blob: 031bbf1a0575032975e2f32b5e59dccf94a87d23 [file] [log] [blame]
// Copyright 2018 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "SpirvShader.hpp"
#include "SamplerCore.hpp"
#include "System/Math.hpp"
#include "Vulkan/VkBuffer.hpp"
#include "Vulkan/VkDebug.hpp"
#include "Vulkan/VkDescriptorSet.hpp"
#include "Vulkan/VkPipelineLayout.hpp"
#include "Vulkan/VkDescriptorSetLayout.hpp"
#include "Device/Config.hpp"
#include <spirv/unified1/spirv.hpp>
#include <spirv/unified1/GLSL.std.450.h>
#ifdef Bool
#undef Bool // b/127920555
#undef None
#endif
namespace
{
constexpr float PI = 3.141592653589793f;
rr::RValue<rr::Bool> AnyTrue(rr::RValue<sw::SIMD::Int> const &ints)
{
return rr::SignMask(ints) != 0;
}
rr::RValue<rr::Bool> AnyFalse(rr::RValue<sw::SIMD::Int> const &ints)
{
return rr::SignMask(~ints) != 0;
}
// Returns 1 << bits.
// If the resulting bit overflows a 32 bit integer, 0 is returned.
rr::RValue<sw::SIMD::UInt> NthBit32(rr::RValue<sw::SIMD::UInt> const &bits)
{
return ((sw::SIMD::UInt(1) << bits) & rr::CmpLT(bits, sw::SIMD::UInt(32)));
}
// Returns bitCount number of of 1's starting from the LSB.
rr::RValue<sw::SIMD::UInt> Bitmask32(rr::RValue<sw::SIMD::UInt> const &bitCount)
{
return NthBit32(bitCount) - sw::SIMD::UInt(1);
}
// Performs a fused-multiply add, returning a * b + c.
rr::RValue<sw::SIMD::Float> FMA(
rr::RValue<sw::SIMD::Float> const &a,
rr::RValue<sw::SIMD::Float> const &b,
rr::RValue<sw::SIMD::Float> const &c)
{
return a * b + c;
}
// Returns the exponent of the floating point number f.
// Assumes IEEE 754
rr::RValue<sw::SIMD::Int> Exponent(rr::RValue<sw::SIMD::Float> f)
{
auto v = rr::As<sw::SIMD::UInt>(f);
return (sw::SIMD::Int((v >> sw::SIMD::UInt(23)) & sw::SIMD::UInt(0xFF)) - sw::SIMD::Int(126));
}
// Returns y if y < x; otherwise result is x.
// If one operand is a NaN, the other operand is the result.
// If both operands are NaN, the result is a NaN.
rr::RValue<sw::SIMD::Float> NMin(rr::RValue<sw::SIMD::Float> const &x, rr::RValue<sw::SIMD::Float> const &y)
{
using namespace rr;
auto xIsNan = IsNan(x);
auto yIsNan = IsNan(y);
return As<sw::SIMD::Float>(
// If neither are NaN, return min
((~xIsNan & ~yIsNan) & As<sw::SIMD::Int>(Min(x, y))) |
// If one operand is a NaN, the other operand is the result
// If both operands are NaN, the result is a NaN.
((~xIsNan & yIsNan) & As<sw::SIMD::Int>(x)) |
(( xIsNan ) & As<sw::SIMD::Int>(y)));
}
// Returns y if y > x; otherwise result is x.
// If one operand is a NaN, the other operand is the result.
// If both operands are NaN, the result is a NaN.
rr::RValue<sw::SIMD::Float> NMax(rr::RValue<sw::SIMD::Float> const &x, rr::RValue<sw::SIMD::Float> const &y)
{
using namespace rr;
auto xIsNan = IsNan(x);
auto yIsNan = IsNan(y);
return As<sw::SIMD::Float>(
// If neither are NaN, return max
((~xIsNan & ~yIsNan) & As<sw::SIMD::Int>(Max(x, y))) |
// If one operand is a NaN, the other operand is the result
// If both operands are NaN, the result is a NaN.
((~xIsNan & yIsNan) & As<sw::SIMD::Int>(x)) |
(( xIsNan ) & As<sw::SIMD::Int>(y)));
}
// Returns the determinant of a 2x2 matrix.
rr::RValue<sw::SIMD::Float> Determinant(
rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b,
rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d)
{
return a*d - b*c;
}
// Returns the determinant of a 3x3 matrix.
rr::RValue<sw::SIMD::Float> Determinant(
rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c,
rr::RValue<sw::SIMD::Float> const &d, rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f,
rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h, rr::RValue<sw::SIMD::Float> const &i)
{
return a*e*i + b*f*g + c*d*h - c*e*g - b*d*i - a*f*h;
}
// Returns the determinant of a 4x4 matrix.
rr::RValue<sw::SIMD::Float> Determinant(
rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d,
rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f, rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h,
rr::RValue<sw::SIMD::Float> const &i, rr::RValue<sw::SIMD::Float> const &j, rr::RValue<sw::SIMD::Float> const &k, rr::RValue<sw::SIMD::Float> const &l,
rr::RValue<sw::SIMD::Float> const &m, rr::RValue<sw::SIMD::Float> const &n, rr::RValue<sw::SIMD::Float> const &o, rr::RValue<sw::SIMD::Float> const &p)
{
return a * Determinant(f, g, h,
j, k, l,
n, o, p) -
b * Determinant(e, g, h,
i, k, l,
m, o, p) +
c * Determinant(e, f, h,
i, j, l,
m, n, p) -
d * Determinant(e, f, g,
i, j, k,
m, n, o);
}
// Returns the inverse of a 2x2 matrix.
std::array<rr::RValue<sw::SIMD::Float>, 4> MatrixInverse(
rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b,
rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d)
{
auto s = sw::SIMD::Float(1.0f) / Determinant(a, b, c, d);
return {{s*d, -s*b, -s*c, s*a}};
}
// Returns the inverse of a 3x3 matrix.
std::array<rr::RValue<sw::SIMD::Float>, 9> MatrixInverse(
rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c,
rr::RValue<sw::SIMD::Float> const &d, rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f,
rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h, rr::RValue<sw::SIMD::Float> const &i)
{
auto s = sw::SIMD::Float(1.0f) / Determinant(
a, b, c,
d, e, f,
g, h, i); // TODO: duplicate arithmetic calculating the det and below.
return {{
s * (e*i - f*h), s * (c*h - b*i), s * (b*f - c*e),
s * (f*g - d*i), s * (a*i - c*g), s * (c*d - a*f),
s * (d*h - e*g), s * (b*g - a*h), s * (a*e - b*d),
}};
}
// Returns the inverse of a 4x4 matrix.
std::array<rr::RValue<sw::SIMD::Float>, 16> MatrixInverse(
rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d,
rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f, rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h,
rr::RValue<sw::SIMD::Float> const &i, rr::RValue<sw::SIMD::Float> const &j, rr::RValue<sw::SIMD::Float> const &k, rr::RValue<sw::SIMD::Float> const &l,
rr::RValue<sw::SIMD::Float> const &m, rr::RValue<sw::SIMD::Float> const &n, rr::RValue<sw::SIMD::Float> const &o, rr::RValue<sw::SIMD::Float> const &p)
{
auto s = sw::SIMD::Float(1.0f) / Determinant(
a, b, c, d,
e, f, g, h,
i, j, k, l,
m, n, o, p); // TODO: duplicate arithmetic calculating the det and below.
auto kplo = k*p - l*o, jpln = j*p - l*n, jokn = j*o - k*n;
auto gpho = g*p - h*o, fphn = f*p - h*n, fogn = f*o - g*n;
auto glhk = g*l - h*k, flhj = f*l - h*j, fkgj = f*k - g*j;
auto iplm = i*p - l*m, iokm = i*o - k*m, ephm = e*p - h*m;
auto eogm = e*o - g*m, elhi = e*l - h*i, ekgi = e*k - g*i;
auto injm = i*n - j*m, enfm = e*n - f*m, ejfi = e*j - f*i;
return {{
s * ( f * kplo - g * jpln + h * jokn),
s * (-b * kplo + c * jpln - d * jokn),
s * ( b * gpho - c * fphn + d * fogn),
s * (-b * glhk + c * flhj - d * fkgj),
s * (-e * kplo + g * iplm - h * iokm),
s * ( a * kplo - c * iplm + d * iokm),
s * (-a * gpho + c * ephm - d * eogm),
s * ( a * glhk - c * elhi + d * ekgi),
s * ( e * jpln - f * iplm + h * injm),
s * (-a * jpln + b * iplm - d * injm),
s * ( a * fphn - b * ephm + d * enfm),
s * (-a * flhj + b * elhi - d * ejfi),
s * (-e * jokn + f * iokm - g * injm),
s * ( a * jokn - b * iokm + c * injm),
s * (-a * fogn + b * eogm - c * enfm),
s * ( a * fkgj - b * ekgi + c * ejfi),
}};
}
}
namespace sw
{
volatile int SpirvShader::serialCounter = 1; // Start at 1, 0 is invalid shader.
SpirvShader::SpirvShader(InsnStore const &insns)
: insns{insns}, inputs{MAX_INTERFACE_COMPONENTS},
outputs{MAX_INTERFACE_COMPONENTS},
serialID{serialCounter++}, modes{}
{
ASSERT(insns.size() > 0);
// Simplifying assumptions (to be satisfied by earlier transformations)
// - There is exactly one entrypoint in the module, and it's the one we want
// - The only input/output OpVariables present are those used by the entrypoint
Block::ID currentBlock;
InsnIterator blockStart;
for (auto insn : *this)
{
switch (insn.opcode())
{
case spv::OpExecutionMode:
ProcessExecutionMode(insn);
break;
case spv::OpDecorate:
{
TypeOrObjectID targetId = insn.word(1);
auto decoration = static_cast<spv::Decoration>(insn.word(2));
uint32_t value = insn.wordCount() > 3 ? insn.word(3) : 0;
decorations[targetId].Apply(decoration, value);
switch(decoration)
{
case spv::DecorationDescriptorSet:
descriptorDecorations[targetId].DescriptorSet = value;
break;
case spv::DecorationBinding:
descriptorDecorations[targetId].Binding = value;
break;
default:
// Only handling descriptor decorations here.
break;
}
if (decoration == spv::DecorationCentroid)
modes.NeedsCentroid = true;
break;
}
case spv::OpMemberDecorate:
{
Type::ID targetId = insn.word(1);
auto memberIndex = insn.word(2);
auto decoration = static_cast<spv::Decoration>(insn.word(3));
uint32_t value = insn.wordCount() > 4 ? insn.word(4) : 0;
auto &d = memberDecorations[targetId];
if (memberIndex >= d.size())
d.resize(memberIndex + 1); // on demand; exact size would require another pass...
d[memberIndex].Apply(decoration, value);
if (decoration == spv::DecorationCentroid)
modes.NeedsCentroid = true;
break;
}
case spv::OpDecorationGroup:
// Nothing to do here. We don't need to record the definition of the group; we'll just have
// the bundle of decorations float around. If we were to ever walk the decorations directly,
// we might think about introducing this as a real Object.
break;
case spv::OpGroupDecorate:
{
uint32_t group = insn.word(1);
auto const &groupDecorations = decorations[group];
auto const &descriptorGroupDecorations = descriptorDecorations[group];
for (auto i = 2u; i < insn.wordCount(); i++)
{
// Remaining operands are targets to apply the group to.
uint32_t target = insn.word(i);
decorations[target].Apply(groupDecorations);
descriptorDecorations[target].Apply(descriptorGroupDecorations);
}
break;
}
case spv::OpGroupMemberDecorate:
{
auto const &srcDecorations = decorations[insn.word(1)];
for (auto i = 2u; i < insn.wordCount(); i += 2)
{
// remaining operands are pairs of <id>, literal for members to apply to.
auto &d = memberDecorations[insn.word(i)];
auto memberIndex = insn.word(i + 1);
if (memberIndex >= d.size())
d.resize(memberIndex + 1); // on demand resize, see above...
d[memberIndex].Apply(srcDecorations);
}
break;
}
case spv::OpLabel:
{
ASSERT(currentBlock.value() == 0);
currentBlock = Block::ID(insn.word(1));
blockStart = insn;
break;
}
// Branch Instructions (subset of Termination Instructions):
case spv::OpBranch:
case spv::OpBranchConditional:
case spv::OpSwitch:
case spv::OpReturn:
// fallthrough
// Termination instruction:
case spv::OpKill:
case spv::OpUnreachable:
{
ASSERT(currentBlock.value() != 0);
auto blockEnd = insn; blockEnd++;
blocks[currentBlock] = Block(blockStart, blockEnd);
currentBlock = Block::ID(0);
if (insn.opcode() == spv::OpKill)
{
modes.ContainsKill = true;
}
break;
}
case spv::OpLoopMerge:
case spv::OpSelectionMerge:
break; // Nothing to do in analysis pass.
case spv::OpTypeVoid:
case spv::OpTypeBool:
case spv::OpTypeInt:
case spv::OpTypeFloat:
case spv::OpTypeVector:
case spv::OpTypeMatrix:
case spv::OpTypeImage:
case spv::OpTypeSampler:
case spv::OpTypeSampledImage:
case spv::OpTypeArray:
case spv::OpTypeRuntimeArray:
case spv::OpTypeStruct:
case spv::OpTypePointer:
case spv::OpTypeFunction:
DeclareType(insn);
break;
case spv::OpVariable:
{
Type::ID typeId = insn.word(1);
Object::ID resultId = insn.word(2);
auto storageClass = static_cast<spv::StorageClass>(insn.word(3));
if (insn.wordCount() > 4)
UNIMPLEMENTED("Variable initializers not yet supported");
auto &object = defs[resultId];
object.kind = Object::Kind::NonDivergentPointer;
object.definition = insn;
object.type = typeId;
ASSERT(getType(typeId).storageClass == storageClass);
switch (storageClass)
{
case spv::StorageClassInput:
case spv::StorageClassOutput:
ProcessInterfaceVariable(object);
break;
case spv::StorageClassUniform:
case spv::StorageClassStorageBuffer:
object.kind = Object::Kind::DescriptorSet;
break;
case spv::StorageClassPushConstant:
case spv::StorageClassPrivate:
case spv::StorageClassFunction:
break; // Correctly handled.
case spv::StorageClassUniformConstant:
// This storage class is for data stored within the descriptor itself,
// unlike StorageClassUniform which contains handles to buffers.
// For Vulkan it corresponds with samplers, images, or combined image samplers.
object.kind = Object::Kind::SampledImage;
break;
case spv::StorageClassWorkgroup:
case spv::StorageClassCrossWorkgroup:
case spv::StorageClassGeneric:
case spv::StorageClassAtomicCounter:
case spv::StorageClassImage:
UNIMPLEMENTED("StorageClass %d not yet implemented", (int)storageClass);
break;
default:
UNREACHABLE("Unexpected StorageClass %d", storageClass); // See Appendix A of the Vulkan spec.
break;
}
break;
}
case spv::OpConstant:
CreateConstant(insn).constantValue[0] = insn.word(3);
break;
case spv::OpConstantFalse:
CreateConstant(insn).constantValue[0] = 0; // represent boolean false as zero
break;
case spv::OpConstantTrue:
CreateConstant(insn).constantValue[0] = ~0u; // represent boolean true as all bits set
break;
case spv::OpConstantNull:
case spv::OpUndef:
{
// TODO: consider a real LLVM-level undef. For now, zero is a perfectly good value.
// OpConstantNull forms a constant of arbitrary type, all zeros.
auto &object = CreateConstant(insn);
auto &objectTy = getType(object.type);
for (auto i = 0u; i < objectTy.sizeInComponents; i++)
{
object.constantValue[i] = 0;
}
break;
}
case spv::OpConstantComposite:
{
auto &object = CreateConstant(insn);
auto offset = 0u;
for (auto i = 0u; i < insn.wordCount() - 3; i++)
{
auto &constituent = getObject(insn.word(i + 3));
auto &constituentTy = getType(constituent.type);
for (auto j = 0u; j < constituentTy.sizeInComponents; j++)
object.constantValue[offset++] = constituent.constantValue[j];
}
auto objectId = Object::ID(insn.word(2));
auto decorationsIt = decorations.find(objectId);
if (decorationsIt != decorations.end() &&
decorationsIt->second.BuiltIn == spv::BuiltInWorkgroupSize)
{
// https://www.khronos.org/registry/vulkan/specs/1.1/html/vkspec.html#interfaces-builtin-variables :
// Decorating an object with the WorkgroupSize built-in
// decoration will make that object contain the dimensions
// of a local workgroup. If an object is decorated with the
// WorkgroupSize decoration, this must take precedence over
// any execution mode set for LocalSize.
// The object decorated with WorkgroupSize must be declared
// as a three-component vector of 32-bit integers.
ASSERT(getType(object.type).sizeInComponents == 3);
modes.WorkgroupSizeX = object.constantValue[0];
modes.WorkgroupSizeY = object.constantValue[1];
modes.WorkgroupSizeZ = object.constantValue[2];
}
break;
}
case spv::OpCapability:
break; // Various capabilities will be declared, but none affect our code generation at this point.
case spv::OpMemoryModel:
break; // Memory model does not affect our code generation until we decide to do Vulkan Memory Model support.
case spv::OpEntryPoint:
break;
case spv::OpFunction:
ASSERT(mainBlockId.value() == 0); // Multiple functions found
// Scan forward to find the function's label.
for (auto it = insn; it != end() && mainBlockId.value() == 0; it++)
{
switch (it.opcode())
{
case spv::OpFunction:
case spv::OpFunctionParameter:
break;
case spv::OpLabel:
mainBlockId = Block::ID(it.word(1));
break;
default:
WARN("Unexpected opcode '%s' following OpFunction", OpcodeName(it.opcode()).c_str());
}
}
ASSERT(mainBlockId.value() != 0); // Function's OpLabel not found
break;
case spv::OpFunctionEnd:
// Due to preprocessing, the entrypoint and its function provide no value.
break;
case spv::OpExtInstImport:
// We will only support the GLSL 450 extended instruction set, so no point in tracking the ID we assign it.
