| //===-- LoopUnrollAndJam.cpp - Loop unrolling utilities -------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements loop unroll and jam as a routine, much like |
| // LoopUnroll.cpp implements loop unroll. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/DependenceAnalysis.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LoopAnalysisManager.h" |
| #include "llvm/Analysis/LoopIterator.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/Analysis/Utils/Local.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/Transforms/Utils/LoopSimplify.h" |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| #include "llvm/Transforms/Utils/SimplifyIndVar.h" |
| #include "llvm/Transforms/Utils/UnrollLoop.h" |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "loop-unroll-and-jam" |
| |
| STATISTIC(NumUnrolledAndJammed, "Number of loops unroll and jammed"); |
| STATISTIC(NumCompletelyUnrolledAndJammed, "Number of loops unroll and jammed"); |
| |
| typedef SmallPtrSet<BasicBlock *, 4> BasicBlockSet; |
| |
| // Partition blocks in an outer/inner loop pair into blocks before and after |
| // the loop |
| static bool partitionOuterLoopBlocks(Loop *L, Loop *SubLoop, |
| BasicBlockSet &ForeBlocks, |
| BasicBlockSet &SubLoopBlocks, |
| BasicBlockSet &AftBlocks, |
| DominatorTree *DT) { |
| BasicBlock *SubLoopLatch = SubLoop->getLoopLatch(); |
| SubLoopBlocks.insert(SubLoop->block_begin(), SubLoop->block_end()); |
| |
| for (BasicBlock *BB : L->blocks()) { |
| if (!SubLoop->contains(BB)) { |
| if (DT->dominates(SubLoopLatch, BB)) |
| AftBlocks.insert(BB); |
| else |
| ForeBlocks.insert(BB); |
| } |
| } |
| |
| // Check that all blocks in ForeBlocks together dominate the subloop |
| // TODO: This might ideally be done better with a dominator/postdominators. |
| BasicBlock *SubLoopPreHeader = SubLoop->getLoopPreheader(); |
| for (BasicBlock *BB : ForeBlocks) { |
| if (BB == SubLoopPreHeader) |
| continue; |
| TerminatorInst *TI = BB->getTerminator(); |
| for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) |
| if (!ForeBlocks.count(TI->getSuccessor(i))) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Looks at the phi nodes in Header for values coming from Latch. For these |
| // instructions and all their operands calls Visit on them, keeping going for |
| // all the operands in AftBlocks. Returns false if Visit returns false, |
| // otherwise returns true. This is used to process the instructions in the |
| // Aft blocks that need to be moved before the subloop. It is used in two |
| // places. One to check that the required set of instructions can be moved |
| // before the loop. Then to collect the instructions to actually move in |
| // moveHeaderPhiOperandsToForeBlocks. |
| template <typename T> |
| static bool processHeaderPhiOperands(BasicBlock *Header, BasicBlock *Latch, |
| BasicBlockSet &AftBlocks, T Visit) { |
| SmallVector<Instruction *, 8> Worklist; |
| for (auto &Phi : Header->phis()) { |
| Value *V = Phi.getIncomingValueForBlock(Latch); |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| Worklist.push_back(I); |
| } |
| |
| while (!Worklist.empty()) { |
| Instruction *I = Worklist.back(); |
| Worklist.pop_back(); |
| if (!Visit(I)) |
| return false; |
| |
| if (AftBlocks.count(I->getParent())) |
| for (auto &U : I->operands()) |
| if (Instruction *II = dyn_cast<Instruction>(U)) |
| Worklist.push_back(II); |
| } |
| |
| return true; |
| } |
| |
| // Move the phi operands of Header from Latch out of AftBlocks to InsertLoc. |
| static void moveHeaderPhiOperandsToForeBlocks(BasicBlock *Header, |
