| //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements some loop unrolling utilities for loops with run-time |
| // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time |
| // trip counts. |
| // |
| // The functions in this file are used to generate extra code when the |
| // run-time trip count modulo the unroll factor is not 0. When this is the |
| // case, we need to generate code to execute these 'left over' iterations. |
| // |
| // The current strategy generates an if-then-else sequence prior to the |
| // unrolled loop to execute the 'left over' iterations before or after the |
| // unrolled loop. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/LoopIterator.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| #include "llvm/Transforms/Utils/UnrollLoop.h" |
| #include <algorithm> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "loop-unroll" |
| |
| STATISTIC(NumRuntimeUnrolled, |
| "Number of loops unrolled with run-time trip counts"); |
| static cl::opt<bool> UnrollRuntimeMultiExit( |
| "unroll-runtime-multi-exit", cl::init(false), cl::Hidden, |
| cl::desc("Allow runtime unrolling for loops with multiple exits, when " |
| "epilog is generated")); |
| |
| /// Connect the unrolling prolog code to the original loop. |
| /// The unrolling prolog code contains code to execute the |
| /// 'extra' iterations if the run-time trip count modulo the |
| /// unroll count is non-zero. |
| /// |
| /// This function performs the following: |
| /// - Create PHI nodes at prolog end block to combine values |
| /// that exit the prolog code and jump around the prolog. |
| /// - Add a PHI operand to a PHI node at the loop exit block |
| /// for values that exit the prolog and go around the loop. |
| /// - Branch around the original loop if the trip count is less |
| /// than the unroll factor. |
| /// |
| static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, |
| BasicBlock *PrologExit, |
| BasicBlock *OriginalLoopLatchExit, |
| BasicBlock *PreHeader, BasicBlock *NewPreHeader, |
| ValueToValueMapTy &VMap, DominatorTree *DT, |
| LoopInfo *LI, bool PreserveLCSSA) { |
| BasicBlock *Latch = L->getLoopLatch(); |
| assert(Latch && "Loop must have a latch"); |
| BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); |
| |
| // Create a PHI node for each outgoing value from the original loop |
| // (which means it is an outgoing value from the prolog code too). |
| // The new PHI node is inserted in the prolog end basic block. |
| // The new PHI node value is added as an operand of a PHI node in either |
| // the loop header or the loop exit block. |
| for (BasicBlock *Succ : successors(Latch)) { |
| for (PHINode &PN : Succ->phis()) { |
| // Add a new PHI node to the prolog end block and add the |
| // appropriate incoming values. |
| PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", |
| PrologExit->getFirstNonPHI()); |
| // Adding a value to the new PHI node from the original loop preheader. |
| // This is the value that skips all the prolog code. |
| if (L->contains(&PN)) { |
| NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), |
| PreHeader); |
| } else { |
| NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader); |
| } |
| |
| Value *V = PN.getIncomingValueForBlock(Latch); |
| if (Instruction *I = dyn_cast<Instruction>(V)) { |
| if (L->contains(I)) { |
| V = VMap.lookup(I); |
| } |
| } |
| // Adding a value to the new PHI node from the last prolog block |
| // that was created. |
| NewPN->addIncoming(V, PrologLatch); |
| |
| // Update the existing PHI node operand with the value from the |
| // new PHI node. How this is done depends on if the existing |
| // PHI node is in the original loop block, or the exit block. |
| if (L->contains(&PN)) { |
| PN.setIncomingValue(PN.getBasicBlockIndex(NewPreHeader), NewPN); |
| } else { |
| PN.addIncoming(NewPN, PrologExit); |
| } |
| } |
| } |
| |
| // Make sure that created prolog loop is in simplified form |
| SmallVector<BasicBlock *, 4> PrologExitPreds; |
| Loop *PrologLoop = LI->getLoopFor(PrologLatch); |
| if (PrologLoop) { |
| for (BasicBlock *PredBB : predecessors(PrologExit)) |
| if (PrologLoop->contains(PredBB)) |
| PrologExitPreds.push_back(PredBB); |
| |
| SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, |
| PreserveLCSSA); |
| } |
| |
| // Create a branch around the original loop, which is taken if there are no |
| // iterations remaining to be executed after running the prologue. |
| Instruction *InsertPt = PrologExit->getTerminator(); |
| IRBuilder<> B(InsertPt); |
| |
| assert(Count != 0 && "nonsensical Count!"); |
| |
| // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) |
| // This means %xtraiter is (BECount + 1) and all of the iterations of this |
| // loop were executed by the prologue. Note that if BECount <u (Count - 1) |
| // then (BECount + 1) cannot unsigned-overflow. |
| Value *BrLoopExit = |
| B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); |
| // Split the exit to maintain loop canonicalization guarantees |
| SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit)); |
| SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI, |
| PreserveLCSSA); |
| // Add the branch to the exit block (around the unrolled loop) |
| B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader); |
| InsertPt->eraseFromParent(); |
| if (DT) |
| DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit); |
| } |
| |
| /// Connect the unrolling epilog code to the original loop. |
| /// The unrolling epilog code contains code to execute the |
| /// 'extra' iterations if the run-time trip count modulo the |
| /// unroll count is non-zero. |
| /// |
| /// This function performs the following: |
| /// - Update PHI nodes at the unrolling loop exit and epilog loop exit |
| /// - Create PHI nodes at the unrolling loop exit to combine |
| /// values that exit the unrolling loop code and jump around it. |
| /// - Update PHI operands in the epilog loop by the new PHI nodes |
| /// - Branch around the epilog loop if extra iters (ModVal) is zero. |
| /// |
| static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, |
| BasicBlock *Exit, BasicBlock *PreHeader, |
| BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, |
| ValueToValueMapTy &VMap, DominatorTree *DT, |
| LoopInfo *LI, bool PreserveLCSSA) { |
| BasicBlock *Latch = L->getLoopLatch(); |
| assert(Latch && "Loop must have a latch"); |
| BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); |
| |
| // Loop structure should be the following: |
| // |
| // PreHeader |
| // NewPreHeader |
| // Header |
| // ... |
| // Latch |
| // NewExit (PN) |
| // EpilogPreHeader |
| // EpilogHeader |
| // ... |
| // EpilogLatch |
| // Exit (EpilogPN) |
| |
| // Update PHI nodes at NewExit and Exit. |
| for (PHINode &PN : NewExit->phis()) { |
| // PN should be used in another PHI located in Exit block as |
| // Exit was split by SplitBlockPredecessors into Exit and NewExit |
| // Basicaly it should look like: |
| // NewExit: |
| // PN = PHI [I, Latch] |
| // ... |
| // Exit: |
| // EpilogPN = PHI [PN, EpilogPreHeader] |
| // |
| // There is EpilogPreHeader incoming block instead of NewExit as |
| // NewExit was spilt 1 more time to get EpilogPreHeader. |
| assert(PN.hasOneUse() && "The phi should have 1 use"); |
| PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser()); |
| assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); |
| |
| // Add incoming PreHeader from branch around the Loop |
| PN.addIncoming(UndefValue::get(PN.getType()), PreHeader); |
| |
| Value *V = PN.getIncomingValueForBlock(Latch); |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (I && L->contains(I)) |
| // If value comes from an instruction in the loop add VMap value. |
| V = VMap.lookup(I); |
| // For the instruction out of the loop, constant or undefined value |
| // insert value itself. |
| EpilogPN->addIncoming(V, EpilogLatch); |
| |
| assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && |
| "EpilogPN should have EpilogPreHeader incoming block"); |
| // Change EpilogPreHeader incoming block to NewExit. |
| EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), |
| NewExit); |
| // Now PHIs should look like: |
| // NewExit: |
| // PN = PHI [I, Latch], [undef, PreHeader] |
| // ... |
| // Exit: |
| // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] |
| } |
| |
| // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). |
| // Update corresponding PHI nodes in epilog loop. |
| for (BasicBlock *Succ : successors(Latch)) { |
| // Skip this as we already updated phis in exit blocks. |
| if (!L->contains(Succ)) |
| continue; |
| for (PHINode &PN : Succ->phis()) { |
| // Add new PHI nodes to the loop exit block and update epilog |
| // PHIs with the new PHI values. |
| PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", |
| NewExit->getFirstNonPHI()); |
| // Adding a value to the new PHI node from the unrolling loop preheader. |
| NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader); |
| // Adding a value to the new PHI node from the unrolling loop latch. |
| NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch); |
| |
| // Update the existing PHI node operand with the value from the new PHI |
