| //===- InstCombineShifts.cpp ----------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the visitShl, visitLShr, and visitAShr functions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InstCombineInternal.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/PatternMatch.h" |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| #define DEBUG_TYPE "instcombine" |
| |
| Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| assert(Op0->getType() == Op1->getType()); |
| |
| // See if we can fold away this shift. |
| if (SimplifyDemandedInstructionBits(I)) |
| return &I; |
| |
| // Try to fold constant and into select arguments. |
| if (isa<Constant>(Op0)) |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| |
| if (Constant *CUI = dyn_cast<Constant>(Op1)) |
| if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) |
| return Res; |
| |
| // (C1 shift (A add C2)) -> (C1 shift C2) shift A) |
| // iff A and C2 are both positive. |
| Value *A; |
| Constant *C; |
| if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C)))) |
| if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) && |
| isKnownNonNegative(C, DL, 0, &AC, &I, &DT)) |
| return BinaryOperator::Create( |
| I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A); |
| |
| // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2. |
| // Because shifts by negative values (which could occur if A were negative) |
| // are undefined. |
| const APInt *B; |
| if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) { |
| // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't |
| // demand the sign bit (and many others) here?? |
| Value *Rem = Builder.CreateAnd(A, ConstantInt::get(I.getType(), *B - 1), |
| Op1->getName()); |
| I.setOperand(1, Rem); |
| return &I; |
| } |
| |
| return nullptr; |
| } |
| |
| /// Return true if we can simplify two logical (either left or right) shifts |
| /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2. |
| static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl, |
| Instruction *InnerShift, InstCombiner &IC, |
| Instruction *CxtI) { |
| assert(InnerShift->isLogicalShift() && "Unexpected instruction type"); |
| |
| // We need constant scalar or constant splat shifts. |
| const APInt *InnerShiftConst; |
| if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst))) |
| return false; |
| |
| // Two logical shifts in the same direction: |
| // shl (shl X, C1), C2 --> shl X, C1 + C2 |
| // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 |
| bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; |
| if (IsInnerShl == IsOuterShl) |
| return true; |
| |
| // Equal shift amounts in opposite directions become bitwise 'and': |
| // lshr (shl X, C), C --> and X, C' |
| // shl (lshr X, C), C --> and X, C' |
| if (*InnerShiftConst == OuterShAmt) |
| return true; |
| |
| // If the 2nd shift is bigger than the 1st, we can fold: |
| // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3 |
| // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3 |
| // but it isn't profitable unless we know the and'd out bits are already zero. |
| // Also, check that the inner shift is valid (less than the type width) or |
| // we'll crash trying to produce the bit mask for the 'and'. |
| unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits(); |
| if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) { |
| unsigned InnerShAmt = InnerShiftConst->getZExtValue(); |
| unsigned MaskShift = |
| IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt; |
| APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift; |
| if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// See if we can compute the specified value, but shifted logically to the left |
| /// or right by some number of bits. This should return true if the expression |
| /// can be computed for the same cost as the current expression tree. This is |
| /// used to eliminate extraneous shifting from things like: |
| /// %C = shl i128 %A, 64 |
| /// %D = shl i128 %B, 96 |
| /// %E = or i128 %C, %D |
| /// %F = lshr i128 %E, 64 |
| /// where the client will ask if E can be computed shifted right by 64-bits. If |