| BasicBlock *Latch, |
| Instruction *InsertLoc, |
| BasicBlockSet &AftBlocks) { |
| // We need to ensure we move the instructions in the correct order, |
| // starting with the earliest required instruction and moving forward. |
| std::vector<Instruction *> Visited; |
| processHeaderPhiOperands(Header, Latch, AftBlocks, |
| [&Visited, &AftBlocks](Instruction *I) { |
| if (AftBlocks.count(I->getParent())) |
| Visited.push_back(I); |
| return true; |
| }); |
| |
| // Move all instructions in program order to before the InsertLoc |
| BasicBlock *InsertLocBB = InsertLoc->getParent(); |
| for (Instruction *I : reverse(Visited)) { |
| if (I->getParent() != InsertLocBB) |
| I->moveBefore(InsertLoc); |
| } |
| } |
| |
| /* |
| This method performs Unroll and Jam. For a simple loop like: |
| for (i = ..) |
| Fore(i) |
| for (j = ..) |
| SubLoop(i, j) |
| Aft(i) |
| |
| Instead of doing normal inner or outer unrolling, we do: |
| for (i = .., i+=2) |
| Fore(i) |
| Fore(i+1) |
| for (j = ..) |
| SubLoop(i, j) |
| SubLoop(i+1, j) |
| Aft(i) |
| Aft(i+1) |
| |
| So the outer loop is essetially unrolled and then the inner loops are fused |
| ("jammed") together into a single loop. This can increase speed when there |
| are loads in SubLoop that are invariant to i, as they become shared between |
| the now jammed inner loops. |
| |
| We do this by spliting the blocks in the loop into Fore, Subloop and Aft. |
| Fore blocks are those before the inner loop, Aft are those after. Normal |
| Unroll code is used to copy each of these sets of blocks and the results are |
| combined together into the final form above. |
| |
| isSafeToUnrollAndJam should be used prior to calling this to make sure the |
| unrolling will be valid. Checking profitablility is also advisable. |
| */ |
| LoopUnrollResult |
| llvm::UnrollAndJamLoop(Loop *L, unsigned Count, unsigned TripCount, |
| unsigned TripMultiple, bool UnrollRemainder, |
| LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, |
| AssumptionCache *AC, OptimizationRemarkEmitter *ORE) { |
| |
| // When we enter here we should have already checked that it is safe |
| BasicBlock *Header = L->getHeader(); |
| assert(L->getSubLoops().size() == 1); |
| Loop *SubLoop = *L->begin(); |
| |
| // Don't enter the unroll code if there is nothing to do. |
| if (TripCount == 0 && Count < 2) { |
| LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); |
| return LoopUnrollResult::Unmodified; |
| } |
| |
| assert(Count > 0); |
| assert(TripMultiple > 0); |
| assert(TripCount == 0 || TripCount % TripMultiple == 0); |
| |
| // Are we eliminating the loop control altogether? |
| bool CompletelyUnroll = (Count == TripCount); |
| |
| // We use the runtime remainder in cases where we don't know trip multiple |
| if (TripMultiple == 1 || TripMultiple % Count != 0) { |
| if (!UnrollRuntimeLoopRemainder(L, Count, /*AllowExpensiveTripCount*/ false, |
| /*UseEpilogRemainder*/ true, |
| UnrollRemainder, LI, SE, DT, AC, true)) { |
| LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; remainder loop could not be " |
| "generated when assuming runtime trip count\n"); |
| return LoopUnrollResult::Unmodified; |
| } |
| } |
| |
| // Notify ScalarEvolution that the loop will be substantially changed, |
| // if not outright eliminated. |
| if (SE) { |
| SE->forgetLoop(L); |
| SE->forgetLoop(SubLoop); |
| } |
| |
| using namespace ore; |
| // Report the unrolling decision. |
| if (CompletelyUnroll) { |
| LLVM_DEBUG(dbgs() << "COMPLETELY UNROLL AND JAMMING loop %" |
| << Header->getName() << " with trip count " << TripCount |
