| //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This library implements `print` family of functions in classes like |
| // Module, Function, Value, etc. In-memory representation of those classes is |
| // converted to IR strings. |
| // |
| // Note that these routines must be extremely tolerant of various errors in the |
| // LLVM code, because it can be used for debugging transformations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/BinaryFormat/Dwarf.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/AssemblyAnnotationWriter.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Comdat.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalIFunc.h" |
| #include "llvm/IR/GlobalIndirectSymbol.h" |
| #include "llvm/IR/GlobalObject.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRPrintingPasses.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/ModuleSlotTracker.h" |
| #include "llvm/IR/ModuleSummaryIndex.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/Statepoint.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/TypeFinder.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/UseListOrder.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/AtomicOrdering.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Format.h" |
| #include "llvm/Support/FormattedStream.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cctype> |
| #include <cstddef> |
| #include <cstdint> |
| #include <iterator> |
| #include <memory> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| // Make virtual table appear in this compilation unit. |
| AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default; |
| |
| //===----------------------------------------------------------------------===// |
| // Helper Functions |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| struct OrderMap { |
| DenseMap<const Value *, std::pair<unsigned, bool>> IDs; |
| |
| unsigned size() const { return IDs.size(); } |
| std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } |
| |
| std::pair<unsigned, bool> lookup(const Value *V) const { |
| return IDs.lookup(V); |
| } |
| |
| void index(const Value *V) { |
| // Explicitly sequence get-size and insert-value operations to avoid UB. |
| unsigned ID = IDs.size() + 1; |
| IDs[V].first = ID; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| static void orderValue(const Value *V, OrderMap &OM) { |
| if (OM.lookup(V).first) |
| return; |
| |
| if (const Constant *C = dyn_cast<Constant>(V)) |
| if (C->getNumOperands() && !isa<GlobalValue>(C)) |
| for (const Value *Op : C->operands()) |
| if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) |
| orderValue(Op, OM); |
| |
| // Note: we cannot cache this lookup above, since inserting into the map |
| // changes the map's size, and thus affects the other IDs. |
| OM.index(V); |
| } |
| |
| static OrderMap orderModule(const Module *M) { |
| // This needs to match the order used by ValueEnumerator::ValueEnumerator() |
| // and ValueEnumerator::incorporateFunction(). |
| OrderMap OM; |
| |
| for (const GlobalVariable &G : M->globals()) { |
| if (G.hasInitializer()) |
| if (!isa<GlobalValue>(G.getInitializer())) |
| orderValue(G.getInitializer(), OM); |
| orderValue(&G, OM); |
| } |
| for (const GlobalAlias &A : M->aliases()) { |
| if (!isa<GlobalValue>(A.getAliasee())) |
| orderValue(A.getAliasee(), OM); |
| orderValue(&A, OM); |
| } |
| for (const GlobalIFunc &I : M->ifuncs()) { |
| if (!isa<GlobalValue>(I.getResolver())) |
| orderValue(I.getResolver(), OM); |
| orderValue(&I, OM); |
| } |
| for (const Function &F : *M) { |
| for (const Use &U : F.operands()) |
| if (!isa<GlobalValue>(U.get())) |
| orderValue(U.get(), OM); |
| |
| orderValue(&F, OM); |
| |
| if (F.isDeclaration()) |
| continue; |
| |
| for (const Argument &A : F.args()) |
| orderValue(&A, OM); |
| for (const BasicBlock &BB : F) { |
| orderValue(&BB, OM); |
| for (const Instruction &I : BB) { |
| for (const Value *Op : I.operands()) |
| if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || |
| isa<InlineAsm>(*Op)) |
| orderValue(Op, OM); |
| orderValue(&I, OM); |
| } |
| } |
| } |
| return OM; |
| } |
| |
| static void predictValueUseListOrderImpl(const Value *V, const Function *F, |
| unsigned ID, const OrderMap &OM, |
| UseListOrderStack &Stack) { |
| // Predict use-list order for this one. |
| using Entry = std::pair<const Use *, unsigned>; |
| SmallVector<Entry, 64> List; |
| for (const Use &U : V->uses()) |
| // Check if this user will be serialized. |
| if (OM.lookup(U.getUser()).first) |
| List.push_back(std::make_pair(&U, List.size())); |
| |
| if (List.size() < 2) |
| // We may have lost some users. |
| return; |
| |
| bool GetsReversed = |
| !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V); |
| if (auto *BA = dyn_cast<BlockAddress>(V)) |
| ID = OM.lookup(BA->getBasicBlock()).first; |
| llvm::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) { |
| const Use *LU = L.first; |
| const Use *RU = R.first; |
| if (LU == RU) |
| return false; |
| |
| auto LID = OM.lookup(LU->getUser()).first; |
| auto RID = OM.lookup(RU->getUser()).first; |
| |
| // If ID is 4, then expect: 7 6 5 1 2 3. |
| if (LID < RID) { |
| if (GetsReversed) |
| if (RID <= ID) |
| return true; |
| return false; |
| } |
| if (RID < LID) { |
| if (GetsReversed) |
| if (LID <= ID) |
| return false; |
| return true; |
| } |
| |
| // LID and RID are equal, so we have different operands of the same user. |
| // Assume operands are added in order for all instructions. |
| if (GetsReversed) |
| if (LID <= ID) |
| return LU->getOperandNo() < RU->getOperandNo(); |
| return LU->getOperandNo() > RU->getOperandNo(); |
| }); |
| |
| if (std::is_sorted( |
| List.begin(), List.end(), |
| [](const Entry &L, const Entry &R) { return L.second < R.second; })) |
| // Order is already correct. |
| return; |
| |
| // Store the shuffle. |
| Stack.emplace_back(V, F, List.size()); |
| assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); |
| for (size_t I = 0, E = List.size(); I != E; ++I) |
| Stack.back().Shuffle[I] = List[I].second; |
| } |
| |
| static void predictValueUseListOrder(const Value *V, const Function *F, |
| OrderMap &OM, UseListOrderStack &Stack) { |
| auto &IDPair = OM[V]; |
| assert(IDPair.first && "Unmapped value"); |
| if (IDPair.second) |
| // Already predicted. |
| return; |
| |
| // Do the actual prediction. |
| IDPair.second = true; |
| if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) |
| predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); |
| |
| // Recursive descent into constants. |
| if (const Constant *C = dyn_cast<Constant>(V)) |
| if (C->getNumOperands()) // Visit GlobalValues. |
| for (const Value *Op : C->operands()) |
| if (isa<Constant>(Op)) // Visit GlobalValues. |
| predictValueUseListOrder(Op, F, OM, Stack); |