| /// this succeeds, getShiftedValue() will be called to produce the value. |
| static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift, |
| InstCombiner &IC, Instruction *CxtI) { |
| // We can always evaluate constants shifted. |
| if (isa<Constant>(V)) |
| return true; |
| |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I) return false; |
| |
| // If this is the opposite shift, we can directly reuse the input of the shift |
| // if the needed bits are already zero in the input. This allows us to reuse |
| // the value which means that we don't care if the shift has multiple uses. |
| // TODO: Handle opposite shift by exact value. |
| ConstantInt *CI = nullptr; |
| if ((IsLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) || |
| (!IsLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) { |
| if (CI->getValue() == NumBits) { |
| // TODO: Check that the input bits are already zero with MaskedValueIsZero |
| #if 0 |
| // If this is a truncate of a logical shr, we can truncate it to a smaller |
| // lshr iff we know that the bits we would otherwise be shifting in are |
| // already zeros. |
| uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); |
| uint32_t BitWidth = Ty->getScalarSizeInBits(); |
| if (MaskedValueIsZero(I->getOperand(0), |
| APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) && |
| CI->getLimitedValue(BitWidth) < BitWidth) { |
| return CanEvaluateTruncated(I->getOperand(0), Ty); |
| } |
| #endif |
| |
| } |
| } |
| |
| // We can't mutate something that has multiple uses: doing so would |
| // require duplicating the instruction in general, which isn't profitable. |
| if (!I->hasOneUse()) return false; |
| |
| switch (I->getOpcode()) { |
| default: return false; |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. |
| return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) && |
| canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I); |
| |
| case Instruction::Shl: |
| case Instruction::LShr: |
| return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI); |
| |
| case Instruction::Select: { |
| SelectInst *SI = cast<SelectInst>(I); |
| Value *TrueVal = SI->getTrueValue(); |
| Value *FalseVal = SI->getFalseValue(); |
| return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) && |
| canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI); |
| } |
| case Instruction::PHI: { |
| // We can change a phi if we can change all operands. Note that we never |
| // get into trouble with cyclic PHIs here because we only consider |
| // instructions with a single use. |
| PHINode *PN = cast<PHINode>(I); |
| for (Value *IncValue : PN->incoming_values()) |
| if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN)) |
| return false; |
| return true; |
| } |
| } |
| } |
| |
| /// Fold OuterShift (InnerShift X, C1), C2. |
| /// See canEvaluateShiftedShift() for the constraints on these instructions. |
| static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt, |
| bool IsOuterShl, |
| InstCombiner::BuilderTy &Builder) { |
| bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; |
| Type *ShType = InnerShift->getType(); |
| unsigned TypeWidth = ShType->getScalarSizeInBits(); |
| |
| // We only accept shifts-by-a-constant in canEvaluateShifted(). |
| const APInt *C1; |
| match(InnerShift->getOperand(1), m_APInt(C1)); |
| unsigned InnerShAmt = C1->getZExtValue(); |
| |
| // Change the shift amount and clear the appropriate IR flags. |
| auto NewInnerShift = [&](unsigned ShAmt) { |
| InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt)); |
| if (IsInnerShl) { |
| InnerShift->setHasNoUnsignedWrap(false); |
| InnerShift->setHasNoSignedWrap(false); |
| } else { |
| InnerShift->setIsExact(false); |
| } |
| return InnerShift; |
| }; |
| |
| // Two logical shifts in the same direction: |
| // shl (shl X, C1), C2 --> shl X, C1 + C2 |
| // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 |
| if (IsInnerShl == IsOuterShl) { |
| // If this is an oversized composite shift, then unsigned shifts get 0. |
| if (InnerShAmt + OuterShAmt >= TypeWidth) |
| return Constant::getNullValue(ShType); |
| |
| return NewInnerShift(InnerShAmt + OuterShAmt); |