| << "!\n"); |
| ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), |
| L->getHeader()) |
| << "completely unroll and jammed loop with " |
| << NV("UnrollCount", TripCount) << " iterations"); |
| } else { |
| auto DiagBuilder = [&]() { |
| OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), |
| L->getHeader()); |
| return Diag << "unroll and jammed loop by a factor of " |
| << NV("UnrollCount", Count); |
| }; |
| |
| LLVM_DEBUG(dbgs() << "UNROLL AND JAMMING loop %" << Header->getName() |
| << " by " << Count); |
| if (TripMultiple != 1) { |
| LLVM_DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); |
| ORE->emit([&]() { |
| return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple) |
| << " trips per branch"; |
| }); |
| } else { |
| LLVM_DEBUG(dbgs() << " with run-time trip count"); |
| ORE->emit([&]() { return DiagBuilder() << " with run-time trip count"; }); |
| } |
| LLVM_DEBUG(dbgs() << "!\n"); |
| } |
| |
| BasicBlock *Preheader = L->getLoopPreheader(); |
| BasicBlock *LatchBlock = L->getLoopLatch(); |
| BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); |
| assert(Preheader && LatchBlock && Header); |
| assert(BI && !BI->isUnconditional()); |
| bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); |
| BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); |
| bool SubLoopContinueOnTrue = SubLoop->contains( |
| SubLoop->getLoopLatch()->getTerminator()->getSuccessor(0)); |
| |
| // Partition blocks in an outer/inner loop pair into blocks before and after |
| // the loop |
| BasicBlockSet SubLoopBlocks; |
| BasicBlockSet ForeBlocks; |
| BasicBlockSet AftBlocks; |
| partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks, AftBlocks, |
| DT); |
| |
| // We keep track of the entering/first and exiting/last block of each of |
| // Fore/SubLoop/Aft in each iteration. This helps make the stapling up of |
| // blocks easier. |
| std::vector<BasicBlock *> ForeBlocksFirst; |
| std::vector<BasicBlock *> ForeBlocksLast; |
| std::vector<BasicBlock *> SubLoopBlocksFirst; |
| std::vector<BasicBlock *> SubLoopBlocksLast; |
| std::vector<BasicBlock *> AftBlocksFirst; |
| std::vector<BasicBlock *> AftBlocksLast; |
| ForeBlocksFirst.push_back(Header); |
| ForeBlocksLast.push_back(SubLoop->getLoopPreheader()); |
| SubLoopBlocksFirst.push_back(SubLoop->getHeader()); |
| SubLoopBlocksLast.push_back(SubLoop->getExitingBlock()); |
| AftBlocksFirst.push_back(SubLoop->getExitBlock()); |
| AftBlocksLast.push_back(L->getExitingBlock()); |
| // Maps Blocks[0] -> Blocks[It] |
| ValueToValueMapTy LastValueMap; |
| |
| // Move any instructions from fore phi operands from AftBlocks into Fore. |
| moveHeaderPhiOperandsToForeBlocks( |
| Header, LatchBlock, SubLoop->getLoopPreheader()->getTerminator(), |
| AftBlocks); |
| |
| // The current on-the-fly SSA update requires blocks to be processed in |
| // reverse postorder so that LastValueMap contains the correct value at each |
| // exit. |
| LoopBlocksDFS DFS(L); |
| DFS.perform(LI); |
| // Stash the DFS iterators before adding blocks to the loop. |
| LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); |
| LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); |
| |
| if (Header->getParent()->isDebugInfoForProfiling()) |
| for (BasicBlock *BB : L->getBlocks()) |
| for (Instruction &I : *BB) |
| if (!isa<DbgInfoIntrinsic>(&I)) |
| if (const DILocation *DIL = I.getDebugLoc()) |
| I.setDebugLoc(DIL->cloneWithDuplicationFactor(Count)); |
| |
| // Copy all blocks |
| for (unsigned It = 1; It != Count; ++It) { |
| std::vector<BasicBlock *> NewBlocks; |
