| // Copyright 2018 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "VkImage.hpp" |
| |
| #include "VkBuffer.hpp" |
| #include "VkDevice.hpp" |
| #include "VkDeviceMemory.hpp" |
| #include "Device/ASTC_Decoder.hpp" |
| #include "Device/BC_Decoder.hpp" |
| #include "Device/Blitter.hpp" |
| #include "Device/ETC_Decoder.hpp" |
| |
| #ifdef __ANDROID__ |
| # include "System/GrallocAndroid.hpp" |
| #endif |
| |
| #include <cstring> |
| |
| namespace { |
| |
| ETC_Decoder::InputType GetInputType(const vk::Format &format) |
| { |
| switch(format) |
| { |
| case VK_FORMAT_EAC_R11_UNORM_BLOCK: |
| return ETC_Decoder::ETC_R_UNSIGNED; |
| case VK_FORMAT_EAC_R11_SNORM_BLOCK: |
| return ETC_Decoder::ETC_R_SIGNED; |
| case VK_FORMAT_EAC_R11G11_UNORM_BLOCK: |
| return ETC_Decoder::ETC_RG_UNSIGNED; |
| case VK_FORMAT_EAC_R11G11_SNORM_BLOCK: |
| return ETC_Decoder::ETC_RG_SIGNED; |
| case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK: |
| case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK: |
| return ETC_Decoder::ETC_RGB; |
| case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK: |
| case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK: |
| return ETC_Decoder::ETC_RGB_PUNCHTHROUGH_ALPHA; |
| case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK: |
| case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK: |
| return ETC_Decoder::ETC_RGBA; |
| default: |
| UNSUPPORTED("format: %d", int(format)); |
| return ETC_Decoder::ETC_RGBA; |
| } |
| } |
| |
| int GetBCn(const vk::Format &format) |
| { |
| switch(format) |
| { |
| case VK_FORMAT_BC1_RGB_UNORM_BLOCK: |
| case VK_FORMAT_BC1_RGBA_UNORM_BLOCK: |
| case VK_FORMAT_BC1_RGB_SRGB_BLOCK: |
| case VK_FORMAT_BC1_RGBA_SRGB_BLOCK: |
| return 1; |
| case VK_FORMAT_BC2_UNORM_BLOCK: |
| case VK_FORMAT_BC2_SRGB_BLOCK: |
| return 2; |
| case VK_FORMAT_BC3_UNORM_BLOCK: |
| case VK_FORMAT_BC3_SRGB_BLOCK: |
| return 3; |
| case VK_FORMAT_BC4_UNORM_BLOCK: |
| case VK_FORMAT_BC4_SNORM_BLOCK: |
| return 4; |
| case VK_FORMAT_BC5_UNORM_BLOCK: |
| case VK_FORMAT_BC5_SNORM_BLOCK: |
| return 5; |
| case VK_FORMAT_BC6H_UFLOAT_BLOCK: |
| case VK_FORMAT_BC6H_SFLOAT_BLOCK: |
| return 6; |
| case VK_FORMAT_BC7_UNORM_BLOCK: |
| case VK_FORMAT_BC7_SRGB_BLOCK: |
| return 7; |
| default: |
| UNSUPPORTED("format: %d", int(format)); |
| return 0; |
| } |
| } |
| |
| // Returns true for BC1 if we have an RGB format, false for RGBA |
| // Returns true for BC4, BC5, BC6H if we have an unsigned format, false for signed |
| // Ignored by BC2, BC3, and BC7 |
| bool GetNoAlphaOrUnsigned(const vk::Format &format) |
| { |
| switch(format) |
| { |
| case VK_FORMAT_BC1_RGB_UNORM_BLOCK: |
| case VK_FORMAT_BC1_RGB_SRGB_BLOCK: |
| case VK_FORMAT_BC4_UNORM_BLOCK: |
| case VK_FORMAT_BC5_UNORM_BLOCK: |
| case VK_FORMAT_BC6H_UFLOAT_BLOCK: |
| return true; |
| case VK_FORMAT_BC1_RGBA_UNORM_BLOCK: |
| case VK_FORMAT_BC1_RGBA_SRGB_BLOCK: |
| case VK_FORMAT_BC2_UNORM_BLOCK: |
| case VK_FORMAT_BC2_SRGB_BLOCK: |
| case VK_FORMAT_BC3_UNORM_BLOCK: |
| case VK_FORMAT_BC3_SRGB_BLOCK: |
| case VK_FORMAT_BC4_SNORM_BLOCK: |
| case VK_FORMAT_BC5_SNORM_BLOCK: |
| case VK_FORMAT_BC6H_SFLOAT_BLOCK: |
| case VK_FORMAT_BC7_SRGB_BLOCK: |
| case VK_FORMAT_BC7_UNORM_BLOCK: |
| return false; |
| default: |
| UNSUPPORTED("format: %d", int(format)); |
| return false; |
| } |
| } |
| |
| } // anonymous namespace |
| |
| namespace vk { |
| |
| Image::Image(const VkImageCreateInfo *pCreateInfo, void *mem, Device *device) |
| : device(device) |
| , flags(pCreateInfo->flags) |
| , imageType(pCreateInfo->imageType) |
| , format(pCreateInfo->format) |
| , extent(pCreateInfo->extent) |
| , mipLevels(pCreateInfo->mipLevels) |
| , arrayLayers(pCreateInfo->arrayLayers) |
| , samples(pCreateInfo->samples) |
| , tiling(pCreateInfo->tiling) |
| , usage(pCreateInfo->usage) |
| { |
| if(format.isCompressed()) |
| { |
| VkImageCreateInfo compressedImageCreateInfo = *pCreateInfo; |
| compressedImageCreateInfo.format = format.getDecompressedFormat(); |
| decompressedImage = new(mem) Image(&compressedImageCreateInfo, nullptr, device); |
| } |
| |
| const auto *nextInfo = reinterpret_cast<const VkBaseInStructure *>(pCreateInfo->pNext); |
| for(; nextInfo != nullptr; nextInfo = nextInfo->pNext) |
| { |
| if(nextInfo->sType == VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO) |
| { |
| const auto *externalInfo = reinterpret_cast<const VkExternalMemoryImageCreateInfo *>(nextInfo); |
| supportedExternalMemoryHandleTypes = externalInfo->handleTypes; |
| } |
| } |
| } |
| |
| void Image::destroy(const VkAllocationCallbacks *pAllocator) |
| { |
| if(decompressedImage) |
| { |
| vk::deallocate(decompressedImage, pAllocator); |
| } |
| } |
| |
| size_t Image::ComputeRequiredAllocationSize(const VkImageCreateInfo *pCreateInfo) |
| { |
| return Format(pCreateInfo->format).isCompressed() ? sizeof(Image) : 0; |
| } |
| |
| const VkMemoryRequirements Image::getMemoryRequirements() const |
| { |
| VkMemoryRequirements memoryRequirements; |
| memoryRequirements.alignment = vk::REQUIRED_MEMORY_ALIGNMENT; |
| memoryRequirements.memoryTypeBits = vk::MEMORY_TYPE_GENERIC_BIT; |
| memoryRequirements.size = getStorageSize(format.getAspects()) + |
| (decompressedImage ? decompressedImage->getStorageSize(decompressedImage->format.getAspects()) : 0); |
| return memoryRequirements; |
| } |
| |
| size_t Image::getSizeInBytes(const VkImageSubresourceRange &subresourceRange) const |
| { |
| size_t size = 0; |
| uint32_t lastLayer = getLastLayerIndex(subresourceRange); |
| uint32_t lastMipLevel = getLastMipLevel(subresourceRange); |
| uint32_t layerCount = lastLayer - subresourceRange.baseArrayLayer + 1; |
| uint32_t mipLevelCount = lastMipLevel - subresourceRange.baseMipLevel + 1; |
| |
| auto aspect = static_cast<VkImageAspectFlagBits>(subresourceRange.aspectMask); |
| |
| if(layerCount > 1) |
| { |
| if(mipLevelCount < mipLevels) // Compute size for all layers except the last one, then add relevant mip level sizes only for last layer |
| { |
| size = (layerCount - 1) * getLayerSize(aspect); |
| for(uint32_t mipLevel = subresourceRange.baseMipLevel; mipLevel <= lastMipLevel; ++mipLevel) |
| { |
| size += getMultiSampledLevelSize(aspect, mipLevel); |
| } |
| } |
| else // All mip levels used, compute full layer sizes |
| { |
| size = layerCount * getLayerSize(aspect); |
| } |
| } |
| else // Single layer, add all mip levels in the subresource range |
