| //===- InstructionCombining.cpp - Combine multiple instructions -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // InstructionCombining - Combine instructions to form fewer, simple |
| // instructions. This pass does not modify the CFG. This pass is where |
| // algebraic simplification happens. |
| // |
| // This pass combines things like: |
| // %Y = add i32 %X, 1 |
| // %Z = add i32 %Y, 1 |
| // into: |
| // %Z = add i32 %X, 2 |
| // |
| // This is a simple worklist driven algorithm. |
| // |
| // This pass guarantees that the following canonicalizations are performed on |
| // the program: |
| // 1. If a binary operator has a constant operand, it is moved to the RHS |
| // 2. Bitwise operators with constant operands are always grouped so that |
| // shifts are performed first, then or's, then and's, then xor's. |
| // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible |
| // 4. All cmp instructions on boolean values are replaced with logical ops |
| // 5. add X, X is represented as (X*2) => (X << 1) |
| // 6. Multiplies with a power-of-two constant argument are transformed into |
| // shifts. |
| // ... etc. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InstCombineInternal.h" |
| #include "llvm-c/Initialization.h" |
| #include "llvm-c/Transforms/InstCombine.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/TinyPtrVector.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/BasicAliasAnalysis.h" |
| #include "llvm/Analysis/CFG.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/EHPersonalities.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/MemoryBuiltins.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/TargetFolder.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DIBuilder.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LegacyPassManager.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CBindingWrapping.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/DebugCounter.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/InstCombine/InstCombine.h" |
| #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <memory> |
| #include <string> |
| #include <utility> |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| #define DEBUG_TYPE "instcombine" |
| |
| STATISTIC(NumCombined , "Number of insts combined"); |
| STATISTIC(NumConstProp, "Number of constant folds"); |
| STATISTIC(NumDeadInst , "Number of dead inst eliminated"); |
| STATISTIC(NumSunkInst , "Number of instructions sunk"); |
| STATISTIC(NumExpand, "Number of expansions"); |
| STATISTIC(NumFactor , "Number of factorizations"); |
| STATISTIC(NumReassoc , "Number of reassociations"); |
| DEBUG_COUNTER(VisitCounter, "instcombine-visit", |
| "Controls which instructions are visited"); |
| |
| static cl::opt<bool> |
| EnableExpensiveCombines("expensive-combines", |
| cl::desc("Enable expensive instruction combines")); |
| |
| static cl::opt<unsigned> |
| MaxArraySize("instcombine-maxarray-size", cl::init(1024), |
| cl::desc("Maximum array size considered when doing a combine")); |
| |
| // FIXME: Remove this flag when it is no longer necessary to convert |
| // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false |
| // increases variable availability at the cost of accuracy. Variables that |
| // cannot be promoted by mem2reg or SROA will be described as living in memory |
| // for their entire lifetime. However, passes like DSE and instcombine can |
| // delete stores to the alloca, leading to misleading and inaccurate debug |
| // information. This flag can be removed when those passes are fixed. |
| static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", |
| cl::Hidden, cl::init(true)); |
| |
| Value *InstCombiner::EmitGEPOffset(User *GEP) { |
| return llvm::EmitGEPOffset(&Builder, DL, GEP); |
| } |
| |
| /// Return true if it is desirable to convert an integer computation from a |
| /// given bit width to a new bit width. |
| /// We don't want to convert from a legal to an illegal type or from a smaller |
| /// to a larger illegal type. A width of '1' is always treated as a legal type |
| /// because i1 is a fundamental type in IR, and there are many specialized |
| /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as |
| /// legal to convert to, in order to open up more combining opportunities. |
| /// NOTE: this treats i8, i16 and i32 specially, due to them being so common |
| /// from frontend languages. |
| bool InstCombiner::shouldChangeType(unsigned FromWidth, |
| unsigned ToWidth) const { |
| bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); |
| bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); |
| |
| // Convert to widths of 8, 16 or 32 even if they are not legal types. Only |
| // shrink types, to prevent infinite loops. |
| if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32)) |
| return true; |
| |
| // If this is a legal integer from type, and the result would be an illegal |
| // type, don't do the transformation. |
| if (FromLegal && !ToLegal) |
| return false; |
| |
| // Otherwise, if both are illegal, do not increase the size of the result. We |
| // do allow things like i160 -> i64, but not i64 -> i160. |
| if (!FromLegal && !ToLegal && ToWidth > FromWidth) |
| return false; |
| |
| return true; |
| } |
| |
| /// Return true if it is desirable to convert a computation from 'From' to 'To'. |
| /// We don't want to convert from a legal to an illegal type or from a smaller |
| /// to a larger illegal type. i1 is always treated as a legal type because it is |
| /// a fundamental type in IR, and there are many specialized optimizations for |
| /// i1 types. |
| bool InstCombiner::shouldChangeType(Type *From, Type *To) const { |
| assert(From->isIntegerTy() && To->isIntegerTy()); |
| |
| unsigned FromWidth = From->getPrimitiveSizeInBits(); |
| unsigned ToWidth = To->getPrimitiveSizeInBits(); |
| return shouldChangeType(FromWidth, ToWidth); |
| } |
| |
| // Return true, if No Signed Wrap should be maintained for I. |
| // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", |
| // where both B and C should be ConstantInts, results in a constant that does |
| // not overflow. This function only handles the Add and Sub opcodes. For |
| // all other opcodes, the function conservatively returns false. |
| static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { |
| OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I); |
| if (!OBO || !OBO->hasNoSignedWrap()) |
| return false; |
| |
| // We reason about Add and Sub Only. |
| Instruction::BinaryOps Opcode = I.getOpcode(); |
| if (Opcode != Instruction::Add && Opcode != Instruction::Sub) |
| return false; |
| |
| const APInt *BVal, *CVal; |
| if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) |
| return false; |
| |
| bool Overflow = false; |
| if (Opcode == Instruction::Add) |
| (void)BVal->sadd_ov(*CVal, Overflow); |
| else |
| (void)BVal->ssub_ov(*CVal, Overflow); |
| |
| return !Overflow; |
| } |
| |
| /// Conservatively clears subclassOptionalData after a reassociation or |
| /// commutation. We preserve fast-math flags when applicable as they can be |
| /// preserved. |
| static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { |
| FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); |
| if (!FPMO) { |
| I.clearSubclassOptionalData(); |
| return; |
| } |
| |
| FastMathFlags FMF = I.getFastMathFlags(); |
| I.clearSubclassOptionalData(); |
| I.setFastMathFlags(FMF); |
| } |
| |
| /// Combine constant operands of associative operations either before or after a |
| /// cast to eliminate one of the associative operations: |
| /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) |
| /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) |
| static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) { |
| auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); |
| if (!Cast || !Cast->hasOneUse()) |
| return false; |
| |
| // TODO: Enhance logic for other casts and remove this check. |
| auto CastOpcode = Cast->getOpcode(); |
| if (CastOpcode != Instruction::ZExt) |
| return false; |
| |
| // TODO: Enhance logic for other BinOps and remove this check. |
| if (!BinOp1->isBitwiseLogicOp()) |
| return false; |
| |
| auto AssocOpcode = BinOp1->getOpcode(); |
| auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); |
| if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) |
| return false; |
| |
| Constant *C1, *C2; |
| if (!match(BinOp1->getOperand(1), m_Constant(C1)) || |
| !match(BinOp2->getOperand(1), m_Constant(C2))) |
| return false; |
| |
| // TODO: This assumes a zext cast. |
| // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 |
| // to the destination type might lose bits. |
| |
| // Fold the constants together in the destination type: |
| // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) |
| Type *DestTy = C1->getType(); |
| Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); |
| Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); |
| Cast->setOperand(0, BinOp2->getOperand(0)); |
| BinOp1->setOperand(1, FoldedC); |
| return true; |
| } |
| |
| /// This performs a few simplifications for operators that are associative or |
| /// commutative: |
| /// |
| /// Commutative operators: |
| /// |
| /// 1. Order operands such that they are listed from right (least complex) to |
| /// left (most complex). This puts constants before unary operators before |
| /// binary operators. |
| /// |
| /// Associative operators: |
| /// |
| /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. |
| /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. |
| /// |
| /// Associative and commutative operators: |
| /// |
| /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. |
| /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. |
| /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" |
| /// if C1 and C2 are constants. |
| bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { |
| Instruction::BinaryOps Opcode = I.getOpcode(); |
| bool Changed = false; |
| |
| do { |
| // Order operands such that they are listed from right (least complex) to |
| // left (most complex). This puts constants before unary operators before |
| // binary operators. |
| if (I.isCommutative() && getComplexity(I.getOperand(0)) < |
| getComplexity(I.getOperand(1))) |
| Changed = !I.swapOperands(); |
| |
| BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); |
| BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); |
| |
| if (I.isAssociative()) { |
| // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. |
| if (Op0 && Op0->getOpcode() == Opcode) { |
| Value *A = Op0->getOperand(0); |
| Value *B = Op0->getOperand(1); |
| Value *C = I.getOperand(1); |
| |
| // Does "B op C" simplify? |
| if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { |
| // It simplifies to V. Form "A op V". |
| I.setOperand(0, A); |
| I.setOperand(1, V); |
| // Conservatively clear the optional flags, since they may not be |
| // preserved by the reassociation. |
| if (MaintainNoSignedWrap(I, B, C) && |
| (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) { |
| // Note: this is only valid because SimplifyBinOp doesn't look at |
| // the operands to Op0. |
| I.clearSubclassOptionalData(); |
| I.setHasNoSignedWrap(true); |
| } else { |
| ClearSubclassDataAfterReassociation(I); |
| } |
| |
| Changed = true; |
| ++NumReassoc; |
| continue; |
| } |
| } |
| |
| // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. |
| if (Op1 && Op1->getOpcode() == Opcode) { |
| Value *A = I.getOperand(0); |
| Value *B = Op1->getOperand(0); |
| Value *C = Op1->getOperand(1); |
| |
| // Does "A op B" simplify? |
| if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { |
| // It simplifies to V. Form "V op C". |
| I.setOperand(0, V); |
| I.setOperand(1, C); |
| // Conservatively clear the optional flags, since they may not be |
| // preserved by the reassociation. |
| ClearSubclassDataAfterReassociation(I); |
| Changed = true; |
| ++NumReassoc; |
| continue; |
| } |
| } |
| } |
| |
| if (I.isAssociative() && I.isCommutative()) { |
| if (simplifyAssocCastAssoc(&I)) { |
| Changed = true; |
| ++NumReassoc; |
| continue; |
| } |
| |
| // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. |
| if (Op0 && Op0->getOpcode() == Opcode) { |
| Value *A = Op0->getOperand(0); |
| Value *B = Op0->getOperand(1); |
| Value *C = I.getOperand(1); |
| |
| // Does "C op A" simplify? |
| if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { |
| // It simplifies to V. Form "V op B". |
| I.setOperand(0, V); |
| I.setOperand(1, B); |
| // Conservatively clear the optional flags, since they may not be |
| // preserved by the reassociation. |
| ClearSubclassDataAfterReassociation(I); |
| Changed = true; |
| ++NumReassoc; |
| continue; |
| } |
| } |
| |
| // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. |
| if (Op1 && Op1->getOpcode() == Opcode) { |
| Value *A = I.getOperand(0); |
| Value *B = Op1->getOperand(0); |
| Value *C = Op1->getOperand(1); |
| |
| // Does "C op A" simplify? |
| if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { |
| // It simplifies to V. Form "B op V". |
| I.setOperand(0, B); |
| I.setOperand(1, V); |
| // Conservatively clear the optional flags, since they may not be |
| // preserved by the reassociation. |
| ClearSubclassDataAfterReassociation(I); |
| Changed = true; |
| ++NumReassoc; |
| continue; |
| } |
| } |
| |
| // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" |
| // if C1 and C2 are constants. |
| Value *A, *B; |
| Constant *C1, *C2; |
| if (Op0 && Op1 && |
| Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && |
| match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && |
| match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { |
| BinaryOperator *NewBO = BinaryOperator::Create(Opcode, A, B); |
| if (isa<FPMathOperator>(NewBO)) { |
| FastMathFlags Flags = I.getFastMathFlags(); |
| Flags &= Op0->getFastMathFlags(); |
| Flags &= Op1->getFastMathFlags(); |
| NewBO->setFastMathFlags(Flags); |
| } |
| InsertNewInstWith(NewBO, I); |
| NewBO->takeName(Op1); |
| I.setOperand(0, NewBO); |
| I.setOperand(1, ConstantExpr::get(Opcode, C1, C2)); |
| // Conservatively clear the optional flags, since they may not be |
| // preserved by the reassociation. |
| ClearSubclassDataAfterReassociation(I); |
| |
| Changed = true; |
| continue; |
| } |
| } |
| |
| // No further simplifications. |
| return Changed; |
| } while (true); |
| } |
| |
| /// Return whether "X LOp (Y ROp Z)" is always equal to |
| /// "(X LOp Y) ROp (X LOp Z)". |
| static bool leftDistributesOverRight(Instruction::BinaryOps LOp, |
| Instruction::BinaryOps ROp) { |
| // X & (Y | Z) <--> (X & Y) | (X & Z) |
| // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) |
| if (LOp == Instruction::And) |
| return ROp == Instruction::Or || ROp == Instruction::Xor; |
| |
| // X | (Y & Z) <--> (X | Y) & (X | Z) |
| if (LOp == Instruction::Or) |
| return ROp == Instruction::And; |
| |
| // X * (Y + Z) <--> (X * Y) + (X * Z) |
| // X * (Y - Z) <--> (X * Y) - (X * Z) |
| if (LOp == Instruction::Mul) |
| return ROp == Instruction::Add || ROp == Instruction::Sub; |
| |
| return false; |
| } |
| |
| /// Return whether "(X LOp Y) ROp Z" is always equal to |
| /// "(X ROp Z) LOp (Y ROp Z)". |
| static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, |
| Instruction::BinaryOps ROp) { |
| if (Instruction::isCommutative(ROp)) |
| return leftDistributesOverRight(ROp, LOp); |
| |
| // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. |