| // Maps Blocks[It] -> Blocks[It-1] |
| DenseMap<Value *, Value *> PrevItValueMap; |
| |
| for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { |
| ValueToValueMapTy VMap; |
| BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); |
| Header->getParent()->getBasicBlockList().push_back(New); |
| |
| if (ForeBlocks.count(*BB)) { |
| L->addBasicBlockToLoop(New, *LI); |
| |
| if (*BB == ForeBlocksFirst[0]) |
| ForeBlocksFirst.push_back(New); |
| if (*BB == ForeBlocksLast[0]) |
| ForeBlocksLast.push_back(New); |
| } else if (SubLoopBlocks.count(*BB)) { |
| SubLoop->addBasicBlockToLoop(New, *LI); |
| |
| if (*BB == SubLoopBlocksFirst[0]) |
| SubLoopBlocksFirst.push_back(New); |
| if (*BB == SubLoopBlocksLast[0]) |
| SubLoopBlocksLast.push_back(New); |
| } else if (AftBlocks.count(*BB)) { |
| L->addBasicBlockToLoop(New, *LI); |
| |
| if (*BB == AftBlocksFirst[0]) |
| AftBlocksFirst.push_back(New); |
| if (*BB == AftBlocksLast[0]) |
| AftBlocksLast.push_back(New); |
| } else { |
| llvm_unreachable("BB being cloned should be in Fore/Sub/Aft"); |
| } |
| |
| // Update our running maps of newest clones |
| PrevItValueMap[New] = (It == 1 ? *BB : LastValueMap[*BB]); |
| LastValueMap[*BB] = New; |
| for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); |
| VI != VE; ++VI) { |
| PrevItValueMap[VI->second] = |
| const_cast<Value *>(It == 1 ? VI->first : LastValueMap[VI->first]); |
| LastValueMap[VI->first] = VI->second; |
| } |
| |
| NewBlocks.push_back(New); |
| |
| // Update DomTree: |
| if (*BB == ForeBlocksFirst[0]) |
| DT->addNewBlock(New, ForeBlocksLast[It - 1]); |
| else if (*BB == SubLoopBlocksFirst[0]) |
| DT->addNewBlock(New, SubLoopBlocksLast[It - 1]); |
| else if (*BB == AftBlocksFirst[0]) |
| DT->addNewBlock(New, AftBlocksLast[It - 1]); |
| else { |
| // Each set of blocks (Fore/Sub/Aft) will have the same internal domtree |
| // structure. |
| auto BBDomNode = DT->getNode(*BB); |
| auto BBIDom = BBDomNode->getIDom(); |
| BasicBlock *OriginalBBIDom = BBIDom->getBlock(); |
| assert(OriginalBBIDom); |
| assert(LastValueMap[cast<Value>(OriginalBBIDom)]); |
| DT->addNewBlock( |
| New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); |
| } |
| } |
| |
| // Remap all instructions in the most recent iteration |
| for (BasicBlock *NewBlock : NewBlocks) { |
| for (Instruction &I : *NewBlock) { |
| ::remapInstruction(&I, LastValueMap); |
| if (auto *II = dyn_cast<IntrinsicInst>(&I)) |
| if (II->getIntrinsicID() == Intrinsic::assume) |
| AC->registerAssumption(II); |
| } |
| } |
| |
| // Alter the ForeBlocks phi's, pointing them at the latest version of the |
| // value from the previous iteration's phis |
| for (PHINode &Phi : ForeBlocksFirst[It]->phis()) { |
| Value *OldValue = Phi.getIncomingValueForBlock(AftBlocksLast[It]); |
| assert(OldValue && "should have incoming edge from Aft[It]"); |
| Value *NewValue = OldValue; |
| if (Value *PrevValue = PrevItValueMap[OldValue]) |
| NewValue = PrevValue; |
| |
| assert(Phi.getNumOperands() == 2); |
| Phi.setIncomingBlock(0, ForeBlocksLast[It - 1]); |
| Phi.setIncomingValue(0, NewValue); |
| Phi.removeIncomingValue(1); |
| } |
| } |
| |
| // Now that all the basic blocks for the unrolled iterations are in place, |
| // finish up connecting the blocks and phi nodes. At this point LastValueMap |
| // is the last unrolled iterations values. |
| |
| // Update Phis in BB from OldBB to point to NewBB |
| auto updatePHIBlocks = [](BasicBlock *BB, BasicBlock *OldBB, |
| BasicBlock *NewBB) { |
| for (PHINode &Phi : BB->phis()) { |
| int I = Phi.getBasicBlockIndex(OldBB); |