| } |
| |
| static UseListOrderStack predictUseListOrder(const Module *M) { |
| OrderMap OM = orderModule(M); |
| |
| // Use-list orders need to be serialized after all the users have been added |
| // to a value, or else the shuffles will be incomplete. Store them per |
| // function in a stack. |
| // |
| // Aside from function order, the order of values doesn't matter much here. |
| UseListOrderStack Stack; |
| |
| // We want to visit the functions backward now so we can list function-local |
| // constants in the last Function they're used in. Module-level constants |
| // have already been visited above. |
| for (const Function &F : make_range(M->rbegin(), M->rend())) { |
| if (F.isDeclaration()) |
| continue; |
| for (const BasicBlock &BB : F) |
| predictValueUseListOrder(&BB, &F, OM, Stack); |
| for (const Argument &A : F.args()) |
| predictValueUseListOrder(&A, &F, OM, Stack); |
| for (const BasicBlock &BB : F) |
| for (const Instruction &I : BB) |
| for (const Value *Op : I.operands()) |
| if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. |
| predictValueUseListOrder(Op, &F, OM, Stack); |
| for (const BasicBlock &BB : F) |
| for (const Instruction &I : BB) |
| predictValueUseListOrder(&I, &F, OM, Stack); |
| } |
| |
| // Visit globals last. |
| for (const GlobalVariable &G : M->globals()) |
| predictValueUseListOrder(&G, nullptr, OM, Stack); |
| for (const Function &F : *M) |
| predictValueUseListOrder(&F, nullptr, OM, Stack); |
| for (const GlobalAlias &A : M->aliases()) |
| predictValueUseListOrder(&A, nullptr, OM, Stack); |
| for (const GlobalIFunc &I : M->ifuncs()) |
| predictValueUseListOrder(&I, nullptr, OM, Stack); |
| for (const GlobalVariable &G : M->globals()) |
| if (G.hasInitializer()) |
| predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); |
| for (const GlobalAlias &A : M->aliases()) |
| predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); |
| for (const GlobalIFunc &I : M->ifuncs()) |
| predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); |
| for (const Function &F : *M) |
| for (const Use &U : F.operands()) |
| predictValueUseListOrder(U.get(), nullptr, OM, Stack); |
| |
| return Stack; |
| } |
| |
| static const Module *getModuleFromVal(const Value *V) { |
| if (const Argument *MA = dyn_cast<Argument>(V)) |
| return MA->getParent() ? MA->getParent()->getParent() : nullptr; |
| |
| if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) |
| return BB->getParent() ? BB->getParent()->getParent() : nullptr; |
| |
| if (const Instruction *I = dyn_cast<Instruction>(V)) { |
| const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr; |
| return M ? M->getParent() : nullptr; |
| } |
| |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) |
| return GV->getParent(); |
| |
| if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) { |
| for (const User *U : MAV->users()) |
| if (isa<Instruction>(U)) |
| if (const Module *M = getModuleFromVal(U)) |
| return M; |
| return nullptr; |
| } |
| |
| return nullptr; |
| } |
| |
| static void PrintCallingConv(unsigned cc, raw_ostream &Out) { |
| switch (cc) { |
| default: Out << "cc" << cc; break; |
| case CallingConv::Fast: Out << "fastcc"; break; |
| case CallingConv::Cold: Out << "coldcc"; break; |
| case CallingConv::WebKit_JS: Out << "webkit_jscc"; break; |
| case CallingConv::AnyReg: Out << "anyregcc"; break; |
| case CallingConv::PreserveMost: Out << "preserve_mostcc"; break; |
| case CallingConv::PreserveAll: Out << "preserve_allcc"; break; |
| case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break; |
| case CallingConv::GHC: Out << "ghccc"; break; |
| case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break; |
| case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break; |
| case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break; |
| case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break; |
| case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break; |
| case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break; |
| case CallingConv::ARM_APCS: Out << "arm_apcscc"; break; |
| case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break; |
| case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break; |
| case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break; |
| case CallingConv::AVR_INTR: Out << "avr_intrcc "; break; |
| case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break; |
| case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break; |
| case CallingConv::PTX_Device: Out << "ptx_device"; break; |
| case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break; |
| case CallingConv::Win64: Out << "win64cc"; break; |
| case CallingConv::SPIR_FUNC: Out << "spir_func"; break; |
| case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break; |
| case CallingConv::Swift: Out << "swiftcc"; break; |
| case CallingConv::X86_INTR: Out << "x86_intrcc"; break; |
| case CallingConv::HHVM: Out << "hhvmcc"; break; |
| case CallingConv::HHVM_C: Out << "hhvm_ccc"; break; |
| case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break; |
| case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break; |
| case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break; |
| case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break; |
| case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break; |
| case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break; |
| case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break; |
| case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break; |
| } |
| } |
| |
| enum PrefixType { |
| GlobalPrefix, |
| ComdatPrefix, |
| LabelPrefix, |
| LocalPrefix, |
| NoPrefix |
| }; |
| |
| void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) { |
| assert(!Name.empty() && "Cannot get empty name!"); |
| |
| // Scan the name to see if it needs quotes first. |
| bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0])); |
| if (!NeedsQuotes) { |
| for (unsigned i = 0, e = Name.size(); i != e; ++i) { |
| // By making this unsigned, the value passed in to isalnum will always be |
| // in the range 0-255. This is important when building with MSVC because |
| // its implementation will assert. This situation can arise when dealing |
| // with UTF-8 multibyte characters. |
| unsigned char C = Name[i]; |
| if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' && |
| C != '_') { |
| NeedsQuotes = true; |
| break; |
| } |
| } |
| } |
| |
| // If we didn't need any quotes, just write out the name in one blast. |
| if (!NeedsQuotes) { |
| OS << Name; |
| return; |
| } |
| |
| // Okay, we need quotes. Output the quotes and escape any scary characters as |
| // needed. |
| OS << '"'; |
| printEscapedString(Name, OS); |
| OS << '"'; |
| } |
| |