| } |
| |
| // Equal shift amounts in opposite directions become bitwise 'and': |
| // lshr (shl X, C), C --> and X, C' |
| // shl (lshr X, C), C --> and X, C' |
| if (InnerShAmt == OuterShAmt) { |
| APInt Mask = IsInnerShl |
| ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt) |
| : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt); |
| Value *And = Builder.CreateAnd(InnerShift->getOperand(0), |
| ConstantInt::get(ShType, Mask)); |
| if (auto *AndI = dyn_cast<Instruction>(And)) { |
| AndI->moveBefore(InnerShift); |
| AndI->takeName(InnerShift); |
| } |
| return And; |
| } |
| |
| assert(InnerShAmt > OuterShAmt && |
| "Unexpected opposite direction logical shift pair"); |
| |
| // In general, we would need an 'and' for this transform, but |
| // canEvaluateShiftedShift() guarantees that the masked-off bits are not used. |
| // lshr (shl X, C1), C2 --> shl X, C1 - C2 |
| // shl (lshr X, C1), C2 --> lshr X, C1 - C2 |
| return NewInnerShift(InnerShAmt - OuterShAmt); |
| } |
| |
| /// When canEvaluateShifted() returns true for an expression, this function |
| /// inserts the new computation that produces the shifted value. |
| static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift, |
| InstCombiner &IC, const DataLayout &DL) { |
| // We can always evaluate constants shifted. |
| if (Constant *C = dyn_cast<Constant>(V)) { |
| if (isLeftShift) |
| V = IC.Builder.CreateShl(C, NumBits); |
| else |
| V = IC.Builder.CreateLShr(C, NumBits); |
| // If we got a constantexpr back, try to simplify it with TD info. |
| if (auto *C = dyn_cast<Constant>(V)) |
| if (auto *FoldedC = |
| ConstantFoldConstant(C, DL, &IC.getTargetLibraryInfo())) |
| V = FoldedC; |
| return V; |
| } |
| |
| Instruction *I = cast<Instruction>(V); |
| IC.Worklist.Add(I); |
| |
| switch (I->getOpcode()) { |
| default: llvm_unreachable("Inconsistency with CanEvaluateShifted"); |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. |
| I->setOperand( |
| 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL)); |
| I->setOperand( |
| 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); |
| return I; |
| |
| case Instruction::Shl: |
| case Instruction::LShr: |
| return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift, |
| IC.Builder); |
| |
| case Instruction::Select: |
| I->setOperand( |
| 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); |
| I->setOperand( |
| 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL)); |
| return I; |
| case Instruction::PHI: { |
| // We can change a phi if we can change all operands. Note that we never |
| // get into trouble with cyclic PHIs here because we only consider |
| // instructions with a single use. |
| PHINode *PN = cast<PHINode>(I); |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits, |
| isLeftShift, IC, DL)); |
| return PN; |
| } |
| } |
| } |
| |
| // If this is a bitwise operator or add with a constant RHS we might be able |
| // to pull it through a shift. |
| static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift, |
| BinaryOperator *BO, |
| const APInt &C) { |
| bool IsValid = true; // Valid only for And, Or Xor, |
| bool HighBitSet = false; // Transform ifhigh bit of constant set? |
| |
| switch (BO->getOpcode()) { |
| default: IsValid = false; break; // Do not perform transform! |
| case Instruction::Add: |
| IsValid = Shift.getOpcode() == Instruction::Shl; |
| break; |
| case Instruction::Or: |
| case Instruction::Xor: |
| HighBitSet = false; |
| break; |
| case Instruction::And: |
| HighBitSet = true; |
| break; |
| } |
| |
| // If this is a signed shift right, and the high bit is modified |
| // by the logical operation, do not perform the transformation. |
| // The HighBitSet boolean indicates the value of the high bit of |
| // the constant which would cause it to be modified for this |
| // operation. |
| // |
| if (IsValid && Shift.getOpcode() == Instruction::AShr) |
| IsValid = C.isNegative() == HighBitSet; |
| |
| return IsValid; |
| } |
| |
| Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1, |
| BinaryOperator &I) { |
| bool isLeftShift = I.getOpcode() == Instruction::Shl; |
| |