// Valid shaders will not attempt to import any other instruction sets.
if (0 != strcmp("GLSL.std.450", reinterpret_cast<char const *>(insn.wordPointer(2))))
{
UNIMPLEMENTED("Only GLSL extended instruction set is supported");
}
break;
case spv::OpName:
case spv::OpMemberName:
case spv::OpSource:
case spv::OpSourceContinued:
case spv::OpSourceExtension:
case spv::OpLine:
case spv::OpNoLine:
case spv::OpModuleProcessed:
case spv::OpString:
// No semantic impact
break;
case spv::OpFunctionParameter:
case spv::OpFunctionCall:
case spv::OpSpecConstant:
case spv::OpSpecConstantComposite:
case spv::OpSpecConstantFalse:
case spv::OpSpecConstantOp:
case spv::OpSpecConstantTrue:
// These should have all been removed by preprocessing passes. If we see them here,
// our assumptions are wrong and we will probably generate wrong code.
UNIMPLEMENTED("%s should have already been lowered.", OpcodeName(insn.opcode()).c_str());
break;
case spv::OpFConvert:
UNIMPLEMENTED("No valid uses for OpFConvert until we support multiple bit widths enabled by features such as Float16/Float64 etc.");
break;
case spv::OpSConvert:
case spv::OpUConvert:
UNIMPLEMENTED("No valid uses for Op*Convert until we support multiple bit widths enabled by features such as Int16/Int64 etc.");
break;
case spv::OpLoad:
case spv::OpAccessChain:
case spv::OpInBoundsAccessChain:
{
// Propagate the descriptor decorations to the result.
Object::ID resultId = insn.word(2);
Object::ID pointerId = insn.word(3);
const auto &d = descriptorDecorations.find(pointerId);
if(d != descriptorDecorations.end())
{
descriptorDecorations[resultId] = d->second;
}
DefineResult(insn);
if (insn.opcode() == spv::OpAccessChain || insn.opcode() == spv::OpInBoundsAccessChain)
{
Decorations dd{};
ApplyDecorationsForAccessChain(&dd, pointerId, insn.wordCount() - 4, insn.wordPointer(4));
// Note: offset is the one thing that does *not* propagate, as the access chain accounts for it.
dd.HasOffset = false;
decorations[resultId].Apply(dd);
}
}
break;
case spv::OpCompositeConstruct:
case spv::OpCompositeInsert:
case spv::OpCompositeExtract:
case spv::OpVectorShuffle:
case spv::OpVectorTimesScalar:
case spv::OpMatrixTimesScalar:
case spv::OpMatrixTimesVector:
case spv::OpVectorTimesMatrix:
case spv::OpMatrixTimesMatrix:
case spv::OpOuterProduct:
case spv::OpTranspose:
case spv::OpVectorExtractDynamic:
case spv::OpVectorInsertDynamic:
// Unary ops
case spv::OpNot:
case spv::OpBitFieldInsert:
case spv::OpBitFieldSExtract:
case spv::OpBitFieldUExtract:
case spv::OpBitReverse:
case spv::OpBitCount:
case spv::OpSNegate:
case spv::OpFNegate:
case spv::OpLogicalNot:
// Binary ops
case spv::OpIAdd:
case spv::OpISub:
case spv::OpIMul:
case spv::OpSDiv:
case spv::OpUDiv:
case spv::OpFAdd:
case spv::OpFSub:
case spv::OpFMul:
case spv::OpFDiv:
case spv::OpFMod:
case spv::OpFRem:
case spv::OpFOrdEqual:
case spv::OpFUnordEqual:
case spv::OpFOrdNotEqual:
case spv::OpFUnordNotEqual:
case spv::OpFOrdLessThan:
case spv::OpFUnordLessThan:
case spv::OpFOrdGreaterThan:
case spv::OpFUnordGreaterThan:
case spv::OpFOrdLessThanEqual:
case spv::OpFUnordLessThanEqual:
case spv::OpFOrdGreaterThanEqual:
case spv::OpFUnordGreaterThanEqual:
case spv::OpSMod:
case spv::OpSRem:
case spv::OpUMod:
case spv::OpIEqual:
case spv::OpINotEqual:
case spv::OpUGreaterThan:
case spv::OpSGreaterThan:
case spv::OpUGreaterThanEqual:
case spv::OpSGreaterThanEqual:
case spv::OpULessThan:
case spv::OpSLessThan:
case spv::OpULessThanEqual:
case spv::OpSLessThanEqual:
case spv::OpShiftRightLogical:
case spv::OpShiftRightArithmetic:
case spv::OpShiftLeftLogical:
case spv::OpBitwiseOr:
case spv::OpBitwiseXor:
case spv::OpBitwiseAnd:
case spv::OpLogicalOr:
case spv::OpLogicalAnd:
case spv::OpLogicalEqual:
case spv::OpLogicalNotEqual:
case spv::OpUMulExtended:
case spv::OpSMulExtended:
case spv::OpDot:
case spv::OpConvertFToU:
case spv::OpConvertFToS:
case spv::OpConvertSToF:
case spv::OpConvertUToF:
case spv::OpBitcast:
case spv::OpSelect:
case spv::OpExtInst:
case spv::OpIsInf:
case spv::OpIsNan:
case spv::OpAny:
case spv::OpAll:
case spv::OpDPdx:
case spv::OpDPdxCoarse:
case spv::OpDPdy:
case spv::OpDPdyCoarse:
case spv::OpFwidth:
case spv::OpFwidthCoarse:
case spv::OpDPdxFine:
case spv::OpDPdyFine:
case spv::OpFwidthFine:
case spv::OpAtomicLoad:
case spv::OpPhi:
case spv::OpImageSampleImplicitLod:
// Instructions that yield an intermediate value or divergent pointer
DefineResult(insn);
break;
case spv::OpStore:
case spv::OpAtomicStore:
// Don't need to do anything during analysis pass
break;
default:
UNIMPLEMENTED("%s", OpcodeName(insn.opcode()).c_str());
}
}
AssignBlockIns();
}
void SpirvShader::TraverseReachableBlocks(Block::ID id, SpirvShader::Block::Set& reachable)
{
if (reachable.count(id) == 0)
{
reachable.emplace(id);
for (auto out : getBlock(id).outs)
{
TraverseReachableBlocks(out, reachable);
}
}
}
void SpirvShader::AssignBlockIns()
{
Block::Set reachable;
TraverseReachableBlocks(mainBlockId, reachable);
for (auto &it : blocks)
{
auto &blockId = it.first;
if (reachable.count(blockId) > 0)
{
for (auto &outId : it.second.outs)
{
auto outIt = blocks.find(outId);
ASSERT_MSG(outIt != blocks.end(), "Block %d has a non-existent out %d", blockId.value(), outId.value());
auto &out = outIt->second;
out.ins.emplace(blockId);
}
}
}
}
void SpirvShader::DeclareType(InsnIterator insn)
{
Type::ID resultId = insn.word(1);
auto &type = types[resultId];
type.definition = insn;
type.sizeInComponents = ComputeTypeSize(insn);
// A structure is a builtin block if it has a builtin
// member. All members of such a structure are builtins.
switch (insn.opcode())
{
case spv::OpTypeStruct:
{
auto d = memberDecorations.find(resultId);
if (d != memberDecorations.end())
{
for (auto &m : d->second)
{
if (m.HasBuiltIn)
{
type.isBuiltInBlock = true;
break;
}
}
}
break;
}
case spv::OpTypePointer:
{
Type::ID elementTypeId = insn.word(3);
type.element = elementTypeId;
type.isBuiltInBlock = getType(elementTypeId).isBuiltInBlock;
type.storageClass = static_cast<spv::StorageClass>(insn.word(2));
break;
}
case spv::OpTypeVector:
case spv::OpTypeMatrix:
case spv::OpTypeArray:
case spv::OpTypeRuntimeArray:
{
Type::ID elementTypeId = insn.word(2);
type.element = elementTypeId;
break;
}
default:
break;
}
}
SpirvShader::Object& SpirvShader::CreateConstant(InsnIterator insn)
{
Type::ID typeId = insn.word(1);
Object::ID resultId = insn.word(2);
auto &object = defs[resultId];
auto &objectTy = getType(typeId);
object.type = typeId;
object.kind = Object::Kind::Constant;
object.definition = insn;
object.constantValue = std::unique_ptr<uint32_t[]>(new uint32_t[objectTy.sizeInComponents]);
return object;
}
void SpirvShader::ProcessInterfaceVariable(Object &object)
{
auto &objectTy = getType(object.type);
ASSERT(objectTy.storageClass == spv::StorageClassInput || objectTy.storageClass == spv::StorageClassOutput);
ASSERT(objectTy.opcode() == spv::OpTypePointer);
auto pointeeTy = getType(objectTy.element);
auto &builtinInterface = (objectTy.storageClass == spv::StorageClassInput) ? inputBuiltins : outputBuiltins;
auto &userDefinedInterface = (objectTy.storageClass == spv::StorageClassInput) ? inputs : outputs;
ASSERT(object.opcode() == spv::OpVariable);
Object::ID resultId = object.definition.word(2);
if (objectTy.isBuiltInBlock)
{
// walk the builtin block, registering each of its members separately.
auto m = memberDecorations.find(objectTy.element);
ASSERT(m != memberDecorations.end()); // otherwise we wouldn't have marked the type chain
auto &structType = pointeeTy.definition;
auto offset = 0u;
auto word = 2u;
for (auto &member : m->second)
{
auto &memberType = getType(structType.word(word));
if (member.HasBuiltIn)
{
builtinInterface[member.BuiltIn] = {resultId, offset, memberType.sizeInComponents};
}
offset += memberType.sizeInComponents;
++word;
}
return;
}
auto d = decorations.find(resultId);
if (d != decorations.end() && d->second.HasBuiltIn)
{
builtinInterface[d->second.BuiltIn] = {resultId, 0, pointeeTy.sizeInComponents};
}
else
{
object.kind = Object::Kind::InterfaceVariable;
VisitInterface(resultId,
[&userDefinedInterface](Decorations const &d, AttribType type) {
// Populate a single scalar slot in the interface from a collection of decorations and the intended component type.
auto scalarSlot = (d.Location << 2) | d.Component;
ASSERT(scalarSlot >= 0 &&
scalarSlot < static_cast<int32_t>(userDefinedInterface.size()));
auto &slot = userDefinedInterface[scalarSlot];
slot.Type = type;
slot.Flat = d.Flat;
slot.NoPerspective = d.NoPerspective;
slot.Centroid = d.Centroid;
});
}
}
void SpirvShader::ProcessExecutionMode(InsnIterator insn)
{
auto mode = static_cast<spv::ExecutionMode>(insn.word(2));
switch (mode)
{
case spv::ExecutionModeEarlyFragmentTests:
modes.EarlyFragmentTests = true;
break;
case spv::ExecutionModeDepthReplacing:
modes.DepthReplacing = true;
break;
case spv::ExecutionModeDepthGreater:
modes.DepthGreater = true;
break;
case spv::ExecutionModeDepthLess:
modes.DepthLess = true;
break;
case spv::ExecutionModeDepthUnchanged:
modes.DepthUnchanged = true;
break;
case spv::ExecutionModeLocalSize:
modes.WorkgroupSizeX = insn.word(3);
modes.WorkgroupSizeY = insn.word(4);
modes.WorkgroupSizeZ = insn.word(5);
break;
case spv::ExecutionModeOriginUpperLeft:
// This is always the case for a Vulkan shader. Do nothing.
break;
default:
UNIMPLEMENTED("No other execution modes are permitted");
}
}
uint32_t SpirvShader::ComputeTypeSize(InsnIterator insn)
{
// Types are always built from the bottom up (with the exception of forward ptrs, which
// don't appear in Vulkan shaders. Therefore, we can always assume our component parts have
// already been described (and so their sizes determined)
switch (insn.opcode())
{
case spv::OpTypeVoid:
case spv::OpTypeSampler:
case spv::OpTypeImage:
case spv::OpTypeSampledImage:
case spv::OpTypeFunction:
case spv::OpTypeRuntimeArray:
// Objects that don't consume any space.
// Descriptor-backed objects currently only need exist at compile-time.
// Runtime arrays don't appear in places where their size would be interesting
return 0;
case spv::OpTypeBool:
case spv::OpTypeFloat:
case spv::OpTypeInt:
// All the fundamental types are 1 component. If we ever add support for 8/16/64-bit components,
// we might need to change this, but only 32 bit components are required for Vulkan 1.1.
return 1;
case spv::OpTypeVector:
case spv::OpTypeMatrix:
// Vectors and matrices both consume element count * element size.
return getType(insn.word(2)).sizeInComponents * insn.word(3);
case spv::OpTypeArray:
{
// Element count * element size. Array sizes come from constant ids.
auto arraySize = GetConstantInt(insn.word(3));
return getType(insn.word(2)).sizeInComponents * arraySize;
}
case spv::OpTypeStruct:
{
uint32_t size = 0;
for (uint32_t i = 2u; i < insn.wordCount(); i++)
{
size += getType(insn.word(i)).sizeInComponents;
}
return size;
}
case spv::OpTypePointer:
// Runtime representation of a pointer is a per-lane index.
// Note: clients are expected to look through the pointer if they want the pointee size instead.
return 1;
default:
// Some other random insn.
UNIMPLEMENTED("Only types are supported");
return 0;
}
}
bool SpirvShader::IsStorageInterleavedByLane(spv::StorageClass storageClass)
{
switch (storageClass)
{
case spv::StorageClassUniform:
case spv::StorageClassStorageBuffer:
case spv::StorageClassPushConstant:
return false;
default:
return true;
}
}
template<typename F>
int SpirvShader::VisitInterfaceInner(Type::ID id, Decorations d, F f) const
{
// Recursively walks variable definition and its type tree, taking into account
// any explicit Location or Component decorations encountered; where explicit
// Locations or Components are not specified, assigns them sequentially.
// Collected decorations are carried down toward the leaves and across
// siblings; Effect of decorations intentionally does not flow back up the tree.
//
// F is a functor to be called with the effective decoration set for every component.
//
// Returns the next available location, and calls f().
// This covers the rules in Vulkan 1.1 spec, 14.1.4 Location Assignment.
ApplyDecorationsForId(&d, id);
auto const &obj = getType(id);
switch(obj.opcode())
{
case spv::OpTypePointer:
return VisitInterfaceInner<F>(obj.definition.word(3), d, f);
case spv::OpTypeMatrix:
for (auto i = 0u; i < obj.definition.word(3); i++, d.Location++)
{
// consumes same components of N consecutive locations
VisitInterfaceInner<F>(obj.definition.word(2), d, f);
}
return d.Location;
case spv::OpTypeVector:
for (auto i = 0u; i < obj.definition.word(3); i++, d.Component++)
{
// consumes N consecutive components in the same location
VisitInterfaceInner<F>(obj.definition.word(2), d, f);
}
return d.Location + 1;
case spv::OpTypeFloat:
f(d, ATTRIBTYPE_FLOAT);
return d.Location + 1;
case spv::OpTypeInt:
f(d, obj.definition.word(3) ? ATTRIBTYPE_INT : ATTRIBTYPE_UINT);
return d.Location + 1;
case spv::OpTypeBool:
f(d, ATTRIBTYPE_UINT);
return d.Location + 1;
case spv::OpTypeStruct:
{
// iterate over members, which may themselves have Location/Component decorations
for (auto i = 0u; i < obj.definition.wordCount() - 2; i++)
{
ApplyDecorationsForIdMember(&d, id, i);
d.Location = VisitInterfaceInner<F>(obj.definition.word(i + 2), d, f);
d.Component = 0; // Implicit locations always have component=0
}
return d.Location;
}
case spv::OpTypeArray:
{
auto arraySize = GetConstantInt(obj.definition.word(3));
for (auto i = 0u; i < arraySize; i++)
{
d.Location = VisitInterfaceInner<F>(obj.definition.word(2), d, f);
}
return d.Location;
}
default:
// Intentionally partial; most opcodes do not participate in type hierarchies
return 0;
}
}
template<typename F>
void SpirvShader::VisitInterface(Object::ID id, F f) const
{
// Walk a variable definition and call f for each component in it.
Decorations d{};
ApplyDecorationsForId(&d, id);
auto def = getObject(id).definition;
ASSERT(def.opcode() == spv::OpVariable);
VisitInterfaceInner<F>(def.word(1), d, f);
}
template<typename F>
void SpirvShader::VisitMemoryObjectInner(sw::SpirvShader::Type::ID id, sw::SpirvShader::Decorations d, uint32_t& index, uint32_t offset, F f) const
{
// Walk a type tree in an explicitly laid out storage class, calling
// a functor for each scalar element within the object.
// The functor's first parameter is the index of the scalar element;
// the second parameter is the offset (in sizeof(float) units) from
// the base of the object.