| /// Turn the specified name into an 'LLVM name', which is either prefixed with % |
| /// (if the string only contains simple characters) or is surrounded with ""'s |
| /// (if it has special chars in it). Print it out. |
| static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) { |
| switch (Prefix) { |
| case NoPrefix: |
| break; |
| case GlobalPrefix: |
| OS << '@'; |
| break; |
| case ComdatPrefix: |
| OS << '$'; |
| break; |
| case LabelPrefix: |
| break; |
| case LocalPrefix: |
| OS << '%'; |
| break; |
| } |
| printLLVMNameWithoutPrefix(OS, Name); |
| } |
| |
| /// Turn the specified name into an 'LLVM name', which is either prefixed with % |
| /// (if the string only contains simple characters) or is surrounded with ""'s |
| /// (if it has special chars in it). Print it out. |
| static void PrintLLVMName(raw_ostream &OS, const Value *V) { |
| PrintLLVMName(OS, V->getName(), |
| isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix); |
| } |
| |
| namespace { |
| |
| class TypePrinting { |
| public: |
| TypePrinting(const Module *M = nullptr) : DeferredM(M) {} |
| |
| TypePrinting(const TypePrinting &) = delete; |
| TypePrinting &operator=(const TypePrinting &) = delete; |
| |
| /// The named types that are used by the current module. |
| TypeFinder &getNamedTypes(); |
| |
| /// The numbered types, number to type mapping. |
| std::vector<StructType *> &getNumberedTypes(); |
| |
| bool empty(); |
| |
| void print(Type *Ty, raw_ostream &OS); |
| |
| void printStructBody(StructType *Ty, raw_ostream &OS); |
| |
| private: |
| void incorporateTypes(); |
| |
| /// A module to process lazily when needed. Set to nullptr as soon as used. |
| const Module *DeferredM; |
| |
| TypeFinder NamedTypes; |
| |
| // The numbered types, along with their value. |
| DenseMap<StructType *, unsigned> Type2Number; |
| |
| std::vector<StructType *> NumberedTypes; |
| }; |
| |
| } // end anonymous namespace |
| |
| TypeFinder &TypePrinting::getNamedTypes() { |
| incorporateTypes(); |
| return NamedTypes; |
| } |
| |
| std::vector<StructType *> &TypePrinting::getNumberedTypes() { |
| incorporateTypes(); |
| |
| // We know all the numbers that each type is used and we know that it is a |
| // dense assignment. Convert the map to an index table, if it's not done |
| // already (judging from the sizes): |
| if (NumberedTypes.size() == Type2Number.size()) |
| return NumberedTypes; |
| |
| NumberedTypes.resize(Type2Number.size()); |
| for (const auto &P : Type2Number) { |
| assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?"); |
| assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?"); |
| NumberedTypes[P.second] = P.first; |
| } |
| return NumberedTypes; |
| } |
| |
| bool TypePrinting::empty() { |
| incorporateTypes(); |
| return NamedTypes.empty() && Type2Number.empty(); |
| } |
| |
| void TypePrinting::incorporateTypes() { |
| if (!DeferredM) |
| return; |
| |
| NamedTypes.run(*DeferredM, false); |
| DeferredM = nullptr; |
| |
| // The list of struct types we got back includes all the struct types, split |
| // the unnamed ones out to a numbering and remove the anonymous structs. |
| unsigned NextNumber = 0; |
| |
| std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E; |
| for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) { |
| StructType *STy = *I; |
| |
| // Ignore anonymous types. |
| if (STy->isLiteral()) |
| continue; |
| |
| if (STy->getName().empty()) |
| Type2Number[STy] = NextNumber++; |
| else |
| *NextToUse++ = STy; |
| } |
| |
| NamedTypes.erase(NextToUse, NamedTypes.end()); |
| } |
| |
| /// Write the specified type to the specified raw_ostream, making use of type |
| /// names or up references to shorten the type name where possible. |
| void TypePrinting::print(Type *Ty, raw_ostream &OS) { |
| switch (Ty->getTypeID()) { |
| case Type::VoidTyID: OS << "void"; return; |
| case Type::HalfTyID: OS << "half"; return; |
| case Type::FloatTyID: OS << "float"; return; |
| case Type::DoubleTyID: OS << "double"; return; |
| case Type::X86_FP80TyID: OS << "x86_fp80"; return; |
| case Type::FP128TyID: OS << "fp128"; return; |
| case Type::PPC_FP128TyID: OS << "ppc_fp128"; return; |
| case Type::LabelTyID: OS << "label"; return; |
| case Type::MetadataTyID: OS << "metadata"; return; |
| case Type::X86_MMXTyID: OS << "x86_mmx"; return; |
| case Type::TokenTyID: OS << "token"; return; |
| case Type::IntegerTyID: |
| OS << 'i' << cast<IntegerType>(Ty)->getBitWidth(); |
| return; |
| |
| case Type::FunctionTyID: { |
| FunctionType *FTy = cast<FunctionType>(Ty); |
| print(FTy->getReturnType(), OS); |
| OS << " ("; |
| for (FunctionType::param_iterator I = FTy->param_begin(), |
| E = FTy->param_end(); I != E; ++I) { |
| if (I != FTy->param_begin()) |
| OS << ", "; |
| print(*I, OS); |
| } |
| if (FTy->isVarArg()) { |
| if (FTy->getNumParams()) OS << ", "; |
| OS << "..."; |
| } |
| OS << ')'; |
| return; |
| } |
| case Type::StructTyID: { |
| StructType *STy = cast<StructType>(Ty); |
| |
| if (STy->isLiteral()) |
| return printStructBody(STy, OS); |
| |
| if (!STy->getName().empty()) |
| return PrintLLVMName(OS, STy->getName(), LocalPrefix); |
| |
| incorporateTypes(); |
| const auto I = Type2Number.find(STy); |
| if (I != Type2Number.end()) |
| OS << '%' << I->second; |
| else // Not enumerated, print the hex address. |
| OS << "%\"type " << STy << '\"'; |
| return; |
| } |
| case Type::PointerTyID: { |
| PointerType *PTy = cast<PointerType>(Ty); |
| print(PTy->getElementType(), OS); |
| if (unsigned AddressSpace = PTy->getAddressSpace()) |
| OS << " addrspace(" << AddressSpace << ')'; |
| OS << '*'; |
| return; |
| } |
| case Type::ArrayTyID: { |
| ArrayType *ATy = cast<ArrayType>(Ty); |
| OS << '[' << ATy->getNumElements() << " x "; |
| print(ATy->getElementType(), OS); |
| OS << ']'; |
| return; |
| } |
| case Type::VectorTyID: { |
| VectorType *PTy = cast<VectorType>(Ty); |
| OS << "<" << PTy->getNumElements() << " x "; |
| print(PTy->getElementType(), OS); |
| OS << '>'; |
| return; |
| } |
| } |
| llvm_unreachable("Invalid TypeID"); |
| } |
| |
| void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) { |
| if (STy->isOpaque()) { |
| OS << "opaque"; |
| return; |
| } |
| |
| if (STy->isPacked()) |
| OS << '<'; |
| |
| if (STy->getNumElements() == 0) { |
| OS << "{}"; |
| } else { |
| StructType::element_iterator I = STy->element_begin(); |
| OS << "{ "; |
| print(*I++, OS); |
| for (StructType::element_iterator E = STy->element_end(); I != E; ++I) { |
| OS << ", "; |
| print(*I, OS); |
| } |
| |
| OS << " }"; |
| } |
| if (STy->isPacked()) |
| OS << '>'; |
| } |
| |
| namespace llvm { |
| |
| //===----------------------------------------------------------------------===// |
| // SlotTracker Class: Enumerate slot numbers for unnamed values |