| { |
| for(uint32_t mipLevel = subresourceRange.baseMipLevel; mipLevel <= lastMipLevel; ++mipLevel) |
| { |
| size += getMultiSampledLevelSize(aspect, mipLevel); |
| } |
| } |
| |
| return size; |
| } |
| |
| bool Image::canBindToMemory(DeviceMemory *pDeviceMemory) const |
| { |
| return pDeviceMemory->checkExternalMemoryHandleType(supportedExternalMemoryHandleTypes); |
| } |
| |
| void Image::bind(DeviceMemory *pDeviceMemory, VkDeviceSize pMemoryOffset) |
| { |
| deviceMemory = pDeviceMemory; |
| memoryOffset = pMemoryOffset; |
| if(decompressedImage) |
| { |
| decompressedImage->deviceMemory = deviceMemory; |
| decompressedImage->memoryOffset = memoryOffset + getStorageSize(format.getAspects()); |
| } |
| } |
| |
| #ifdef __ANDROID__ |
| VkResult Image::prepareForExternalUseANDROID() const |
| { |
| void *nativeBuffer = nullptr; |
| VkExtent3D extent = getMipLevelExtent(VK_IMAGE_ASPECT_COLOR_BIT, 0); |
| |
| buffer_handle_t importedBufferHandle = nullptr; |
| if(GrallocModule::getInstance()->import(backingMemory.nativeHandle, &importedBufferHandle) != 0) |
| { |
| return VK_ERROR_OUT_OF_DATE_KHR; |
| } |
| if(!importedBufferHandle) |
| { |
| return VK_ERROR_OUT_OF_DATE_KHR; |
| } |
| |
| if(GrallocModule::getInstance()->lock(importedBufferHandle, GRALLOC_USAGE_SW_WRITE_OFTEN, 0, 0, extent.width, extent.height, &nativeBuffer) != 0) |
| { |
| return VK_ERROR_OUT_OF_DATE_KHR; |
| } |
| |
| if(!nativeBuffer) |
| { |
| return VK_ERROR_OUT_OF_DATE_KHR; |
| } |
| |
| int imageRowBytes = rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0); |
| int bufferRowBytes = backingMemory.stride * getFormat().bytes(); |
| ASSERT(imageRowBytes <= bufferRowBytes); |
| |
| uint8_t *srcBuffer = static_cast<uint8_t *>(deviceMemory->getOffsetPointer(0)); |
| uint8_t *dstBuffer = static_cast<uint8_t *>(nativeBuffer); |
| for(uint32_t i = 0; i < extent.height; i++) |
| { |
| memcpy(dstBuffer + (i * bufferRowBytes), srcBuffer + (i * imageRowBytes), imageRowBytes); |
| } |
| |
| if(GrallocModule::getInstance()->unlock(importedBufferHandle) != 0) |
| { |
| return VK_ERROR_OUT_OF_DATE_KHR; |
| } |
| |
| if(GrallocModule::getInstance()->release(importedBufferHandle) != 0) |
| { |
| return VK_ERROR_OUT_OF_DATE_KHR; |
| } |
| |
| return VK_SUCCESS; |
| } |
| |
| VkDeviceMemory Image::getExternalMemory() const |
| { |
| return backingMemory.externalMemory ? *deviceMemory : VkDeviceMemory{ VK_NULL_HANDLE }; |
| } |
| #endif |
| |
| void Image::getSubresourceLayout(const VkImageSubresource *pSubresource, VkSubresourceLayout *pLayout) const |
| { |
| // By spec, aspectMask has a single bit set. |
| if(!((pSubresource->aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) || |
| (pSubresource->aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) || |
| (pSubresource->aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) || |
| (pSubresource->aspectMask == VK_IMAGE_ASPECT_PLANE_0_BIT) || |
| (pSubresource->aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT) || |
| (pSubresource->aspectMask == VK_IMAGE_ASPECT_PLANE_2_BIT))) |
| { |
| UNSUPPORTED("aspectMask %X", pSubresource->aspectMask); |
| } |
| |
| auto aspect = static_cast<VkImageAspectFlagBits>(pSubresource->aspectMask); |
| pLayout->offset = getMemoryOffset(aspect, pSubresource->mipLevel, pSubresource->arrayLayer); |
| pLayout->size = getMultiSampledLevelSize(aspect, pSubresource->mipLevel); |
| pLayout->rowPitch = rowPitchBytes(aspect, pSubresource->mipLevel); |
| pLayout->depthPitch = slicePitchBytes(aspect, pSubresource->mipLevel); |
| pLayout->arrayPitch = getLayerSize(aspect); |
| } |
| |
| void Image::copyTo(Image *dstImage, const VkImageCopy ®ion) const |
| { |
| // Image copy does not perform any conversion, it simply copies memory from |
| // an image to another image that has the same number of bytes per pixel. |
| |
| if(!((region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) || |
| (region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) || |
| (region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) || |
| (region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_0_BIT) || |
| (region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT) || |
| (region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_2_BIT))) |
| { |
| UNSUPPORTED("srcSubresource.aspectMask %X", region.srcSubresource.aspectMask); |
| } |
| |
| if(!((region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) || |
| (region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) || |
| (region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) || |
| (region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_0_BIT) || |
| (region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT) || |
| (region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_2_BIT))) |
| { |
| UNSUPPORTED("dstSubresource.aspectMask %X", region.dstSubresource.aspectMask); |
| } |
| |
| VkImageAspectFlagBits srcAspect = static_cast<VkImageAspectFlagBits>(region.srcSubresource.aspectMask); |
| VkImageAspectFlagBits dstAspect = static_cast<VkImageAspectFlagBits>(region.dstSubresource.aspectMask); |
| |
| Format srcFormat = getFormat(srcAspect); |
| Format dstFormat = dstImage->getFormat(dstAspect); |
| int bytesPerBlock = srcFormat.bytesPerBlock(); |
| ASSERT(bytesPerBlock == dstFormat.bytesPerBlock()); |
| ASSERT(samples == dstImage->samples); |
| |
| VkExtent3D srcExtent = getMipLevelExtent(srcAspect, region.srcSubresource.mipLevel); |
| VkExtent3D dstExtent = dstImage->getMipLevelExtent(dstAspect, region.dstSubresource.mipLevel); |
| VkExtent3D copyExtent = imageExtentInBlocks(region.extent, srcAspect); |
| |
| VkImageType srcImageType = imageType; |
| VkImageType dstImageType = dstImage->getImageType(); |
| bool one3D = (srcImageType == VK_IMAGE_TYPE_3D) != (dstImageType == VK_IMAGE_TYPE_3D); |
| bool both3D = (srcImageType == VK_IMAGE_TYPE_3D) && (dstImageType == VK_IMAGE_TYPE_3D); |
| |
| // Texel layout pitches, using the VkSubresourceLayout nomenclature. |
| int srcRowPitch = rowPitchBytes(srcAspect, region.srcSubresource.mipLevel); |
| int srcDepthPitch = slicePitchBytes(srcAspect, region.srcSubresource.mipLevel); |
| int dstRowPitch = dstImage->rowPitchBytes(dstAspect, region.dstSubresource.mipLevel); |
| int dstDepthPitch = dstImage->slicePitchBytes(dstAspect, region.dstSubresource.mipLevel); |
| VkDeviceSize srcArrayPitch = getLayerSize(srcAspect); |
