| //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements sparse conditional constant propagation and merging: |
| // |
| // Specifically, this: |
| // * Assumes values are constant unless proven otherwise |
| // * Assumes BasicBlocks are dead unless proven otherwise |
| // * Proves values to be constant, and replaces them with constants |
| // * Proves conditional branches to be unconditional |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar/SCCP.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/PointerIntPair.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Analysis/ValueLattice.h" |
| #include "llvm/Analysis/ValueLatticeUtils.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/InstVisitor.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include <cassert> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "sccp" |
| |
| STATISTIC(NumInstRemoved, "Number of instructions removed"); |
| STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); |
| |
| STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); |
| STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); |
| STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); |
| |
| namespace { |
| |
| /// LatticeVal class - This class represents the different lattice values that |
| /// an LLVM value may occupy. It is a simple class with value semantics. |
| /// |
| class LatticeVal { |
| enum LatticeValueTy { |
| /// unknown - This LLVM Value has no known value yet. |
| unknown, |
| |
| /// constant - This LLVM Value has a specific constant value. |
| constant, |
| |
| /// forcedconstant - This LLVM Value was thought to be undef until |
| /// ResolvedUndefsIn. This is treated just like 'constant', but if merged |
| /// with another (different) constant, it goes to overdefined, instead of |
| /// asserting. |
| forcedconstant, |
| |
| /// overdefined - This instruction is not known to be constant, and we know |
| /// it has a value. |
| overdefined |
| }; |
| |
| /// Val: This stores the current lattice value along with the Constant* for |
| /// the constant if this is a 'constant' or 'forcedconstant' value. |
| PointerIntPair<Constant *, 2, LatticeValueTy> Val; |
| |
| LatticeValueTy getLatticeValue() const { |
| return Val.getInt(); |
| } |
| |
| public: |
| LatticeVal() : Val(nullptr, unknown) {} |
| |
| bool isUnknown() const { return getLatticeValue() == unknown; } |
| |
| bool isConstant() const { |
| return getLatticeValue() == constant || getLatticeValue() == forcedconstant; |
| } |
| |
| bool isOverdefined() const { return getLatticeValue() == overdefined; } |
| |
| Constant *getConstant() const { |
| assert(isConstant() && "Cannot get the constant of a non-constant!"); |
| return Val.getPointer(); |
| } |
| |
| /// markOverdefined - Return true if this is a change in status. |
| bool markOverdefined() { |
| if (isOverdefined()) |
| return false; |
| |
| Val.setInt(overdefined); |
| return true; |
| } |
| |
| /// markConstant - Return true if this is a change in status. |
| bool markConstant(Constant *V) { |
| if (getLatticeValue() == constant) { // Constant but not forcedconstant. |
| assert(getConstant() == V && "Marking constant with different value"); |
| return false; |
| } |
| |
| if (isUnknown()) { |
| Val.setInt(constant); |
| assert(V && "Marking constant with NULL"); |
| Val.setPointer(V); |
| } else { |
| assert(getLatticeValue() == forcedconstant && |
| "Cannot move from overdefined to constant!"); |
| // Stay at forcedconstant if the constant is the same. |
| if (V == getConstant()) return false; |
| |
| // Otherwise, we go to overdefined. Assumptions made based on the |
| // forced value are possibly wrong. Assuming this is another constant |
| // could expose a contradiction. |
| Val.setInt(overdefined); |
| } |
| return true; |
| } |
| |
| /// getConstantInt - If this is a constant with a ConstantInt value, return it |
| /// otherwise return null. |
| ConstantInt *getConstantInt() const { |
| if (isConstant()) |
| return dyn_cast<ConstantInt>(getConstant()); |
| return nullptr; |
| } |
| |
| /// getBlockAddress - If this is a constant with a BlockAddress value, return |
| /// it, otherwise return null. |
| BlockAddress *getBlockAddress() const { |
| if (isConstant()) |
| return dyn_cast<BlockAddress>(getConstant()); |
| return nullptr; |
| } |
| |
| void markForcedConstant(Constant *V) { |
| assert(isUnknown() && "Can't force a defined value!"); |
| Val.setInt(forcedconstant); |
| Val.setPointer(V); |
| } |
| |
| ValueLatticeElement toValueLattice() const { |
| if (isOverdefined()) |
| return ValueLatticeElement::getOverdefined(); |
| if (isConstant()) |
| return ValueLatticeElement::get(getConstant()); |
| return ValueLatticeElement(); |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // |
| /// SCCPSolver - This class is a general purpose solver for Sparse Conditional |
| /// Constant Propagation. |
| /// |
| class SCCPSolver : public InstVisitor<SCCPSolver> { |
| const DataLayout &DL; |
| const TargetLibraryInfo *TLI; |
| SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable. |
| DenseMap<Value *, LatticeVal> ValueState; // The state each value is in. |
| // The state each parameter is in. |
| DenseMap<Value *, ValueLatticeElement> ParamState; |
| |
| /// StructValueState - This maintains ValueState for values that have |
| /// StructType, for example for formal arguments, calls, insertelement, etc. |
| DenseMap<std::pair<Value *, unsigned>, LatticeVal> StructValueState; |
| |
| /// GlobalValue - If we are tracking any values for the contents of a global |
| /// variable, we keep a mapping from the constant accessor to the element of |
| /// the global, to the currently known value. If the value becomes |
| /// overdefined, it's entry is simply removed from this map. |
| DenseMap<GlobalVariable *, LatticeVal> TrackedGlobals; |
| |
| /// TrackedRetVals - If we are tracking arguments into and the return |
| /// value out of a function, it will have an entry in this map, indicating |
| /// what the known return value for the function is. |
| DenseMap<Function *, LatticeVal> TrackedRetVals; |
| |
| /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions |
| /// that return multiple values. |
| DenseMap<std::pair<Function *, unsigned>, LatticeVal> TrackedMultipleRetVals; |
| |
| /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is |
| /// represented here for efficient lookup. |
| SmallPtrSet<Function *, 16> MRVFunctionsTracked; |
| |
| /// MustTailFunctions - Each function here is a callee of non-removable |
| /// musttail call site. |
| SmallPtrSet<Function *, 16> MustTailCallees; |
| |
| /// TrackingIncomingArguments - This is the set of functions for whose |
| /// arguments we make optimistic assumptions about and try to prove as |
| /// constants. |
| SmallPtrSet<Function *, 16> TrackingIncomingArguments; |
| |
| /// The reason for two worklists is that overdefined is the lowest state |
| /// on the lattice, and moving things to overdefined as fast as possible |
| /// makes SCCP converge much faster. |
| /// |
| /// By having a separate worklist, we accomplish this because everything |
| /// possibly overdefined will become overdefined at the soonest possible |
| /// point. |
| SmallVector<Value *, 64> OverdefinedInstWorkList; |
| SmallVector<Value *, 64> InstWorkList; |
| |
| // The BasicBlock work list |
| SmallVector<BasicBlock *, 64> BBWorkList; |
| |
| /// KnownFeasibleEdges - Entries in this set are edges which have already had |
| /// PHI nodes retriggered. |
| using Edge = std::pair<BasicBlock *, BasicBlock *>; |
| DenseSet<Edge> KnownFeasibleEdges; |
| |
| public: |
| SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli) |
| : DL(DL), TLI(tli) {} |
| |
| /// MarkBlockExecutable - This method can be used by clients to mark all of |
| /// the blocks that are known to be intrinsically live in the processed unit. |
| /// |
| /// This returns true if the block was not considered live before. |
| bool MarkBlockExecutable(BasicBlock *BB) { |
| if (!BBExecutable.insert(BB).second) |
| return false; |
| LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n'); |
| BBWorkList.push_back(BB); // Add the block to the work list! |
| return true; |
| } |
| |
| /// TrackValueOfGlobalVariable - Clients can use this method to |
| /// inform the SCCPSolver that it should track loads and stores to the |
| /// specified global variable if it can. This is only legal to call if |
| /// performing Interprocedural SCCP. |
| void TrackValueOfGlobalVariable(GlobalVariable *GV) { |
| // We only track the contents of scalar globals. |
| if (GV->getValueType()->isSingleValueType()) { |
| LatticeVal &IV = TrackedGlobals[GV]; |
| if (!isa<UndefValue>(GV->getInitializer())) |
| IV.markConstant(GV->getInitializer()); |
| } |
| } |
| |