| const APInt *Op1C; |
| if (!match(Op1, m_APInt(Op1C))) |
| return nullptr; |
| |
| // See if we can propagate this shift into the input, this covers the trivial |
| // cast of lshr(shl(x,c1),c2) as well as other more complex cases. |
| if (I.getOpcode() != Instruction::AShr && |
| canEvaluateShifted(Op0, Op1C->getZExtValue(), isLeftShift, *this, &I)) { |
| LLVM_DEBUG( |
| dbgs() << "ICE: GetShiftedValue propagating shift through expression" |
| " to eliminate shift:\n IN: " |
| << *Op0 << "\n SH: " << I << "\n"); |
| |
| return replaceInstUsesWith( |
| I, getShiftedValue(Op0, Op1C->getZExtValue(), isLeftShift, *this, DL)); |
| } |
| |
| // See if we can simplify any instructions used by the instruction whose sole |
| // purpose is to compute bits we don't care about. |
| unsigned TypeBits = Op0->getType()->getScalarSizeInBits(); |
| |
| assert(!Op1C->uge(TypeBits) && |
| "Shift over the type width should have been removed already"); |
| |
| if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I)) |
| return FoldedShift; |
| |
| // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2)) |
| if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) { |
| Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0)); |
| // If 'shift2' is an ashr, we would have to get the sign bit into a funny |
| // place. Don't try to do this transformation in this case. Also, we |
| // require that the input operand is a shift-by-constant so that we have |
| // confidence that the shifts will get folded together. We could do this |
| // xform in more cases, but it is unlikely to be profitable. |
| if (TrOp && I.isLogicalShift() && TrOp->isShift() && |
| isa<ConstantInt>(TrOp->getOperand(1))) { |
| // Okay, we'll do this xform. Make the shift of shift. |
| Constant *ShAmt = |
| ConstantExpr::getZExt(cast<Constant>(Op1), TrOp->getType()); |
| // (shift2 (shift1 & 0x00FF), c2) |
| Value *NSh = Builder.CreateBinOp(I.getOpcode(), TrOp, ShAmt, I.getName()); |
| |
| // For logical shifts, the truncation has the effect of making the high |
| // part of the register be zeros. Emulate this by inserting an AND to |
| // clear the top bits as needed. This 'and' will usually be zapped by |
| // other xforms later if dead. |
| unsigned SrcSize = TrOp->getType()->getScalarSizeInBits(); |
| unsigned DstSize = TI->getType()->getScalarSizeInBits(); |
| APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize)); |
| |
| // The mask we constructed says what the trunc would do if occurring |
| // between the shifts. We want to know the effect *after* the second |
| // shift. We know that it is a logical shift by a constant, so adjust the |
| // mask as appropriate. |
| if (I.getOpcode() == Instruction::Shl) |
| MaskV <<= Op1C->getZExtValue(); |
| else { |
| assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift"); |
| MaskV.lshrInPlace(Op1C->getZExtValue()); |
| } |
| |
| // shift1 & 0x00FF |
| Value *And = Builder.CreateAnd(NSh, |
| ConstantInt::get(I.getContext(), MaskV), |
| TI->getName()); |
| |
| // Return the value truncated to the interesting size. |
| return new TruncInst(And, I.getType()); |
| } |
| } |
| |
| if (Op0->hasOneUse()) { |
| if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) { |
| // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) |
| Value *V1, *V2; |
| ConstantInt *CC; |
| switch (Op0BO->getOpcode()) { |
| default: break; |
| case Instruction::Add: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: { |
| // These operators commute. |
| // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C) |
| if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() && |
| match(Op0BO->getOperand(1), m_Shr(m_Value(V1), |
| m_Specific(Op1)))) { |
| Value *YS = // (Y << C) |
| Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName()); |
| // (X + (Y << C)) |
| Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), YS, V1, |
| Op0BO->getOperand(1)->getName()); |
| unsigned Op1Val = Op1C->getLimitedValue(TypeBits); |
| |
| APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val); |
| Constant *Mask = ConstantInt::get(I.getContext(), Bits); |
| if (VectorType *VT = dyn_cast<VectorType>(X->getType())) |
