store, no alignment requirement. | 
 |                   Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE); | 
 |   } | 
 |  | 
 |   static const unsigned OpTbl0[][3] = { | 
 |     { X86::BT16ri8,     X86::BT16mi8,       TB_FOLDED_LOAD }, | 
 |     { X86::BT32ri8,     X86::BT32mi8,       TB_FOLDED_LOAD }, | 
 |     { X86::BT64ri8,     X86::BT64mi8,       TB_FOLDED_LOAD }, | 
 |     { X86::CALL32r,     X86::CALL32m,       TB_FOLDED_LOAD }, | 
 |     { X86::CALL64r,     X86::CALL64m,       TB_FOLDED_LOAD }, | 
 |     { X86::WINCALL64r,  X86::WINCALL64m,    TB_FOLDED_LOAD }, | 
 |     { X86::CMP16ri,     X86::CMP16mi,       TB_FOLDED_LOAD }, | 
 |     { X86::CMP16ri8,    X86::CMP16mi8,      TB_FOLDED_LOAD }, | 
 |     { X86::CMP16rr,     X86::CMP16mr,       TB_FOLDED_LOAD }, | 
 |     { X86::CMP32ri,     X86::CMP32mi,       TB_FOLDED_LOAD }, | 
 |     { X86::CMP32ri8,    X86::CMP32mi8,      TB_FOLDED_LOAD }, | 
 |     { X86::CMP32rr,     X86::CMP32mr,       TB_FOLDED_LOAD }, | 
 |     { X86::CMP64ri32,   X86::CMP64mi32,     TB_FOLDED_LOAD }, | 
 |     { X86::CMP64ri8,    X86::CMP64mi8,      TB_FOLDED_LOAD }, | 
 |     { X86::CMP64rr,     X86::CMP64mr,       TB_FOLDED_LOAD }, | 
 |     { X86::CMP8ri,      X86::CMP8mi,        TB_FOLDED_LOAD }, | 
 |     { X86::CMP8rr,      X86::CMP8mr,        TB_FOLDED_LOAD }, | 
 |     { X86::DIV16r,      X86::DIV16m,        TB_FOLDED_LOAD }, | 
 |     { X86::DIV32r,      X86::DIV32m,        TB_FOLDED_LOAD }, | 
 |     { X86::DIV64r,      X86::DIV64m,        TB_FOLDED_LOAD }, | 
 |     { X86::DIV8r,       X86::DIV8m,         TB_FOLDED_LOAD }, | 
 |     { X86::EXTRACTPSrr, X86::EXTRACTPSmr,   TB_FOLDED_STORE | TB_ALIGN_16 }, | 
 |     { X86::FsMOVAPDrr,  X86::MOVSDmr,       TB_FOLDED_STORE | TB_NO_REVERSE }, | 
 |     { X86::FsMOVAPSrr,  X86::MOVSSmr,       TB_FOLDED_STORE | TB_NO_REVERSE }, | 
 |     { X86::IDIV16r,     X86::IDIV16m,       TB_FOLDED_LOAD }, | 
 |     { X86::IDIV32r,     X86::IDIV32m,       TB_FOLDED_LOAD }, | 
 |     { X86::IDIV64r,     X86::IDIV64m,       TB_FOLDED_LOAD }, | 
 |     { X86::IDIV8r,      X86::IDIV8m,        TB_FOLDED_LOAD }, | 
 |     { X86::IMUL16r,     X86::IMUL16m,       TB_FOLDED_LOAD }, | 
 |     { X86::IMUL32r,     X86::IMUL32m,       TB_FOLDED_LOAD }, | 
 |     { X86::IMUL64r,     X86::IMUL64m,       TB_FOLDED_LOAD }, | 
 |     { X86::IMUL8r,      X86::IMUL8m,        TB_FOLDED_LOAD }, | 
 |     { X86::JMP32r,      X86::JMP32m,        TB_FOLDED_LOAD }, | 
 |     { X86::JMP64r,      X86::JMP64m,        TB_FOLDED_LOAD }, | 
 |     { X86::MOV16ri,     X86::MOV16mi,       TB_FOLDED_STORE }, | 
 |     { X86::MOV16rr,     X86::MOV16mr,       TB_FOLDED_STORE }, | 
 |     { X86::MOV32ri,     X86::MOV32mi,       TB_FOLDED_STORE }, | 
 |     { X86::MOV32rr,     X86::MOV32mr,       TB_FOLDED_STORE }, | 
 |     { X86::MOV64ri32,   X86::MOV64mi32,     TB_FOLDED_STORE }, | 
 |     { X86::MOV64rr,     X86::MOV64mr,       TB_FOLDED_STORE }, | 
 |     { X86::MOV8ri,      X86::MOV8mi,        TB_FOLDED_STORE }, | 
 |     { X86::MOV8rr,      X86::MOV8mr,        TB_FOLDED_STORE }, | 
 |     { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE }, | 
 |     { X86::MOVAPDrr,    X86::MOVAPDmr,      TB_FOLDED_STORE | TB_ALIGN_16 }, | 
 |     { X86::MOVAPSrr,    X86::MOVAPSmr,      TB_FOLDED_STORE | TB_ALIGN_16 }, | 
 |     { X86::MOVDQArr,    X86::MOVDQAmr,      TB_FOLDED_STORE | TB_ALIGN_16 }, | 
 |     { X86::MOVPDI2DIrr, X86::MOVPDI2DImr,   TB_FOLDED_STORE }, | 
 |     { X86::MOVPQIto64rr,X86::MOVPQI2QImr,   TB_FOLDED_STORE }, | 
 |     { X86::MOVSDto64rr, X86::MOVSDto64mr,   TB_FOLDED_STORE }, | 
 |     { X86::MOVSS2DIrr,  X86::MOVSS2DImr,    TB_FOLDED_STORE }, | 
 |     { X86::MOVUPDrr,    X86::MOVUPDmr,      TB_FOLDED_STORE }, | 
 |     { X86::MOVUPSrr,    X86::MOVUPSmr,      TB_FOLDED_STORE }, | 
 |     { X86::MUL16r,      X86::MUL16m,        TB_FOLDED_LOAD }, | 
 |     { X86::MUL32r,      X86::MUL32m,        TB_FOLDED_LOAD }, | 
 |     { X86::MUL64r,      X86::MUL64m,        TB_FOLDED_LOAD }, | 
 |     { X86::MUL8r,       X86::MUL8m,         TB_FOLDED_LOAD }, | 
 |     { X86::SETAEr,      X86::SETAEm,        TB_FOLDED_STORE }, | 
 |     { X86::SETAr,       X86::SETAm,         TB_FOLDED_STORE }, | 
 |     { X86::SETBEr,      X86::SETBEm,        TB_FOLDED_STORE }, | 
 |     { X86::SETBr,       X86::SETBm,         TB_FOLDED_STORE }, | 
 |     { X86::SETEr,       X86::SETEm,         TB_FOLDED_STORE }, | 
 |     { X86::SETGEr,      X86::SETGEm,        TB_FOLDED_STORE }, | 
 |     { X86::SETGr,       X86::SETGm,         TB_FOLDED_STORE }, | 
 |     { X86::SETLEr,      X86::SETLEm,        TB_FOLDED_STORE }, | 
 |     { X86::SETLr,       X86::SETLm,         TB_FOLDED_STORE }, | 
 |     { X86::SETNEr,      X86::SETNEm,        TB_FOLDED_STORE }, | 
 |     { X86::SETNOr,      X86::SETNOm,        TB_FOLDED_STORE }, | 
 |     { X86::SETNPr,      X86::SETNPm,        TB_FOLDED_STORE }, | 
 |     { X86::SETNSr,      X86::SETNSm,        TB_FOLDED_STORE }, | 
 |     { X86::SETOr,       X86::SETOm,         TB_FOLDED_STORE }, | 
 |     { X86::SETPr,       X86::SETPm,         TB_FOLDED_STORE }, | 
 |     { X86::SETSr,       X86::SETSm,         TB_FOLDED_STORE }, | 
 |     { X86::TAILJMPr,    X86::TAILJMPm,      TB_FOLDED_LOAD }, | 
 |     { X86::TAILJMPr64,  X86::TAILJMPm64,    TB_FOLDED_LOAD }, | 
 |     { X86::TEST16ri,    X86::TEST16mi,      TB_FOLDED_LOAD }, | 
 |     { X86::TEST32ri,    X86::TEST32mi,      TB_FOLDED_LOAD }, | 
 |     { X86::TEST64ri32,  X86::TEST64mi32,    TB_FOLDED_LOAD }, | 
 |     { X86::TEST8ri,     X86::TEST8mi,       TB_FOLDED_LOAD }, | 
 |     // AVX 128-bit versions of foldable instructions | 
 |     { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr,  TB_FOLDED_STORE | TB_ALIGN_16 }, | 
 |     { X86::FsVMOVAPDrr, X86::VMOVSDmr,      TB_FOLDED_STORE | TB_NO_REVERSE }, | 
 |     { X86::FsVMOVAPSrr, X86::VMOVSSmr,      TB_FOLDED_STORE | TB_NO_REVERSE }, | 
 |     { X86::VMOVAPDrr,   X86::VMOVAPDmr,     TB_FOLDED_STORE | TB_ALIGN_16 }, | 
 |     { X86::VMOVAPSrr,   X86::VMOVAPSmr,     TB_FOLDED_STORE | TB_ALIGN_16 }, | 
 |     { X86::VMOVDQArr,   X86::VMOVDQAmr,     TB_FOLDED_STORE | TB_ALIGN_16 }, | 
 |     { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr,  TB_FOLDED_STORE }, | 
 |     { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE }, | 
 |     { X86::VMOVSDto64rr,X86::VMOVSDto64mr,  TB_FOLDED_STORE }, | 
 |     { X86::VMOVSS2DIrr, X86::VMOVSS2DImr,   TB_FOLDED_STORE }, | 
 |     { X86::VMOVUPDrr,   X86::VMOVUPDmr,     TB_FOLDED_STORE }, | 
 |     { X86::VMOVUPSrr,   X86::VMOVUPSmr,     TB_FOLDED_STORE }, | 
 |     // AVX 256-bit foldable instructions | 
 |     { X86::VMOVAPDYrr,  X86::VMOVAPDYmr,    TB_FOLDED_STORE | TB_ALIGN_32 }, | 
 |     { X86::VMOVAPSYrr,  X86::VMOVAPSYmr,    TB_FOLDED_STORE | TB_ALIGN_32 }, | 
 |     { X86::VMOVDQAYrr,  X86::VMOVDQAYmr,    TB_FOLDED_STORE | TB_ALIGN_32 }, | 
 |     { X86::VMOVUPDYrr,  X86::VMOVUPDYmr,    TB_FOLDED_STORE }, | 
 |     { X86::VMOVUPSYrr,  X86::VMOVUPSYmr,    TB_FOLDED_STORE } | 
 |   }; | 
 |  | 
 |   for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) { | 
 |     unsigned RegOp      = OpTbl0[i][0]; | 
 |     unsigned MemOp      = OpTbl0[i][1]; | 
 |     unsigned Flags      = OpTbl0[i][2]; | 
 |     AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable, | 
 |                   RegOp, MemOp, TB_INDEX_0 | Flags); | 
 |   } | 
 |  | 
 |   static const unsigned OpTbl1[][3] = { | 
 |     { X86::CMP16rr,         X86::CMP16rm,             0 }, | 
 |     { X86::CMP32rr,         X86::CMP32rm,             0 }, | 
 |     { X86::CMP64rr,         X86::CMP64rm,             0 }, | 
 |     { X86::CMP8rr,          X86::CMP8rm,              0 }, | 
 |     { X86::CVTSD2SSrr,      X86::CVTSD2SSrm,          0 }, | 
 |     { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm,        0 }, | 
 |     { X86::CVTSI2SDrr,      X86::CVTSI2SDrm,          0 }, | 
 |     { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm,        0 }, | 
 |     { X86::CVTSI2SSrr,      X86::CVTSI2SSrm,          0 }, | 
 |     { X86::CVTSS2SDrr,      X86::CVTSS2SDrm,          0 }, | 
 |     { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm,       0 }, | 
 |     { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm,         0 }, | 
 |     { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm,       0 }, | 
 |     { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm,         0 }, | 
 |     { X86::FsMOVAPDrr,      X86::MOVSDrm,             TB_NO_REVERSE }, | 
 |     { X86::FsMOVAPSrr,      X86::MOVSSrm,             TB_NO_REVERSE }, | 
 |     { X86::IMUL16rri,       X86::IMUL16rmi,           0 }, | 
 |     { X86::IMUL16rri8,      X86::IMUL16rmi8,          0 }, | 
 |     { X86::IMUL32rri,       X86::IMUL32rmi,           0 }, | 
 |     { X86::IMUL32rri8,      X86::IMUL32rmi8,          0 }, | 
 |     { X86::IMUL64rri32,     X86::IMUL64rmi32,         0 }, | 
 |     { X86::IMUL64rri8,      X86::IMUL64rmi8,          0 }, | 
 |     { X86::Int_COMISDrr,    X86::Int_COMISDrm,        0 }, | 
 |     { X86::Int_COMISSrr,    X86::Int_COMISSrm,        0 }, | 
 |     { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm,      TB_ALIGN_16 }, | 
 |     { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm,      TB_ALIGN_16 }, | 
 |     { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm,      TB_ALIGN_16 }, | 
 |     { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm,      TB_ALIGN_16 }, | 
 |     { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm,      TB_ALIGN_16 }, | 
 |     { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm,      0 }, | 
 |     { X86::CVTSD2SI64rr,    X86::CVTSD2SI64rm,        0 }, | 
 |     { X86::CVTSD2SIrr,      X86::CVTSD2SIrm,          0 }, | 
 |     { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm,      0 }, | 
 |     { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm,    0 }, | 
 |     { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm,      0 }, | 
 |     { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm,    0 }, | 
 |     { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm,      0 }, | 
 |     { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm,      0 }, | 
 |     { X86::CVTTPD2DQrr,     X86::CVTTPD2DQrm,         TB_ALIGN_16 }, | 
 |     { X86::CVTTPS2DQrr,     X86::CVTTPS2DQrm,         TB_ALIGN_16 }, | 
 |     { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm,  0 }, | 
 |     { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm,     0 }, | 
 |     { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm,  0 }, | 
 |     { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm,     0 }, | 
 |     { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm,       0 }, | 
 |     { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm,       0 }, | 
 |     { X86::MOV16rr,         X86::MOV16rm,             0 }, | 
 |     { X86::MOV32rr,         X86::MOV32rm,             0 }, | 
 |     { X86::MOV64rr,         X86::MOV64rm,             0 }, | 
 |     { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm,         0 }, | 
 |     { X86::MOV64toSDrr,     X86::MOV64toSDrm,         0 }, | 
 |     { X86::MOV8rr,          X86::MOV8rm,              0 }, | 
 |     { X86::MOVAPDrr,        X86::MOVAPDrm,            TB_ALIGN_16 }, | 
 |     { X86::MOVAPSrr,        X86::MOVAPSrm,            TB_ALIGN_16 }, | 
 |     { X86::MOVDDUPrr,       X86::MOVDDUPrm,           0 }, | 
 |     { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm,         0 }, | 
 |     { X86::MOVDI2SSrr,      X86::MOVDI2SSrm,          0 }, | 
 |     { X86::MOVDQArr,        X86::MOVDQArm,            TB_ALIGN_16 }, | 
 |     { X86::MOVSHDUPrr,      X86::MOVSHDUPrm,          TB_ALIGN_16 }, | 
 |     { X86::MOVSLDUPrr,      X86::MOVSLDUPrm,          TB_ALIGN_16 }, | 
 |     { X86::MOVSX16rr8,      X86::MOVSX16rm8,          0 }, | 
 |     { X86::MOVSX32rr16,     X86::MOVSX32rm16,         0 }, | 
 |     { X86::MOVSX32rr8,      X86::MOVSX32rm8,          0 }, | 
 |     { X86::MOVSX64rr16,     X86::MOVSX64rm16,         0 }, | 
 |     { X86::MOVSX64rr32,     X86::MOVSX64rm32,         0 }, | 
 |     { X86::MOVSX64rr8,      X86::MOVSX64rm8,          0 }, | 
 |     { X86::MOVUPDrr,        X86::MOVUPDrm,            TB_ALIGN_16 }, | 
 |     { X86::MOVUPSrr,        X86::MOVUPSrm,            0 }, | 
 |     { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm,        0 }, | 
 |     { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm,        0 }, | 
 |     { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm,     TB_ALIGN_16 }, | 
 |     { X86::MOVZX16rr8,      X86::MOVZX16rm8,          0 }, | 
 |     { X86::MOVZX32rr16,     X86::MOVZX32rm16,         0 }, | 
 |     { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8,   0 }, | 
 |     { X86::MOVZX32rr8,      X86::MOVZX32rm8,          0 }, | 
 |     { X86::MOVZX64rr16,     X86::MOVZX64rm16,         0 }, | 
 |     { X86::MOVZX64rr32,     X86::MOVZX64rm32,         0 }, | 
 |     { X86::MOVZX64rr8,      X86::MOVZX64rm8,          0 }, | 
 |     { X86::PSHUFDri,        X86::PSHUFDmi,            TB_ALIGN_16 }, | 
 |     { X86::PSHUFHWri,       X86::PSHUFHWmi,           TB_ALIGN_16 }, | 
 |     { X86::PSHUFLWri,       X86::PSHUFLWmi,           TB_ALIGN_16 }, | 
 |     { X86::RCPPSr,          X86::RCPPSm,              TB_ALIGN_16 }, | 
 |     { X86::RCPPSr_Int,      X86::RCPPSm_Int,          TB_ALIGN_16 }, | 
 |     { X86::RSQRTPSr,        X86::RSQRTPSm,            TB_ALIGN_16 }, | 
 |     { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int,        TB_ALIGN_16 }, | 
 |     { X86::RSQRTSSr,        X86::RSQRTSSm,            0 }, | 
 |     { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int,        0 }, | 
 |     { X86::SQRTPDr,         X86::SQRTPDm,             TB_ALIGN_16 }, | 
 |     { X86::SQRTPDr_Int,     X86::SQRTPDm_Int,         TB_ALIGN_16 }, | 
 |     { X86::SQRTPSr,         X86::SQRTPSm,             TB_ALIGN_16 }, | 
 |     { X86::SQRTPSr_Int,     X86::SQRTPSm_Int,         TB_ALIGN_16 }, | 
 |     { X86::SQRTSDr,         X86::SQRTSDm,             0 }, | 
 |     { X86::SQRTSDr_Int,     X86::SQRTSDm_Int,         0 }, | 
 |     { X86::SQRTSSr,         X86::SQRTSSm,             0 }, | 
 |     { X86::SQRTSSr_Int,     X86::SQRTSSm_Int,         0 }, | 
 |     { X86::TEST16rr,        X86::TEST16rm,            0 }, | 
 |     { X86::TEST32rr,        X86::TEST32rm,            0 }, | 
 |     { X86::TEST64rr,        X86::TEST64rm,            0 }, | 
 |     { X86::TEST8rr,         X86::TEST8rm,             0 }, | 
 |     // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0 | 
 |     { X86::UCOMISDrr,       X86::UCOMISDrm,           0 }, | 
 |     { X86::UCOMISSrr,       X86::UCOMISSrm,           0 }, | 
 |     // AVX 128-bit versions of foldable instructions | 
 |     { X86::Int_VCOMISDrr,   X86::Int_VCOMISDrm,       0 }, | 
 |     { X86::Int_VCOMISSrr,   X86::Int_VCOMISSrm,       0 }, | 
 |     { X86::Int_VCVTDQ2PDrr, X86::Int_VCVTDQ2PDrm,     TB_ALIGN_16 }, | 
 |     { X86::Int_VCVTDQ2PSrr, X86::Int_VCVTDQ2PSrm,     TB_ALIGN_16 }, | 
 |     { X86::Int_VCVTPD2DQrr, X86::Int_VCVTPD2DQrm,     TB_ALIGN_16 }, | 
 |     { X86::Int_VCVTPD2PSrr, X86::Int_VCVTPD2PSrm,     TB_ALIGN_16 }, | 
 |     { X86::Int_VCVTPS2DQrr, X86::Int_VCVTPS2DQrm,     TB_ALIGN_16 }, | 
 |     { X86::Int_VCVTPS2PDrr, X86::Int_VCVTPS2PDrm,     0 }, | 
 |     { X86::Int_VUCOMISDrr,  X86::Int_VUCOMISDrm,      0 }, | 
 |     { X86::Int_VUCOMISSrr,  X86::Int_VUCOMISSrm,      0 }, | 
 |     { X86::FsVMOVAPDrr,     X86::VMOVSDrm,            TB_NO_REVERSE }, | 
 |     { X86::FsVMOVAPSrr,     X86::VMOVSSrm,            TB_NO_REVERSE }, | 
 |     { X86::VMOV64toPQIrr,   X86::VMOVQI2PQIrm,        0 }, | 
 |     { X86::VMOV64toSDrr,    X86::VMOV64toSDrm,        0 }, | 
 |     { X86::VMOVAPDrr,       X86::VMOVAPDrm,           TB_ALIGN_16 }, | 
 |     { X86::VMOVAPSrr,       X86::VMOVAPSrm,           TB_ALIGN_16 }, | 
 |     { X86::VMOVDDUPrr,      X86::VMOVDDUPrm,          0 }, | 
 |     { X86::VMOVDI2PDIrr,    X86::VMOVDI2PDIrm,        0 }, | 
 |     { X86::VMOVDI2SSrr,     X86::VMOVDI2SSrm,         0 }, | 
 |     { X86::VMOVDQArr,       X86::VMOVDQArm,           TB_ALIGN_16 }, | 
 |     { X86::VMOVSLDUPrr,     X86::VMOVSLDUPrm,         TB_ALIGN_16 }, | 
 |     { X86::VMOVSHDUPrr,     X86::VMOVSHDUPrm,         TB_ALIGN_16 }, | 
 |     { X86::VMOVUPDrr,       X86::VMOVUPDrm,           TB_ALIGN_16 }, | 
 |     { X86::VMOVUPSrr,       X86::VMOVUPSrm,           0 }, | 
 |     { X86::VMOVZDI2PDIrr,   X86::VMOVZDI2PDIrm,       0 }, | 
 |     { X86::VMOVZQI2PQIrr,   X86::VMOVZQI2PQIrm,       0 }, | 
 |     { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm,    TB_ALIGN_16 }, | 
 |     { X86::VPSHUFDri,       X86::VPSHUFDmi,           TB_ALIGN_16 }, | 
 |     { X86::VPSHUFHWri,      X86::VPSHUFHWmi,          TB_ALIGN_16 }, | 
 |     { X86::VPSHUFLWri,      X86::VPSHUFLWmi,          TB_ALIGN_16 }, | 
 |     { X86::VRCPPSr,         X86::VRCPPSm,             TB_ALIGN_16 }, | 
 |     { X86::VRCPPSr_Int,     X86::VRCPPSm_Int,         TB_ALIGN_16 }, | 
 |     { X86::VRSQRTPSr,       X86::VRSQRTPSm,           TB_ALIGN_16 }, | 
 |     { X86::VRSQRTPSr_Int,   X86::VRSQRTPSm_Int,       TB_ALIGN_16 }, | 
 |     { X86::VSQRTPDr,        X86::VSQRTPDm,            TB_ALIGN_16 }, | 
 |     { X86::VSQRTPDr_Int,    X86::VSQRTPDm_Int,        TB_ALIGN_16 }, | 
 |     { X86::VSQRTPSr,        X86::VSQRTPSm,            TB_ALIGN_16 }, | 
 |     { X86::VSQRTPSr_Int,    X86::VSQRTPSm_Int,        TB_ALIGN_16 }, | 
 |     { X86::VUCOMISDrr,      X86::VUCOMISDrm,          0 }, | 
 |     { X86::VUCOMISSrr,      X86::VUCOMISSrm,          0 }, | 
 |     // AVX 256-bit foldable instructions | 
 |     { X86::VMOVAPDYrr,      X86::VMOVAPDYrm,          TB_ALIGN_32 }, | 
 |     { X86::VMOVAPSYrr,      X86::VMOVAPSYrm,          TB_ALIGN_32 }, | 
 |     { X86::VMOVDQAYrr,      X86::VMOVDQAYrm,          TB_ALIGN_16 }, | 
 |     { X86::VMOVUPDYrr,      X86::VMOVUPDYrm,          0 }, | 
 |     { X86::VMOVUPSYrr,      X86::VMOVUPSYrm,          0 } | 
 |   }; | 
 |  | 
 |   for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) { | 
 |     unsigned RegOp = OpTbl1[i][0]; | 
 |     unsigned MemOp = OpTbl1[i][1]; | 
 |     unsigned Flags = OpTbl1[i][2]; | 
 |     AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable, | 
 |                   RegOp, MemOp, | 
 |                   // Index 1, folded load | 
 |                   Flags | TB_INDEX_1 | TB_FOLDED_LOAD); | 
 |   } | 
 |  | 
 |   static const unsigned OpTbl2[][3] = { | 
 |     { X86::ADC32rr,         X86::ADC32rm,       0 }, | 
 |     { X86::ADC64rr,         X86::ADC64rm,       0 }, | 
 |     { X86::ADD16rr,         X86::ADD16rm,       0 }, | 
 |     { X86::ADD16rr_DB,      X86::ADD16rm,       TB_NO_REVERSE }, | 