ApplyDecorationsForId(&d, id);
auto const &type = getType(id);
if (d.HasOffset)
{
offset += d.Offset / sizeof(float);
d.HasOffset = false;
}
switch (type.opcode())
{
case spv::OpTypePointer:
VisitMemoryObjectInner<F>(type.definition.word(3), d, index, offset, f);
break;
case spv::OpTypeInt:
case spv::OpTypeFloat:
f(index++, offset);
break;
case spv::OpTypeVector:
{
auto elemStride = (d.InsideMatrix && d.HasRowMajor && d.RowMajor) ? d.MatrixStride / sizeof(float) : 1;
for (auto i = 0u; i < type.definition.word(3); i++)
{
VisitMemoryObjectInner(type.definition.word(2), d, index, offset + elemStride * i, f);
}
break;
}
case spv::OpTypeMatrix:
{
auto columnStride = (d.HasRowMajor && d.RowMajor) ? 1 : d.MatrixStride / sizeof(float);
d.InsideMatrix = true;
for (auto i = 0u; i < type.definition.word(3); i++)
{
ASSERT(d.HasMatrixStride);
VisitMemoryObjectInner(type.definition.word(2), d, index, offset + columnStride * i, f);
}
break;
}
case spv::OpTypeStruct:
for (auto i = 0u; i < type.definition.wordCount() - 2; i++)
{
ApplyDecorationsForIdMember(&d, id, i);
VisitMemoryObjectInner<F>(type.definition.word(i + 2), d, index, offset, f);
}
break;
case spv::OpTypeArray:
{
auto arraySize = GetConstantInt(type.definition.word(3));
for (auto i = 0u; i < arraySize; i++)
{
ASSERT(d.HasArrayStride);
VisitMemoryObjectInner<F>(type.definition.word(2), d, index, offset + i * d.ArrayStride / sizeof(float), f);
}
break;
}
default:
UNIMPLEMENTED("%s", OpcodeName(type.opcode()).c_str());
}
}
template<typename F>
void SpirvShader::VisitMemoryObject(sw::SpirvShader::Object::ID id, F f) const
{
auto typeId = getObject(id).type;
auto const & type = getType(typeId);
if (!IsStorageInterleavedByLane(type.storageClass)) // TODO: really "is explicit layout"
{
Decorations d{};
ApplyDecorationsForId(&d, id);
uint32_t index = 0;
VisitMemoryObjectInner<F>(typeId, d, index, 0, f);
}
else
{
// Objects without explicit layout are tightly packed.
for (auto i = 0u; i < getType(type.element).sizeInComponents; i++)
{
f(i, i);
}
}
}
SIMD::Pointer SpirvShader::GetPointerToData(Object::ID id, int arrayIndex, SpirvRoutine *routine) const
{
auto &object = getObject(id);
switch (object.kind)
{
case Object::Kind::NonDivergentPointer:
case Object::Kind::InterfaceVariable:
return SIMD::Pointer(routine->getPointer(id));
case Object::Kind::DivergentPointer:
return SIMD::Pointer(routine->getPointer(id), routine->getIntermediate(id).Int(0));
case Object::Kind::DescriptorSet:
{
const auto &d = descriptorDecorations.at(id);
ASSERT(d.DescriptorSet >= 0 && d.DescriptorSet < vk::MAX_BOUND_DESCRIPTOR_SETS);
ASSERT(d.Binding >= 0);
auto set = routine->getPointer(id);
auto setLayout = routine->pipelineLayout->getDescriptorSetLayout(d.DescriptorSet);
int bindingOffset = static_cast<int>(setLayout->getBindingOffset(d.Binding, arrayIndex));
Pointer<Byte> bufferInfo = Pointer<Byte>(set + bindingOffset); // VkDescriptorBufferInfo*
Pointer<Byte> buffer = *Pointer<Pointer<Byte>>(bufferInfo + OFFSET(VkDescriptorBufferInfo, buffer)); // vk::Buffer*
Pointer<Byte> data = *Pointer<Pointer<Byte>>(buffer + vk::Buffer::DataOffset); // void*
Int offset = *Pointer<Int>(bufferInfo + OFFSET(VkDescriptorBufferInfo, offset));
if (setLayout->isBindingDynamic(d.Binding))
{
uint32_t dynamicBindingIndex =
routine->pipelineLayout->getDynamicOffsetBase(d.DescriptorSet) +
setLayout->getDynamicDescriptorOffset(d.Binding) +
arrayIndex;
offset += routine->descriptorDynamicOffsets[dynamicBindingIndex];
}
return SIMD::Pointer(data + offset);
}
default:
UNREACHABLE("Invalid pointer kind %d", int(object.kind));
return SIMD::Pointer(Pointer<Byte>());
}
}
void SpirvShader::ApplyDecorationsForAccessChain(Decorations *d, Object::ID baseId, uint32_t numIndexes, uint32_t const *indexIds) const
{
ApplyDecorationsForId(d, baseId);
auto &baseObject = getObject(baseId);
ApplyDecorationsForId(d, baseObject.type);
auto typeId = getType(baseObject.type).element;
for (auto i = 0u; i < numIndexes; i++)
{
ApplyDecorationsForId(d, typeId);
auto & type = getType(typeId);
switch (type.opcode())
{
case spv::OpTypeStruct:
{
int memberIndex = GetConstantInt(indexIds[i]);
ApplyDecorationsForIdMember(d, typeId, memberIndex);
typeId = type.definition.word(2u + memberIndex);
break;
}
case spv::OpTypeArray:
case spv::OpTypeRuntimeArray:
case spv::OpTypeVector:
typeId = type.element;
break;
case spv::OpTypeMatrix:
typeId = type.element;
d->InsideMatrix = true;
break;
default:
UNIMPLEMENTED("Unexpected type '%s' in ApplyDecorationsForAccessChain",
OpcodeName(type.definition.opcode()).c_str());
}
}
}
SIMD::Pointer SpirvShader::WalkExplicitLayoutAccessChain(Object::ID baseId, uint32_t numIndexes, uint32_t const *indexIds, SpirvRoutine *routine) const
{
// Produce a offset into external memory in sizeof(float) units
auto &baseObject = getObject(baseId);
Type::ID typeId = getType(baseObject.type).element;
Decorations d = {};
ApplyDecorationsForId(&d, baseObject.type);
uint32_t arrayIndex = 0;
if (baseObject.kind == Object::Kind::DescriptorSet)
{
auto type = getType(typeId).definition.opcode();
if (type == spv::OpTypeArray || type == spv::OpTypeRuntimeArray)
{
ASSERT(getObject(indexIds[0]).kind == Object::Kind::Constant);
arrayIndex = GetConstantInt(indexIds[0]);
numIndexes--;
indexIds++;
typeId = getType(typeId).element;
}
}
auto ptr = GetPointerToData(baseId, arrayIndex, routine);
int constantOffset = 0;
for (auto i = 0u; i < numIndexes; i++)
{
auto & type = getType(typeId);
ApplyDecorationsForId(&d, typeId);
switch (type.definition.opcode())
{
case spv::OpTypeStruct:
{
int memberIndex = GetConstantInt(indexIds[i]);
ApplyDecorationsForIdMember(&d, typeId, memberIndex);
ASSERT(d.HasOffset);
constantOffset += d.Offset / sizeof(float);
typeId = type.definition.word(2u + memberIndex);
break;
}
case spv::OpTypeArray:
case spv::OpTypeRuntimeArray:
{
// TODO: b/127950082: Check bounds.
ASSERT(d.HasArrayStride);
auto & obj = getObject(indexIds[i]);
if (obj.kind == Object::Kind::Constant)
constantOffset += d.ArrayStride/sizeof(float) * GetConstantInt(indexIds[i]);
else
ptr.offset += SIMD::Int(d.ArrayStride / sizeof(float)) * routine->getIntermediate(indexIds[i]).Int(0);
typeId = type.element;
break;
}
case spv::OpTypeMatrix:
{
// TODO: b/127950082: Check bounds.
ASSERT(d.HasMatrixStride);
d.InsideMatrix = true;
auto columnStride = (d.HasRowMajor && d.RowMajor) ? 1 : d.MatrixStride/sizeof(float);
auto & obj = getObject(indexIds[i]);
if (obj.kind == Object::Kind::Constant)
constantOffset += columnStride * GetConstantInt(indexIds[i]);
else
ptr.offset += SIMD::Int(columnStride) * routine->getIntermediate(indexIds[i]).Int(0);
typeId = type.element;
break;
}
case spv::OpTypeVector:
{
auto elemStride = (d.InsideMatrix && d.HasRowMajor && d.RowMajor) ? d.MatrixStride / sizeof(float) : 1;
auto & obj = getObject(indexIds[i]);
if (obj.kind == Object::Kind::Constant)
constantOffset += elemStride * GetConstantInt(indexIds[i]);
else
ptr.offset += SIMD::Int(elemStride) * routine->getIntermediate(indexIds[i]).Int(0);
typeId = type.element;
break;
}
default:
UNIMPLEMENTED("Unexpected type '%s' in WalkExplicitLayoutAccessChain", OpcodeName(type.definition.opcode()).c_str());
}
}
ptr.offset += SIMD::Int(constantOffset);
return ptr;
}
SIMD::Int SpirvShader::WalkAccessChain(Object::ID baseId, uint32_t numIndexes, uint32_t const *indexIds, SpirvRoutine *routine) const
{
// TODO: avoid doing per-lane work in some cases if we can?
// Produce a *component* offset into location-oriented memory
int constantOffset = 0;
SIMD::Int dynamicOffset = SIMD::Int(0);
auto &baseObject = getObject(baseId);
Type::ID typeId = getType(baseObject.type).element;
// The <base> operand is a divergent pointer itself.
// Start with its offset and build from there.
if (baseObject.kind == Object::Kind::DivergentPointer)
{
dynamicOffset += routine->getIntermediate(baseId).Int(0);
}
for (auto i = 0u; i < numIndexes; i++)
{
auto & type = getType(typeId);
switch(type.opcode())
{
case spv::OpTypeStruct:
{
int memberIndex = GetConstantInt(indexIds[i]);
int offsetIntoStruct = 0;
for (auto j = 0; j < memberIndex; j++) {
auto memberType = type.definition.word(2u + j);
offsetIntoStruct += getType(memberType).sizeInComponents;
}
constantOffset += offsetIntoStruct;
typeId = type.definition.word(2u + memberIndex);
break;
}
case spv::OpTypeVector:
case spv::OpTypeMatrix:
case spv::OpTypeArray:
case spv::OpTypeRuntimeArray:
{
// TODO: b/127950082: Check bounds.
auto stride = getType(type.element).sizeInComponents;
auto & obj = getObject(indexIds[i]);
if (obj.kind == Object::Kind::Constant)
constantOffset += stride * GetConstantInt(indexIds[i]);
else
dynamicOffset += SIMD::Int(stride) * routine->getIntermediate(indexIds[i]).Int(0);
typeId = type.element;
break;
}
default:
UNIMPLEMENTED("Unexpected type '%s' in WalkAccessChain", OpcodeName(type.opcode()).c_str());
}
}
return dynamicOffset + SIMD::Int(constantOffset);
}
uint32_t SpirvShader::WalkLiteralAccessChain(Type::ID typeId, uint32_t numIndexes, uint32_t const *indexes) const
{
uint32_t constantOffset = 0;
for (auto i = 0u; i < numIndexes; i++)
{
auto & type = getType(typeId);
switch(type.opcode())
{
case spv::OpTypeStruct:
{
int memberIndex = indexes[i];
int offsetIntoStruct = 0;
for (auto j = 0; j < memberIndex; j++) {
auto memberType = type.definition.word(2u + j);
offsetIntoStruct += getType(memberType).sizeInComponents;
}
constantOffset += offsetIntoStruct;
typeId = type.definition.word(2u + memberIndex);
break;
}
case spv::OpTypeVector:
case spv::OpTypeMatrix:
case spv::OpTypeArray:
{
auto elementType = type.definition.word(2);
auto stride = getType(elementType).sizeInComponents;
constantOffset += stride * indexes[i];
typeId = elementType;
break;
}
default:
UNIMPLEMENTED("Unexpected type in WalkLiteralAccessChain");
}
}
return constantOffset;
}
void SpirvShader::Decorations::Apply(spv::Decoration decoration, uint32_t arg)
{
switch (decoration)
{
case spv::DecorationLocation:
HasLocation = true;
Location = static_cast<int32_t>(arg);
break;
case spv::DecorationComponent:
HasComponent = true;
Component = arg;
break;
case spv::DecorationBuiltIn:
HasBuiltIn = true;
BuiltIn = static_cast<spv::BuiltIn>(arg);
break;
case spv::DecorationFlat:
Flat = true;
break;
case spv::DecorationNoPerspective:
NoPerspective = true;
break;
case spv::DecorationCentroid:
Centroid = true;
break;
case spv::DecorationBlock:
Block = true;
break;
case spv::DecorationBufferBlock:
BufferBlock = true;
break;
case spv::DecorationOffset:
HasOffset = true;
Offset = static_cast<int32_t>(arg);
break;
case spv::DecorationArrayStride:
HasArrayStride = true;
ArrayStride = static_cast<int32_t>(arg);
break;
case spv::DecorationMatrixStride:
HasMatrixStride = true;
MatrixStride = static_cast<int32_t>(arg);
break;
case spv::DecorationRelaxedPrecision:
RelaxedPrecision = true;
break;
case spv::DecorationRowMajor:
HasRowMajor = true;
RowMajor = true;
break;
case spv::DecorationColMajor:
HasRowMajor = true;
RowMajor = false;
default:
// Intentionally partial, there are many decorations we just don't care about.
break;
}
}
void SpirvShader::Decorations::Apply(const sw::SpirvShader::Decorations &src)
{
// Apply a decoration group to this set of decorations
if (src.HasBuiltIn)
{
HasBuiltIn = true;
BuiltIn = src.BuiltIn;
}
if (src.HasLocation)
{
HasLocation = true;
Location = src.Location;
}
if (src.HasComponent)
{
HasComponent = true;
Component = src.Component;
}
if (src.HasOffset)
{
HasOffset = true;
Offset = src.Offset;
}
if (src.HasArrayStride)
{
HasArrayStride = true;
ArrayStride = src.ArrayStride;
}
if (src.HasMatrixStride)
{
HasMatrixStride = true;
MatrixStride = src.MatrixStride;
}
if (src.HasRowMajor)
{
HasRowMajor = true;
RowMajor = src.RowMajor;
}
Flat |= src.Flat;
NoPerspective |= src.NoPerspective;
Centroid |= src.Centroid;
Block |= src.Block;
BufferBlock |= src.BufferBlock;
RelaxedPrecision |= src.RelaxedPrecision;
InsideMatrix |= src.InsideMatrix;
}
void SpirvShader::DescriptorDecorations::Apply(const sw::SpirvShader::DescriptorDecorations &src)
{
if(src.DescriptorSet >= 0)
{
DescriptorSet = src.DescriptorSet;
}
if(src.Binding >= 0)
{
Binding = src.Binding;
}
}
void SpirvShader::ApplyDecorationsForId(Decorations *d, TypeOrObjectID id) const
{
auto it = decorations.find(id);
if (it != decorations.end())
d->Apply(it->second);
}
void SpirvShader::ApplyDecorationsForIdMember(Decorations *d, Type::ID id, uint32_t member) const
{
auto it = memberDecorations.find(id);
if (it != memberDecorations.end() && member < it->second.size())
{
d->Apply(it->second[member]);
}
}
void SpirvShader::DefineResult(const InsnIterator &insn)
{
Type::ID typeId = insn.word(1);
Object::ID resultId = insn.word(2);
auto &object = defs[resultId];
object.type = typeId;
object.kind = (getType(typeId).opcode() == spv::OpTypePointer)
? Object::Kind::DivergentPointer : Object::Kind::Intermediate;
object.definition = insn;
}
uint32_t SpirvShader::GetConstantInt(Object::ID id) const
{
// Slightly hackish access to constants very early in translation.
// General consumption of constants by other instructions should
// probably be just lowered to Reactor.
// TODO: not encountered yet since we only use this for array sizes etc,
// but is possible to construct integer constant 0 via OpConstantNull.
auto insn = getObject(id).definition;
ASSERT(insn.opcode() == spv::OpConstant);
ASSERT(getType(insn.word(1)).opcode() == spv::OpTypeInt);
return insn.word(3);
}
// emit-time
void SpirvShader::emitProlog(SpirvRoutine *routine) const
{
for (auto insn : *this)
{
switch (insn.opcode())
{
case spv::OpVariable:
{
Type::ID resultPointerTypeId = insn.word(1);
auto resultPointerType = getType(resultPointerTypeId);
auto pointeeType = getType(resultPointerType.element);
if(pointeeType.sizeInComponents > 0) // TODO: what to do about zero-slot objects?
{
Object::ID resultId = insn.word(2);
routine->createVariable(resultId, pointeeType.sizeInComponents);
}
break;
}
default:
// Nothing else produces interface variables, so can all be safely ignored.
break;
}
}
}
void SpirvShader::emit(SpirvRoutine *routine, RValue<SIMD::Int> const &activeLaneMask, const vk::DescriptorSet::Bindings &descriptorSets) const
{
EmitState state(routine, activeLaneMask, descriptorSets);
// Emit everything up to the first label
// TODO: Separate out dispatch of block from non-block instructions?
for (auto insn : *this)
{
if (insn.opcode() == spv::OpLabel)
{
break;
}
EmitInstruction(insn, &state);
}
// Emit all the blocks starting from mainBlockId.
EmitBlocks(mainBlockId, &state);
}
void SpirvShader::EmitBlocks(Block::ID id, EmitState *state, Block::ID ignore /* = 0 */) const
{
auto oldPending = state->pending;
std::queue<Block::ID> pending;
state->pending = &pending;
pending.push(id);
while (pending.size() > 0)
{
auto id = pending.front();
pending.pop();
auto const &block = getBlock(id);
if (id == ignore)
{
continue;
}
state->currentBlock = id;
switch (block.kind)
{
case Block::Simple:
case Block::StructuredBranchConditional:
case Block::UnstructuredBranchConditional:
case Block::StructuredSwitch:
case Block::UnstructuredSwitch:
EmitNonLoop(state);
break;
case Block::Loop:
EmitLoop(state);
break;
default:
UNREACHABLE("Unexpected Block Kind: %d", int(block.kind));
}
}
state->pending = oldPending;
}
void SpirvShader::EmitInstructions(InsnIterator begin, InsnIterator end, EmitState *state) const
{
for (auto insn = begin; insn != end; insn++)
{
auto res = EmitInstruction(insn, state);
switch (res)
{
case EmitResult::Continue:
continue;
case EmitResult::Terminator:
break;
default:
UNREACHABLE("Unexpected EmitResult %d", int(res));
break;
}
}
}
void SpirvShader::EmitNonLoop(EmitState *state) const
{
auto blockId = state->currentBlock;
auto block = getBlock(blockId);
// Ensure all incoming blocks have been generated.
auto depsDone = true;
for (auto in : block.ins)
{
if (state->visited.count(in) == 0)
{
state->pending->emplace(in);
depsDone = false;
}
}
if (!depsDone)
{
// come back to this once the dependencies have been generated
state->pending->emplace(blockId);
return;
}
if (!state->visited.emplace(blockId).second)
{
return; // Already generated this block.
}
if (blockId != mainBlockId)
{
// Set the activeLaneMask.
SIMD::Int activeLaneMask(0);
for (auto in : block.ins)
{
auto inMask = GetActiveLaneMaskEdge(state, in, blockId);
activeLaneMask |= inMask;
}
state->setActiveLaneMask(activeLaneMask);
}
EmitInstructions(block.begin(), block.end(), state);
for (auto out : block.outs)
{
state->pending->emplace(out);
}
}
void SpirvShader::EmitLoop(EmitState *state) const
{
auto blockId = state->currentBlock;
auto block = getBlock(blockId);
// Ensure all incoming non-back edge blocks have been generated.
auto depsDone = true;
for (auto in : block.ins)
{
if (state->visited.count(in) == 0)
{
if (!existsPath(blockId, in, block.mergeBlock)) // if not a loop back edge
{
state->pending->emplace(in);
depsDone = false;
}
}
}
if (!depsDone)
{
// come back to this once the dependencies have been generated
state->pending->emplace(blockId);
return;
}
if (!state->visited.emplace(blockId).second)
{
return; // Already emitted this loop.