| /// AddTrackedFunction - If the SCCP solver is supposed to track calls into |
| /// and out of the specified function (which cannot have its address taken), |
| /// this method must be called. |
| void AddTrackedFunction(Function *F) { |
| // Add an entry, F -> undef. |
| if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { |
| MRVFunctionsTracked.insert(F); |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) |
| TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), |
| LatticeVal())); |
| } else |
| TrackedRetVals.insert(std::make_pair(F, LatticeVal())); |
| } |
| |
| /// AddMustTailCallee - If the SCCP solver finds that this function is called |
| /// from non-removable musttail call site. |
| void AddMustTailCallee(Function *F) { |
| MustTailCallees.insert(F); |
| } |
| |
| /// Returns true if the given function is called from non-removable musttail |
| /// call site. |
| bool isMustTailCallee(Function *F) { |
| return MustTailCallees.count(F); |
| } |
| |
| void AddArgumentTrackedFunction(Function *F) { |
| TrackingIncomingArguments.insert(F); |
| } |
| |
| /// Returns true if the given function is in the solver's set of |
| /// argument-tracked functions. |
| bool isArgumentTrackedFunction(Function *F) { |
| return TrackingIncomingArguments.count(F); |
| } |
| |
| /// Solve - Solve for constants and executable blocks. |
| void Solve(); |
| |
| /// ResolvedUndefsIn - While solving the dataflow for a function, we assume |
| /// that branches on undef values cannot reach any of their successors. |
| /// However, this is not a safe assumption. After we solve dataflow, this |
| /// method should be use to handle this. If this returns true, the solver |
| /// should be rerun. |
| bool ResolvedUndefsIn(Function &F); |
| |
| bool isBlockExecutable(BasicBlock *BB) const { |
| return BBExecutable.count(BB); |
| } |
| |
| // isEdgeFeasible - Return true if the control flow edge from the 'From' basic |
| // block to the 'To' basic block is currently feasible. |
| bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); |
| |
| std::vector<LatticeVal> getStructLatticeValueFor(Value *V) const { |
| std::vector<LatticeVal> StructValues; |
| auto *STy = dyn_cast<StructType>(V->getType()); |
| assert(STy && "getStructLatticeValueFor() can be called only on structs"); |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| auto I = StructValueState.find(std::make_pair(V, i)); |
| assert(I != StructValueState.end() && "Value not in valuemap!"); |
| StructValues.push_back(I->second); |
| } |
| return StructValues; |
| } |
| |
| const LatticeVal &getLatticeValueFor(Value *V) const { |
| assert(!V->getType()->isStructTy() && |
| "Should use getStructLatticeValueFor"); |
| DenseMap<Value *, LatticeVal>::const_iterator I = ValueState.find(V); |
| assert(I != ValueState.end() && |
| "V not found in ValueState nor Paramstate map!"); |
| return I->second; |
| } |
| |
| /// getTrackedRetVals - Get the inferred return value map. |
| const DenseMap<Function*, LatticeVal> &getTrackedRetVals() { |
| return TrackedRetVals; |
| } |
| |
| /// getTrackedGlobals - Get and return the set of inferred initializers for |
| /// global variables. |
| const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { |
| return TrackedGlobals; |
| } |
| |
| /// getMRVFunctionsTracked - Get the set of functions which return multiple |
| /// values tracked by the pass. |
| const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() { |
| return MRVFunctionsTracked; |
| } |
| |
| /// getMustTailCallees - Get the set of functions which are called |
| /// from non-removable musttail call sites. |
| const SmallPtrSet<Function *, 16> getMustTailCallees() { |
| return MustTailCallees; |
| } |
| |
| /// markOverdefined - Mark the specified value overdefined. This |
| /// works with both scalars and structs. |
| void markOverdefined(Value *V) { |
| if (auto *STy = dyn_cast<StructType>(V->getType())) |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) |
| markOverdefined(getStructValueState(V, i), V); |
| else |
| markOverdefined(ValueState[V], V); |
| } |
| |
| // isStructLatticeConstant - Return true if all the lattice values |
| // corresponding to elements of the structure are not overdefined, |
| // false otherwise. |
| bool isStructLatticeConstant(Function *F, StructType *STy) { |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i)); |
| assert(It != TrackedMultipleRetVals.end()); |
| LatticeVal LV = It->second; |
| if (LV.isOverdefined()) |
| return false; |
| } |
| return true; |
| } |
| |
| private: |
| // pushToWorkList - Helper for markConstant/markForcedConstant/markOverdefined |
| void pushToWorkList(LatticeVal &IV, Value *V) { |
| if (IV.isOverdefined()) |
| return OverdefinedInstWorkList.push_back(V); |
| InstWorkList.push_back(V); |
| } |
| |
| // markConstant - Make a value be marked as "constant". If the value |
| // is not already a constant, add it to the instruction work list so that |
| // the users of the instruction are updated later. |
| bool markConstant(LatticeVal &IV, Value *V, Constant *C) { |
| if (!IV.markConstant(C)) return false; |
| LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); |
| pushToWorkList(IV, V); |
| return true; |
| } |
| |
| bool markConstant(Value *V, Constant *C) { |
| assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); |
| return markConstant(ValueState[V], V, C); |
| } |
| |
| void markForcedConstant(Value *V, Constant *C) { |
| assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); |
| LatticeVal &IV = ValueState[V]; |
| IV.markForcedConstant(C); |
| LLVM_DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n'); |
| pushToWorkList(IV, V); |
| } |
| |
| // markOverdefined - Make a value be marked as "overdefined". If the |
| // value is not already overdefined, add it to the overdefined instruction |
| // work list so that the users of the instruction are updated later. |
| bool markOverdefined(LatticeVal &IV, Value *V) { |
| if (!IV.markOverdefined()) return false; |
| |
| LLVM_DEBUG(dbgs() << "markOverdefined: "; |
| if (auto *F = dyn_cast<Function>(V)) dbgs() |
| << "Function '" << F->getName() << "'\n"; |
| else dbgs() << *V << '\n'); |
| // Only instructions go on the work list |
| pushToWorkList(IV, V); |
| return true; |
| } |
| |
| bool mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) { |
| if (IV.isOverdefined() || MergeWithV.isUnknown()) |
| return false; // Noop. |
| if (MergeWithV.isOverdefined()) |
| return markOverdefined(IV, V); |
| if (IV.isUnknown()) |
| return markConstant(IV, V, MergeWithV.getConstant()); |
| if (IV.getConstant() != MergeWithV.getConstant()) |
| return markOverdefined(IV, V); |
| return false; |
| } |
| |
| bool mergeInValue(Value *V, LatticeVal MergeWithV) { |
| assert(!V->getType()->isStructTy() && |
| "non-structs should use markConstant"); |
| return mergeInValue(ValueState[V], V, MergeWithV); |
| } |
| |
| /// getValueState - Return the LatticeVal object that corresponds to the |
| /// value. This function handles the case when the value hasn't been seen yet |
| /// by properly seeding constants etc. |
| LatticeVal &getValueState(Value *V) { |
| assert(!V->getType()->isStructTy() && "Should use getStructValueState"); |
| |
| std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I = |
| ValueState.insert(std::make_pair(V, LatticeVal())); |
| LatticeVal &LV = I.first->second; |
| |
| if (!I.second) |
| return LV; // Common case, already in the map. |
| |
| if (auto *C = dyn_cast<Constant>(V)) { |
| // Undef values remain unknown. |
| if (!isa<UndefValue>(V)) |
| LV.markConstant(C); // Constants are constant |
| } |
| |
| // All others are underdefined by default. |
| return LV; |
| } |
| |
| ValueLatticeElement &getParamState(Value *V) { |
| assert(!V->getType()->isStructTy() && "Should use getStructValueState"); |
| |
| std::pair<DenseMap<Value*, ValueLatticeElement>::iterator, bool> |
| PI = ParamState.insert(std::make_pair(V, ValueLatticeElement())); |
| ValueLatticeElement &LV = PI.first->second; |
| if (PI.second) |
| LV = getValueState(V).toValueLattice(); |
| |
| return LV; |
| } |
| |
| /// getStructValueState - Return the LatticeVal object that corresponds to the |
| /// value/field pair. This function handles the case when the value hasn't |
| /// been seen yet by properly seeding constants etc. |
| LatticeVal &getStructValueState(Value *V, unsigned i) { |
| assert(V->getType()->isStructTy() && "Should use getValueState"); |
| assert(i < cast<StructType>(V->getType())->getNumElements() && |
| "Invalid element #"); |
| |
| std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator, |
| bool> I = StructValueState.insert( |
| std::make_pair(std::make_pair(V, i), LatticeVal())); |
| LatticeVal &LV = I.first->second; |
| |
| if (!I.second) |
| return LV; // Common case, already in the map. |