 |     { X86::ADD32rr,         X86::ADD32rm,       0 }, | 
 |     { X86::ADD32rr_DB,      X86::ADD32rm,       TB_NO_REVERSE }, | 
 |     { X86::ADD64rr,         X86::ADD64rm,       0 }, | 
 |     { X86::ADD64rr_DB,      X86::ADD64rm,       TB_NO_REVERSE }, | 
 |     { X86::ADD8rr,          X86::ADD8rm,        0 }, | 
 |     { X86::ADDPDrr,         X86::ADDPDrm,       TB_ALIGN_16 }, | 
 |     { X86::ADDPSrr,         X86::ADDPSrm,       TB_ALIGN_16 }, | 
 |     { X86::ADDSDrr,         X86::ADDSDrm,       0 }, | 
 |     { X86::ADDSSrr,         X86::ADDSSrm,       0 }, | 
 |     { X86::ADDSUBPDrr,      X86::ADDSUBPDrm,    TB_ALIGN_16 }, | 
 |     { X86::ADDSUBPSrr,      X86::ADDSUBPSrm,    TB_ALIGN_16 }, | 
 |     { X86::AND16rr,         X86::AND16rm,       0 }, | 
 |     { X86::AND32rr,         X86::AND32rm,       0 }, | 
 |     { X86::AND64rr,         X86::AND64rm,       0 }, | 
 |     { X86::AND8rr,          X86::AND8rm,        0 }, | 
 |     { X86::ANDNPDrr,        X86::ANDNPDrm,      TB_ALIGN_16 }, | 
 |     { X86::ANDNPSrr,        X86::ANDNPSrm,      TB_ALIGN_16 }, | 
 |     { X86::ANDPDrr,         X86::ANDPDrm,       TB_ALIGN_16 }, | 
 |     { X86::ANDPSrr,         X86::ANDPSrm,       TB_ALIGN_16 }, | 
 |     { X86::CMOVA16rr,       X86::CMOVA16rm,     0 }, | 
 |     { X86::CMOVA32rr,       X86::CMOVA32rm,     0 }, | 
 |     { X86::CMOVA64rr,       X86::CMOVA64rm,     0 }, | 
 |     { X86::CMOVAE16rr,      X86::CMOVAE16rm,    0 }, | 
 |     { X86::CMOVAE32rr,      X86::CMOVAE32rm,    0 }, | 
 |     { X86::CMOVAE64rr,      X86::CMOVAE64rm,    0 }, | 
 |     { X86::CMOVB16rr,       X86::CMOVB16rm,     0 }, | 
 |     { X86::CMOVB32rr,       X86::CMOVB32rm,     0 }, | 
 |     { X86::CMOVB64rr,       X86::CMOVB64rm,     0 }, | 
 |     { X86::CMOVBE16rr,      X86::CMOVBE16rm,    0 }, | 
 |     { X86::CMOVBE32rr,      X86::CMOVBE32rm,    0 }, | 
 |     { X86::CMOVBE64rr,      X86::CMOVBE64rm,    0 }, | 
 |     { X86::CMOVE16rr,       X86::CMOVE16rm,     0 }, | 
 |     { X86::CMOVE32rr,       X86::CMOVE32rm,     0 }, | 
 |     { X86::CMOVE64rr,       X86::CMOVE64rm,     0 }, | 
 |     { X86::CMOVG16rr,       X86::CMOVG16rm,     0 }, | 
 |     { X86::CMOVG32rr,       X86::CMOVG32rm,     0 }, | 
 |     { X86::CMOVG64rr,       X86::CMOVG64rm,     0 }, | 
 |     { X86::CMOVGE16rr,      X86::CMOVGE16rm,    0 }, | 
 |     { X86::CMOVGE32rr,      X86::CMOVGE32rm,    0 }, | 
 |     { X86::CMOVGE64rr,      X86::CMOVGE64rm,    0 }, | 
 |     { X86::CMOVL16rr,       X86::CMOVL16rm,     0 }, | 
 |     { X86::CMOVL32rr,       X86::CMOVL32rm,     0 }, | 
 |     { X86::CMOVL64rr,       X86::CMOVL64rm,     0 }, | 
 |     { X86::CMOVLE16rr,      X86::CMOVLE16rm,    0 }, | 
 |     { X86::CMOVLE32rr,      X86::CMOVLE32rm,    0 }, | 
 |     { X86::CMOVLE64rr,      X86::CMOVLE64rm,    0 }, | 
 |     { X86::CMOVNE16rr,      X86::CMOVNE16rm,    0 }, | 
 |     { X86::CMOVNE32rr,      X86::CMOVNE32rm,    0 }, | 
 |     { X86::CMOVNE64rr,      X86::CMOVNE64rm,    0 }, | 
 |     { X86::CMOVNO16rr,      X86::CMOVNO16rm,    0 }, | 
 |     { X86::CMOVNO32rr,      X86::CMOVNO32rm,    0 }, | 
 |     { X86::CMOVNO64rr,      X86::CMOVNO64rm,    0 }, | 
 |     { X86::CMOVNP16rr,      X86::CMOVNP16rm,    0 }, | 
 |     { X86::CMOVNP32rr,      X86::CMOVNP32rm,    0 }, | 
 |     { X86::CMOVNP64rr,      X86::CMOVNP64rm,    0 }, | 
 |     { X86::CMOVNS16rr,      X86::CMOVNS16rm,    0 }, | 
 |     { X86::CMOVNS32rr,      X86::CMOVNS32rm,    0 }, | 
 |     { X86::CMOVNS64rr,      X86::CMOVNS64rm,    0 }, | 
 |     { X86::CMOVO16rr,       X86::CMOVO16rm,     0 }, | 
 |     { X86::CMOVO32rr,       X86::CMOVO32rm,     0 }, | 
 |     { X86::CMOVO64rr,       X86::CMOVO64rm,     0 }, | 
 |     { X86::CMOVP16rr,       X86::CMOVP16rm,     0 }, | 
 |     { X86::CMOVP32rr,       X86::CMOVP32rm,     0 }, | 
 |     { X86::CMOVP64rr,       X86::CMOVP64rm,     0 }, | 
 |     { X86::CMOVS16rr,       X86::CMOVS16rm,     0 }, | 
 |     { X86::CMOVS32rr,       X86::CMOVS32rm,     0 }, | 
 |     { X86::CMOVS64rr,       X86::CMOVS64rm,     0 }, | 
 |     { X86::CMPPDrri,        X86::CMPPDrmi,      TB_ALIGN_16 }, | 
 |     { X86::CMPPSrri,        X86::CMPPSrmi,      TB_ALIGN_16 }, | 
 |     { X86::CMPSDrr,         X86::CMPSDrm,       0 }, | 
 |     { X86::CMPSSrr,         X86::CMPSSrm,       0 }, | 
 |     { X86::DIVPDrr,         X86::DIVPDrm,       TB_ALIGN_16 }, | 
 |     { X86::DIVPSrr,         X86::DIVPSrm,       TB_ALIGN_16 }, | 
 |     { X86::DIVSDrr,         X86::DIVSDrm,       0 }, | 
 |     { X86::DIVSSrr,         X86::DIVSSrm,       0 }, | 
 |     { X86::FsANDNPDrr,      X86::FsANDNPDrm,    TB_ALIGN_16 }, | 
 |     { X86::FsANDNPSrr,      X86::FsANDNPSrm,    TB_ALIGN_16 }, | 
 |     { X86::FsANDPDrr,       X86::FsANDPDrm,     TB_ALIGN_16 }, | 
 |     { X86::FsANDPSrr,       X86::FsANDPSrm,     TB_ALIGN_16 }, | 
 |     { X86::FsORPDrr,        X86::FsORPDrm,      TB_ALIGN_16 }, | 
 |     { X86::FsORPSrr,        X86::FsORPSrm,      TB_ALIGN_16 }, | 
 |     { X86::FsXORPDrr,       X86::FsXORPDrm,     TB_ALIGN_16 }, | 
 |     { X86::FsXORPSrr,       X86::FsXORPSrm,     TB_ALIGN_16 }, | 
 |     { X86::HADDPDrr,        X86::HADDPDrm,      TB_ALIGN_16 }, | 
 |     { X86::HADDPSrr,        X86::HADDPSrm,      TB_ALIGN_16 }, | 
 |     { X86::HSUBPDrr,        X86::HSUBPDrm,      TB_ALIGN_16 }, | 
 |     { X86::HSUBPSrr,        X86::HSUBPSrm,      TB_ALIGN_16 }, | 
 |     { X86::IMUL16rr,        X86::IMUL16rm,      0 }, | 
 |     { X86::IMUL32rr,        X86::IMUL32rm,      0 }, | 
 |     { X86::IMUL64rr,        X86::IMUL64rm,      0 }, | 
 |     { X86::Int_CMPSDrr,     X86::Int_CMPSDrm,   0 }, | 
 |     { X86::Int_CMPSSrr,     X86::Int_CMPSSrm,   0 }, | 
 |     { X86::MAXPDrr,         X86::MAXPDrm,       TB_ALIGN_16 }, | 
 |     { X86::MAXPDrr_Int,     X86::MAXPDrm_Int,   TB_ALIGN_16 }, | 
 |     { X86::MAXPSrr,         X86::MAXPSrm,       TB_ALIGN_16 }, | 
 |     { X86::MAXPSrr_Int,     X86::MAXPSrm_Int,   TB_ALIGN_16 }, | 
 |     { X86::MAXSDrr,         X86::MAXSDrm,       0 }, | 
 |     { X86::MAXSDrr_Int,     X86::MAXSDrm_Int,   0 }, | 
 |     { X86::MAXSSrr,         X86::MAXSSrm,       0 }, | 
 |     { X86::MAXSSrr_Int,     X86::MAXSSrm_Int,   0 }, | 
 |     { X86::MINPDrr,         X86::MINPDrm,       TB_ALIGN_16 }, | 
 |     { X86::MINPDrr_Int,     X86::MINPDrm_Int,   TB_ALIGN_16 }, | 
 |     { X86::MINPSrr,         X86::MINPSrm,       TB_ALIGN_16 }, | 
 |     { X86::MINPSrr_Int,     X86::MINPSrm_Int,   TB_ALIGN_16 }, | 
 |     { X86::MINSDrr,         X86::MINSDrm,       0 }, | 
 |     { X86::MINSDrr_Int,     X86::MINSDrm_Int,   0 }, | 
 |     { X86::MINSSrr,         X86::MINSSrm,       0 }, | 
 |     { X86::MINSSrr_Int,     X86::MINSSrm_Int,   0 }, | 
 |     { X86::MULPDrr,         X86::MULPDrm,       TB_ALIGN_16 }, | 
 |     { X86::MULPSrr,         X86::MULPSrm,       TB_ALIGN_16 }, | 
 |     { X86::MULSDrr,         X86::MULSDrm,       0 }, | 
 |     { X86::MULSSrr,         X86::MULSSrm,       0 }, | 
 |     { X86::OR16rr,          X86::OR16rm,        0 }, | 
 |     { X86::OR32rr,          X86::OR32rm,        0 }, | 
 |     { X86::OR64rr,          X86::OR64rm,        0 }, | 
 |     { X86::OR8rr,           X86::OR8rm,         0 }, | 
 |     { X86::ORPDrr,          X86::ORPDrm,        TB_ALIGN_16 }, | 
 |     { X86::ORPSrr,          X86::ORPSrm,        TB_ALIGN_16 }, | 
 |     { X86::PACKSSDWrr,      X86::PACKSSDWrm,    TB_ALIGN_16 }, | 
 |     { X86::PACKSSWBrr,      X86::PACKSSWBrm,    TB_ALIGN_16 }, | 
 |     { X86::PACKUSWBrr,      X86::PACKUSWBrm,    TB_ALIGN_16 }, | 
 |     { X86::PADDBrr,         X86::PADDBrm,       TB_ALIGN_16 }, | 
 |     { X86::PADDDrr,         X86::PADDDrm,       TB_ALIGN_16 }, | 
 |     { X86::PADDQrr,         X86::PADDQrm,       TB_ALIGN_16 }, | 
 |     { X86::PADDSBrr,        X86::PADDSBrm,      TB_ALIGN_16 }, | 
 |     { X86::PADDSWrr,        X86::PADDSWrm,      TB_ALIGN_16 }, | 
 |     { X86::PADDWrr,         X86::PADDWrm,       TB_ALIGN_16 }, | 
 |     { X86::PANDNrr,         X86::PANDNrm,       TB_ALIGN_16 }, | 
 |     { X86::PANDrr,          X86::PANDrm,        TB_ALIGN_16 }, | 
 |     { X86::PAVGBrr,         X86::PAVGBrm,       TB_ALIGN_16 }, | 
 |     { X86::PAVGWrr,         X86::PAVGWrm,       TB_ALIGN_16 }, | 
 |     { X86::PCMPEQBrr,       X86::PCMPEQBrm,     TB_ALIGN_16 }, | 
 |     { X86::PCMPEQDrr,       X86::PCMPEQDrm,     TB_ALIGN_16 }, | 
 |     { X86::PCMPEQWrr,       X86::PCMPEQWrm,     TB_ALIGN_16 }, | 
 |     { X86::PCMPGTBrr,       X86::PCMPGTBrm,     TB_ALIGN_16 }, | 
 |     { X86::PCMPGTDrr,       X86::PCMPGTDrm,     TB_ALIGN_16 }, | 
 |     { X86::PCMPGTWrr,       X86::PCMPGTWrm,     TB_ALIGN_16 }, | 
 |     { X86::PINSRWrri,       X86::PINSRWrmi,     TB_ALIGN_16 }, | 
 |     { X86::PMADDWDrr,       X86::PMADDWDrm,     TB_ALIGN_16 }, | 
 |     { X86::PMAXSWrr,        X86::PMAXSWrm,      TB_ALIGN_16 }, | 
 |     { X86::PMAXUBrr,        X86::PMAXUBrm,      TB_ALIGN_16 }, | 
 |     { X86::PMINSWrr,        X86::PMINSWrm,      TB_ALIGN_16 }, | 
 |     { X86::PMINUBrr,        X86::PMINUBrm,      TB_ALIGN_16 }, | 
 |     { X86::PMULDQrr,        X86::PMULDQrm,      TB_ALIGN_16 }, | 
 |     { X86::PMULHUWrr,       X86::PMULHUWrm,     TB_ALIGN_16 }, | 
 |     { X86::PMULHWrr,        X86::PMULHWrm,      TB_ALIGN_16 }, | 
 |     { X86::PMULLDrr,        X86::PMULLDrm,      TB_ALIGN_16 }, | 
 |     { X86::PMULLWrr,        X86::PMULLWrm,      TB_ALIGN_16 }, | 
 |     { X86::PMULUDQrr,       X86::PMULUDQrm,     TB_ALIGN_16 }, | 
 |     { X86::PORrr,           X86::PORrm,         TB_ALIGN_16 }, | 
 |     { X86::PSADBWrr,        X86::PSADBWrm,      TB_ALIGN_16 }, | 
 |     { X86::PSLLDrr,         X86::PSLLDrm,       TB_ALIGN_16 }, | 
 |     { X86::PSLLQrr,         X86::PSLLQrm,       TB_ALIGN_16 }, | 
 |     { X86::PSLLWrr,         X86::PSLLWrm,       TB_ALIGN_16 }, | 
 |     { X86::PSRADrr,         X86::PSRADrm,       TB_ALIGN_16 }, | 
 |     { X86::PSRAWrr,         X86::PSRAWrm,       TB_ALIGN_16 }, | 
 |     { X86::PSRLDrr,         X86::PSRLDrm,       TB_ALIGN_16 }, | 
 |     { X86::PSRLQrr,         X86::PSRLQrm,       TB_ALIGN_16 }, | 
 |     { X86::PSRLWrr,         X86::PSRLWrm,       TB_ALIGN_16 }, | 
 |     { X86::PSUBBrr,         X86::PSUBBrm,       TB_ALIGN_16 }, | 
 |     { X86::PSUBDrr,         X86::PSUBDrm,       TB_ALIGN_16 }, | 
 |     { X86::PSUBSBrr,        X86::PSUBSBrm,      TB_ALIGN_16 }, | 
 |     { X86::PSUBSWrr,        X86::PSUBSWrm,      TB_ALIGN_16 }, | 
 |     { X86::PSUBWrr,         X86::PSUBWrm,       TB_ALIGN_16 }, | 
 |     { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm,   TB_ALIGN_16 }, | 
 |     { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm,   TB_ALIGN_16 }, | 
 |     { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm,  TB_ALIGN_16 }, | 
 |     { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm,   TB_ALIGN_16 }, | 
 |     { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm,   TB_ALIGN_16 }, | 
 |     { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm,   TB_ALIGN_16 }, | 
 |     { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm,  TB_ALIGN_16 }, | 
 |     { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm,   TB_ALIGN_16 }, | 
 |     { X86::PXORrr,          X86::PXORrm,        TB_ALIGN_16 }, | 
 |     { X86::SBB32rr,         X86::SBB32rm,       0 }, | 
 |     { X86::SBB64rr,         X86::SBB64rm,       0 }, | 
 |     { X86::SHUFPDrri,       X86::SHUFPDrmi,     TB_ALIGN_16 }, | 
 |     { X86::SHUFPSrri,       X86::SHUFPSrmi,     TB_ALIGN_16 }, | 
 |     { X86::SUB16rr,         X86::SUB16rm,       0 }, | 
 |     { X86::SUB32rr,         X86::SUB32rm,       0 }, | 
 |     { X86::SUB64rr,         X86::SUB64rm,       0 }, | 
 |     { X86::SUB8rr,          X86::SUB8rm,        0 }, | 
 |     { X86::SUBPDrr,         X86::SUBPDrm,       TB_ALIGN_16 }, | 
 |     { X86::SUBPSrr,         X86::SUBPSrm,       TB_ALIGN_16 }, | 
 |     { X86::SUBSDrr,         X86::SUBSDrm,       0 }, | 
 |     { X86::SUBSSrr,         X86::SUBSSrm,       0 }, | 
 |     // FIXME: TEST*rr -> swapped operand of TEST*mr. | 
 |     { X86::UNPCKHPDrr,      X86::UNPCKHPDrm,    TB_ALIGN_16 }, | 
 |     { X86::UNPCKHPSrr,      X86::UNPCKHPSrm,    TB_ALIGN_16 }, | 
 |     { X86::UNPCKLPDrr,      X86::UNPCKLPDrm,    TB_ALIGN_16 }, | 
 |     { X86::UNPCKLPSrr,      X86::UNPCKLPSrm,    TB_ALIGN_16 }, | 
 |     { X86::XOR16rr,         X86::XOR16rm,       0 }, | 
 |     { X86::XOR32rr,         X86::XOR32rm,       0 }, | 
 |     { X86::XOR64rr,         X86::XOR64rm,       0 }, | 
 |     { X86::XOR8rr,          X86::XOR8rm,        0 }, | 
 |     { X86::XORPDrr,         X86::XORPDrm,       TB_ALIGN_16 }, | 
 |     { X86::XORPSrr,         X86::XORPSrm,       TB_ALIGN_16 }, | 
 |     // AVX 128-bit versions of foldable instructions | 
 |     { X86::VCVTSD2SSrr,       X86::VCVTSD2SSrm,        0 }, | 
 |     { X86::Int_VCVTSD2SSrr,   X86::Int_VCVTSD2SSrm,    0 }, | 
 |     { X86::VCVTSI2SD64rr,     X86::VCVTSI2SD64rm,      0 }, | 
 |     { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm,  0 }, | 
 |     { X86::VCVTSI2SDrr,       X86::VCVTSI2SDrm,        0 }, | 
 |     { X86::Int_VCVTSI2SDrr,   X86::Int_VCVTSI2SDrm,    0 }, | 
 |     { X86::VCVTSI2SS64rr,     X86::VCVTSI2SS64rm,      0 }, | 
 |     { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm,  0 }, | 
 |     { X86::VCVTSI2SSrr,       X86::VCVTSI2SSrm,        0 }, | 
 |     { X86::Int_VCVTSI2SSrr,   X86::Int_VCVTSI2SSrm,    0 }, | 
 |     { X86::VCVTSS2SDrr,       X86::VCVTSS2SDrm,        0 }, | 
 |     { X86::Int_VCVTSS2SDrr,   X86::Int_VCVTSS2SDrm,    0 }, | 
 |     { X86::VCVTTSD2SI64rr,    X86::VCVTTSD2SI64rm,     0 }, | 
 |     { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm, 0 }, | 
 |     { X86::VCVTTSD2SIrr,      X86::VCVTTSD2SIrm,       0 }, | 
 |     { X86::Int_VCVTTSD2SIrr,  X86::Int_VCVTTSD2SIrm,   0 }, | 
 |     { X86::VCVTTSS2SI64rr,    X86::VCVTTSS2SI64rm,     0 }, | 
 |     { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm, 0 }, | 
 |     { X86::VCVTTSS2SIrr,      X86::VCVTTSS2SIrm,       0 }, | 
 |     { X86::Int_VCVTTSS2SIrr,  X86::Int_VCVTTSS2SIrm,   0 }, | 
 |     { X86::VCVTSD2SI64rr,     X86::VCVTSD2SI64rm,      0 }, | 
 |     { X86::VCVTSD2SIrr,       X86::VCVTSD2SIrm,        0 }, | 
 |     { X86::VCVTTPD2DQrr,      X86::VCVTTPD2DQrm,       TB_ALIGN_16 }, | 
 |     { X86::VCVTTPS2DQrr,      X86::VCVTTPS2DQrm,       TB_ALIGN_16 }, | 
 |     { X86::VRSQRTSSr,         X86::VRSQRTSSm,          0 }, | 
 |     { X86::VSQRTSDr,          X86::VSQRTSDm,           0 }, | 
 |     { X86::VSQRTSSr,          X86::VSQRTSSm,           0 }, | 
 |     { X86::VADDPDrr,          X86::VADDPDrm,           TB_ALIGN_16 }, | 
 |     { X86::VADDPSrr,          X86::VADDPSrm,           TB_ALIGN_16 }, | 
 |     { X86::VADDSDrr,          X86::VADDSDrm,           0 }, | 
 |     { X86::VADDSSrr,          X86::VADDSSrm,           0 }, | 
 |     { X86::VADDSUBPDrr,       X86::VADDSUBPDrm,        TB_ALIGN_16 }, | 
 |     { X86::VADDSUBPSrr,       X86::VADDSUBPSrm,        TB_ALIGN_16 }, | 
 |     { X86::VANDNPDrr,         X86::VANDNPDrm,          TB_ALIGN_16 }, | 
 |     { X86::VANDNPSrr,         X86::VANDNPSrm,          TB_ALIGN_16 }, | 
 |     { X86::VANDPDrr,          X86::VANDPDrm,           TB_ALIGN_16 }, | 
 |     { X86::VANDPSrr,          X86::VANDPSrm,           TB_ALIGN_16 }, | 
 |     { X86::VCMPPDrri,         X86::VCMPPDrmi,          TB_ALIGN_16 }, | 
 |     { X86::VCMPPSrri,         X86::VCMPPSrmi,          TB_ALIGN_16 }, | 
 |     { X86::VCMPSDrr,          X86::VCMPSDrm,           0 }, | 
 |     { X86::VCMPSSrr,          X86::VCMPSSrm,           0 }, | 
 |     { X86::VDIVPDrr,          X86::VDIVPDrm,           TB_ALIGN_16 }, | 
 |     { X86::VDIVPSrr,          X86::VDIVPSrm,           TB_ALIGN_16 }, | 
 |     { X86::VDIVSDrr,          X86::VDIVSDrm,           0 }, | 
 |     { X86::VDIVSSrr,          X86::VDIVSSrm,           0 }, | 
 |     { X86::VFsANDNPDrr,       X86::VFsANDNPDrm,        TB_ALIGN_16 }, | 
 |     { X86::VFsANDNPSrr,       X86::VFsANDNPSrm,        TB_ALIGN_16 }, | 
 |     { X86::VFsANDPDrr,        X86::VFsANDPDrm,         TB_ALIGN_16 }, | 
 |     { X86::VFsANDPSrr,        X86::VFsANDPSrm,         TB_ALIGN_16 }, | 
 |     { X86::VFsORPDrr,         X86::VFsORPDrm,          TB_ALIGN_16 }, | 
 |     { X86::VFsORPSrr,         X86::VFsORPSrm,          TB_ALIGN_16 }, | 
 |     { X86::VFsXORPDrr,        X86::VFsXORPDrm,         TB_ALIGN_16 }, | 
 |     { X86::VFsXORPSrr,        X86::VFsXORPSrm,         TB_ALIGN_16 }, | 
 |     { X86::VHADDPDrr,         X86::VHADDPDrm,          TB_ALIGN_16 }, | 
 |     { X86::VHADDPSrr,         X86::VHADDPSrm,          TB_ALIGN_16 }, | 
 |     { X86::VHSUBPDrr,         X86::VHSUBPDrm,          TB_ALIGN_16 }, | 
 |     { X86::VHSUBPSrr,         X86::VHSUBPSrm,          TB_ALIGN_16 }, | 
 |     { X86::Int_VCMPSDrr,      X86::Int_VCMPSDrm,       0 }, | 
 |     { X86::Int_VCMPSSrr,      X86::Int_VCMPSSrm,       0 }, | 
 |     { X86::VMAXPDrr,          X86::VMAXPDrm,           TB_ALIGN_16 }, | 
 |     { X86::VMAXPDrr_Int,      X86::VMAXPDrm_Int,       TB_ALIGN_16 }, | 
 |     { X86::VMAXPSrr,          X86::VMAXPSrm,           TB_ALIGN_16 }, | 
 |     { X86::VMAXPSrr_Int,      X86::VMAXPSrm_Int,       TB_ALIGN_16 }, | 
 |     { X86::VMAXSDrr,          X86::VMAXSDrm,           0 }, | 
 |     { X86::VMAXSDrr_Int,      X86::VMAXSDrm_Int,       0 }, | 
 |     { X86::VMAXSSrr,          X86::VMAXSSrm,           0 }, | 
 |     { X86::VMAXSSrr_Int,      X86::VMAXSSrm_Int,       0 }, | 
 |     { X86::VMINPDrr,          X86::VMINPDrm,           TB_ALIGN_16 }, | 
 |     { X86::VMINPDrr_Int,      X86::VMINPDrm_Int,       TB_ALIGN_16 }, | 
 |     { X86::VMINPSrr,          X86::VMINPSrm,           TB_ALIGN_16 }, | 
 |     { X86::VMINPSrr_Int,      X86::VMINPSrm_Int,       TB_ALIGN_16 }, | 
 |     { X86::VMINSDrr,          X86::VMINSDrm,           0 }, | 
 |     { X86::VMINSDrr_Int,      X86::VMINSDrm_Int,       0 }, | 
 |     { X86::VMINSSrr,          X86::VMINSSrm,           0 }, | 
 |     { X86::VMINSSrr_Int,      X86::VMINSSrm_Int,       0 }, | 
 |     { X86::VMULPDrr,          X86::VMULPDrm,           TB_ALIGN_16 }, | 
 |     { X86::VMULPSrr,          X86::VMULPSrm,           TB_ALIGN_16 }, | 
 |     { X86::VMULSDrr,          X86::VMULSDrm,           0 }, | 
 |     { X86::VMULSSrr,          X86::VMULSSrm,           0 }, | 
 |     { X86::VORPDrr,           X86::VORPDrm,            TB_ALIGN_16 }, | 
 |     { X86::VORPSrr,           X86::VORPSrm,            TB_ALIGN_16 }, | 
 |     { X86::VPACKSSDWrr,       X86::VPACKSSDWrm,        TB_ALIGN_16 }, | 
 |     { X86::VPACKSSWBrr,       X86::VPACKSSWBrm,        TB_ALIGN_16 }, | 
 |     { X86::VPACKUSWBrr,       X86::VPACKUSWBrm,        TB_ALIGN_16 }, | 
 |     { X86::VPADDBrr,          X86::VPADDBrm,           TB_ALIGN_16 }, | 
 |     { X86::VPADDDrr,          X86::VPADDDrm,           TB_ALIGN_16 }, | 