| return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); |
| |
| // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", |
| // but this requires knowing that the addition does not overflow and other |
| // such subtleties. |
| } |
| |
| /// This function returns identity value for given opcode, which can be used to |
| /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). |
| static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { |
| if (isa<Constant>(V)) |
| return nullptr; |
| |
| return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); |
| } |
| |
| /// This function predicates factorization using distributive laws. By default, |
| /// it just returns the 'Op' inputs. But for special-cases like |
| /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add |
| /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to |
| /// allow more factorization opportunities. |
| static Instruction::BinaryOps |
| getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, |
| Value *&LHS, Value *&RHS) { |
| assert(Op && "Expected a binary operator"); |
| LHS = Op->getOperand(0); |
| RHS = Op->getOperand(1); |
| if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { |
| Constant *C; |
| if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { |
| // X << C --> X * (1 << C) |
| RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); |
| return Instruction::Mul; |
| } |
| // TODO: We can add other conversions e.g. shr => div etc. |
| } |
| return Op->getOpcode(); |
| } |
| |
| /// This tries to simplify binary operations by factorizing out common terms |
| /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). |
| Value *InstCombiner::tryFactorization(BinaryOperator &I, |
| Instruction::BinaryOps InnerOpcode, |
| Value *A, Value *B, Value *C, Value *D) { |
| assert(A && B && C && D && "All values must be provided"); |
| |
| Value *V = nullptr; |
| Value *SimplifiedInst = nullptr; |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); |
| |
| // Does "X op' Y" always equal "Y op' X"? |
| bool InnerCommutative = Instruction::isCommutative(InnerOpcode); |
| |
| // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? |
| if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) |
| // Does the instruction have the form "(A op' B) op (A op' D)" or, in the |
| // commutative case, "(A op' B) op (C op' A)"? |
| if (A == C || (InnerCommutative && A == D)) { |
| if (A != C) |
| std::swap(C, D); |
| // Consider forming "A op' (B op D)". |
| // If "B op D" simplifies then it can be formed with no cost. |
| V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); |
| // If "B op D" doesn't simplify then only go on if both of the existing |
| // operations "A op' B" and "C op' D" will be zapped as no longer used. |
| if (!V && LHS->hasOneUse() && RHS->hasOneUse()) |
| V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); |
| if (V) { |
| SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); |
| } |
| } |
| |
| // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? |
| if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) |
| // Does the instruction have the form "(A op' B) op (C op' B)" or, in the |
| // commutative case, "(A op' B) op (B op' D)"? |
| if (B == D || (InnerCommutative && B == C)) { |
| if (B != D) |
| std::swap(C, D); |
| // Consider forming "(A op C) op' B". |
| // If "A op C" simplifies then it can be formed with no cost. |
| V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); |
| |
| // If "A op C" doesn't simplify then only go on if both of the existing |
| // operations "A op' B" and "C op' D" will be zapped as no longer used. |
| if (!V && LHS->hasOneUse() && RHS->hasOneUse()) |
| V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); |
| if (V) { |
| SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); |
| } |
| } |
| |
| if (SimplifiedInst) { |
| ++NumFactor; |
| SimplifiedInst->takeName(&I); |
| |
| // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag. |
| // TODO: Check for NUW. |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { |
| if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { |
| bool HasNSW = false; |
| if (isa<OverflowingBinaryOperator>(&I)) |
| HasNSW = I.hasNoSignedWrap(); |
| |
| if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) |
| HasNSW &= LOBO->hasNoSignedWrap(); |
| |
| if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) |
| HasNSW &= ROBO->hasNoSignedWrap(); |
| |
| // We can propagate 'nsw' if we know that |
| // %Y = mul nsw i16 %X, C |
| // %Z = add nsw i16 %Y, %X |
| // => |
| // %Z = mul nsw i16 %X, C+1 |
| // |
| // iff C+1 isn't INT_MIN |
| const APInt *CInt; |
| if (TopLevelOpcode == Instruction::Add && |
| InnerOpcode == Instruction::Mul) |
| if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) |
| BO->setHasNoSignedWrap(HasNSW); |
| } |
| } |
| } |
| return SimplifiedInst; |
| } |
| |
| /// This tries to simplify binary operations which some other binary operation |
| /// distributes over either by factorizing out common terms |
| /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in |
| /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). |
| /// Returns the simplified value, or null if it didn't simplify. |
| Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); |
| BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); |
| Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); |
| |
| { |
| // Factorization. |
| Value *A, *B, *C, *D; |
| Instruction::BinaryOps LHSOpcode, RHSOpcode; |
| if (Op0) |
| LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); |
| if (Op1) |
| RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); |
| |
| // The instruction has the form "(A op' B) op (C op' D)". Try to factorize |
| // a common term. |
| if (Op0 && Op1 && LHSOpcode == RHSOpcode) |
| if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) |
| return V; |
| |
| // The instruction has the form "(A op' B) op (C)". Try to factorize common |
| // term. |
| if (Op0) |
| if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) |
| if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) |
| return V; |
| |
| // The instruction has the form "(B) op (C op' D)". Try to factorize common |
| // term. |
| if (Op1) |
| if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) |
| if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) |
| return V; |
| } |
| |
| // Expansion. |
| if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { |
| // The instruction has the form "(A op' B) op C". See if expanding it out |
| // to "(A op C) op' (B op C)" results in simplifications. |
| Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; |
| Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' |
| |
| Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); |
| Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I)); |
| |
| // Do "A op C" and "B op C" both simplify? |
| if (L && R) { |
| // They do! Return "L op' R". |
| ++NumExpand; |
| C = Builder.CreateBinOp(InnerOpcode, L, R); |
| C->takeName(&I); |
| return C; |
| } |
| |
| // Does "A op C" simplify to the identity value for the inner opcode? |
| if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { |
| // They do! Return "B op C". |
| ++NumExpand; |
| C = Builder.CreateBinOp(TopLevelOpcode, B, C); |
| C->takeName(&I); |
| return C; |
| } |
| |
| // Does "B op C" simplify to the identity value for the inner opcode? |
| if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { |
| // They do! Return "A op C". |
| ++NumExpand; |
| C = Builder.CreateBinOp(TopLevelOpcode, A, C); |
| C->takeName(&I); |
| return C; |
| } |
| } |
| |
| if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { |
| // The instruction has the form "A op (B op' C)". See if expanding it out |
| // to "(A op B) op' (A op C)" results in simplifications. |
| Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); |
| Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' |
| |
| Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I)); |
| Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); |
| |
| // Do "A op B" and "A op C" both simplify? |
| if (L && R) { |
| // They do! Return "L op' R". |
| ++NumExpand; |
| A = Builder.CreateBinOp(InnerOpcode, L, R); |
| A->takeName(&I); |
| return A; |
| } |
| |
| // Does "A op B" simplify to the identity value for the inner opcode? |
| if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { |
| // They do! Return "A op C". |
| ++NumExpand; |
| A = Builder.CreateBinOp(TopLevelOpcode, A, C); |
| A->takeName(&I); |
| return A; |
| } |
| |
| // Does "A op C" simplify to the identity value for the inner opcode? |
| if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { |
| // They do! Return "A op B". |
| ++NumExpand; |
| A = Builder.CreateBinOp(TopLevelOpcode, A, B); |
| A->takeName(&I); |
| return A; |
| } |
| } |
| |
| return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); |
| } |
| |
| Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, |
| Value *LHS, Value *RHS) { |
| Instruction::BinaryOps Opcode = I.getOpcode(); |
| // (op (select (a, b, c)), (select (a, d, e))) -> (select (a, (op b, d), (op |
| // c, e))) |
| Value *A, *B, *C, *D, *E; |
| Value *SI = nullptr; |
| if (match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))) && |
| match(RHS, m_Select(m_Specific(A), m_Value(D), m_Value(E)))) { |
| bool SelectsHaveOneUse = LHS->hasOneUse() && RHS->hasOneUse(); |
| BuilderTy::FastMathFlagGuard Guard(Builder); |
| if (isa<FPMathOperator>(&I)) |
| Builder.setFastMathFlags(I.getFastMathFlags()); |
| |
| Value *V1 = SimplifyBinOp(Opcode, C, E, SQ.getWithInstruction(&I)); |
| Value *V2 = SimplifyBinOp(Opcode, B, D, SQ.getWithInstruction(&I)); |
| if (V1 && V2) |
| SI = Builder.CreateSelect(A, V2, V1); |
| else if (V2 && SelectsHaveOneUse) |
| SI = Builder.CreateSelect(A, V2, Builder.CreateBinOp(Opcode, C, E)); |
| else if (V1 && SelectsHaveOneUse) |
| SI = Builder.CreateSelect(A, Builder.CreateBinOp(Opcode, B, D), V1); |
| |
| if (SI) |
| SI->takeName(&I); |
| } |
| |
| return SI; |
| } |
| |
| /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a |
| /// constant zero (which is the 'negate' form). |
| Value *InstCombiner::dyn_castNegVal(Value *V) const { |
| if (BinaryOperator::isNeg(V)) |
| return BinaryOperator::getNegArgument(V); |
| |
| // Constants can be considered to be negated values if they can be folded. |
| if (ConstantInt *C = dyn_cast<ConstantInt>(V)) |
| return ConstantExpr::getNeg(C); |
| |
| if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) |
| if (C->getType()->getElementType()->isIntegerTy()) |
| return ConstantExpr::getNeg(C); |
| |
| if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { |
| for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { |
| Constant *Elt = CV->getAggregateElement(i); |
| if (!Elt) |
| return nullptr; |
| |
| if (isa<UndefValue>(Elt)) |
| continue; |
| |
| if (!isa<ConstantInt>(Elt)) |
| return nullptr; |
| } |
| return ConstantExpr::getNeg(CV); |
| } |
| |
| return nullptr; |
| } |
| |
| static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, |
| InstCombiner::BuilderTy &Builder) { |
| if (auto *Cast = dyn_cast<CastInst>(&I)) |
| return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); |
| |
| assert(I.isBinaryOp() && "Unexpected opcode for select folding"); |
| |
| // Figure out if the constant is the left or the right argument. |
| bool ConstIsRHS = isa<Constant>(I.getOperand(1)); |
| Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); |
| |
| if (auto *SOC = dyn_cast<Constant>(SO)) { |
| if (ConstIsRHS) |
| return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); |
| return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); |
| } |
| |
| Value *Op0 = SO, *Op1 = ConstOperand; |
| if (!ConstIsRHS) |
| std::swap(Op0, Op1); |
| |
| auto *BO = cast<BinaryOperator>(&I); |
| Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, |
| SO->getName() + ".op"); |
| auto *FPInst = dyn_cast<Instruction>(RI); |
| if (FPInst && isa<FPMathOperator>(FPInst)) |
| FPInst->copyFastMathFlags(BO); |
| return RI; |
| } |
| |
| Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { |
| // Don't modify shared select instructions. |
| if (!SI->hasOneUse()) |
| return nullptr; |
| |
| Value *TV = SI->getTrueValue(); |
| Value *FV = SI->getFalseValue(); |
| if (!(isa<Constant>(TV) || isa<Constant>(FV))) |
| return nullptr; |
| |
| // Bool selects with constant operands can be folded to logical ops. |
| if (SI->getType()->isIntOrIntVectorTy(1)) |
| return nullptr; |
| |
| // If it's a bitcast involving vectors, make sure it has the same number of |
| // elements on both sides. |
| if (auto *BC = dyn_cast<BitCastInst>(&Op)) { |
| VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); |
| VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); |
| |
| // Verify that either both or neither are vectors. |
| if ((SrcTy == nullptr) != (DestTy == nullptr)) |
| return nullptr; |
| |
| // If vectors, verify that they have the same number of elements. |
| if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) |
| return nullptr; |
| } |
| |
| // Test if a CmpInst instruction is used exclusively by a select as |
| // part of a minimum or maximum operation. If so, refrain from doing |
| // any other folding. This helps out other analyses which understand |
| // non-obfuscated minimum and maximum idioms, such as ScalarEvolution |
| // and CodeGen. And in this case, at least one of the comparison |
| // operands has at least one user besides the compare (the select), |
| // which would often largely negate the benefit of folding anyway. |
| if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { |
| if (CI->hasOneUse()) { |
| Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); |
| if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || |
| (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) |
| return nullptr; |
| } |
| } |
| |
| Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); |
| Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); |
| return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); |
| } |
| |
| static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, |
| InstCombiner::BuilderTy &Builder) { |
| bool ConstIsRHS = isa<Constant>(I->getOperand(1)); |
| Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); |
| |
| if (auto *InC = dyn_cast<Constant>(InV)) { |
| if (ConstIsRHS) |
| return ConstantExpr::get(I->getOpcode(), InC, C); |
| return ConstantExpr::get(I->getOpcode(), C, InC); |
| } |
| |
| Value *Op0 = InV, *Op1 = C; |
| if (!ConstIsRHS) |
| std::swap(Op0, Op1); |
| |
| Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp"); |
| auto *FPInst = dyn_cast<Instruction>(RI); |
| if (FPInst && isa<FPMathOperator>(FPInst)) |
| FPInst->copyFastMathFlags(I); |
| return RI; |
| } |
| |
| Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) { |
| unsigned NumPHIValues = PN->getNumIncomingValues(); |
| if (NumPHIValues == 0) |
| return nullptr; |
| |
| // We normally only transform phis with a single use. However, if a PHI has |
| // multiple uses and they are all the same operation, we can fold *all* of the |
| // uses into the PHI. |
| if (!PN->hasOneUse()) { |
| // Walk the use list for the instruction, comparing them to I. |
| for (User *U : PN->users()) { |
| Instruction *UI = cast<Instruction>(U); |
| if (UI != &I && !I.isIdenticalTo(UI)) |
| return nullptr; |
| } |
| // Otherwise, we can replace *all* users with the new PHI we form. |
| } |
| |