}
// loopActiveLaneMask is the mask of lanes that are continuing to loop.
// This is initialized with the incoming active lane masks.
SIMD::Int loopActiveLaneMask = SIMD::Int(0);
for (auto in : block.ins)
{
if (!existsPath(blockId, in, block.mergeBlock)) // if not a loop back edge
{
loopActiveLaneMask |= GetActiveLaneMaskEdge(state, in, blockId);
}
}
// Generate an alloca for each of the loop's phis.
// These will be primed with the incoming, non back edge Phi values
// before the loop, and then updated just before the loop jumps back to
// the block.
struct LoopPhi
{
LoopPhi(Object::ID id, uint32_t size) : phiId(id), storage(size) {}
Object::ID phiId; // The Phi identifier.
Object::ID continueValue; // The source merge value from the loop.
Array<SIMD::Int> storage; // The alloca.
};
std::vector<LoopPhi> phis;
// For each OpPhi between the block start and the merge instruction:
for (auto insn = block.begin(); insn != block.mergeInstruction; insn++)
{
if (insn.opcode() == spv::OpPhi)
{
auto objectId = Object::ID(insn.word(2));
auto &object = getObject(objectId);
auto &type = getType(object.type);
LoopPhi phi(insn.word(2), type.sizeInComponents);
// Start with the Phi set to 0.
for (uint32_t i = 0; i < type.sizeInComponents; i++)
{
phi.storage[i] = SIMD::Int(0);
}
// For each Phi source:
for (uint32_t w = 3; w < insn.wordCount(); w += 2)
{
auto varId = Object::ID(insn.word(w + 0));
auto blockId = Block::ID(insn.word(w + 1));
if (block.ins.count(blockId) == 0)
{
continue; // In is unreachable. Ignore.
}
if (existsPath(state->currentBlock, blockId, block.mergeBlock))
{
// This source is from a loop back-edge.
ASSERT(phi.continueValue == 0 || phi.continueValue == varId);
phi.continueValue = varId;
}
else
{
// This source is from a preceding block.
for (uint32_t i = 0; i < type.sizeInComponents; i++)
{
auto in = GenericValue(this, state->routine, varId);
auto mask = GetActiveLaneMaskEdge(state, blockId, state->currentBlock);
phi.storage[i] = phi.storage[i] | (in.Int(i) & mask);
}
}
}
phis.push_back(phi);
}
}
// Create the loop basic blocks
auto headerBasicBlock = Nucleus::createBasicBlock();
auto mergeBasicBlock = Nucleus::createBasicBlock();
// Start emitting code inside the loop.
Nucleus::createBr(headerBasicBlock);
Nucleus::setInsertBlock(headerBasicBlock);
// Load the Phi values from storage.
// This will load at the start of each loop.
for (auto &phi : phis)
{
auto &type = getType(getObject(phi.phiId).type);
auto &dst = state->routine->createIntermediate(phi.phiId, type.sizeInComponents);
for (unsigned int i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, phi.storage[i]);
}
}
// Load the active lane mask.
state->setActiveLaneMask(loopActiveLaneMask);
// Emit all the non-phi instructions in this loop header block.
for (auto insn = block.begin(); insn != block.end(); insn++)
{
if (insn.opcode() != spv::OpPhi)
{
EmitInstruction(insn, state);
}
}
// Emit all loop blocks, but don't emit the merge block yet.
for (auto out : block.outs)
{
if (existsPath(out, blockId, block.mergeBlock))
{
EmitBlocks(out, state, block.mergeBlock);
}
}
// Rebuild the loopActiveLaneMask from the loop back edges.
loopActiveLaneMask = SIMD::Int(0);
for (auto in : block.ins)
{
if (existsPath(blockId, in, block.mergeBlock))
{
loopActiveLaneMask |= GetActiveLaneMaskEdge(state, in, blockId);
}
}
// Update loop phi values
for (auto &phi : phis)
{
if (phi.continueValue != 0)
{
auto val = GenericValue(this, state->routine, phi.continueValue);
auto &type = getType(getObject(phi.phiId).type);
for (unsigned int i = 0u; i < type.sizeInComponents; i++)
{
phi.storage[i] = val.Int(i);
}
}
}
// Loop body now done.
// If any lanes are still active, jump back to the loop header,
// otherwise jump to the merge block.
Nucleus::createCondBr(AnyTrue(loopActiveLaneMask).value, headerBasicBlock, mergeBasicBlock);
// Continue emitting from the merge block.
Nucleus::setInsertBlock(mergeBasicBlock);
state->pending->emplace(block.mergeBlock);
}
SpirvShader::EmitResult SpirvShader::EmitInstruction(InsnIterator insn, EmitState *state) const
{
auto opcode = insn.opcode();
switch (opcode)
{
case spv::OpTypeVoid:
case spv::OpTypeInt:
case spv::OpTypeFloat:
case spv::OpTypeBool:
case spv::OpTypeVector:
case spv::OpTypeArray:
case spv::OpTypeRuntimeArray:
case spv::OpTypeMatrix:
case spv::OpTypeStruct:
case spv::OpTypePointer:
case spv::OpTypeFunction:
case spv::OpTypeImage:
case spv::OpTypeSampledImage:
case spv::OpExecutionMode:
case spv::OpMemoryModel:
case spv::OpFunction:
case spv::OpFunctionEnd:
case spv::OpConstant:
case spv::OpConstantNull:
case spv::OpConstantTrue:
case spv::OpConstantFalse:
case spv::OpConstantComposite:
case spv::OpUndef:
case spv::OpExtension:
case spv::OpCapability:
case spv::OpEntryPoint:
case spv::OpExtInstImport:
case spv::OpDecorate:
case spv::OpMemberDecorate:
case spv::OpGroupDecorate:
case spv::OpGroupMemberDecorate:
case spv::OpDecorationGroup:
case spv::OpName:
case spv::OpMemberName:
case spv::OpSource:
case spv::OpSourceContinued:
case spv::OpSourceExtension:
case spv::OpLine:
case spv::OpNoLine:
case spv::OpModuleProcessed:
case spv::OpString:
// Nothing to do at emit time. These are either fully handled at analysis time,
// or don't require any work at all.
return EmitResult::Continue;
case spv::OpLabel:
return EmitResult::Continue;
case spv::OpVariable:
return EmitVariable(insn, state);
case spv::OpLoad:
case spv::OpAtomicLoad:
return EmitLoad(insn, state);
case spv::OpStore:
case spv::OpAtomicStore:
return EmitStore(insn, state);
case spv::OpAccessChain:
case spv::OpInBoundsAccessChain:
return EmitAccessChain(insn, state);
case spv::OpCompositeConstruct:
return EmitCompositeConstruct(insn, state);
case spv::OpCompositeInsert:
return EmitCompositeInsert(insn, state);
case spv::OpCompositeExtract:
return EmitCompositeExtract(insn, state);
case spv::OpVectorShuffle:
return EmitVectorShuffle(insn, state);
case spv::OpVectorExtractDynamic:
return EmitVectorExtractDynamic(insn, state);
case spv::OpVectorInsertDynamic:
return EmitVectorInsertDynamic(insn, state);
case spv::OpVectorTimesScalar:
case spv::OpMatrixTimesScalar:
return EmitVectorTimesScalar(insn, state);
case spv::OpMatrixTimesVector:
return EmitMatrixTimesVector(insn, state);
case spv::OpVectorTimesMatrix:
return EmitVectorTimesMatrix(insn, state);
case spv::OpMatrixTimesMatrix:
return EmitMatrixTimesMatrix(insn, state);
case spv::OpOuterProduct:
return EmitOuterProduct(insn, state);
case spv::OpTranspose:
return EmitTranspose(insn, state);
case spv::OpNot:
case spv::OpBitFieldInsert:
case spv::OpBitFieldSExtract:
case spv::OpBitFieldUExtract:
case spv::OpBitReverse:
case spv::OpBitCount:
case spv::OpSNegate:
case spv::OpFNegate:
case spv::OpLogicalNot:
case spv::OpConvertFToU:
case spv::OpConvertFToS:
case spv::OpConvertSToF:
case spv::OpConvertUToF:
case spv::OpBitcast:
case spv::OpIsInf:
case spv::OpIsNan:
case spv::OpDPdx:
case spv::OpDPdxCoarse:
case spv::OpDPdy:
case spv::OpDPdyCoarse:
case spv::OpFwidth:
case spv::OpFwidthCoarse:
case spv::OpDPdxFine:
case spv::OpDPdyFine:
case spv::OpFwidthFine:
return EmitUnaryOp(insn, state);
case spv::OpIAdd:
case spv::OpISub:
case spv::OpIMul:
case spv::OpSDiv:
case spv::OpUDiv:
case spv::OpFAdd:
case spv::OpFSub:
case spv::OpFMul:
case spv::OpFDiv:
case spv::OpFMod:
case spv::OpFRem:
case spv::OpFOrdEqual:
case spv::OpFUnordEqual:
case spv::OpFOrdNotEqual:
case spv::OpFUnordNotEqual:
case spv::OpFOrdLessThan:
case spv::OpFUnordLessThan:
case spv::OpFOrdGreaterThan:
case spv::OpFUnordGreaterThan:
case spv::OpFOrdLessThanEqual:
case spv::OpFUnordLessThanEqual:
case spv::OpFOrdGreaterThanEqual:
case spv::OpFUnordGreaterThanEqual:
case spv::OpSMod:
case spv::OpSRem:
case spv::OpUMod:
case spv::OpIEqual:
case spv::OpINotEqual:
case spv::OpUGreaterThan:
case spv::OpSGreaterThan:
case spv::OpUGreaterThanEqual:
case spv::OpSGreaterThanEqual:
case spv::OpULessThan:
case spv::OpSLessThan:
case spv::OpULessThanEqual:
case spv::OpSLessThanEqual:
case spv::OpShiftRightLogical:
case spv::OpShiftRightArithmetic:
case spv::OpShiftLeftLogical:
case spv::OpBitwiseOr:
case spv::OpBitwiseXor:
case spv::OpBitwiseAnd:
case spv::OpLogicalOr:
case spv::OpLogicalAnd:
case spv::OpLogicalEqual:
case spv::OpLogicalNotEqual:
case spv::OpUMulExtended:
case spv::OpSMulExtended:
return EmitBinaryOp(insn, state);
case spv::OpDot:
return EmitDot(insn, state);
case spv::OpSelect:
return EmitSelect(insn, state);
case spv::OpExtInst:
return EmitExtendedInstruction(insn, state);
case spv::OpAny:
return EmitAny(insn, state);
case spv::OpAll:
return EmitAll(insn, state);
case spv::OpBranch:
return EmitBranch(insn, state);
case spv::OpPhi:
return EmitPhi(insn, state);
case spv::OpSelectionMerge:
case spv::OpLoopMerge:
return EmitResult::Continue;
case spv::OpBranchConditional:
return EmitBranchConditional(insn, state);
case spv::OpSwitch:
return EmitSwitch(insn, state);
case spv::OpUnreachable:
return EmitUnreachable(insn, state);
case spv::OpReturn:
return EmitReturn(insn, state);
case spv::OpKill:
return EmitKill(insn, state);
case spv::OpImageSampleImplicitLod:
return EmitImageSampleImplicitLod(insn, state);
default:
UNIMPLEMENTED("opcode: %s", OpcodeName(opcode).c_str());
break;
}
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitVariable(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
Object::ID resultId = insn.word(2);
auto &object = getObject(resultId);
auto &objectTy = getType(object.type);
switch (objectTy.storageClass)
{
case spv::StorageClassOutput:
case spv::StorageClassPrivate:
case spv::StorageClassFunction:
{
routine->createPointer(resultId, &routine->getVariable(resultId)[0]);
break;
}
case spv::StorageClassInput:
{
if (object.kind == Object::Kind::InterfaceVariable)
{
auto &dst = routine->getVariable(resultId);
int offset = 0;
VisitInterface(resultId,
[&](Decorations const &d, AttribType type) {
auto scalarSlot = d.Location << 2 | d.Component;
dst[offset++] = routine->inputs[scalarSlot];
});
}
routine->createPointer(resultId, &routine->getVariable(resultId)[0]);
break;
}
case spv::StorageClassUniformConstant:
{
const auto &d = descriptorDecorations.at(resultId);
ASSERT(d.DescriptorSet >= 0);
ASSERT(d.Binding >= 0);
uint32_t arrayIndex = 0; // TODO(b/129523279)
auto setLayout = routine->pipelineLayout->getDescriptorSetLayout(d.DescriptorSet);
size_t bindingOffset = setLayout->getBindingOffset(d.Binding, arrayIndex);
Pointer<Byte> set = routine->descriptorSets[d.DescriptorSet]; // DescriptorSet*
Pointer<Byte> binding = Pointer<Byte>(set + bindingOffset); // SampledImageDescriptor*
routine->createPointer(resultId, binding);
break;
}
case spv::StorageClassUniform:
case spv::StorageClassStorageBuffer:
{
const auto &d = descriptorDecorations.at(resultId);
ASSERT(d.DescriptorSet >= 0 && d.DescriptorSet < vk::MAX_BOUND_DESCRIPTOR_SETS);
routine->createPointer(resultId, routine->descriptorSets[d.DescriptorSet]);
break;
}
case spv::StorageClassPushConstant:
{
routine->createPointer(resultId, routine->pushConstants);
break;
}
default:
UNIMPLEMENTED("Storage class %d", objectTy.storageClass);
break;
}
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitLoad(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
bool atomic = (insn.opcode() == spv::OpAtomicLoad);
Object::ID resultId = insn.word(2);
Object::ID pointerId = insn.word(3);
auto &result = getObject(resultId);
auto &resultTy = getType(result.type);
auto &pointer = getObject(pointerId);
auto &pointerTy = getType(pointer.type);
std::memory_order memoryOrder = std::memory_order_relaxed;
ASSERT(getType(pointer.type).element == result.type);
ASSERT(Type::ID(insn.word(1)) == result.type);
ASSERT(!atomic || getType(getType(pointer.type).element).opcode() == spv::OpTypeInt); // Vulkan 1.1: "Atomic instructions must declare a scalar 32-bit integer type, for the value pointed to by Pointer."
if(pointer.kind == Object::Kind::SampledImage)
{
// Just propagate the pointer.
// TODO(b/129523279)
auto &ptr = routine->getPointer(pointerId);
routine->createPointer(resultId, ptr);
return EmitResult::Continue;
}
if(atomic)
{
Object::ID semanticsId = insn.word(5);
auto memorySemantics = static_cast<spv::MemorySemanticsMask>(getObject(semanticsId).constantValue[0]);
memoryOrder = MemoryOrder(memorySemantics);
}
if (pointerTy.storageClass == spv::StorageClassImage)
{
UNIMPLEMENTED("StorageClassImage load not yet implemented");
}
auto ptr = GetPointerToData(pointerId, 0, routine);
bool interleavedByLane = IsStorageInterleavedByLane(pointerTy.storageClass);
auto anyInactiveLanes = AnyFalse(state->activeLaneMask());
auto load = std::unique_ptr<SIMD::Float[]>(new SIMD::Float[resultTy.sizeInComponents]);
If(!ptr.uniform || anyInactiveLanes)
{
// Divergent offsets or masked lanes.
VisitMemoryObject(pointerId, [&](uint32_t i, uint32_t o)
{
// i wish i had a Float,Float,Float,Float constructor here..
for (int j = 0; j < SIMD::Width; j++)
{
If(Extract(state->activeLaneMask(), j) != 0)
{
Int offset = Int(o) + Extract(ptr.offset, j);
if (interleavedByLane) { offset = offset * SIMD::Width + j; }
load[i] = Insert(load[i], Load(&ptr.base[offset], sizeof(float), atomic, memoryOrder), j);
}
}
});
}
Else
{
// No divergent offsets or masked lanes.
if (interleavedByLane)
{
// Lane-interleaved data.
Pointer<SIMD::Float> src = ptr.base;
VisitMemoryObject(pointerId, [&](uint32_t i, uint32_t o)
{
load[i] = Load(&src[o], sizeof(float), atomic, memoryOrder); // TODO: optimize alignment
});
}
else
{
// Non-interleaved data.
VisitMemoryObject(pointerId, [&](uint32_t i, uint32_t o)
{
load[i] = RValue<SIMD::Float>(Load(&ptr.base[o], sizeof(float), atomic, memoryOrder)); // TODO: optimize alignment
});
}
}
auto &dst = routine->createIntermediate(resultId, resultTy.sizeInComponents);
for (auto i = 0u; i < resultTy.sizeInComponents; i++)
{
dst.move(i, load[i]);
}
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitStore(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
bool atomic = (insn.opcode() == spv::OpAtomicStore);
Object::ID pointerId = insn.word(1);
Object::ID objectId = insn.word(atomic ? 4 : 2);
auto &object = getObject(objectId);
auto &pointer = getObject(pointerId);
auto &pointerTy = getType(pointer.type);
auto &elementTy = getType(pointerTy.element);
std::memory_order memoryOrder = std::memory_order_relaxed;
if(atomic)
{
Object::ID semanticsId = insn.word(3);
auto memorySemantics = static_cast<spv::MemorySemanticsMask>(getObject(semanticsId).constantValue[0]);
memoryOrder = MemoryOrder(memorySemantics);
}
ASSERT(!atomic || elementTy.opcode() == spv::OpTypeInt); // Vulkan 1.1: "Atomic instructions must declare a scalar 32-bit integer type, for the value pointed to by Pointer."
if (pointerTy.storageClass == spv::StorageClassImage)
{
UNIMPLEMENTED("StorageClassImage store not yet implemented");
}
auto ptr = GetPointerToData(pointerId, 0, routine);
bool interleavedByLane = IsStorageInterleavedByLane(pointerTy.storageClass);
auto anyInactiveLanes = AnyFalse(state->activeLaneMask());
if (object.kind == Object::Kind::Constant)
{
// Constant source data.
auto src = reinterpret_cast<float *>(object.constantValue.get());
If(!ptr.uniform || anyInactiveLanes)
{
// Divergent offsets or masked lanes.