| |
| if (auto *C = dyn_cast<Constant>(V)) { |
| Constant *Elt = C->getAggregateElement(i); |
| |
| if (!Elt) |
| LV.markOverdefined(); // Unknown sort of constant. |
| else if (isa<UndefValue>(Elt)) |
| ; // Undef values remain unknown. |
| else |
| LV.markConstant(Elt); // Constants are constant. |
| } |
| |
| // All others are underdefined by default. |
| return LV; |
| } |
| |
| /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB |
| /// work list if it is not already executable. |
| bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { |
| if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) |
| return false; // This edge is already known to be executable! |
| |
| if (!MarkBlockExecutable(Dest)) { |
| // If the destination is already executable, we just made an *edge* |
| // feasible that wasn't before. Revisit the PHI nodes in the block |
| // because they have potentially new operands. |
| LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() |
| << " -> " << Dest->getName() << '\n'); |
| |
| for (PHINode &PN : Dest->phis()) |
| visitPHINode(PN); |
| } |
| return true; |
| } |
| |
| // getFeasibleSuccessors - Return a vector of booleans to indicate which |
| // successors are reachable from a given terminator instruction. |
| void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs); |
| |
| // OperandChangedState - This method is invoked on all of the users of an |
| // instruction that was just changed state somehow. Based on this |
| // information, we need to update the specified user of this instruction. |
| void OperandChangedState(Instruction *I) { |
| if (BBExecutable.count(I->getParent())) // Inst is executable? |
| visit(*I); |
| } |
| |
| private: |
| friend class InstVisitor<SCCPSolver>; |
| |
| // visit implementations - Something changed in this instruction. Either an |
| // operand made a transition, or the instruction is newly executable. Change |
| // the value type of I to reflect these changes if appropriate. |
| void visitPHINode(PHINode &I); |
| |
| // Terminators |
| |
| void visitReturnInst(ReturnInst &I); |
| void visitTerminatorInst(TerminatorInst &TI); |
| |
| void visitCastInst(CastInst &I); |
| void visitSelectInst(SelectInst &I); |
| void visitBinaryOperator(Instruction &I); |
| void visitCmpInst(CmpInst &I); |
| void visitExtractValueInst(ExtractValueInst &EVI); |
| void visitInsertValueInst(InsertValueInst &IVI); |
| |
| void visitCatchSwitchInst(CatchSwitchInst &CPI) { |
| markOverdefined(&CPI); |
| visitTerminatorInst(CPI); |
| } |
| |
| // Instructions that cannot be folded away. |
| |
| void visitStoreInst (StoreInst &I); |
| void visitLoadInst (LoadInst &I); |
| void visitGetElementPtrInst(GetElementPtrInst &I); |
| |
| void visitCallInst (CallInst &I) { |
| visitCallSite(&I); |
| } |
| |
| void visitInvokeInst (InvokeInst &II) { |
| visitCallSite(&II); |
| visitTerminatorInst(II); |
| } |
| |
| void visitCallSite (CallSite CS); |
| void visitResumeInst (TerminatorInst &I) { /*returns void*/ } |
| void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } |
| void visitFenceInst (FenceInst &I) { /*returns void*/ } |
| |
| void visitInstruction(Instruction &I) { |
| // All the instructions we don't do any special handling for just |
| // go to overdefined. |
| LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n'); |
| markOverdefined(&I); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| // getFeasibleSuccessors - Return a vector of booleans to indicate which |
| // successors are reachable from a given terminator instruction. |
| void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, |
| SmallVectorImpl<bool> &Succs) { |
| Succs.resize(TI.getNumSuccessors()); |
| if (auto *BI = dyn_cast<BranchInst>(&TI)) { |
| if (BI->isUnconditional()) { |
| Succs[0] = true; |
| return; |
| } |
| |
| LatticeVal BCValue = getValueState(BI->getCondition()); |
| ConstantInt *CI = BCValue.getConstantInt(); |
| if (!CI) { |
| // Overdefined condition variables, and branches on unfoldable constant |
| // conditions, mean the branch could go either way. |
| if (!BCValue.isUnknown()) |
| Succs[0] = Succs[1] = true; |
| return; |
| } |
| |
| // Constant condition variables mean the branch can only go a single way. |
| Succs[CI->isZero()] = true; |
| return; |
| } |
| |
| // Unwinding instructions successors are always executable. |
| if (TI.isExceptional()) { |
| Succs.assign(TI.getNumSuccessors(), true); |
| return; |
| } |
| |
| if (auto *SI = dyn_cast<SwitchInst>(&TI)) { |
| if (!SI->getNumCases()) { |
| Succs[0] = true; |
| return; |
| } |
| LatticeVal SCValue = getValueState(SI->getCondition()); |
| ConstantInt *CI = SCValue.getConstantInt(); |
| |
| if (!CI) { // Overdefined or unknown condition? |
| // All destinations are executable! |
| if (!SCValue.isUnknown()) |
| Succs.assign(TI.getNumSuccessors(), true); |
| return; |
| } |
| |
| Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true; |
| return; |
| } |
| |
| // In case of indirect branch and its address is a blockaddress, we mark |
| // the target as executable. |
| if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) { |
| // Casts are folded by visitCastInst. |
| LatticeVal IBRValue = getValueState(IBR->getAddress()); |
| BlockAddress *Addr = IBRValue.getBlockAddress(); |
| if (!Addr) { // Overdefined or unknown condition? |
| // All destinations are executable! |
| if (!IBRValue.isUnknown()) |
| Succs.assign(TI.getNumSuccessors(), true); |
| return; |
| } |
| |
| BasicBlock* T = Addr->getBasicBlock(); |
| assert(Addr->getFunction() == T->getParent() && |
| "Block address of a different function ?"); |
| for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) { |
| // This is the target. |
| if (IBR->getDestination(i) == T) { |
| Succs[i] = true; |
| return; |
| } |
| } |
| |
| // If we didn't find our destination in the IBR successor list, then we |
| // have undefined behavior. Its ok to assume no successor is executable. |
| return; |
| } |
| |
| LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n'); |
| llvm_unreachable("SCCP: Don't know how to handle this terminator!"); |
| } |
| |
| // isEdgeFeasible - Return true if the control flow edge from the 'From' basic |
| // block to the 'To' basic block is currently feasible. |
| bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { |
| // Check if we've called markEdgeExecutable on the edge yet. (We could |
| // be more aggressive and try to consider edges which haven't been marked |
| // yet, but there isn't any need.) |
| return KnownFeasibleEdges.count(Edge(From, To)); |
| } |
| |
| // visit Implementations - Something changed in this instruction, either an |
| // operand made a transition, or the instruction is newly executable. Change |
| // the value type of I to reflect these changes if appropriate. This method |
| // makes sure to do the following actions: |
| // |
| // 1. If a phi node merges two constants in, and has conflicting value coming |
| // from different branches, or if the PHI node merges in an overdefined |
| // value, then the PHI node becomes overdefined. |
| // 2. If a phi node merges only constants in, and they all agree on value, the |
| // PHI node becomes a constant value equal to that. |
| // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant |
| // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined |
| // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined |
| // 6. If a conditional branch has a value that is constant, make the selected |
| // destination executable |
| // 7. If a conditional branch has a value that is overdefined, make all |
| // successors executable. |
| void SCCPSolver::visitPHINode(PHINode &PN) { |
| // If this PN returns a struct, just mark the result overdefined. |
| // TODO: We could do a lot better than this if code actually uses this. |
| if (PN.getType()->isStructTy()) |
| return (void)markOverdefined(&PN); |
| |
| if (getValueState(&PN).isOverdefined()) |
| return; // Quick exit |
| |
| // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, |
| // and slow us down a lot. Just mark them overdefined. |
| if (PN.getNumIncomingValues() > 64) |
| return (void)markOverdefined(&PN); |
| |
| // Look at all of the executable operands of the PHI node. If any of them |
| // are overdefined, the PHI becomes overdefined as well. If they are all |
| // constant, and they agree with each other, the PHI becomes the identical |
| // constant. If they are constant and don't agree, the PHI is overdefined. |
| // If there are no executable operands, the PHI remains unknown. |
| Constant *OperandVal = nullptr; |
| for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { |
| LatticeVal IV = getValueState(PN.getIncomingValue(i)); |
| if (IV.isUnknown()) continue; // Doesn't influence PHI node. |
| |