| // Check to see if all of the operands of the PHI are simple constants |
| // (constantint/constantfp/undef). If there is one non-constant value, |
| // remember the BB it is in. If there is more than one or if *it* is a PHI, |
| // bail out. We don't do arbitrary constant expressions here because moving |
| // their computation can be expensive without a cost model. |
| BasicBlock *NonConstBB = nullptr; |
| for (unsigned i = 0; i != NumPHIValues; ++i) { |
| Value *InVal = PN->getIncomingValue(i); |
| if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) |
| continue; |
| |
| if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. |
| if (NonConstBB) return nullptr; // More than one non-const value. |
| |
| NonConstBB = PN->getIncomingBlock(i); |
| |
| // If the InVal is an invoke at the end of the pred block, then we can't |
| // insert a computation after it without breaking the edge. |
| if (InvokeInst *II = dyn_cast<InvokeInst>(InVal)) |
| if (II->getParent() == NonConstBB) |
| return nullptr; |
| |
| // If the incoming non-constant value is in I's block, we will remove one |
| // instruction, but insert another equivalent one, leading to infinite |
| // instcombine. |
| if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI)) |
| return nullptr; |
| } |
| |
| // If there is exactly one non-constant value, we can insert a copy of the |
| // operation in that block. However, if this is a critical edge, we would be |
| // inserting the computation on some other paths (e.g. inside a loop). Only |
| // do this if the pred block is unconditionally branching into the phi block. |
| if (NonConstBB != nullptr) { |
| BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); |
| if (!BI || !BI->isUnconditional()) return nullptr; |
| } |
| |
| // Okay, we can do the transformation: create the new PHI node. |
| PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); |
| InsertNewInstBefore(NewPN, *PN); |
| NewPN->takeName(PN); |
| |
| // If we are going to have to insert a new computation, do so right before the |
| // predecessor's terminator. |
| if (NonConstBB) |
| Builder.SetInsertPoint(NonConstBB->getTerminator()); |
| |
| // Next, add all of the operands to the PHI. |
| if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { |
| // We only currently try to fold the condition of a select when it is a phi, |
| // not the true/false values. |
| Value *TrueV = SI->getTrueValue(); |
| Value *FalseV = SI->getFalseValue(); |
| BasicBlock *PhiTransBB = PN->getParent(); |
| for (unsigned i = 0; i != NumPHIValues; ++i) { |
| BasicBlock *ThisBB = PN->getIncomingBlock(i); |
| Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); |
| Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); |
| Value *InV = nullptr; |
| // Beware of ConstantExpr: it may eventually evaluate to getNullValue, |
| // even if currently isNullValue gives false. |
| Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); |
| // For vector constants, we cannot use isNullValue to fold into |
| // FalseVInPred versus TrueVInPred. When we have individual nonzero |
| // elements in the vector, we will incorrectly fold InC to |
| // `TrueVInPred`. |
| if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC)) |
| InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; |
| else { |
| // Generate the select in the same block as PN's current incoming block. |
| // Note: ThisBB need not be the NonConstBB because vector constants |
| // which are constants by definition are handled here. |
| // FIXME: This can lead to an increase in IR generation because we might |
| // generate selects for vector constant phi operand, that could not be |
| // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For |
| // non-vector phis, this transformation was always profitable because |
| // the select would be generated exactly once in the NonConstBB. |
| Builder.SetInsertPoint(ThisBB->getTerminator()); |
| InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, |
| FalseVInPred, "phitmp"); |
| } |
| NewPN->addIncoming(InV, ThisBB); |
| } |
| } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { |
| Constant *C = cast<Constant>(I.getOperand(1)); |
| for (unsigned i = 0; i != NumPHIValues; ++i) { |
| Value *InV = nullptr; |
| if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) |
| InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); |
| else if (isa<ICmpInst>(CI)) |
| InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), |
| C, "phitmp"); |
| else |
| InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), |
| C, "phitmp"); |
| NewPN->addIncoming(InV, PN->getIncomingBlock(i)); |
| } |
| } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { |
| for (unsigned i = 0; i != NumPHIValues; ++i) { |
| Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), |
| Builder); |
| NewPN->addIncoming(InV, PN->getIncomingBlock(i)); |
| } |
| } else { |
| CastInst *CI = cast<CastInst>(&I); |
| Type *RetTy = CI->getType(); |
| for (unsigned i = 0; i != NumPHIValues; ++i) { |
| Value *InV; |
| if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) |
| InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); |
| else |
| InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), |
| I.getType(), "phitmp"); |
| NewPN->addIncoming(InV, PN->getIncomingBlock(i)); |
| } |
| } |
| |
| for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { |
| Instruction *User = cast<Instruction>(*UI++); |
| if (User == &I) continue; |
| replaceInstUsesWith(*User, NewPN); |
| eraseInstFromFunction(*User); |
| } |
| return replaceInstUsesWith(I, NewPN); |
| } |
| |
| Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { |
| if (!isa<Constant>(I.getOperand(1))) |
| return nullptr; |
| |
| if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { |
| if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) |
| return NewSel; |
| } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { |
| if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) |
| return NewPhi; |
| } |
| return nullptr; |
| } |
| |
| /// Given a pointer type and a constant offset, determine whether or not there |
| /// is a sequence of GEP indices into the pointed type that will land us at the |
| /// specified offset. If so, fill them into NewIndices and return the resultant |
| /// element type, otherwise return null. |
| Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, |
| SmallVectorImpl<Value *> &NewIndices) { |
| Type *Ty = PtrTy->getElementType(); |
| if (!Ty->isSized()) |
| return nullptr; |
| |
| // Start with the index over the outer type. Note that the type size |
| // might be zero (even if the offset isn't zero) if the indexed type |
| // is something like [0 x {int, int}] |
| Type *IndexTy = DL.getIndexType(PtrTy); |
| int64_t FirstIdx = 0; |
| if (int64_t TySize = DL.getTypeAllocSize(Ty)) { |
| FirstIdx = Offset/TySize; |
| Offset -= FirstIdx*TySize; |
| |
| // Handle hosts where % returns negative instead of values [0..TySize). |
| if (Offset < 0) { |
| --FirstIdx; |
| Offset += TySize; |
| assert(Offset >= 0); |
| } |
| assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); |
| } |
| |
| NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx)); |
| |
| // Index into the types. If we fail, set OrigBase to null. |
| while (Offset) { |
| // Indexing into tail padding between struct/array elements. |
| if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) |
| return nullptr; |
| |
| if (StructType *STy = dyn_cast<StructType>(Ty)) { |
| const StructLayout *SL = DL.getStructLayout(STy); |
| assert(Offset < (int64_t)SL->getSizeInBytes() && |
| "Offset must stay within the indexed type"); |
| |
| unsigned Elt = SL->getElementContainingOffset(Offset); |
| NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), |
| Elt)); |
| |
| Offset -= SL->getElementOffset(Elt); |
| Ty = STy->getElementType(Elt); |
| } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { |
| uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); |
| assert(EltSize && "Cannot index into a zero-sized array"); |
| NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize)); |
| Offset %= EltSize; |
| Ty = AT->getElementType(); |
| } else { |
| // Otherwise, we can't index into the middle of this atomic type, bail. |
| return nullptr; |
| } |
| } |
| |
| return Ty; |
| } |
| |
| static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { |
| // If this GEP has only 0 indices, it is the same pointer as |
| // Src. If Src is not a trivial GEP too, don't combine |
| // the indices. |
| if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && |
| !Src.hasOneUse()) |
| return false; |
| return true; |
| } |
| |
| /// Return a value X such that Val = X * Scale, or null if none. |
| /// If the multiplication is known not to overflow, then NoSignedWrap is set. |
| Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { |
| assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); |
| assert(cast<IntegerType>(Val->getType())->getBitWidth() == |
| Scale.getBitWidth() && "Scale not compatible with value!"); |
| |
| // If Val is zero or Scale is one then Val = Val * Scale. |
| if (match(Val, m_Zero()) || Scale == 1) { |
| NoSignedWrap = true; |
| return Val; |
| } |
| |
| // If Scale is zero then it does not divide Val. |
| if (Scale.isMinValue()) |
| return nullptr; |
| |
| // Look through chains of multiplications, searching for a constant that is |
| // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 |
| // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by |
| // a factor of 4 will produce X*(Y*2). The principle of operation is to bore |
| // down from Val: |
| // |
| // Val = M1 * X || Analysis starts here and works down |
| // M1 = M2 * Y || Doesn't descend into terms with more |
| // M2 = Z * 4 \/ than one use |
| // |
| // Then to modify a term at the bottom: |
| // |
| // Val = M1 * X |
| // M1 = Z * Y || Replaced M2 with Z |
| // |
| // Then to work back up correcting nsw flags. |
| |
| // Op - the term we are currently analyzing. Starts at Val then drills down. |
| // Replaced with its descaled value before exiting from the drill down loop. |
| Value *Op = Val; |
| |
| // Parent - initially null, but after drilling down notes where Op came from. |
| // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the |
| // 0'th operand of Val. |
| std::pair<Instruction *, unsigned> Parent; |
| |
| // Set if the transform requires a descaling at deeper levels that doesn't |
| // overflow. |
| bool RequireNoSignedWrap = false; |
| |
| // Log base 2 of the scale. Negative if not a power of 2. |
| int32_t logScale = Scale.exactLogBase2(); |
| |
| for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { |
| // If Op is a constant divisible by Scale then descale to the quotient. |
| APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. |
| APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); |
| if (!Remainder.isMinValue()) |
| // Not divisible by Scale. |
| return nullptr; |
| // Replace with the quotient in the parent. |
| Op = ConstantInt::get(CI->getType(), Quotient); |
| NoSignedWrap = true; |
| break; |
| } |
| |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { |
| if (BO->getOpcode() == Instruction::Mul) { |
| // Multiplication. |
| NoSignedWrap = BO->hasNoSignedWrap(); |
| if (RequireNoSignedWrap && !NoSignedWrap) |
| return nullptr; |
| |
| // There are three cases for multiplication: multiplication by exactly |
| // the scale, multiplication by a constant different to the scale, and |
| // multiplication by something else. |
| Value *LHS = BO->getOperand(0); |
| Value *RHS = BO->getOperand(1); |
| |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { |
| // Multiplication by a constant. |
| if (CI->getValue() == Scale) { |
| // Multiplication by exactly the scale, replace the multiplication |
| // by its left-hand side in the parent. |
| Op = LHS; |
| break; |
| } |
| |
| // Otherwise drill down into the constant. |
| if (!Op->hasOneUse()) |
| return nullptr; |
| |
| Parent = std::make_pair(BO, 1); |
| continue; |
| } |
| |
| // Multiplication by something else. Drill down into the left-hand side |
| // since that's where the reassociate pass puts the good stuff. |
| if (!Op->hasOneUse()) |
| return nullptr; |
| |
| Parent = std::make_pair(BO, 0); |
| continue; |
| } |
| |
| if (logScale > 0 && BO->getOpcode() == Instruction::Shl && |
| isa<ConstantInt>(BO->getOperand(1))) { |
| // Multiplication by a power of 2. |
| NoSignedWrap = BO->hasNoSignedWrap(); |
| if (RequireNoSignedWrap && !NoSignedWrap) |
| return nullptr; |
| |
| Value *LHS = BO->getOperand(0); |
| int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> |
| getLimitedValue(Scale.getBitWidth()); |
| // Op = LHS << Amt. |
| |
| if (Amt == logScale) { |
| // Multiplication by exactly the scale, replace the multiplication |
| // by its left-hand side in the parent. |
| Op = LHS; |
| break; |
| } |
| if (Amt < logScale || !Op->hasOneUse()) |
| return nullptr; |
| |
| // Multiplication by more than the scale. Reduce the multiplying amount |
| // by the scale in the parent. |
| Parent = std::make_pair(BO, 1); |
| Op = ConstantInt::get(BO->getType(), Amt - logScale); |
| break; |
| } |
| } |
| |
| if (!Op->hasOneUse()) |
| return nullptr; |
| |
| if (CastInst *Cast = dyn_cast<CastInst>(Op)) { |
| if (Cast->getOpcode() == Instruction::SExt) { |
| // Op is sign-extended from a smaller type, descale in the smaller type. |
| unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); |
| APInt SmallScale = Scale.trunc(SmallSize); |
| // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to |
| // descale Op as (sext Y) * Scale. In order to have |
| // sext (Y * SmallScale) = (sext Y) * Scale |
| // some conditions need to hold however: SmallScale must sign-extend to |
| // Scale and the multiplication Y * SmallScale should not overflow. |
| if (SmallScale.sext(Scale.getBitWidth()) != Scale) |
| // SmallScale does not sign-extend to Scale. |
| return nullptr; |
| assert(SmallScale.exactLogBase2() == logScale); |
| // Require that Y * SmallScale must not overflow. |
| RequireNoSignedWrap = true; |
| |
| // Drill down through the cast. |
| Parent = std::make_pair(Cast, 0); |
| Scale = SmallScale; |
| continue; |
| } |
| |
| if (Cast->getOpcode() == Instruction::Trunc) { |
| // Op is truncated from a larger type, descale in the larger type. |
| // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then |
| // trunc (Y * sext Scale) = (trunc Y) * Scale |
| // always holds. However (trunc Y) * Scale may overflow even if |
| // trunc (Y * sext Scale) does not, so nsw flags need to be cleared |
| // from this point up in the expression (see later). |
| if (RequireNoSignedWrap) |
| return nullptr; |
| |
| // Drill down through the cast. |
| unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); |
| Parent = std::make_pair(Cast, 0); |
| Scale = Scale.sext(LargeSize); |
| if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) |
| logScale = -1; |
| assert(Scale.exactLogBase2() == logScale); |
| continue; |
| } |
| } |
| |
| // Unsupported expression, bail out. |
| return nullptr; |
| } |
| |
| // If Op is zero then Val = Op * Scale. |
| if (match(Op, m_Zero())) { |
| NoSignedWrap = true; |
| return Op; |
| } |
| |
| // We know that we can successfully descale, so from here on we can safely |
| // modify the IR. Op holds the descaled version of the deepest term in the |
| // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known |
| // not to overflow. |
| |
| if (!Parent.first) |