 |     { X86::VPADDQrr,          X86::VPADDQrm,           TB_ALIGN_16 }, | 
 |     { X86::VPADDSBrr,         X86::VPADDSBrm,          TB_ALIGN_16 }, | 
 |     { X86::VPADDSWrr,         X86::VPADDSWrm,          TB_ALIGN_16 }, | 
 |     { X86::VPADDWrr,          X86::VPADDWrm,           TB_ALIGN_16 }, | 
 |     { X86::VPANDNrr,          X86::VPANDNrm,           TB_ALIGN_16 }, | 
 |     { X86::VPANDrr,           X86::VPANDrm,            TB_ALIGN_16 }, | 
 |     { X86::VPCMPEQBrr,        X86::VPCMPEQBrm,         TB_ALIGN_16 }, | 
 |     { X86::VPCMPEQDrr,        X86::VPCMPEQDrm,         TB_ALIGN_16 }, | 
 |     { X86::VPCMPEQWrr,        X86::VPCMPEQWrm,         TB_ALIGN_16 }, | 
 |     { X86::VPCMPGTBrr,        X86::VPCMPGTBrm,         TB_ALIGN_16 }, | 
 |     { X86::VPCMPGTDrr,        X86::VPCMPGTDrm,         TB_ALIGN_16 }, | 
 |     { X86::VPCMPGTWrr,        X86::VPCMPGTWrm,         TB_ALIGN_16 }, | 
 |     { X86::VPINSRWrri,        X86::VPINSRWrmi,         TB_ALIGN_16 }, | 
 |     { X86::VPMADDWDrr,        X86::VPMADDWDrm,         TB_ALIGN_16 }, | 
 |     { X86::VPMAXSWrr,         X86::VPMAXSWrm,          TB_ALIGN_16 }, | 
 |     { X86::VPMAXUBrr,         X86::VPMAXUBrm,          TB_ALIGN_16 }, | 
 |     { X86::VPMINSWrr,         X86::VPMINSWrm,          TB_ALIGN_16 }, | 
 |     { X86::VPMINUBrr,         X86::VPMINUBrm,          TB_ALIGN_16 }, | 
 |     { X86::VPMULDQrr,         X86::VPMULDQrm,          TB_ALIGN_16 }, | 
 |     { X86::VPMULHUWrr,        X86::VPMULHUWrm,         TB_ALIGN_16 }, | 
 |     { X86::VPMULHWrr,         X86::VPMULHWrm,          TB_ALIGN_16 }, | 
 |     { X86::VPMULLDrr,         X86::VPMULLDrm,          TB_ALIGN_16 }, | 
 |     { X86::VPMULLWrr,         X86::VPMULLWrm,          TB_ALIGN_16 }, | 
 |     { X86::VPMULUDQrr,        X86::VPMULUDQrm,         TB_ALIGN_16 }, | 
 |     { X86::VPORrr,            X86::VPORrm,             TB_ALIGN_16 }, | 
 |     { X86::VPSADBWrr,         X86::VPSADBWrm,          TB_ALIGN_16 }, | 
 |     { X86::VPSLLDrr,          X86::VPSLLDrm,           TB_ALIGN_16 }, | 
 |     { X86::VPSLLQrr,          X86::VPSLLQrm,           TB_ALIGN_16 }, | 
 |     { X86::VPSLLWrr,          X86::VPSLLWrm,           TB_ALIGN_16 }, | 
 |     { X86::VPSRADrr,          X86::VPSRADrm,           TB_ALIGN_16 }, | 
 |     { X86::VPSRAWrr,          X86::VPSRAWrm,           TB_ALIGN_16 }, | 
 |     { X86::VPSRLDrr,          X86::VPSRLDrm,           TB_ALIGN_16 }, | 
 |     { X86::VPSRLQrr,          X86::VPSRLQrm,           TB_ALIGN_16 }, | 
 |     { X86::VPSRLWrr,          X86::VPSRLWrm,           TB_ALIGN_16 }, | 
 |     { X86::VPSUBBrr,          X86::VPSUBBrm,           TB_ALIGN_16 }, | 
 |     { X86::VPSUBDrr,          X86::VPSUBDrm,           TB_ALIGN_16 }, | 
 |     { X86::VPSUBSBrr,         X86::VPSUBSBrm,          TB_ALIGN_16 }, | 
 |     { X86::VPSUBSWrr,         X86::VPSUBSWrm,          TB_ALIGN_16 }, | 
 |     { X86::VPSUBWrr,          X86::VPSUBWrm,           TB_ALIGN_16 }, | 
 |     { X86::VPUNPCKHBWrr,      X86::VPUNPCKHBWrm,       TB_ALIGN_16 }, | 
 |     { X86::VPUNPCKHDQrr,      X86::VPUNPCKHDQrm,       TB_ALIGN_16 }, | 
 |     { X86::VPUNPCKHQDQrr,     X86::VPUNPCKHQDQrm,      TB_ALIGN_16 }, | 
 |     { X86::VPUNPCKHWDrr,      X86::VPUNPCKHWDrm,       TB_ALIGN_16 }, | 
 |     { X86::VPUNPCKLBWrr,      X86::VPUNPCKLBWrm,       TB_ALIGN_16 }, | 
 |     { X86::VPUNPCKLDQrr,      X86::VPUNPCKLDQrm,       TB_ALIGN_16 }, | 
 |     { X86::VPUNPCKLQDQrr,     X86::VPUNPCKLQDQrm,      TB_ALIGN_16 }, | 
 |     { X86::VPUNPCKLWDrr,      X86::VPUNPCKLWDrm,       TB_ALIGN_16 }, | 
 |     { X86::VPXORrr,           X86::VPXORrm,            TB_ALIGN_16 }, | 
 |     { X86::VSHUFPDrri,        X86::VSHUFPDrmi,         TB_ALIGN_16 }, | 
 |     { X86::VSHUFPSrri,        X86::VSHUFPSrmi,         TB_ALIGN_16 }, | 
 |     { X86::VSUBPDrr,          X86::VSUBPDrm,           TB_ALIGN_16 }, | 
 |     { X86::VSUBPSrr,          X86::VSUBPSrm,           TB_ALIGN_16 }, | 
 |     { X86::VSUBSDrr,          X86::VSUBSDrm,           0 }, | 
 |     { X86::VSUBSSrr,          X86::VSUBSSrm,           0 }, | 
 |     { X86::VUNPCKHPDrr,       X86::VUNPCKHPDrm,        TB_ALIGN_16 }, | 
 |     { X86::VUNPCKHPSrr,       X86::VUNPCKHPSrm,        TB_ALIGN_16 }, | 
 |     { X86::VUNPCKLPDrr,       X86::VUNPCKLPDrm,        TB_ALIGN_16 }, | 
 |     { X86::VUNPCKLPSrr,       X86::VUNPCKLPSrm,        TB_ALIGN_16 }, | 
 |     { X86::VXORPDrr,          X86::VXORPDrm,           TB_ALIGN_16 }, | 
 |     { X86::VXORPSrr,          X86::VXORPSrm,           TB_ALIGN_16 } | 
 |     // FIXME: add AVX 256-bit foldable instructions | 
 |   }; | 
 |  | 
 |   for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) { | 
 |     unsigned RegOp = OpTbl2[i][0]; | 
 |     unsigned MemOp = OpTbl2[i][1]; | 
 |     unsigned Flags = OpTbl2[i][2]; | 
 |     AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable, | 
 |                   RegOp, MemOp, | 
 |                   // Index 2, folded load | 
 |                   Flags | TB_INDEX_2 | TB_FOLDED_LOAD); | 
 |   } | 
 | } | 
 |  | 
 | void | 
 | X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable, | 
 |                             MemOp2RegOpTableType &M2RTable, | 
 |                             unsigned RegOp, unsigned MemOp, unsigned Flags) { | 
 |     if ((Flags & TB_NO_FORWARD) == 0) { | 
 |       assert(!R2MTable.count(RegOp) && "Duplicate entry!"); | 
 |       R2MTable[RegOp] = std::make_pair(MemOp, Flags); | 
 |     } | 
 |     if ((Flags & TB_NO_REVERSE) == 0) { | 
 |       assert(!M2RTable.count(MemOp) && | 
 |            "Duplicated entries in unfolding maps?"); | 
 |       M2RTable[MemOp] = std::make_pair(RegOp, Flags); | 
 |     } | 
 | } | 
 |  | 
 | bool | 
 | X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, | 
 |                                     unsigned &SrcReg, unsigned &DstReg, | 
 |                                     unsigned &SubIdx) const { | 
 |   switch (MI.getOpcode()) { | 
 |   default: break; | 
 |   case X86::MOVSX16rr8: | 
 |   case X86::MOVZX16rr8: | 
 |   case X86::MOVSX32rr8: | 
 |   case X86::MOVZX32rr8: | 
 |   case X86::MOVSX64rr8: | 
 |   case X86::MOVZX64rr8: | 
 |     if (!TM.getSubtarget<X86Subtarget>().is64Bit()) | 
 |       // It's not always legal to reference the low 8-bit of the larger | 
 |       // register in 32-bit mode. | 
 |       return false; | 
 |   case X86::MOVSX32rr16: | 
 |   case X86::MOVZX32rr16: | 
 |   case X86::MOVSX64rr16: | 
 |   case X86::MOVZX64rr16: | 
 |   case X86::MOVSX64rr32: | 
 |   case X86::MOVZX64rr32: { | 
 |     if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) | 
 |       // Be conservative. | 
 |       return false; | 
 |     SrcReg = MI.getOperand(1).getReg(); | 
 |     DstReg = MI.getOperand(0).getReg(); | 
 |     switch (MI.getOpcode()) { | 
 |     default: | 
 |       llvm_unreachable(0); | 
 |       break; | 
 |     case X86::MOVSX16rr8: | 
 |     case X86::MOVZX16rr8: | 
 |     case X86::MOVSX32rr8: | 
 |     case X86::MOVZX32rr8: | 
 |     case X86::MOVSX64rr8: | 
 |     case X86::MOVZX64rr8: | 
 |       SubIdx = X86::sub_8bit; | 
 |       break; | 
 |     case X86::MOVSX32rr16: | 
 |     case X86::MOVZX32rr16: | 
 |     case X86::MOVSX64rr16: | 
 |     case X86::MOVZX64rr16: | 
 |       SubIdx = X86::sub_16bit; | 
 |       break; | 
 |     case X86::MOVSX64rr32: | 
 |     case X86::MOVZX64rr32: | 
 |       SubIdx = X86::sub_32bit; | 
 |       break; | 
 |     } | 
 |     return true; | 
 |   } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// isFrameOperand - Return true and the FrameIndex if the specified | 
 | /// operand and follow operands form a reference to the stack frame. | 
 | bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op, | 
 |                                   int &FrameIndex) const { | 
 |   if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() && | 
 |       MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() && | 
 |       MI->getOperand(Op+1).getImm() == 1 && | 
 |       MI->getOperand(Op+2).getReg() == 0 && | 
 |       MI->getOperand(Op+3).getImm() == 0) { | 
 |     FrameIndex = MI->getOperand(Op).getIndex(); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | static bool isFrameLoadOpcode(int Opcode) { | 
 |   switch (Opcode) { | 
 |   default: break; | 
 |   case X86::MOV8rm: | 
 |   case X86::MOV16rm: | 
 |   case X86::MOV32rm: | 
 |   case X86::MOV64rm: | 
 |   case X86::LD_Fp64m: | 
 |   case X86::MOVSSrm: | 
 |   case X86::MOVSDrm: | 
 |   case X86::MOVAPSrm: | 
 |   case X86::MOVAPDrm: | 
 |   case X86::MOVDQArm: | 
 |   case X86::VMOVSSrm: | 
 |   case X86::VMOVSDrm: | 
 |   case X86::VMOVAPSrm: | 
 |   case X86::VMOVAPDrm: | 
 |   case X86::VMOVDQArm: | 
 |   case X86::VMOVAPSYrm: | 
 |   case X86::VMOVAPDYrm: | 
 |   case X86::VMOVDQAYrm: | 
 |   case X86::MMX_MOVD64rm: | 
 |   case X86::MMX_MOVQ64rm: | 
 |     return true; | 
 |     break; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | static bool isFrameStoreOpcode(int Opcode) { | 
 |   switch (Opcode) { | 
 |   default: break; | 
 |   case X86::MOV8mr: | 
 |   case X86::MOV16mr: | 
 |   case X86::MOV32mr: | 
 |   case X86::MOV64mr: | 
 |   case X86::ST_FpP64m: | 
 |   case X86::MOVSSmr: | 
 |   case X86::MOVSDmr: | 
 |   case X86::MOVAPSmr: | 
 |   case X86::MOVAPDmr: | 
 |   case X86::MOVDQAmr: | 
 |   case X86::VMOVSSmr: | 
 |   case X86::VMOVSDmr: | 
 |   case X86::VMOVAPSmr: | 
 |   case X86::VMOVAPDmr: | 
 |   case X86::VMOVDQAmr: | 
 |   case X86::VMOVAPSYmr: | 
 |   case X86::VMOVAPDYmr: | 
 |   case X86::VMOVDQAYmr: | 
 |   case X86::MMX_MOVD64mr: | 
 |   case X86::MMX_MOVQ64mr: | 
 |   case X86::MMX_MOVNTQmr: | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI, | 
 |                                            int &FrameIndex) const { | 
 |   if (isFrameLoadOpcode(MI->getOpcode())) | 
 |     if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) | 
 |       return MI->getOperand(0).getReg(); | 
 |   return 0; | 
 | } | 
 |  | 
 | unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI, | 
 |                                                  int &FrameIndex) const { | 
 |   if (isFrameLoadOpcode(MI->getOpcode())) { | 
 |     unsigned Reg; | 
 |     if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) | 
 |       return Reg; | 
 |     // Check for post-frame index elimination operations | 
 |     const MachineMemOperand *Dummy; | 
 |     return hasLoadFromStackSlot(MI, Dummy, FrameIndex); | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI, | 
 |                                           int &FrameIndex) const { | 
 |   if (isFrameStoreOpcode(MI->getOpcode())) | 
 |     if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 && | 
 |         isFrameOperand(MI, 0, FrameIndex)) | 
 |       return MI->getOperand(X86::AddrNumOperands).getReg(); | 
 |   return 0; | 
 | } | 
 |  | 
 | unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI, | 
 |                                                 int &FrameIndex) const { | 
 |   if (isFrameStoreOpcode(MI->getOpcode())) { | 
 |     unsigned Reg; | 
 |     if ((Reg = isStoreToStackSlot(MI, FrameIndex))) | 
 |       return Reg; | 
 |     // Check for post-frame index elimination operations | 
 |     const MachineMemOperand *Dummy; | 
 |     return hasStoreToStackSlot(MI, Dummy, FrameIndex); | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | /// regIsPICBase - Return true if register is PIC base (i.e.g defined by | 
 | /// X86::MOVPC32r. | 
 | static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) { | 
 |   bool isPICBase = false; | 
 |   for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg), | 
 |          E = MRI.def_end(); I != E; ++I) { | 
 |     MachineInstr *DefMI = I.getOperand().getParent(); | 
 |     if (DefMI->getOpcode() != X86::MOVPC32r) | 
 |       return false; | 
 |     assert(!isPICBase && "More than one PIC base?"); | 
 |     isPICBase = true; | 
 |   } | 
 |   return isPICBase; | 
 | } | 
 |  | 
 | bool | 
 | X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI, | 
 |                                                 AliasAnalysis *AA) const { | 
 |   switch (MI->getOpcode()) { | 
 |   default: break; | 
 |     case X86::MOV8rm: | 
 |     case X86::MOV16rm: | 
 |     case X86::MOV32rm: | 
 |     case X86::MOV64rm: | 
 |     case X86::LD_Fp64m: | 
 |     case X86::MOVSSrm: | 
 |     case X86::MOVSDrm: | 
 |     case X86::MOVAPSrm: | 
 |     case X86::MOVUPSrm: | 
 |     case X86::MOVAPDrm: | 
 |     case X86::MOVDQArm: | 
 |     case X86::VMOVSSrm: | 
 |     case X86::VMOVSDrm: | 
 |     case X86::VMOVAPSrm: | 
 |     case X86::VMOVUPSrm: | 
 |     case X86::VMOVAPDrm: | 
 |     case X86::VMOVDQArm: | 
 |     case X86::VMOVAPSYrm: | 
 |     case X86::VMOVUPSYrm: | 
 |     case X86::VMOVAPDYrm: | 
 |     case X86::VMOVDQAYrm: | 
 |     case X86::MMX_MOVD64rm: | 
 |     case X86::MMX_MOVQ64rm: | 
 |     case X86::FsVMOVAPSrm: | 
 |     case X86::FsVMOVAPDrm: | 
 |     case X86::FsMOVAPSrm: | 
 |     case X86::FsMOVAPDrm: { | 
 |       // Loads from constant pools are trivially rematerializable. | 
 |       if (MI->getOperand(1).isReg() && | 
 |           MI->getOperand(2).isImm() && | 
 |           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 && | 
 |           MI->isInvariantLoad(AA)) { | 
 |         unsigned BaseReg = MI->getOperand(1).getReg(); | 
 |         if (BaseReg == 0 || BaseReg == X86::RIP) | 
 |           return true; | 
 |         // Allow re-materialization of PIC load. | 
 |         if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal()) | 
 |           return false; | 
 |         const MachineFunction &MF = *MI->getParent()->getParent(); | 
 |         const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
 |         bool isPICBase = false; | 
 |         for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg), | 
 |                E = MRI.def_end(); I != E; ++I) { | 
 |           MachineInstr *DefMI = I.getOperand().getParent(); | 
 |           if (DefMI->getOpcode() != X86::MOVPC32r) | 
 |             return false; | 
 |           assert(!isPICBase && "More than one PIC base?"); | 
 |           isPICBase = true; | 
 |         } | 
 |         return isPICBase; | 
 |       } | 
 |       return false; | 
 |     } | 
 |  | 
 |      case X86::LEA32r: | 
 |      case X86::LEA64r: { | 
 |        if (MI->getOperand(2).isImm() && | 
 |            MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 && | 
 |            !MI->getOperand(4).isReg()) { | 
 |          // lea fi#, lea GV, etc. are all rematerializable. | 
 |          if (!MI->getOperand(1).isReg()) | 
 |            return true; | 
 |          unsigned BaseReg = MI->getOperand(1).getReg(); | 
 |          if (BaseReg == 0) | 
 |            return true; | 
 |          // Allow re-materialization of lea PICBase + x. | 
 |          const MachineFunction &MF = *MI->getParent()->getParent(); | 
 |          const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
 |          return regIsPICBase(BaseReg, MRI); | 
 |        } | 
 |        return false; | 
 |      } | 
 |   } | 
 |  | 
 |   // All other instructions marked M_REMATERIALIZABLE are always trivially | 
 |   // rematerializable. | 
 |   return true; | 
 | } | 
 |  | 
 | /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that | 
 | /// would clobber the EFLAGS condition register. Note the result may be | 
 | /// conservative. If it cannot definitely determine the safety after visiting | 
 | /// a few instructions in each direction it assumes it's not safe. | 
 | static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB, | 
 |                                   MachineBasicBlock::iterator I) { | 
 |   MachineBasicBlock::iterator E = MBB.end(); | 
 |  | 
 |   // For compile time consideration, if we are not able to determine the | 
 |   // safety after visiting 4 instructions in each direction, we will assume | 
 |   // it's not safe. | 
 |   MachineBasicBlock::iterator Iter = I; | 
 |   for (unsigned i = 0; Iter != E && i < 4; ++i) { | 
 |     bool SeenDef = false; | 
 |     for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { | 
 |       MachineOperand &MO = Iter->getOperand(j); | 
 |       if (!MO.isReg()) | 
 |         continue; | 
 |       if (MO.getReg() == X86::EFLAGS) { | 
 |         if (MO.isUse()) | 
 |           return false; | 
 |         SeenDef = true; | 
 |       } | 
 |     } | 
 |  | 
 |     if (SeenDef) | 
 |       // This instruction defines EFLAGS, no need to look any further. | 
 |       return true; | 
 |     ++Iter; | 
 |     // Skip over DBG_VALUE. | 
 |     while (Iter != E && Iter->isDebugValue()) | 
 |       ++Iter; | 
 |   } | 
 |  | 
 |   // It is safe to clobber EFLAGS at the end of a block of no successor has it | 
 |   // live in. | 
 |   if (Iter == E) { | 
 |     for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(), | 
 |            SE = MBB.succ_end(); SI != SE; ++SI) | 
 |       if ((*SI)->isLiveIn(X86::EFLAGS)) | 
 |         return false; | 
 |     return true; | 
 |   } | 
 |  | 
 |   MachineBasicBlock::iterator B = MBB.begin(); | 
 |   Iter = I; | 
 |   for (unsigned i = 0; i < 4; ++i) { | 
 |     // If we make it to the beginning of the block, it's safe to clobber | 
 |     // EFLAGS iff EFLAGS is not live-in. | 
 |     if (Iter == B) | 
 |       return !MBB.isLiveIn(X86::EFLAGS); | 
 |  | 
 |     --Iter; | 
 |     // Skip over DBG_VALUE. | 
 |     while (Iter != B && Iter->isDebugValue()) | 
 |       --Iter; | 
 |  | 
 |     bool SawKill = false; | 
 |     for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { | 
 |       MachineOperand &MO = Iter->getOperand(j); | 
 |       if (MO.isReg() && MO.getReg() == X86::EFLAGS) { | 
 |         if (MO.isDef()) return MO.isDead(); | 
 |         if (MO.isKill()) SawKill = true; | 
 |       } | 
 |     } | 
 |  | 
 |     if (SawKill) | 
 |       // This instruction kills EFLAGS and doesn't redefine it, so | 
 |       // there's no need to look further. | 
 |       return true; | 
 |   } | 
 |  | 
 |   // Conservative answer. | 
 |   return false; | 
 | } | 
 |  | 
 | void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, | 
 |                                  MachineBasicBlock::iterator I, | 
 |                                  unsigned DestReg, unsigned SubIdx, | 
 |                                  const MachineInstr *Orig, | 
 |                                  const TargetRegisterInfo &TRI) const { | 
 |   DebugLoc DL = Orig->getDebugLoc(); | 
 |  | 
 |   // MOV32r0 etc. are implemented with xor which clobbers condition code. | 
 |   // Re-materialize them as movri instructions to avoid side effects. | 
 |   bool Clone = true; | 
 |   unsigned Opc = Orig->getOpcode(); | 
 |   switch (Opc) { | 
 |   default: break; | 
 |   case X86::MOV8r0: | 
 |   case X86::MOV16r0: | 
 |   case X86::MOV32r0: | 