| if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) |
| continue; |
| |
| if (IV.isOverdefined()) // PHI node becomes overdefined! |
| return (void)markOverdefined(&PN); |
| |
| if (!OperandVal) { // Grab the first value. |
| OperandVal = IV.getConstant(); |
| continue; |
| } |
| |
| // There is already a reachable operand. If we conflict with it, |
| // then the PHI node becomes overdefined. If we agree with it, we |
| // can continue on. |
| |
| // Check to see if there are two different constants merging, if so, the PHI |
| // node is overdefined. |
| if (IV.getConstant() != OperandVal) |
| return (void)markOverdefined(&PN); |
| } |
| |
| // If we exited the loop, this means that the PHI node only has constant |
| // arguments that agree with each other(and OperandVal is the constant) or |
| // OperandVal is null because there are no defined incoming arguments. If |
| // this is the case, the PHI remains unknown. |
| if (OperandVal) |
| markConstant(&PN, OperandVal); // Acquire operand value |
| } |
| |
| void SCCPSolver::visitReturnInst(ReturnInst &I) { |
| if (I.getNumOperands() == 0) return; // ret void |
| |
| Function *F = I.getParent()->getParent(); |
| Value *ResultOp = I.getOperand(0); |
| |
| // If we are tracking the return value of this function, merge it in. |
| if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { |
| DenseMap<Function*, LatticeVal>::iterator TFRVI = |
| TrackedRetVals.find(F); |
| if (TFRVI != TrackedRetVals.end()) { |
| mergeInValue(TFRVI->second, F, getValueState(ResultOp)); |
| return; |
| } |
| } |
| |
| // Handle functions that return multiple values. |
| if (!TrackedMultipleRetVals.empty()) { |
| if (auto *STy = dyn_cast<StructType>(ResultOp->getType())) |
| if (MRVFunctionsTracked.count(F)) |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) |
| mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, |
| getStructValueState(ResultOp, i)); |
| } |
| } |
| |
| void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { |
| SmallVector<bool, 16> SuccFeasible; |
| getFeasibleSuccessors(TI, SuccFeasible); |
| |
| BasicBlock *BB = TI.getParent(); |
| |
| // Mark all feasible successors executable. |
| for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) |
| if (SuccFeasible[i]) |
| markEdgeExecutable(BB, TI.getSuccessor(i)); |
| } |
| |
| void SCCPSolver::visitCastInst(CastInst &I) { |
| LatticeVal OpSt = getValueState(I.getOperand(0)); |
| if (OpSt.isOverdefined()) // Inherit overdefinedness of operand |
| markOverdefined(&I); |
| else if (OpSt.isConstant()) { |
| // Fold the constant as we build. |
| Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpSt.getConstant(), |
| I.getType(), DL); |
| if (isa<UndefValue>(C)) |
| return; |
| // Propagate constant value |
| markConstant(&I, C); |
| } |
| } |
| |
| void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { |
| // If this returns a struct, mark all elements over defined, we don't track |
| // structs in structs. |
| if (EVI.getType()->isStructTy()) |
| return (void)markOverdefined(&EVI); |
| |
| // If this is extracting from more than one level of struct, we don't know. |
| if (EVI.getNumIndices() != 1) |
| return (void)markOverdefined(&EVI); |
| |
| Value *AggVal = EVI.getAggregateOperand(); |
| if (AggVal->getType()->isStructTy()) { |
| unsigned i = *EVI.idx_begin(); |
| LatticeVal EltVal = getStructValueState(AggVal, i); |
| mergeInValue(getValueState(&EVI), &EVI, EltVal); |
| } else { |
| // Otherwise, must be extracting from an array. |
| return (void)markOverdefined(&EVI); |
| } |
| } |
| |
| void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { |
| auto *STy = dyn_cast<StructType>(IVI.getType()); |
| if (!STy) |
| return (void)markOverdefined(&IVI); |
| |
| // If this has more than one index, we can't handle it, drive all results to |
| // undef. |
| if (IVI.getNumIndices() != 1) |
| return (void)markOverdefined(&IVI); |
| |
| Value *Aggr = IVI.getAggregateOperand(); |
| unsigned Idx = *IVI.idx_begin(); |
| |
| // Compute the result based on what we're inserting. |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| // This passes through all values that aren't the inserted element. |
| if (i != Idx) { |
| LatticeVal EltVal = getStructValueState(Aggr, i); |
| mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); |
| continue; |
| } |
| |
| Value *Val = IVI.getInsertedValueOperand(); |
| if (Val->getType()->isStructTy()) |
| // We don't track structs in structs. |
| markOverdefined(getStructValueState(&IVI, i), &IVI); |
| else { |
| LatticeVal InVal = getValueState(Val); |
| mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); |
| } |
| } |
| } |
| |
| void SCCPSolver::visitSelectInst(SelectInst &I) { |
| // If this select returns a struct, just mark the result overdefined. |
| // TODO: We could do a lot better than this if code actually uses this. |
| if (I.getType()->isStructTy()) |
| return (void)markOverdefined(&I); |
| |
| LatticeVal CondValue = getValueState(I.getCondition()); |
| if (CondValue.isUnknown()) |
| return; |
| |
| if (ConstantInt *CondCB = CondValue.getConstantInt()) { |
| Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); |
| mergeInValue(&I, getValueState(OpVal)); |
| return; |
| } |
| |
| // Otherwise, the condition is overdefined or a constant we can't evaluate. |
| // See if we can produce something better than overdefined based on the T/F |
| // value. |
| LatticeVal TVal = getValueState(I.getTrueValue()); |
| LatticeVal FVal = getValueState(I.getFalseValue()); |
| |
| // select ?, C, C -> C. |
| if (TVal.isConstant() && FVal.isConstant() && |
| TVal.getConstant() == FVal.getConstant()) |
| return (void)markConstant(&I, FVal.getConstant()); |
| |
| if (TVal.isUnknown()) // select ?, undef, X -> X. |
| return (void)mergeInValue(&I, FVal); |
| if (FVal.isUnknown()) // select ?, X, undef -> X. |
| return (void)mergeInValue(&I, TVal); |
| markOverdefined(&I); |
| } |
| |
| // Handle Binary Operators. |
| void SCCPSolver::visitBinaryOperator(Instruction &I) { |
| LatticeVal V1State = getValueState(I.getOperand(0)); |
| LatticeVal V2State = getValueState(I.getOperand(1)); |
| |
| LatticeVal &IV = ValueState[&I]; |
| if (IV.isOverdefined()) return; |
| |
| if (V1State.isConstant() && V2State.isConstant()) { |
| Constant *C = ConstantExpr::get(I.getOpcode(), V1State.getConstant(), |
| V2State.getConstant()); |
| // X op Y -> undef. |
| if (isa<UndefValue>(C)) |
| return; |
| return (void)markConstant(IV, &I, C); |
| } |
| |
| // If something is undef, wait for it to resolve. |
| if (!V1State.isOverdefined() && !V2State.isOverdefined()) |
| return; |
| |
| // Otherwise, one of our operands is overdefined. Try to produce something |
| // better than overdefined with some tricks. |
| // If this is 0 / Y, it doesn't matter that the second operand is |
| // overdefined, and we can replace it with zero. |
| if (I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv) |
| if (V1State.isConstant() && V1State.getConstant()->isNullValue()) |
| return (void)markConstant(IV, &I, V1State.getConstant()); |
| |
| // If this is: |
| // -> AND/MUL with 0 |
| // -> OR with -1 |
| // it doesn't matter that the other operand is overdefined. |
| if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Mul || |
| I.getOpcode() == Instruction::Or) { |
| LatticeVal *NonOverdefVal = nullptr; |
| if (!V1State.isOverdefined()) |
| NonOverdefVal = &V1State; |
| else if (!V2State.isOverdefined()) |
| NonOverdefVal = &V2State; |
| |
| if (NonOverdefVal) { |
| if (NonOverdefVal->isUnknown()) |
| return; |
| |
| if (I.getOpcode() == Instruction::And || |
| I.getOpcode() == Instruction::Mul) { |
| // X and 0 = 0 |
| // X * 0 = 0 |
| if (NonOverdefVal->getConstant()->isNullValue()) |
| return (void)markConstant(IV, &I, NonOverdefVal->getConstant()); |
| } else { |
| // X or -1 = -1 |
| if (ConstantInt *CI = NonOverdefVal->getConstantInt()) |
| if (CI->isMinusOne()) |
| return (void)markConstant(IV, &I, NonOverdefVal->getConstant()); |
| } |
| } |
| } |
| |
| markOverdefined(&I); |
| } |
| |
| // Handle ICmpInst instruction. |
| void SCCPSolver::visitCmpInst(CmpInst &I) { |
| LatticeVal &IV = ValueState[&I]; |
| if (IV.isOverdefined()) return; |
| |
| Value *Op1 = I.getOperand(0); |
| Value *Op2 = I.getOperand(1); |
| |
| // For parameters, use ParamState which includes constant range info if |
| // available. |
| auto V1Param = ParamState.find(Op1); |
| ValueLatticeElement V1State = (V1Param != ParamState.end()) |
| ? V1Param->second |
| : getValueState(Op1).toValueLattice(); |
| |
| auto V2Param = ParamState.find(Op2); |
| ValueLatticeElement V2State = V2Param != ParamState.end() |
| ? V2Param->second |
| : getValueState(Op2).toValueLattice(); |
| |
| Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State); |
| if (C) { |
| if (isa<UndefValue>(C)) |
| return; |