| // node. Corresponding instruction in epilog loop should be PHI. |
| PHINode *VPN = cast<PHINode>(VMap[&PN]); |
| VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN); |
| } |
| } |
| |
| Instruction *InsertPt = NewExit->getTerminator(); |
| IRBuilder<> B(InsertPt); |
| Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); |
| assert(Exit && "Loop must have a single exit block only"); |
| // Split the epilogue exit to maintain loop canonicalization guarantees |
| SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); |
| SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, |
| PreserveLCSSA); |
| // Add the branch to the exit block (around the unrolling loop) |
| B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); |
| InsertPt->eraseFromParent(); |
| if (DT) |
| DT->changeImmediateDominator(Exit, NewExit); |
| |
| // Split the main loop exit to maintain canonicalization guarantees. |
| SmallVector<BasicBlock*, 4> NewExitPreds{Latch}; |
| SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, |
| PreserveLCSSA); |
| } |
| |
| /// Create a clone of the blocks in a loop and connect them together. |
| /// If CreateRemainderLoop is false, loop structure will not be cloned, |
| /// otherwise a new loop will be created including all cloned blocks, and the |
| /// iterator of it switches to count NewIter down to 0. |
| /// The cloned blocks should be inserted between InsertTop and InsertBot. |
| /// If loop structure is cloned InsertTop should be new preheader, InsertBot |
| /// new loop exit. |
| /// Return the new cloned loop that is created when CreateRemainderLoop is true. |
| static Loop * |
| CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop, |
| const bool UseEpilogRemainder, const bool UnrollRemainder, |
| BasicBlock *InsertTop, |
| BasicBlock *InsertBot, BasicBlock *Preheader, |
| std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, |
| ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) { |
| StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; |
| BasicBlock *Header = L->getHeader(); |
| BasicBlock *Latch = L->getLoopLatch(); |
| Function *F = Header->getParent(); |
| LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); |
| LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); |
| Loop *ParentLoop = L->getParentLoop(); |
| NewLoopsMap NewLoops; |
| NewLoops[ParentLoop] = ParentLoop; |
| if (!CreateRemainderLoop) |
| NewLoops[L] = ParentLoop; |
| |
| // For each block in the original loop, create a new copy, |
| // and update the value map with the newly created values. |
| for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { |
| BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); |
| NewBlocks.push_back(NewBB); |
| |
| // If we're unrolling the outermost loop, there's no remainder loop, |
| // and this block isn't in a nested loop, then the new block is not |
| // in any loop. Otherwise, add it to loopinfo. |
| if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop) |
| addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops); |
| |
| VMap[*BB] = NewBB; |
| if (Header == *BB) { |
| // For the first block, add a CFG connection to this newly |
| // created block. |
| InsertTop->getTerminator()->setSuccessor(0, NewBB); |
| } |
| |
| if (DT) { |
| if (Header == *BB) { |
| // The header is dominated by the preheader. |
| DT->addNewBlock(NewBB, InsertTop); |
| } else { |
| // Copy information from original loop to unrolled loop. |
| BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock(); |
| DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); |
| } |
| } |
| |
| if (Latch == *BB) { |
| // For the last block, if CreateRemainderLoop is false, create a direct |
| // jump to InsertBot. If not, create a loop back to cloned head. |
| VMap.erase((*BB)->getTerminator()); |
| BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); |
| BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); |
| IRBuilder<> Builder(LatchBR); |
| if (!CreateRemainderLoop) { |
| Builder.CreateBr(InsertBot); |
| } else { |
| PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, |
| suffix + ".iter", |
| FirstLoopBB->getFirstNonPHI()); |
| Value *IdxSub = |
| Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), |
| NewIdx->getName() + ".sub"); |
| Value *IdxCmp = |
| Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); |
| Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); |
| NewIdx->addIncoming(NewIter, InsertTop); |
| NewIdx->addIncoming(IdxSub, NewBB); |
| } |
| LatchBR->eraseFromParent(); |
| } |
| } |
| |
| // Change the incoming values to the ones defined in the preheader or |
| // cloned loop. |