| // The expression only had one term. |
| return Op; |
| |
| // Rewrite the parent using the descaled version of its operand. |
| assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); |
| assert(Op != Parent.first->getOperand(Parent.second) && |
| "Descaling was a no-op?"); |
| Parent.first->setOperand(Parent.second, Op); |
| Worklist.Add(Parent.first); |
| |
| // Now work back up the expression correcting nsw flags. The logic is based |
| // on the following observation: if X * Y is known not to overflow as a signed |
| // multiplication, and Y is replaced by a value Z with smaller absolute value, |
| // then X * Z will not overflow as a signed multiplication either. As we work |
| // our way up, having NoSignedWrap 'true' means that the descaled value at the |
| // current level has strictly smaller absolute value than the original. |
| Instruction *Ancestor = Parent.first; |
| do { |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { |
| // If the multiplication wasn't nsw then we can't say anything about the |
| // value of the descaled multiplication, and we have to clear nsw flags |
| // from this point on up. |
| bool OpNoSignedWrap = BO->hasNoSignedWrap(); |
| NoSignedWrap &= OpNoSignedWrap; |
| if (NoSignedWrap != OpNoSignedWrap) { |
| BO->setHasNoSignedWrap(NoSignedWrap); |
| Worklist.Add(Ancestor); |
| } |
| } else if (Ancestor->getOpcode() == Instruction::Trunc) { |
| // The fact that the descaled input to the trunc has smaller absolute |
| // value than the original input doesn't tell us anything useful about |
| // the absolute values of the truncations. |
| NoSignedWrap = false; |
| } |
| assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && |
| "Failed to keep proper track of nsw flags while drilling down?"); |
| |
| if (Ancestor == Val) |
| // Got to the top, all done! |
| return Val; |
| |
| // Move up one level in the expression. |
| assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); |
| Ancestor = Ancestor->user_back(); |
| } while (true); |
| } |
| |
| Instruction *InstCombiner::foldShuffledBinop(BinaryOperator &Inst) { |
| if (!Inst.getType()->isVectorTy()) return nullptr; |
| |
| // It may not be safe to reorder shuffles and things like div, urem, etc. |
| // because we may trap when executing those ops on unknown vector elements. |
| // See PR20059. |
| if (!isSafeToSpeculativelyExecute(&Inst)) |
| return nullptr; |
| |
| unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements(); |
| Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); |
| assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth); |
| assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth); |
| |
| auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) { |
| Value *XY = Builder.CreateBinOp(Inst.getOpcode(), X, Y); |
| if (auto *BO = dyn_cast<BinaryOperator>(XY)) |
| BO->copyIRFlags(&Inst); |
| return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M); |
| }; |
| |
| // If both arguments of the binary operation are shuffles that use the same |
| // mask and shuffle within a single vector, move the shuffle after the binop. |
| Value *V1, *V2; |
| Constant *Mask; |
| if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) && |
| match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) && |
| V1->getType() == V2->getType() && |
| (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { |
| // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) |
| return createBinOpShuffle(V1, V2, Mask); |
| } |
| |
| // If one argument is a shuffle within one vector and the other is a constant, |
| // try moving the shuffle after the binary operation. This canonicalization |
| // intends to move shuffles closer to other shuffles and binops closer to |
| // other binops, so they can be folded. It may also enable demanded elements |
| // transforms. |
| Constant *C; |
| if (match(&Inst, m_c_BinOp( |
| m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))), |
| m_Constant(C))) && |
| V1->getType() == Inst.getType()) { |
| // Find constant NewC that has property: |
| // shuffle(NewC, ShMask) = C |
| // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) |
| // reorder is not possible. A 1-to-1 mapping is not required. Example: |
| // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> |
| SmallVector<int, 16> ShMask; |
| ShuffleVectorInst::getShuffleMask(Mask, ShMask); |
| SmallVector<Constant *, 16> |
| NewVecC(VWidth, UndefValue::get(C->getType()->getScalarType())); |
| bool MayChange = true; |
| for (unsigned I = 0; I < VWidth; ++I) { |
| if (ShMask[I] >= 0) { |
| assert(ShMask[I] < (int)VWidth); |
| Constant *CElt = C->getAggregateElement(I); |
| Constant *NewCElt = NewVecC[ShMask[I]]; |
| if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt)) { |
| MayChange = false; |
| break; |
| } |
| NewVecC[ShMask[I]] = CElt; |
| } |
| } |
| if (MayChange) { |
| Constant *NewC = ConstantVector::get(NewVecC); |
| // It may not be safe to execute a binop on a vector with undef elements |
| // because the entire instruction can be folded to undef or create poison |
| // that did not exist in the original code. |
| bool ConstOp1 = isa<Constant>(Inst.getOperand(1)); |
| if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) |
| NewC = getSafeVectorConstantForBinop(Inst.getOpcode(), NewC, ConstOp1); |
| |
| // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) |
| // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) |
| Value *NewLHS = isa<Constant>(LHS) ? NewC : V1; |
| Value *NewRHS = isa<Constant>(LHS) ? V1 : NewC; |
| return createBinOpShuffle(NewLHS, NewRHS, Mask); |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { |
| SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); |
| Type *GEPType = GEP.getType(); |
| Type *GEPEltType = GEP.getSourceElementType(); |
| if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP))) |
| return replaceInstUsesWith(GEP, V); |
| |
| Value *PtrOp = GEP.getOperand(0); |
| |
| // Eliminate unneeded casts for indices, and replace indices which displace |
| // by multiples of a zero size type with zero. |
| bool MadeChange = false; |
| |
| // Index width may not be the same width as pointer width. |
| // Data layout chooses the right type based on supported integer types. |
| Type *NewScalarIndexTy = |
| DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); |
| |
| gep_type_iterator GTI = gep_type_begin(GEP); |
| for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; |
| ++I, ++GTI) { |
| // Skip indices into struct types. |
| if (GTI.isStruct()) |
| continue; |
| |
| Type *IndexTy = (*I)->getType(); |
| Type *NewIndexType = |
| IndexTy->isVectorTy() |
| ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements()) |
| : NewScalarIndexTy; |
| |
| // If the element type has zero size then any index over it is equivalent |
| // to an index of zero, so replace it with zero if it is not zero already. |
| Type *EltTy = GTI.getIndexedType(); |
| if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0) |
| if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { |
| *I = Constant::getNullValue(NewIndexType); |
| MadeChange = true; |
| } |
| |
| if (IndexTy != NewIndexType) { |
| // If we are using a wider index than needed for this platform, shrink |
| // it to what we need. If narrower, sign-extend it to what we need. |
| // This explicit cast can make subsequent optimizations more obvious. |
| *I = Builder.CreateIntCast(*I, NewIndexType, true); |
| MadeChange = true; |
| } |
| } |
| if (MadeChange) |
| return &GEP; |
| |
| // Check to see if the inputs to the PHI node are getelementptr instructions. |
| if (auto *PN = dyn_cast<PHINode>(PtrOp)) { |
| auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); |
| if (!Op1) |
| return nullptr; |
| |
| // Don't fold a GEP into itself through a PHI node. This can only happen |
| // through the back-edge of a loop. Folding a GEP into itself means that |
| // the value of the previous iteration needs to be stored in the meantime, |
| // thus requiring an additional register variable to be live, but not |
| // actually achieving anything (the GEP still needs to be executed once per |
| // loop iteration). |
| if (Op1 == &GEP) |
| return nullptr; |
| |
| int DI = -1; |
| |
| for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { |
| auto *Op2 = dyn_cast<GetElementPtrInst>(*I); |
| if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) |
| return nullptr; |
| |
| // As for Op1 above, don't try to fold a GEP into itself. |
| if (Op2 == &GEP) |
| return nullptr; |
| |
| // Keep track of the type as we walk the GEP. |
| Type *CurTy = nullptr; |
| |
| for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { |
| if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) |
| return nullptr; |
| |
| if (Op1->getOperand(J) != Op2->getOperand(J)) { |
| if (DI == -1) { |
| // We have not seen any differences yet in the GEPs feeding the |
| // PHI yet, so we record this one if it is allowed to be a |
| // variable. |
| |
| // The first two arguments can vary for any GEP, the rest have to be |
| // static for struct slots |
| if (J > 1 && CurTy->isStructTy()) |
| return nullptr; |
| |
| DI = J; |
| } else { |
| // The GEP is different by more than one input. While this could be |
| // extended to support GEPs that vary by more than one variable it |
| // doesn't make sense since it greatly increases the complexity and |
| // would result in an R+R+R addressing mode which no backend |
| // directly supports and would need to be broken into several |
| // simpler instructions anyway. |
| return nullptr; |
| } |
| } |
| |
| // Sink down a layer of the type for the next iteration. |
| if (J > 0) { |
| if (J == 1) { |
| CurTy = Op1->getSourceElementType(); |
| } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) { |
| CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); |
| } else { |
| CurTy = nullptr; |
| } |
| } |
| } |
| } |
| |
| // If not all GEPs are identical we'll have to create a new PHI node. |
| // Check that the old PHI node has only one use so that it will get |
| // removed. |
| if (DI != -1 && !PN->hasOneUse()) |
| return nullptr; |
| |
| auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); |
| if (DI == -1) { |
| // All the GEPs feeding the PHI are identical. Clone one down into our |
| // BB so that it can be merged with the current GEP. |
| GEP.getParent()->getInstList().insert( |
| GEP.getParent()->getFirstInsertionPt(), NewGEP); |
| } else { |
| // All the GEPs feeding the PHI differ at a single offset. Clone a GEP |
| // into the current block so it can be merged, and create a new PHI to |
| // set that index. |
| PHINode *NewPN; |
| { |
| IRBuilderBase::InsertPointGuard Guard(Builder); |
| Builder.SetInsertPoint(PN); |
| NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), |
| PN->getNumOperands()); |
| } |
| |
| for (auto &I : PN->operands()) |
| NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), |
| PN->getIncomingBlock(I)); |
| |
| NewGEP->setOperand(DI, NewPN); |
| GEP.getParent()->getInstList().insert( |
| GEP.getParent()->getFirstInsertionPt(), NewGEP); |
| NewGEP->setOperand(DI, NewPN); |
| } |
| |
| GEP.setOperand(0, NewGEP); |
| PtrOp = NewGEP; |
| } |
| |
| // Combine Indices - If the source pointer to this getelementptr instruction |
| // is a getelementptr instruction, combine the indices of the two |
| // getelementptr instructions into a single instruction. |
| if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) { |
| if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) |
| return nullptr; |
| |
| // Try to reassociate loop invariant GEP chains to enable LICM. |
| if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && |
| Src->hasOneUse()) { |
| if (Loop *L = LI->getLoopFor(GEP.getParent())) { |
| Value *GO1 = GEP.getOperand(1); |
| Value *SO1 = Src->getOperand(1); |
| // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is |
| // invariant: this breaks the dependence between GEPs and allows LICM |
| // to hoist the invariant part out of the loop. |
| if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { |
| // We have to be careful here. |
| // We have something like: |
| // %src = getelementptr <ty>, <ty>* %base, <ty> %idx |
| // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 |
| // If we just swap idx & idx2 then we could inadvertantly |
| // change %src from a vector to a scalar, or vice versa. |
| // Cases: |
| // 1) %base a scalar & idx a scalar & idx2 a vector |
| // => Swapping idx & idx2 turns %src into a vector type. |
| // 2) %base a scalar & idx a vector & idx2 a scalar |
| // => Swapping idx & idx2 turns %src in a scalar type |
| // 3) %base, %idx, and %idx2 are scalars |
| // => %src & %gep are scalars |
| // => swapping idx & idx2 is safe |
| // 4) %base a vector |
| // => %src is a vector |
| // => swapping idx & idx2 is safe. |
| auto *SO0 = Src->getOperand(0); |
| auto *SO0Ty = SO0->getType(); |
| if (!isa<VectorType>(GEPType) || // case 3 |
| isa<VectorType>(SO0Ty)) { // case 4 |
| Src->setOperand(1, GO1); |
| GEP.setOperand(1, SO1); |
| return &GEP; |
| } else { |
| // Case 1 or 2 |
| // -- have to recreate %src & %gep |
| // put NewSrc at same location as %src |
| Builder.SetInsertPoint(cast<Instruction>(PtrOp)); |
| auto *NewSrc = cast<GetElementPtrInst>( |
| Builder.CreateGEP(SO0, GO1, Src->getName())); |
| NewSrc->setIsInBounds(Src->isInBounds()); |
| auto *NewGEP = GetElementPtrInst::Create(nullptr, NewSrc, {SO1}); |
| NewGEP->setIsInBounds(GEP.isInBounds()); |
| return NewGEP; |
| } |
| } |
| } |
| } |
| |
| // Note that if our source is a gep chain itself then we wait for that |
| // chain to be resolved before we perform this transformation. This |
| // avoids us creating a TON of code in some cases. |
| if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) |
| if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) |
| return nullptr; // Wait until our source is folded to completion. |
| |
| SmallVector<Value*, 8> Indices; |
| |
| // Find out whether the last index in the source GEP is a sequential idx. |
| bool EndsWithSequential = false; |
| for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); |
| I != E; ++I) |
| EndsWithSequential = I.isSequential(); |
| |
| // Can we combine the two pointer arithmetics offsets? |
| if (EndsWithSequential) { |
| // Replace: gep (gep %P, long B), long A, ... |
| // With: T = long A+B; gep %P, T, ... |
| Value *SO1 = Src->getOperand(Src->getNumOperands()-1); |
| Value *GO1 = GEP.getOperand(1); |
| |
| // If they aren't the same type, then the input hasn't been processed |
| // by the loop above yet (which canonicalizes sequential index types to |
| // intptr_t). Just avoid transforming this until the input has been |
| // normalized. |
| if (SO1->getType() != GO1->getType()) |
| return nullptr; |
| |
| Value *Sum = |
| SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); |
| // Only do the combine when we are sure the cost after the |
| // merge is never more than that before the merge. |
| if (Sum == nullptr) |
| return nullptr; |
| |
| // Update the GEP in place if possible. |
| if (Src->getNumOperands() == 2) { |
| GEP.setOperand(0, Src->getOperand(0)); |
| GEP.setOperand(1, Sum); |
| return &GEP; |
| } |
| Indices.append(Src->op_begin()+1, Src->op_end()-1); |
| Indices.push_back(Sum); |
| Indices.append(GEP.op_begin()+2, GEP.op_end()); |
| } else if (isa<Constant>(*GEP.idx_begin()) && |
| cast<Constant>(*GEP.idx_begin())->isNullValue() && |
| Src->getNumOperands() != 1) { |