| LatticeVal CV; |
| CV.markConstant(C); |
| mergeInValue(&I, CV); |
| return; |
| } |
| |
| // If operands are still unknown, wait for it to resolve. |
| if (!V1State.isOverdefined() && !V2State.isOverdefined() && !IV.isConstant()) |
| return; |
| |
| markOverdefined(&I); |
| } |
| |
| // Handle getelementptr instructions. If all operands are constants then we |
| // can turn this into a getelementptr ConstantExpr. |
| void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { |
| if (ValueState[&I].isOverdefined()) return; |
| |
| SmallVector<Constant*, 8> Operands; |
| Operands.reserve(I.getNumOperands()); |
| |
| for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { |
| LatticeVal State = getValueState(I.getOperand(i)); |
| if (State.isUnknown()) |
| return; // Operands are not resolved yet. |
| |
| if (State.isOverdefined()) |
| return (void)markOverdefined(&I); |
| |
| assert(State.isConstant() && "Unknown state!"); |
| Operands.push_back(State.getConstant()); |
| } |
| |
| Constant *Ptr = Operands[0]; |
| auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end()); |
| Constant *C = |
| ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices); |
| if (isa<UndefValue>(C)) |
| return; |
| markConstant(&I, C); |
| } |
| |
| void SCCPSolver::visitStoreInst(StoreInst &SI) { |
| // If this store is of a struct, ignore it. |
| if (SI.getOperand(0)->getType()->isStructTy()) |
| return; |
| |
| if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) |
| return; |
| |
| GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); |
| DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); |
| if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; |
| |
| // Get the value we are storing into the global, then merge it. |
| mergeInValue(I->second, GV, getValueState(SI.getOperand(0))); |
| if (I->second.isOverdefined()) |
| TrackedGlobals.erase(I); // No need to keep tracking this! |
| } |
| |
| // Handle load instructions. If the operand is a constant pointer to a constant |
| // global, we can replace the load with the loaded constant value! |
| void SCCPSolver::visitLoadInst(LoadInst &I) { |
| // If this load is of a struct, just mark the result overdefined. |
| if (I.getType()->isStructTy()) |
| return (void)markOverdefined(&I); |
| |
| LatticeVal PtrVal = getValueState(I.getOperand(0)); |
| if (PtrVal.isUnknown()) return; // The pointer is not resolved yet! |
| |
| LatticeVal &IV = ValueState[&I]; |
| if (IV.isOverdefined()) return; |
| |
| if (!PtrVal.isConstant() || I.isVolatile()) |
| return (void)markOverdefined(IV, &I); |
| |
| Constant *Ptr = PtrVal.getConstant(); |
| |
| // load null is undefined. |
| if (isa<ConstantPointerNull>(Ptr)) { |
| if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace())) |
| return (void)markOverdefined(IV, &I); |
| else |
| return; |
| } |
| |
| // Transform load (constant global) into the value loaded. |
| if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) { |
| if (!TrackedGlobals.empty()) { |
| // If we are tracking this global, merge in the known value for it. |
| DenseMap<GlobalVariable*, LatticeVal>::iterator It = |
| TrackedGlobals.find(GV); |
| if (It != TrackedGlobals.end()) { |
| mergeInValue(IV, &I, It->second); |
| return; |
| } |
| } |
| } |
| |
| // Transform load from a constant into a constant if possible. |
| if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) { |
| if (isa<UndefValue>(C)) |
| return; |
| return (void)markConstant(IV, &I, C); |
| } |
| |
| // Otherwise we cannot say for certain what value this load will produce. |
| // Bail out. |
| markOverdefined(IV, &I); |
| } |
| |
| void SCCPSolver::visitCallSite(CallSite CS) { |
| Function *F = CS.getCalledFunction(); |
| Instruction *I = CS.getInstruction(); |
| |
| // The common case is that we aren't tracking the callee, either because we |
| // are not doing interprocedural analysis or the callee is indirect, or is |
| // external. Handle these cases first. |
| if (!F || F->isDeclaration()) { |
| CallOverdefined: |
| // Void return and not tracking callee, just bail. |
| if (I->getType()->isVoidTy()) return; |
| |
| // Otherwise, if we have a single return value case, and if the function is |
| // a declaration, maybe we can constant fold it. |
| if (F && F->isDeclaration() && !I->getType()->isStructTy() && |
| canConstantFoldCallTo(CS, F)) { |
| SmallVector<Constant*, 8> Operands; |
| for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); |
| AI != E; ++AI) { |
| LatticeVal State = getValueState(*AI); |
| |
| if (State.isUnknown()) |
| return; // Operands are not resolved yet. |
| if (State.isOverdefined()) |
| return (void)markOverdefined(I); |
| assert(State.isConstant() && "Unknown state!"); |
| Operands.push_back(State.getConstant()); |
| } |
| |
| if (getValueState(I).isOverdefined()) |
| return; |
| |
| // If we can constant fold this, mark the result of the call as a |
| // constant. |
| if (Constant *C = ConstantFoldCall(CS, F, Operands, TLI)) { |
| // call -> undef. |
| if (isa<UndefValue>(C)) |
| return; |
| return (void)markConstant(I, C); |
| } |
| } |
| |
| // Otherwise, we don't know anything about this call, mark it overdefined. |
| return (void)markOverdefined(I); |
| } |
| |
| // If this is a local function that doesn't have its address taken, mark its |
| // entry block executable and merge in the actual arguments to the call into |
| // the formal arguments of the function. |
| if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){ |
| MarkBlockExecutable(&F->front()); |
| |
| // Propagate information from this call site into the callee. |
| CallSite::arg_iterator CAI = CS.arg_begin(); |
| for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); |
| AI != E; ++AI, ++CAI) { |
| // If this argument is byval, and if the function is not readonly, there |
| // will be an implicit copy formed of the input aggregate. |
| if (AI->hasByValAttr() && !F->onlyReadsMemory()) { |
| markOverdefined(&*AI); |
| continue; |
| } |
| |
| if (auto *STy = dyn_cast<StructType>(AI->getType())) { |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| LatticeVal CallArg = getStructValueState(*CAI, i); |
| mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg); |
| } |
| } else { |
| // Most other parts of the Solver still only use the simpler value |
| // lattice, so we propagate changes for parameters to both lattices. |
| LatticeVal ConcreteArgument = getValueState(*CAI); |
| bool ParamChanged = |
| getParamState(&*AI).mergeIn(ConcreteArgument.toValueLattice(), DL); |
| bool ValueChanged = mergeInValue(&*AI, ConcreteArgument); |
| // Add argument to work list, if the state of a parameter changes but |
| // ValueState does not change (because it is already overdefined there), |
| // We have to take changes in ParamState into account, as it is used |
| // when evaluating Cmp instructions. |
| if (!ValueChanged && ParamChanged) |
| pushToWorkList(ValueState[&*AI], &*AI); |
| } |
| } |
| } |
| |
| // If this is a single/zero retval case, see if we're tracking the function. |
| if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { |
| if (!MRVFunctionsTracked.count(F)) |
| goto CallOverdefined; // Not tracking this callee. |
| |
| // If we are tracking this callee, propagate the result of the function |
| // into this call site. |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) |
| mergeInValue(getStructValueState(I, i), I, |
| TrackedMultipleRetVals[std::make_pair(F, i)]); |
| } else { |
| DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); |
| if (TFRVI == TrackedRetVals.end()) |
| goto CallOverdefined; // Not tracking this callee. |
| |
| // If so, propagate the return value of the callee into this call result. |
| mergeInValue(I, TFRVI->second); |
| } |
| } |
| |
| void SCCPSolver::Solve() { |
| // Process the work lists until they are empty! |
| while (!BBWorkList.empty() || !InstWorkList.empty() || |
| !OverdefinedInstWorkList.empty()) { |
| // Process the overdefined instruction's work list first, which drives other |
| // things to overdefined more quickly. |
| while (!OverdefinedInstWorkList.empty()) { |
| Value *I = OverdefinedInstWorkList.pop_back_val(); |
| |
| LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); |
| |
| // "I" got into the work list because it either made the transition from |
| // bottom to constant, or to overdefined. |
| // |
| // Anything on this worklist that is overdefined need not be visited |
| // since all of its users will have already been marked as overdefined |
| // Update all of the users of this instruction's value. |
| // |
| for (User *U : I->users()) |
| if (auto *UI = dyn_cast<Instruction>(U)) |
| OperandChangedState(UI); |
| } |
| |
| // Process the instruction work list. |
| while (!InstWorkList.empty()) { |
| Value *I = InstWorkList.pop_back_val(); |
| |
| LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); |
| |
| // "I" got into the work list because it made the transition from undef to |
| // constant. |
| // |
| // Anything on this worklist that is overdefined need not be visited |
| // since all of its users will have already been marked as overdefined. |
| // Update all of the users of this instruction's value. |
| // |
| if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) |
| for (User *U : I->users()) |
| if (auto *UI = dyn_cast<Instruction>(U)) |
| OperandChangedState(UI); |
| } |
| |
| // Process the basic block work list. |
| while (!BBWorkList.empty()) { |
| BasicBlock *BB = BBWorkList.back(); |
| BBWorkList.pop_back(); |
| |
| LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); |
| |
| // Notify all instructions in this basic block that they are newly |
| // executable. |
| visit(BB); |
| } |
| } |
| } |
| |
| /// ResolvedUndefsIn - While solving the dataflow for a function, we assume |
| /// that branches on undef values cannot reach any of their successors. |
| /// However, this is not a safe assumption. After we solve dataflow, this |
| /// method should be use to handle this. If this returns true, the solver |
| /// should be rerun. |
| /// |
| /// This method handles this by finding an unresolved branch and marking it one |
| /// of the edges from the block as being feasible, even though the condition |
| /// doesn't say it would otherwise be. This allows SCCP to find the rest of the |
| /// CFG and only slightly pessimizes the analysis results (by marking one, |
| /// potentially infeasible, edge feasible). This cannot usefully modify the |
| /// constraints on the condition of the branch, as that would impact other users |
| /// of the value. |
| /// |
| /// This scan also checks for values that use undefs, whose results are actually |
| /// defined. For example, 'zext i8 undef to i32' should produce all zeros |
| /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, |
| /// even if X isn't defined. |
| bool SCCPSolver::ResolvedUndefsIn(Function &F) { |
| for (BasicBlock &BB : F) { |
| if (!BBExecutable.count(&BB)) |
| continue; |
| |
| for (Instruction &I : BB) { |
| // Look for instructions which produce undef values. |
| if (I.getType()->isVoidTy()) continue; |
| |
| if (auto *STy = dyn_cast<StructType>(I.getType())) { |
| // Only a few things that can be structs matter for undef. |
| |
| // Tracked calls must never be marked overdefined in ResolvedUndefsIn. |
| if (CallSite CS = CallSite(&I)) |
| if (Function *F = CS.getCalledFunction()) |
| if (MRVFunctionsTracked.count(F)) |
| continue; |
| |
| // extractvalue and insertvalue don't need to be marked; they are |
| // tracked as precisely as their operands. |
| if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) |
| continue; |
| |
| // Send the results of everything else to overdefined. We could be |
| // more precise than this but it isn't worth bothering. |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| LatticeVal &LV = getStructValueState(&I, i); |
| if (LV.isUnknown()) |
| markOverdefined(LV, &I); |
| } |
| continue; |
| } |
| |
| LatticeVal &LV = getValueState(&I); |
| if (!LV.isUnknown()) continue; |
| |
| // extractvalue is safe; check here because the argument is a struct. |
| if (isa<ExtractValueInst>(I)) |
| continue; |
| |
| // Compute the operand LatticeVals, for convenience below. |
| // Anything taking a struct is conservatively assumed to require |
| // overdefined markings. |
| if (I.getOperand(0)->getType()->isStructTy()) { |
| markOverdefined(&I); |
| return true; |
| } |
| LatticeVal Op0LV = getValueState(I.getOperand(0)); |
| LatticeVal Op1LV; |
| if (I.getNumOperands() == 2) { |
| if (I.getOperand(1)->getType()->isStructTy()) { |
| markOverdefined(&I); |
| return true; |
| } |
| |
| Op1LV = getValueState(I.getOperand(1)); |
| } |
| // If this is an instructions whose result is defined even if the input is |
| // not fully defined, propagate the information. |
| Type *ITy = I.getType(); |
| switch (I.getOpcode()) { |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Trunc: |
| case Instruction::FPTrunc: |
| case Instruction::BitCast: |
| break; // Any undef -> undef |
| case Instruction::FSub: |
| case Instruction::FAdd: |
| case Instruction::FMul: |
| case Instruction::FDiv: |
| case Instruction::FRem: |
| // Floating-point binary operation: be conservative. |
| if (Op0LV.isUnknown() && Op1LV.isUnknown()) |
| markForcedConstant(&I, Constant::getNullValue(ITy)); |
| else |
| markOverdefined(&I); |
| return true; |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::FPExt: |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| case Instruction::SIToFP: |
| case Instruction::UIToFP: |
| // undef -> 0; some outputs are impossible |
| markForcedConstant(&I, Constant::getNullValue(ITy)); |
| return true; |
| case Instruction::Mul: |
| case Instruction::And: |
| // Both operands undef -> undef |
| if (Op0LV.isUnknown() && Op1LV.isUnknown()) |
| break; |
| // undef * X -> 0. X could be zero. |
| // undef & X -> 0. X could be zero. |
| markForcedConstant(&I, Constant::getNullValue(ITy)); |
| return true; |
| case Instruction::Or: |
| // Both operands undef -> undef |
| if (Op0LV.isUnknown() && Op1LV.isUnknown()) |
| break; |
| // undef | X -> -1. X could be -1. |
| markForcedConstant(&I, Constant::getAllOnesValue(ITy)); |
| return true; |
| case Instruction::Xor: |
| // undef ^ undef -> 0; strictly speaking, this is not strictly |
| // necessary, but we try to be nice to people who expect this |
| // behavior in simple cases |
| if (Op0LV.isUnknown() && Op1LV.isUnknown()) { |
| markForcedConstant(&I, Constant::getNullValue(ITy)); |
| return true; |
| } |
| // undef ^ X -> undef |
| break; |
| case Instruction::SDiv: |
| case Instruction::UDiv: |
| case Instruction::SRem: |
| case Instruction::URem: |
| // X / undef -> undef. No change. |
| // X % undef -> undef. No change. |
| if (Op1LV.isUnknown()) break; |
| |
| // X / 0 -> undef. No change. |
| // X % 0 -> undef. No change. |
| if (Op1LV.isConstant() && Op1LV.getConstant()->isZeroValue()) |
| break; |
| |
| // undef / X -> 0. X could be maxint. |
| // undef % X -> 0. X could be 1. |
| markForcedConstant(&I, Constant::getNullValue(ITy)); |
| return true; |
| case Instruction::AShr: |
| // X >>a undef -> undef. |
| if (Op1LV.isUnknown()) break; |
| |
| // Shifting by the bitwidth or more is undefined. |
| if (Op1LV.isConstant()) { |
| if (auto *ShiftAmt = Op1LV.getConstantInt()) |
| if (ShiftAmt->getLimitedValue() >= |
| ShiftAmt->getType()->getScalarSizeInBits()) |
| break; |
| } |
| |
| // undef >>a X -> 0 |
| markForcedConstant(&I, Constant::getNullValue(ITy)); |
| return true; |
| case Instruction::LShr: |
| case Instruction::Shl: |
| // X << undef -> undef. |
| // X >> undef -> undef. |
| if (Op1LV.isUnknown()) break; |
| |
| // Shifting by the bitwidth or more is undefined. |
| if (Op1LV.isConstant()) { |
| if (auto *ShiftAmt = Op1LV.getConstantInt()) |
| if (ShiftAmt->getLimitedValue() >= |
| ShiftAmt->getType()->getScalarSizeInBits()) |
| break; |
| } |
| |
| // undef << X -> 0 |
| // undef >> X -> 0 |
| markForcedConstant(&I, Constant::getNullValue(ITy)); |
| return true; |
| case Instruction::Select: |
| Op1LV = getValueState(I.getOperand(1)); |
| // undef ? X : Y -> X or Y. There could be commonality between X/Y. |
| if (Op0LV.isUnknown()) { |
| if (!Op1LV.isConstant()) // Pick the constant one if there is any. |
| Op1LV = getValueState(I.getOperand(2)); |
| } else if (Op1LV.isUnknown()) { |
| // c ? undef : undef -> undef. No change. |
| Op1LV = getValueState(I.getOperand(2)); |
| if (Op1LV.isUnknown()) |
| break; |
| // Otherwise, c ? undef : x -> x. |
| } else { |
| // Leave Op1LV as Operand(1)'s LatticeValue. |
| } |
| |
| if (Op1LV.isConstant()) |
| markForcedConstant(&I, Op1LV.getConstant()); |
| else |
| markOverdefined(&I); |
| return true; |
| case Instruction::Load: |
| // A load here means one of two things: a load of undef from a global, |
| // a load from an unknown pointer. Either way, having it return undef |
| // is okay. |
| break; |
| case Instruction::ICmp: |
| // X == undef -> undef. Other comparisons get more complicated. |
| Op0LV = getValueState(I.getOperand(0)); |
| Op1LV = getValueState(I.getOperand(1)); |
| |
| if ((Op0LV.isUnknown() || Op1LV.isUnknown()) && |
| cast<ICmpInst>(&I)->isEquality()) |
| break; |
| markOverdefined(&I); |
| return true; |
| case Instruction::Call: |
| case Instruction::Invoke: |
| // There are two reasons a call can have an undef result |
| // 1. It could be tracked. |
| // 2. It could be constant-foldable. |
| // Because of the way we solve return values, tracked calls must |
| // never be marked overdefined in ResolvedUndefsIn. |
| if (Function *F = CallSite(&I).getCalledFunction()) |