| Phi.setIncomingBlock(I, NewBB); |
| } |
| }; |
| // Update Phis in BB from OldBB to point to NewBB and use the latest value |
| // from LastValueMap |
| auto updatePHIBlocksAndValues = [](BasicBlock *BB, BasicBlock *OldBB, |
| BasicBlock *NewBB, |
| ValueToValueMapTy &LastValueMap) { |
| for (PHINode &Phi : BB->phis()) { |
| for (unsigned b = 0; b < Phi.getNumIncomingValues(); ++b) { |
| if (Phi.getIncomingBlock(b) == OldBB) { |
| Value *OldValue = Phi.getIncomingValue(b); |
| if (Value *LastValue = LastValueMap[OldValue]) |
| Phi.setIncomingValue(b, LastValue); |
| Phi.setIncomingBlock(b, NewBB); |
| break; |
| } |
| } |
| } |
| }; |
| // Move all the phis from Src into Dest |
| auto movePHIs = [](BasicBlock *Src, BasicBlock *Dest) { |
| Instruction *insertPoint = Dest->getFirstNonPHI(); |
| while (PHINode *Phi = dyn_cast<PHINode>(Src->begin())) |
| Phi->moveBefore(insertPoint); |
| }; |
| |
| // Update the PHI values outside the loop to point to the last block |
| updatePHIBlocksAndValues(LoopExit, AftBlocksLast[0], AftBlocksLast.back(), |
| LastValueMap); |
| |
| // Update ForeBlocks successors and phi nodes |
| BranchInst *ForeTerm = |
| cast<BranchInst>(ForeBlocksLast.back()->getTerminator()); |
| BasicBlock *Dest = SubLoopBlocksFirst[0]; |
| ForeTerm->setSuccessor(0, Dest); |
| |
| if (CompletelyUnroll) { |
| while (PHINode *Phi = dyn_cast<PHINode>(ForeBlocksFirst[0]->begin())) { |
| Phi->replaceAllUsesWith(Phi->getIncomingValueForBlock(Preheader)); |
| Phi->getParent()->getInstList().erase(Phi); |
| } |
| } else { |
| // Update the PHI values to point to the last aft block |
| updatePHIBlocksAndValues(ForeBlocksFirst[0], AftBlocksLast[0], |
| AftBlocksLast.back(), LastValueMap); |
| } |
| |
| for (unsigned It = 1; It != Count; It++) { |
| // Remap ForeBlock successors from previous iteration to this |
| BranchInst *ForeTerm = |
| cast<BranchInst>(ForeBlocksLast[It - 1]->getTerminator()); |
| BasicBlock *Dest = ForeBlocksFirst[It]; |
| ForeTerm->setSuccessor(0, Dest); |
| } |
| |
| // Subloop successors and phis |
| BranchInst *SubTerm = |
| cast<BranchInst>(SubLoopBlocksLast.back()->getTerminator()); |
| SubTerm->setSuccessor(!SubLoopContinueOnTrue, SubLoopBlocksFirst[0]); |
| SubTerm->setSuccessor(SubLoopContinueOnTrue, AftBlocksFirst[0]); |
| updatePHIBlocks(SubLoopBlocksFirst[0], ForeBlocksLast[0], |
| ForeBlocksLast.back()); |
| updatePHIBlocks(SubLoopBlocksFirst[0], SubLoopBlocksLast[0], |
| SubLoopBlocksLast.back()); |
| |
| for (unsigned It = 1; It != Count; It++) { |
| // Replace the conditional branch of the previous iteration subloop with an |
| // unconditional one to this one |
| BranchInst *SubTerm = |
| cast<BranchInst>(SubLoopBlocksLast[It - 1]->getTerminator()); |
| BranchInst::Create(SubLoopBlocksFirst[It], SubTerm); |
| SubTerm->eraseFromParent(); |
| |
| updatePHIBlocks(SubLoopBlocksFirst[It], ForeBlocksLast[It], |
| ForeBlocksLast.back()); |
| updatePHIBlocks(SubLoopBlocksFirst[It], SubLoopBlocksLast[It], |
| SubLoopBlocksLast.back()); |
| movePHIs(SubLoopBlocksFirst[It], SubLoopBlocksFirst[0]); |
| } |
| |
| // Aft blocks successors and phis |
| BranchInst *Term = cast<BranchInst>(AftBlocksLast.back()->getTerminator()); |
| if (CompletelyUnroll) { |
| BranchInst::Create(LoopExit, Term); |
| Term->eraseFromParent(); |
| } else { |
| Term->setSuccessor(!ContinueOnTrue, ForeBlocksFirst[0]); |
| } |
| updatePHIBlocks(AftBlocksFirst[0], SubLoopBlocksLast[0], |
| SubLoopBlocksLast.back()); |
| |
| for (unsigned It = 1; It != Count; It++) { |