| VkDeviceSize dstArrayPitch = dstImage->getLayerSize(dstAspect); |
| |
| // These are the pitches used when iterating over the layers that are being copied by the |
| // vkCmdCopyImage command. They can differ from the above array piches because the spec states that: |
| // "If one image is VK_IMAGE_TYPE_3D and the other image is VK_IMAGE_TYPE_2D with multiple |
| // layers, then each slice is copied to or from a different layer." |
| VkDeviceSize srcLayerPitch = (srcImageType == VK_IMAGE_TYPE_3D) ? srcDepthPitch : srcArrayPitch; |
| VkDeviceSize dstLayerPitch = (dstImageType == VK_IMAGE_TYPE_3D) ? dstDepthPitch : dstArrayPitch; |
| |
| // If one image is 3D, extent.depth must match the layer count. If both images are 2D, |
| // depth is 1 but the source and destination subresource layer count must match. |
| uint32_t layerCount = one3D ? copyExtent.depth : region.srcSubresource.layerCount; |
| |
| // Copies between 2D and 3D images are treated as layers, so only use depth as the slice count when |
| // both images are 3D. |
| // Multisample images are currently implemented similar to 3D images by storing one sample per slice. |
| // TODO(b/160600347): Store samples consecutively. |
| uint32_t sliceCount = both3D ? copyExtent.depth : samples; |
| |
| bool isSingleSlice = (sliceCount == 1); |
| bool isSingleRow = (copyExtent.height == 1) && isSingleSlice; |
| // In order to copy multiple rows using a single memcpy call, we |
| // have to make sure that we need to copy the entire row and that |
| // both source and destination rows have the same size in bytes |
| bool isEntireRow = (region.extent.width == srcExtent.width) && |
| (region.extent.width == dstExtent.width) && |
| // For non-compressed formats, blockWidth is 1. For compressed |
| // formats, rowPitchBytes returns the number of bytes for a row of |
| // blocks, so we have to divide by the block height, which means: |
| // srcRowPitchBytes / srcBlockWidth == dstRowPitchBytes / dstBlockWidth |
| // And, to avoid potential non exact integer division, for example if a |
| // block has 16 bytes and represents 5 rows, we change the equation to: |
| // srcRowPitchBytes * dstBlockWidth == dstRowPitchBytes * srcBlockWidth |
| ((srcRowPitch * dstFormat.blockWidth()) == |
| (dstRowPitch * srcFormat.blockWidth())); |
| // In order to copy multiple slices using a single memcpy call, we |
| // have to make sure that we need to copy the entire slice and that |
| // both source and destination slices have the same size in bytes |
| bool isEntireSlice = isEntireRow && |
| (copyExtent.height == srcExtent.height) && |
| (copyExtent.height == dstExtent.height) && |
| (srcDepthPitch == dstDepthPitch); |
| |
| const uint8_t *srcLayer = static_cast<const uint8_t *>(getTexelPointer(region.srcOffset, { region.srcSubresource.aspectMask, region.srcSubresource.mipLevel, region.srcSubresource.baseArrayLayer })); |
| uint8_t *dstLayer = static_cast<uint8_t *>(dstImage->getTexelPointer(region.dstOffset, { region.dstSubresource.aspectMask, region.dstSubresource.mipLevel, region.dstSubresource.baseArrayLayer })); |
| |
| for(uint32_t layer = 0; layer < layerCount; layer++) |
| { |
| if(isSingleRow) // Copy one row |
| { |
| size_t copySize = copyExtent.width * bytesPerBlock; |
| ASSERT((srcLayer + copySize) < end()); |
| ASSERT((dstLayer + copySize) < dstImage->end()); |
| memcpy(dstLayer, srcLayer, copySize); |
| } |
| else if(isEntireRow && isSingleSlice) // Copy one slice |
| { |
| size_t copySize = copyExtent.height * srcRowPitch; |
| ASSERT((srcLayer + copySize) < end()); |
| ASSERT((dstLayer + copySize) < dstImage->end()); |
| memcpy(dstLayer, srcLayer, copySize); |
| } |
| else if(isEntireSlice) // Copy multiple slices |
| { |
| size_t copySize = sliceCount * srcDepthPitch; |
| ASSERT((srcLayer + copySize) < end()); |
| ASSERT((dstLayer + copySize) < dstImage->end()); |
| memcpy(dstLayer, srcLayer, copySize); |
| } |
| else if(isEntireRow) // Copy slice by slice |
| { |
| size_t sliceSize = copyExtent.height * srcRowPitch; |
| const uint8_t *srcSlice = srcLayer; |
| uint8_t *dstSlice = dstLayer; |
| |
| for(uint32_t z = 0; z < sliceCount; z++) |
| { |
| ASSERT((srcSlice + sliceSize) < end()); |
| ASSERT((dstSlice + sliceSize) < dstImage->end()); |
| |
| memcpy(dstSlice, srcSlice, sliceSize); |
| |
| dstSlice += dstDepthPitch; |
| srcSlice += srcDepthPitch; |
| } |
| } |
| else // Copy row by row |
| { |
| size_t rowSize = copyExtent.width * bytesPerBlock; |
| const uint8_t *srcSlice = srcLayer; |
| uint8_t *dstSlice = dstLayer; |
| |
| for(uint32_t z = 0; z < sliceCount; z++) |
| { |
| const uint8_t *srcRow = srcSlice; |
| uint8_t *dstRow = dstSlice; |
| |
| for(uint32_t y = 0; y < copyExtent.height; y++) |
| { |
| ASSERT((srcRow + rowSize) < end()); |
| ASSERT((dstRow + rowSize) < dstImage->end()); |
| |
| memcpy(dstRow, srcRow, rowSize); |
| |
| srcRow += srcRowPitch; |
| dstRow += dstRowPitch; |
| } |
| |
| srcSlice += srcDepthPitch; |
| dstSlice += dstDepthPitch; |
| } |
| } |
| |
| srcLayer += srcLayerPitch; |
| dstLayer += dstLayerPitch; |
| } |
| |
| dstImage->contentsChanged({ region.dstSubresource.aspectMask, region.dstSubresource.mipLevel, 1, |
| region.dstSubresource.baseArrayLayer, region.dstSubresource.layerCount }); |
| } |
| |
| void Image::copy(Buffer *buffer, const VkBufferImageCopy ®ion, bool bufferIsSource) |
| { |
| switch(region.imageSubresource.aspectMask) |
| { |
| case VK_IMAGE_ASPECT_COLOR_BIT: |
| case VK_IMAGE_ASPECT_DEPTH_BIT: |
| case VK_IMAGE_ASPECT_STENCIL_BIT: |
| case VK_IMAGE_ASPECT_PLANE_0_BIT: |
| case VK_IMAGE_ASPECT_PLANE_1_BIT: |
| case VK_IMAGE_ASPECT_PLANE_2_BIT: |
| break; |
| default: |
| UNSUPPORTED("aspectMask %x", int(region.imageSubresource.aspectMask)); |
| break; |
| } |
| |
| auto aspect = static_cast<VkImageAspectFlagBits>(region.imageSubresource.aspectMask); |
| Format copyFormat = getFormat(aspect); |
| |
| VkExtent3D imageExtent = imageExtentInBlocks(region.imageExtent, aspect); |
| |
| if(imageExtent.width == 0 || imageExtent.height == 0 || imageExtent.depth == 0) |
| { |
| return; |
| } |
| |
| VkExtent2D bufferExtent = bufferExtentInBlocks({ imageExtent.width, imageExtent.height }, region); |
| int bytesPerBlock = copyFormat.bytesPerBlock(); |
| int bufferRowPitchBytes = bufferExtent.width * bytesPerBlock; |
| int bufferSlicePitchBytes = bufferExtent.height * bufferRowPitchBytes; |
| ASSERT(samples == 1); |
| |