| if (TrackedRetVals.count(F)) |
| break; |
| |
| // If the call is constant-foldable, we mark it overdefined because |
| // we do not know what return values are valid. |
| markOverdefined(&I); |
| return true; |
| default: |
| // If we don't know what should happen here, conservatively mark it |
| // overdefined. |
| markOverdefined(&I); |
| return true; |
| } |
| } |
| |
| // Check to see if we have a branch or switch on an undefined value. If so |
| // we force the branch to go one way or the other to make the successor |
| // values live. It doesn't really matter which way we force it. |
| TerminatorInst *TI = BB.getTerminator(); |
| if (auto *BI = dyn_cast<BranchInst>(TI)) { |
| if (!BI->isConditional()) continue; |
| if (!getValueState(BI->getCondition()).isUnknown()) |
| continue; |
| |
| // If the input to SCCP is actually branch on undef, fix the undef to |
| // false. |
| if (isa<UndefValue>(BI->getCondition())) { |
| BI->setCondition(ConstantInt::getFalse(BI->getContext())); |
| markEdgeExecutable(&BB, TI->getSuccessor(1)); |
| return true; |
| } |
| |
| // Otherwise, it is a branch on a symbolic value which is currently |
| // considered to be undef. Make sure some edge is executable, so a |
| // branch on "undef" always flows somewhere. |
| // FIXME: Distinguish between dead code and an LLVM "undef" value. |
| BasicBlock *DefaultSuccessor = TI->getSuccessor(1); |
| if (markEdgeExecutable(&BB, DefaultSuccessor)) |
| return true; |
| |
| continue; |
| } |
| |
| if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) { |
| // Indirect branch with no successor ?. Its ok to assume it branches |
| // to no target. |
| if (IBR->getNumSuccessors() < 1) |
| continue; |
| |
| if (!getValueState(IBR->getAddress()).isUnknown()) |
| continue; |
| |
| // If the input to SCCP is actually branch on undef, fix the undef to |
| // the first successor of the indirect branch. |
| if (isa<UndefValue>(IBR->getAddress())) { |
| IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0))); |
| markEdgeExecutable(&BB, IBR->getSuccessor(0)); |
| return true; |
| } |
| |
| // Otherwise, it is a branch on a symbolic value which is currently |
| // considered to be undef. Make sure some edge is executable, so a |
| // branch on "undef" always flows somewhere. |
| // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere: |
| // we can assume the branch has undefined behavior instead. |
| BasicBlock *DefaultSuccessor = IBR->getSuccessor(0); |
| if (markEdgeExecutable(&BB, DefaultSuccessor)) |
| return true; |
| |
| continue; |
| } |
| |
| if (auto *SI = dyn_cast<SwitchInst>(TI)) { |
| if (!SI->getNumCases() || !getValueState(SI->getCondition()).isUnknown()) |
| continue; |
| |
| // If the input to SCCP is actually switch on undef, fix the undef to |
| // the first constant. |
| if (isa<UndefValue>(SI->getCondition())) { |
| SI->setCondition(SI->case_begin()->getCaseValue()); |
| markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor()); |
| return true; |
| } |
| |
| // Otherwise, it is a branch on a symbolic value which is currently |
| // considered to be undef. Make sure some edge is executable, so a |
| // branch on "undef" always flows somewhere. |
| // FIXME: Distinguish between dead code and an LLVM "undef" value. |
| BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor(); |
| if (markEdgeExecutable(&BB, DefaultSuccessor)) |
| return true; |
| |
| continue; |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) { |
| Constant *Const = nullptr; |
| if (V->getType()->isStructTy()) { |
| std::vector<LatticeVal> IVs = Solver.getStructLatticeValueFor(V); |
| if (llvm::any_of(IVs, |
| [](const LatticeVal &LV) { return LV.isOverdefined(); })) |
| return false; |
| std::vector<Constant *> ConstVals; |
| auto *ST = dyn_cast<StructType>(V->getType()); |
| for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { |
| LatticeVal V = IVs[i]; |
| ConstVals.push_back(V.isConstant() |
| ? V.getConstant() |
| : UndefValue::get(ST->getElementType(i))); |
| } |
| Const = ConstantStruct::get(ST, ConstVals); |
| } else { |
| const LatticeVal &IV = Solver.getLatticeValueFor(V); |
| if (IV.isOverdefined()) |
| return false; |
| |
| Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(V->getType()); |
| } |
| assert(Const && "Constant is nullptr here!"); |
| |
| // Replacing `musttail` instructions with constant breaks `musttail` invariant |
| // unless the call itself can be removed |
| CallInst *CI = dyn_cast<CallInst>(V); |
| if (CI && CI->isMustTailCall() && !CI->isSafeToRemove()) { |
| CallSite CS(CI); |
| Function *F = CS.getCalledFunction(); |
| |
| // Don't zap returns of the callee |
| if (F) |
| Solver.AddMustTailCallee(F); |
| |
| LLVM_DEBUG(dbgs() << " Can\'t treat the result of musttail call : " << *CI |
| << " as a constant\n"); |
| return false; |
| } |
| |
| LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n'); |
| |
| // Replaces all of the uses of a variable with uses of the constant. |
| V->replaceAllUsesWith(Const); |
| return true; |
| } |
| |
| // runSCCP() - Run the Sparse Conditional Constant Propagation algorithm, |
| // and return true if the function was modified. |
| static bool runSCCP(Function &F, const DataLayout &DL, |
| const TargetLibraryInfo *TLI) { |
| LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); |
| SCCPSolver Solver(DL, TLI); |
| |
| // Mark the first block of the function as being executable. |
| Solver.MarkBlockExecutable(&F.front()); |
| |
| // Mark all arguments to the function as being overdefined. |
| for (Argument &AI : F.args()) |
| Solver.markOverdefined(&AI); |
| |
| // Solve for constants. |
| bool ResolvedUndefs = true; |
| while (ResolvedUndefs) { |
| Solver.Solve(); |
| LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n"); |
| ResolvedUndefs = Solver.ResolvedUndefsIn(F); |
| } |
| |
| bool MadeChanges = false; |
| |
| // If we decided that there are basic blocks that are dead in this function, |
| // delete their contents now. Note that we cannot actually delete the blocks, |
| // as we cannot modify the CFG of the function. |
| |
| for (BasicBlock &BB : F) { |
| if (!Solver.isBlockExecutable(&BB)) { |
| LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB); |
| |
| ++NumDeadBlocks; |
| NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB); |
| |
| MadeChanges = true; |
| continue; |
| } |
| |
| // Iterate over all of the instructions in a function, replacing them with |
| // constants if we have found them to be of constant values. |
| for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) { |
| Instruction *Inst = &*BI++; |
| if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst)) |
| continue; |
| |
| if (tryToReplaceWithConstant(Solver, Inst)) { |
| if (isInstructionTriviallyDead(Inst)) |
| Inst->eraseFromParent(); |
| // Hey, we just changed something! |
| MadeChanges = true; |
| ++NumInstRemoved; |
| } |
| } |
| } |
| |
| return MadeChanges; |
| } |
| |
| PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) { |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); |
| if (!runSCCP(F, DL, &TLI)) |
| return PreservedAnalyses::all(); |
| |
| auto PA = PreservedAnalyses(); |
| PA.preserve<GlobalsAA>(); |
| PA.preserveSet<CFGAnalyses>(); |
| return PA; |
| } |
| |
| namespace { |
| |
| //===--------------------------------------------------------------------===// |
| // |
| /// SCCP Class - This class uses the SCCPSolver to implement a per-function |
| /// Sparse Conditional Constant Propagator. |
| /// |
| class SCCPLegacyPass : public FunctionPass { |
| public: |
| // Pass identification, replacement for typeid |
| static char ID; |
| |
| SCCPLegacyPass() : FunctionPass(ID) { |
| initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| AU.addPreserved<GlobalsAAWrapperPass>(); |
| AU.setPreservesCFG(); |
| } |
| |
| // runOnFunction - Run the Sparse Conditional Constant Propagation |
| // algorithm, and return true if the function was modified. |
| bool runOnFunction(Function &F) override { |
| if (skipFunction(F)) |
| return false; |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| const TargetLibraryInfo *TLI = |
| &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); |
| return runSCCP(F, DL, TLI); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| char SCCPLegacyPass::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp", |
| "Sparse Conditional Constant Propagation", false, false) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_END(SCCPLegacyPass, "sccp", |
| "Sparse Conditional Constant Propagation", false, false) |
| |
| // createSCCPPass - This is the public interface to this file. |
| FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); } |
| |
| static void findReturnsToZap(Function &F, |
| SmallVector<ReturnInst *, 8> &ReturnsToZap, |
| SCCPSolver &Solver) { |