 |   case X86::MOV64r0: { | 
 |     if (!isSafeToClobberEFLAGS(MBB, I)) { | 
 |       switch (Opc) { | 
 |       default: break; | 
 |       case X86::MOV8r0:  Opc = X86::MOV8ri;  break; | 
 |       case X86::MOV16r0: Opc = X86::MOV16ri; break; | 
 |       case X86::MOV32r0: Opc = X86::MOV32ri; break; | 
 |       case X86::MOV64r0: Opc = X86::MOV64ri64i32; break; | 
 |       } | 
 |       Clone = false; | 
 |     } | 
 |     break; | 
 |   } | 
 |   } | 
 |  | 
 |   if (Clone) { | 
 |     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); | 
 |     MBB.insert(I, MI); | 
 |   } else { | 
 |     BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0); | 
 |   } | 
 |  | 
 |   MachineInstr *NewMI = prior(I); | 
 |   NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI); | 
 | } | 
 |  | 
 | /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that | 
 | /// is not marked dead. | 
 | static bool hasLiveCondCodeDef(MachineInstr *MI) { | 
 |   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = MI->getOperand(i); | 
 |     if (MO.isReg() && MO.isDef() && | 
 |         MO.getReg() == X86::EFLAGS && !MO.isDead()) { | 
 |       return true; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when | 
 | /// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting | 
 | /// to a 32-bit superregister and then truncating back down to a 16-bit | 
 | /// subregister. | 
 | MachineInstr * | 
 | X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, | 
 |                                            MachineFunction::iterator &MFI, | 
 |                                            MachineBasicBlock::iterator &MBBI, | 
 |                                            LiveVariables *LV) const { | 
 |   MachineInstr *MI = MBBI; | 
 |   unsigned Dest = MI->getOperand(0).getReg(); | 
 |   unsigned Src = MI->getOperand(1).getReg(); | 
 |   bool isDead = MI->getOperand(0).isDead(); | 
 |   bool isKill = MI->getOperand(1).isKill(); | 
 |  | 
 |   unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() | 
 |     ? X86::LEA64_32r : X86::LEA32r; | 
 |   MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo(); | 
 |   unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); | 
 |   unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass); | 
 |  | 
 |   // Build and insert into an implicit UNDEF value. This is OK because | 
 |   // well be shifting and then extracting the lower 16-bits. | 
 |   // This has the potential to cause partial register stall. e.g. | 
 |   //   movw    (%rbp,%rcx,2), %dx | 
 |   //   leal    -65(%rdx), %esi | 
 |   // But testing has shown this *does* help performance in 64-bit mode (at | 
 |   // least on modern x86 machines). | 
 |   BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg); | 
 |   MachineInstr *InsMI = | 
 |     BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) | 
 |     .addReg(leaInReg, RegState::Define, X86::sub_16bit) | 
 |     .addReg(Src, getKillRegState(isKill)); | 
 |  | 
 |   MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(), | 
 |                                     get(Opc), leaOutReg); | 
 |   switch (MIOpc) { | 
 |   default: | 
 |     llvm_unreachable(0); | 
 |     break; | 
 |   case X86::SHL16ri: { | 
 |     unsigned ShAmt = MI->getOperand(2).getImm(); | 
 |     MIB.addReg(0).addImm(1 << ShAmt) | 
 |        .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0); | 
 |     break; | 
 |   } | 
 |   case X86::INC16r: | 
 |   case X86::INC64_16r: | 
 |     addRegOffset(MIB, leaInReg, true, 1); | 
 |     break; | 
 |   case X86::DEC16r: | 
 |   case X86::DEC64_16r: | 
 |     addRegOffset(MIB, leaInReg, true, -1); | 
 |     break; | 
 |   case X86::ADD16ri: | 
 |   case X86::ADD16ri8: | 
 |   case X86::ADD16ri_DB: | 
 |   case X86::ADD16ri8_DB: | 
 |     addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm()); | 
 |     break; | 
 |   case X86::ADD16rr: | 
 |   case X86::ADD16rr_DB: { | 
 |     unsigned Src2 = MI->getOperand(2).getReg(); | 
 |     bool isKill2 = MI->getOperand(2).isKill(); | 
 |     unsigned leaInReg2 = 0; | 
 |     MachineInstr *InsMI2 = 0; | 
 |     if (Src == Src2) { | 
 |       // ADD16rr %reg1028<kill>, %reg1028 | 
 |       // just a single insert_subreg. | 
 |       addRegReg(MIB, leaInReg, true, leaInReg, false); | 
 |     } else { | 
 |       leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); | 
 |       // Build and insert into an implicit UNDEF value. This is OK because | 
 |       // well be shifting and then extracting the lower 16-bits. | 
 |       BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2); | 
 |       InsMI2 = | 
 |         BuildMI(*MFI, MIB, MI->getDebugLoc(), get(TargetOpcode::COPY)) | 
 |         .addReg(leaInReg2, RegState::Define, X86::sub_16bit) | 
 |         .addReg(Src2, getKillRegState(isKill2)); | 
 |       addRegReg(MIB, leaInReg, true, leaInReg2, true); | 
 |     } | 
 |     if (LV && isKill2 && InsMI2) | 
 |       LV->replaceKillInstruction(Src2, MI, InsMI2); | 
 |     break; | 
 |   } | 
 |   } | 
 |  | 
 |   MachineInstr *NewMI = MIB; | 
 |   MachineInstr *ExtMI = | 
 |     BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) | 
 |     .addReg(Dest, RegState::Define | getDeadRegState(isDead)) | 
 |     .addReg(leaOutReg, RegState::Kill, X86::sub_16bit); | 
 |  | 
 |   if (LV) { | 
 |     // Update live variables | 
 |     LV->getVarInfo(leaInReg).Kills.push_back(NewMI); | 
 |     LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI); | 
 |     if (isKill) | 
 |       LV->replaceKillInstruction(Src, MI, InsMI); | 
 |     if (isDead) | 
 |       LV->replaceKillInstruction(Dest, MI, ExtMI); | 
 |   } | 
 |  | 
 |   return ExtMI; | 
 | } | 
 |  | 
 | /// convertToThreeAddress - This method must be implemented by targets that | 
 | /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target | 
 | /// may be able to convert a two-address instruction into a true | 
 | /// three-address instruction on demand.  This allows the X86 target (for | 
 | /// example) to convert ADD and SHL instructions into LEA instructions if they | 
 | /// would require register copies due to two-addressness. | 
 | /// | 
 | /// This method returns a null pointer if the transformation cannot be | 
 | /// performed, otherwise it returns the new instruction. | 
 | /// | 
 | MachineInstr * | 
 | X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, | 
 |                                     MachineBasicBlock::iterator &MBBI, | 
 |                                     LiveVariables *LV) const { | 
 |   MachineInstr *MI = MBBI; | 
 |   MachineFunction &MF = *MI->getParent()->getParent(); | 
 |   // All instructions input are two-addr instructions.  Get the known operands. | 
 |   unsigned Dest = MI->getOperand(0).getReg(); | 
 |   unsigned Src = MI->getOperand(1).getReg(); | 
 |   bool isDead = MI->getOperand(0).isDead(); | 
 |   bool isKill = MI->getOperand(1).isKill(); | 
 |  | 
 |   MachineInstr *NewMI = NULL; | 
 |   // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When | 
 |   // we have better subtarget support, enable the 16-bit LEA generation here. | 
 |   // 16-bit LEA is also slow on Core2. | 
 |   bool DisableLEA16 = true; | 
 |   bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit(); | 
 |  | 
 |   unsigned MIOpc = MI->getOpcode(); | 
 |   switch (MIOpc) { | 
 |   case X86::SHUFPSrri: { | 
 |     assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!"); | 
 |     if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0; | 
 |  | 
 |     unsigned B = MI->getOperand(1).getReg(); | 
 |     unsigned C = MI->getOperand(2).getReg(); | 
 |     if (B != C) return 0; | 
 |     unsigned A = MI->getOperand(0).getReg(); | 
 |     unsigned M = MI->getOperand(3).getImm(); | 
 |     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri)) | 
 |       .addReg(A, RegState::Define | getDeadRegState(isDead)) | 
 |       .addReg(B, getKillRegState(isKill)).addImm(M); | 
 |     break; | 
 |   } | 
 |   case X86::SHL64ri: { | 
 |     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); | 
 |     // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses | 
 |     // the flags produced by a shift yet, so this is safe. | 
 |     unsigned ShAmt = MI->getOperand(2).getImm(); | 
 |     if (ShAmt == 0 || ShAmt >= 4) return 0; | 
 |  | 
 |     // LEA can't handle RSP. | 
 |     if (TargetRegisterInfo::isVirtualRegister(Src) && | 
 |         !MF.getRegInfo().constrainRegClass(Src, &X86::GR64_NOSPRegClass)) | 
 |       return 0; | 
 |  | 
 |     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) | 
 |       .addReg(Dest, RegState::Define | getDeadRegState(isDead)) | 
 |       .addReg(0).addImm(1 << ShAmt) | 
 |       .addReg(Src, getKillRegState(isKill)) | 
 |       .addImm(0).addReg(0); | 
 |     break; | 
 |   } | 
 |   case X86::SHL32ri: { | 
 |     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); | 
 |     // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses | 
 |     // the flags produced by a shift yet, so this is safe. | 
 |     unsigned ShAmt = MI->getOperand(2).getImm(); | 
 |     if (ShAmt == 0 || ShAmt >= 4) return 0; | 
 |  | 
 |     // LEA can't handle ESP. | 
 |     if (TargetRegisterInfo::isVirtualRegister(Src) && | 
 |         !MF.getRegInfo().constrainRegClass(Src, &X86::GR32_NOSPRegClass)) | 
 |       return 0; | 
 |  | 
 |     unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; | 
 |     NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc)) | 
 |       .addReg(Dest, RegState::Define | getDeadRegState(isDead)) | 
 |       .addReg(0).addImm(1 << ShAmt) | 
 |       .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0); | 
 |     break; | 
 |   } | 
 |   case X86::SHL16ri: { | 
 |     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); | 
 |     // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses | 
 |     // the flags produced by a shift yet, so this is safe. | 
 |     unsigned ShAmt = MI->getOperand(2).getImm(); | 
 |     if (ShAmt == 0 || ShAmt >= 4) return 0; | 
 |  | 
 |     if (DisableLEA16) | 
 |       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; | 
 |     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) | 
 |       .addReg(Dest, RegState::Define | getDeadRegState(isDead)) | 
 |       .addReg(0).addImm(1 << ShAmt) | 
 |       .addReg(Src, getKillRegState(isKill)) | 
 |       .addImm(0).addReg(0); | 
 |     break; | 
 |   } | 
 |   default: { | 
 |     // The following opcodes also sets the condition code register(s). Only | 
 |     // convert them to equivalent lea if the condition code register def's | 
 |     // are dead! | 
 |     if (hasLiveCondCodeDef(MI)) | 
 |       return 0; | 
 |  | 
 |     switch (MIOpc) { | 
 |     default: return 0; | 
 |     case X86::INC64r: | 
 |     case X86::INC32r: | 
 |     case X86::INC64_32r: { | 
 |       assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); | 
 |       unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r | 
 |         : (is64Bit ? X86::LEA64_32r : X86::LEA32r); | 
 |  | 
 |       // LEA can't handle RSP. | 
 |       if (TargetRegisterInfo::isVirtualRegister(Src) && | 
 |           !MF.getRegInfo().constrainRegClass(Src, | 
 |                             MIOpc == X86::INC64r ? X86::GR64_NOSPRegisterClass : | 
 |                                                    X86::GR32_NOSPRegisterClass)) | 
 |         return 0; | 
 |  | 
 |       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) | 
 |                               .addReg(Dest, RegState::Define | | 
 |                                       getDeadRegState(isDead)), | 
 |                               Src, isKill, 1); | 
 |       break; | 
 |     } | 
 |     case X86::INC16r: | 
 |     case X86::INC64_16r: | 
 |       if (DisableLEA16) | 
 |         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; | 
 |       assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); | 
 |       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) | 
 |                            .addReg(Dest, RegState::Define | | 
 |                                    getDeadRegState(isDead)), | 
 |                            Src, isKill, 1); | 
 |       break; | 
 |     case X86::DEC64r: | 
 |     case X86::DEC32r: | 
 |     case X86::DEC64_32r: { | 
 |       assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); | 
 |       unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r | 
 |         : (is64Bit ? X86::LEA64_32r : X86::LEA32r); | 
 |       // LEA can't handle RSP. | 
 |       if (TargetRegisterInfo::isVirtualRegister(Src) && | 
 |           !MF.getRegInfo().constrainRegClass(Src, | 
 |                             MIOpc == X86::DEC64r ? X86::GR64_NOSPRegisterClass : | 
 |                                                    X86::GR32_NOSPRegisterClass)) | 
 |         return 0; | 
 |  | 
 |       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) | 
 |                               .addReg(Dest, RegState::Define | | 
 |                                       getDeadRegState(isDead)), | 
 |                               Src, isKill, -1); | 
 |       break; | 
 |     } | 
 |     case X86::DEC16r: | 
 |     case X86::DEC64_16r: | 
 |       if (DisableLEA16) | 
 |         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; | 
 |       assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); | 
 |       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) | 
 |                            .addReg(Dest, RegState::Define | | 
 |                                    getDeadRegState(isDead)), | 
 |                            Src, isKill, -1); | 
 |       break; | 
 |     case X86::ADD64rr: | 
 |     case X86::ADD64rr_DB: | 
 |     case X86::ADD32rr: | 
 |     case X86::ADD32rr_DB: { | 
 |       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); | 
 |       unsigned Opc; | 
 |       TargetRegisterClass *RC; | 
 |       if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) { | 
 |         Opc = X86::LEA64r; | 
 |         RC = X86::GR64_NOSPRegisterClass; | 
 |       } else { | 
 |         Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; | 
 |         RC = X86::GR32_NOSPRegisterClass; | 
 |       } | 
 |  | 
 |  | 
 |       unsigned Src2 = MI->getOperand(2).getReg(); | 
 |       bool isKill2 = MI->getOperand(2).isKill(); | 
 |  | 
 |       // LEA can't handle RSP. | 
 |       if (TargetRegisterInfo::isVirtualRegister(Src2) && | 
 |           !MF.getRegInfo().constrainRegClass(Src2, RC)) | 
 |         return 0; | 
 |  | 
 |       NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc)) | 
 |                         .addReg(Dest, RegState::Define | | 
 |                                 getDeadRegState(isDead)), | 
 |                         Src, isKill, Src2, isKill2); | 
 |       if (LV && isKill2) | 
 |         LV->replaceKillInstruction(Src2, MI, NewMI); | 
 |       break; | 
 |     } | 
 |     case X86::ADD16rr: | 
 |     case X86::ADD16rr_DB: { | 
 |       if (DisableLEA16) | 
 |         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; | 
 |       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); | 
 |       unsigned Src2 = MI->getOperand(2).getReg(); | 
 |       bool isKill2 = MI->getOperand(2).isKill(); | 
 |       NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) | 
 |                         .addReg(Dest, RegState::Define | | 
 |                                 getDeadRegState(isDead)), | 
 |                         Src, isKill, Src2, isKill2); | 
 |       if (LV && isKill2) | 
 |         LV->replaceKillInstruction(Src2, MI, NewMI); | 
 |       break; | 
 |     } | 
 |     case X86::ADD64ri32: | 
 |     case X86::ADD64ri8: | 
 |     case X86::ADD64ri32_DB: | 
 |     case X86::ADD64ri8_DB: | 
 |       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); | 
 |       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) | 
 |                               .addReg(Dest, RegState::Define | | 
 |                                       getDeadRegState(isDead)), | 
 |                               Src, isKill, MI->getOperand(2).getImm()); | 
 |       break; | 
 |     case X86::ADD32ri: | 
 |     case X86::ADD32ri8: | 
 |     case X86::ADD32ri_DB: | 
 |     case X86::ADD32ri8_DB: { | 
 |       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); | 
 |       unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; | 
 |       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) | 
 |                               .addReg(Dest, RegState::Define | | 
 |                                       getDeadRegState(isDead)), | 
 |                                 Src, isKill, MI->getOperand(2).getImm()); | 
 |       break; | 
 |     } | 
 |     case X86::ADD16ri: | 
 |     case X86::ADD16ri8: | 
 |     case X86::ADD16ri_DB: | 
 |     case X86::ADD16ri8_DB: | 
 |       if (DisableLEA16) | 
 |         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; | 
 |       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); | 
 |       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) | 
 |                               .addReg(Dest, RegState::Define | | 
 |                                       getDeadRegState(isDead)), | 
 |                               Src, isKill, MI->getOperand(2).getImm()); | 
 |       break; | 
 |     } | 
 |   } | 
 |   } | 
 |  | 
 |   if (!NewMI) return 0; | 
 |  | 
 |   if (LV) {  // Update live variables | 
 |     if (isKill) | 
 |       LV->replaceKillInstruction(Src, MI, NewMI); | 
 |     if (isDead) | 
 |       LV->replaceKillInstruction(Dest, MI, NewMI); | 
 |   } | 
 |  | 
 |   MFI->insert(MBBI, NewMI);          // Insert the new inst | 
 |   return NewMI; | 
 | } | 
 |  | 
 | /// commuteInstruction - We have a few instructions that must be hacked on to | 
 | /// commute them. | 
 | /// | 
 | MachineInstr * | 
 | X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { | 
 |   switch (MI->getOpcode()) { | 
 |   case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) | 
 |   case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) | 
 |   case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) | 
 |   case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) | 
 |   case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) | 
 |   case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) | 
 |     unsigned Opc; | 
 |     unsigned Size; | 
 |     switch (MI->getOpcode()) { | 
 |     default: llvm_unreachable("Unreachable!"); | 
 |     case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; | 
 |     case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; | 
 |     case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; | 
 |     case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; | 
 |     case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; | 
 |     case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; | 