VisitMemoryObject(pointerId, [&](uint32_t i, uint32_t o)
{
for (int j = 0; j < SIMD::Width; j++)
{
If(Extract(state->activeLaneMask(), j) != 0)
{
Int offset = Int(o) + Extract(ptr.offset, j);
if (interleavedByLane) { offset = offset * SIMD::Width + j; }
Store(RValue<Float>(src[i]), &ptr.base[offset], sizeof(float), atomic, memoryOrder);
}
}
});
}
Else
{
// Constant source data.
// No divergent offsets or masked lanes.
Pointer<SIMD::Float> dst = ptr.base;
VisitMemoryObject(pointerId, [&](uint32_t i, uint32_t o)
{
Store(RValue<SIMD::Float>(src[i]), &dst[o], sizeof(float), atomic, memoryOrder); // TODO: optimize alignment
});
}
}
else
{
// Intermediate source data.
auto &src = routine->getIntermediate(objectId);
If(!ptr.uniform || anyInactiveLanes)
{
// Divergent offsets or masked lanes.
VisitMemoryObject(pointerId, [&](uint32_t i, uint32_t o)
{
for (int j = 0; j < SIMD::Width; j++)
{
If(Extract(state->activeLaneMask(), j) != 0)
{
Int offset = Int(o) + Extract(ptr.offset, j);
if (interleavedByLane) { offset = offset * SIMD::Width + j; }
Store(Extract(src.Float(i), j), &ptr.base[offset], sizeof(float), atomic, memoryOrder);
}
}
});
}
Else
{
// No divergent offsets or masked lanes.
if (interleavedByLane)
{
// Lane-interleaved data.
Pointer<SIMD::Float> dst = ptr.base;
VisitMemoryObject(pointerId, [&](uint32_t i, uint32_t o)
{
Store(src.Float(i), &dst[o], sizeof(float), atomic, memoryOrder); // TODO: optimize alignment
});
}
else
{
// Intermediate source data. Non-interleaved data.
Pointer<SIMD::Float> dst = ptr.base;
VisitMemoryObject(pointerId, [&](uint32_t i, uint32_t o)
{
Store<SIMD::Float>(SIMD::Float(src.Float(i)), &dst[o], sizeof(float), atomic, memoryOrder); // TODO: optimize alignment
});
}
}
}
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitAccessChain(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
Type::ID typeId = insn.word(1);
Object::ID resultId = insn.word(2);
Object::ID baseId = insn.word(3);
uint32_t numIndexes = insn.wordCount() - 4;
const uint32_t *indexes = insn.wordPointer(4);
auto &type = getType(typeId);
ASSERT(type.sizeInComponents == 1);
ASSERT(getObject(resultId).kind == Object::Kind::DivergentPointer);
if(type.storageClass == spv::StorageClassPushConstant ||
type.storageClass == spv::StorageClassUniform ||
type.storageClass == spv::StorageClassStorageBuffer)
{
auto ptr = WalkExplicitLayoutAccessChain(baseId, numIndexes, indexes, routine);
routine->createPointer(resultId, ptr.base);
routine->createIntermediate(resultId, type.sizeInComponents).move(0, ptr.offset);
}
else
{
auto offset = WalkAccessChain(baseId, numIndexes, indexes, routine);
routine->createPointer(resultId, routine->getPointer(baseId));
routine->createIntermediate(resultId, type.sizeInComponents).move(0, offset);
}
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitCompositeConstruct(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
auto &type = getType(insn.word(1));
auto &dst = routine->createIntermediate(insn.word(2), type.sizeInComponents);
auto offset = 0u;
for (auto i = 0u; i < insn.wordCount() - 3; i++)
{
Object::ID srcObjectId = insn.word(3u + i);
auto & srcObject = getObject(srcObjectId);
auto & srcObjectTy = getType(srcObject.type);
GenericValue srcObjectAccess(this, routine, srcObjectId);
for (auto j = 0u; j < srcObjectTy.sizeInComponents; j++)
{
dst.move(offset++, srcObjectAccess.Float(j));
}
}
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitCompositeInsert(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
Type::ID resultTypeId = insn.word(1);
auto &type = getType(resultTypeId);
auto &dst = routine->createIntermediate(insn.word(2), type.sizeInComponents);
auto &newPartObject = getObject(insn.word(3));
auto &newPartObjectTy = getType(newPartObject.type);
auto firstNewComponent = WalkLiteralAccessChain(resultTypeId, insn.wordCount() - 5, insn.wordPointer(5));
GenericValue srcObjectAccess(this, routine, insn.word(4));
GenericValue newPartObjectAccess(this, routine, insn.word(3));
// old components before
for (auto i = 0u; i < firstNewComponent; i++)
{
dst.move(i, srcObjectAccess.Float(i));
}
// new part
for (auto i = 0u; i < newPartObjectTy.sizeInComponents; i++)
{
dst.move(firstNewComponent + i, newPartObjectAccess.Float(i));
}
// old components after
for (auto i = firstNewComponent + newPartObjectTy.sizeInComponents; i < type.sizeInComponents; i++)
{
dst.move(i, srcObjectAccess.Float(i));
}
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitCompositeExtract(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
auto &type = getType(insn.word(1));
auto &dst = routine->createIntermediate(insn.word(2), type.sizeInComponents);
auto &compositeObject = getObject(insn.word(3));
Type::ID compositeTypeId = compositeObject.definition.word(1);
auto firstComponent = WalkLiteralAccessChain(compositeTypeId, insn.wordCount() - 4, insn.wordPointer(4));
GenericValue compositeObjectAccess(this, routine, insn.word(3));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, compositeObjectAccess.Float(firstComponent + i));
}
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitVectorShuffle(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
auto &type = getType(insn.word(1));
auto &dst = routine->createIntermediate(insn.word(2), type.sizeInComponents);
// Note: number of components in result type, first half type, and second
// half type are all independent.
auto &firstHalfType = getType(getObject(insn.word(3)).type);
GenericValue firstHalfAccess(this, routine, insn.word(3));
GenericValue secondHalfAccess(this, routine, insn.word(4));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
auto selector = insn.word(5 + i);
if (selector == static_cast<uint32_t>(-1))
{
// Undefined value. Until we decide to do real undef values, zero is as good
// a value as any
dst.move(i, RValue<SIMD::Float>(0.0f));
}
else if (selector < firstHalfType.sizeInComponents)
{
dst.move(i, firstHalfAccess.Float(selector));
}
else
{
dst.move(i, secondHalfAccess.Float(selector - firstHalfType.sizeInComponents));
}
}
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitVectorExtractDynamic(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
auto &type = getType(insn.word(1));
auto &dst = routine->createIntermediate(insn.word(2), type.sizeInComponents);
auto &srcType = getType(getObject(insn.word(3)).type);
GenericValue src(this, routine, insn.word(3));
GenericValue index(this, routine, insn.word(4));
SIMD::UInt v = SIMD::UInt(0);
for (auto i = 0u; i < srcType.sizeInComponents; i++)
{
v |= CmpEQ(index.UInt(0), SIMD::UInt(i)) & src.UInt(i);
}
dst.move(0, v);
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitVectorInsertDynamic(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
auto &type = getType(insn.word(1));
auto &dst = routine->createIntermediate(insn.word(2), type.sizeInComponents);
GenericValue src(this, routine, insn.word(3));
GenericValue component(this, routine, insn.word(4));
GenericValue index(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
SIMD::UInt mask = CmpEQ(SIMD::UInt(i), index.UInt(0));
dst.move(i, (src.UInt(i) & ~mask) | (component.UInt(0) & mask));
}
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitVectorTimesScalar(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
auto &type = getType(insn.word(1));
auto &dst = routine->createIntermediate(insn.word(2), type.sizeInComponents);
auto lhs = GenericValue(this, routine, insn.word(3));
auto rhs = GenericValue(this, routine, insn.word(4));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, lhs.Float(i) * rhs.Float(0));
}
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitMatrixTimesVector(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
auto &type = getType(insn.word(1));
auto &dst = routine->createIntermediate(insn.word(2), type.sizeInComponents);
auto lhs = GenericValue(this, routine, insn.word(3));
auto rhs = GenericValue(this, routine, insn.word(4));
auto rhsType = getType(rhs.type);
for (auto i = 0u; i < type.sizeInComponents; i++)
{
SIMD::Float v = lhs.Float(i) * rhs.Float(0);
for (auto j = 1u; j < rhsType.sizeInComponents; j++)
{
v += lhs.Float(i + type.sizeInComponents * j) * rhs.Float(j);
}
dst.move(i, v);
}
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitVectorTimesMatrix(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
auto &type = getType(insn.word(1));
auto &dst = routine->createIntermediate(insn.word(2), type.sizeInComponents);
auto lhs = GenericValue(this, routine, insn.word(3));
auto rhs = GenericValue(this, routine, insn.word(4));
auto lhsType = getType(lhs.type);
for (auto i = 0u; i < type.sizeInComponents; i++)
{
SIMD::Float v = lhs.Float(0) * rhs.Float(i * lhsType.sizeInComponents);
for (auto j = 1u; j < lhsType.sizeInComponents; j++)
{
v += lhs.Float(j) * rhs.Float(i * lhsType.sizeInComponents + j);
}
dst.move(i, v);
}
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitMatrixTimesMatrix(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
auto &type = getType(insn.word(1));
auto &dst = routine->createIntermediate(insn.word(2), type.sizeInComponents);
auto lhs = GenericValue(this, routine, insn.word(3));
auto rhs = GenericValue(this, routine, insn.word(4));
auto numColumns = type.definition.word(3);
auto numRows = getType(type.definition.word(2)).definition.word(3);
auto numAdds = getType(getObject(insn.word(3)).type).definition.word(3);
for (auto row = 0u; row < numRows; row++)
{
for (auto col = 0u; col < numColumns; col++)
{
SIMD::Float v = SIMD::Float(0);
for (auto i = 0u; i < numAdds; i++)
{
v += lhs.Float(i * numRows + row) * rhs.Float(col * numAdds + i);
}
dst.move(numRows * col + row, v);
}
}
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitOuterProduct(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
auto &type = getType(insn.word(1));
auto &dst = routine->createIntermediate(insn.word(2), type.sizeInComponents);
auto lhs = GenericValue(this, routine, insn.word(3));
auto rhs = GenericValue(this, routine, insn.word(4));
auto &lhsType = getType(lhs.type);
auto &rhsType = getType(rhs.type);
ASSERT(type.definition.opcode() == spv::OpTypeMatrix);
ASSERT(lhsType.definition.opcode() == spv::OpTypeVector);
ASSERT(rhsType.definition.opcode() == spv::OpTypeVector);
ASSERT(getType(lhsType.element).opcode() == spv::OpTypeFloat);
ASSERT(getType(rhsType.element).opcode() == spv::OpTypeFloat);
auto numRows = lhsType.definition.word(3);
auto numCols = rhsType.definition.word(3);
for (auto col = 0u; col < numCols; col++)
{
for (auto row = 0u; row < numRows; row++)
{
dst.move(col * numRows + row, lhs.Float(row) * rhs.Float(col));
}
}
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitTranspose(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
auto &type = getType(insn.word(1));
auto &dst = routine->createIntermediate(insn.word(2), type.sizeInComponents);
auto mat = GenericValue(this, routine, insn.word(3));
auto numCols = type.definition.word(3);
auto numRows = getType(type.definition.word(2)).sizeInComponents;
for (auto col = 0u; col < numCols; col++)
{
for (auto row = 0u; row < numRows; row++)
{
dst.move(col * numRows + row, mat.Float(row * numCols + col));
}
}
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitUnaryOp(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
auto &type = getType(insn.word(1));
auto &dst = routine->createIntermediate(insn.word(2), type.sizeInComponents);
auto src = GenericValue(this, routine, insn.word(3));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
switch (insn.opcode())
{
case spv::OpNot:
case spv::OpLogicalNot: // logical not == bitwise not due to all-bits boolean representation
dst.move(i, ~src.UInt(i));
break;
case spv::OpBitFieldInsert:
{
auto insert = GenericValue(this, routine, insn.word(4)).UInt(i);
auto offset = GenericValue(this, routine, insn.word(5)).UInt(0);
auto count = GenericValue(this, routine, insn.word(6)).UInt(0);
auto one = SIMD::UInt(1);
auto v = src.UInt(i);
auto mask = Bitmask32(offset + count) ^ Bitmask32(offset);
dst.move(i, (v & ~mask) | ((insert << offset) & mask));
break;
}
case spv::OpBitFieldSExtract:
case spv::OpBitFieldUExtract:
{
auto offset = GenericValue(this, routine, insn.word(4)).UInt(0);
auto count = GenericValue(this, routine, insn.word(5)).UInt(0);
auto one = SIMD::UInt(1);
auto v = src.UInt(i);
SIMD::UInt out = (v >> offset) & Bitmask32(count);
if (insn.opcode() == spv::OpBitFieldSExtract)
{
auto sign = out & NthBit32(count - one);
auto sext = ~(sign - one);
out |= sext;
}
dst.move(i, out);
break;
}
case spv::OpBitReverse:
{
// TODO: Add an intrinsic to reactor. Even if there isn't a
// single vector instruction, there may be target-dependent
// ways to make this faster.
// https://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel
SIMD::UInt v = src.UInt(i);
v = ((v >> 1) & SIMD::UInt(0x55555555)) | ((v & SIMD::UInt(0x55555555)) << 1);
v = ((v >> 2) & SIMD::UInt(0x33333333)) | ((v & SIMD::UInt(0x33333333)) << 2);
v = ((v >> 4) & SIMD::UInt(0x0F0F0F0F)) | ((v & SIMD::UInt(0x0F0F0F0F)) << 4);
v = ((v >> 8) & SIMD::UInt(0x00FF00FF)) | ((v & SIMD::UInt(0x00FF00FF)) << 8);
v = (v >> 16) | (v << 16);
dst.move(i, v);
break;
}
case spv::OpBitCount:
{
// TODO: Add an intrinsic to reactor. Even if there isn't a
// single vector instruction, there may be target-dependent
// ways to make this faster.
// https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
auto v = src.UInt(i);
SIMD::UInt c = v - ((v >> 1) & SIMD::UInt(0x55555555));
c = ((c >> 2) & SIMD::UInt(0x33333333)) + (c & SIMD::UInt(0x33333333));
c = ((c >> 4) + c) & SIMD::UInt(0x0F0F0F0F);
c = ((c >> 8) + c) & SIMD::UInt(0x00FF00FF);
c = ((c >> 16) + c) & SIMD::UInt(0x0000FFFF);
dst.move(i, c);
break;
}
case spv::OpSNegate:
dst.move(i, -src.Int(i));
break;
case spv::OpFNegate:
dst.move(i, -src.Float(i));
break;
case spv::OpConvertFToU:
dst.move(i, SIMD::UInt(src.Float(i)));
break;
case spv::OpConvertFToS:
dst.move(i, SIMD::Int(src.Float(i)));
break;
case spv::OpConvertSToF:
dst.move(i, SIMD::Float(src.Int(i)));
break;
case spv::OpConvertUToF:
dst.move(i, SIMD::Float(src.UInt(i)));
break;
case spv::OpBitcast:
dst.move(i, src.Float(i));
break;
case spv::OpIsInf:
dst.move(i, IsInf(src.Float(i)));
break;
case spv::OpIsNan:
dst.move(i, IsNan(src.Float(i)));
break;
case spv::OpDPdx:
case spv::OpDPdxCoarse:
// Derivative instructions: FS invocations are laid out like so:
// 0 1
// 2 3
static_assert(SIMD::Width == 4, "All cross-lane instructions will need care when using a different width");
dst.move(i, SIMD::Float(Extract(src.Float(i), 1) - Extract(src.Float(i), 0)));
break;
case spv::OpDPdy:
case spv::OpDPdyCoarse:
dst.move(i, SIMD::Float(Extract(src.Float(i), 2) - Extract(src.Float(i), 0)));
break;
case spv::OpFwidth:
case spv::OpFwidthCoarse:
dst.move(i, SIMD::Float(Abs(Extract(src.Float(i), 1) - Extract(src.Float(i), 0))
+ Abs(Extract(src.Float(i), 2) - Extract(src.Float(i), 0))));
break;
case spv::OpDPdxFine:
{
auto firstRow = Extract(src.Float(i), 1) - Extract(src.Float(i), 0);
auto secondRow = Extract(src.Float(i), 3) - Extract(src.Float(i), 2);
SIMD::Float v = SIMD::Float(firstRow);
v = Insert(v, secondRow, 2);
v = Insert(v, secondRow, 3);
dst.move(i, v);
break;
}
case spv::OpDPdyFine:
{
auto firstColumn = Extract(src.Float(i), 2) - Extract(src.Float(i), 0);
auto secondColumn = Extract(src.Float(i), 3) - Extract(src.Float(i), 1);
SIMD::Float v = SIMD::Float(firstColumn);
v = Insert(v, secondColumn, 1);
v = Insert(v, secondColumn, 3);
dst.move(i, v);
break;
}
case spv::OpFwidthFine:
{
auto firstRow = Extract(src.Float(i), 1) - Extract(src.Float(i), 0);
auto secondRow = Extract(src.Float(i), 3) - Extract(src.Float(i), 2);
SIMD::Float dpdx = SIMD::Float(firstRow);
dpdx = Insert(dpdx, secondRow, 2);
dpdx = Insert(dpdx, secondRow, 3);
auto firstColumn = Extract(src.Float(i), 2) - Extract(src.Float(i), 0);
auto secondColumn = Extract(src.Float(i), 3) - Extract(src.Float(i), 1);
SIMD::Float dpdy = SIMD::Float(firstColumn);
dpdy = Insert(dpdy, secondColumn, 1);
dpdy = Insert(dpdy, secondColumn, 3);
dst.move(i, Abs(dpdx) + Abs(dpdy));
break;
}
default:
UNIMPLEMENTED("Unhandled unary operator %s", OpcodeName(insn.opcode()).c_str());
}
}
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitBinaryOp(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
auto &type = getType(insn.word(1));
auto &dst = routine->createIntermediate(insn.word(2), type.sizeInComponents);
auto &lhsType = getType(getObject(insn.word(3)).type);
auto lhs = GenericValue(this, routine, insn.word(3));
auto rhs = GenericValue(this, routine, insn.word(4));
for (auto i = 0u; i < lhsType.sizeInComponents; i++)
{
switch (insn.opcode())
{
case spv::OpIAdd:
dst.move(i, lhs.Int(i) + rhs.Int(i));
break;
case spv::OpISub:
dst.move(i, lhs.Int(i) - rhs.Int(i));
break;
case spv::OpIMul:
dst.move(i, lhs.Int(i) * rhs.Int(i));
break;
case spv::OpSDiv:
{
SIMD::Int a = lhs.Int(i);
SIMD::Int b = rhs.Int(i);
b = b | CmpEQ(b, SIMD::Int(0)); // prevent divide-by-zero
a = a | (CmpEQ(a, SIMD::Int(0x80000000)) & CmpEQ(b, SIMD::Int(-1))); // prevent integer overflow
dst.move(i, a / b);
break;
}
case spv::OpUDiv:
{
auto zeroMask = As<SIMD::UInt>(CmpEQ(rhs.Int(i), SIMD::Int(0)));
dst.move(i, lhs.UInt(i) / (rhs.UInt(i) | zeroMask));
break;
}
case spv::OpSRem:
{
SIMD::Int a = lhs.Int(i);
SIMD::Int b = rhs.Int(i);
b = b | CmpEQ(b, SIMD::Int(0)); // prevent divide-by-zero
a = a | (CmpEQ(a, SIMD::Int(0x80000000)) & CmpEQ(b, SIMD::Int(-1))); // prevent integer overflow
dst.move(i, a % b);
break;
}
case spv::OpSMod:
{
SIMD::Int a = lhs.Int(i);
SIMD::Int b = rhs.Int(i);
b = b | CmpEQ(b, SIMD::Int(0)); // prevent divide-by-zero
a = a | (CmpEQ(a, SIMD::Int(0x80000000)) & CmpEQ(b, SIMD::Int(-1))); // prevent integer overflow
auto mod = a % b;
// If a and b have opposite signs, the remainder operation takes
// the sign from a but OpSMod is supposed to take the sign of b.