| // Replace the conditional branch of the previous iteration subloop with an |
| // unconditional one to this one |
| BranchInst *AftTerm = |
| cast<BranchInst>(AftBlocksLast[It - 1]->getTerminator()); |
| BranchInst::Create(AftBlocksFirst[It], AftTerm); |
| AftTerm->eraseFromParent(); |
| |
| updatePHIBlocks(AftBlocksFirst[It], SubLoopBlocksLast[It], |
| SubLoopBlocksLast.back()); |
| movePHIs(AftBlocksFirst[It], AftBlocksFirst[0]); |
| } |
| |
| // Dominator Tree. Remove the old links between Fore, Sub and Aft, adding the |
| // new ones required. |
| if (Count != 1) { |
| SmallVector<DominatorTree::UpdateType, 4> DTUpdates; |
| DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete, ForeBlocksLast[0], |
| SubLoopBlocksFirst[0]); |
| DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete, |
| SubLoopBlocksLast[0], AftBlocksFirst[0]); |
| |
| DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert, |
| ForeBlocksLast.back(), SubLoopBlocksFirst[0]); |
| DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert, |
| SubLoopBlocksLast.back(), AftBlocksFirst[0]); |
| DT->applyUpdates(DTUpdates); |
| } |
| |
| // Merge adjacent basic blocks, if possible. |
| SmallPtrSet<BasicBlock *, 16> MergeBlocks; |
| MergeBlocks.insert(ForeBlocksLast.begin(), ForeBlocksLast.end()); |
| MergeBlocks.insert(SubLoopBlocksLast.begin(), SubLoopBlocksLast.end()); |
| MergeBlocks.insert(AftBlocksLast.begin(), AftBlocksLast.end()); |
| while (!MergeBlocks.empty()) { |
| BasicBlock *BB = *MergeBlocks.begin(); |
| BranchInst *Term = dyn_cast<BranchInst>(BB->getTerminator()); |
| if (Term && Term->isUnconditional() && L->contains(Term->getSuccessor(0))) { |
| BasicBlock *Dest = Term->getSuccessor(0); |
| if (BasicBlock *Fold = foldBlockIntoPredecessor(Dest, LI, SE, DT)) { |
| // Don't remove BB and add Fold as they are the same BB |
| assert(Fold == BB); |
| (void)Fold; |
| MergeBlocks.erase(Dest); |
| } else |
| MergeBlocks.erase(BB); |
| } else |
| MergeBlocks.erase(BB); |
| } |
| |
| // At this point, the code is well formed. We now do a quick sweep over the |
| // inserted code, doing constant propagation and dead code elimination as we |
| // go. |
| simplifyLoopAfterUnroll(SubLoop, true, LI, SE, DT, AC); |
| simplifyLoopAfterUnroll(L, !CompletelyUnroll && Count > 1, LI, SE, DT, AC); |
| |
| NumCompletelyUnrolledAndJammed += CompletelyUnroll; |
| ++NumUnrolledAndJammed; |
| |
| #ifndef NDEBUG |
| // We shouldn't have done anything to break loop simplify form or LCSSA. |
| Loop *OuterL = L->getParentLoop(); |
| Loop *OutestLoop = OuterL ? OuterL : (!CompletelyUnroll ? L : SubLoop); |
| assert(OutestLoop->isRecursivelyLCSSAForm(*DT, *LI)); |
| if (!CompletelyUnroll) |
| assert(L->isLoopSimplifyForm()); |
| assert(SubLoop->isLoopSimplifyForm()); |
| assert(DT->verify()); |
| #endif |
| |
| // Update LoopInfo if the loop is completely removed. |
| if (CompletelyUnroll) |
| LI->erase(L); |
| |
| return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled |
| : LoopUnrollResult::PartiallyUnrolled; |
| } |
| |
| static bool getLoadsAndStores(BasicBlockSet &Blocks, |
| SmallVector<Value *, 4> &MemInstr) { |
| // Scan the BBs and collect legal loads and stores. |
| // Returns false if non-simple loads/stores are found. |
| for (BasicBlock *BB : Blocks) { |
| for (Instruction &I : *BB) { |
| if (auto *Ld = dyn_cast<LoadInst>(&I)) { |
| if (!Ld->isSimple()) |
| return false; |
| MemInstr.push_back(&I); |
| } else if (auto *St = dyn_cast<StoreInst>(&I)) { |
| if (!St->isSimple()) |
| return false; |
| MemInstr.push_back(&I); |