| Mask = ConstantVector::getSplat(VT->getNumElements(), Mask); |
| return BinaryOperator::CreateAnd(X, Mask); |
| } |
| |
| // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C)) |
| Value *Op0BOOp1 = Op0BO->getOperand(1); |
| if (isLeftShift && Op0BOOp1->hasOneUse() && |
| match(Op0BOOp1, |
| m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))), |
| m_ConstantInt(CC)))) { |
| Value *YS = // (Y << C) |
| Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName()); |
| // X & (CC << C) |
| Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1), |
| V1->getName()+".mask"); |
| return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM); |
| } |
| LLVM_FALLTHROUGH; |
| } |
| |
| case Instruction::Sub: { |
| // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) |
| if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && |
| match(Op0BO->getOperand(0), m_Shr(m_Value(V1), |
| m_Specific(Op1)))) { |
| Value *YS = // (Y << C) |
| Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); |
| // (X + (Y << C)) |
| Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), V1, YS, |
| Op0BO->getOperand(0)->getName()); |
| unsigned Op1Val = Op1C->getLimitedValue(TypeBits); |
| |
| APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val); |
| Constant *Mask = ConstantInt::get(I.getContext(), Bits); |
| if (VectorType *VT = dyn_cast<VectorType>(X->getType())) |
| Mask = ConstantVector::getSplat(VT->getNumElements(), Mask); |
| return BinaryOperator::CreateAnd(X, Mask); |
| } |
| |
| // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C) |
| if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && |
| match(Op0BO->getOperand(0), |
| m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))), |
| m_ConstantInt(CC))) && V2 == Op1) { |
| Value *YS = // (Y << C) |
| Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); |
| // X & (CC << C) |
| Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1), |
| V1->getName()+".mask"); |
| |
| return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS); |
| } |
| |
| break; |
| } |
| } |
| |
| |
| // If the operand is a bitwise operator with a constant RHS, and the |
| // shift is the only use, we can pull it out of the shift. |
| const APInt *Op0C; |
| if (match(Op0BO->getOperand(1), m_APInt(Op0C))) { |
| if (canShiftBinOpWithConstantRHS(I, Op0BO, *Op0C)) { |
| Constant *NewRHS = ConstantExpr::get(I.getOpcode(), |
| cast<Constant>(Op0BO->getOperand(1)), Op1); |
| |
| Value *NewShift = |
| Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1); |
| NewShift->takeName(Op0BO); |
| |
| return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, |
| NewRHS); |
| } |
| } |
| |
| // If the operand is a subtract with a constant LHS, and the shift |
| // is the only use, we can pull it out of the shift. |
| // This folds (shl (sub C1, X), C2) -> (sub (C1 << C2), (shl X, C2)) |
| if (isLeftShift && Op0BO->getOpcode() == Instruction::Sub && |
| match(Op0BO->getOperand(0), m_APInt(Op0C))) { |
| Constant *NewRHS = ConstantExpr::get(I.getOpcode(), |
| cast<Constant>(Op0BO->getOperand(0)), Op1); |
| |
| Value *NewShift = Builder.CreateShl(Op0BO->getOperand(1), Op1); |
| NewShift->takeName(Op0BO); |
| |
| return BinaryOperator::CreateSub(NewRHS, NewShift); |
| } |
| } |
| |
| // If we have a select that conditionally executes some binary operator, |
| // see if we can pull it the select and operator through the shift. |
| // |
| // For example, turning: |
| // shl (select C, (add X, C1), X), C2 |
| // Into: |
| // Y = shl X, C2 |
| // select C, (add Y, C1 << C2), Y |
| Value *Cond; |
| BinaryOperator *TBO; |
| Value *FalseVal; |
| if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)), |
| m_Value(FalseVal)))) { |
| const APInt *C; |
| if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal && |
| match(TBO->getOperand(1), m_APInt(C)) && |
| canShiftBinOpWithConstantRHS(I, TBO, *C)) { |
| Constant *NewRHS = ConstantExpr::get(I.getOpcode(), |
| cast<Constant>(TBO->getOperand(1)), Op1); |
| |
| Value *NewShift = |
| Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1); |
| Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, |