// Adding b will ensure that the result has the correct sign and
// that it is still congruent to a modulo b.
//
// See also http://mathforum.org/library/drmath/view/52343.html
auto signDiff = CmpNEQ(CmpGE(a, SIMD::Int(0)), CmpGE(b, SIMD::Int(0)));
auto fixedMod = mod + (b & CmpNEQ(mod, SIMD::Int(0)) & signDiff);
dst.move(i, As<SIMD::Float>(fixedMod));
break;
}
case spv::OpUMod:
{
auto zeroMask = As<SIMD::UInt>(CmpEQ(rhs.Int(i), SIMD::Int(0)));
dst.move(i, lhs.UInt(i) % (rhs.UInt(i) | zeroMask));
break;
}
case spv::OpIEqual:
case spv::OpLogicalEqual:
dst.move(i, CmpEQ(lhs.Int(i), rhs.Int(i)));
break;
case spv::OpINotEqual:
case spv::OpLogicalNotEqual:
dst.move(i, CmpNEQ(lhs.Int(i), rhs.Int(i)));
break;
case spv::OpUGreaterThan:
dst.move(i, CmpGT(lhs.UInt(i), rhs.UInt(i)));
break;
case spv::OpSGreaterThan:
dst.move(i, CmpGT(lhs.Int(i), rhs.Int(i)));
break;
case spv::OpUGreaterThanEqual:
dst.move(i, CmpGE(lhs.UInt(i), rhs.UInt(i)));
break;
case spv::OpSGreaterThanEqual:
dst.move(i, CmpGE(lhs.Int(i), rhs.Int(i)));
break;
case spv::OpULessThan:
dst.move(i, CmpLT(lhs.UInt(i), rhs.UInt(i)));
break;
case spv::OpSLessThan:
dst.move(i, CmpLT(lhs.Int(i), rhs.Int(i)));
break;
case spv::OpULessThanEqual:
dst.move(i, CmpLE(lhs.UInt(i), rhs.UInt(i)));
break;
case spv::OpSLessThanEqual:
dst.move(i, CmpLE(lhs.Int(i), rhs.Int(i)));
break;
case spv::OpFAdd:
dst.move(i, lhs.Float(i) + rhs.Float(i));
break;
case spv::OpFSub:
dst.move(i, lhs.Float(i) - rhs.Float(i));
break;
case spv::OpFMul:
dst.move(i, lhs.Float(i) * rhs.Float(i));
break;
case spv::OpFDiv:
dst.move(i, lhs.Float(i) / rhs.Float(i));
break;
case spv::OpFMod:
// TODO(b/126873455): inaccurate for values greater than 2^24
dst.move(i, lhs.Float(i) - rhs.Float(i) * Floor(lhs.Float(i) / rhs.Float(i)));
break;
case spv::OpFRem:
dst.move(i, lhs.Float(i) % rhs.Float(i));
break;
case spv::OpFOrdEqual:
dst.move(i, CmpEQ(lhs.Float(i), rhs.Float(i)));
break;
case spv::OpFUnordEqual:
dst.move(i, CmpUEQ(lhs.Float(i), rhs.Float(i)));
break;
case spv::OpFOrdNotEqual:
dst.move(i, CmpNEQ(lhs.Float(i), rhs.Float(i)));
break;
case spv::OpFUnordNotEqual:
dst.move(i, CmpUNEQ(lhs.Float(i), rhs.Float(i)));
break;
case spv::OpFOrdLessThan:
dst.move(i, CmpLT(lhs.Float(i), rhs.Float(i)));
break;
case spv::OpFUnordLessThan:
dst.move(i, CmpULT(lhs.Float(i), rhs.Float(i)));
break;
case spv::OpFOrdGreaterThan:
dst.move(i, CmpGT(lhs.Float(i), rhs.Float(i)));
break;
case spv::OpFUnordGreaterThan:
dst.move(i, CmpUGT(lhs.Float(i), rhs.Float(i)));
break;
case spv::OpFOrdLessThanEqual:
dst.move(i, CmpLE(lhs.Float(i), rhs.Float(i)));
break;
case spv::OpFUnordLessThanEqual:
dst.move(i, CmpULE(lhs.Float(i), rhs.Float(i)));
break;
case spv::OpFOrdGreaterThanEqual:
dst.move(i, CmpGE(lhs.Float(i), rhs.Float(i)));
break;
case spv::OpFUnordGreaterThanEqual:
dst.move(i, CmpUGE(lhs.Float(i), rhs.Float(i)));
break;
case spv::OpShiftRightLogical:
dst.move(i, lhs.UInt(i) >> rhs.UInt(i));
break;
case spv::OpShiftRightArithmetic:
dst.move(i, lhs.Int(i) >> rhs.Int(i));
break;
case spv::OpShiftLeftLogical:
dst.move(i, lhs.UInt(i) << rhs.UInt(i));
break;
case spv::OpBitwiseOr:
case spv::OpLogicalOr:
dst.move(i, lhs.UInt(i) | rhs.UInt(i));
break;
case spv::OpBitwiseXor:
dst.move(i, lhs.UInt(i) ^ rhs.UInt(i));
break;
case spv::OpBitwiseAnd:
case spv::OpLogicalAnd:
dst.move(i, lhs.UInt(i) & rhs.UInt(i));
break;
case spv::OpSMulExtended:
// Extended ops: result is a structure containing two members of the same type as lhs & rhs.
// In our flat view then, component i is the i'th component of the first member;
// component i + N is the i'th component of the second member.
dst.move(i, lhs.Int(i) * rhs.Int(i));
dst.move(i + lhsType.sizeInComponents, MulHigh(lhs.Int(i), rhs.Int(i)));
break;
case spv::OpUMulExtended:
dst.move(i, lhs.UInt(i) * rhs.UInt(i));
dst.move(i + lhsType.sizeInComponents, MulHigh(lhs.UInt(i), rhs.UInt(i)));
break;
default:
UNIMPLEMENTED("Unhandled binary operator %s", OpcodeName(insn.opcode()).c_str());
}
}
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitDot(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
auto &type = getType(insn.word(1));
ASSERT(type.sizeInComponents == 1);
auto &dst = routine->createIntermediate(insn.word(2), type.sizeInComponents);
auto &lhsType = getType(getObject(insn.word(3)).type);
auto lhs = GenericValue(this, routine, insn.word(3));
auto rhs = GenericValue(this, routine, insn.word(4));
dst.move(0, Dot(lhsType.sizeInComponents, lhs, rhs));
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitSelect(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
auto &type = getType(insn.word(1));
auto &dst = routine->createIntermediate(insn.word(2), type.sizeInComponents);
auto cond = GenericValue(this, routine, insn.word(3));
auto lhs = GenericValue(this, routine, insn.word(4));
auto rhs = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, (cond.Int(i) & lhs.Int(i)) | (~cond.Int(i) & rhs.Int(i))); // FIXME: IfThenElse()
}
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitExtendedInstruction(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
auto &type = getType(insn.word(1));
auto &dst = routine->createIntermediate(insn.word(2), type.sizeInComponents);
auto extInstIndex = static_cast<GLSLstd450>(insn.word(4));
switch (extInstIndex)
{
case GLSLstd450FAbs:
{
auto src = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Abs(src.Float(i)));
}
break;
}
case GLSLstd450SAbs:
{
auto src = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Abs(src.Int(i)));
}
break;
}
case GLSLstd450Cross:
{
auto lhs = GenericValue(this, routine, insn.word(5));
auto rhs = GenericValue(this, routine, insn.word(6));
dst.move(0, lhs.Float(1) * rhs.Float(2) - rhs.Float(1) * lhs.Float(2));
dst.move(1, lhs.Float(2) * rhs.Float(0) - rhs.Float(2) * lhs.Float(0));
dst.move(2, lhs.Float(0) * rhs.Float(1) - rhs.Float(0) * lhs.Float(1));
break;
}
case GLSLstd450Floor:
{
auto src = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Floor(src.Float(i)));
}
break;
}
case GLSLstd450Trunc:
{
auto src = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Trunc(src.Float(i)));
}
break;
}
case GLSLstd450Ceil:
{
auto src = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Ceil(src.Float(i)));
}
break;
}
case GLSLstd450Fract:
{
auto src = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Frac(src.Float(i)));
}
break;
}
case GLSLstd450Round:
{
auto src = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Round(src.Float(i)));
}
break;
}
case GLSLstd450RoundEven:
{
auto src = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
auto x = Round(src.Float(i));
// dst = round(src) + ((round(src) < src) * 2 - 1) * (fract(src) == 0.5) * isOdd(round(src));
dst.move(i, x + ((SIMD::Float(CmpLT(x, src.Float(i)) & SIMD::Int(1)) * SIMD::Float(2.0f)) - SIMD::Float(1.0f)) *
SIMD::Float(CmpEQ(Frac(src.Float(i)), SIMD::Float(0.5f)) & SIMD::Int(1)) * SIMD::Float(Int4(x) & SIMD::Int(1)));
}
break;
}
case GLSLstd450FMin:
{
auto lhs = GenericValue(this, routine, insn.word(5));
auto rhs = GenericValue(this, routine, insn.word(6));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Min(lhs.Float(i), rhs.Float(i)));
}
break;
}
case GLSLstd450FMax:
{
auto lhs = GenericValue(this, routine, insn.word(5));
auto rhs = GenericValue(this, routine, insn.word(6));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Max(lhs.Float(i), rhs.Float(i)));
}
break;
}
case GLSLstd450SMin:
{
auto lhs = GenericValue(this, routine, insn.word(5));
auto rhs = GenericValue(this, routine, insn.word(6));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Min(lhs.Int(i), rhs.Int(i)));
}
break;
}
case GLSLstd450SMax:
{
auto lhs = GenericValue(this, routine, insn.word(5));
auto rhs = GenericValue(this, routine, insn.word(6));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Max(lhs.Int(i), rhs.Int(i)));
}
break;
}
case GLSLstd450UMin:
{
auto lhs = GenericValue(this, routine, insn.word(5));
auto rhs = GenericValue(this, routine, insn.word(6));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Min(lhs.UInt(i), rhs.UInt(i)));
}
break;
}
case GLSLstd450UMax:
{
auto lhs = GenericValue(this, routine, insn.word(5));
auto rhs = GenericValue(this, routine, insn.word(6));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Max(lhs.UInt(i), rhs.UInt(i)));
}
break;
}
case GLSLstd450Step:
{
auto edge = GenericValue(this, routine, insn.word(5));
auto x = GenericValue(this, routine, insn.word(6));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, CmpNLT(x.Float(i), edge.Float(i)) & As<SIMD::Int>(SIMD::Float(1.0f)));
}
break;
}
case GLSLstd450SmoothStep:
{
auto edge0 = GenericValue(this, routine, insn.word(5));
auto edge1 = GenericValue(this, routine, insn.word(6));
auto x = GenericValue(this, routine, insn.word(7));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
auto tx = Min(Max((x.Float(i) - edge0.Float(i)) /
(edge1.Float(i) - edge0.Float(i)), SIMD::Float(0.0f)), SIMD::Float(1.0f));
dst.move(i, tx * tx * (Float4(3.0f) - Float4(2.0f) * tx));
}
break;
}
case GLSLstd450FMix:
{
auto x = GenericValue(this, routine, insn.word(5));
auto y = GenericValue(this, routine, insn.word(6));
auto a = GenericValue(this, routine, insn.word(7));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, a.Float(i) * (y.Float(i) - x.Float(i)) + x.Float(i));
}
break;
}
case GLSLstd450FClamp:
{
auto x = GenericValue(this, routine, insn.word(5));
auto minVal = GenericValue(this, routine, insn.word(6));
auto maxVal = GenericValue(this, routine, insn.word(7));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Min(Max(x.Float(i), minVal.Float(i)), maxVal.Float(i)));
}
break;
}
case GLSLstd450SClamp:
{
auto x = GenericValue(this, routine, insn.word(5));
auto minVal = GenericValue(this, routine, insn.word(6));
auto maxVal = GenericValue(this, routine, insn.word(7));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Min(Max(x.Int(i), minVal.Int(i)), maxVal.Int(i)));
}
break;
}
case GLSLstd450UClamp:
{
auto x = GenericValue(this, routine, insn.word(5));
auto minVal = GenericValue(this, routine, insn.word(6));
auto maxVal = GenericValue(this, routine, insn.word(7));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Min(Max(x.UInt(i), minVal.UInt(i)), maxVal.UInt(i)));
}
break;
}
case GLSLstd450FSign:
{
auto src = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
auto neg = As<SIMD::Int>(CmpLT(src.Float(i), SIMD::Float(-0.0f))) & As<SIMD::Int>(SIMD::Float(-1.0f));
auto pos = As<SIMD::Int>(CmpNLE(src.Float(i), SIMD::Float(+0.0f))) & As<SIMD::Int>(SIMD::Float(1.0f));
dst.move(i, neg | pos);
}
break;
}
case GLSLstd450SSign:
{
auto src = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
auto neg = CmpLT(src.Int(i), SIMD::Int(0)) & SIMD::Int(-1);
auto pos = CmpNLE(src.Int(i), SIMD::Int(0)) & SIMD::Int(1);
dst.move(i, neg | pos);
}
break;
}
case GLSLstd450Reflect:
{
auto I = GenericValue(this, routine, insn.word(5));
auto N = GenericValue(this, routine, insn.word(6));
SIMD::Float d = Dot(type.sizeInComponents, I, N);
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, I.Float(i) - SIMD::Float(2.0f) * d * N.Float(i));
}
break;
}
case GLSLstd450Refract:
{
auto I = GenericValue(this, routine, insn.word(5));
auto N = GenericValue(this, routine, insn.word(6));
auto eta = GenericValue(this, routine, insn.word(7));
SIMD::Float d = Dot(type.sizeInComponents, I, N);
SIMD::Float k = SIMD::Float(1.0f) - eta.Float(0) * eta.Float(0) * (SIMD::Float(1.0f) - d * d);
SIMD::Int pos = CmpNLT(k, SIMD::Float(0.0f));
SIMD::Float t = (eta.Float(0) * d + Sqrt(k));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, pos & As<SIMD::Int>(eta.Float(0) * I.Float(i) - t * N.Float(i)));
}
break;
}
case GLSLstd450FaceForward:
{
auto N = GenericValue(this, routine, insn.word(5));
auto I = GenericValue(this, routine, insn.word(6));
auto Nref = GenericValue(this, routine, insn.word(7));
SIMD::Float d = Dot(type.sizeInComponents, I, Nref);
SIMD::Int neg = CmpLT(d, SIMD::Float(0.0f));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
auto n = N.Float(i);
dst.move(i, (neg & As<SIMD::Int>(n)) | (~neg & As<SIMD::Int>(-n)));
}
break;
}
case GLSLstd450Length:
{
auto x = GenericValue(this, routine, insn.word(5));
SIMD::Float d = Dot(getType(getObject(insn.word(5)).type).sizeInComponents, x, x);
dst.move(0, Sqrt(d));
break;
}
case GLSLstd450Normalize:
{
auto x = GenericValue(this, routine, insn.word(5));
SIMD::Float d = Dot(getType(getObject(insn.word(5)).type).sizeInComponents, x, x);
SIMD::Float invLength = SIMD::Float(1.0f) / Sqrt(d);
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, invLength * x.Float(i));
}
break;
}
case GLSLstd450Distance:
{
auto p0 = GenericValue(this, routine, insn.word(5));
auto p1 = GenericValue(this, routine, insn.word(6));
auto p0Type = getType(p0.type);
// sqrt(dot(p0-p1, p0-p1))
SIMD::Float d = (p0.Float(0) - p1.Float(0)) * (p0.Float(0) - p1.Float(0));
for (auto i = 1u; i < p0Type.sizeInComponents; i++)
{
d += (p0.Float(i) - p1.Float(i)) * (p0.Float(i) - p1.Float(i));
}
dst.move(0, Sqrt(d));
break;
}
case GLSLstd450Modf:
{
auto val = GenericValue(this, routine, insn.word(5));
auto ptrId = Object::ID(insn.word(6));
auto ptrTy = getType(getObject(ptrId).type);
auto ptr = GetPointerToData(ptrId, 0, routine);
bool interleavedByLane = IsStorageInterleavedByLane(ptrTy.storageClass);
for (auto i = 0u; i < type.sizeInComponents; i++)
{
auto whole = Floor(val.Float(i));
auto frac = Frac(val.Float(i));
dst.move(i, frac);
// TODO: Refactor and consolidate with EmitStore.