| uint8_t *bufferMemory = static_cast<uint8_t *>(buffer->getOffsetPointer(region.bufferOffset)); |
| uint8_t *imageMemory = static_cast<uint8_t *>(getTexelPointer(region.imageOffset, { region.imageSubresource.aspectMask, region.imageSubresource.mipLevel, region.imageSubresource.baseArrayLayer })); |
| uint8_t *srcMemory = bufferIsSource ? bufferMemory : imageMemory; |
| uint8_t *dstMemory = bufferIsSource ? imageMemory : bufferMemory; |
| int imageRowPitchBytes = rowPitchBytes(aspect, region.imageSubresource.mipLevel); |
| int imageSlicePitchBytes = slicePitchBytes(aspect, region.imageSubresource.mipLevel); |
| |
| int srcSlicePitchBytes = bufferIsSource ? bufferSlicePitchBytes : imageSlicePitchBytes; |
| int dstSlicePitchBytes = bufferIsSource ? imageSlicePitchBytes : bufferSlicePitchBytes; |
| int srcRowPitchBytes = bufferIsSource ? bufferRowPitchBytes : imageRowPitchBytes; |
| int dstRowPitchBytes = bufferIsSource ? imageRowPitchBytes : bufferRowPitchBytes; |
| |
| VkExtent3D mipLevelExtent = getMipLevelExtent(aspect, region.imageSubresource.mipLevel); |
| bool isSingleSlice = (imageExtent.depth == 1); |
| bool isSingleRow = (imageExtent.height == 1) && isSingleSlice; |
| bool isEntireRow = (imageExtent.width == mipLevelExtent.width) && |
| (imageRowPitchBytes == bufferRowPitchBytes); |
| bool isEntireSlice = isEntireRow && (imageExtent.height == mipLevelExtent.height) && |
| (imageSlicePitchBytes == bufferSlicePitchBytes); |
| |
| VkDeviceSize copySize = 0; |
| if(isSingleRow) |
| { |
| copySize = imageExtent.width * bytesPerBlock; |
| } |
| else if(isEntireRow && isSingleSlice) |
| { |
| copySize = (imageExtent.height - 1) * imageRowPitchBytes + imageExtent.width * bytesPerBlock; |
| } |
| else if(isEntireSlice) |
| { |
| copySize = (imageExtent.depth - 1) * imageSlicePitchBytes + (imageExtent.height - 1) * imageRowPitchBytes + imageExtent.width * bytesPerBlock; // Copy multiple slices |
| } |
| else if(isEntireRow) // Copy slice by slice |
| { |
| copySize = (imageExtent.height - 1) * imageRowPitchBytes + imageExtent.width * bytesPerBlock; |
| } |
| else // Copy row by row |
| { |
| copySize = imageExtent.width * bytesPerBlock; |
| } |
| |
| VkDeviceSize imageLayerSize = getLayerSize(aspect); |
| VkDeviceSize srcLayerSize = bufferIsSource ? bufferSlicePitchBytes : imageLayerSize; |
| VkDeviceSize dstLayerSize = bufferIsSource ? imageLayerSize : bufferSlicePitchBytes; |
| |
| for(uint32_t i = 0; i < region.imageSubresource.layerCount; i++) |
| { |
| if(isSingleRow || (isEntireRow && isSingleSlice) || isEntireSlice) |
| { |
| ASSERT(((bufferIsSource ? dstMemory : srcMemory) + copySize) < end()); |
| ASSERT(((bufferIsSource ? srcMemory : dstMemory) + copySize) < buffer->end()); |
| memcpy(dstMemory, srcMemory, copySize); |
| } |
| else if(isEntireRow) // Copy slice by slice |
| { |
| uint8_t *srcSliceMemory = srcMemory; |
| uint8_t *dstSliceMemory = dstMemory; |
| for(uint32_t z = 0; z < imageExtent.depth; z++) |
| { |
| ASSERT(((bufferIsSource ? dstSliceMemory : srcSliceMemory) + copySize) < end()); |
| ASSERT(((bufferIsSource ? srcSliceMemory : dstSliceMemory) + copySize) < buffer->end()); |
| memcpy(dstSliceMemory, srcSliceMemory, copySize); |
| srcSliceMemory += srcSlicePitchBytes; |
| dstSliceMemory += dstSlicePitchBytes; |
| } |
| } |
| else // Copy row by row |
| { |
| uint8_t *srcLayerMemory = srcMemory; |
| uint8_t *dstLayerMemory = dstMemory; |
| for(uint32_t z = 0; z < imageExtent.depth; z++) |
| { |
| uint8_t *srcSliceMemory = srcLayerMemory; |
| uint8_t *dstSliceMemory = dstLayerMemory; |
| for(uint32_t y = 0; y < imageExtent.height; y++) |
| { |
| ASSERT(((bufferIsSource ? dstSliceMemory : srcSliceMemory) + copySize) < end()); |
| ASSERT(((bufferIsSource ? srcSliceMemory : dstSliceMemory) + copySize) < buffer->end()); |
| memcpy(dstSliceMemory, srcSliceMemory, copySize); |
| srcSliceMemory += srcRowPitchBytes; |
| dstSliceMemory += dstRowPitchBytes; |
| } |
| srcLayerMemory += srcSlicePitchBytes; |
| dstLayerMemory += dstSlicePitchBytes; |
| } |
| } |
| |
| srcMemory += srcLayerSize; |
| dstMemory += dstLayerSize; |
| } |
| |
| if(bufferIsSource) |
| { |
| contentsChanged({ region.imageSubresource.aspectMask, region.imageSubresource.mipLevel, 1, |
| region.imageSubresource.baseArrayLayer, region.imageSubresource.layerCount }); |
| } |
| } |
| |
| void Image::copyTo(Buffer *dstBuffer, const VkBufferImageCopy ®ion) |
| { |
| copy(dstBuffer, region, false); |
| } |
| |
| void Image::copyFrom(Buffer *srcBuffer, const VkBufferImageCopy ®ion) |
| { |
| copy(srcBuffer, region, true); |
| } |
| |
| void *Image::getTexelPointer(const VkOffset3D &offset, const VkImageSubresource &subresource) const |
| { |
| VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(subresource.aspectMask); |
| return deviceMemory->getOffsetPointer(texelOffsetBytesInStorage(offset, subresource) + |
| getMemoryOffset(aspect, subresource.mipLevel, subresource.arrayLayer)); |
| } |
| |
| VkExtent3D Image::imageExtentInBlocks(const VkExtent3D &extent, VkImageAspectFlagBits aspect) const |
| { |
| VkExtent3D adjustedExtent = extent; |
| Format usedFormat = getFormat(aspect); |
| if(usedFormat.isCompressed()) |
| { |
| // When using a compressed format, we use the block as the base unit, instead of the texel |
| int blockWidth = usedFormat.blockWidth(); |
| int blockHeight = usedFormat.blockHeight(); |
| |
| // Mip level allocations will round up to the next block for compressed texture |
| adjustedExtent.width = ((adjustedExtent.width + blockWidth - 1) / blockWidth); |
| adjustedExtent.height = ((adjustedExtent.height + blockHeight - 1) / blockHeight); |
| } |
| return adjustedExtent; |
| } |
| |
| VkOffset3D Image::imageOffsetInBlocks(const VkOffset3D &offset, VkImageAspectFlagBits aspect) const |
| { |
| VkOffset3D adjustedOffset = offset; |
| Format usedFormat = getFormat(aspect); |
| if(usedFormat.isCompressed()) |
| { |
| // When using a compressed format, we use the block as the base unit, instead of the texel |
| int blockWidth = usedFormat.blockWidth(); |
| int blockHeight = usedFormat.blockHeight(); |
| |
| ASSERT(((offset.x % blockWidth) == 0) && ((offset.y % blockHeight) == 0)); // We can't offset within a block |
| |
| adjustedOffset.x /= blockWidth; |
| adjustedOffset.y /= blockHeight; |
| } |
| return adjustedOffset; |
| } |
| |
| VkExtent2D Image::bufferExtentInBlocks(const VkExtent2D &extent, const VkBufferImageCopy ®ion) const |