 |     } | 
 |     unsigned Amt = MI->getOperand(3).getImm(); | 
 |     if (NewMI) { | 
 |       MachineFunction &MF = *MI->getParent()->getParent(); | 
 |       MI = MF.CloneMachineInstr(MI); | 
 |       NewMI = false; | 
 |     } | 
 |     MI->setDesc(get(Opc)); | 
 |     MI->getOperand(3).setImm(Size-Amt); | 
 |     return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); | 
 |   } | 
 |   case X86::CMOVB16rr: | 
 |   case X86::CMOVB32rr: | 
 |   case X86::CMOVB64rr: | 
 |   case X86::CMOVAE16rr: | 
 |   case X86::CMOVAE32rr: | 
 |   case X86::CMOVAE64rr: | 
 |   case X86::CMOVE16rr: | 
 |   case X86::CMOVE32rr: | 
 |   case X86::CMOVE64rr: | 
 |   case X86::CMOVNE16rr: | 
 |   case X86::CMOVNE32rr: | 
 |   case X86::CMOVNE64rr: | 
 |   case X86::CMOVBE16rr: | 
 |   case X86::CMOVBE32rr: | 
 |   case X86::CMOVBE64rr: | 
 |   case X86::CMOVA16rr: | 
 |   case X86::CMOVA32rr: | 
 |   case X86::CMOVA64rr: | 
 |   case X86::CMOVL16rr: | 
 |   case X86::CMOVL32rr: | 
 |   case X86::CMOVL64rr: | 
 |   case X86::CMOVGE16rr: | 
 |   case X86::CMOVGE32rr: | 
 |   case X86::CMOVGE64rr: | 
 |   case X86::CMOVLE16rr: | 
 |   case X86::CMOVLE32rr: | 
 |   case X86::CMOVLE64rr: | 
 |   case X86::CMOVG16rr: | 
 |   case X86::CMOVG32rr: | 
 |   case X86::CMOVG64rr: | 
 |   case X86::CMOVS16rr: | 
 |   case X86::CMOVS32rr: | 
 |   case X86::CMOVS64rr: | 
 |   case X86::CMOVNS16rr: | 
 |   case X86::CMOVNS32rr: | 
 |   case X86::CMOVNS64rr: | 
 |   case X86::CMOVP16rr: | 
 |   case X86::CMOVP32rr: | 
 |   case X86::CMOVP64rr: | 
 |   case X86::CMOVNP16rr: | 
 |   case X86::CMOVNP32rr: | 
 |   case X86::CMOVNP64rr: | 
 |   case X86::CMOVO16rr: | 
 |   case X86::CMOVO32rr: | 
 |   case X86::CMOVO64rr: | 
 |   case X86::CMOVNO16rr: | 
 |   case X86::CMOVNO32rr: | 
 |   case X86::CMOVNO64rr: { | 
 |     unsigned Opc = 0; | 
 |     switch (MI->getOpcode()) { | 
 |     default: break; | 
 |     case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break; | 
 |     case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break; | 
 |     case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break; | 
 |     case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break; | 
 |     case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break; | 
 |     case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break; | 
 |     case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break; | 
 |     case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break; | 
 |     case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break; | 
 |     case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break; | 
 |     case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break; | 
 |     case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break; | 
 |     case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break; | 
 |     case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break; | 
 |     case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break; | 
 |     case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break; | 
 |     case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break; | 
 |     case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break; | 
 |     case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break; | 
 |     case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break; | 
 |     case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break; | 
 |     case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break; | 
 |     case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break; | 
 |     case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break; | 
 |     case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break; | 
 |     case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break; | 
 |     case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break; | 
 |     case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break; | 
 |     case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break; | 
 |     case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break; | 
 |     case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break; | 
 |     case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break; | 
 |     case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break; | 
 |     case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break; | 
 |     case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break; | 
 |     case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break; | 
 |     case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break; | 
 |     case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break; | 
 |     case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break; | 
 |     case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break; | 
 |     case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break; | 
 |     case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break; | 
 |     case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break; | 
 |     case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break; | 
 |     case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break; | 
 |     case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break; | 
 |     case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break; | 
 |     case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break; | 
 |     } | 
 |     if (NewMI) { | 
 |       MachineFunction &MF = *MI->getParent()->getParent(); | 
 |       MI = MF.CloneMachineInstr(MI); | 
 |       NewMI = false; | 
 |     } | 
 |     MI->setDesc(get(Opc)); | 
 |     // Fallthrough intended. | 
 |   } | 
 |   default: | 
 |     return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); | 
 |   } | 
 | } | 
 |  | 
 | static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) { | 
 |   switch (BrOpc) { | 
 |   default: return X86::COND_INVALID; | 
 |   case X86::JE_4:  return X86::COND_E; | 
 |   case X86::JNE_4: return X86::COND_NE; | 
 |   case X86::JL_4:  return X86::COND_L; | 
 |   case X86::JLE_4: return X86::COND_LE; | 
 |   case X86::JG_4:  return X86::COND_G; | 
 |   case X86::JGE_4: return X86::COND_GE; | 
 |   case X86::JB_4:  return X86::COND_B; | 
 |   case X86::JBE_4: return X86::COND_BE; | 
 |   case X86::JA_4:  return X86::COND_A; | 
 |   case X86::JAE_4: return X86::COND_AE; | 
 |   case X86::JS_4:  return X86::COND_S; | 
 |   case X86::JNS_4: return X86::COND_NS; | 
 |   case X86::JP_4:  return X86::COND_P; | 
 |   case X86::JNP_4: return X86::COND_NP; | 
 |   case X86::JO_4:  return X86::COND_O; | 
 |   case X86::JNO_4: return X86::COND_NO; | 
 |   } | 
 | } | 
 |  | 
 | unsigned X86::GetCondBranchFromCond(X86::CondCode CC) { | 
 |   switch (CC) { | 
 |   default: llvm_unreachable("Illegal condition code!"); | 
 |   case X86::COND_E:  return X86::JE_4; | 
 |   case X86::COND_NE: return X86::JNE_4; | 
 |   case X86::COND_L:  return X86::JL_4; | 
 |   case X86::COND_LE: return X86::JLE_4; | 
 |   case X86::COND_G:  return X86::JG_4; | 
 |   case X86::COND_GE: return X86::JGE_4; | 
 |   case X86::COND_B:  return X86::JB_4; | 
 |   case X86::COND_BE: return X86::JBE_4; | 
 |   case X86::COND_A:  return X86::JA_4; | 
 |   case X86::COND_AE: return X86::JAE_4; | 
 |   case X86::COND_S:  return X86::JS_4; | 
 |   case X86::COND_NS: return X86::JNS_4; | 
 |   case X86::COND_P:  return X86::JP_4; | 
 |   case X86::COND_NP: return X86::JNP_4; | 
 |   case X86::COND_O:  return X86::JO_4; | 
 |   case X86::COND_NO: return X86::JNO_4; | 
 |   } | 
 | } | 
 |  | 
 | /// GetOppositeBranchCondition - Return the inverse of the specified condition, | 
 | /// e.g. turning COND_E to COND_NE. | 
 | X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { | 
 |   switch (CC) { | 
 |   default: llvm_unreachable("Illegal condition code!"); | 
 |   case X86::COND_E:  return X86::COND_NE; | 
 |   case X86::COND_NE: return X86::COND_E; | 
 |   case X86::COND_L:  return X86::COND_GE; | 
 |   case X86::COND_LE: return X86::COND_G; | 
 |   case X86::COND_G:  return X86::COND_LE; | 
 |   case X86::COND_GE: return X86::COND_L; | 
 |   case X86::COND_B:  return X86::COND_AE; | 
 |   case X86::COND_BE: return X86::COND_A; | 
 |   case X86::COND_A:  return X86::COND_BE; | 
 |   case X86::COND_AE: return X86::COND_B; | 
 |   case X86::COND_S:  return X86::COND_NS; | 
 |   case X86::COND_NS: return X86::COND_S; | 
 |   case X86::COND_P:  return X86::COND_NP; | 
 |   case X86::COND_NP: return X86::COND_P; | 
 |   case X86::COND_O:  return X86::COND_NO; | 
 |   case X86::COND_NO: return X86::COND_O; | 
 |   } | 
 | } | 
 |  | 
 | bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { | 
 |   const MCInstrDesc &MCID = MI->getDesc(); | 
 |   if (!MCID.isTerminator()) return false; | 
 |  | 
 |   // Conditional branch is a special case. | 
 |   if (MCID.isBranch() && !MCID.isBarrier()) | 
 |     return true; | 
 |   if (!MCID.isPredicable()) | 
 |     return true; | 
 |   return !isPredicated(MI); | 
 | } | 
 |  | 
 | bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, | 
 |                                  MachineBasicBlock *&TBB, | 
 |                                  MachineBasicBlock *&FBB, | 
 |                                  SmallVectorImpl<MachineOperand> &Cond, | 
 |                                  bool AllowModify) const { | 
 |   // Start from the bottom of the block and work up, examining the | 
 |   // terminator instructions. | 
 |   MachineBasicBlock::iterator I = MBB.end(); | 
 |   MachineBasicBlock::iterator UnCondBrIter = MBB.end(); | 
 |   while (I != MBB.begin()) { | 
 |     --I; | 
 |     if (I->isDebugValue()) | 
 |       continue; | 
 |  | 
 |     // Working from the bottom, when we see a non-terminator instruction, we're | 
 |     // done. | 
 |     if (!isUnpredicatedTerminator(I)) | 
 |       break; | 
 |  | 
 |     // A terminator that isn't a branch can't easily be handled by this | 
 |     // analysis. | 
 |     if (!I->getDesc().isBranch()) | 
 |       return true; | 
 |  | 
 |     // Handle unconditional branches. | 
 |     if (I->getOpcode() == X86::JMP_4) { | 
 |       UnCondBrIter = I; | 
 |  | 
 |       if (!AllowModify) { | 
 |         TBB = I->getOperand(0).getMBB(); | 
 |         continue; | 
 |       } | 
 |  | 
 |       // If the block has any instructions after a JMP, delete them. | 
 |       while (llvm::next(I) != MBB.end()) | 
 |         llvm::next(I)->eraseFromParent(); | 
 |  | 
 |       Cond.clear(); | 
 |       FBB = 0; | 
 |  | 
 |       // Delete the JMP if it's equivalent to a fall-through. | 
 |       if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { | 
 |         TBB = 0; | 
 |         I->eraseFromParent(); | 
 |         I = MBB.end(); | 
 |         UnCondBrIter = MBB.end(); | 
 |         continue; | 
 |       } | 
 |  | 
 |       // TBB is used to indicate the unconditional destination. | 
 |       TBB = I->getOperand(0).getMBB(); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Handle conditional branches. | 
 |     X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode()); | 
 |     if (BranchCode == X86::COND_INVALID) | 
 |       return true;  // Can't handle indirect branch. | 
 |  | 
 |     // Working from the bottom, handle the first conditional branch. | 
 |     if (Cond.empty()) { | 
 |       MachineBasicBlock *TargetBB = I->getOperand(0).getMBB(); | 
 |       if (AllowModify && UnCondBrIter != MBB.end() && | 
 |           MBB.isLayoutSuccessor(TargetBB)) { | 
 |         // If we can modify the code and it ends in something like: | 
 |         // | 
 |         //     jCC L1 | 
 |         //     jmp L2 | 
 |         //   L1: | 
 |         //     ... | 
 |         //   L2: | 
 |         // | 
 |         // Then we can change this to: | 
 |         // | 
 |         //     jnCC L2 | 
 |         //   L1: | 
 |         //     ... | 
 |         //   L2: | 
 |         // | 
 |         // Which is a bit more efficient. | 
 |         // We conditionally jump to the fall-through block. | 
 |         BranchCode = GetOppositeBranchCondition(BranchCode); | 
 |         unsigned JNCC = GetCondBranchFromCond(BranchCode); | 
 |         MachineBasicBlock::iterator OldInst = I; | 
 |  | 
 |         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC)) | 
 |           .addMBB(UnCondBrIter->getOperand(0).getMBB()); | 
 |         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4)) | 
 |           .addMBB(TargetBB); | 
 |  | 
 |         OldInst->eraseFromParent(); | 
 |         UnCondBrIter->eraseFromParent(); | 
 |  | 
 |         // Restart the analysis. | 
 |         UnCondBrIter = MBB.end(); | 
 |         I = MBB.end(); | 
 |         continue; | 
 |       } | 
 |  | 
 |       FBB = TBB; | 
 |       TBB = I->getOperand(0).getMBB(); | 
 |       Cond.push_back(MachineOperand::CreateImm(BranchCode)); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Handle subsequent conditional branches. Only handle the case where all | 
 |     // conditional branches branch to the same destination and their condition | 
 |     // opcodes fit one of the special multi-branch idioms. | 
 |     assert(Cond.size() == 1); | 
 |     assert(TBB); | 
 |  | 
 |     // Only handle the case where all conditional branches branch to the same | 
 |     // destination. | 
 |     if (TBB != I->getOperand(0).getMBB()) | 
 |       return true; | 
 |  | 
 |     // If the conditions are the same, we can leave them alone. | 
 |     X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); | 
 |     if (OldBranchCode == BranchCode) | 
 |       continue; | 
 |  | 
 |     // If they differ, see if they fit one of the known patterns. Theoretically, | 
 |     // we could handle more patterns here, but we shouldn't expect to see them | 
 |     // if instruction selection has done a reasonable job. | 
 |     if ((OldBranchCode == X86::COND_NP && | 
 |          BranchCode == X86::COND_E) || | 
 |         (OldBranchCode == X86::COND_E && | 
 |          BranchCode == X86::COND_NP)) | 
 |       BranchCode = X86::COND_NP_OR_E; | 
 |     else if ((OldBranchCode == X86::COND_P && | 
 |               BranchCode == X86::COND_NE) || | 
 |              (OldBranchCode == X86::COND_NE && | 
 |               BranchCode == X86::COND_P)) | 
 |       BranchCode = X86::COND_NE_OR_P; | 
 |     else | 
 |       return true; | 
 |  | 
 |     // Update the MachineOperand. | 
 |     Cond[0].setImm(BranchCode); | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { | 
 |   MachineBasicBlock::iterator I = MBB.end(); | 
 |   unsigned Count = 0; | 
 |  | 
 |   while (I != MBB.begin()) { | 
 |     --I; | 
 |     if (I->isDebugValue()) | 
 |       continue; | 
 |     if (I->getOpcode() != X86::JMP_4 && | 
 |         GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID) | 
 |       break; | 
 |     // Remove the branch. | 
 |     I->eraseFromParent(); | 
 |     I = MBB.end(); | 
 |     ++Count; | 
 |   } | 
 |  | 
 |   return Count; | 
 | } | 
 |  | 
 | unsigned | 
 | X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, | 
 |                            MachineBasicBlock *FBB, | 
 |                            const SmallVectorImpl<MachineOperand> &Cond, | 
 |                            DebugLoc DL) const { | 
 |   // Shouldn't be a fall through. | 
 |   assert(TBB && "InsertBranch must not be told to insert a fallthrough"); | 
 |   assert((Cond.size() == 1 || Cond.size() == 0) && | 
 |          "X86 branch conditions have one component!"); | 
 |  | 
 |   if (Cond.empty()) { | 
 |     // Unconditional branch? | 
 |     assert(!FBB && "Unconditional branch with multiple successors!"); | 
 |     BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB); | 
 |     return 1; | 
 |   } | 
 |  | 
 |   // Conditional branch. | 
 |   unsigned Count = 0; | 
 |   X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); | 
 |   switch (CC) { | 
 |   case X86::COND_NP_OR_E: | 
 |     // Synthesize NP_OR_E with two branches. | 
 |     BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB); | 
 |     ++Count; | 
 |     BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB); | 
 |     ++Count; | 
 |     break; | 
 |   case X86::COND_NE_OR_P: | 
 |     // Synthesize NE_OR_P with two branches. | 
 |     BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB); | 
 |     ++Count; | 
 |     BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB); | 
 |     ++Count; | 
 |     break; | 
 |   default: { | 
 |     unsigned Opc = GetCondBranchFromCond(CC); | 
 |     BuildMI(&MBB, DL, get(Opc)).addMBB(TBB); | 
 |     ++Count; | 
 |   } | 
 |   } | 
 |   if (FBB) { | 
 |     // Two-way Conditional branch. Insert the second branch. | 
 |     BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB); | 
 |     ++Count; | 
 |   } | 
 |   return Count; | 
 | } | 
 |  | 
 | /// isHReg - Test if the given register is a physical h register. | 
 | static bool isHReg(unsigned Reg) { | 
 |   return X86::GR8_ABCD_HRegClass.contains(Reg); | 
 | } | 
 |  | 
 | // Try and copy between VR128/VR64 and GR64 registers. | 
 | static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg, | 
 |                                         bool HasAVX) { | 
 |   // SrcReg(VR128) -> DestReg(GR64) | 
 |   // SrcReg(VR64)  -> DestReg(GR64) | 
 |   // SrcReg(GR64)  -> DestReg(VR128) | 
 |   // SrcReg(GR64)  -> DestReg(VR64) | 
 |  | 
 |   if (X86::GR64RegClass.contains(DestReg)) { | 
 |     if (X86::VR128RegClass.contains(SrcReg)) { | 
 |       // Copy from a VR128 register to a GR64 register. | 
 |       return HasAVX ? X86::VMOVPQIto64rr : X86::MOVPQIto64rr; | 
 |     } else if (X86::VR64RegClass.contains(SrcReg)) { | 
 |       // Copy from a VR64 register to a GR64 register. | 
 |       return X86::MOVSDto64rr; | 
 |     } | 
 |   } else if (X86::GR64RegClass.contains(SrcReg)) { | 
 |     // Copy from a GR64 register to a VR128 register. | 
 |     if (X86::VR128RegClass.contains(DestReg)) | 
 |       return HasAVX ? X86::VMOV64toPQIrr : X86::MOV64toPQIrr; | 
 |     // Copy from a GR64 register to a VR64 register. | 
 |     else if (X86::VR64RegClass.contains(DestReg)) | 
 |       return X86::MOV64toSDrr; | 
 |   } | 
 |  | 
 |   // SrcReg(FR32) -> DestReg(GR32) | 
 |   // SrcReg(GR32) -> DestReg(FR32) | 
 |  | 
 |   if (X86::GR32RegClass.contains(DestReg) && X86::FR32RegClass.contains(SrcReg)) | 
 |       // Copy from a FR32 register to a GR32 register. | 
 |       return HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr; | 
 |  | 
 |   if (X86::FR32RegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg)) | 
 |       // Copy from a GR32 register to a FR32 register. | 
 |       return HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr; | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, | 
 |                                MachineBasicBlock::iterator MI, DebugLoc DL, | 