for (int j = 0; j < SIMD::Width; j++)
{
If(Extract(state->activeLaneMask(), j) != 0)
{
Int offset = Int(i) + Extract(ptr.offset, j);
if (interleavedByLane) { offset = offset * SIMD::Width + j; }
Store(Extract(whole, j), &ptr.base[offset], sizeof(float), false, std::memory_order_relaxed);
}
}
}
break;
}
case GLSLstd450ModfStruct:
{
auto val = GenericValue(this, routine, insn.word(5));
auto valTy = getType(val.type);
for (auto i = 0u; i < valTy.sizeInComponents; i++)
{
auto whole = Floor(val.Float(i));
auto frac = Frac(val.Float(i));
dst.move(i, frac);
dst.move(i + valTy.sizeInComponents, whole);
}
break;
}
case GLSLstd450PackSnorm4x8:
{
auto val = GenericValue(this, routine, insn.word(5));
dst.move(0, (SIMD::Int(Round(Min(Max(val.Float(0), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(127.0f))) &
SIMD::Int(0xFF)) |
((SIMD::Int(Round(Min(Max(val.Float(1), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(127.0f))) &
SIMD::Int(0xFF)) << 8) |
((SIMD::Int(Round(Min(Max(val.Float(2), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(127.0f))) &
SIMD::Int(0xFF)) << 16) |
((SIMD::Int(Round(Min(Max(val.Float(3), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(127.0f))) &
SIMD::Int(0xFF)) << 24));
break;
}
case GLSLstd450PackUnorm4x8:
{
auto val = GenericValue(this, routine, insn.word(5));
dst.move(0, (SIMD::UInt(Round(Min(Max(val.Float(0), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) |
((SIMD::UInt(Round(Min(Max(val.Float(1), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) << 8) |
((SIMD::UInt(Round(Min(Max(val.Float(2), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) << 16) |
((SIMD::UInt(Round(Min(Max(val.Float(3), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) << 24));
break;
}
case GLSLstd450PackSnorm2x16:
{
auto val = GenericValue(this, routine, insn.word(5));
dst.move(0, (SIMD::Int(Round(Min(Max(val.Float(0), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(32767.0f))) &
SIMD::Int(0xFFFF)) |
((SIMD::Int(Round(Min(Max(val.Float(1), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(32767.0f))) &
SIMD::Int(0xFFFF)) << 16));
break;
}
case GLSLstd450PackUnorm2x16:
{
auto val = GenericValue(this, routine, insn.word(5));
dst.move(0, (SIMD::UInt(Round(Min(Max(val.Float(0), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(65535.0f))) &
SIMD::UInt(0xFFFF)) |
((SIMD::UInt(Round(Min(Max(val.Float(1), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(65535.0f))) &
SIMD::UInt(0xFFFF)) << 16));
break;
}
case GLSLstd450PackHalf2x16:
{
auto val = GenericValue(this, routine, insn.word(5));
dst.move(0, FloatToHalfBits(val.UInt(0), false) | FloatToHalfBits(val.UInt(1), true));
break;
}
case GLSLstd450UnpackSnorm4x8:
{
auto val = GenericValue(this, routine, insn.word(5));
dst.move(0, Min(Max(SIMD::Float(((val.Int(0)<<24) & SIMD::Int(0xFF000000))) * SIMD::Float(1.0f / float(0x7f000000)), SIMD::Float(-1.0f)), SIMD::Float(1.0f)));
dst.move(1, Min(Max(SIMD::Float(((val.Int(0)<<16) & SIMD::Int(0xFF000000))) * SIMD::Float(1.0f / float(0x7f000000)), SIMD::Float(-1.0f)), SIMD::Float(1.0f)));
dst.move(2, Min(Max(SIMD::Float(((val.Int(0)<<8) & SIMD::Int(0xFF000000))) * SIMD::Float(1.0f / float(0x7f000000)), SIMD::Float(-1.0f)), SIMD::Float(1.0f)));
dst.move(3, Min(Max(SIMD::Float(((val.Int(0)) & SIMD::Int(0xFF000000))) * SIMD::Float(1.0f / float(0x7f000000)), SIMD::Float(-1.0f)), SIMD::Float(1.0f)));
break;
}
case GLSLstd450UnpackUnorm4x8:
{
auto val = GenericValue(this, routine, insn.word(5));
dst.move(0, SIMD::Float((val.UInt(0) & SIMD::UInt(0xFF))) * SIMD::Float(1.0f / 255.f));
dst.move(1, SIMD::Float(((val.UInt(0)>>8) & SIMD::UInt(0xFF))) * SIMD::Float(1.0f / 255.f));
dst.move(2, SIMD::Float(((val.UInt(0)>>16) & SIMD::UInt(0xFF))) * SIMD::Float(1.0f / 255.f));
dst.move(3, SIMD::Float(((val.UInt(0)>>24) & SIMD::UInt(0xFF))) * SIMD::Float(1.0f / 255.f));
break;
}
case GLSLstd450UnpackSnorm2x16:
{
auto val = GenericValue(this, routine, insn.word(5));
// clamp(f / 32767.0, -1.0, 1.0)
dst.move(0, Min(Max(SIMD::Float(As<SIMD::Int>((val.UInt(0) & SIMD::UInt(0x0000FFFF)) << 16)) *
SIMD::Float(1.0f / float(0x7FFF0000)), SIMD::Float(-1.0f)), SIMD::Float(1.0f)));
dst.move(1, Min(Max(SIMD::Float(As<SIMD::Int>(val.UInt(0) & SIMD::UInt(0xFFFF0000))) * SIMD::Float(1.0f / float(0x7FFF0000)),
SIMD::Float(-1.0f)), SIMD::Float(1.0f)));
break;
}
case GLSLstd450UnpackUnorm2x16:
{
auto val = GenericValue(this, routine, insn.word(5));
// f / 65535.0
dst.move(0, SIMD::Float((val.UInt(0) & SIMD::UInt(0x0000FFFF)) << 16) * SIMD::Float(1.0f / float(0xFFFF0000)));
dst.move(1, SIMD::Float(val.UInt(0) & SIMD::UInt(0xFFFF0000)) * SIMD::Float(1.0f / float(0xFFFF0000)));
break;
}
case GLSLstd450UnpackHalf2x16:
{
auto val = GenericValue(this, routine, insn.word(5));
dst.move(0, HalfToFloatBits(val.UInt(0) & SIMD::UInt(0x0000FFFF)));
dst.move(1, HalfToFloatBits((val.UInt(0) & SIMD::UInt(0xFFFF0000)) >> 16));
break;
}
case GLSLstd450Fma:
{
auto a = GenericValue(this, routine, insn.word(5));
auto b = GenericValue(this, routine, insn.word(6));
auto c = GenericValue(this, routine, insn.word(7));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, FMA(a.Float(i), b.Float(i), c.Float(i)));
}
break;
}
case GLSLstd450Frexp:
{
auto val = GenericValue(this, routine, insn.word(5));
auto ptrId = Object::ID(insn.word(6));
auto ptrTy = getType(getObject(ptrId).type);
auto ptr = GetPointerToData(ptrId, 0, routine);
bool interleavedByLane = IsStorageInterleavedByLane(ptrTy.storageClass);
for (auto i = 0u; i < type.sizeInComponents; i++)
{
SIMD::Float significand;
SIMD::Int exponent;
std::tie(significand, exponent) = Frexp(val.Float(i));
dst.move(i, significand);
// TODO: Refactor and consolidate with EmitStore.
for (int j = 0; j < SIMD::Width; j++)
{
auto ptrBase = Pointer<Int>(ptr.base);
If(Extract(state->activeLaneMask(), j) != 0)
{
Int offset = Int(i) + Extract(ptr.offset, j);
if (interleavedByLane) { offset = offset * SIMD::Width + j; }
Store(Extract(exponent, j), &ptrBase[offset], sizeof(uint32_t), false, std::memory_order_relaxed);
}
}
}
break;
}
case GLSLstd450FrexpStruct:
{
auto val = GenericValue(this, routine, insn.word(5));
auto numComponents = getType(val.type).sizeInComponents;
for (auto i = 0u; i < numComponents; i++)
{
auto significandAndExponent = Frexp(val.Float(i));
dst.move(i, significandAndExponent.first);
dst.move(i + numComponents, significandAndExponent.second);
}
break;
}
case GLSLstd450Ldexp:
{
auto significand = GenericValue(this, routine, insn.word(5));
auto exponent = GenericValue(this, routine, insn.word(6));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
// Assumes IEEE 754
auto significandExponent = Exponent(significand.Float(i));
auto combinedExponent = exponent.Int(i) + significandExponent;
SIMD::UInt v = (significand.UInt(i) & SIMD::UInt(0x807FFFFF)) |
(SIMD::UInt(combinedExponent + SIMD::Int(126)) << SIMD::UInt(23));
dst.move(i, As<SIMD::Float>(v));
}
break;
}
case GLSLstd450Radians:
{
auto degrees = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, degrees.Float(i) * SIMD::Float(PI / 180.0f));
}
break;
}
case GLSLstd450Degrees:
{
auto radians = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, radians.Float(i) * SIMD::Float(180.0f / PI));
}
break;
}
case GLSLstd450Sin:
{
auto radians = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Sin(radians.Float(i)));
}
break;
}
case GLSLstd450Cos:
{
auto radians = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Cos(radians.Float(i)));
}
break;
}
case GLSLstd450Tan:
{
auto radians = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Tan(radians.Float(i)));
}
break;
}
case GLSLstd450Asin:
{
auto val = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Asin(val.Float(i)));
}
break;
}
case GLSLstd450Acos:
{
auto val = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Acos(val.Float(i)));
}
break;
}
case GLSLstd450Atan:
{
auto val = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Atan(val.Float(i)));
}
break;
}
case GLSLstd450Sinh:
{
auto val = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Sinh(val.Float(i)));
}
break;
}
case GLSLstd450Cosh:
{
auto val = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Cosh(val.Float(i)));
}
break;
}
case GLSLstd450Tanh:
{
auto val = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Tanh(val.Float(i)));
}
break;
}
case GLSLstd450Asinh:
{
auto val = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Asinh(val.Float(i)));
}
break;
}
case GLSLstd450Acosh:
{
auto val = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Acosh(val.Float(i)));
}
break;
}
case GLSLstd450Atanh:
{
auto val = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Atanh(val.Float(i)));
}
break;
}
case GLSLstd450Atan2:
{
auto x = GenericValue(this, routine, insn.word(5));
auto y = GenericValue(this, routine, insn.word(6));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Atan2(x.Float(i), y.Float(i)));
}
break;
}
case GLSLstd450Pow:
{
auto x = GenericValue(this, routine, insn.word(5));
auto y = GenericValue(this, routine, insn.word(6));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Pow(x.Float(i), y.Float(i)));
}
break;
}
case GLSLstd450Exp:
{
auto val = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Exp(val.Float(i)));
}
break;
}
case GLSLstd450Log:
{
auto val = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Log(val.Float(i)));
}
break;
}
case GLSLstd450Exp2:
{
auto val = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Exp2(val.Float(i)));
}
break;
}
case GLSLstd450Log2:
{
auto val = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Log2(val.Float(i)));
}
break;
}
case GLSLstd450Sqrt:
{
auto val = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, Sqrt(val.Float(i)));
}
break;
}
case GLSLstd450InverseSqrt:
{
auto val = GenericValue(this, routine, insn.word(5));
Decorations d;
ApplyDecorationsForId(&d, insn.word(5));
if (d.RelaxedPrecision)
{
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, RcpSqrt_pp(val.Float(i)));
}
}
else
{
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, SIMD::Float(1.0f) / Sqrt(val.Float(i)));
}
}
break;
}
case GLSLstd450Determinant:
{
auto mat = GenericValue(this, routine, insn.word(5));
auto numComponents = getType(mat.type).sizeInComponents;
switch (numComponents)
{
case 4: // 2x2
dst.move(0, Determinant(
mat.Float(0), mat.Float(1),
mat.Float(2), mat.Float(3)));
break;
case 9: // 3x3
dst.move(0, Determinant(
mat.Float(0), mat.Float(1), mat.Float(2),
mat.Float(3), mat.Float(4), mat.Float(5),
mat.Float(6), mat.Float(7), mat.Float(8)));
break;
case 16: // 4x4
dst.move(0, Determinant(
mat.Float(0), mat.Float(1), mat.Float(2), mat.Float(3),
mat.Float(4), mat.Float(5), mat.Float(6), mat.Float(7),
mat.Float(8), mat.Float(9), mat.Float(10), mat.Float(11),
mat.Float(12), mat.Float(13), mat.Float(14), mat.Float(15)));
break;
default:
UNREACHABLE("GLSLstd450Determinant can only operate with square matrices. Got %d elements", int(numComponents));
}
break;
}
case GLSLstd450MatrixInverse:
{
auto mat = GenericValue(this, routine, insn.word(5));
auto numComponents = getType(mat.type).sizeInComponents;
switch (numComponents)
{
case 4: // 2x2
{
auto inv = MatrixInverse(
mat.Float(0), mat.Float(1),
mat.Float(2), mat.Float(3));
for (uint32_t i = 0; i < inv.size(); i++)
{
dst.move(i, inv[i]);
}
break;
}
case 9: // 3x3
{
auto inv = MatrixInverse(
mat.Float(0), mat.Float(1), mat.Float(2),
mat.Float(3), mat.Float(4), mat.Float(5),
mat.Float(6), mat.Float(7), mat.Float(8));
for (uint32_t i = 0; i < inv.size(); i++)
{
dst.move(i, inv[i]);
}
break;
}
case 16: // 4x4
{
auto inv = MatrixInverse(
mat.Float(0), mat.Float(1), mat.Float(2), mat.Float(3),
mat.Float(4), mat.Float(5), mat.Float(6), mat.Float(7),
mat.Float(8), mat.Float(9), mat.Float(10), mat.Float(11),
mat.Float(12), mat.Float(13), mat.Float(14), mat.Float(15));
for (uint32_t i = 0; i < inv.size(); i++)
{
dst.move(i, inv[i]);
}
break;
}
default:
UNREACHABLE("GLSLstd450MatrixInverse can only operate with square matrices. Got %d elements", int(numComponents));
}
break;
}
case GLSLstd450IMix:
{
UNREACHABLE("GLSLstd450IMix has been removed from the specification");
break;
}
case GLSLstd450PackDouble2x32:
{
// Requires Float64 capability.
UNIMPLEMENTED("GLSLstd450PackDouble2x32");
break;
}
case GLSLstd450UnpackDouble2x32:
{
// Requires Float64 capability.
UNIMPLEMENTED("GLSLstd450UnpackDouble2x32");
break;
}
case GLSLstd450FindILsb:
{
auto val = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
auto v = val.UInt(i);
dst.move(i, Cttz(v, true) | CmpEQ(v, SIMD::UInt(0)));
}
break;
}
case GLSLstd450FindSMsb:
{
auto val = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
auto v = val.UInt(i) ^ As<SIMD::UInt>(CmpLT(val.Int(i), SIMD::Int(0)));
dst.move(i, SIMD::UInt(31) - Ctlz(v, false));
}
break;
}
case GLSLstd450FindUMsb:
{
auto val = GenericValue(this, routine, insn.word(5));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, SIMD::UInt(31) - Ctlz(val.UInt(i), false));
}
break;
}
case GLSLstd450InterpolateAtCentroid:
{
// Requires sampleRateShading / InterpolationFunction capability.
UNIMPLEMENTED("GLSLstd450InterpolateAtCentroid");
break;
}
case GLSLstd450InterpolateAtSample:
{
// Requires sampleRateShading / InterpolationFunction capability.
UNIMPLEMENTED("GLSLstd450InterpolateAtSample");
break;
}
case GLSLstd450InterpolateAtOffset:
{
// Requires sampleRateShading / InterpolationFunction capability.