| // We can only do this if we know that nothing else can call the function. |
| if (!Solver.isArgumentTrackedFunction(&F)) |
| return; |
| |
| // There is a non-removable musttail call site of this function. Zapping |
| // returns is not allowed. |
| if (Solver.isMustTailCallee(&F)) { |
| LLVM_DEBUG(dbgs() << "Can't zap returns of the function : " << F.getName() |
| << " due to present musttail call of it\n"); |
| return; |
| } |
| |
| for (BasicBlock &BB : F) { |
| if (CallInst *CI = BB.getTerminatingMustTailCall()) { |
| LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present " |
| << "musttail call : " << *CI << "\n"); |
| (void)CI; |
| return; |
| } |
| |
| if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator())) |
| if (!isa<UndefValue>(RI->getOperand(0))) |
| ReturnsToZap.push_back(RI); |
| } |
| } |
| |
| bool llvm::runIPSCCP(Module &M, const DataLayout &DL, |
| const TargetLibraryInfo *TLI) { |
| SCCPSolver Solver(DL, TLI); |
| |
| // Loop over all functions, marking arguments to those with their addresses |
| // taken or that are external as overdefined. |
| for (Function &F : M) { |
| if (F.isDeclaration()) |
| continue; |
| |
| // Determine if we can track the function's return values. If so, add the |
| // function to the solver's set of return-tracked functions. |
| if (canTrackReturnsInterprocedurally(&F)) |
| Solver.AddTrackedFunction(&F); |
| |
| // Determine if we can track the function's arguments. If so, add the |
| // function to the solver's set of argument-tracked functions. |
| if (canTrackArgumentsInterprocedurally(&F)) { |
| Solver.AddArgumentTrackedFunction(&F); |
| continue; |
| } |
| |
| // Assume the function is called. |
| Solver.MarkBlockExecutable(&F.front()); |
| |
| // Assume nothing about the incoming arguments. |
| for (Argument &AI : F.args()) |
| Solver.markOverdefined(&AI); |
| } |
| |
| // Determine if we can track any of the module's global variables. If so, add |
| // the global variables we can track to the solver's set of tracked global |
| // variables. |
| for (GlobalVariable &G : M.globals()) { |
| G.removeDeadConstantUsers(); |
| if (canTrackGlobalVariableInterprocedurally(&G)) |
| Solver.TrackValueOfGlobalVariable(&G); |
| } |
| |
| // Solve for constants. |
| bool ResolvedUndefs = true; |
| Solver.Solve(); |
| while (ResolvedUndefs) { |
| LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n"); |
| ResolvedUndefs = false; |
| for (Function &F : M) |
| if (Solver.ResolvedUndefsIn(F)) { |
| // We run Solve() after we resolved an undef in a function, because |
| // we might deduce a fact that eliminates an undef in another function. |
| Solver.Solve(); |
| ResolvedUndefs = true; |
| } |
| } |
| |
| bool MadeChanges = false; |
| |
| // Iterate over all of the instructions in the module, replacing them with |
| // constants if we have found them to be of constant values. |
| SmallVector<BasicBlock*, 512> BlocksToErase; |
| |
| for (Function &F : M) { |
| if (F.isDeclaration()) |
| continue; |
| |
| if (Solver.isBlockExecutable(&F.front())) |
| for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; |
| ++AI) { |
| if (!AI->use_empty() && tryToReplaceWithConstant(Solver, &*AI)) { |
| ++IPNumArgsElimed; |
| continue; |
| } |
| } |
| |
| for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { |
| if (!Solver.isBlockExecutable(&*BB)) { |
| LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB); |
| ++NumDeadBlocks; |
| |
| MadeChanges = true; |
| |
| if (&*BB != &F.front()) |
| BlocksToErase.push_back(&*BB); |
| continue; |
| } |
| |
| for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { |
| Instruction *Inst = &*BI++; |
| if (Inst->getType()->isVoidTy()) |
| continue; |
| if (tryToReplaceWithConstant(Solver, Inst)) { |
| if (Inst->isSafeToRemove()) |
| Inst->eraseFromParent(); |
| // Hey, we just changed something! |
| MadeChanges = true; |
| ++IPNumInstRemoved; |
| } |
| } |
| } |
| |
| // Change dead blocks to unreachable. We do it after replacing constants in |
| // all executable blocks, because changeToUnreachable may remove PHI nodes |
| // in executable blocks we found values for. The function's entry block is |
| // not part of BlocksToErase, so we have to handle it separately. |
| for (BasicBlock *BB : BlocksToErase) |
| NumInstRemoved += |
| changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false); |
| if (!Solver.isBlockExecutable(&F.front())) |
| NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(), |
| /*UseLLVMTrap=*/false); |
| |
| // Now that all instructions in the function are constant folded, erase dead |
| // blocks, because we can now use ConstantFoldTerminator to get rid of |
| // in-edges. |
| for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { |
| // If there are any PHI nodes in this successor, drop entries for BB now. |
| BasicBlock *DeadBB = BlocksToErase[i]; |
| for (Value::user_iterator UI = DeadBB->user_begin(), |
| UE = DeadBB->user_end(); |
| UI != UE;) { |
| // Grab the user and then increment the iterator early, as the user |
| // will be deleted. Step past all adjacent uses from the same user. |
| auto *I = dyn_cast<Instruction>(*UI); |
| do { ++UI; } while (UI != UE && *UI == I); |
| |
| // Ignore blockaddress users; BasicBlock's dtor will handle them. |
| if (!I) continue; |
| |
| bool Folded = ConstantFoldTerminator(I->getParent()); |
| if (!Folded) { |
| // If the branch can't be folded, we must have forced an edge |
| // for an indeterminate value. Force the terminator to fold |
| // to that edge. |
| Constant *C; |
| BasicBlock *Dest; |
| if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { |
| Dest = SI->case_begin()->getCaseSuccessor(); |
| C = SI->case_begin()->getCaseValue(); |
| } else if (BranchInst *BI = dyn_cast<BranchInst>(I)) { |
| Dest = BI->getSuccessor(1); |
| C = ConstantInt::getFalse(BI->getContext()); |
| } else if (IndirectBrInst *IBR = dyn_cast<IndirectBrInst>(I)) { |
| Dest = IBR->getSuccessor(0); |
| C = BlockAddress::get(IBR->getSuccessor(0)); |
| } else { |
| llvm_unreachable("Unexpected terminator instruction"); |
| } |
| assert(Solver.isEdgeFeasible(I->getParent(), Dest) && |
| "Didn't find feasible edge?"); |
| (void)Dest; |
| |
| I->setOperand(0, C); |
| Folded = ConstantFoldTerminator(I->getParent()); |
| } |
| assert(Folded && |
| "Expect TermInst on constantint or blockaddress to be folded"); |
| (void) Folded; |
| } |
| |
| // Finally, delete the basic block. |
| F.getBasicBlockList().erase(DeadBB); |
| } |
| BlocksToErase.clear(); |
| } |
| |
| // If we inferred constant or undef return values for a function, we replaced |
| // all call uses with the inferred value. This means we don't need to bother |
| // actually returning anything from the function. Replace all return |
| // instructions with return undef. |
| // |
| // Do this in two stages: first identify the functions we should process, then |
| // actually zap their returns. This is important because we can only do this |
| // if the address of the function isn't taken. In cases where a return is the |
| // last use of a function, the order of processing functions would affect |
| // whether other functions are optimizable. |
| SmallVector<ReturnInst*, 8> ReturnsToZap; |
| |
| const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); |
| for (const auto &I : RV) { |
| Function *F = I.first; |
| if (I.second.isOverdefined() || F->getReturnType()->isVoidTy()) |
| continue; |
| findReturnsToZap(*F, ReturnsToZap, Solver); |
| } |
| |
| for (const auto &F : Solver.getMRVFunctionsTracked()) { |
| assert(F->getReturnType()->isStructTy() && |
| "The return type should be a struct"); |
| StructType *STy = cast<StructType>(F->getReturnType()); |
| if (Solver.isStructLatticeConstant(F, STy)) |
| findReturnsToZap(*F, ReturnsToZap, Solver); |
| } |
| |
| // Zap all returns which we've identified as zap to change. |
| for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) { |
| Function *F = ReturnsToZap[i]->getParent()->getParent(); |
| ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType())); |
| } |
| |
| // If we inferred constant or undef values for globals variables, we can |
| // delete the global and any stores that remain to it. |
| const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); |
| for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), |
| E = TG.end(); I != E; ++I) { |
| GlobalVariable *GV = I->first; |
| assert(!I->second.isOverdefined() && |
| "Overdefined values should have been taken out of the map!"); |
| LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName() |
| << "' is constant!\n"); |
| while (!GV->use_empty()) { |
| StoreInst *SI = cast<StoreInst>(GV->user_back()); |
| SI->eraseFromParent(); |
| } |
| M.getGlobalList().erase(GV); |
| ++IPNumGlobalConst; |
| } |
| |
| return MadeChanges; |
| } |