| //===----------------------------------------------------------------------===// |
| /// This class provides computation of slot numbers for LLVM Assembly writing. |
| /// |
| class SlotTracker { |
| public: |
| /// ValueMap - A mapping of Values to slot numbers. |
| using ValueMap = DenseMap<const Value *, unsigned>; |
| |
| private: |
| /// TheModule - The module for which we are holding slot numbers. |
| const Module* TheModule; |
| |
| /// TheFunction - The function for which we are holding slot numbers. |
| const Function* TheFunction = nullptr; |
| bool FunctionProcessed = false; |
| bool ShouldInitializeAllMetadata; |
| |
| /// The summary index for which we are holding slot numbers. |
| const ModuleSummaryIndex *TheIndex = nullptr; |
| |
| /// mMap - The slot map for the module level data. |
| ValueMap mMap; |
| unsigned mNext = 0; |
| |
| /// fMap - The slot map for the function level data. |
| ValueMap fMap; |
| unsigned fNext = 0; |
| |
| /// mdnMap - Map for MDNodes. |
| DenseMap<const MDNode*, unsigned> mdnMap; |
| unsigned mdnNext = 0; |
| |
| /// asMap - The slot map for attribute sets. |
| DenseMap<AttributeSet, unsigned> asMap; |
| unsigned asNext = 0; |
| |
| /// ModulePathMap - The slot map for Module paths used in the summary index. |
| StringMap<unsigned> ModulePathMap; |
| unsigned ModulePathNext = 0; |
| |
| /// GUIDMap - The slot map for GUIDs used in the summary index. |
| DenseMap<GlobalValue::GUID, unsigned> GUIDMap; |
| unsigned GUIDNext = 0; |
| |
| public: |
| /// Construct from a module. |
| /// |
| /// If \c ShouldInitializeAllMetadata, initializes all metadata in all |
| /// functions, giving correct numbering for metadata referenced only from |
| /// within a function (even if no functions have been initialized). |
| explicit SlotTracker(const Module *M, |
| bool ShouldInitializeAllMetadata = false); |
| |
| /// Construct from a function, starting out in incorp state. |
| /// |
| /// If \c ShouldInitializeAllMetadata, initializes all metadata in all |
| /// functions, giving correct numbering for metadata referenced only from |
| /// within a function (even if no functions have been initialized). |
| explicit SlotTracker(const Function *F, |
| bool ShouldInitializeAllMetadata = false); |
| |
| /// Construct from a module summary index. |
| explicit SlotTracker(const ModuleSummaryIndex *Index); |
| |
| SlotTracker(const SlotTracker &) = delete; |
| SlotTracker &operator=(const SlotTracker &) = delete; |
| |
| /// Return the slot number of the specified value in it's type |
| /// plane. If something is not in the SlotTracker, return -1. |
| int getLocalSlot(const Value *V); |
| int getGlobalSlot(const GlobalValue *V); |
| int getMetadataSlot(const MDNode *N); |
| int getAttributeGroupSlot(AttributeSet AS); |
| int getModulePathSlot(StringRef Path); |
| int getGUIDSlot(GlobalValue::GUID GUID); |
| |
| /// If you'd like to deal with a function instead of just a module, use |
| /// this method to get its data into the SlotTracker. |
| void incorporateFunction(const Function *F) { |
| TheFunction = F; |
| FunctionProcessed = false; |
| } |
| |
| const Function *getFunction() const { return TheFunction; } |
| |
| /// After calling incorporateFunction, use this method to remove the |
| /// most recently incorporated function from the SlotTracker. This |
| /// will reset the state of the machine back to just the module contents. |
| void purgeFunction(); |
| |
| /// MDNode map iterators. |
| using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator; |
| |
| mdn_iterator mdn_begin() { return mdnMap.begin(); } |
| mdn_iterator mdn_end() { return mdnMap.end(); } |
| unsigned mdn_size() const { return mdnMap.size(); } |
| bool mdn_empty() const { return mdnMap.empty(); } |
| |
| /// AttributeSet map iterators. |
| using as_iterator = DenseMap<AttributeSet, unsigned>::iterator; |
| |
| as_iterator as_begin() { return asMap.begin(); } |
| as_iterator as_end() { return asMap.end(); } |
| unsigned as_size() const { return asMap.size(); } |
| bool as_empty() const { return asMap.empty(); } |
| |
| /// GUID map iterators. |
| using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator; |
| |
| /// These functions do the actual initialization. |
| inline void initializeIfNeeded(); |
| void initializeIndexIfNeeded(); |
| |
| // Implementation Details |
| private: |
| /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. |
| void CreateModuleSlot(const GlobalValue *V); |
| |
| /// CreateMetadataSlot - Insert the specified MDNode* into the slot table. |
| void CreateMetadataSlot(const MDNode *N); |
| |
| /// CreateFunctionSlot - Insert the specified Value* into the slot table. |
| void CreateFunctionSlot(const Value *V); |
| |
| /// Insert the specified AttributeSet into the slot table. |
| void CreateAttributeSetSlot(AttributeSet AS); |
| |
| inline void CreateModulePathSlot(StringRef Path); |
| void CreateGUIDSlot(GlobalValue::GUID GUID); |
| |
| /// Add all of the module level global variables (and their initializers) |
| /// and function declarations, but not the contents of those functions. |
| void processModule(); |
| void processIndex(); |
| |
| /// Add all of the functions arguments, basic blocks, and instructions. |
| void processFunction(); |
| |
| /// Add the metadata directly attached to a GlobalObject. |
| void processGlobalObjectMetadata(const GlobalObject &GO); |
| |
| /// Add all of the metadata from a function. |
| void processFunctionMetadata(const Function &F); |
| |
| /// Add all of the metadata from an instruction. |
| void processInstructionMetadata(const Instruction &I); |
| }; |
| |
| } // end namespace llvm |
| |
| ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M, |
| const Function *F) |
| : M(M), F(F), Machine(&Machine) {} |
| |
| ModuleSlotTracker::ModuleSlotTracker(const Module *M, |
| bool ShouldInitializeAllMetadata) |
| : ShouldCreateStorage(M), |
| ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {} |
| |
| ModuleSlotTracker::~ModuleSlotTracker() = default; |
| |
| SlotTracker *ModuleSlotTracker::getMachine() { |
| if (!ShouldCreateStorage) |
| return Machine; |
| |
| ShouldCreateStorage = false; |
| MachineStorage = |
| llvm::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata); |
| Machine = MachineStorage.get(); |
| return Machine; |
| } |
| |
| void ModuleSlotTracker::incorporateFunction(const Function &F) { |
| // Using getMachine() may lazily create the slot tracker. |
| if (!getMachine()) |
| return; |
| |
| // Nothing to do if this is the right function already. |
| if (this->F == &F) |
| return; |
| if (this->F) |
| Machine->purgeFunction(); |
| Machine->incorporateFunction(&F); |
| this->F = &F; |
| } |
| |
| int ModuleSlotTracker::getLocalSlot(const Value *V) { |
| assert(F && "No function incorporated"); |