UNIMPLEMENTED("GLSLstd450InterpolateAtOffset");
break;
}
case GLSLstd450NMin:
{
auto x = GenericValue(this, routine, insn.word(5));
auto y = GenericValue(this, routine, insn.word(6));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, NMin(x.Float(i), y.Float(i)));
}
break;
}
case GLSLstd450NMax:
{
auto x = GenericValue(this, routine, insn.word(5));
auto y = GenericValue(this, routine, insn.word(6));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
dst.move(i, NMax(x.Float(i), y.Float(i)));
}
break;
}
case GLSLstd450NClamp:
{
auto x = GenericValue(this, routine, insn.word(5));
auto minVal = GenericValue(this, routine, insn.word(6));
auto maxVal = GenericValue(this, routine, insn.word(7));
for (auto i = 0u; i < type.sizeInComponents; i++)
{
auto clamp = NMin(NMax(x.Float(i), minVal.Float(i)), maxVal.Float(i));
dst.move(i, clamp);
}
break;
}
default:
UNIMPLEMENTED("Unhandled ExtInst %d", extInstIndex);
break;
}
return EmitResult::Continue;
}
std::memory_order SpirvShader::MemoryOrder(spv::MemorySemanticsMask memorySemantics)
{
switch(memorySemantics)
{
case spv::MemorySemanticsMaskNone: return std::memory_order_relaxed;
case spv::MemorySemanticsAcquireMask: return std::memory_order_acquire;
case spv::MemorySemanticsReleaseMask: return std::memory_order_release;
case spv::MemorySemanticsAcquireReleaseMask: return std::memory_order_acq_rel;
case spv::MemorySemanticsSequentiallyConsistentMask: return std::memory_order_acq_rel; // Vulkan 1.1: "SequentiallyConsistent is treated as AcquireRelease"
default:
UNREACHABLE("MemorySemanticsMask %x", memorySemantics);
return std::memory_order_acq_rel;
}
}
SIMD::Float SpirvShader::Dot(unsigned numComponents, GenericValue const & x, GenericValue const & y) const
{
SIMD::Float d = x.Float(0) * y.Float(0);
for (auto i = 1u; i < numComponents; i++)
{
d += x.Float(i) * y.Float(i);
}
return d;
}
SIMD::UInt SpirvShader::FloatToHalfBits(SIMD::UInt floatBits, bool storeInUpperBits) const
{
static const uint32_t mask_sign = 0x80000000u;
static const uint32_t mask_round = ~0xfffu;
static const uint32_t c_f32infty = 255 << 23;
static const uint32_t c_magic = 15 << 23;
static const uint32_t c_nanbit = 0x200;
static const uint32_t c_infty_as_fp16 = 0x7c00;
static const uint32_t c_clamp = (31 << 23) - 0x1000;
SIMD::UInt justsign = SIMD::UInt(mask_sign) & floatBits;
SIMD::UInt absf = floatBits ^ justsign;
SIMD::UInt b_isnormal = CmpNLE(SIMD::UInt(c_f32infty), absf);
// Note: this version doesn't round to the nearest even in case of a tie as defined by IEEE 754-2008, it rounds to +inf
// instead of nearest even, since that's fine for GLSL ES 3.0's needs (see section 2.1.1 Floating-Point Computation)
SIMD::UInt joined = ((((As<SIMD::UInt>(Min(As<SIMD::Float>(absf & SIMD::UInt(mask_round)) * As<SIMD::Float>(SIMD::UInt(c_magic)),
As<SIMD::Float>(SIMD::UInt(c_clamp))))) - SIMD::UInt(mask_round)) >> 13) & b_isnormal) |
((b_isnormal ^ SIMD::UInt(0xFFFFFFFF)) & ((CmpNLE(absf, SIMD::UInt(c_f32infty)) & SIMD::UInt(c_nanbit)) |
SIMD::UInt(c_infty_as_fp16)));
return storeInUpperBits ? ((joined << 16) | justsign) : joined | (justsign >> 16);
}
SIMD::UInt SpirvShader::HalfToFloatBits(SIMD::UInt halfBits) const
{
static const uint32_t mask_nosign = 0x7FFF;
static const uint32_t magic = (254 - 15) << 23;
static const uint32_t was_infnan = 0x7BFF;
static const uint32_t exp_infnan = 255 << 23;
SIMD::UInt expmant = halfBits & SIMD::UInt(mask_nosign);
return As<SIMD::UInt>(As<SIMD::Float>(expmant << 13) * As<SIMD::Float>(SIMD::UInt(magic))) |
((halfBits ^ SIMD::UInt(expmant)) << 16) |
(CmpNLE(As<SIMD::UInt>(expmant), SIMD::UInt(was_infnan)) & SIMD::UInt(exp_infnan));
}
std::pair<SIMD::Float, SIMD::Int> SpirvShader::Frexp(RValue<SIMD::Float> val) const
{
// Assumes IEEE 754
auto v = As<SIMD::UInt>(val);
auto isNotZero = CmpNEQ(v & SIMD::UInt(0x7FFFFFFF), SIMD::UInt(0));
auto zeroSign = v & SIMD::UInt(0x80000000) & ~isNotZero;
auto significand = As<SIMD::Float>((((v & SIMD::UInt(0x807FFFFF)) | SIMD::UInt(0x3F000000)) & isNotZero) | zeroSign);
auto exponent = Exponent(val) & SIMD::Int(isNotZero);
return std::make_pair(significand, exponent);
}
SpirvShader::EmitResult SpirvShader::EmitAny(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
auto &type = getType(insn.word(1));
ASSERT(type.sizeInComponents == 1);
auto &dst = routine->createIntermediate(insn.word(2), type.sizeInComponents);
auto &srcType = getType(getObject(insn.word(3)).type);
auto src = GenericValue(this, routine, insn.word(3));
SIMD::UInt result = src.UInt(0);
for (auto i = 1u; i < srcType.sizeInComponents; i++)
{
result |= src.UInt(i);
}
dst.move(0, result);
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitAll(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
auto &type = getType(insn.word(1));
ASSERT(type.sizeInComponents == 1);
auto &dst = routine->createIntermediate(insn.word(2), type.sizeInComponents);
auto &srcType = getType(getObject(insn.word(3)).type);
auto src = GenericValue(this, routine, insn.word(3));
SIMD::UInt result = src.UInt(0);
for (auto i = 1u; i < srcType.sizeInComponents; i++)
{
result &= src.UInt(i);
}
dst.move(0, result);
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitBranch(InsnIterator insn, EmitState *state) const
{
auto target = Block::ID(insn.word(1));
auto edge = Block::Edge{state->currentBlock, target};
state->edgeActiveLaneMasks.emplace(edge, state->activeLaneMask());
return EmitResult::Terminator;
}
SpirvShader::EmitResult SpirvShader::EmitBranchConditional(InsnIterator insn, EmitState *state) const
{
auto block = getBlock(state->currentBlock);
ASSERT(block.branchInstruction == insn);
auto condId = Object::ID(block.branchInstruction.word(1));
auto trueBlockId = Block::ID(block.branchInstruction.word(2));
auto falseBlockId = Block::ID(block.branchInstruction.word(3));
auto cond = GenericValue(this, state->routine, condId);
ASSERT_MSG(getType(cond.type).sizeInComponents == 1, "Condition must be a Boolean type scalar");
// TODO: Optimize for case where all lanes take same path.
state->addOutputActiveLaneMaskEdge(trueBlockId, cond.Int(0));
state->addOutputActiveLaneMaskEdge(falseBlockId, ~cond.Int(0));
return EmitResult::Terminator;
}
SpirvShader::EmitResult SpirvShader::EmitSwitch(InsnIterator insn, EmitState *state) const
{
auto block = getBlock(state->currentBlock);
ASSERT(block.branchInstruction == insn);
auto selId = Object::ID(block.branchInstruction.word(1));
auto sel = GenericValue(this, state->routine, selId);
ASSERT_MSG(getType(sel.type).sizeInComponents == 1, "Selector must be a scalar");
auto numCases = (block.branchInstruction.wordCount() - 3) / 2;
// TODO: Optimize for case where all lanes take same path.
SIMD::Int defaultLaneMask = state->activeLaneMask();
// Gather up the case label matches and calculate defaultLaneMask.
std::vector<RValue<SIMD::Int>> caseLabelMatches;
caseLabelMatches.reserve(numCases);
for (uint32_t i = 0; i < numCases; i++)
{
auto label = block.branchInstruction.word(i * 2 + 3);
auto caseBlockId = Block::ID(block.branchInstruction.word(i * 2 + 4));
auto caseLabelMatch = CmpEQ(sel.Int(0), SIMD::Int(label));
state->addOutputActiveLaneMaskEdge(caseBlockId, caseLabelMatch);
defaultLaneMask &= ~caseLabelMatch;
}
auto defaultBlockId = Block::ID(block.branchInstruction.word(2));
state->addOutputActiveLaneMaskEdge(defaultBlockId, defaultLaneMask);
return EmitResult::Terminator;
}
SpirvShader::EmitResult SpirvShader::EmitUnreachable(InsnIterator insn, EmitState *state) const
{
// TODO: Log something in this case?
state->setActiveLaneMask(SIMD::Int(0));
return EmitResult::Terminator;
}
SpirvShader::EmitResult SpirvShader::EmitReturn(InsnIterator insn, EmitState *state) const
{
state->setActiveLaneMask(SIMD::Int(0));
return EmitResult::Terminator;
}
SpirvShader::EmitResult SpirvShader::EmitKill(InsnIterator insn, EmitState *state) const
{
state->routine->killMask |= SignMask(state->activeLaneMask());
state->setActiveLaneMask(SIMD::Int(0));
return EmitResult::Terminator;
}
SpirvShader::EmitResult SpirvShader::EmitPhi(InsnIterator insn, EmitState *state) const
{
auto routine = state->routine;
auto typeId = Type::ID(insn.word(1));
auto type = getType(typeId);
auto objectId = Object::ID(insn.word(2));
auto currentBlock = getBlock(state->currentBlock);
auto tmp = std::unique_ptr<SIMD::Int[]>(new SIMD::Int[type.sizeInComponents]);
bool first = true;
for (uint32_t w = 3; w < insn.wordCount(); w += 2)
{
auto varId = Object::ID(insn.word(w + 0));
auto blockId = Block::ID(insn.word(w + 1));
if (currentBlock.ins.count(blockId) == 0)
{
continue; // In is unreachable. Ignore.
}
auto in = GenericValue(this, routine, varId);
auto mask = GetActiveLaneMaskEdge(state, blockId, state->currentBlock);
for (uint32_t i = 0; i < type.sizeInComponents; i++)
{
auto inMasked = in.Int(i) & mask;
tmp[i] = first ? inMasked : (tmp[i] | inMasked);
}
first = false;
}
auto &dst = routine->createIntermediate(objectId, type.sizeInComponents);
for(uint32_t i = 0; i < type.sizeInComponents; i++)
{
dst.move(i, tmp[i]);
}
return EmitResult::Continue;
}
SpirvShader::EmitResult SpirvShader::EmitImageSampleImplicitLod(InsnIterator insn, EmitState *state) const
{
Type::ID resultTypeId = insn.word(1);
Object::ID resultId = insn.word(2);
Object::ID sampledImageId = insn.word(3);
Object::ID coordinateId = insn.word(4);
auto &resultType = getType(resultTypeId);
auto &result = state->routine->createIntermediate(resultId, resultType.sizeInComponents);
auto &sampledImage = state->routine->getPointer(sampledImageId);
auto coordinate = GenericValue(this, state->routine, coordinateId);
Pointer<Byte> constants; // FIXME(b/129523279)
const DescriptorDecorations &d = descriptorDecorations.at(sampledImageId);
uint32_t arrayIndex = 0; // TODO(b/129523279)
auto setLayout = state->routine->pipelineLayout->getDescriptorSetLayout(d.DescriptorSet);
size_t bindingOffset = setLayout->getBindingOffset(d.Binding, arrayIndex);
const uint8_t *p = reinterpret_cast<const uint8_t*>(state->descriptorSets[d.DescriptorSet]) + bindingOffset;
const auto *t = reinterpret_cast<const vk::SampledImageDescriptor*>(p);
Sampler::State samplerState;
samplerState.textureType = TEXTURE_2D; ASSERT(t->imageView->getType() == VK_IMAGE_VIEW_TYPE_2D); // TODO(b/129523279)
samplerState.textureFormat = t->imageView->getFormat();
samplerState.textureFilter = FILTER_POINT; ASSERT(t->sampler->magFilter == VK_FILTER_NEAREST); ASSERT(t->sampler->minFilter == VK_FILTER_NEAREST); // TODO(b/129523279)
samplerState.addressingModeU = ADDRESSING_WRAP; ASSERT(t->sampler->addressModeU == VK_SAMPLER_ADDRESS_MODE_REPEAT); // TODO(b/129523279)
samplerState.addressingModeV = ADDRESSING_WRAP; ASSERT(t->sampler->addressModeV == VK_SAMPLER_ADDRESS_MODE_REPEAT); // TODO(b/129523279)
samplerState.addressingModeW = ADDRESSING_WRAP; ASSERT(t->sampler->addressModeW == VK_SAMPLER_ADDRESS_MODE_REPEAT); // TODO(b/129523279)
samplerState.mipmapFilter = MIPMAP_POINT; ASSERT(t->sampler->mipmapMode == VK_SAMPLER_MIPMAP_MODE_NEAREST); // TODO(b/129523279)
samplerState.sRGB = false; ASSERT(t->imageView->getFormat().isSRGBformat() == false); // TODO(b/129523279)
samplerState.swizzleR = SWIZZLE_RED; ASSERT(t->imageView->getComponentMapping().r == VK_COMPONENT_SWIZZLE_R); // TODO(b/129523279)
samplerState.swizzleG = SWIZZLE_GREEN; ASSERT(t->imageView->getComponentMapping().g == VK_COMPONENT_SWIZZLE_G); // TODO(b/129523279)
samplerState.swizzleB = SWIZZLE_BLUE; ASSERT(t->imageView->getComponentMapping().b == VK_COMPONENT_SWIZZLE_B); // TODO(b/129523279)
samplerState.swizzleA = SWIZZLE_ALPHA; ASSERT(t->imageView->getComponentMapping().a == VK_COMPONENT_SWIZZLE_A); // TODO(b/129523279)
samplerState.highPrecisionFiltering = false;
samplerState.compare = COMPARE_BYPASS; ASSERT(t->sampler->compareEnable == VK_FALSE); // TODO(b/129523279)
// minLod // TODO(b/129523279)
// maxLod // TODO(b/129523279)
// borderColor // TODO(b/129523279)
ASSERT(t->sampler->mipLodBias == 0.0f); // TODO(b/129523279)
ASSERT(t->sampler->anisotropyEnable == VK_FALSE); // TODO(b/129523279)
ASSERT(t->sampler->unnormalizedCoordinates == VK_FALSE); // TODO(b/129523279)
SamplerCore sampler(constants, samplerState);
Pointer<Byte> texture = sampledImage + OFFSET(vk::SampledImageDescriptor, texture); // sw::Texture*
SIMD::Float u = coordinate.Float(0);
SIMD::Float v = coordinate.Float(1);
SIMD::Float w(0); // TODO(b/129523279)
SIMD::Float q(0); // TODO(b/129523279)
SIMD::Float bias(0); // TODO(b/129523279)
Vector4f dsx; // TODO(b/129523279)
Vector4f dsy; // TODO(b/129523279)
Vector4f offset; // TODO(b/129523279)
SamplerFunction samplerFunction = { Implicit, None }; ASSERT(insn.wordCount() == 5); // TODO(b/129523279)
Vector4f sample = sampler.sampleTextureF(texture, u, v, w, q, bias, dsx, dsy, offset, samplerFunction);
if(getType(resultType.element).opcode() == spv::OpTypeFloat)
{
result.move(0, sample.x);
result.move(1, sample.y);
result.move(2, sample.z);
result.move(3, sample.w);
}
else
{
// TODO(b/129523279): Add a Sampler::sampleTextureI() method.
result.move(0, As<SIMD::Int>(sample.x * SIMD::Float(0xFF)));
result.move(1, As<SIMD::Int>(sample.y * SIMD::Float(0xFF)));
result.move(2, As<SIMD::Int>(sample.z * SIMD::Float(0xFF)));
result.move(3, As<SIMD::Int>(sample.w * SIMD::Float(0xFF)));
}
return EmitResult::Continue;
}
void SpirvShader::emitEpilog(SpirvRoutine *routine) const
{
for (auto insn : *this)
{
switch (insn.opcode())
{
case spv::OpVariable:
{
Object::ID resultId = insn.word(2);
auto &object = getObject(resultId);
auto &objectTy = getType(object.type);
if (object.kind == Object::Kind::InterfaceVariable && objectTy.storageClass == spv::StorageClassOutput)
{
auto &dst = routine->getVariable(resultId);
int offset = 0;
VisitInterface(resultId,
[&](Decorations const &d, AttribType type) {
auto scalarSlot = d.Location << 2 | d.Component;
routine->outputs[scalarSlot] = dst[offset++];
});
}
break;
}
default:
break;
}
}
}
SpirvShader::Block::Block(InsnIterator begin, InsnIterator end) : begin_(begin), end_(end)
{
// Default to a Simple, this may change later.
kind = Block::Simple;
// Walk the instructions to find the last two of the block.
InsnIterator insns[2];
for (auto insn : *this)
{
insns[0] = insns[1];
insns[1] = insn;
}
switch (insns[1].opcode())
{
case spv::OpBranch:
branchInstruction = insns[1];
outs.emplace(Block::ID(branchInstruction.word(1)));
switch (insns[0].opcode())
{
case spv::OpLoopMerge:
kind = Loop;
mergeInstruction = insns[0];
mergeBlock = Block::ID(mergeInstruction.word(1));
continueTarget = Block::ID(mergeInstruction.word(2));
break;
default:
kind = Block::Simple;
break;
}
break;
case spv::OpBranchConditional:
branchInstruction = insns[1];
outs.emplace(Block::ID(branchInstruction.word(2)));
outs.emplace(Block::ID(branchInstruction.word(3)));
switch (insns[0].opcode())
{
case spv::OpSelectionMerge:
kind = StructuredBranchConditional;
mergeInstruction = insns[0];
mergeBlock = Block::ID(mergeInstruction.word(1));
break;
case spv::OpLoopMerge:
kind = Loop;
mergeInstruction = insns[0];
mergeBlock = Block::ID(mergeInstruction.word(1));
continueTarget = Block::ID(mergeInstruction.word(2));
break;
default:
kind = UnstructuredBranchConditional;
break;
}
break;
case spv::OpSwitch:
branchInstruction = insns[1];
outs.emplace(Block::ID(branchInstruction.word(2)));
for (uint32_t w = 4; w < branchInstruction.wordCount(); w += 2)
{
outs.emplace(Block::ID(branchInstruction.word(w)));
}
switch (insns[0].opcode())
{
case spv::OpSelectionMerge:
kind = StructuredSwitch;
mergeInstruction = insns[0];
mergeBlock = Block::ID(mergeInstruction.word(1));
break;
default:
kind = UnstructuredSwitch;
break;
}
break;
default:
break;
}
}
bool SpirvShader::existsPath(Block::ID from, Block::ID to, Block::ID notPassingThrough) const
{
// TODO: Optimize: This can be cached on the block.
Block::Set seen;
seen.emplace(notPassingThrough);
std::queue<Block::ID> pending;
pending.emplace(from);
while (pending.size() > 0)
{
auto id = pending.front();
pending.pop();
for (auto out : getBlock(id).outs)
{
if (seen.count(out) != 0) { continue; }
if (out == to) { return true; }
pending.emplace(out);
}
seen.emplace(id);
}
return false;
}
void SpirvShader::EmitState::addOutputActiveLaneMaskEdge(Block::ID to, RValue<SIMD::Int> mask)
{
addActiveLaneMaskEdge(currentBlock, to, mask & activeLaneMask());
}
void SpirvShader::EmitState::addActiveLaneMaskEdge(Block::ID from, Block::ID to, RValue<SIMD::Int> mask)
{
auto edge = Block::Edge{from, to};
auto it = edgeActiveLaneMasks.find(edge);
if (it == edgeActiveLaneMasks.end())
{
edgeActiveLaneMasks.emplace(edge, mask);
}
else
{
auto combined = it->second | mask;
edgeActiveLaneMasks.erase(edge);
edgeActiveLaneMasks.emplace(edge, combined);
}
}
RValue<SIMD::Int> SpirvShader::GetActiveLaneMaskEdge(EmitState *state, Block::ID from, Block::ID to) const
{
auto edge = Block::Edge{from, to};
auto it = state->edgeActiveLaneMasks.find(edge);
ASSERT_MSG(it != state->edgeActiveLaneMasks.end(), "Could not find edge %d -> %d", from.value(), to.value());
return it->second;
}
SpirvRoutine::SpirvRoutine(vk::PipelineLayout const *pipelineLayout) :
pipelineLayout(pipelineLayout)
{
}
}