| { |
| VkExtent2D adjustedExtent = extent; |
| VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(region.imageSubresource.aspectMask); |
| Format usedFormat = getFormat(aspect); |
| if(region.bufferRowLength != 0) |
| { |
| adjustedExtent.width = region.bufferRowLength; |
| |
| if(usedFormat.isCompressed()) |
| { |
| int blockWidth = usedFormat.blockWidth(); |
| ASSERT((adjustedExtent.width % blockWidth) == 0); |
| adjustedExtent.width /= blockWidth; |
| } |
| } |
| if(region.bufferImageHeight != 0) |
| { |
| adjustedExtent.height = region.bufferImageHeight; |
| |
| if(usedFormat.isCompressed()) |
| { |
| int blockHeight = usedFormat.blockHeight(); |
| ASSERT((adjustedExtent.height % blockHeight) == 0); |
| adjustedExtent.height /= blockHeight; |
| } |
| } |
| return adjustedExtent; |
| } |
| |
| int Image::borderSize() const |
| { |
| // We won't add a border to compressed cube textures, we'll add it when we decompress the texture |
| return (isCube() && !format.isCompressed()) ? 1 : 0; |
| } |
| |
| VkDeviceSize Image::texelOffsetBytesInStorage(const VkOffset3D &offset, const VkImageSubresource &subresource) const |
| { |
| VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(subresource.aspectMask); |
| VkOffset3D adjustedOffset = imageOffsetInBlocks(offset, aspect); |
| int border = borderSize(); |
| return adjustedOffset.z * slicePitchBytes(aspect, subresource.mipLevel) + |
| (adjustedOffset.y + border) * rowPitchBytes(aspect, subresource.mipLevel) + |
| (adjustedOffset.x + border) * getFormat(aspect).bytesPerBlock(); |
| } |
| |
| VkExtent3D Image::getMipLevelExtent(VkImageAspectFlagBits aspect, uint32_t mipLevel) const |
| { |
| VkExtent3D mipLevelExtent; |
| mipLevelExtent.width = extent.width >> mipLevel; |
| mipLevelExtent.height = extent.height >> mipLevel; |
| mipLevelExtent.depth = extent.depth >> mipLevel; |
| |
| if(mipLevelExtent.width == 0) { mipLevelExtent.width = 1; } |
| if(mipLevelExtent.height == 0) { mipLevelExtent.height = 1; } |
| if(mipLevelExtent.depth == 0) { mipLevelExtent.depth = 1; } |
| |
| switch(aspect) |
| { |
| case VK_IMAGE_ASPECT_COLOR_BIT: |
| case VK_IMAGE_ASPECT_DEPTH_BIT: |
| case VK_IMAGE_ASPECT_STENCIL_BIT: |
| case VK_IMAGE_ASPECT_PLANE_0_BIT: // Vulkan 1.1 Table 31. Plane Format Compatibility Table: plane 0 of all defined formats is full resolution. |
| break; |
| case VK_IMAGE_ASPECT_PLANE_1_BIT: |
| case VK_IMAGE_ASPECT_PLANE_2_BIT: |
| switch(format) |
| { |
| case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM: |
| case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM: |
| ASSERT(mipLevelExtent.width % 2 == 0 && mipLevelExtent.height % 2 == 0); // Vulkan 1.1: "Images in this format must be defined with a width and height that is a multiple of two." |
| // Vulkan 1.1 Table 31. Plane Format Compatibility Table: |
| // Half-resolution U and V planes. |
| mipLevelExtent.width /= 2; |
| mipLevelExtent.height /= 2; |
| break; |
| default: |
| UNSUPPORTED("format %d", int(format)); |
| } |
| break; |
| default: |
| UNSUPPORTED("aspect %x", int(aspect)); |
| } |
| |
| return mipLevelExtent; |
| } |
| |
| int Image::rowPitchBytes(VkImageAspectFlagBits aspect, uint32_t mipLevel) const |
| { |
| if(deviceMemory && deviceMemory->hasExternalImageProperties()) |
| { |
| return deviceMemory->externalImageRowPitchBytes(); |
| } |
| |
| // Depth and Stencil pitch should be computed separately |
| ASSERT((aspect & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) != |
| (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)); |
| |
| VkExtent3D mipLevelExtent = getMipLevelExtent(aspect, mipLevel); |
| Format usedFormat = getFormat(aspect); |
| if(usedFormat.isCompressed()) |
| { |
| VkExtent3D extentInBlocks = imageExtentInBlocks(mipLevelExtent, aspect); |
| return extentInBlocks.width * usedFormat.bytesPerBlock(); |
| } |
| |
| return usedFormat.pitchB(mipLevelExtent.width, borderSize(), true); |
| } |
| |
| int Image::slicePitchBytes(VkImageAspectFlagBits aspect, uint32_t mipLevel) const |
| { |
| // Depth and Stencil slice should be computed separately |
| ASSERT((aspect & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) != |
| (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)); |
| |
| VkExtent3D mipLevelExtent = getMipLevelExtent(aspect, mipLevel); |
| Format usedFormat = getFormat(aspect); |
| if(usedFormat.isCompressed()) |
| { |
| VkExtent3D extentInBlocks = imageExtentInBlocks(mipLevelExtent, aspect); |
| return extentInBlocks.height * extentInBlocks.width * usedFormat.bytesPerBlock(); |
| } |
| |
| return usedFormat.sliceB(mipLevelExtent.width, mipLevelExtent.height, borderSize(), true); |
| } |
| |
| Format Image::getFormat(VkImageAspectFlagBits aspect) const |
| { |
| return format.getAspectFormat(aspect); |
| } |
| |
| bool Image::isCube() const |
| { |
| return (flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) && (imageType == VK_IMAGE_TYPE_2D); |
| } |
| |
| uint8_t *Image::end() const |
| { |
| return reinterpret_cast<uint8_t *>(deviceMemory->getOffsetPointer(deviceMemory->getCommittedMemoryInBytes() + 1)); |
| } |
| |
| VkDeviceSize Image::getMemoryOffset(VkImageAspectFlagBits aspect) const |
| { |
| switch(format) |
| { |
| case VK_FORMAT_D16_UNORM_S8_UINT: |
| case VK_FORMAT_D24_UNORM_S8_UINT: |
| case VK_FORMAT_D32_SFLOAT_S8_UINT: |
| if(aspect == VK_IMAGE_ASPECT_STENCIL_BIT) |
| { |
| // Offset by depth buffer to get to stencil buffer |
| return memoryOffset + getStorageSize(VK_IMAGE_ASPECT_DEPTH_BIT); |
| } |
| break; |
| |
| case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM: |
| if(aspect == VK_IMAGE_ASPECT_PLANE_2_BIT) |
| { |
| return memoryOffset + getStorageSize(VK_IMAGE_ASPECT_PLANE_1_BIT) + getStorageSize(VK_IMAGE_ASPECT_PLANE_0_BIT); |
| } |
| // Fall through to 2PLANE case: |
| case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM: |
| if(aspect == VK_IMAGE_ASPECT_PLANE_1_BIT) |
| { |
| return memoryOffset + getStorageSize(VK_IMAGE_ASPECT_PLANE_0_BIT); |
| } |
| else |
| { |
| ASSERT(aspect == VK_IMAGE_ASPECT_PLANE_0_BIT); |
| |
| return memoryOffset; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| return memoryOffset; |
| } |
| |
| VkDeviceSize Image::getMemoryOffset(VkImageAspectFlagBits aspect, uint32_t mipLevel) const |
| { |
| VkDeviceSize offset = getMemoryOffset(aspect); |
| for(uint32_t i = 0; i < mipLevel; ++i) |
| { |
| offset += getMultiSampledLevelSize(aspect, i); |