| NewRHS); |
| return SelectInst::Create(Cond, NewOp, NewShift); |
| } |
| } |
| |
| BinaryOperator *FBO; |
| Value *TrueVal; |
| if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal), |
| m_OneUse(m_BinOp(FBO))))) { |
| const APInt *C; |
| if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal && |
| match(FBO->getOperand(1), m_APInt(C)) && |
| canShiftBinOpWithConstantRHS(I, FBO, *C)) { |
| Constant *NewRHS = ConstantExpr::get(I.getOpcode(), |
| cast<Constant>(FBO->getOperand(1)), Op1); |
| |
| Value *NewShift = |
| Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1); |
| Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, |
| NewRHS); |
| return SelectInst::Create(Cond, NewShift, NewOp); |
| } |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombiner::visitShl(BinaryOperator &I) { |
| if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1), |
| I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), |
| SQ.getWithInstruction(&I))) |
| return replaceInstUsesWith(I, V); |
| |
| if (Instruction *X = foldShuffledBinop(I)) |
| return X; |
| |
| if (Instruction *V = commonShiftTransforms(I)) |
| return V; |
| |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| Type *Ty = I.getType(); |
| const APInt *ShAmtAPInt; |
| if (match(Op1, m_APInt(ShAmtAPInt))) { |
| unsigned ShAmt = ShAmtAPInt->getZExtValue(); |
| unsigned BitWidth = Ty->getScalarSizeInBits(); |
| |
| // shl (zext X), ShAmt --> zext (shl X, ShAmt) |
| // This is only valid if X would have zeros shifted out. |
| Value *X; |
| if (match(Op0, m_ZExt(m_Value(X)))) { |
| unsigned SrcWidth = X->getType()->getScalarSizeInBits(); |
| if (ShAmt < SrcWidth && |
| MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmt), 0, &I)) |
| return new ZExtInst(Builder.CreateShl(X, ShAmt), Ty); |
| } |
| |
| // (X >> C) << C --> X & (-1 << C) |
| if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) { |
| APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt)); |
| return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); |
| } |
| |
| // FIXME: we do not yet transform non-exact shr's. The backend (DAGCombine) |
| // needs a few fixes for the rotate pattern recognition first. |
| const APInt *ShOp1; |
| if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(ShOp1))))) { |
| unsigned ShrAmt = ShOp1->getZExtValue(); |
| if (ShrAmt < ShAmt) { |
| // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1) |
| Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt); |
| auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); |
| NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); |
| NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); |
| return NewShl; |
| } |
| if (ShrAmt > ShAmt) { |
| // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2) |
| Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt); |
| auto *NewShr = BinaryOperator::Create( |
| cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff); |
| NewShr->setIsExact(true); |
| return NewShr; |
| } |
| } |
| |
| if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1)))) { |
| unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); |
| // Oversized shifts are simplified to zero in InstSimplify. |
| if (AmtSum < BitWidth) |
| // (X << C1) << C2 --> X << (C1 + C2) |
| return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum)); |
| } |
| |
| // If the shifted-out value is known-zero, then this is a NUW shift. |
| if (!I.hasNoUnsignedWrap() && |
| MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmt), 0, &I)) { |
| I.setHasNoUnsignedWrap(); |
| return &I; |
| } |
| |
| // If the shifted-out value is all signbits, then this is a NSW shift. |
| if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmt) { |
| I.setHasNoSignedWrap(); |
| return &I; |
| } |
| } |
| |
| // Transform (x >> y) << y to x & (-1 << y) |
| // Valid for any type of right-shift. |
| Value *X; |
| if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) { |
| Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); |
| Value *Mask = Builder.CreateShl(AllOnes, Op1); |
| return BinaryOperator::CreateAnd(Mask, X); |
| } |
| |
| Constant *C1; |