 |                                unsigned DestReg, unsigned SrcReg, | 
 |                                bool KillSrc) const { | 
 |   // First deal with the normal symmetric copies. | 
 |   bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX(); | 
 |   unsigned Opc = 0; | 
 |   if (X86::GR64RegClass.contains(DestReg, SrcReg)) | 
 |     Opc = X86::MOV64rr; | 
 |   else if (X86::GR32RegClass.contains(DestReg, SrcReg)) | 
 |     Opc = X86::MOV32rr; | 
 |   else if (X86::GR16RegClass.contains(DestReg, SrcReg)) | 
 |     Opc = X86::MOV16rr; | 
 |   else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { | 
 |     // Copying to or from a physical H register on x86-64 requires a NOREX | 
 |     // move.  Otherwise use a normal move. | 
 |     if ((isHReg(DestReg) || isHReg(SrcReg)) && | 
 |         TM.getSubtarget<X86Subtarget>().is64Bit()) { | 
 |       Opc = X86::MOV8rr_NOREX; | 
 |       // Both operands must be encodable without an REX prefix. | 
 |       assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && | 
 |              "8-bit H register can not be copied outside GR8_NOREX"); | 
 |     } else | 
 |       Opc = X86::MOV8rr; | 
 |   } else if (X86::VR128RegClass.contains(DestReg, SrcReg)) | 
 |     Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr; | 
 |   else if (X86::VR256RegClass.contains(DestReg, SrcReg)) | 
 |     Opc = X86::VMOVAPSYrr; | 
 |   else if (X86::VR64RegClass.contains(DestReg, SrcReg)) | 
 |     Opc = X86::MMX_MOVQ64rr; | 
 |   else | 
 |     Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, HasAVX); | 
 |  | 
 |   if (Opc) { | 
 |     BuildMI(MBB, MI, DL, get(Opc), DestReg) | 
 |       .addReg(SrcReg, getKillRegState(KillSrc)); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Moving EFLAGS to / from another register requires a push and a pop. | 
 |   if (SrcReg == X86::EFLAGS) { | 
 |     if (X86::GR64RegClass.contains(DestReg)) { | 
 |       BuildMI(MBB, MI, DL, get(X86::PUSHF64)); | 
 |       BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg); | 
 |       return; | 
 |     } else if (X86::GR32RegClass.contains(DestReg)) { | 
 |       BuildMI(MBB, MI, DL, get(X86::PUSHF32)); | 
 |       BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg); | 
 |       return; | 
 |     } | 
 |   } | 
 |   if (DestReg == X86::EFLAGS) { | 
 |     if (X86::GR64RegClass.contains(SrcReg)) { | 
 |       BuildMI(MBB, MI, DL, get(X86::PUSH64r)) | 
 |         .addReg(SrcReg, getKillRegState(KillSrc)); | 
 |       BuildMI(MBB, MI, DL, get(X86::POPF64)); | 
 |       return; | 
 |     } else if (X86::GR32RegClass.contains(SrcReg)) { | 
 |       BuildMI(MBB, MI, DL, get(X86::PUSH32r)) | 
 |         .addReg(SrcReg, getKillRegState(KillSrc)); | 
 |       BuildMI(MBB, MI, DL, get(X86::POPF32)); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) | 
 |                << " to " << RI.getName(DestReg) << '\n'); | 
 |   llvm_unreachable("Cannot emit physreg copy instruction"); | 
 | } | 
 |  | 
 | static unsigned getLoadStoreRegOpcode(unsigned Reg, | 
 |                                       const TargetRegisterClass *RC, | 
 |                                       bool isStackAligned, | 
 |                                       const TargetMachine &TM, | 
 |                                       bool load) { | 
 |   bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX(); | 
 |   switch (RC->getSize()) { | 
 |   default: | 
 |     llvm_unreachable("Unknown spill size"); | 
 |   case 1: | 
 |     assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); | 
 |     if (TM.getSubtarget<X86Subtarget>().is64Bit()) | 
 |       // Copying to or from a physical H register on x86-64 requires a NOREX | 
 |       // move.  Otherwise use a normal move. | 
 |       if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) | 
 |         return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; | 
 |     return load ? X86::MOV8rm : X86::MOV8mr; | 
 |   case 2: | 
 |     assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); | 
 |     return load ? X86::MOV16rm : X86::MOV16mr; | 
 |   case 4: | 
 |     if (X86::GR32RegClass.hasSubClassEq(RC)) | 
 |       return load ? X86::MOV32rm : X86::MOV32mr; | 
 |     if (X86::FR32RegClass.hasSubClassEq(RC)) | 
 |       return load ? | 
 |         (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) : | 
 |         (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr); | 
 |     if (X86::RFP32RegClass.hasSubClassEq(RC)) | 
 |       return load ? X86::LD_Fp32m : X86::ST_Fp32m; | 
 |     llvm_unreachable("Unknown 4-byte regclass"); | 
 |   case 8: | 
 |     if (X86::GR64RegClass.hasSubClassEq(RC)) | 
 |       return load ? X86::MOV64rm : X86::MOV64mr; | 
 |     if (X86::FR64RegClass.hasSubClassEq(RC)) | 
 |       return load ? | 
 |         (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) : | 
 |         (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr); | 
 |     if (X86::VR64RegClass.hasSubClassEq(RC)) | 
 |       return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; | 
 |     if (X86::RFP64RegClass.hasSubClassEq(RC)) | 
 |       return load ? X86::LD_Fp64m : X86::ST_Fp64m; | 
 |     llvm_unreachable("Unknown 8-byte regclass"); | 
 |   case 10: | 
 |     assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); | 
 |     return load ? X86::LD_Fp80m : X86::ST_FpP80m; | 
 |   case 16: { | 
 |     assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass"); | 
 |     // If stack is realigned we can use aligned stores. | 
 |     if (isStackAligned) | 
 |       return load ? | 
 |         (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) : | 
 |         (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr); | 
 |     else | 
 |       return load ? | 
 |         (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) : | 
 |         (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr); | 
 |   } | 
 |   case 32: | 
 |     assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass"); | 
 |     // If stack is realigned we can use aligned stores. | 
 |     if (isStackAligned) | 
 |       return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr; | 
 |     else | 
 |       return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr; | 
 |   } | 
 | } | 
 |  | 
 | static unsigned getStoreRegOpcode(unsigned SrcReg, | 
 |                                   const TargetRegisterClass *RC, | 
 |                                   bool isStackAligned, | 
 |                                   TargetMachine &TM) { | 
 |   return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false); | 
 | } | 
 |  | 
 |  | 
 | static unsigned getLoadRegOpcode(unsigned DestReg, | 
 |                                  const TargetRegisterClass *RC, | 
 |                                  bool isStackAligned, | 
 |                                  const TargetMachine &TM) { | 
 |   return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true); | 
 | } | 
 |  | 
 | void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, | 
 |                                        MachineBasicBlock::iterator MI, | 
 |                                        unsigned SrcReg, bool isKill, int FrameIdx, | 
 |                                        const TargetRegisterClass *RC, | 
 |                                        const TargetRegisterInfo *TRI) const { | 
 |   const MachineFunction &MF = *MBB.getParent(); | 
 |   assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() && | 
 |          "Stack slot too small for store"); | 
 |   unsigned Alignment = RC->getSize() == 32 ? 32 : 16; | 
 |   bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) || | 
 |     RI.canRealignStack(MF); | 
 |   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM); | 
 |   DebugLoc DL = MBB.findDebugLoc(MI); | 
 |   addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx) | 
 |     .addReg(SrcReg, getKillRegState(isKill)); | 
 | } | 
 |  | 
 | void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, | 
 |                                   bool isKill, | 
 |                                   SmallVectorImpl<MachineOperand> &Addr, | 
 |                                   const TargetRegisterClass *RC, | 
 |                                   MachineInstr::mmo_iterator MMOBegin, | 
 |                                   MachineInstr::mmo_iterator MMOEnd, | 
 |                                   SmallVectorImpl<MachineInstr*> &NewMIs) const { | 
 |   unsigned Alignment = RC->getSize() == 32 ? 32 : 16; | 
 |   bool isAligned = MMOBegin != MMOEnd && | 
 |                    (*MMOBegin)->getAlignment() >= Alignment; | 
 |   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM); | 
 |   DebugLoc DL; | 
 |   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); | 
 |   for (unsigned i = 0, e = Addr.size(); i != e; ++i) | 
 |     MIB.addOperand(Addr[i]); | 
 |   MIB.addReg(SrcReg, getKillRegState(isKill)); | 
 |   (*MIB).setMemRefs(MMOBegin, MMOEnd); | 
 |   NewMIs.push_back(MIB); | 
 | } | 
 |  | 
 |  | 
 | void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, | 
 |                                         MachineBasicBlock::iterator MI, | 
 |                                         unsigned DestReg, int FrameIdx, | 
 |                                         const TargetRegisterClass *RC, | 
 |                                         const TargetRegisterInfo *TRI) const { | 
 |   const MachineFunction &MF = *MBB.getParent(); | 
 |   unsigned Alignment = RC->getSize() == 32 ? 32 : 16; | 
 |   bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) || | 
 |     RI.canRealignStack(MF); | 
 |   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM); | 
 |   DebugLoc DL = MBB.findDebugLoc(MI); | 
 |   addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx); | 
 | } | 
 |  | 
 | void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, | 
 |                                  SmallVectorImpl<MachineOperand> &Addr, | 
 |                                  const TargetRegisterClass *RC, | 
 |                                  MachineInstr::mmo_iterator MMOBegin, | 
 |                                  MachineInstr::mmo_iterator MMOEnd, | 
 |                                  SmallVectorImpl<MachineInstr*> &NewMIs) const { | 
 |   unsigned Alignment = RC->getSize() == 32 ? 32 : 16; | 
 |   bool isAligned = MMOBegin != MMOEnd && | 
 |                    (*MMOBegin)->getAlignment() >= Alignment; | 
 |   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM); | 
 |   DebugLoc DL; | 
 |   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg); | 
 |   for (unsigned i = 0, e = Addr.size(); i != e; ++i) | 
 |     MIB.addOperand(Addr[i]); | 
 |   (*MIB).setMemRefs(MMOBegin, MMOEnd); | 
 |   NewMIs.push_back(MIB); | 
 | } | 
 |  | 
 | /// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr | 
 | /// instruction with two undef reads of the register being defined.  This is | 
 | /// used for mapping: | 
 | ///   %xmm4 = V_SET0 | 
 | /// to: | 
 | ///   %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef> | 
 | /// | 
 | static bool Expand2AddrUndef(MachineInstr *MI, const MCInstrDesc &Desc) { | 
 |   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); | 
 |   unsigned Reg = MI->getOperand(0).getReg(); | 
 |   MI->setDesc(Desc); | 
 |  | 
 |   // MachineInstr::addOperand() will insert explicit operands before any | 
 |   // implicit operands. | 
 |   MachineInstrBuilder(MI).addReg(Reg, RegState::Undef) | 
 |                          .addReg(Reg, RegState::Undef); | 
 |   // But we don't trust that. | 
 |   assert(MI->getOperand(1).getReg() == Reg && | 
 |          MI->getOperand(2).getReg() == Reg && "Misplaced operand"); | 
 |   return true; | 
 | } | 
 |  | 
 | bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { | 
 |   bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX(); | 
 |   switch (MI->getOpcode()) { | 
 |   case X86::V_SET0: | 
 |   case X86::FsFLD0SS: | 
 |   case X86::FsFLD0SD: | 
 |     return Expand2AddrUndef(MI, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr)); | 
 |   case X86::TEST8ri_NOREX: | 
 |     MI->setDesc(get(X86::TEST8ri)); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | MachineInstr* | 
 | X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, | 
 |                                        int FrameIx, uint64_t Offset, | 
 |                                        const MDNode *MDPtr, | 
 |                                        DebugLoc DL) const { | 
 |   X86AddressMode AM; | 
 |   AM.BaseType = X86AddressMode::FrameIndexBase; | 
 |   AM.Base.FrameIndex = FrameIx; | 
 |   MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE)); | 
 |   addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr); | 
 |   return &*MIB; | 
 | } | 
 |  | 
 | static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, | 
 |                                      const SmallVectorImpl<MachineOperand> &MOs, | 
 |                                      MachineInstr *MI, | 
 |                                      const TargetInstrInfo &TII) { | 
 |   // Create the base instruction with the memory operand as the first part. | 
 |   MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), | 
 |                                               MI->getDebugLoc(), true); | 
 |   MachineInstrBuilder MIB(NewMI); | 
 |   unsigned NumAddrOps = MOs.size(); | 
 |   for (unsigned i = 0; i != NumAddrOps; ++i) | 
 |     MIB.addOperand(MOs[i]); | 
 |   if (NumAddrOps < 4)  // FrameIndex only | 
 |     addOffset(MIB, 0); | 
 |  | 
 |   // Loop over the rest of the ri operands, converting them over. | 
 |   unsigned NumOps = MI->getDesc().getNumOperands()-2; | 
 |   for (unsigned i = 0; i != NumOps; ++i) { | 
 |     MachineOperand &MO = MI->getOperand(i+2); | 
 |     MIB.addOperand(MO); | 
 |   } | 
 |   for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = MI->getOperand(i); | 
 |     MIB.addOperand(MO); | 
 |   } | 
 |   return MIB; | 
 | } | 
 |  | 
 | static MachineInstr *FuseInst(MachineFunction &MF, | 
 |                               unsigned Opcode, unsigned OpNo, | 
 |                               const SmallVectorImpl<MachineOperand> &MOs, | 
 |                               MachineInstr *MI, const TargetInstrInfo &TII) { | 
 |   MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), | 
 |                                               MI->getDebugLoc(), true); | 
 |   MachineInstrBuilder MIB(NewMI); | 
 |  | 
 |   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = MI->getOperand(i); | 
 |     if (i == OpNo) { | 
 |       assert(MO.isReg() && "Expected to fold into reg operand!"); | 
 |       unsigned NumAddrOps = MOs.size(); | 
 |       for (unsigned i = 0; i != NumAddrOps; ++i) | 
 |         MIB.addOperand(MOs[i]); | 
 |       if (NumAddrOps < 4)  // FrameIndex only | 
 |         addOffset(MIB, 0); | 
 |     } else { | 
 |       MIB.addOperand(MO); | 
 |     } | 
 |   } | 
 |   return MIB; | 
 | } | 
 |  | 
 | static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, | 
 |                                 const SmallVectorImpl<MachineOperand> &MOs, | 
 |                                 MachineInstr *MI) { | 
 |   MachineFunction &MF = *MI->getParent()->getParent(); | 
 |   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode)); | 
 |  | 
 |   unsigned NumAddrOps = MOs.size(); | 
 |   for (unsigned i = 0; i != NumAddrOps; ++i) | 
 |     MIB.addOperand(MOs[i]); | 
 |   if (NumAddrOps < 4)  // FrameIndex only | 
 |     addOffset(MIB, 0); | 
 |   return MIB.addImm(0); | 
 | } | 
 |  | 
 | MachineInstr* | 
 | X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, | 
 |                                     MachineInstr *MI, unsigned i, | 
 |                                     const SmallVectorImpl<MachineOperand> &MOs, | 
 |                                     unsigned Size, unsigned Align) const { | 
 |   const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0; | 
 |   bool isTwoAddrFold = false; | 
 |   unsigned NumOps = MI->getDesc().getNumOperands(); | 
 |   bool isTwoAddr = NumOps > 1 && | 
 |     MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; | 
 |  | 
 |   // FIXME: AsmPrinter doesn't know how to handle | 
 |   // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. | 
 |   if (MI->getOpcode() == X86::ADD32ri && | 
 |       MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) | 
 |     return NULL; | 
 |  | 
 |   MachineInstr *NewMI = NULL; | 
 |   // Folding a memory location into the two-address part of a two-address | 
 |   // instruction is different than folding it other places.  It requires | 
 |   // replacing the *two* registers with the memory location. | 
 |   if (isTwoAddr && NumOps >= 2 && i < 2 && | 
 |       MI->getOperand(0).isReg() && | 
 |       MI->getOperand(1).isReg() && | 
 |       MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { | 
 |     OpcodeTablePtr = &RegOp2MemOpTable2Addr; | 
 |     isTwoAddrFold = true; | 
 |   } else if (i == 0) { // If operand 0 | 
 |     if (MI->getOpcode() == X86::MOV64r0) | 
 |       NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI); | 
 |     else if (MI->getOpcode() == X86::MOV32r0) | 
 |       NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI); | 
 |     else if (MI->getOpcode() == X86::MOV16r0) | 
 |       NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI); | 
 |     else if (MI->getOpcode() == X86::MOV8r0) | 
 |       NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI); | 
 |     if (NewMI) | 
 |       return NewMI; | 
 |  | 
 |     OpcodeTablePtr = &RegOp2MemOpTable0; | 
 |   } else if (i == 1) { | 
 |     OpcodeTablePtr = &RegOp2MemOpTable1; | 
 |   } else if (i == 2) { | 
 |     OpcodeTablePtr = &RegOp2MemOpTable2; | 
 |   } | 
 |  | 
 |   // If table selected... | 
 |   if (OpcodeTablePtr) { | 
 |     // Find the Opcode to fuse | 
 |     DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = | 
 |       OpcodeTablePtr->find(MI->getOpcode()); | 
 |     if (I != OpcodeTablePtr->end()) { | 
 |       unsigned Opcode = I->second.first; | 
 |       unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT; | 
 |       if (Align < MinAlign) | 
 |         return NULL; | 
 |       bool NarrowToMOV32rm = false; | 
 |       if (Size) { | 
 |         unsigned RCSize = getRegClass(MI->getDesc(), i, &RI)->getSize(); | 
 |         if (Size < RCSize) { | 
 |           // Check if it's safe to fold the load. If the size of the object is | 
 |           // narrower than the load width, then it's not. | 
 |           if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) | 
 |             return NULL; | 
 |           // If this is a 64-bit load, but the spill slot is 32, then we can do | 
 |           // a 32-bit load which is implicitly zero-extended. This likely is due | 
 |           // to liveintervalanalysis remat'ing a load from stack slot. | 