| return Machine->getLocalSlot(V); |
| } |
| |
| static SlotTracker *createSlotTracker(const Value *V) { |
| if (const Argument *FA = dyn_cast<Argument>(V)) |
| return new SlotTracker(FA->getParent()); |
| |
| if (const Instruction *I = dyn_cast<Instruction>(V)) |
| if (I->getParent()) |
| return new SlotTracker(I->getParent()->getParent()); |
| |
| if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) |
| return new SlotTracker(BB->getParent()); |
| |
| if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) |
| return new SlotTracker(GV->getParent()); |
| |
| if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) |
| return new SlotTracker(GA->getParent()); |
| |
| if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V)) |
| return new SlotTracker(GIF->getParent()); |
| |
| if (const Function *Func = dyn_cast<Function>(V)) |
| return new SlotTracker(Func); |
| |
| return nullptr; |
| } |
| |
| #if 0 |
| #define ST_DEBUG(X) dbgs() << X |
| #else |
| #define ST_DEBUG(X) |
| #endif |
| |
| // Module level constructor. Causes the contents of the Module (sans functions) |
| // to be added to the slot table. |
| SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata) |
| : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {} |
| |
| // Function level constructor. Causes the contents of the Module and the one |
| // function provided to be added to the slot table. |
| SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata) |
| : TheModule(F ? F->getParent() : nullptr), TheFunction(F), |
| ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {} |
| |
| SlotTracker::SlotTracker(const ModuleSummaryIndex *Index) |
| : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {} |
| |
| inline void SlotTracker::initializeIfNeeded() { |
| if (TheModule) { |
| processModule(); |
| TheModule = nullptr; ///< Prevent re-processing next time we're called. |
| } |
| |
| if (TheFunction && !FunctionProcessed) |
| processFunction(); |
| } |
| |
| void SlotTracker::initializeIndexIfNeeded() { |
| if (!TheIndex) |
| return; |
| processIndex(); |
| TheIndex = nullptr; ///< Prevent re-processing next time we're called. |
| } |
| |
| // Iterate through all the global variables, functions, and global |
| // variable initializers and create slots for them. |
| void SlotTracker::processModule() { |
| ST_DEBUG("begin processModule!\n"); |
| |
| // Add all of the unnamed global variables to the value table. |
| for (const GlobalVariable &Var : TheModule->globals()) { |
| if (!Var.hasName()) |
| CreateModuleSlot(&Var); |
| processGlobalObjectMetadata(Var); |
| auto Attrs = Var.getAttributes(); |
| if (Attrs.hasAttributes()) |
| CreateAttributeSetSlot(Attrs); |
| } |
| |
| for (const GlobalAlias &A : TheModule->aliases()) { |
| if (!A.hasName()) |
| CreateModuleSlot(&A); |
| } |
| |
| for (const GlobalIFunc &I : TheModule->ifuncs()) { |
| if (!I.hasName()) |
| CreateModuleSlot(&I); |
| } |
| |
| // Add metadata used by named metadata. |
| for (const NamedMDNode &NMD : TheModule->named_metadata()) { |
| for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) |
| CreateMetadataSlot(NMD.getOperand(i)); |
| } |
| |
| for (const Function &F : *TheModule) { |
| if (!F.hasName()) |
| // Add all the unnamed functions to the table. |
| CreateModuleSlot(&F); |
| |
| if (ShouldInitializeAllMetadata) |
| processFunctionMetadata(F); |
| |
| // Add all the function attributes to the table. |
| // FIXME: Add attributes of other objects? |
| AttributeSet FnAttrs = F.getAttributes().getFnAttributes(); |
| if (FnAttrs.hasAttributes()) |
| CreateAttributeSetSlot(FnAttrs); |
| } |
| |
| ST_DEBUG("end processModule!\n"); |
| } |
| |
| // Process the arguments, basic blocks, and instructions of a function. |
| void SlotTracker::processFunction() { |
| ST_DEBUG("begin processFunction!\n"); |
| fNext = 0; |
| |
| // Process function metadata if it wasn't hit at the module-level. |
| if (!ShouldInitializeAllMetadata) |
| processFunctionMetadata(*TheFunction); |
| |
| // Add all the function arguments with no names. |
| for(Function::const_arg_iterator AI = TheFunction->arg_begin(), |
| AE = TheFunction->arg_end(); AI != AE; ++AI) |
| if (!AI->hasName()) |
| CreateFunctionSlot(&*AI); |
| |
| ST_DEBUG("Inserting Instructions:\n"); |
| |
| // Add all of the basic blocks and instructions with no names. |
| for (auto &BB : *TheFunction) { |
| if (!BB.hasName()) |
| CreateFunctionSlot(&BB); |
| |
| for (auto &I : BB) { |
| if (!I.getType()->isVoidTy() && !I.hasName()) |
| CreateFunctionSlot(&I); |
| |
| // We allow direct calls to any llvm.foo function here, because the |
| // target may not be linked into the optimizer. |
| if (auto CS = ImmutableCallSite(&I)) { |
| // Add all the call attributes to the table. |
| AttributeSet Attrs = CS.getAttributes().getFnAttributes(); |
| if (Attrs.hasAttributes()) |
| CreateAttributeSetSlot(Attrs); |
| } |
| } |
| } |
| |
| FunctionProcessed = true; |
| |
| ST_DEBUG("end processFunction!\n"); |
| } |
| |
| // Iterate through all the GUID in the index and create slots for them. |
| void SlotTracker::processIndex() { |
| ST_DEBUG("begin processIndex!\n"); |
| assert(TheIndex); |
| |
| // The first block of slots are just the module ids, which start at 0 and are |
| // assigned consecutively. Since the StringMap iteration order isn't |
| // guaranteed, use a std::map to order by module ID before assigning slots. |
| std::map<uint64_t, StringRef> ModuleIdToPathMap; |
| for (auto &ModPath : TheIndex->modulePaths()) |
| ModuleIdToPathMap[ModPath.second.first] = ModPath.first(); |
| for (auto &ModPair : ModuleIdToPathMap) |
| CreateModulePathSlot(ModPair.second); |
| |
| // Start numbering the GUIDs after the module ids. |
| GUIDNext = ModulePathNext; |
| |
| for (auto &GlobalList : *TheIndex) |
| CreateGUIDSlot(GlobalList.first); |
| |
| for (auto &TId : TheIndex->typeIds()) |
| CreateGUIDSlot(GlobalValue::getGUID(TId.first)); |
| |
| ST_DEBUG("end processIndex!\n"); |
| } |
| |
| void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) { |
| SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; |
| GO.getAllMetadata(MDs); |
| for (auto &MD : MDs) |
| CreateMetadataSlot(MD.second); |
| } |
| |
| void SlotTracker::processFunctionMetadata(const Function &F) { |
| processGlobalObjectMetadata(F); |
| for (auto &BB : F) { |
| for (auto &I : BB) |
| processInstructionMetadata(I); |
| } |
| } |
| |
| void SlotTracker::processInstructionMetadata(const Instruction &I) { |
| // Process metadata used directly by intrinsics. |
| if (const CallInst *CI = dyn_cast<CallInst>(&I)) |
| if (Function *F = CI->getCalledFunction()) |
| if (F->isIntrinsic()) |
| for (auto &Op : I.operands()) |
| if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op)) |
| if (MDNode *N = dyn_cast<MDNode>(V->getMetadata())) |