| // Otherwise we can do the fold if the first index of the GEP is a zero |
| Indices.append(Src->op_begin()+1, Src->op_end()); |
| Indices.append(GEP.idx_begin()+1, GEP.idx_end()); |
| } |
| |
| if (!Indices.empty()) |
| return GEP.isInBounds() && Src->isInBounds() |
| ? GetElementPtrInst::CreateInBounds( |
| Src->getSourceElementType(), Src->getOperand(0), Indices, |
| GEP.getName()) |
| : GetElementPtrInst::Create(Src->getSourceElementType(), |
| Src->getOperand(0), Indices, |
| GEP.getName()); |
| } |
| |
| if (GEP.getNumIndices() == 1) { |
| unsigned AS = GEP.getPointerAddressSpace(); |
| if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == |
| DL.getIndexSizeInBits(AS)) { |
| uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType); |
| |
| bool Matched = false; |
| uint64_t C; |
| Value *V = nullptr; |
| if (TyAllocSize == 1) { |
| V = GEP.getOperand(1); |
| Matched = true; |
| } else if (match(GEP.getOperand(1), |
| m_AShr(m_Value(V), m_ConstantInt(C)))) { |
| if (TyAllocSize == 1ULL << C) |
| Matched = true; |
| } else if (match(GEP.getOperand(1), |
| m_SDiv(m_Value(V), m_ConstantInt(C)))) { |
| if (TyAllocSize == C) |
| Matched = true; |
| } |
| |
| if (Matched) { |
| // Canonicalize (gep i8* X, -(ptrtoint Y)) |
| // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) |
| // The GEP pattern is emitted by the SCEV expander for certain kinds of |
| // pointer arithmetic. |
| if (match(V, m_Neg(m_PtrToInt(m_Value())))) { |
| Operator *Index = cast<Operator>(V); |
| Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType()); |
| Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1)); |
| return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType); |
| } |
| // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) |
| // to (bitcast Y) |
| Value *Y; |
| if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), |
| m_PtrToInt(m_Specific(GEP.getOperand(0)))))) |
| return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); |
| } |
| } |
| } |
| |
| // We do not handle pointer-vector geps here. |
| if (GEPType->isVectorTy()) |
| return nullptr; |
| |
| // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). |
| Value *StrippedPtr = PtrOp->stripPointerCasts(); |
| PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); |
| |
| if (StrippedPtr != PtrOp) { |
| bool HasZeroPointerIndex = false; |
| if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) |
| HasZeroPointerIndex = C->isZero(); |
| |
| // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... |
| // into : GEP [10 x i8]* X, i32 0, ... |
| // |
| // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... |
| // into : GEP i8* X, ... |
| // |
| // This occurs when the program declares an array extern like "int X[];" |
| if (HasZeroPointerIndex) { |
| if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { |
| // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? |
| if (CATy->getElementType() == StrippedPtrTy->getElementType()) { |
| // -> GEP i8* X, ... |
| SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); |
| GetElementPtrInst *Res = GetElementPtrInst::Create( |
| StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName()); |
| Res->setIsInBounds(GEP.isInBounds()); |
| if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) |
| return Res; |
| // Insert Res, and create an addrspacecast. |
| // e.g., |
| // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... |
| // -> |
| // %0 = GEP i8 addrspace(1)* X, ... |
| // addrspacecast i8 addrspace(1)* %0 to i8* |
| return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); |
| } |
| |
| if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrTy->getElementType())) { |
| // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? |
| if (CATy->getElementType() == XATy->getElementType()) { |
| // -> GEP [10 x i8]* X, i32 0, ... |
| // At this point, we know that the cast source type is a pointer |
| // to an array of the same type as the destination pointer |
| // array. Because the array type is never stepped over (there |
| // is a leading zero) we can fold the cast into this GEP. |
| if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { |
| GEP.setOperand(0, StrippedPtr); |
| GEP.setSourceElementType(XATy); |
| return &GEP; |
| } |
| // Cannot replace the base pointer directly because StrippedPtr's |
| // address space is different. Instead, create a new GEP followed by |
| // an addrspacecast. |
| // e.g., |
| // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), |
| // i32 0, ... |
| // -> |
| // %0 = GEP [10 x i8] addrspace(1)* X, ... |
| // addrspacecast i8 addrspace(1)* %0 to i8* |
| SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); |
| Value *NewGEP = GEP.isInBounds() |
| ? Builder.CreateInBoundsGEP( |
| nullptr, StrippedPtr, Idx, GEP.getName()) |
| : Builder.CreateGEP(nullptr, StrippedPtr, Idx, |
| GEP.getName()); |
| return new AddrSpaceCastInst(NewGEP, GEPType); |
| } |
| } |
| } |
| } else if (GEP.getNumOperands() == 2) { |
| // Transform things like: |
| // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V |
| // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast |
| Type *SrcEltTy = StrippedPtrTy->getElementType(); |
| if (SrcEltTy->isArrayTy() && |
| DL.getTypeAllocSize(SrcEltTy->getArrayElementType()) == |
| DL.getTypeAllocSize(GEPEltType)) { |
| Type *IdxType = DL.getIndexType(GEPType); |
| Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; |
| Value *NewGEP = |
| GEP.isInBounds() |
| ? Builder.CreateInBoundsGEP(nullptr, StrippedPtr, Idx, |
| GEP.getName()) |
| : Builder.CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName()); |
| |
| // V and GEP are both pointer types --> BitCast |
| return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); |
| } |
| |
| // Transform things like: |
| // %V = mul i64 %N, 4 |
| // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V |
| // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast |
| if (GEPEltType->isSized() && SrcEltTy->isSized()) { |
| // Check that changing the type amounts to dividing the index by a scale |
| // factor. |
| uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); |
| uint64_t SrcSize = DL.getTypeAllocSize(SrcEltTy); |
| if (ResSize && SrcSize % ResSize == 0) { |
| Value *Idx = GEP.getOperand(1); |
| unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); |
| uint64_t Scale = SrcSize / ResSize; |
| |
| // Earlier transforms ensure that the index has the right type |
| // according to Data Layout, which considerably simplifies the |
| // logic by eliminating implicit casts. |
| assert(Idx->getType() == DL.getIndexType(GEPType) && |
| "Index type does not match the Data Layout preferences"); |
| |
| bool NSW; |
| if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { |
| // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. |
| // If the multiplication NewIdx * Scale may overflow then the new |
| // GEP may not be "inbounds". |
| Value *NewGEP = |
| GEP.isInBounds() && NSW |
| ? Builder.CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx, |
| GEP.getName()) |
| : Builder.CreateGEP(nullptr, StrippedPtr, NewIdx, |
| GEP.getName()); |
| |
| // The NewGEP must be pointer typed, so must the old one -> BitCast |
| return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, |
| GEPType); |
| } |
| } |
| } |
| |
| // Similarly, transform things like: |
| // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp |
| // (where tmp = 8*tmp2) into: |
| // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast |
| if (GEPEltType->isSized() && SrcEltTy->isSized() && |
| SrcEltTy->isArrayTy()) { |
| // Check that changing to the array element type amounts to dividing the |
| // index by a scale factor. |
| uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); |
| uint64_t ArrayEltSize = |
| DL.getTypeAllocSize(SrcEltTy->getArrayElementType()); |
| if (ResSize && ArrayEltSize % ResSize == 0) { |
| Value *Idx = GEP.getOperand(1); |
| unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); |
| uint64_t Scale = ArrayEltSize / ResSize; |
| |
| // Earlier transforms ensure that the index has the right type |
| // according to the Data Layout, which considerably simplifies |
| // the logic by eliminating implicit casts. |
| assert(Idx->getType() == DL.getIndexType(GEPType) && |
| "Index type does not match the Data Layout preferences"); |
| |
| bool NSW; |
| if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { |
| // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. |
| // If the multiplication NewIdx * Scale may overflow then the new |
| // GEP may not be "inbounds". |
| Type *IndTy = DL.getIndexType(GEPType); |
| Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; |
| |
| Value *NewGEP = GEP.isInBounds() && NSW |
| ? Builder.CreateInBoundsGEP( |
| SrcEltTy, StrippedPtr, Off, GEP.getName()) |
| : Builder.CreateGEP(SrcEltTy, StrippedPtr, Off, |
| GEP.getName()); |
| // The NewGEP must be pointer typed, so must the old one -> BitCast |
| return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, |
| GEPType); |
| } |
| } |
| } |
| } |
| } |
| |
| // addrspacecast between types is canonicalized as a bitcast, then an |
| // addrspacecast. To take advantage of the below bitcast + struct GEP, look |
| // through the addrspacecast. |
| Value *ASCStrippedPtrOp = PtrOp; |
| if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { |
| // X = bitcast A addrspace(1)* to B addrspace(1)* |
| // Y = addrspacecast A addrspace(1)* to B addrspace(2)* |
| // Z = gep Y, <...constant indices...> |
| // Into an addrspacecasted GEP of the struct. |
| if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) |
| ASCStrippedPtrOp = BC; |
| } |
| |
| if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { |
| Value *SrcOp = BCI->getOperand(0); |
| PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); |
| Type *SrcEltType = SrcType->getElementType(); |
| |
| // GEP directly using the source operand if this GEP is accessing an element |
| // of a bitcasted pointer to vector or array of the same dimensions: |
| // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z |
| // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z |
| auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy) { |
| return ArrTy->getArrayElementType() == VecTy->getVectorElementType() && |
| ArrTy->getArrayNumElements() == VecTy->getVectorNumElements(); |
| }; |
| if (GEP.getNumOperands() == 3 && |
| ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() && |
| areMatchingArrayAndVecTypes(GEPEltType, SrcEltType)) || |
| (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() && |
| areMatchingArrayAndVecTypes(SrcEltType, GEPEltType)))) { |
| GEP.setOperand(0, SrcOp); |
| GEP.setSourceElementType(SrcEltType); |
| return &GEP; |
| } |
| |
| // See if we can simplify: |
| // X = bitcast A* to B* |
| // Y = gep X, <...constant indices...> |
| // into a gep of the original struct. This is important for SROA and alias |
| // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. |
| unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); |
| APInt Offset(OffsetBits, 0); |
| if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) { |
| // If this GEP instruction doesn't move the pointer, just replace the GEP |
| // with a bitcast of the real input to the dest type. |
| if (!Offset) { |
| // If the bitcast is of an allocation, and the allocation will be |
| // converted to match the type of the cast, don't touch this. |
| if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) { |
| // See if the bitcast simplifies, if so, don't nuke this GEP yet. |
| if (Instruction *I = visitBitCast(*BCI)) { |
| if (I != BCI) { |
| I->takeName(BCI); |
| BCI->getParent()->getInstList().insert(BCI->getIterator(), I); |
| replaceInstUsesWith(*BCI, I); |
| } |
| return &GEP; |
| } |
| } |
| |
| if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) |
| return new AddrSpaceCastInst(SrcOp, GEPType); |
| return new BitCastInst(SrcOp, GEPType); |
| } |
| |
| // Otherwise, if the offset is non-zero, we need to find out if there is a |
| // field at Offset in 'A's type. If so, we can pull the cast through the |
| // GEP. |
| SmallVector<Value*, 8> NewIndices; |
| if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { |
| Value *NGEP = |
| GEP.isInBounds() |
| ? Builder.CreateInBoundsGEP(nullptr, SrcOp, NewIndices) |
| : Builder.CreateGEP(nullptr, SrcOp, NewIndices); |
| |
| if (NGEP->getType() == GEPType) |
| return replaceInstUsesWith(GEP, NGEP); |
| NGEP->takeName(&GEP); |
| |
| if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) |
| return new AddrSpaceCastInst(NGEP, GEPType); |
| return new BitCastInst(NGEP, GEPType); |
| } |
| } |
| } |
| |
| if (!GEP.isInBounds()) { |
| unsigned IdxWidth = |
| DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); |
| APInt BasePtrOffset(IdxWidth, 0); |
| Value *UnderlyingPtrOp = |
| PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, |
| BasePtrOffset); |
| if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { |
| if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && |
| BasePtrOffset.isNonNegative()) { |
| APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType())); |
| if (BasePtrOffset.ule(AllocSize)) { |
| return GetElementPtrInst::CreateInBounds( |
| PtrOp, makeArrayRef(Ops).slice(1), GEP.getName()); |
| } |
| } |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, |
| Instruction *AI) { |
| if (isa<ConstantPointerNull>(V)) |
| return true; |
| if (auto *LI = dyn_cast<LoadInst>(V)) |
| return isa<GlobalVariable>(LI->getPointerOperand()); |
| // Two distinct allocations will never be equal. |
| // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking |
| // through bitcasts of V can cause |
| // the result statement below to be true, even when AI and V (ex: |
| // i8* ->i32* ->i8* of AI) are the same allocations. |
| return isAllocLikeFn(V, TLI) && V != AI; |
| } |
| |
| static bool isAllocSiteRemovable(Instruction *AI, |
| SmallVectorImpl<WeakTrackingVH> &Users, |
| const TargetLibraryInfo *TLI) { |
| SmallVector<Instruction*, 4> Worklist; |
| Worklist.push_back(AI); |
| |
| do { |
| Instruction *PI = Worklist.pop_back_val(); |
| for (User *U : PI->users()) { |
| Instruction *I = cast<Instruction>(U); |
| switch (I->getOpcode()) { |
| default: |
| // Give up the moment we see something we can't handle. |
| return false; |
| |
| case Instruction::AddrSpaceCast: |
| case Instruction::BitCast: |
| case Instruction::GetElementPtr: |
| Users.emplace_back(I); |
| Worklist.push_back(I); |
| continue; |
| |
| case Instruction::ICmp: { |
| ICmpInst *ICI = cast<ICmpInst>(I); |
| // We can fold eq/ne comparisons with null to false/true, respectively. |
| // We also fold comparisons in some conditions provided the alloc has |
| // not escaped (see isNeverEqualToUnescapedAlloc). |
| if (!ICI->isEquality()) |
| return false; |
| unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; |
| if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) |
| return false; |
| Users.emplace_back(I); |
| continue; |
| } |
| |
| case Instruction::Call: |
| // Ignore no-op and store intrinsics. |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| switch (II->getIntrinsicID()) { |
| default: |
| return false; |
| |
| case Intrinsic::memmove: |
| case Intrinsic::memcpy: |
| case Intrinsic::memset: { |
| MemIntrinsic *MI = cast<MemIntrinsic>(II); |
| if (MI->isVolatile() || MI->getRawDest() != PI) |
| return false; |
| LLVM_FALLTHROUGH; |
| } |