| for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { |
| PHINode *NewPHI = cast<PHINode>(VMap[&*I]); |
| if (!CreateRemainderLoop) { |
| if (UseEpilogRemainder) { |
| unsigned idx = NewPHI->getBasicBlockIndex(Preheader); |
| NewPHI->setIncomingBlock(idx, InsertTop); |
| NewPHI->removeIncomingValue(Latch, false); |
| } else { |
| VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader); |
| cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); |
| } |
| } else { |
| unsigned idx = NewPHI->getBasicBlockIndex(Preheader); |
| NewPHI->setIncomingBlock(idx, InsertTop); |
| BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); |
| idx = NewPHI->getBasicBlockIndex(Latch); |
| Value *InVal = NewPHI->getIncomingValue(idx); |
| NewPHI->setIncomingBlock(idx, NewLatch); |
| if (Value *V = VMap.lookup(InVal)) |
| NewPHI->setIncomingValue(idx, V); |
| } |
| } |
| if (CreateRemainderLoop) { |
| Loop *NewLoop = NewLoops[L]; |
| assert(NewLoop && "L should have been cloned"); |
| |
| // Only add loop metadata if the loop is not going to be completely |
| // unrolled. |
| if (UnrollRemainder) |
| return NewLoop; |
| |
| // Add unroll disable metadata to disable future unrolling for this loop. |
| NewLoop->setLoopAlreadyUnrolled(); |
| return NewLoop; |
| } |
| else |
| return nullptr; |
| } |
| |
| /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits |
| /// is populated with all the loop exit blocks other than the LatchExit block. |
| static bool |
| canSafelyUnrollMultiExitLoop(Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, |
| BasicBlock *LatchExit, bool PreserveLCSSA, |
| bool UseEpilogRemainder) { |
| |
| // We currently have some correctness constrains in unrolling a multi-exit |
| // loop. Check for these below. |
| |
| // We rely on LCSSA form being preserved when the exit blocks are transformed. |
| if (!PreserveLCSSA) |
| return false; |
| SmallVector<BasicBlock *, 4> Exits; |
| L->getUniqueExitBlocks(Exits); |
| for (auto *BB : Exits) |
| if (BB != LatchExit) |
| OtherExits.push_back(BB); |
| |
| // TODO: Support multiple exiting blocks jumping to the `LatchExit` when |
| // UnrollRuntimeMultiExit is true. This will need updating the logic in |
| // connectEpilog/connectProlog. |
| if (!LatchExit->getSinglePredecessor()) { |
| LLVM_DEBUG( |
| dbgs() << "Bailout for multi-exit handling when latch exit has >1 " |
| "predecessor.\n"); |
| return false; |
| } |
| // FIXME: We bail out of multi-exit unrolling when epilog loop is generated |
| // and L is an inner loop. This is because in presence of multiple exits, the |
| // outer loop is incorrect: we do not add the EpilogPreheader and exit to the |
| // outer loop. This is automatically handled in the prolog case, so we do not |
| // have that bug in prolog generation. |
| if (UseEpilogRemainder && L->getParentLoop()) |
| return false; |
| |
| // All constraints have been satisfied. |
| return true; |
| } |
| |
| /// Returns true if we can profitably unroll the multi-exit loop L. Currently, |
| /// we return true only if UnrollRuntimeMultiExit is set to true. |
| static bool canProfitablyUnrollMultiExitLoop( |
| Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit, |
| bool PreserveLCSSA, bool UseEpilogRemainder) { |
| |
| #if !defined(NDEBUG) |
| SmallVector<BasicBlock *, 8> OtherExitsDummyCheck; |
| assert(canSafelyUnrollMultiExitLoop(L, OtherExitsDummyCheck, LatchExit, |
| PreserveLCSSA, UseEpilogRemainder) && |
| "Should be safe to unroll before checking profitability!"); |
| #endif |
| |
| // Priority goes to UnrollRuntimeMultiExit if it's supplied. |
| if (UnrollRuntimeMultiExit.getNumOccurrences()) |
| return UnrollRuntimeMultiExit; |
| |
| // The main pain point with multi-exit loop unrolling is that once unrolled, |
| // we will not be able to merge all blocks into a straight line code. |
| // There are branches within the unrolled loop that go to the OtherExits. |
| // The second point is the increase in code size, but this is true |
| // irrespective of multiple exits. |
| |
| // Note: Both the heuristics below are coarse grained. We are essentially |
| // enabling unrolling of loops that have a single side exit other than the |
| // normal LatchExit (i.e. exiting into a deoptimize block). |
| // The heuristics considered are: |
| // 1. low number of branches in the unrolled version. |
| // 2. high predictability of these extra branches. |
| // We avoid unrolling loops that have more than two exiting blocks. This |
| // limits the total number of branches in the unrolled loop to be atmost |
| // the unroll factor (since one of the exiting blocks is the latch block). |