| CreateMetadataSlot(N); |
| |
| // Process metadata attached to this instruction. |
| SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; |
| I.getAllMetadata(MDs); |
| for (auto &MD : MDs) |
| CreateMetadataSlot(MD.second); |
| } |
| |
| /// Clean up after incorporating a function. This is the only way to get out of |
| /// the function incorporation state that affects get*Slot/Create*Slot. Function |
| /// incorporation state is indicated by TheFunction != 0. |
| void SlotTracker::purgeFunction() { |
| ST_DEBUG("begin purgeFunction!\n"); |
| fMap.clear(); // Simply discard the function level map |
| TheFunction = nullptr; |
| FunctionProcessed = false; |
| ST_DEBUG("end purgeFunction!\n"); |
| } |
| |
| /// getGlobalSlot - Get the slot number of a global value. |
| int SlotTracker::getGlobalSlot(const GlobalValue *V) { |
| // Check for uninitialized state and do lazy initialization. |
| initializeIfNeeded(); |
| |
| // Find the value in the module map |
| ValueMap::iterator MI = mMap.find(V); |
| return MI == mMap.end() ? -1 : (int)MI->second; |
| } |
| |
| /// getMetadataSlot - Get the slot number of a MDNode. |
| int SlotTracker::getMetadataSlot(const MDNode *N) { |
| // Check for uninitialized state and do lazy initialization. |
| initializeIfNeeded(); |
| |
| // Find the MDNode in the module map |
| mdn_iterator MI = mdnMap.find(N); |
| return MI == mdnMap.end() ? -1 : (int)MI->second; |
| } |
| |
| /// getLocalSlot - Get the slot number for a value that is local to a function. |
| int SlotTracker::getLocalSlot(const Value *V) { |
| assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!"); |
| |
| // Check for uninitialized state and do lazy initialization. |
| initializeIfNeeded(); |
| |
| ValueMap::iterator FI = fMap.find(V); |
| return FI == fMap.end() ? -1 : (int)FI->second; |
| } |
| |
| int SlotTracker::getAttributeGroupSlot(AttributeSet AS) { |
| // Check for uninitialized state and do lazy initialization. |
| initializeIfNeeded(); |
| |
| // Find the AttributeSet in the module map. |
| as_iterator AI = asMap.find(AS); |
| return AI == asMap.end() ? -1 : (int)AI->second; |
| } |
| |
| int SlotTracker::getModulePathSlot(StringRef Path) { |
| // Check for uninitialized state and do lazy initialization. |
| initializeIndexIfNeeded(); |
| |
| // Find the Module path in the map |
| auto I = ModulePathMap.find(Path); |
| return I == ModulePathMap.end() ? -1 : (int)I->second; |
| } |
| |
| int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) { |
| // Check for uninitialized state and do lazy initialization. |
| initializeIndexIfNeeded(); |
| |
| // Find the GUID in the map |
| guid_iterator I = GUIDMap.find(GUID); |
| return I == GUIDMap.end() ? -1 : (int)I->second; |
| } |
| |
| /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. |
| void SlotTracker::CreateModuleSlot(const GlobalValue *V) { |
| assert(V && "Can't insert a null Value into SlotTracker!"); |
| assert(!V->getType()->isVoidTy() && "Doesn't need a slot!"); |
| assert(!V->hasName() && "Doesn't need a slot!"); |
| |
| unsigned DestSlot = mNext++; |
| mMap[V] = DestSlot; |
| |
| ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << |
| DestSlot << " ["); |
| // G = Global, F = Function, A = Alias, I = IFunc, o = other |
| ST_DEBUG((isa<GlobalVariable>(V) ? 'G' : |
| (isa<Function>(V) ? 'F' : |
| (isa<GlobalAlias>(V) ? 'A' : |
| (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n"); |
| } |
| |
| /// CreateSlot - Create a new slot for the specified value if it has no name. |
| void SlotTracker::CreateFunctionSlot(const Value *V) { |
| assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!"); |
| |
| unsigned DestSlot = fNext++; |
| fMap[V] = DestSlot; |
| |
| // G = Global, F = Function, o = other |
| ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << |
| DestSlot << " [o]\n"); |
| } |
| |
| /// CreateModuleSlot - Insert the specified MDNode* into the slot table. |
| void SlotTracker::CreateMetadataSlot(const MDNode *N) { |
| assert(N && "Can't insert a null Value into SlotTracker!"); |
| |
| // Don't make slots for DIExpressions. We just print them inline everywhere. |
| if (isa<DIExpression>(N)) |
| return; |
| |
| unsigned DestSlot = mdnNext; |
| if (!mdnMap.insert(std::make_pair(N, DestSlot)).second) |
| return; |
| ++mdnNext; |
| |
| // Recursively add any MDNodes referenced by operands. |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i))) |
| CreateMetadataSlot(Op); |
| } |
| |
| void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) { |
| assert(AS.hasAttributes() && "Doesn't need a slot!"); |
| |
| as_iterator I = asMap.find(AS); |
| if (I != asMap.end()) |
| return; |
| |
| unsigned DestSlot = asNext++; |
| asMap[AS] = DestSlot; |
| } |
| |
| /// Create a new slot for the specified Module |
| void SlotTracker::CreateModulePathSlot(StringRef Path) { |
| ModulePathMap[Path] = ModulePathNext++; |
| } |
| |
| /// Create a new slot for the specified GUID |
| void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) { |
| GUIDMap[GUID] = GUIDNext++; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AsmWriter Implementation |
| //===----------------------------------------------------------------------===// |
| |
| static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, |
| const Module *Context); |
| |
| static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, const Module *Context, |
| bool FromValue = false); |
| |
| static void writeAtomicRMWOperation(raw_ostream &Out, |
| AtomicRMWInst::BinOp Op) { |
| switch (Op) { |
| default: Out << " <unknown operation " << Op << ">"; break; |
| case AtomicRMWInst::Xchg: Out << " xchg"; break; |
| case AtomicRMWInst::Add: Out << " add"; break; |
| case AtomicRMWInst::Sub: Out << " sub"; break; |
| case AtomicRMWInst::And: Out << " and"; break; |
| case AtomicRMWInst::Nand: Out << " nand"; break; |
| case AtomicRMWInst::Or: Out << " or"; break; |
| case AtomicRMWInst::Xor: Out << " xor"; break; |
| case AtomicRMWInst::Max: Out << " max"; break; |
| case AtomicRMWInst::Min: Out << " min"; break; |
| case AtomicRMWInst::UMax: Out << " umax"; break; |
| case AtomicRMWInst::UMin: Out << " umin"; break; |
| } |
| } |
| |
| static void WriteOptimizationInfo(raw_ostream &Out, const User *U) { |
| if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) { |
| // 'Fast' is an abbreviation for all fast-math-flags. |
| if (FPO->isFast()) |
| Out << " fast"; |
| else { |
| if (FPO->hasAllowReassoc()) |
| Out << " reassoc"; |
| if (FPO->hasNoNaNs()) |
| Out << " nnan"; |
| if (FPO->hasNoInfs()) |
| Out << " ninf"; |
| if (FPO->hasNoSignedZeros()) |
| Out << " nsz"; |
| if (FPO->hasAllowReciprocal()) |
| Out << " arcp"; |
| if (FPO->hasAllowContract()) |
| Out << " contract"; |
| if (FPO->hasApproxFunc()) |
| Out << " afn"; |
| } |
| } |