 |           if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg()) | 
 |             return NULL; | 
 |           Opcode = X86::MOV32rm; | 
 |           NarrowToMOV32rm = true; | 
 |         } | 
 |       } | 
 |  | 
 |       if (isTwoAddrFold) | 
 |         NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this); | 
 |       else | 
 |         NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this); | 
 |  | 
 |       if (NarrowToMOV32rm) { | 
 |         // If this is the special case where we use a MOV32rm to load a 32-bit | 
 |         // value and zero-extend the top bits. Change the destination register | 
 |         // to a 32-bit one. | 
 |         unsigned DstReg = NewMI->getOperand(0).getReg(); | 
 |         if (TargetRegisterInfo::isPhysicalRegister(DstReg)) | 
 |           NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, | 
 |                                                    X86::sub_32bit)); | 
 |         else | 
 |           NewMI->getOperand(0).setSubReg(X86::sub_32bit); | 
 |       } | 
 |       return NewMI; | 
 |     } | 
 |   } | 
 |  | 
 |   // No fusion | 
 |   if (PrintFailedFusing && !MI->isCopy()) | 
 |     dbgs() << "We failed to fuse operand " << i << " in " << *MI; | 
 |   return NULL; | 
 | } | 
 |  | 
 | /// hasPartialRegUpdate - Return true for all instructions that only update | 
 | /// the first 32 or 64-bits of the destination register and leave the rest | 
 | /// unmodified. This can be used to avoid folding loads if the instructions | 
 | /// only update part of the destination register, and the non-updated part is | 
 | /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these | 
 | /// instructions breaks the partial register dependency and it can improve | 
 | /// performance. e.g.: | 
 | /// | 
 | ///   movss (%rdi), %xmm0 | 
 | ///   cvtss2sd %xmm0, %xmm0 | 
 | /// | 
 | /// Instead of | 
 | ///   cvtss2sd (%rdi), %xmm0 | 
 | /// | 
 | /// FIXME: This should be turned into a TSFlags. | 
 | /// | 
 | static bool hasPartialRegUpdate(unsigned Opcode) { | 
 |   switch (Opcode) { | 
 |   case X86::CVTSD2SSrr: | 
 |   case X86::Int_CVTSD2SSrr: | 
 |   case X86::CVTSS2SDrr: | 
 |   case X86::Int_CVTSS2SDrr: | 
 |   case X86::RCPSSr: | 
 |   case X86::RCPSSr_Int: | 
 |   case X86::ROUNDSDr: | 
 |   case X86::ROUNDSSr: | 
 |   case X86::RSQRTSSr: | 
 |   case X86::RSQRTSSr_Int: | 
 |   case X86::SQRTSSr: | 
 |   case X86::SQRTSSr_Int: | 
 |   // AVX encoded versions | 
 |   case X86::VCVTSD2SSrr: | 
 |   case X86::Int_VCVTSD2SSrr: | 
 |   case X86::VCVTSS2SDrr: | 
 |   case X86::Int_VCVTSS2SDrr: | 
 |   case X86::VRCPSSr: | 
 |   case X86::VROUNDSDr: | 
 |   case X86::VROUNDSSr: | 
 |   case X86::VRSQRTSSr: | 
 |   case X86::VSQRTSSr: | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, | 
 |                                                   MachineInstr *MI, | 
 |                                            const SmallVectorImpl<unsigned> &Ops, | 
 |                                                   int FrameIndex) const { | 
 |   // Check switch flag | 
 |   if (NoFusing) return NULL; | 
 |  | 
 |   // Unless optimizing for size, don't fold to avoid partial | 
 |   // register update stalls | 
 |   if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) && | 
 |       hasPartialRegUpdate(MI->getOpcode())) | 
 |     return 0; | 
 |  | 
 |   const MachineFrameInfo *MFI = MF.getFrameInfo(); | 
 |   unsigned Size = MFI->getObjectSize(FrameIndex); | 
 |   unsigned Alignment = MFI->getObjectAlignment(FrameIndex); | 
 |   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { | 
 |     unsigned NewOpc = 0; | 
 |     unsigned RCSize = 0; | 
 |     switch (MI->getOpcode()) { | 
 |     default: return NULL; | 
 |     case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break; | 
 |     case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break; | 
 |     case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break; | 
 |     case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break; | 
 |     } | 
 |     // Check if it's safe to fold the load. If the size of the object is | 
 |     // narrower than the load width, then it's not. | 
 |     if (Size < RCSize) | 
 |       return NULL; | 
 |     // Change to CMPXXri r, 0 first. | 
 |     MI->setDesc(get(NewOpc)); | 
 |     MI->getOperand(1).ChangeToImmediate(0); | 
 |   } else if (Ops.size() != 1) | 
 |     return NULL; | 
 |  | 
 |   SmallVector<MachineOperand,4> MOs; | 
 |   MOs.push_back(MachineOperand::CreateFI(FrameIndex)); | 
 |   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment); | 
 | } | 
 |  | 
 | MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, | 
 |                                                   MachineInstr *MI, | 
 |                                            const SmallVectorImpl<unsigned> &Ops, | 
 |                                                   MachineInstr *LoadMI) const { | 
 |   // Check switch flag | 
 |   if (NoFusing) return NULL; | 
 |  | 
 |   // Unless optimizing for size, don't fold to avoid partial | 
 |   // register update stalls | 
 |   if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) && | 
 |       hasPartialRegUpdate(MI->getOpcode())) | 
 |     return 0; | 
 |  | 
 |   // Determine the alignment of the load. | 
 |   unsigned Alignment = 0; | 
 |   if (LoadMI->hasOneMemOperand()) | 
 |     Alignment = (*LoadMI->memoperands_begin())->getAlignment(); | 
 |   else | 
 |     switch (LoadMI->getOpcode()) { | 
 |     case X86::AVX_SET0PSY: | 
 |     case X86::AVX_SET0PDY: | 
 |       Alignment = 32; | 
 |       break; | 
 |     case X86::V_SET0: | 
 |     case X86::V_SETALLONES: | 
 |     case X86::AVX_SETALLONES: | 
 |       Alignment = 16; | 
 |       break; | 
 |     case X86::FsFLD0SD: | 
 |       Alignment = 8; | 
 |       break; | 
 |     case X86::FsFLD0SS: | 
 |       Alignment = 4; | 
 |       break; | 
 |     default: | 
 |       return 0; | 
 |     } | 
 |   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { | 
 |     unsigned NewOpc = 0; | 
 |     switch (MI->getOpcode()) { | 
 |     default: return NULL; | 
 |     case X86::TEST8rr:  NewOpc = X86::CMP8ri; break; | 
 |     case X86::TEST16rr: NewOpc = X86::CMP16ri8; break; | 
 |     case X86::TEST32rr: NewOpc = X86::CMP32ri8; break; | 
 |     case X86::TEST64rr: NewOpc = X86::CMP64ri8; break; | 
 |     } | 
 |     // Change to CMPXXri r, 0 first. | 
 |     MI->setDesc(get(NewOpc)); | 
 |     MI->getOperand(1).ChangeToImmediate(0); | 
 |   } else if (Ops.size() != 1) | 
 |     return NULL; | 
 |  | 
 |   // Make sure the subregisters match. | 
 |   // Otherwise we risk changing the size of the load. | 
 |   if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg()) | 
 |     return NULL; | 
 |  | 
 |   SmallVector<MachineOperand,X86::AddrNumOperands> MOs; | 
 |   switch (LoadMI->getOpcode()) { | 
 |   case X86::V_SET0: | 
 |   case X86::V_SETALLONES: | 
 |   case X86::AVX_SET0PSY: | 
 |   case X86::AVX_SET0PDY: | 
 |   case X86::AVX_SETALLONES: | 
 |   case X86::FsFLD0SD: | 
 |   case X86::FsFLD0SS: { | 
 |     // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. | 
 |     // Create a constant-pool entry and operands to load from it. | 
 |  | 
 |     // Medium and large mode can't fold loads this way. | 
 |     if (TM.getCodeModel() != CodeModel::Small && | 
 |         TM.getCodeModel() != CodeModel::Kernel) | 
 |       return NULL; | 
 |  | 
 |     // x86-32 PIC requires a PIC base register for constant pools. | 
 |     unsigned PICBase = 0; | 
 |     if (TM.getRelocationModel() == Reloc::PIC_) { | 
 |       if (TM.getSubtarget<X86Subtarget>().is64Bit()) | 
 |         PICBase = X86::RIP; | 
 |       else | 
 |         // FIXME: PICBase = getGlobalBaseReg(&MF); | 
 |         // This doesn't work for several reasons. | 
 |         // 1. GlobalBaseReg may have been spilled. | 
 |         // 2. It may not be live at MI. | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     // Create a constant-pool entry. | 
 |     MachineConstantPool &MCP = *MF.getConstantPool(); | 
 |     Type *Ty; | 
 |     unsigned Opc = LoadMI->getOpcode(); | 
 |     if (Opc == X86::FsFLD0SS) | 
 |       Ty = Type::getFloatTy(MF.getFunction()->getContext()); | 
 |     else if (Opc == X86::FsFLD0SD) | 
 |       Ty = Type::getDoubleTy(MF.getFunction()->getContext()); | 
 |     else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY) | 
 |       Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8); | 
 |     else | 
 |       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4); | 
 |  | 
 |     bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX_SETALLONES); | 
 |     const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) : | 
 |                                     Constant::getNullValue(Ty); | 
 |     unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); | 
 |  | 
 |     // Create operands to load from the constant pool entry. | 
 |     MOs.push_back(MachineOperand::CreateReg(PICBase, false)); | 
 |     MOs.push_back(MachineOperand::CreateImm(1)); | 
 |     MOs.push_back(MachineOperand::CreateReg(0, false)); | 
 |     MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); | 
 |     MOs.push_back(MachineOperand::CreateReg(0, false)); | 
 |     break; | 
 |   } | 
 |   default: { | 
 |     // Folding a normal load. Just copy the load's address operands. | 
 |     unsigned NumOps = LoadMI->getDesc().getNumOperands(); | 
 |     for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) | 
 |       MOs.push_back(LoadMI->getOperand(i)); | 
 |     break; | 
 |   } | 
 |   } | 
 |   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment); | 
 | } | 
 |  | 
 |  | 
 | bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI, | 
 |                                   const SmallVectorImpl<unsigned> &Ops) const { | 
 |   // Check switch flag | 
 |   if (NoFusing) return 0; | 
 |  | 
 |   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { | 
 |     switch (MI->getOpcode()) { | 
 |     default: return false; | 
 |     case X86::TEST8rr: | 
 |     case X86::TEST16rr: | 
 |     case X86::TEST32rr: | 
 |     case X86::TEST64rr: | 
 |       return true; | 
 |     case X86::ADD32ri: | 
 |       // FIXME: AsmPrinter doesn't know how to handle | 
 |       // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. | 
 |       if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) | 
 |         return false; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   if (Ops.size() != 1) | 
 |     return false; | 
 |  | 
 |   unsigned OpNum = Ops[0]; | 
 |   unsigned Opc = MI->getOpcode(); | 
 |   unsigned NumOps = MI->getDesc().getNumOperands(); | 
 |   bool isTwoAddr = NumOps > 1 && | 
 |     MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; | 
 |  | 
 |   // Folding a memory location into the two-address part of a two-address | 
 |   // instruction is different than folding it other places.  It requires | 
 |   // replacing the *two* registers with the memory location. | 
 |   const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0; | 
 |   if (isTwoAddr && NumOps >= 2 && OpNum < 2) { | 
 |     OpcodeTablePtr = &RegOp2MemOpTable2Addr; | 
 |   } else if (OpNum == 0) { // If operand 0 | 
 |     switch (Opc) { | 
 |     case X86::MOV8r0: | 
 |     case X86::MOV16r0: | 
 |     case X86::MOV32r0: | 
 |     case X86::MOV64r0: return true; | 
 |     default: break; | 
 |     } | 
 |     OpcodeTablePtr = &RegOp2MemOpTable0; | 
 |   } else if (OpNum == 1) { | 
 |     OpcodeTablePtr = &RegOp2MemOpTable1; | 
 |   } else if (OpNum == 2) { | 
 |     OpcodeTablePtr = &RegOp2MemOpTable2; | 
 |   } | 
 |  | 
 |   if (OpcodeTablePtr && OpcodeTablePtr->count(Opc)) | 
 |     return true; | 
 |   return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops); | 
 | } | 
 |  | 
 | bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, | 
 |                                 unsigned Reg, bool UnfoldLoad, bool UnfoldStore, | 
 |                                 SmallVectorImpl<MachineInstr*> &NewMIs) const { | 
 |   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = | 
 |     MemOp2RegOpTable.find(MI->getOpcode()); | 
 |   if (I == MemOp2RegOpTable.end()) | 
 |     return false; | 
 |   unsigned Opc = I->second.first; | 
 |   unsigned Index = I->second.second & TB_INDEX_MASK; | 
 |   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; | 
 |   bool FoldedStore = I->second.second & TB_FOLDED_STORE; | 
 |   if (UnfoldLoad && !FoldedLoad) | 
 |     return false; | 
 |   UnfoldLoad &= FoldedLoad; | 
 |   if (UnfoldStore && !FoldedStore) | 
 |     return false; | 
 |   UnfoldStore &= FoldedStore; | 
 |  | 
 |   const MCInstrDesc &MCID = get(Opc); | 
 |   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI); | 
 |   if (!MI->hasOneMemOperand() && | 
 |       RC == &X86::VR128RegClass && | 
 |       !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) | 
 |     // Without memoperands, loadRegFromAddr and storeRegToStackSlot will | 
 |     // conservatively assume the address is unaligned. That's bad for | 
 |     // performance. | 
 |     return false; | 
 |   SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps; | 
 |   SmallVector<MachineOperand,2> BeforeOps; | 
 |   SmallVector<MachineOperand,2> AfterOps; | 
 |   SmallVector<MachineOperand,4> ImpOps; | 
 |   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &Op = MI->getOperand(i); | 
 |     if (i >= Index && i < Index + X86::AddrNumOperands) | 
 |       AddrOps.push_back(Op); | 
 |     else if (Op.isReg() && Op.isImplicit()) | 
 |       ImpOps.push_back(Op); | 
 |     else if (i < Index) | 
 |       BeforeOps.push_back(Op); | 
 |     else if (i > Index) | 
 |       AfterOps.push_back(Op); | 
 |   } | 
 |  | 
 |   // Emit the load instruction. | 
 |   if (UnfoldLoad) { | 
 |     std::pair<MachineInstr::mmo_iterator, | 
 |               MachineInstr::mmo_iterator> MMOs = | 
 |       MF.extractLoadMemRefs(MI->memoperands_begin(), | 
 |                             MI->memoperands_end()); | 
 |     loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs); | 
 |     if (UnfoldStore) { | 
 |       // Address operands cannot be marked isKill. | 
 |       for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { | 
 |         MachineOperand &MO = NewMIs[0]->getOperand(i); | 
 |         if (MO.isReg()) | 
 |           MO.setIsKill(false); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Emit the data processing instruction. | 
 |   MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true); | 
 |   MachineInstrBuilder MIB(DataMI); | 
 |  | 
 |   if (FoldedStore) | 
 |     MIB.addReg(Reg, RegState::Define); | 
 |   for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i) | 
 |     MIB.addOperand(BeforeOps[i]); | 
 |   if (FoldedLoad) | 
 |     MIB.addReg(Reg); | 
 |   for (unsigned i = 0, e = AfterOps.size(); i != e; ++i) | 
 |     MIB.addOperand(AfterOps[i]); | 
 |   for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) { | 
 |     MachineOperand &MO = ImpOps[i]; | 
 |     MIB.addReg(MO.getReg(), | 
 |                getDefRegState(MO.isDef()) | | 
 |                RegState::Implicit | | 
 |                getKillRegState(MO.isKill()) | | 
 |                getDeadRegState(MO.isDead()) | | 
 |                getUndefRegState(MO.isUndef())); | 
 |   } | 
 |   // Change CMP32ri r, 0 back to TEST32rr r, r, etc. | 
 |   unsigned NewOpc = 0; | 
 |   switch (DataMI->getOpcode()) { | 
 |   default: break; | 
 |   case X86::CMP64ri32: | 
 |   case X86::CMP64ri8: | 
 |   case X86::CMP32ri: | 
 |   case X86::CMP32ri8: | 
 |   case X86::CMP16ri: | 
 |   case X86::CMP16ri8: | 
 |   case X86::CMP8ri: { | 
 |     MachineOperand &MO0 = DataMI->getOperand(0); | 
 |     MachineOperand &MO1 = DataMI->getOperand(1); | 
 |     if (MO1.getImm() == 0) { | 
 |       switch (DataMI->getOpcode()) { | 
 |       default: break; | 
 |       case X86::CMP64ri8: | 
 |       case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; | 
 |       case X86::CMP32ri8: | 
 |       case X86::CMP32ri:   NewOpc = X86::TEST32rr; break; | 
 |       case X86::CMP16ri8: | 
 |       case X86::CMP16ri:   NewOpc = X86::TEST16rr; break; | 
 |       case X86::CMP8ri:    NewOpc = X86::TEST8rr; break; | 
 |       } | 
 |       DataMI->setDesc(get(NewOpc)); | 
 |       MO1.ChangeToRegister(MO0.getReg(), false); | 
 |     } | 
 |   } | 
 |   } | 
 |   NewMIs.push_back(DataMI); | 
 |  | 
 |   // Emit the store instruction. | 
 |   if (UnfoldStore) { | 
 |     const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI); | 
 |     std::pair<MachineInstr::mmo_iterator, | 
 |               MachineInstr::mmo_iterator> MMOs = | 
 |       MF.extractStoreMemRefs(MI->memoperands_begin(), | 
 |                              MI->memoperands_end()); | 
 |     storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool | 
 | X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, | 
 |                                   SmallVectorImpl<SDNode*> &NewNodes) const { | 
 |   if (!N->isMachineOpcode()) | 
 |     return false; | 
 |  | 
 |   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = | 
 |     MemOp2RegOpTable.find(N->getMachineOpcode()); | 
 |   if (I == MemOp2RegOpTable.end()) | 
 |     return false; | 
 |   unsigned Opc = I->second.first; | 
 |   unsigned Index = I->second.second & TB_INDEX_MASK; | 
 |   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; | 
 |   bool FoldedStore = I->second.second & TB_FOLDED_STORE; | 
 |   const MCInstrDesc &MCID = get(Opc); | 
 |   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI); | 
 |   unsigned NumDefs = MCID.NumDefs; | 
 |   std::vector<SDValue> AddrOps; | 
 |   std::vector<SDValue> BeforeOps; | 
 |   std::vector<SDValue> AfterOps; | 
 |   DebugLoc dl = N->getDebugLoc(); | 
 |   unsigned NumOps = N->getNumOperands(); | 
 |   for (unsigned i = 0; i != NumOps-1; ++i) { | 
 |     SDValue Op = N->getOperand(i); | 
 |     if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands) | 
 |       AddrOps.push_back(Op); | 
 |     else if (i < Index-NumDefs) | 
 |       BeforeOps.push_back(Op); | 
 |     else if (i > Index-NumDefs) | 
 |       AfterOps.push_back(Op); | 
 |   } | 
 |   SDValue Chain = N->getOperand(NumOps-1); | 
 |   AddrOps.push_back(Chain); | 
 |  | 
 |   // Emit the load instruction. | 
 |   SDNode *Load = 0; | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   if (FoldedLoad) { | 
 |     EVT VT = *RC->vt_begin(); | 
 |     std::pair<MachineInstr::mmo_iterator, | 
 |               MachineInstr::mmo_iterator> MMOs = | 
 |       MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), | 
 |                             cast<MachineSDNode>(N)->memoperands_end()); | 
 |     if (!(*MMOs.first) && | 
 |         RC == &X86::VR128RegClass && | 
 |         !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) | 