| } |
| return offset; |
| } |
| |
| VkDeviceSize Image::getMemoryOffset(VkImageAspectFlagBits aspect, uint32_t mipLevel, uint32_t layer) const |
| { |
| return layer * getLayerOffset(aspect, mipLevel) + getMemoryOffset(aspect, mipLevel); |
| } |
| |
| VkDeviceSize Image::getMipLevelSize(VkImageAspectFlagBits aspect, uint32_t mipLevel) const |
| { |
| return getMipLevelExtent(aspect, mipLevel).depth * slicePitchBytes(aspect, mipLevel); |
| } |
| |
| VkDeviceSize Image::getMultiSampledLevelSize(VkImageAspectFlagBits aspect, uint32_t mipLevel) const |
| { |
| return getMipLevelSize(aspect, mipLevel) * samples; |
| } |
| |
| bool Image::is3DSlice() const |
| { |
| return ((imageType == VK_IMAGE_TYPE_3D) && (flags & VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT)); |
| } |
| |
| VkDeviceSize Image::getLayerOffset(VkImageAspectFlagBits aspect, uint32_t mipLevel) const |
| { |
| if(is3DSlice()) |
| { |
| // When the VkImageSubresourceRange structure is used to select a subset of the slices of a 3D |
| // image's mip level in order to create a 2D or 2D array image view of a 3D image created with |
| // VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT, baseArrayLayer and layerCount specify the first |
| // slice index and the number of slices to include in the created image view. |
| ASSERT(samples == VK_SAMPLE_COUNT_1_BIT); |
| |
| // Offset to the proper slice of the 3D image's mip level |
| return slicePitchBytes(aspect, mipLevel); |
| } |
| |
| return getLayerSize(aspect); |
| } |
| |
| VkDeviceSize Image::getLayerSize(VkImageAspectFlagBits aspect) const |
| { |
| VkDeviceSize layerSize = 0; |
| |
| for(uint32_t mipLevel = 0; mipLevel < mipLevels; ++mipLevel) |
| { |
| layerSize += getMultiSampledLevelSize(aspect, mipLevel); |
| } |
| |
| return layerSize; |
| } |
| |
| VkDeviceSize Image::getStorageSize(VkImageAspectFlags aspectMask) const |
| { |
| if((aspectMask & ~(VK_IMAGE_ASPECT_COLOR_BIT | VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT | |
| VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT | VK_IMAGE_ASPECT_PLANE_2_BIT)) != 0) |
| { |
| UNSUPPORTED("aspectMask %x", int(aspectMask)); |
| } |
| |
| VkDeviceSize storageSize = 0; |
| |
| if(aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_COLOR_BIT); |
| if(aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_DEPTH_BIT); |
| if(aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_STENCIL_BIT); |
| if(aspectMask & VK_IMAGE_ASPECT_PLANE_0_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_PLANE_0_BIT); |
| if(aspectMask & VK_IMAGE_ASPECT_PLANE_1_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_PLANE_1_BIT); |
| if(aspectMask & VK_IMAGE_ASPECT_PLANE_2_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_PLANE_2_BIT); |
| |
| return arrayLayers * storageSize; |
| } |
| |
| const Image *Image::getSampledImage(const vk::Format &imageViewFormat) const |
| { |
| bool isImageViewCompressed = imageViewFormat.isCompressed(); |
| if(decompressedImage && !isImageViewCompressed) |
| { |
| ASSERT(flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT); |
| ASSERT(format.bytesPerBlock() == imageViewFormat.bytesPerBlock()); |
| } |
| // If the ImageView's format is compressed, then we do need to decompress the image so that |
| // it may be sampled properly by texture sampling functions, which don't support compressed |
| // textures. If the ImageView's format is NOT compressed, then we reinterpret cast the |
| // compressed image into the ImageView's format, so we must return the compressed image as is. |
| return (decompressedImage && isImageViewCompressed) ? decompressedImage : this; |
| } |
| |
| void Image::blitTo(Image *dstImage, const VkImageBlit ®ion, VkFilter filter) const |
| { |
| device->getBlitter()->blit(this, dstImage, region, filter); |
| } |
| |
| void Image::copyTo(uint8_t *dst, unsigned int dstPitch) const |
| { |
| device->getBlitter()->copy(this, dst, dstPitch); |
| } |
| |
| void Image::resolveTo(Image *dstImage, const VkImageResolve ®ion) const |
| { |
| device->getBlitter()->resolve(this, dstImage, region); |
| } |
| |
| VkFormat Image::getClearFormat() const |
| { |
| // Set the proper format for the clear value, as described here: |
| // https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#clears-values |
| if(format.isSignedUnnormalizedInteger()) |
| { |
| return VK_FORMAT_R32G32B32A32_SINT; |
| } |
| else if(format.isUnsignedUnnormalizedInteger()) |
| { |
| return VK_FORMAT_R32G32B32A32_UINT; |
| } |
| |
| return VK_FORMAT_R32G32B32A32_SFLOAT; |
| } |
| |
| uint32_t Image::getLastLayerIndex(const VkImageSubresourceRange &subresourceRange) const |
| { |
| return ((subresourceRange.layerCount == VK_REMAINING_ARRAY_LAYERS) ? arrayLayers : (subresourceRange.baseArrayLayer + subresourceRange.layerCount)) - 1; |
| } |
| |
| uint32_t Image::getLastMipLevel(const VkImageSubresourceRange &subresourceRange) const |
| { |
| return ((subresourceRange.levelCount == VK_REMAINING_MIP_LEVELS) ? mipLevels : (subresourceRange.baseMipLevel + subresourceRange.levelCount)) - 1; |
| } |
| |
| void Image::clear(void *pixelData, VkFormat pixelFormat, const vk::Format &viewFormat, const VkImageSubresourceRange &subresourceRange, const VkRect2D &renderArea) |
| { |
| device->getBlitter()->clear(pixelData, pixelFormat, this, viewFormat, subresourceRange, &renderArea); |
| } |
| |
| void Image::clear(const VkClearColorValue &color, const VkImageSubresourceRange &subresourceRange) |
| { |
| ASSERT(subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT); |
| |
| device->getBlitter()->clear((void *)color.float32, getClearFormat(), this, format, subresourceRange); |
| } |
| |
| void Image::clear(const VkClearDepthStencilValue &color, const VkImageSubresourceRange &subresourceRange) |
| { |
| ASSERT((subresourceRange.aspectMask & ~(VK_IMAGE_ASPECT_DEPTH_BIT | |
| VK_IMAGE_ASPECT_STENCIL_BIT)) == 0); |
| |
| if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) |
| { |
| VkImageSubresourceRange depthSubresourceRange = subresourceRange; |
| depthSubresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; |
| device->getBlitter()->clear((void *)(&color.depth), VK_FORMAT_D32_SFLOAT, this, format, depthSubresourceRange); |
| } |
| |
| if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) |
| { |
| VkImageSubresourceRange stencilSubresourceRange = subresourceRange; |