| } else if (I.mayReadOrWriteMemory()) { |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| static bool checkDependencies(SmallVector<Value *, 4> &Earlier, |
| SmallVector<Value *, 4> &Later, |
| unsigned LoopDepth, bool InnerLoop, |
| DependenceInfo &DI) { |
| // Use DA to check for dependencies between loads and stores that make unroll |
| // and jam invalid |
| for (Value *I : Earlier) { |
| for (Value *J : Later) { |
| Instruction *Src = cast<Instruction>(I); |
| Instruction *Dst = cast<Instruction>(J); |
| if (Src == Dst) |
| continue; |
| // Ignore Input dependencies. |
| if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) |
| continue; |
| |
| // Track dependencies, and if we find them take a conservative approach |
| // by allowing only = or < (not >), altough some > would be safe |
| // (depending upon unroll width). |
| // For the inner loop, we need to disallow any (> <) dependencies |
| // FIXME: Allow > so long as distance is less than unroll width |
| if (auto D = DI.depends(Src, Dst, true)) { |
| assert(D->isOrdered() && "Expected an output, flow or anti dep."); |
| |
| if (D->isConfused()) |
| return false; |
| if (!InnerLoop) { |
| if (D->getDirection(LoopDepth) & Dependence::DVEntry::GT) |
| return false; |
| } else { |
| assert(LoopDepth + 1 <= D->getLevels()); |
| if (D->getDirection(LoopDepth) & Dependence::DVEntry::GT && |
| D->getDirection(LoopDepth + 1) & Dependence::DVEntry::LT) |
| return false; |
| } |
| } |
| } |
| } |
| return true; |
| } |
| |
| static bool checkDependencies(Loop *L, BasicBlockSet &ForeBlocks, |
| BasicBlockSet &SubLoopBlocks, |
| BasicBlockSet &AftBlocks, DependenceInfo &DI) { |
| // Get all loads/store pairs for each blocks |
| SmallVector<Value *, 4> ForeMemInstr; |
| SmallVector<Value *, 4> SubLoopMemInstr; |
| SmallVector<Value *, 4> AftMemInstr; |
| if (!getLoadsAndStores(ForeBlocks, ForeMemInstr) || |
| !getLoadsAndStores(SubLoopBlocks, SubLoopMemInstr) || |
| !getLoadsAndStores(AftBlocks, AftMemInstr)) |
| return false; |
| |
| // Check for dependencies between any blocks that may change order |
| unsigned LoopDepth = L->getLoopDepth(); |
| return checkDependencies(ForeMemInstr, SubLoopMemInstr, LoopDepth, false, |
| DI) && |
| checkDependencies(ForeMemInstr, AftMemInstr, LoopDepth, false, DI) && |
| checkDependencies(SubLoopMemInstr, AftMemInstr, LoopDepth, false, |
| DI) && |
| checkDependencies(SubLoopMemInstr, SubLoopMemInstr, LoopDepth, true, |
| DI); |
| } |
| |
| bool llvm::isSafeToUnrollAndJam(Loop *L, ScalarEvolution &SE, DominatorTree &DT, |
| DependenceInfo &DI) { |
| /* We currently handle outer loops like this: |
| | |
| ForeFirst <----\ } |
| Blocks | } ForeBlocks |
| ForeLast | } |
| | | |
| SubLoopFirst <\ | } |
| Blocks | | } SubLoopBlocks |
| SubLoopLast -/ | } |
| | | |
| AftFirst | } |
| Blocks | } AftBlocks |
| AftLast ------/ } |
| | |
| |
| There are (theoretically) any number of blocks in ForeBlocks, SubLoopBlocks |
| and AftBlocks, providing that there is one edge from Fores to SubLoops, |
| one edge from SubLoops to Afts and a single outer loop exit (from Afts). |
| In practice we currently limit Aft blocks to a single block, and limit |
| things further in the profitablility checks of the unroll and jam pass. |
| |
| Because of the way we rearrange basic blocks, we also require that |
| the Fore blocks on all unrolled iterations are safe to move before the |
| SubLoop blocks of all iterations. So we require that the phi node looping |
| operands of ForeHeader can be moved to at least the end of ForeEnd, so that |
| we can arrange cloned Fore Blocks before the subloop and match up Phi's |