| case Intrinsic::invariant_start: |
| case Intrinsic::invariant_end: |
| case Intrinsic::lifetime_start: |
| case Intrinsic::lifetime_end: |
| case Intrinsic::objectsize: |
| Users.emplace_back(I); |
| continue; |
| } |
| } |
| |
| if (isFreeCall(I, TLI)) { |
| Users.emplace_back(I); |
| continue; |
| } |
| return false; |
| |
| case Instruction::Store: { |
| StoreInst *SI = cast<StoreInst>(I); |
| if (SI->isVolatile() || SI->getPointerOperand() != PI) |
| return false; |
| Users.emplace_back(I); |
| continue; |
| } |
| } |
| llvm_unreachable("missing a return?"); |
| } |
| } while (!Worklist.empty()); |
| return true; |
| } |
| |
| Instruction *InstCombiner::visitAllocSite(Instruction &MI) { |
| // If we have a malloc call which is only used in any amount of comparisons |
| // to null and free calls, delete the calls and replace the comparisons with |
| // true or false as appropriate. |
| SmallVector<WeakTrackingVH, 64> Users; |
| |
| // If we are removing an alloca with a dbg.declare, insert dbg.value calls |
| // before each store. |
| TinyPtrVector<DbgInfoIntrinsic *> DIIs; |
| std::unique_ptr<DIBuilder> DIB; |
| if (isa<AllocaInst>(MI)) { |
| DIIs = FindDbgAddrUses(&MI); |
| DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); |
| } |
| |
| if (isAllocSiteRemovable(&MI, Users, &TLI)) { |
| for (unsigned i = 0, e = Users.size(); i != e; ++i) { |
| // Lowering all @llvm.objectsize calls first because they may |
| // use a bitcast/GEP of the alloca we are removing. |
| if (!Users[i]) |
| continue; |
| |
| Instruction *I = cast<Instruction>(&*Users[i]); |
| |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| if (II->getIntrinsicID() == Intrinsic::objectsize) { |
| ConstantInt *Result = lowerObjectSizeCall(II, DL, &TLI, |
| /*MustSucceed=*/true); |
| replaceInstUsesWith(*I, Result); |
| eraseInstFromFunction(*I); |
| Users[i] = nullptr; // Skip examining in the next loop. |
| } |
| } |
| } |
| for (unsigned i = 0, e = Users.size(); i != e; ++i) { |
| if (!Users[i]) |
| continue; |
| |
| Instruction *I = cast<Instruction>(&*Users[i]); |
| |
| if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { |
| replaceInstUsesWith(*C, |
| ConstantInt::get(Type::getInt1Ty(C->getContext()), |
| C->isFalseWhenEqual())); |
| } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) || |
| isa<AddrSpaceCastInst>(I)) { |
| replaceInstUsesWith(*I, UndefValue::get(I->getType())); |
| } else if (auto *SI = dyn_cast<StoreInst>(I)) { |
| for (auto *DII : DIIs) |
| ConvertDebugDeclareToDebugValue(DII, SI, *DIB); |
| } |
| eraseInstFromFunction(*I); |
| } |
| |
| if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { |
| // Replace invoke with a NOP intrinsic to maintain the original CFG |
| Module *M = II->getModule(); |
| Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); |
| InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), |
| None, "", II->getParent()); |
| } |
| |
| for (auto *DII : DIIs) |
| eraseInstFromFunction(*DII); |
| |
| return eraseInstFromFunction(MI); |
| } |
| return nullptr; |
| } |
| |
| /// Move the call to free before a NULL test. |
| /// |
| /// Check if this free is accessed after its argument has been test |
| /// against NULL (property 0). |
| /// If yes, it is legal to move this call in its predecessor block. |
| /// |
| /// The move is performed only if the block containing the call to free |
| /// will be removed, i.e.: |
| /// 1. it has only one predecessor P, and P has two successors |
| /// 2. it contains the call and an unconditional branch |
| /// 3. its successor is the same as its predecessor's successor |
| /// |
| /// The profitability is out-of concern here and this function should |
| /// be called only if the caller knows this transformation would be |
| /// profitable (e.g., for code size). |
| static Instruction * |
| tryToMoveFreeBeforeNullTest(CallInst &FI) { |
| Value *Op = FI.getArgOperand(0); |
| BasicBlock *FreeInstrBB = FI.getParent(); |
| BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); |
| |
| // Validate part of constraint #1: Only one predecessor |
| // FIXME: We can extend the number of predecessor, but in that case, we |
| // would duplicate the call to free in each predecessor and it may |
| // not be profitable even for code size. |
| if (!PredBB) |
| return nullptr; |
| |
| // Validate constraint #2: Does this block contains only the call to |
| // free and an unconditional branch? |
| // FIXME: We could check if we can speculate everything in the |
| // predecessor block |
| if (FreeInstrBB->size() != 2) |
| return nullptr; |
| BasicBlock *SuccBB; |
| if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB))) |
| return nullptr; |
| |
| // Validate the rest of constraint #1 by matching on the pred branch. |
| TerminatorInst *TI = PredBB->getTerminator(); |
| BasicBlock *TrueBB, *FalseBB; |
| ICmpInst::Predicate Pred; |
| if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB))) |
| return nullptr; |
| if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) |
| return nullptr; |
| |
| // Validate constraint #3: Ensure the null case just falls through. |
| if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) |
| return nullptr; |
| assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && |
| "Broken CFG: missing edge from predecessor to successor"); |
| |
| FI.moveBefore(TI); |
| return &FI; |
| } |
| |
| Instruction *InstCombiner::visitFree(CallInst &FI) { |
| Value *Op = FI.getArgOperand(0); |
| |
| // free undef -> unreachable. |
| if (isa<UndefValue>(Op)) { |
| // Insert a new store to null because we cannot modify the CFG here. |
| Builder.CreateStore(ConstantInt::getTrue(FI.getContext()), |
| UndefValue::get(Type::getInt1PtrTy(FI.getContext()))); |
| return eraseInstFromFunction(FI); |
| } |
| |
| // If we have 'free null' delete the instruction. This can happen in stl code |
| // when lots of inlining happens. |
| if (isa<ConstantPointerNull>(Op)) |
| return eraseInstFromFunction(FI); |
| |
| // If we optimize for code size, try to move the call to free before the null |
| // test so that simplify cfg can remove the empty block and dead code |
| // elimination the branch. I.e., helps to turn something like: |
| // if (foo) free(foo); |
| // into |
| // free(foo); |
| if (MinimizeSize) |
| if (Instruction *I = tryToMoveFreeBeforeNullTest(FI)) |
| return I; |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { |
| if (RI.getNumOperands() == 0) // ret void |
| return nullptr; |
| |
| Value *ResultOp = RI.getOperand(0); |
| Type *VTy = ResultOp->getType(); |
| if (!VTy->isIntegerTy()) |
| return nullptr; |
| |
| // There might be assume intrinsics dominating this return that completely |
| // determine the value. If so, constant fold it. |
| KnownBits Known = computeKnownBits(ResultOp, 0, &RI); |
| if (Known.isConstant()) |
| RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant())); |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { |
| // Change br (not X), label True, label False to: br X, label False, True |
| Value *X = nullptr; |
| BasicBlock *TrueDest; |
| BasicBlock *FalseDest; |
| if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && |
| !isa<Constant>(X)) { |
| // Swap Destinations and condition... |
| BI.setCondition(X); |
| BI.swapSuccessors(); |
| return &BI; |
| } |
| |
| // If the condition is irrelevant, remove the use so that other |
| // transforms on the condition become more effective. |
| if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) && |
| BI.getSuccessor(0) == BI.getSuccessor(1)) { |
| BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType())); |
| return &BI; |
| } |
| |
| // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq. |
| CmpInst::Predicate Pred; |
| if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), TrueDest, |
| FalseDest)) && |
| !isCanonicalPredicate(Pred)) { |
| // Swap destinations and condition. |
| CmpInst *Cond = cast<CmpInst>(BI.getCondition()); |
| Cond->setPredicate(CmpInst::getInversePredicate(Pred)); |
| BI.swapSuccessors(); |
| Worklist.Add(Cond); |
| return &BI; |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { |
| Value *Cond = SI.getCondition(); |
| Value *Op0; |
| ConstantInt *AddRHS; |
| if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { |
| // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. |
| for (auto Case : SI.cases()) { |
| Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); |
| assert(isa<ConstantInt>(NewCase) && |
| "Result of expression should be constant"); |
| Case.setValue(cast<ConstantInt>(NewCase)); |
| } |
| SI.setCondition(Op0); |
| return &SI; |
| } |
| |
| KnownBits Known = computeKnownBits(Cond, 0, &SI); |
| unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); |
| unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); |
| |
| // Compute the number of leading bits we can ignore. |
| // TODO: A better way to determine this would use ComputeNumSignBits(). |
| for (auto &C : SI.cases()) { |
| LeadingKnownZeros = std::min( |
| LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); |
| LeadingKnownOnes = std::min( |
| LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); |
| } |
| |
| unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); |
| |
| // Shrink the condition operand if the new type is smaller than the old type. |
| // This may produce a non-standard type for the switch, but that's ok because |
| // the backend should extend back to a legal type for the target. |
| if (NewWidth > 0 && NewWidth < Known.getBitWidth()) { |
| IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); |
| Builder.SetInsertPoint(&SI); |
| Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); |
| SI.setCondition(NewCond); |
| |
| for (auto Case : SI.cases()) { |
| APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); |
| Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); |
| } |
| return &SI; |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { |
| Value *Agg = EV.getAggregateOperand(); |
| |
| if (!EV.hasIndices()) |
| return replaceInstUsesWith(EV, Agg); |
| |
| if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), |
| SQ.getWithInstruction(&EV))) |
| return replaceInstUsesWith(EV, V); |
| |
| if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { |
| // We're extracting from an insertvalue instruction, compare the indices |
| const unsigned *exti, *exte, *insi, *inse; |
| for (exti = EV.idx_begin(), insi = IV->idx_begin(), |
| exte = EV.idx_end(), inse = IV->idx_end(); |
| exti != exte && insi != inse; |
| ++exti, ++insi) { |
| if (*insi != *exti) |
| // The insert and extract both reference distinctly different elements. |
| // This means the extract is not influenced by the insert, and we can |
| // replace the aggregate operand of the extract with the aggregate |
| // operand of the insert. i.e., replace |
| // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 |
| // %E = extractvalue { i32, { i32 } } %I, 0 |
| // with |
| // %E = extractvalue { i32, { i32 } } %A, 0 |
| return ExtractValueInst::Create(IV->getAggregateOperand(), |
| EV.getIndices()); |
| } |
| if (exti == exte && insi == inse) |
| // Both iterators are at the end: Index lists are identical. Replace |
| // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 |
| // %C = extractvalue { i32, { i32 } } %B, 1, 0 |
| // with "i32 42" |
| return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); |
| if (exti == exte) { |
| // The extract list is a prefix of the insert list. i.e. replace |
| // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 |
| // %E = extractvalue { i32, { i32 } } %I, 1 |
| // with |
| // %X = extractvalue { i32, { i32 } } %A, 1 |
| // %E = insertvalue { i32 } %X, i32 42, 0 |
| // by switching the order of the insert and extract (though the |
| // insertvalue should be left in, since it may have other uses). |
| Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), |
| EV.getIndices()); |
| return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), |
| makeArrayRef(insi, inse)); |
| } |
| if (insi == inse) |
| // The insert list is a prefix of the extract list |
| // We can simply remove the common indices from the extract and make it |
| // operate on the inserted value instead of the insertvalue result. |
| // i.e., replace |
| // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 |
| // %E = extractvalue { i32, { i32 } } %I, 1, 0 |
| // with |
| // %E extractvalue { i32 } { i32 42 }, 0 |
| return ExtractValueInst::Create(IV->getInsertedValueOperand(), |
| makeArrayRef(exti, exte)); |
| } |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { |
| // We're extracting from an intrinsic, see if we're the only user, which |
| // allows us to simplify multiple result intrinsics to simpler things that |
| // just get one value. |
| if (II->hasOneUse()) { |
| // Check if we're grabbing the overflow bit or the result of a 'with |
| // overflow' intrinsic. If it's the latter we can remove the intrinsic |
| // and replace it with a traditional binary instruction. |
| switch (II->getIntrinsicID()) { |
| case Intrinsic::uadd_with_overflow: |
| case Intrinsic::sadd_with_overflow: |
| if (*EV.idx_begin() == 0) { // Normal result. |
| Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); |
| replaceInstUsesWith(*II, UndefValue::get(II->getType())); |
| eraseInstFromFunction(*II); |
| return BinaryOperator::CreateAdd(LHS, RHS); |
| } |
| |
| // If the normal result of the add is dead, and the RHS is a constant, |
| // we can transform this into a range comparison. |
| // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 |
| if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1))) |
| return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0), |
| ConstantExpr::getNot(CI)); |
| break; |
| case Intrinsic::usub_with_overflow: |
| case Intrinsic::ssub_with_overflow: |
| if (*EV.idx_begin() == 0) { // Normal result. |
| Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); |
| replaceInstUsesWith(*II, UndefValue::get(II->getType())); |
| eraseInstFromFunction(*II); |
| return BinaryOperator::CreateSub(LHS, RHS); |
| } |
| break; |
| case Intrinsic::umul_with_overflow: |
| case Intrinsic::smul_with_overflow: |
| if (*EV.idx_begin() == 0) { // Normal result. |
| Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); |
| replaceInstUsesWith(*II, UndefValue::get(II->getType())); |
| eraseInstFromFunction(*II); |
| return BinaryOperator::CreateMul(LHS, RHS); |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| if (LoadInst *L = dyn_cast<LoadInst>(Agg)) |
| // If the (non-volatile) load only has one use, we can rewrite this to a |
| // load from a GEP. This reduces the size of the load. If a load is used |
| // only by extractvalue instructions then this either must have been |
| // optimized before, or it is a struct with padding, in which case we |
| // don't want to do the transformation as it loses padding knowledge. |
| if (L->isSimple() && L->hasOneUse()) { |
| // extractvalue has integer indices, getelementptr has Value*s. Convert. |
| SmallVector<Value*, 4> Indices; |
| // Prefix an i32 0 since we need the first element. |
| Indices.push_back(Builder.getInt32(0)); |
| for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); |
| I != E; ++I) |
| Indices.push_back(Builder.getInt32(*I)); |
| |
| // We need to insert these at the location of the old load, not at that of |
| // the extractvalue. |
| Builder.SetInsertPoint(L); |
| Value *GEP = Builder.CreateInBoundsGEP(L->getType(), |
| L->getPointerOperand(), Indices); |