| stencilSubresourceRange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT; |
| device->getBlitter()->clear((void *)(&color.stencil), VK_FORMAT_S8_UINT, this, format, stencilSubresourceRange); |
| } |
| } |
| |
| void Image::clear(const VkClearValue &clearValue, const vk::Format &viewFormat, const VkRect2D &renderArea, const VkImageSubresourceRange &subresourceRange) |
| { |
| ASSERT((subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) || |
| (subresourceRange.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | |
| VK_IMAGE_ASPECT_STENCIL_BIT))); |
| |
| if(subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) |
| { |
| clear((void *)(clearValue.color.float32), getClearFormat(), viewFormat, subresourceRange, renderArea); |
| } |
| else |
| { |
| if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) |
| { |
| VkImageSubresourceRange depthSubresourceRange = subresourceRange; |
| depthSubresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; |
| clear((void *)(&clearValue.depthStencil.depth), VK_FORMAT_D32_SFLOAT, viewFormat, depthSubresourceRange, renderArea); |
| } |
| |
| if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) |
| { |
| VkImageSubresourceRange stencilSubresourceRange = subresourceRange; |
| stencilSubresourceRange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT; |
| clear((void *)(&clearValue.depthStencil.stencil), VK_FORMAT_S8_UINT, viewFormat, stencilSubresourceRange, renderArea); |
| } |
| } |
| } |
| |
| bool Image::requiresPreprocessing() const |
| { |
| return (isCube() && (arrayLayers >= 6)) || decompressedImage; |
| } |
| |
| void Image::contentsChanged(const VkImageSubresourceRange &subresourceRange, ContentsChangedContext contentsChangedContext) |
| { |
| // If this function is called after (possibly) writing to this image from a shader, |
| // this must have the VK_IMAGE_USAGE_STORAGE_BIT set for the write operation to be |
| // valid. Otherwise, we can't have legally written to this image, so we know we can |
| // skip updating dirtyResources. |
| if((contentsChangedContext == USING_STORAGE) && !(usage & VK_IMAGE_USAGE_STORAGE_BIT)) |
| { |
| return; |
| } |
| |
| // If this isn't a cube or a compressed image, we'll never need dirtyResources, |
| // so we can skip updating dirtyResources |
| if(!requiresPreprocessing()) |
| { |
| return; |
| } |
| |
| uint32_t lastLayer = getLastLayerIndex(subresourceRange); |
| uint32_t lastMipLevel = getLastMipLevel(subresourceRange); |
| |
| VkImageSubresource subresource = { |
| subresourceRange.aspectMask, |
| subresourceRange.baseMipLevel, |
| subresourceRange.baseArrayLayer |
| }; |
| |
| marl::lock lock(mutex); |
| for(subresource.arrayLayer = subresourceRange.baseArrayLayer; |
| subresource.arrayLayer <= lastLayer; |
| subresource.arrayLayer++) |
| { |
| for(subresource.mipLevel = subresourceRange.baseMipLevel; |
| subresource.mipLevel <= lastMipLevel; |
| subresource.mipLevel++) |
| { |
| dirtySubresources.insert(subresource); |
| } |
| } |
| } |
| |
| void Image::prepareForSampling(const VkImageSubresourceRange &subresourceRange) |
| { |
| // If this isn't a cube or a compressed image, there's nothing to do |
| if(!requiresPreprocessing()) |
| { |
| return; |
| } |
| |
| uint32_t lastLayer = getLastLayerIndex(subresourceRange); |
| uint32_t lastMipLevel = getLastMipLevel(subresourceRange); |
| |
| VkImageSubresource subresource = { |
| subresourceRange.aspectMask, |
| subresourceRange.baseMipLevel, |
| subresourceRange.baseArrayLayer |
| }; |
| |
| marl::lock lock(mutex); |
| |
| if(dirtySubresources.empty()) |
| { |
| return; |
| } |
| |
| // First, decompress all relevant dirty subregions |
| for(subresource.arrayLayer = subresourceRange.baseArrayLayer; |
| subresource.arrayLayer <= lastLayer; |
| subresource.arrayLayer++) |
| { |
| for(subresource.mipLevel = subresourceRange.baseMipLevel; |
| subresource.mipLevel <= lastMipLevel; |
| subresource.mipLevel++) |
| { |
| auto it = dirtySubresources.find(subresource); |
| if(it != dirtySubresources.end()) |
| { |
| decompress(subresource); |
| } |
| } |
| } |
| |
| // Second, update cubemap borders |
| for(subresource.arrayLayer = subresourceRange.baseArrayLayer; |
| subresource.arrayLayer <= lastLayer; |
| subresource.arrayLayer++) |
| { |
| for(subresource.mipLevel = subresourceRange.baseMipLevel; |
| subresource.mipLevel <= lastMipLevel; |
| subresource.mipLevel++) |
| { |
| auto it = dirtySubresources.find(subresource); |
| if(it != dirtySubresources.end()) |
| { |
| if(updateCube(subresource)) |
| { |
| // updateCube() updates all layers of all cubemaps at once, so remove entries to avoid duplicating effort |
| VkImageSubresource cleanSubresource = subresource; |
| for(cleanSubresource.arrayLayer = 0; cleanSubresource.arrayLayer < arrayLayers - 5;) |
| { |
| // Delete one cube's worth of dirty subregions |
| for(uint32_t i = 0; i < 6; i++, cleanSubresource.arrayLayer++) |
| { |
| auto it = dirtySubresources.find(cleanSubresource); |
| if(it != dirtySubresources.end()) |
| { |
| dirtySubresources.erase(it); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Finally, mark all updated subregions clean |
| for(subresource.arrayLayer = subresourceRange.baseArrayLayer; |
| subresource.arrayLayer <= lastLayer; |
| subresource.arrayLayer++) |
| { |
| for(subresource.mipLevel = subresourceRange.baseMipLevel; |
| subresource.mipLevel <= lastMipLevel; |
| subresource.mipLevel++) |
| { |
| auto it = dirtySubresources.find(subresource); |
| if(it != dirtySubresources.end()) |
| { |
| dirtySubresources.erase(it); |
| } |
| } |
| } |
| } |
| |
| void Image::decompress(const VkImageSubresource &subresource) |
| { |
| if(decompressedImage) |
| { |
| switch(format) |
| { |
| case VK_FORMAT_EAC_R11_UNORM_BLOCK: |
| case VK_FORMAT_EAC_R11_SNORM_BLOCK: |
| case VK_FORMAT_EAC_R11G11_UNORM_BLOCK: |
| case VK_FORMAT_EAC_R11G11_SNORM_BLOCK: |
| case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK: |
| case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK: |
| case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK: |
| case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK: |
| case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK: |
| case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK: |
| decodeETC2(subresource); |
| break; |
| case VK_FORMAT_BC1_RGB_UNORM_BLOCK: |
| case VK_FORMAT_BC1_RGB_SRGB_BLOCK: |
| case VK_FORMAT_BC1_RGBA_UNORM_BLOCK: |
| case VK_FORMAT_BC1_RGBA_SRGB_BLOCK: |