| correctly. |
| |
| i.e. The old order of blocks used to be F1 S1_1 S1_2 A1 F2 S2_1 S2_2 A2. |
| It needs to be safe to tranform this to F1 F2 S1_1 S2_1 S1_2 S2_2 A1 A2. |
| |
| There are then a number of checks along the lines of no calls, no |
| exceptions, inner loop IV is consistent, etc. Note that for loops requiring |
| runtime unrolling, UnrollRuntimeLoopRemainder can also fail in |
| UnrollAndJamLoop if the trip count cannot be easily calculated. |
| */ |
| |
| if (!L->isLoopSimplifyForm() || L->getSubLoops().size() != 1) |
| return false; |
| Loop *SubLoop = L->getSubLoops()[0]; |
| if (!SubLoop->isLoopSimplifyForm()) |
| return false; |
| |
| BasicBlock *Header = L->getHeader(); |
| BasicBlock *Latch = L->getLoopLatch(); |
| BasicBlock *Exit = L->getExitingBlock(); |
| BasicBlock *SubLoopHeader = SubLoop->getHeader(); |
| BasicBlock *SubLoopLatch = SubLoop->getLoopLatch(); |
| BasicBlock *SubLoopExit = SubLoop->getExitingBlock(); |
| |
| if (Latch != Exit) |
| return false; |
| if (SubLoopLatch != SubLoopExit) |
| return false; |
| |
| if (Header->hasAddressTaken() || SubLoopHeader->hasAddressTaken()) |
| return false; |
| |
| // Split blocks into Fore/SubLoop/Aft based on dominators |
| BasicBlockSet SubLoopBlocks; |
| BasicBlockSet ForeBlocks; |
| BasicBlockSet AftBlocks; |
| if (!partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks, |
| AftBlocks, &DT)) |
| return false; |
| |
| // Aft blocks may need to move instructions to fore blocks, which becomes more |
| // difficult if there are multiple (potentially conditionally executed) |
| // blocks. For now we just exclude loops with multiple aft blocks. |
| if (AftBlocks.size() != 1) |
| return false; |
| |
| // Check inner loop IV is consistent between all iterations |
| const SCEV *SubLoopBECountSC = SE.getExitCount(SubLoop, SubLoopLatch); |
| if (isa<SCEVCouldNotCompute>(SubLoopBECountSC) || |
| !SubLoopBECountSC->getType()->isIntegerTy()) |
| return false; |
| ScalarEvolution::LoopDisposition LD = |
| SE.getLoopDisposition(SubLoopBECountSC, L); |
| if (LD != ScalarEvolution::LoopInvariant) |
| return false; |
| |
| // Check the loop safety info for exceptions. |
| LoopSafetyInfo LSI; |
| computeLoopSafetyInfo(&LSI, L); |
| if (LSI.MayThrow) |
| return false; |
| |
| // We've ruled out the easy stuff and now need to check that there are no |
| // interdependencies which may prevent us from moving the: |
| // ForeBlocks before Subloop and AftBlocks. |
| // Subloop before AftBlocks. |
| // ForeBlock phi operands before the subloop |
| |
| // Make sure we can move all instructions we need to before the subloop |
| if (!processHeaderPhiOperands( |
| Header, Latch, AftBlocks, [&AftBlocks, &SubLoop](Instruction *I) { |
| if (SubLoop->contains(I->getParent())) |
| return false; |
| if (AftBlocks.count(I->getParent())) { |
| // If we hit a phi node in afts we know we are done (probably |
| // LCSSA) |
| if (isa<PHINode>(I)) |
| return false; |
| // Can't move instructions with side effects or memory |
| // reads/writes |
| if (I->mayHaveSideEffects() || I->mayReadOrWriteMemory()) |
| return false; |
| } |
| // Keep going |
| return true; |
| })) |
| return false; |
| |
| // Check for memory dependencies which prohibit the unrolling we are doing. |
| // Because of the way we are unrolling Fore/Sub/Aft blocks, we need to check |
| // there are no dependencies between Fore-Sub, Fore-Aft, Sub-Aft and Sub-Sub. |
| if (!checkDependencies(L, ForeBlocks, SubLoopBlocks, AftBlocks, DI)) |
| return false; |
| |
| return true; |
| } |