| Instruction *NL = Builder.CreateLoad(GEP); |
| // Whatever aliasing information we had for the orignal load must also |
| // hold for the smaller load, so propagate the annotations. |
| AAMDNodes Nodes; |
| L->getAAMetadata(Nodes); |
| NL->setAAMetadata(Nodes); |
| // Returning the load directly will cause the main loop to insert it in |
| // the wrong spot, so use replaceInstUsesWith(). |
| return replaceInstUsesWith(EV, NL); |
| } |
| // We could simplify extracts from other values. Note that nested extracts may |
| // already be simplified implicitly by the above: extract (extract (insert) ) |
| // will be translated into extract ( insert ( extract ) ) first and then just |
| // the value inserted, if appropriate. Similarly for extracts from single-use |
| // loads: extract (extract (load)) will be translated to extract (load (gep)) |
| // and if again single-use then via load (gep (gep)) to load (gep). |
| // However, double extracts from e.g. function arguments or return values |
| // aren't handled yet. |
| return nullptr; |
| } |
| |
| /// Return 'true' if the given typeinfo will match anything. |
| static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { |
| switch (Personality) { |
| case EHPersonality::GNU_C: |
| case EHPersonality::GNU_C_SjLj: |
| case EHPersonality::Rust: |
| // The GCC C EH and Rust personality only exists to support cleanups, so |
| // it's not clear what the semantics of catch clauses are. |
| return false; |
| case EHPersonality::Unknown: |
| return false; |
| case EHPersonality::GNU_Ada: |
| // While __gnat_all_others_value will match any Ada exception, it doesn't |
| // match foreign exceptions (or didn't, before gcc-4.7). |
| return false; |
| case EHPersonality::GNU_CXX: |
| case EHPersonality::GNU_CXX_SjLj: |
| case EHPersonality::GNU_ObjC: |
| case EHPersonality::MSVC_X86SEH: |
| case EHPersonality::MSVC_Win64SEH: |
| case EHPersonality::MSVC_CXX: |
| case EHPersonality::CoreCLR: |
| case EHPersonality::Wasm_CXX: |
| return TypeInfo->isNullValue(); |
| } |
| llvm_unreachable("invalid enum"); |
| } |
| |
| static bool shorter_filter(const Value *LHS, const Value *RHS) { |
| return |
| cast<ArrayType>(LHS->getType())->getNumElements() |
| < |
| cast<ArrayType>(RHS->getType())->getNumElements(); |
| } |
| |
| Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { |
| // The logic here should be correct for any real-world personality function. |
| // However if that turns out not to be true, the offending logic can always |
| // be conditioned on the personality function, like the catch-all logic is. |
| EHPersonality Personality = |
| classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); |
| |
| // Simplify the list of clauses, eg by removing repeated catch clauses |
| // (these are often created by inlining). |
| bool MakeNewInstruction = false; // If true, recreate using the following: |
| SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; |
| bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. |
| |
| SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. |
| for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { |
| bool isLastClause = i + 1 == e; |
| if (LI.isCatch(i)) { |
| // A catch clause. |
| Constant *CatchClause = LI.getClause(i); |
| Constant *TypeInfo = CatchClause->stripPointerCasts(); |
| |
| // If we already saw this clause, there is no point in having a second |
| // copy of it. |
| if (AlreadyCaught.insert(TypeInfo).second) { |
| // This catch clause was not already seen. |
| NewClauses.push_back(CatchClause); |
| } else { |
| // Repeated catch clause - drop the redundant copy. |
| MakeNewInstruction = true; |
| } |
| |
| // If this is a catch-all then there is no point in keeping any following |
| // clauses or marking the landingpad as having a cleanup. |
| if (isCatchAll(Personality, TypeInfo)) { |
| if (!isLastClause) |
| MakeNewInstruction = true; |
| CleanupFlag = false; |
| break; |
| } |
| } else { |
| // A filter clause. If any of the filter elements were already caught |
| // then they can be dropped from the filter. It is tempting to try to |
| // exploit the filter further by saying that any typeinfo that does not |
| // occur in the filter can't be caught later (and thus can be dropped). |
| // However this would be wrong, since typeinfos can match without being |
| // equal (for example if one represents a C++ class, and the other some |
| // class derived from it). |
| assert(LI.isFilter(i) && "Unsupported landingpad clause!"); |
| Constant *FilterClause = LI.getClause(i); |
| ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); |
| unsigned NumTypeInfos = FilterType->getNumElements(); |
| |
| // An empty filter catches everything, so there is no point in keeping any |
| // following clauses or marking the landingpad as having a cleanup. By |
| // dealing with this case here the following code is made a bit simpler. |
| if (!NumTypeInfos) { |
| NewClauses.push_back(FilterClause); |
| if (!isLastClause) |
| MakeNewInstruction = true; |
| CleanupFlag = false; |
| break; |
| } |
| |
| bool MakeNewFilter = false; // If true, make a new filter. |
| SmallVector<Constant *, 16> NewFilterElts; // New elements. |
| if (isa<ConstantAggregateZero>(FilterClause)) { |
| // Not an empty filter - it contains at least one null typeinfo. |
| assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); |
| Constant *TypeInfo = |
| Constant::getNullValue(FilterType->getElementType()); |
| // If this typeinfo is a catch-all then the filter can never match. |
| if (isCatchAll(Personality, TypeInfo)) { |
| // Throw the filter away. |
| MakeNewInstruction = true; |
| continue; |
| } |
| |
| // There is no point in having multiple copies of this typeinfo, so |
| // discard all but the first copy if there is more than one. |
| NewFilterElts.push_back(TypeInfo); |
| if (NumTypeInfos > 1) |
| MakeNewFilter = true; |
| } else { |
| ConstantArray *Filter = cast<ConstantArray>(FilterClause); |
| SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. |
| NewFilterElts.reserve(NumTypeInfos); |
| |
| // Remove any filter elements that were already caught or that already |
| // occurred in the filter. While there, see if any of the elements are |
| // catch-alls. If so, the filter can be discarded. |
| bool SawCatchAll = false; |
| for (unsigned j = 0; j != NumTypeInfos; ++j) { |
| Constant *Elt = Filter->getOperand(j); |
| Constant *TypeInfo = Elt->stripPointerCasts(); |
| if (isCatchAll(Personality, TypeInfo)) { |
| // This element is a catch-all. Bail out, noting this fact. |
| SawCatchAll = true; |
| break; |
| } |
| |
| // Even if we've seen a type in a catch clause, we don't want to |
| // remove it from the filter. An unexpected type handler may be |
| // set up for a call site which throws an exception of the same |
| // type caught. In order for the exception thrown by the unexpected |
| // handler to propagate correctly, the filter must be correctly |
| // described for the call site. |
| // |
| // Example: |
| // |
| // void unexpected() { throw 1;} |
| // void foo() throw (int) { |
| // std::set_unexpected(unexpected); |
| // try { |
| // throw 2.0; |
| // } catch (int i) {} |
| // } |
| |
| // There is no point in having multiple copies of the same typeinfo in |
| // a filter, so only add it if we didn't already. |
| if (SeenInFilter.insert(TypeInfo).second) |
| NewFilterElts.push_back(cast<Constant>(Elt)); |
| } |
| // A filter containing a catch-all cannot match anything by definition. |
| if (SawCatchAll) { |
| // Throw the filter away. |
| MakeNewInstruction = true; |
| continue; |
| } |
| |
| // If we dropped something from the filter, make a new one. |
| if (NewFilterElts.size() < NumTypeInfos) |
| MakeNewFilter = true; |
| } |
| if (MakeNewFilter) { |
| FilterType = ArrayType::get(FilterType->getElementType(), |
| NewFilterElts.size()); |
| FilterClause = ConstantArray::get(FilterType, NewFilterElts); |
| MakeNewInstruction = true; |
| } |
| |
| NewClauses.push_back(FilterClause); |
| |
| // If the new filter is empty then it will catch everything so there is |
| // no point in keeping any following clauses or marking the landingpad |
| // as having a cleanup. The case of the original filter being empty was |
| // already handled above. |
| if (MakeNewFilter && !NewFilterElts.size()) { |
| assert(MakeNewInstruction && "New filter but not a new instruction!"); |
| CleanupFlag = false; |
| break; |
| } |
| } |
| } |
| |
| // If several filters occur in a row then reorder them so that the shortest |
| // filters come first (those with the smallest number of elements). This is |
| // advantageous because shorter filters are more likely to match, speeding up |
| // unwinding, but mostly because it increases the effectiveness of the other |
| // filter optimizations below. |
| for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { |
| unsigned j; |
| // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. |
| for (j = i; j != e; ++j) |
| if (!isa<ArrayType>(NewClauses[j]->getType())) |
| break; |
| |
| // Check whether the filters are already sorted by length. We need to know |
| // if sorting them is actually going to do anything so that we only make a |
| // new landingpad instruction if it does. |
| for (unsigned k = i; k + 1 < j; ++k) |
| if (shorter_filter(NewClauses[k+1], NewClauses[k])) { |
| // Not sorted, so sort the filters now. Doing an unstable sort would be |
| // correct too but reordering filters pointlessly might confuse users. |
| std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, |
| shorter_filter); |
| MakeNewInstruction = true; |
| break; |
| } |
| |
| // Look for the next batch of filters. |
| i = j + 1; |
| } |
| |
| // If typeinfos matched if and only if equal, then the elements of a filter L |
| // that occurs later than a filter F could be replaced by the intersection of |
| // the elements of F and L. In reality two typeinfos can match without being |
| // equal (for example if one represents a C++ class, and the other some class |
| // derived from it) so it would be wrong to perform this transform in general. |
| // However the transform is correct and useful if F is a subset of L. In that |
| // case L can be replaced by F, and thus removed altogether since repeating a |
| // filter is pointless. So here we look at all pairs of filters F and L where |
| // L follows F in the list of clauses, and remove L if every element of F is |
| // an element of L. This can occur when inlining C++ functions with exception |
| // specifications. |
| for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { |
| // Examine each filter in turn. |
| Value *Filter = NewClauses[i]; |
| ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); |
| if (!FTy) |
| // Not a filter - skip it. |
| continue; |
| unsigned FElts = FTy->getNumElements(); |
| // Examine each filter following this one. Doing this backwards means that |
| // we don't have to worry about filters disappearing under us when removed. |
| for (unsigned j = NewClauses.size() - 1; j != i; --j) { |
| Value *LFilter = NewClauses[j]; |
| ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); |
| if (!LTy) |
| // Not a filter - skip it. |
| continue; |
| // If Filter is a subset of LFilter, i.e. every element of Filter is also |
| // an element of LFilter, then discard LFilter. |
| SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; |
| // If Filter is empty then it is a subset of LFilter. |
| if (!FElts) { |
| // Discard LFilter. |
| NewClauses.erase(J); |
| MakeNewInstruction = true; |
| // Move on to the next filter. |
| continue; |
| } |
| unsigned LElts = LTy->getNumElements(); |
| // If Filter is longer than LFilter then it cannot be a subset of it. |
| if (FElts > LElts) |
| // Move on to the next filter. |
| continue; |
| // At this point we know that LFilter has at least one element. |
| if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. |
| // Filter is a subset of LFilter iff Filter contains only zeros (as we |
| // already know that Filter is not longer than LFilter). |
| if (isa<ConstantAggregateZero>(Filter)) { |
| assert(FElts <= LElts && "Should have handled this case earlier!"); |
| // Discard LFilter. |
| NewClauses.erase(J); |
| MakeNewInstruction = true; |
| } |
| // Move on to the next filter. |
| continue; |
| } |
| ConstantArray *LArray = cast<ConstantArray>(LFilter); |
| if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. |
| // Since Filter is non-empty and contains only zeros, it is a subset of |
| // LFilter iff LFilter contains a zero. |
| assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); |
| for (unsigned l = 0; l != LElts; ++l) |
| if (LArray->getOperand(l)->isNullValue()) { |
| // LFilter contains a zero - discard it. |
| NewClauses.erase(J); |
| MakeNewInstruction = true; |
| break; |
| } |
| // Move on to the next filter. |
| continue; |
| } |
| // At this point we know that both filters are ConstantArrays. Loop over |
| // operands to see whether every element of Filter is also an element of |
| // LFilter. Since filters tend to be short this is probably faster than |
| // using a method that scales nicely. |
| ConstantArray *FArray = cast<ConstantArray>(Filter); |
| bool AllFound = true; |
| for (unsigned f = 0; f != FElts; ++f) { |
| Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); |
| AllFound = false; |
| for (unsigned l = 0; l != LElts; ++l) { |
| Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); |
| if (LTypeInfo == FTypeInfo) { |
| AllFound = true; |
| break; |
| } |
| } |
| if (!AllFound) |
| break; |
| } |
| if (AllFound) { |
| // Discard LFilter. |
| NewClauses.erase(J); |
| MakeNewInstruction = true; |
| } |
| // Move on to the next filter. |
| } |
| } |
| |
| // If we changed any of the clauses, replace the old landingpad instruction |
| // with a new one. |
| if (MakeNewInstruction) { |
| LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), |
| NewClauses.size()); |
| for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) |
| NLI->addClause(NewClauses[i]); |
| // A landing pad with no clauses must have the cleanup flag set. It is |
| // theoretically possible, though highly unlikely, that we eliminated all |
| // clauses. If so, force the cleanup flag to true. |
| if (NewClauses.empty()) |
| CleanupFlag = true; |
| NLI->setCleanup(CleanupFlag); |
| return NLI; |
| } |
| |
| // Even if none of the clauses changed, we may nonetheless have understood |
| // that the cleanup flag is pointless. Clear it if so. |
| if (LI.isCleanup() != CleanupFlag) { |
| assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); |
| LI.setCleanup(CleanupFlag); |
| return &LI; |
| } |
| |
| return nullptr; |
| } |
| |
| /// Try to move the specified instruction from its current block into the |
| /// beginning of DestBlock, which can only happen if it's safe to move the |
| /// instruction past all of the instructions between it and the end of its |
| /// block. |
| static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { |
| assert(I->hasOneUse() && "Invariants didn't hold!"); |
| BasicBlock *SrcBlock = I->getParent(); |
| |
| // Cannot move control-flow-involving, volatile loads, vaarg, etc. |
| if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || |
| isa<TerminatorInst>(I)) |
| return false; |
| |
| // Do not sink alloca instructions out of the entry block. |
| if (isa<AllocaInst>(I) && I->getParent() == |
| &DestBlock->getParent()->getEntryBlock()) |
| return false; |