| if (match(Op1, m_Constant(C1))) { |
| Constant *C2; |
| Value *X; |
| // (C2 << X) << C1 --> (C2 << C1) << X |
| if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X))))) |
| return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X); |
| |
| // (X * C2) << C1 --> X * (C2 << C1) |
| if (match(Op0, m_Mul(m_Value(X), m_Constant(C2)))) |
| return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1)); |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombiner::visitLShr(BinaryOperator &I) { |
| if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), |
| SQ.getWithInstruction(&I))) |
| return replaceInstUsesWith(I, V); |
| |
| if (Instruction *X = foldShuffledBinop(I)) |
| return X; |
| |
| if (Instruction *R = commonShiftTransforms(I)) |
| return R; |
| |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| Type *Ty = I.getType(); |
| const APInt *ShAmtAPInt; |
| if (match(Op1, m_APInt(ShAmtAPInt))) { |
| unsigned ShAmt = ShAmtAPInt->getZExtValue(); |
| unsigned BitWidth = Ty->getScalarSizeInBits(); |
| auto *II = dyn_cast<IntrinsicInst>(Op0); |
| if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt && |
| (II->getIntrinsicID() == Intrinsic::ctlz || |
| II->getIntrinsicID() == Intrinsic::cttz || |
| II->getIntrinsicID() == Intrinsic::ctpop)) { |
| // ctlz.i32(x)>>5 --> zext(x == 0) |
| // cttz.i32(x)>>5 --> zext(x == 0) |
| // ctpop.i32(x)>>5 --> zext(x == -1) |
| bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop; |
| Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0); |
| Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS); |
| return new ZExtInst(Cmp, Ty); |
| } |
| |
| Value *X; |
| const APInt *ShOp1; |
| if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1)))) { |
| unsigned ShlAmt = ShOp1->getZExtValue(); |
| if (ShlAmt < ShAmt) { |
| Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt); |
| if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { |
| // (X <<nuw C1) >>u C2 --> X >>u (C2 - C1) |
| auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff); |
| NewLShr->setIsExact(I.isExact()); |
| return NewLShr; |
| } |
| // (X << C1) >>u C2 --> (X >>u (C2 - C1)) & (-1 >> C2) |
| Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact()); |
| APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt)); |
| return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask)); |
| } |
| if (ShlAmt > ShAmt) { |
| Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt); |
| if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { |
| // (X <<nuw C1) >>u C2 --> X <<nuw (C1 - C2) |
| auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); |
| NewShl->setHasNoUnsignedWrap(true); |
| return NewShl; |
| } |
| // (X << C1) >>u C2 --> X << (C1 - C2) & (-1 >> C2) |
| Value *NewShl = Builder.CreateShl(X, ShiftDiff); |
| APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt)); |
| return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask)); |
| } |
| assert(ShlAmt == ShAmt); |
| // (X << C) >>u C --> X & (-1 >>u C) |
| APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt)); |
| return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); |
| } |
| |
| if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && |
| (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) { |
| assert(ShAmt < X->getType()->getScalarSizeInBits() && |
| "Big shift not simplified to zero?"); |
| // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN |
| Value *NewLShr = Builder.CreateLShr(X, ShAmt); |
| return new ZExtInst(NewLShr, Ty); |
| } |
| |
| if (match(Op0, m_SExt(m_Value(X))) && |
| (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) { |
| // Are we moving the sign bit to the low bit and widening with high zeros? |
| unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits(); |
| if (ShAmt == BitWidth - 1) { |
| // lshr (sext i1 X to iN), N-1 --> zext X to iN |
| if (SrcTyBitWidth == 1) |
| return new ZExtInst(X, Ty); |
| |
| // lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN |
| if (Op0->hasOneUse()) { |
| Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1); |
| return new ZExtInst(NewLShr, Ty); |
| } |
| } |
| |
| // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN |
| if (ShAmt == BitWidth - SrcTyBitWidth && Op0->hasOneUse()) { |
| // The new shift amount can't be more than the narrow source type. |
| unsigned NewShAmt = std::min(ShAmt, SrcTyBitWidth - 1); |
| Value *AShr = Builder.CreateAShr(X, NewShAmt); |
| return new ZExtInst(AShr, Ty); |
| } |
| } |
| |
| if (match(Op0, m_LShr(m_Value(X), m_APInt(ShOp1)))) { |
| unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); |
| // Oversized shifts are simplified to zero in InstSimplify. |
| if (AmtSum < BitWidth) |
| // (X >>u C1) >>u C2 --> X >>u (C1 + C2) |
| return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum)); |
| } |
| |
| // If the shifted-out value is known-zero, then this is an exact shift. |
| if (!I.isExact() && |
| MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) { |
| I.setIsExact(); |
| return &I; |
| } |
| } |
| |
| // Transform (x << y) >> y to x & (-1 >> y) |
| Value *X; |
| if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) { |
| Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); |
| Value *Mask = Builder.CreateLShr(AllOnes, Op1); |
| return BinaryOperator::CreateAnd(Mask, X); |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombiner::visitAShr(BinaryOperator &I) { |
| if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), |
| SQ.getWithInstruction(&I))) |
| return replaceInstUsesWith(I, V); |
| |
| if (Instruction *X = foldShuffledBinop(I)) |
| return X; |
| |
| if (Instruction *R = commonShiftTransforms(I)) |
| return R; |
| |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| Type *Ty = I.getType(); |
| unsigned BitWidth = Ty->getScalarSizeInBits(); |
| const APInt *ShAmtAPInt; |
| if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) { |
| unsigned ShAmt = ShAmtAPInt->getZExtValue(); |
| |
| // If the shift amount equals the difference in width of the destination |
| // and source scalar types: |
| // ashr (shl (zext X), C), C --> sext X |
| Value *X; |
| if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) && |
| ShAmt == BitWidth - X->getType()->getScalarSizeInBits()) |
| return new SExtInst(X, Ty); |
| |
| // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However, |
| // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits. |
| const APInt *ShOp1; |
| if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) && |
| ShOp1->ult(BitWidth)) { |
| unsigned ShlAmt = ShOp1->getZExtValue(); |
| if (ShlAmt < ShAmt) { |
| // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1) |
| Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt); |
| auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff); |
| NewAShr->setIsExact(I.isExact()); |
| return NewAShr; |
| } |
| if (ShlAmt > ShAmt) { |
| // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2) |
| Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt); |
| auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff); |
| NewShl->setHasNoSignedWrap(true); |
| return NewShl; |
| } |
| } |
| |
| if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) && |
| ShOp1->ult(BitWidth)) { |
| unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); |
| // Oversized arithmetic shifts replicate the sign bit. |
| AmtSum = std::min(AmtSum, BitWidth - 1); |
| // (X >>s C1) >>s C2 --> X >>s (C1 + C2) |
| return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum)); |
| } |
| |
| if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) && |
| (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) { |
| // ashr (sext X), C --> sext (ashr X, C') |
| Type *SrcTy = X->getType(); |
| ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1); |
| Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt)); |
| return new SExtInst(NewSh, Ty); |
| } |
| |
| // If the shifted-out value is known-zero, then this is an exact shift. |
| if (!I.isExact() && |
| MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) { |
| I.setIsExact(); |
| return &I; |
| } |
| } |
| |
| // See if we can turn a signed shr into an unsigned shr. |
| if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I)) |
| return BinaryOperator::CreateLShr(Op0, Op1); |
| |
| return nullptr; |
| } |