| SmallVector<BasicBlock*, 4> ExitingBlocks; |
| L->getExitingBlocks(ExitingBlocks); |
| if (ExitingBlocks.size() > 2) |
| return false; |
| |
| // The second heuristic is that L has one exit other than the latchexit and |
| // that exit is a deoptimize block. We know that deoptimize blocks are rarely |
| // taken, which also implies the branch leading to the deoptimize block is |
| // highly predictable. |
| return (OtherExits.size() == 1 && |
| OtherExits[0]->getTerminatingDeoptimizeCall()); |
| // TODO: These can be fine-tuned further to consider code size or deopt states |
| // that are captured by the deoptimize exit block. |
| // Also, we can extend this to support more cases, if we actually |
| // know of kinds of multiexit loops that would benefit from unrolling. |
| } |
| |
| /// Insert code in the prolog/epilog code when unrolling a loop with a |
| /// run-time trip-count. |
| /// |
| /// This method assumes that the loop unroll factor is total number |
| /// of loop bodies in the loop after unrolling. (Some folks refer |
| /// to the unroll factor as the number of *extra* copies added). |
| /// We assume also that the loop unroll factor is a power-of-two. So, after |
| /// unrolling the loop, the number of loop bodies executed is 2, |
| /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch |
| /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for |
| /// the switch instruction is generated. |
| /// |
| /// ***Prolog case*** |
| /// extraiters = tripcount % loopfactor |
| /// if (extraiters == 0) jump Loop: |
| /// else jump Prol: |
| /// Prol: LoopBody; |
| /// extraiters -= 1 // Omitted if unroll factor is 2. |
| /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. |
| /// if (tripcount < loopfactor) jump End: |
| /// Loop: |
| /// ... |
| /// End: |
| /// |
| /// ***Epilog case*** |
| /// extraiters = tripcount % loopfactor |
| /// if (tripcount < loopfactor) jump LoopExit: |
| /// unroll_iters = tripcount - extraiters |
| /// Loop: LoopBody; (executes unroll_iter times); |
| /// unroll_iter -= 1 |
| /// if (unroll_iter != 0) jump Loop: |
| /// LoopExit: |
| /// if (extraiters == 0) jump EpilExit: |
| /// Epil: LoopBody; (executes extraiters times) |
| /// extraiters -= 1 // Omitted if unroll factor is 2. |
| /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. |
| /// EpilExit: |
| |
| bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count, |
| bool AllowExpensiveTripCount, |
| bool UseEpilogRemainder, |
| bool UnrollRemainder, |
| LoopInfo *LI, ScalarEvolution *SE, |
| DominatorTree *DT, AssumptionCache *AC, |
| bool PreserveLCSSA) { |
| LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n"); |
| LLVM_DEBUG(L->dump()); |
| LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n" |
| : dbgs() << "Using prolog remainder.\n"); |
| |
| // Make sure the loop is in canonical form. |
| if (!L->isLoopSimplifyForm()) { |
| LLVM_DEBUG(dbgs() << "Not in simplify form!\n"); |
| return false; |
| } |
| |
| // Guaranteed by LoopSimplifyForm. |
| BasicBlock *Latch = L->getLoopLatch(); |
| BasicBlock *Header = L->getHeader(); |
| |
| BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); |
| unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0; |
| BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex); |
| // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the |
| // targets of the Latch be an exit block out of the loop. This needs |
| // to be guaranteed by the callers of UnrollRuntimeLoopRemainder. |
| assert(!L->contains(LatchExit) && |
| "one of the loop latch successors should be the exit block!"); |
| // These are exit blocks other than the target of the latch exiting block. |
| SmallVector<BasicBlock *, 4> OtherExits; |
| bool isMultiExitUnrollingEnabled = |
| canSafelyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA, |
| UseEpilogRemainder) && |
| canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA, |
| UseEpilogRemainder); |
| // Support only single exit and exiting block unless multi-exit loop unrolling is enabled. |
| if (!isMultiExitUnrollingEnabled && |
| (!L->getExitingBlock() || OtherExits.size())) { |
| LLVM_DEBUG( |
| dbgs() |
| << "Multiple exit/exiting blocks in loop and multi-exit unrolling not " |
| "enabled!\n"); |
| return false; |
| } |
| // Use Scalar Evolution to compute the trip count. This allows more loops to |
| // be unrolled than relying on induction var simplification. |
| if (!SE) |
| return false; |
| |
| // Only unroll loops with a computable trip count, and the trip count needs |
| // to be an int value (allowing a pointer type is a TODO item). |