| |
| // Do not sink into catchswitch blocks. |
| if (isa<CatchSwitchInst>(DestBlock->getTerminator())) |
| return false; |
| |
| // Do not sink convergent call instructions. |
| if (auto *CI = dyn_cast<CallInst>(I)) { |
| if (CI->isConvergent()) |
| return false; |
| } |
| // We can only sink load instructions if there is nothing between the load and |
| // the end of block that could change the value. |
| if (I->mayReadFromMemory()) { |
| for (BasicBlock::iterator Scan = I->getIterator(), |
| E = I->getParent()->end(); |
| Scan != E; ++Scan) |
| if (Scan->mayWriteToMemory()) |
| return false; |
| } |
| BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); |
| I->moveBefore(&*InsertPos); |
| ++NumSunkInst; |
| |
| // Also sink all related debug uses from the source basic block. Otherwise we |
| // get debug use before the def. |
| SmallVector<DbgInfoIntrinsic *, 1> DbgUsers; |
| findDbgUsers(DbgUsers, I); |
| for (auto *DII : DbgUsers) { |
| if (DII->getParent() == SrcBlock) { |
| DII->moveBefore(&*InsertPos); |
| LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n'); |
| } |
| } |
| return true; |
| } |
| |
| bool InstCombiner::run() { |
| while (!Worklist.isEmpty()) { |
| Instruction *I = Worklist.RemoveOne(); |
| if (I == nullptr) continue; // skip null values. |
| |
| // Check to see if we can DCE the instruction. |
| if (isInstructionTriviallyDead(I, &TLI)) { |
| LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); |
| eraseInstFromFunction(*I); |
| ++NumDeadInst; |
| MadeIRChange = true; |
| continue; |
| } |
| |
| if (!DebugCounter::shouldExecute(VisitCounter)) |
| continue; |
| |
| // Instruction isn't dead, see if we can constant propagate it. |
| if (!I->use_empty() && |
| (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { |
| if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { |
| LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I |
| << '\n'); |
| |
| // Add operands to the worklist. |
| replaceInstUsesWith(*I, C); |
| ++NumConstProp; |
| if (isInstructionTriviallyDead(I, &TLI)) |
| eraseInstFromFunction(*I); |
| MadeIRChange = true; |
| continue; |
| } |
| } |
| |
| // In general, it is possible for computeKnownBits to determine all bits in |
| // a value even when the operands are not all constants. |
| Type *Ty = I->getType(); |
| if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) { |
| KnownBits Known = computeKnownBits(I, /*Depth*/0, I); |
| if (Known.isConstant()) { |
| Constant *C = ConstantInt::get(Ty, Known.getConstant()); |
| LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C |
| << " from: " << *I << '\n'); |
| |
| // Add operands to the worklist. |
| replaceInstUsesWith(*I, C); |
| ++NumConstProp; |
| if (isInstructionTriviallyDead(I, &TLI)) |
| eraseInstFromFunction(*I); |
| MadeIRChange = true; |
| continue; |
| } |
| } |
| |
| // See if we can trivially sink this instruction to a successor basic block. |
| if (I->hasOneUse()) { |
| BasicBlock *BB = I->getParent(); |
| Instruction *UserInst = cast<Instruction>(*I->user_begin()); |
| BasicBlock *UserParent; |
| |
| // Get the block the use occurs in. |
| if (PHINode *PN = dyn_cast<PHINode>(UserInst)) |
| UserParent = PN->getIncomingBlock(*I->use_begin()); |
| else |
| UserParent = UserInst->getParent(); |
| |
| if (UserParent != BB) { |
| bool UserIsSuccessor = false; |
| // See if the user is one of our successors. |
| for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) |
| if (*SI == UserParent) { |
| UserIsSuccessor = true; |
| break; |
| } |
| |
| // If the user is one of our immediate successors, and if that successor |
| // only has us as a predecessors (we'd have to split the critical edge |
| // otherwise), we can keep going. |
| if (UserIsSuccessor && UserParent->getUniquePredecessor()) { |
| // Okay, the CFG is simple enough, try to sink this instruction. |
| if (TryToSinkInstruction(I, UserParent)) { |
| LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); |
| MadeIRChange = true; |
| // We'll add uses of the sunk instruction below, but since sinking |
| // can expose opportunities for it's *operands* add them to the |
| // worklist |
| for (Use &U : I->operands()) |
| if (Instruction *OpI = dyn_cast<Instruction>(U.get())) |
| Worklist.Add(OpI); |
| } |
| } |
| } |
| } |
| |
| // Now that we have an instruction, try combining it to simplify it. |
| Builder.SetInsertPoint(I); |
| Builder.SetCurrentDebugLocation(I->getDebugLoc()); |
| |
| #ifndef NDEBUG |
| std::string OrigI; |
| #endif |
| LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); |
| LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); |
| |
| if (Instruction *Result = visit(*I)) { |
| ++NumCombined; |
| // Should we replace the old instruction with a new one? |
| if (Result != I) { |
| LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' |
| << " New = " << *Result << '\n'); |
| |
| if (I->getDebugLoc()) |
| Result->setDebugLoc(I->getDebugLoc()); |
| // Everything uses the new instruction now. |
| I->replaceAllUsesWith(Result); |
| |
| // Move the name to the new instruction first. |
| Result->takeName(I); |
| |
| // Push the new instruction and any users onto the worklist. |
| Worklist.AddUsersToWorkList(*Result); |
| Worklist.Add(Result); |
| |
| // Insert the new instruction into the basic block... |
| BasicBlock *InstParent = I->getParent(); |
| BasicBlock::iterator InsertPos = I->getIterator(); |
| |
| // If we replace a PHI with something that isn't a PHI, fix up the |
| // insertion point. |
| if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) |
| InsertPos = InstParent->getFirstInsertionPt(); |
| |
| InstParent->getInstList().insert(InsertPos, Result); |
| |
| eraseInstFromFunction(*I); |
| } else { |
| LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' |
| << " New = " << *I << '\n'); |
| |
| // If the instruction was modified, it's possible that it is now dead. |
| // if so, remove it. |
| if (isInstructionTriviallyDead(I, &TLI)) { |
| eraseInstFromFunction(*I); |
| } else { |
| Worklist.AddUsersToWorkList(*I); |
| Worklist.Add(I); |
| } |
| } |
| MadeIRChange = true; |
| } |
| } |
| |
| Worklist.Zap(); |
| return MadeIRChange; |
| } |
| |
| /// Walk the function in depth-first order, adding all reachable code to the |
| /// worklist. |
| /// |
| /// This has a couple of tricks to make the code faster and more powerful. In |
| /// particular, we constant fold and DCE instructions as we go, to avoid adding |
| /// them to the worklist (this significantly speeds up instcombine on code where |
| /// many instructions are dead or constant). Additionally, if we find a branch |
| /// whose condition is a known constant, we only visit the reachable successors. |
| static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, |
| SmallPtrSetImpl<BasicBlock *> &Visited, |
| InstCombineWorklist &ICWorklist, |
| const TargetLibraryInfo *TLI) { |
| bool MadeIRChange = false; |
| SmallVector<BasicBlock*, 256> Worklist; |
| Worklist.push_back(BB); |
| |
| SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; |
| DenseMap<Constant *, Constant *> FoldedConstants; |
| |
| do { |
| BB = Worklist.pop_back_val(); |
| |
| // We have now visited this block! If we've already been here, ignore it. |
| if (!Visited.insert(BB).second) |
| continue; |
| |
| for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { |
| Instruction *Inst = &*BBI++; |
| |
| // DCE instruction if trivially dead. |
| if (isInstructionTriviallyDead(Inst, TLI)) { |
| ++NumDeadInst; |
| LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); |
| salvageDebugInfo(*Inst); |
| Inst->eraseFromParent(); |
| MadeIRChange = true; |
| continue; |
| } |
| |
| // ConstantProp instruction if trivially constant. |
| if (!Inst->use_empty() && |
| (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) |
| if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { |
| LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst |
| << '\n'); |
| Inst->replaceAllUsesWith(C); |
| ++NumConstProp; |
| if (isInstructionTriviallyDead(Inst, TLI)) |
| Inst->eraseFromParent(); |
| MadeIRChange = true; |
| continue; |
| } |
| |
| // See if we can constant fold its operands. |
| for (Use &U : Inst->operands()) { |
| if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) |
| continue; |
| |
| auto *C = cast<Constant>(U); |
| Constant *&FoldRes = FoldedConstants[C]; |
| if (!FoldRes) |
| FoldRes = ConstantFoldConstant(C, DL, TLI); |
| if (!FoldRes) |
| FoldRes = C; |
| |
| if (FoldRes != C) { |
| LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst |
| << "\n Old = " << *C |
| << "\n New = " << *FoldRes << '\n'); |
| U = FoldRes; |
| MadeIRChange = true; |
| } |
| } |
| |
| // Skip processing debug intrinsics in InstCombine. Processing these call instructions |
| // consumes non-trivial amount of time and provides no value for the optimization. |
| if (!isa<DbgInfoIntrinsic>(Inst)) |
| InstrsForInstCombineWorklist.push_back(Inst); |
| } |
| |
| // Recursively visit successors. If this is a branch or switch on a |
| // constant, only visit the reachable successor. |
| TerminatorInst *TI = BB->getTerminator(); |
| if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { |
| if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { |
| bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); |
| BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); |
| Worklist.push_back(ReachableBB); |
| continue; |
| } |
| } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { |
| if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { |
| Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); |
| continue; |
| } |
| } |
| |
| for (BasicBlock *SuccBB : TI->successors()) |
| Worklist.push_back(SuccBB); |
| } while (!Worklist.empty()); |
| |
| // Once we've found all of the instructions to add to instcombine's worklist, |
| // add them in reverse order. This way instcombine will visit from the top |
| // of the function down. This jives well with the way that it adds all uses |
| // of instructions to the worklist after doing a transformation, thus avoiding |
| // some N^2 behavior in pathological cases. |
| ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist); |
| |
| return MadeIRChange; |
| } |
| |
| /// Populate the IC worklist from a function, and prune any dead basic |
| /// blocks discovered in the process. |
| /// |
| /// This also does basic constant propagation and other forward fixing to make |
| /// the combiner itself run much faster. |
| static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, |
| TargetLibraryInfo *TLI, |
| InstCombineWorklist &ICWorklist) { |
| bool MadeIRChange = false; |
| |
| // Do a depth-first traversal of the function, populate the worklist with |
| // the reachable instructions. Ignore blocks that are not reachable. Keep |
| // track of which blocks we visit. |
| SmallPtrSet<BasicBlock *, 32> Visited; |
| MadeIRChange |= |
| AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI); |
| |
| // Do a quick scan over the function. If we find any blocks that are |
| // unreachable, remove any instructions inside of them. This prevents |
| // the instcombine code from having to deal with some bad special cases. |
| for (BasicBlock &BB : F) { |
| if (Visited.count(&BB)) |
| continue; |
| |
| unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB); |
| MadeIRChange |= NumDeadInstInBB > 0; |
| NumDeadInst += NumDeadInstInBB; |
| } |
| |
| return MadeIRChange; |
| } |
| |
| static bool combineInstructionsOverFunction( |
| Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, |
| AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT, |
| OptimizationRemarkEmitter &ORE, bool ExpensiveCombines = true, |
| LoopInfo *LI = nullptr) { |
| auto &DL = F.getParent()->getDataLayout(); |
| ExpensiveCombines |= EnableExpensiveCombines; |
| |
| /// Builder - This is an IRBuilder that automatically inserts new |
| /// instructions into the worklist when they are created. |
| IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( |
| F.getContext(), TargetFolder(DL), |
| IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { |
| Worklist.Add(I); |
| if (match(I, m_Intrinsic<Intrinsic::assume>())) |
| AC.registerAssumption(cast<CallInst>(I)); |
| })); |
| |
| // Lower dbg.declare intrinsics otherwise their value may be clobbered |
| // by instcombiner. |
| bool MadeIRChange = false; |
| if (ShouldLowerDbgDeclare) |
| MadeIRChange = LowerDbgDeclare(F); |
| |
| // Iterate while there is work to do. |
| int Iteration = 0; |
| while (true) { |
| ++Iteration; |
| LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " |
| << F.getName() << "\n"); |
| |
| MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); |
| |
| InstCombiner IC(Worklist, Builder, F.optForMinSize(), ExpensiveCombines, AA, |
| AC, TLI, DT, ORE, DL, LI); |
| IC.MaxArraySizeForCombine = MaxArraySize; |
| |
| if (!IC.run()) |
| break; |
| } |
| |
| return MadeIRChange || Iteration > 1; |
| } |
| |
| PreservedAnalyses InstCombinePass::run(Function &F, |
| FunctionAnalysisManager &AM) { |
| auto &AC = AM.getResult<AssumptionAnalysis>(F); |
| auto &DT = AM.getResult<DominatorTreeAnalysis>(F); |
| auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); |
| auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); |
| |
| auto *LI = AM.getCachedResult<LoopAnalysis>(F); |
| |
| auto *AA = &AM.getResult<AAManager>(F); |
| if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, |
| ExpensiveCombines, LI)) |
| // No changes, all analyses are preserved. |
| return PreservedAnalyses::all(); |
| |
| // Mark all the analyses that instcombine updates as preserved. |
| PreservedAnalyses PA; |
| PA.preserveSet<CFGAnalyses>(); |
| PA.preserve<AAManager>(); |
| PA.preserve<BasicAA>(); |
| PA.preserve<GlobalsAA>(); |
| return PA; |
| } |
| |
| void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); |
| AU.addPreserved<DominatorTreeWrapperPass>(); |
| AU.addPreserved<AAResultsWrapperPass>(); |
| AU.addPreserved<BasicAAWrapperPass>(); |
| AU.addPreserved<GlobalsAAWrapperPass>(); |
| } |
| |
| bool InstructionCombiningPass::runOnFunction(Function &F) { |
| if (skipFunction(F)) |
| return false; |
| |
| // Required analyses. |
| auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
| auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); |
| auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); |
| |
| // Optional analyses. |
| auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); |
| auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; |
| |
| return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, |
| ExpensiveCombines, LI); |
| } |
| |
| char InstructionCombiningPass::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", |
| "Combine redundant instructions", false, false) |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) |
| INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", |
| "Combine redundant instructions", false, false) |
| |
| // Initialization Routines |
| void llvm::initializeInstCombine(PassRegistry &Registry) { |
| initializeInstructionCombiningPassPass(Registry); |
| } |
| |
| void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { |
| initializeInstructionCombiningPassPass(*unwrap(R)); |
| } |
| |
| FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) { |
| return new InstructionCombiningPass(ExpensiveCombines); |
| } |
| |
| void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { |
| unwrap(PM)->add(createInstructionCombiningPass()); |
| } |