 |       // Do not introduce a slow unaligned load. | 
 |       return false; | 
 |     unsigned Alignment = RC->getSize() == 32 ? 32 : 16; | 
 |     bool isAligned = (*MMOs.first) && | 
 |                      (*MMOs.first)->getAlignment() >= Alignment; | 
 |     Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl, | 
 |                               VT, MVT::Other, &AddrOps[0], AddrOps.size()); | 
 |     NewNodes.push_back(Load); | 
 |  | 
 |     // Preserve memory reference information. | 
 |     cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second); | 
 |   } | 
 |  | 
 |   // Emit the data processing instruction. | 
 |   std::vector<EVT> VTs; | 
 |   const TargetRegisterClass *DstRC = 0; | 
 |   if (MCID.getNumDefs() > 0) { | 
 |     DstRC = getRegClass(MCID, 0, &RI); | 
 |     VTs.push_back(*DstRC->vt_begin()); | 
 |   } | 
 |   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { | 
 |     EVT VT = N->getValueType(i); | 
 |     if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) | 
 |       VTs.push_back(VT); | 
 |   } | 
 |   if (Load) | 
 |     BeforeOps.push_back(SDValue(Load, 0)); | 
 |   std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps)); | 
 |   SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0], | 
 |                                       BeforeOps.size()); | 
 |   NewNodes.push_back(NewNode); | 
 |  | 
 |   // Emit the store instruction. | 
 |   if (FoldedStore) { | 
 |     AddrOps.pop_back(); | 
 |     AddrOps.push_back(SDValue(NewNode, 0)); | 
 |     AddrOps.push_back(Chain); | 
 |     std::pair<MachineInstr::mmo_iterator, | 
 |               MachineInstr::mmo_iterator> MMOs = | 
 |       MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), | 
 |                              cast<MachineSDNode>(N)->memoperands_end()); | 
 |     if (!(*MMOs.first) && | 
 |         RC == &X86::VR128RegClass && | 
 |         !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) | 
 |       // Do not introduce a slow unaligned store. | 
 |       return false; | 
 |     unsigned Alignment = RC->getSize() == 32 ? 32 : 16; | 
 |     bool isAligned = (*MMOs.first) && | 
 |                      (*MMOs.first)->getAlignment() >= Alignment; | 
 |     SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC, | 
 |                                                          isAligned, TM), | 
 |                                        dl, MVT::Other, | 
 |                                        &AddrOps[0], AddrOps.size()); | 
 |     NewNodes.push_back(Store); | 
 |  | 
 |     // Preserve memory reference information. | 
 |     cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, | 
 |                                       bool UnfoldLoad, bool UnfoldStore, | 
 |                                       unsigned *LoadRegIndex) const { | 
 |   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = | 
 |     MemOp2RegOpTable.find(Opc); | 
 |   if (I == MemOp2RegOpTable.end()) | 
 |     return 0; | 
 |   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; | 
 |   bool FoldedStore = I->second.second & TB_FOLDED_STORE; | 
 |   if (UnfoldLoad && !FoldedLoad) | 
 |     return 0; | 
 |   if (UnfoldStore && !FoldedStore) | 
 |     return 0; | 
 |   if (LoadRegIndex) | 
 |     *LoadRegIndex = I->second.second & TB_INDEX_MASK; | 
 |   return I->second.first; | 
 | } | 
 |  | 
 | bool | 
 | X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, | 
 |                                      int64_t &Offset1, int64_t &Offset2) const { | 
 |   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) | 
 |     return false; | 
 |   unsigned Opc1 = Load1->getMachineOpcode(); | 
 |   unsigned Opc2 = Load2->getMachineOpcode(); | 
 |   switch (Opc1) { | 
 |   default: return false; | 
 |   case X86::MOV8rm: | 
 |   case X86::MOV16rm: | 
 |   case X86::MOV32rm: | 
 |   case X86::MOV64rm: | 
 |   case X86::LD_Fp32m: | 
 |   case X86::LD_Fp64m: | 
 |   case X86::LD_Fp80m: | 
 |   case X86::MOVSSrm: | 
 |   case X86::MOVSDrm: | 
 |   case X86::MMX_MOVD64rm: | 
 |   case X86::MMX_MOVQ64rm: | 
 |   case X86::FsMOVAPSrm: | 
 |   case X86::FsMOVAPDrm: | 
 |   case X86::MOVAPSrm: | 
 |   case X86::MOVUPSrm: | 
 |   case X86::MOVAPDrm: | 
 |   case X86::MOVDQArm: | 
 |   case X86::MOVDQUrm: | 
 |   // AVX load instructions | 
 |   case X86::VMOVSSrm: | 
 |   case X86::VMOVSDrm: | 
 |   case X86::FsVMOVAPSrm: | 
 |   case X86::FsVMOVAPDrm: | 
 |   case X86::VMOVAPSrm: | 
 |   case X86::VMOVUPSrm: | 
 |   case X86::VMOVAPDrm: | 
 |   case X86::VMOVDQArm: | 
 |   case X86::VMOVDQUrm: | 
 |   case X86::VMOVAPSYrm: | 
 |   case X86::VMOVUPSYrm: | 
 |   case X86::VMOVAPDYrm: | 
 |   case X86::VMOVDQAYrm: | 
 |   case X86::VMOVDQUYrm: | 
 |     break; | 
 |   } | 
 |   switch (Opc2) { | 
 |   default: return false; | 
 |   case X86::MOV8rm: | 
 |   case X86::MOV16rm: | 
 |   case X86::MOV32rm: | 
 |   case X86::MOV64rm: | 
 |   case X86::LD_Fp32m: | 
 |   case X86::LD_Fp64m: | 
 |   case X86::LD_Fp80m: | 
 |   case X86::MOVSSrm: | 
 |   case X86::MOVSDrm: | 
 |   case X86::MMX_MOVD64rm: | 
 |   case X86::MMX_MOVQ64rm: | 
 |   case X86::FsMOVAPSrm: | 
 |   case X86::FsMOVAPDrm: | 
 |   case X86::MOVAPSrm: | 
 |   case X86::MOVUPSrm: | 
 |   case X86::MOVAPDrm: | 
 |   case X86::MOVDQArm: | 
 |   case X86::MOVDQUrm: | 
 |   // AVX load instructions | 
 |   case X86::VMOVSSrm: | 
 |   case X86::VMOVSDrm: | 
 |   case X86::FsVMOVAPSrm: | 
 |   case X86::FsVMOVAPDrm: | 
 |   case X86::VMOVAPSrm: | 
 |   case X86::VMOVUPSrm: | 
 |   case X86::VMOVAPDrm: | 
 |   case X86::VMOVDQArm: | 
 |   case X86::VMOVDQUrm: | 
 |   case X86::VMOVAPSYrm: | 
 |   case X86::VMOVUPSYrm: | 
 |   case X86::VMOVAPDYrm: | 
 |   case X86::VMOVDQAYrm: | 
 |   case X86::VMOVDQUYrm: | 
 |     break; | 
 |   } | 
 |  | 
 |   // Check if chain operands and base addresses match. | 
 |   if (Load1->getOperand(0) != Load2->getOperand(0) || | 
 |       Load1->getOperand(5) != Load2->getOperand(5)) | 
 |     return false; | 
 |   // Segment operands should match as well. | 
 |   if (Load1->getOperand(4) != Load2->getOperand(4)) | 
 |     return false; | 
 |   // Scale should be 1, Index should be Reg0. | 
 |   if (Load1->getOperand(1) == Load2->getOperand(1) && | 
 |       Load1->getOperand(2) == Load2->getOperand(2)) { | 
 |     if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1) | 
 |       return false; | 
 |  | 
 |     // Now let's examine the displacements. | 
 |     if (isa<ConstantSDNode>(Load1->getOperand(3)) && | 
 |         isa<ConstantSDNode>(Load2->getOperand(3))) { | 
 |       Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue(); | 
 |       Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue(); | 
 |       return true; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, | 
 |                                            int64_t Offset1, int64_t Offset2, | 
 |                                            unsigned NumLoads) const { | 
 |   assert(Offset2 > Offset1); | 
 |   if ((Offset2 - Offset1) / 8 > 64) | 
 |     return false; | 
 |  | 
 |   unsigned Opc1 = Load1->getMachineOpcode(); | 
 |   unsigned Opc2 = Load2->getMachineOpcode(); | 
 |   if (Opc1 != Opc2) | 
 |     return false;  // FIXME: overly conservative? | 
 |  | 
 |   switch (Opc1) { | 
 |   default: break; | 
 |   case X86::LD_Fp32m: | 
 |   case X86::LD_Fp64m: | 
 |   case X86::LD_Fp80m: | 
 |   case X86::MMX_MOVD64rm: | 
 |   case X86::MMX_MOVQ64rm: | 
 |     return false; | 
 |   } | 
 |  | 
 |   EVT VT = Load1->getValueType(0); | 
 |   switch (VT.getSimpleVT().SimpleTy) { | 
 |   default: | 
 |     // XMM registers. In 64-bit mode we can be a bit more aggressive since we | 
 |     // have 16 of them to play with. | 
 |     if (TM.getSubtargetImpl()->is64Bit()) { | 
 |       if (NumLoads >= 3) | 
 |         return false; | 
 |     } else if (NumLoads) { | 
 |       return false; | 
 |     } | 
 |     break; | 
 |   case MVT::i8: | 
 |   case MVT::i16: | 
 |   case MVT::i32: | 
 |   case MVT::i64: | 
 |   case MVT::f32: | 
 |   case MVT::f64: | 
 |     if (NumLoads) | 
 |       return false; | 
 |     break; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | bool X86InstrInfo:: | 
 | ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { | 
 |   assert(Cond.size() == 1 && "Invalid X86 branch condition!"); | 
 |   X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); | 
 |   if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E) | 
 |     return true; | 
 |   Cond[0].setImm(GetOppositeBranchCondition(CC)); | 
 |   return false; | 
 | } | 
 |  | 
 | bool X86InstrInfo:: | 
 | isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { | 
 |   // FIXME: Return false for x87 stack register classes for now. We can't | 
 |   // allow any loads of these registers before FpGet_ST0_80. | 
 |   return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass || | 
 |            RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass); | 
 | } | 
 |  | 
 | /// getGlobalBaseReg - Return a virtual register initialized with the | 
 | /// the global base register value. Output instructions required to | 
 | /// initialize the register in the function entry block, if necessary. | 
 | /// | 
 | /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. | 
 | /// | 
 | unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { | 
 |   assert(!TM.getSubtarget<X86Subtarget>().is64Bit() && | 
 |          "X86-64 PIC uses RIP relative addressing"); | 
 |  | 
 |   X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); | 
 |   unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); | 
 |   if (GlobalBaseReg != 0) | 
 |     return GlobalBaseReg; | 
 |  | 
 |   // Create the register. The code to initialize it is inserted | 
 |   // later, by the CGBR pass (below). | 
 |   MachineRegisterInfo &RegInfo = MF->getRegInfo(); | 
 |   GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass); | 
 |   X86FI->setGlobalBaseReg(GlobalBaseReg); | 
 |   return GlobalBaseReg; | 
 | } | 
 |  | 
 | // These are the replaceable SSE instructions. Some of these have Int variants | 
 | // that we don't include here. We don't want to replace instructions selected | 
 | // by intrinsics. | 
 | static const unsigned ReplaceableInstrs[][3] = { | 
 |   //PackedSingle     PackedDouble    PackedInt | 
 |   { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  }, | 
 |   { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  }, | 
 |   { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  }, | 
 |   { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  }, | 
 |   { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  }, | 
 |   { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr }, | 
 |   { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   }, | 
 |   { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   }, | 
 |   { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    }, | 
 |   { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    }, | 
 |   { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     }, | 
 |   { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     }, | 
 |   { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    }, | 
 |   { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    }, | 
 |   // AVX 128-bit support | 
 |   { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  }, | 
 |   { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  }, | 
 |   { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  }, | 
 |   { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  }, | 
 |   { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  }, | 
 |   { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr }, | 
 |   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   }, | 
 |   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   }, | 
 |   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    }, | 
 |   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    }, | 
 |   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     }, | 
 |   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     }, | 
 |   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    }, | 
 |   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    }, | 
 |   // AVX 256-bit support | 
 |   { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  }, | 
 |   { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  }, | 
 |   { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  }, | 
 |   { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  }, | 
 |   { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  }, | 
 |   { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr }, | 
 | }; | 
 |  | 
 | // FIXME: Some shuffle and unpack instructions have equivalents in different | 
 | // domains, but they require a bit more work than just switching opcodes. | 
 |  | 
 | static const unsigned *lookup(unsigned opcode, unsigned domain) { | 
 |   for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i) | 
 |     if (ReplaceableInstrs[i][domain-1] == opcode) | 
 |       return ReplaceableInstrs[i]; | 
 |   return 0; | 
 | } | 
 |  | 
 | std::pair<uint16_t, uint16_t> | 
 | X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const { | 
 |   uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; | 
 |   return std::make_pair(domain, | 
 |                         domain && lookup(MI->getOpcode(), domain) ? 0xe : 0); | 
 | } | 
 |  | 
 | void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const { | 
 |   assert(Domain>0 && Domain<4 && "Invalid execution domain"); | 
 |   uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; | 
 |   assert(dom && "Not an SSE instruction"); | 
 |   const unsigned *table = lookup(MI->getOpcode(), dom); | 
 |   assert(table && "Cannot change domain"); | 
 |   MI->setDesc(get(table[Domain-1])); | 
 | } | 
 |  | 
 | /// getNoopForMachoTarget - Return the noop instruction to use for a noop. | 
 | void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { | 
 |   NopInst.setOpcode(X86::NOOP); | 
 | } | 
 |  | 
 | bool X86InstrInfo::isHighLatencyDef(int opc) const { | 
 |   switch (opc) { | 
 |   default: return false; | 
 |   case X86::DIVSDrm: | 
 |   case X86::DIVSDrm_Int: | 
 |   case X86::DIVSDrr: | 
 |   case X86::DIVSDrr_Int: | 
 |   case X86::DIVSSrm: | 
 |   case X86::DIVSSrm_Int: | 
 |   case X86::DIVSSrr: | 
 |   case X86::DIVSSrr_Int: | 
 |   case X86::SQRTPDm: | 
 |   case X86::SQRTPDm_Int: | 
 |   case X86::SQRTPDr: | 
 |   case X86::SQRTPDr_Int: | 
 |   case X86::SQRTPSm: | 
 |   case X86::SQRTPSm_Int: | 
 |   case X86::SQRTPSr: | 
 |   case X86::SQRTPSr_Int: | 
 |   case X86::SQRTSDm: | 
 |   case X86::SQRTSDm_Int: | 
 |   case X86::SQRTSDr: | 
 |   case X86::SQRTSDr_Int: | 
 |   case X86::SQRTSSm: | 
 |   case X86::SQRTSSm_Int: | 
 |   case X86::SQRTSSr: | 
 |   case X86::SQRTSSr_Int: | 
 |   // AVX instructions with high latency | 
 |   case X86::VDIVSDrm: | 
 |   case X86::VDIVSDrm_Int: | 
 |   case X86::VDIVSDrr: | 
 |   case X86::VDIVSDrr_Int: | 
 |   case X86::VDIVSSrm: | 
 |   case X86::VDIVSSrm_Int: | 
 |   case X86::VDIVSSrr: | 
 |   case X86::VDIVSSrr_Int: | 
 |   case X86::VSQRTPDm: | 
 |   case X86::VSQRTPDm_Int: | 
 |   case X86::VSQRTPDr: | 
 |   case X86::VSQRTPDr_Int: | 
 |   case X86::VSQRTPSm: | 
 |   case X86::VSQRTPSm_Int: | 
 |   case X86::VSQRTPSr: | 
 |   case X86::VSQRTPSr_Int: | 
 |   case X86::VSQRTSDm: | 
 |   case X86::VSQRTSDm_Int: | 
 |   case X86::VSQRTSDr: | 
 |   case X86::VSQRTSSm: | 
 |   case X86::VSQRTSSm_Int: | 
 |   case X86::VSQRTSSr: | 
 |     return true; | 
 |   } | 
 | } | 
 |  | 
 | bool X86InstrInfo:: | 
 | hasHighOperandLatency(const InstrItineraryData *ItinData, | 
 |                       const MachineRegisterInfo *MRI, | 
 |                       const MachineInstr *DefMI, unsigned DefIdx, | 
 |                       const MachineInstr *UseMI, unsigned UseIdx) const { | 
 |   return isHighLatencyDef(DefMI->getOpcode()); | 
 | } | 
 |  | 
 | namespace { | 
 |   /// CGBR - Create Global Base Reg pass. This initializes the PIC | 
 |   /// global base register for x86-32. | 
 |   struct CGBR : public MachineFunctionPass { | 
 |     static char ID; | 
 |     CGBR() : MachineFunctionPass(ID) {} | 
 |  | 
 |     virtual bool runOnMachineFunction(MachineFunction &MF) { | 
 |       const X86TargetMachine *TM = | 
 |         static_cast<const X86TargetMachine *>(&MF.getTarget()); | 
 |  | 
 |       assert(!TM->getSubtarget<X86Subtarget>().is64Bit() && | 
 |              "X86-64 PIC uses RIP relative addressing"); | 
 |  | 
 |       // Only emit a global base reg in PIC mode. | 
 |       if (TM->getRelocationModel() != Reloc::PIC_) | 
 |         return false; | 
 |  | 
 |       X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
 |       unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); | 
 |  | 
 |       // If we didn't need a GlobalBaseReg, don't insert code. | 
 |       if (GlobalBaseReg == 0) | 
 |         return false; | 
 |  | 
 |       // Insert the set of GlobalBaseReg into the first MBB of the function | 
 |       MachineBasicBlock &FirstMBB = MF.front(); | 
 |       MachineBasicBlock::iterator MBBI = FirstMBB.begin(); | 
 |       DebugLoc DL = FirstMBB.findDebugLoc(MBBI); | 
 |       MachineRegisterInfo &RegInfo = MF.getRegInfo(); | 
 |       const X86InstrInfo *TII = TM->getInstrInfo(); | 
 |  | 
 |       unsigned PC; | 
 |       if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) | 
 |         PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass); | 
 |       else | 
 |         PC = GlobalBaseReg; | 
 |  | 
 |       // Operand of MovePCtoStack is completely ignored by asm printer. It's | 
 |       // only used in JIT code emission as displacement to pc. | 
 |       BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); | 
 |  | 
 |       // If we're using vanilla 'GOT' PIC style, we should use relative addressing | 
 |       // not to pc, but to _GLOBAL_OFFSET_TABLE_ external. | 
 |       if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) { | 
 |         // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register | 
 |         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) | 
 |           .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_", | 
 |                                         X86II::MO_GOT_ABSOLUTE_ADDRESS); | 
 |       } | 
 |  | 
 |       return true; | 
 |     } | 
 |  | 
 |     virtual const char *getPassName() const { | 
 |       return "X86 PIC Global Base Reg Initialization"; | 
 |     } | 
 |  | 
 |     virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
 |       AU.setPreservesCFG(); | 
 |       MachineFunctionPass::getAnalysisUsage(AU); | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | char CGBR::ID = 0; | 
 | FunctionPass* | 
 | llvm::createGlobalBaseRegPass() { return new CGBR(); } |