| // We calculate the backedge count by using getExitCount on the Latch block, |
| // which is proven to be the only exiting block in this loop. This is same as |
| // calculating getBackedgeTakenCount on the loop (which computes SCEV for all |
| // exiting blocks). |
| const SCEV *BECountSC = SE->getExitCount(L, Latch); |
| if (isa<SCEVCouldNotCompute>(BECountSC) || |
| !BECountSC->getType()->isIntegerTy()) { |
| LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n"); |
| return false; |
| } |
| |
| unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); |
| |
| // Add 1 since the backedge count doesn't include the first loop iteration. |
| const SCEV *TripCountSC = |
| SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); |
| if (isa<SCEVCouldNotCompute>(TripCountSC)) { |
| LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n"); |
| return false; |
| } |
| |
| BasicBlock *PreHeader = L->getLoopPreheader(); |
| BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); |
| const DataLayout &DL = Header->getModule()->getDataLayout(); |
| SCEVExpander Expander(*SE, DL, "loop-unroll"); |
| if (!AllowExpensiveTripCount && |
| Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) { |
| LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n"); |
| return false; |
| } |
| |
| // This constraint lets us deal with an overflowing trip count easily; see the |
| // comment on ModVal below. |
| if (Log2_32(Count) > BEWidth) { |
| LLVM_DEBUG( |
| dbgs() |
| << "Count failed constraint on overflow trip count calculation.\n"); |
| return false; |
| } |
| |
| // Loop structure is the following: |
| // |
| // PreHeader |
| // Header |
| // ... |
| // Latch |
| // LatchExit |
| |
| BasicBlock *NewPreHeader; |
| BasicBlock *NewExit = nullptr; |
| BasicBlock *PrologExit = nullptr; |
| BasicBlock *EpilogPreHeader = nullptr; |
| BasicBlock *PrologPreHeader = nullptr; |
| |
| if (UseEpilogRemainder) { |
| // If epilog remainder |
| // Split PreHeader to insert a branch around loop for unrolling. |
| NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); |
| NewPreHeader->setName(PreHeader->getName() + ".new"); |
| // Split LatchExit to create phi nodes from branch above. |
| SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit)); |
| NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa", |
| DT, LI, PreserveLCSSA); |
| // NewExit gets its DebugLoc from LatchExit, which is not part of the |
| // original Loop. |
| // Fix this by setting Loop's DebugLoc to NewExit. |
| auto *NewExitTerminator = NewExit->getTerminator(); |
| NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc()); |
| // Split NewExit to insert epilog remainder loop. |
| EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI); |
| EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); |
| } else { |
| // If prolog remainder |
| // Split the original preheader twice to insert prolog remainder loop |
| PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); |
| PrologPreHeader->setName(Header->getName() + ".prol.preheader"); |
| PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), |
| DT, LI); |
| PrologExit->setName(Header->getName() + ".prol.loopexit"); |
| // Split PrologExit to get NewPreHeader. |
| NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); |
| NewPreHeader->setName(PreHeader->getName() + ".new"); |
| } |
| // Loop structure should be the following: |
| // Epilog Prolog |
| // |
| // PreHeader PreHeader |
| // *NewPreHeader *PrologPreHeader |
| // Header *PrologExit |
| // ... *NewPreHeader |
| // Latch Header |
| // *NewExit ... |
| // *EpilogPreHeader Latch |
| // LatchExit LatchExit |
| |
| // Calculate conditions for branch around loop for unrolling |
| // in epilog case and around prolog remainder loop in prolog case. |
| // Compute the number of extra iterations required, which is: |
| // extra iterations = run-time trip count % loop unroll factor |
| PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); |
| Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), |
| PreHeaderBR); |
| Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), |
| PreHeaderBR); |
| IRBuilder<> B(PreHeaderBR); |
| Value *ModVal; |
| // Calculate ModVal = (BECount + 1) % Count. |
| // Note that TripCount is BECount + 1. |
| if (isPowerOf2_32(Count)) { |
| // When Count is power of 2 we don't BECount for epilog case, however we'll |
| // need it for a branch around unrolling loop for prolog case. |
| ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); |
| // 1. There are no iterations to be run in the prolog/epilog loop. |