| case VK_FORMAT_BC2_UNORM_BLOCK: |
| case VK_FORMAT_BC2_SRGB_BLOCK: |
| case VK_FORMAT_BC3_UNORM_BLOCK: |
| case VK_FORMAT_BC3_SRGB_BLOCK: |
| case VK_FORMAT_BC4_UNORM_BLOCK: |
| case VK_FORMAT_BC4_SNORM_BLOCK: |
| case VK_FORMAT_BC5_UNORM_BLOCK: |
| case VK_FORMAT_BC5_SNORM_BLOCK: |
| case VK_FORMAT_BC6H_UFLOAT_BLOCK: |
| case VK_FORMAT_BC6H_SFLOAT_BLOCK: |
| case VK_FORMAT_BC7_UNORM_BLOCK: |
| case VK_FORMAT_BC7_SRGB_BLOCK: |
| decodeBC(subresource); |
| break; |
| case VK_FORMAT_ASTC_4x4_UNORM_BLOCK: |
| case VK_FORMAT_ASTC_5x4_UNORM_BLOCK: |
| case VK_FORMAT_ASTC_5x5_UNORM_BLOCK: |
| case VK_FORMAT_ASTC_6x5_UNORM_BLOCK: |
| case VK_FORMAT_ASTC_6x6_UNORM_BLOCK: |
| case VK_FORMAT_ASTC_8x5_UNORM_BLOCK: |
| case VK_FORMAT_ASTC_8x6_UNORM_BLOCK: |
| case VK_FORMAT_ASTC_8x8_UNORM_BLOCK: |
| case VK_FORMAT_ASTC_10x5_UNORM_BLOCK: |
| case VK_FORMAT_ASTC_10x6_UNORM_BLOCK: |
| case VK_FORMAT_ASTC_10x8_UNORM_BLOCK: |
| case VK_FORMAT_ASTC_10x10_UNORM_BLOCK: |
| case VK_FORMAT_ASTC_12x10_UNORM_BLOCK: |
| case VK_FORMAT_ASTC_12x12_UNORM_BLOCK: |
| case VK_FORMAT_ASTC_4x4_SRGB_BLOCK: |
| case VK_FORMAT_ASTC_5x4_SRGB_BLOCK: |
| case VK_FORMAT_ASTC_5x5_SRGB_BLOCK: |
| case VK_FORMAT_ASTC_6x5_SRGB_BLOCK: |
| case VK_FORMAT_ASTC_6x6_SRGB_BLOCK: |
| case VK_FORMAT_ASTC_8x5_SRGB_BLOCK: |
| case VK_FORMAT_ASTC_8x6_SRGB_BLOCK: |
| case VK_FORMAT_ASTC_8x8_SRGB_BLOCK: |
| case VK_FORMAT_ASTC_10x5_SRGB_BLOCK: |
| case VK_FORMAT_ASTC_10x6_SRGB_BLOCK: |
| case VK_FORMAT_ASTC_10x8_SRGB_BLOCK: |
| case VK_FORMAT_ASTC_10x10_SRGB_BLOCK: |
| case VK_FORMAT_ASTC_12x10_SRGB_BLOCK: |
| case VK_FORMAT_ASTC_12x12_SRGB_BLOCK: |
| decodeASTC(subresource); |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| bool Image::updateCube(const VkImageSubresource &subres) |
| { |
| if(isCube() && (arrayLayers >= 6)) |
| { |
| VkImageSubresource subresource = subres; |
| |
| // Update the borders of all the groups of 6 layers that can be part of a cubemaps but don't |
| // touch leftover layers that cannot be part of cubemaps. |
| for(subresource.arrayLayer = 0; subresource.arrayLayer < arrayLayers - 5; subresource.arrayLayer += 6) |
| { |
| device->getBlitter()->updateBorders(decompressedImage ? decompressedImage : this, subresource); |
| } |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void Image::decodeETC2(const VkImageSubresource &subresource) |
| { |
| ASSERT(decompressedImage); |
| |
| ETC_Decoder::InputType inputType = GetInputType(format); |
| |
| int bytes = decompressedImage->format.bytes(); |
| bool fakeAlpha = (format == VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK) || (format == VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK); |
| size_t sizeToWrite = 0; |
| |
| VkExtent3D mipLevelExtent = getMipLevelExtent(static_cast<VkImageAspectFlagBits>(subresource.aspectMask), subresource.mipLevel); |
| |
| int pitchB = decompressedImage->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, subresource.mipLevel); |
| |
| if(fakeAlpha) |
| { |
| // To avoid overflow in case of cube textures, which are offset in memory to account for the border, |
| // compute the size from the first pixel to the last pixel, excluding any padding or border before |
| // the first pixel or after the last pixel. |
| sizeToWrite = ((mipLevelExtent.height - 1) * pitchB) + (mipLevelExtent.width * bytes); |
| } |
| |
| for(int32_t depth = 0; depth < static_cast<int32_t>(mipLevelExtent.depth); depth++) |
| { |
| uint8_t *source = static_cast<uint8_t *>(getTexelPointer({ 0, 0, depth }, subresource)); |
| uint8_t *dest = static_cast<uint8_t *>(decompressedImage->getTexelPointer({ 0, 0, depth }, subresource)); |
| |
| if(fakeAlpha) |
| { |
| ASSERT((dest + sizeToWrite) < decompressedImage->end()); |
| memset(dest, 0xFF, sizeToWrite); |
| } |
| |
| ETC_Decoder::Decode(source, dest, mipLevelExtent.width, mipLevelExtent.height, |
| pitchB, bytes, inputType); |
| } |
| } |
| |
| void Image::decodeBC(const VkImageSubresource &subresource) |
| { |
| ASSERT(decompressedImage); |
| |
| int n = GetBCn(format); |
| int noAlphaU = GetNoAlphaOrUnsigned(format); |
| |
| int bytes = decompressedImage->format.bytes(); |
| |
| VkExtent3D mipLevelExtent = getMipLevelExtent(static_cast<VkImageAspectFlagBits>(subresource.aspectMask), subresource.mipLevel); |
| |
| int pitchB = decompressedImage->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, subresource.mipLevel); |
| |
| for(int32_t depth = 0; depth < static_cast<int32_t>(mipLevelExtent.depth); depth++) |
| { |
| uint8_t *source = static_cast<uint8_t *>(getTexelPointer({ 0, 0, depth }, subresource)); |
| uint8_t *dest = static_cast<uint8_t *>(decompressedImage->getTexelPointer({ 0, 0, depth }, subresource)); |
| |
| BC_Decoder::Decode(source, dest, mipLevelExtent.width, mipLevelExtent.height, |
| pitchB, bytes, n, noAlphaU); |
| } |
| } |
| |
| void Image::decodeASTC(const VkImageSubresource &subresource) |
| { |
| ASSERT(decompressedImage); |
| |
| int xBlockSize = format.blockWidth(); |
| int yBlockSize = format.blockHeight(); |
| int zBlockSize = 1; |
| bool isUnsigned = format.isUnsignedComponent(0); |
| |
| int bytes = decompressedImage->format.bytes(); |
| |
| VkExtent3D mipLevelExtent = getMipLevelExtent(static_cast<VkImageAspectFlagBits>(subresource.aspectMask), subresource.mipLevel); |
| |
| int xblocks = (mipLevelExtent.width + xBlockSize - 1) / xBlockSize; |
| int yblocks = (mipLevelExtent.height + yBlockSize - 1) / yBlockSize; |
| int zblocks = (zBlockSize > 1) ? (mipLevelExtent.depth + zBlockSize - 1) / zBlockSize : 1; |
| |
| if(xblocks <= 0 || yblocks <= 0 || zblocks <= 0) |
| { |
| return; |
| } |
| |
| int pitchB = decompressedImage->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, subresource.mipLevel); |
| int sliceB = decompressedImage->slicePitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, subresource.mipLevel); |
| |
| for(int32_t depth = 0; depth < static_cast<int32_t>(mipLevelExtent.depth); depth++) |
| { |
| uint8_t *source = static_cast<uint8_t *>(getTexelPointer({ 0, 0, depth }, subresource)); |
| uint8_t *dest = static_cast<uint8_t *>(decompressedImage->getTexelPointer({ 0, 0, depth }, subresource)); |
| |
| ASTC_Decoder::Decode(source, dest, mipLevelExtent.width, mipLevelExtent.height, mipLevelExtent.depth, bytes, pitchB, sliceB, |
| xBlockSize, yBlockSize, zBlockSize, xblocks, yblocks, zblocks, isUnsigned); |
| } |
| } |
| |
| } // namespace vk |