| // OR |
| // 2. The addition computing TripCount overflowed. |
| // |
| // If (2) is true, we know that TripCount really is (1 << BEWidth) and so |
| // the number of iterations that remain to be run in the original loop is a |
| // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we |
| // explicitly check this above). |
| } else { |
| // As (BECount + 1) can potentially unsigned overflow we count |
| // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. |
| Value *ModValTmp = B.CreateURem(BECount, |
| ConstantInt::get(BECount->getType(), |
| Count)); |
| Value *ModValAdd = B.CreateAdd(ModValTmp, |
| ConstantInt::get(ModValTmp->getType(), 1)); |
| // At that point (BECount % Count) + 1 could be equal to Count. |
| // To handle this case we need to take mod by Count one more time. |
| ModVal = B.CreateURem(ModValAdd, |
| ConstantInt::get(BECount->getType(), Count), |
| "xtraiter"); |
| } |
| Value *BranchVal = |
| UseEpilogRemainder ? B.CreateICmpULT(BECount, |
| ConstantInt::get(BECount->getType(), |
| Count - 1)) : |
| B.CreateIsNotNull(ModVal, "lcmp.mod"); |
| BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; |
| BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; |
| // Branch to either remainder (extra iterations) loop or unrolling loop. |
| B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); |
| PreHeaderBR->eraseFromParent(); |
| if (DT) { |
| if (UseEpilogRemainder) |
| DT->changeImmediateDominator(NewExit, PreHeader); |
| else |
| DT->changeImmediateDominator(PrologExit, PreHeader); |
| } |
| Function *F = Header->getParent(); |
| // Get an ordered list of blocks in the loop to help with the ordering of the |
| // cloned blocks in the prolog/epilog code |
| LoopBlocksDFS LoopBlocks(L); |
| LoopBlocks.perform(LI); |
| |
| // |
| // For each extra loop iteration, create a copy of the loop's basic blocks |
| // and generate a condition that branches to the copy depending on the |
| // number of 'left over' iterations. |
| // |
| std::vector<BasicBlock *> NewBlocks; |
| ValueToValueMapTy VMap; |
| |
| // For unroll factor 2 remainder loop will have 1 iterations. |
| // Do not create 1 iteration loop. |
| bool CreateRemainderLoop = (Count != 2); |
| |
| // Clone all the basic blocks in the loop. If Count is 2, we don't clone |
| // the loop, otherwise we create a cloned loop to execute the extra |
| // iterations. This function adds the appropriate CFG connections. |
| BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit; |
| BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; |
| Loop *remainderLoop = CloneLoopBlocks( |
| L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder, |
| InsertTop, InsertBot, |
| NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI); |
| |
| // Insert the cloned blocks into the function. |
| F->getBasicBlockList().splice(InsertBot->getIterator(), |
| F->getBasicBlockList(), |
| NewBlocks[0]->getIterator(), |
| F->end()); |
| |
| // Now the loop blocks are cloned and the other exiting blocks from the |
| // remainder are connected to the original Loop's exit blocks. The remaining |
| // work is to update the phi nodes in the original loop, and take in the |
| // values from the cloned region. Also update the dominator info for |
| // OtherExits and their immediate successors, since we have new edges into |
| // OtherExits. |
| SmallPtrSet<BasicBlock*, 8> ImmediateSuccessorsOfExitBlocks; |
| for (auto *BB : OtherExits) { |
| for (auto &II : *BB) { |
| |
| // Given we preserve LCSSA form, we know that the values used outside the |
| // loop will be used through these phi nodes at the exit blocks that are |
| // transformed below. |
| if (!isa<PHINode>(II)) |
| break; |
| PHINode *Phi = cast<PHINode>(&II); |
| unsigned oldNumOperands = Phi->getNumIncomingValues(); |
| // Add the incoming values from the remainder code to the end of the phi |
| // node. |
| for (unsigned i =0; i < oldNumOperands; i++){ |
| Value *newVal = VMap.lookup(Phi->getIncomingValue(i)); |
| // newVal can be a constant or derived from values outside the loop, and |
| // hence need not have a VMap value. Also, since lookup already generated |
| // a default "null" VMap entry for this value, we need to populate that |
| // VMap entry correctly, with the mapped entry being itself. |
| if (!newVal) { |
| newVal = Phi->getIncomingValue(i); |
| VMap[Phi->getIncomingValue(i)] = Phi->getIncomingValue(i); |
| } |
| Phi->addIncoming(newVal, |
| cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)])); |
| } |
| } |
| #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) |
| for (BasicBlock *SuccBB : successors(BB)) { |
| assert(!(any_of(OtherExits, |
| [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) || |
| SuccBB == LatchExit) && |
| "Breaks the definition of dedicated exits!"); |
| } |
| #endif |
| // Update the dominator info because the immediate dominator is no longer the |
| // header of the original Loop. BB has edges both from L and remainder code. |
| // Since the preheader determines which loop is run (L or directly jump to |
| // the remainder code), we set the immediate dominator as the preheader. |
| if (DT) { |
| DT->changeImmediateDominator(BB, PreHeader); |
| // Also update the IDom for immediate successors of BB. If the current |
| // IDom is the header, update the IDom to be the preheader because that is |
| // the nearest common dominator of all predecessors of SuccBB. We need to |
| // check for IDom being the header because successors of exit blocks can |
| // have edges from outside the loop, and we should not incorrectly update |
| // the IDom in that case. |
| for (BasicBlock *SuccBB: successors(BB)) |
| if (ImmediateSuccessorsOfExitBlocks.insert(SuccBB).second) { |
| if (DT->getNode(SuccBB)->getIDom()->getBlock() == Header) { |
| assert(!SuccBB->getSinglePredecessor() && |
| "BB should be the IDom then!"); |
| DT->changeImmediateDominator(SuccBB, PreHeader); |
| } |
| } |
| } |
| } |
| |
| // Loop structure should be the following: |
| // Epilog Prolog |
| // |
| // PreHeader PreHeader |
| // NewPreHeader PrologPreHeader |
| // Header PrologHeader |
| // ... ... |
| // Latch PrologLatch |
| // NewExit PrologExit |
| // EpilogPreHeader NewPreHeader |
| // EpilogHeader Header |
| // ... ... |
| // EpilogLatch Latch |
| // LatchExit LatchExit |
| |
| // Rewrite the cloned instruction operands to use the values created when the |
| // clone is created. |
| for (BasicBlock *BB : NewBlocks) { |
| for (Instruction &I : *BB) { |
| RemapInstruction(&I, VMap, |
| RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); |
| } |
| } |
| |
| if (UseEpilogRemainder) { |
| // Connect the epilog code to the original loop and update the |
| // PHI functions. |
| ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, |
| EpilogPreHeader, NewPreHeader, VMap, DT, LI, |
| PreserveLCSSA); |
| |
| // Update counter in loop for unrolling. |
| // I should be multiply of Count. |
| IRBuilder<> B2(NewPreHeader->getTerminator()); |
| Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); |
| BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); |
| B2.SetInsertPoint(LatchBR); |
| PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", |
| Header->getFirstNonPHI()); |
| Value *IdxSub = |
| B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), |
| NewIdx->getName() + ".nsub"); |
| Value *IdxCmp; |
| if (LatchBR->getSuccessor(0) == Header) |
| IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp"); |
| else |
| IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp"); |
| NewIdx->addIncoming(TestVal, NewPreHeader); |
| NewIdx->addIncoming(IdxSub, Latch); |
| LatchBR->setCondition(IdxCmp); |
| } else { |
| // Connect the prolog code to the original loop and update the |
| // PHI functions. |
| ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader, |
| NewPreHeader, VMap, DT, LI, PreserveLCSSA); |
| } |
| |
| // If this loop is nested, then the loop unroller changes the code in the any |
| // of its parent loops, so the Scalar Evolution pass needs to be run again. |
| SE->forgetTopmostLoop(L); |
| |
| // Canonicalize to LoopSimplifyForm both original and remainder loops. We |
| // cannot rely on the LoopUnrollPass to do this because it only does |
| // canonicalization for parent/subloops and not the sibling loops. |
| if (OtherExits.size() > 0) { |
| // Generate dedicated exit blocks for the original loop, to preserve |
| // LoopSimplifyForm. |
| formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA); |
| // Generate dedicated exit blocks for the remainder loop if one exists, to |
| // preserve LoopSimplifyForm. |
| if (remainderLoop) |
| formDedicatedExitBlocks(remainderLoop, DT, LI, PreserveLCSSA); |
| } |
| |
| if (remainderLoop && UnrollRemainder) { |
| LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n"); |
| UnrollLoop(remainderLoop, /*Count*/ Count - 1, /*TripCount*/ Count - 1, |
| /*Force*/ false, /*AllowRuntime*/ false, |
| /*AllowExpensiveTripCount*/ false, /*PreserveCondBr*/ true, |
| /*PreserveOnlyFirst*/ false, /*TripMultiple*/ 1, |
| /*PeelCount*/ 0, /*UnrollRemainder*/ false, LI, SE, DT, AC, |
| /*ORE*/ nullptr, PreserveLCSSA); |
| } |
| |
| NumRuntimeUnrolled++; |
| return true; |
| } |