| |
| if (const OverflowingBinaryOperator *OBO = |
| dyn_cast<OverflowingBinaryOperator>(U)) { |
| if (OBO->hasNoUnsignedWrap()) |
| Out << " nuw"; |
| if (OBO->hasNoSignedWrap()) |
| Out << " nsw"; |
| } else if (const PossiblyExactOperator *Div = |
| dyn_cast<PossiblyExactOperator>(U)) { |
| if (Div->isExact()) |
| Out << " exact"; |
| } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) { |
| if (GEP->isInBounds()) |
| Out << " inbounds"; |
| } |
| } |
| |
| static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, |
| TypePrinting &TypePrinter, |
| SlotTracker *Machine, |
| const Module *Context) { |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { |
| if (CI->getType()->isIntegerTy(1)) { |
| Out << (CI->getZExtValue() ? "true" : "false"); |
| return; |
| } |
| Out << CI->getValue(); |
| return; |
| } |
| |
| if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { |
| const APFloat &APF = CFP->getValueAPF(); |
| if (&APF.getSemantics() == &APFloat::IEEEsingle() || |
| &APF.getSemantics() == &APFloat::IEEEdouble()) { |
| // We would like to output the FP constant value in exponential notation, |
| // but we cannot do this if doing so will lose precision. Check here to |
| // make sure that we only output it in exponential format if we can parse |
| // the value back and get the same value. |
| // |
| bool ignored; |
| bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble(); |
| bool isInf = APF.isInfinity(); |
| bool isNaN = APF.isNaN(); |
| if (!isInf && !isNaN) { |
| double Val = isDouble ? APF.convertToDouble() : APF.convertToFloat(); |
| SmallString<128> StrVal; |
| APF.toString(StrVal, 6, 0, false); |
| // Check to make sure that the stringized number is not some string like |
| // "Inf" or NaN, that atof will accept, but the lexer will not. Check |
| // that the string matches the "[-+]?[0-9]" regex. |
| // |
| assert(((StrVal[0] >= '0' && StrVal[0] <= '9') || |
| ((StrVal[0] == '-' || StrVal[0] == '+') && |
| (StrVal[1] >= '0' && StrVal[1] <= '9'))) && |
| "[-+]?[0-9] regex does not match!"); |
| // Reparse stringized version! |
| if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) { |
| Out << StrVal; |
| return; |
| } |
| } |
| // Otherwise we could not reparse it to exactly the same value, so we must |
| // output the string in hexadecimal format! Note that loading and storing |
| // floating point types changes the bits of NaNs on some hosts, notably |
| // x86, so we must not use these types. |
| static_assert(sizeof(double) == sizeof(uint64_t), |
| "assuming that double is 64 bits!"); |
| APFloat apf = APF; |
| // Floats are represented in ASCII IR as double, convert. |
| if (!isDouble) |
| apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, |
| &ignored); |
| Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true); |
| return; |
| } |
| |
| // Either half, or some form of long double. |
| // These appear as a magic letter identifying the type, then a |
| // fixed number of hex digits. |
| Out << "0x"; |
| APInt API = APF.bitcastToAPInt(); |
| if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) { |
| Out << 'K'; |
| Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4, |
| /*Upper=*/true); |
| Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, |
| /*Upper=*/true); |
| return; |
| } else if (&APF.getSemantics() == &APFloat::IEEEquad()) { |
| Out << 'L'; |
| Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, |
| /*Upper=*/true); |
| Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16, |
| /*Upper=*/true); |
| } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) { |
| Out << 'M'; |
| Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, |
| /*Upper=*/true); |
| Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16, |
| /*Upper=*/true); |
| } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) { |
| Out << 'H'; |
| Out << format_hex_no_prefix(API.getZExtValue(), 4, |
| /*Upper=*/true); |
| } else |
| llvm_unreachable("Unsupported floating point type"); |
| return; |
| } |
| |
| if (isa<ConstantAggregateZero>(CV)) { |
| Out << "zeroinitializer"; |
| return; |
| } |
| |
| if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { |
| Out << "blockaddress("; |
| WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine, |
| Context); |
| Out << ", "; |
| WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine, |
| Context); |
| Out << ")"; |
| return; |
| } |
| |
| if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { |
| Type *ETy = CA->getType()->getElementType(); |
| Out << '['; |
| TypePrinter.print(ETy, Out); |
| Out << ' '; |
| WriteAsOperandInternal(Out, CA->getOperand(0), |
| &TypePrinter, Machine, |
| Context); |
| for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { |
| Out << ", "; |
| TypePrinter.print(ETy, Out); |
| Out << ' '; |
| WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine, |
| Context); |
| } |
| Out << ']'; |
| return; |
| } |
| |
| if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) { |
| // As a special case, print the array as a string if it is an array of |
| // i8 with ConstantInt values. |
| if (CA->isString()) { |
| Out << "c\""; |
| printEscapedString(CA->getAsString(), Out); |
| Out << '"'; |
| return; |
| } |
| |
| Type *ETy = CA->getType()->getElementType(); |
| Out << '['; |
| TypePrinter.print(ETy, Out); |
| Out << ' '; |
| WriteAsOperandInternal(Out, CA->getElementAsConstant(0), |
| &TypePrinter, Machine, |
| Context); |
| for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) { |
| Out << ", "; |
| TypePrinter.print(ETy, Out); |
| Out << ' '; |
| WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter, |
| Machine, Context); |
| } |
| Out << ']'; |
| return; |
| } |
| |
| if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { |
| if (CS->getType()->isPacked()) |
| Out << '<'; |
| Out << '{'; |
| unsigned N = CS->getNumOperands(); |
| if (N) { |
| Out << ' '; |
| TypePrinter.print(CS->getOperand(0)->getType(), Out); |
| Out << ' '; |
| |
| WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine, |
| Context); |
| |
| for (unsigned i = 1; i < N; i++) { |
| Out << ", "; |
| TypePrinter.print(CS->getOperand(i)->getType(), Out); |
| Out << ' '; |
| |
| WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine, |
| Context); |
| } |
| Out << ' '; |
| } |
| |
| Out << '}'; |
| if (CS->getType()->isPacked()) |
| Out << '>'; |
| return; |
| } |
| |
| if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) { |
| Type *ETy = CV->getType()->getVectorElementType(); |
| Out << '<'; |
| TypePrinter.print(ETy, Out); |
| Out << ' '; |
| WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter, |
| Machine, Context); |
| for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){ |
| Out << ", "; |
| TypePrinter.print(ETy, Out); |
| Out << ' '; |
| WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter, |
| Machine, Context); |
| } |
| Out << '>'; |
| return; |
| } |
| |
| if (isa<ConstantPointerNull>(CV)) { |
| Out << "null"; |
| return; |
| } |
| |
| if (isa<ConstantTokenNone>(CV)) { |
| Out << "none"; |
| return; |
| } |
| |
| if (isa<UndefValue>(CV)) { |
| Out << "undef"; |
| return; |
| } |
| |
| if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { |
| Out << CE->getOpcodeName(); |
| WriteOptimizationInfo(Out, CE); |
| if (CE->isCompare()) |
| Out << ' ' << CmpInst::getPredicateName( |
| static_cast<CmpInst::Predicate>(CE->getPredicate())); |
| Out << " ("; |
| |
| Optional<unsigned> InRangeOp; |
| if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) { |
| TypePrinter.print(GEP->getSourceElementType(), Out); |
| Out << ", "; |
| InRangeOp = GEP->getInRangeIndex(); |
| if (InRangeOp) |
| ++*InRangeOp; |
| } |
| |
| for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { |
| if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp) |
| Out << "inrange "; |
| TypePrinter.print((*OI)->getType(), Out); |
| Out << ' '; |
| WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context); |
| if (OI+1 != CE->op_end()) |
| Out << ", "; |
| } |
| |
| if (CE->hasIndices()) { |
| ArrayRef<unsigned> Indices = CE->getIndices(); |
| for (unsigned i = 0, e = Indices.size(); i != e; ++i) |
| Out << ", " << Indices[i]; |
| } |
| |
| if (CE->isCast()) { |
| Out << " to "; |
| TypePrinter.print(CE->getType(), Out); |
| } |
| |
| Out << ')'; |
| return; |
| } |
| |
| Out << "<placeholder or erroneous Constant>"; |
| } |
| |
| static void writeMDTuple(raw_ostream &Out, const MDTuple *Node, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!{"; |
| for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) { |
| const Metadata *MD = Node->getOperand(mi); |
| if (!MD) |
| Out << "null"; |
| else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) { |
| Value *V = MDV->getValue(); |
| TypePrinter->print(V->getType(), Out); |
| Out << ' '; |
| WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context); |
| } else { |
| WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context); |
| } |
| if (mi + 1 != me) |
| Out << ", "; |
| } |
| |
| Out << "}"; |
| } |
| |
| namespace { |
| |
| struct FieldSeparator { |
| bool Skip = true; |
| const char *Sep; |
| |
| FieldSeparator(const char *Sep = ", ") : Sep(Sep) {} |
| }; |
| |
| raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) { |
| if (FS.Skip) { |
| FS.Skip = false; |
| return OS; |
| } |
| return OS << FS.Sep; |
| } |
| |
| struct MDFieldPrinter { |
| raw_ostream &Out; |
| FieldSeparator FS; |
| TypePrinting *TypePrinter = nullptr; |
| SlotTracker *Machine = nullptr; |
| const Module *Context = nullptr; |
| |
| explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {} |
| MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter, |
| SlotTracker *Machine, const Module *Context) |
| : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) { |
| } |
| |
| void printTag(const DINode *N); |
| void printMacinfoType(const DIMacroNode *N); |
| void printChecksum(const DIFile::ChecksumInfo<StringRef> &N); |
| void printString(StringRef Name, StringRef Value, |
| bool ShouldSkipEmpty = true); |
| void printMetadata(StringRef Name, const Metadata *MD, |
| bool ShouldSkipNull = true); |
| template <class IntTy> |
| void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true); |
| void printBool(StringRef Name, bool Value, Optional<bool> Default = None); |
| void printDIFlags(StringRef Name, DINode::DIFlags Flags); |
| template <class IntTy, class Stringifier> |
| void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString, |
| bool ShouldSkipZero = true); |
| void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK); |
| }; |
| |
| } // end anonymous namespace |
| |
| void MDFieldPrinter::printTag(const DINode *N) { |
| Out << FS << "tag: "; |
| auto Tag = dwarf::TagString(N->getTag()); |
| if (!Tag.empty()) |
| Out << Tag; |
| else |
| Out << N->getTag(); |
| } |
| |
| void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) { |
| Out << FS << "type: "; |
| auto Type = dwarf::MacinfoString(N->getMacinfoType()); |
| if (!Type.empty()) |
| Out << Type; |
| else |
| Out << N->getMacinfoType(); |
| } |
| |
| void MDFieldPrinter::printChecksum( |
| const DIFile::ChecksumInfo<StringRef> &Checksum) { |
| Out << FS << "checksumkind: " << Checksum.getKindAsString(); |
| printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false); |
| } |
| |
| void MDFieldPrinter::printString(StringRef Name, StringRef Value, |
| bool ShouldSkipEmpty) { |
| if (ShouldSkipEmpty && Value.empty()) |
| return; |
| |
| Out << FS << Name << ": \""; |
| printEscapedString(Value, Out); |
| Out << "\""; |
| } |
| |
| static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, |
| const Module *Context) { |
| if (!MD) { |
| Out << "null"; |
| return; |
| } |
| WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context); |
| } |
| |
| void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD, |
| bool ShouldSkipNull) { |
| if (ShouldSkipNull && !MD) |
| return; |
| |
| Out << FS << Name << ": "; |
| writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context); |
| } |
| |
| template <class IntTy> |
| void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) { |
| if (ShouldSkipZero && !Int) |
| return; |
| |
| Out << FS << Name << ": " << Int; |
| } |
| |
| void MDFieldPrinter::printBool(StringRef Name, bool Value, |
| Optional<bool> Default) { |
| if (Default && Value == *Default) |
| return; |
| Out << FS << Name << ": " << (Value ? "true" : "false"); |
| } |
| |
| void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) { |
| if (!Flags) |
| return; |
| |
| Out << FS << Name << ": "; |
| |
| SmallVector<DINode::DIFlags, 8> SplitFlags; |
| auto Extra = DINode::splitFlags(Flags, SplitFlags); |
| |
| FieldSeparator FlagsFS(" | "); |
| for (auto F : SplitFlags) { |
| auto StringF = DINode::getFlagString(F); |
| assert(!StringF.empty() && "Expected valid flag"); |
| Out << FlagsFS << StringF; |
| } |
| if (Extra || SplitFlags.empty()) |
| Out << FlagsFS << Extra; |
| } |
| |
| void MDFieldPrinter::printEmissionKind(StringRef Name, |
| DICompileUnit::DebugEmissionKind EK) { |
| Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK); |
| } |
| |
| template <class IntTy, class Stringifier> |
| void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value, |
| Stringifier toString, bool ShouldSkipZero) { |
| if (!Value) |
| return; |
| |
| Out << FS << Name << ": "; |
| auto S = toString(Value); |
| if (!S.empty()) |
| Out << S; |
| else |
| Out << Value; |
| } |
| |
| static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!GenericDINode("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printTag(N); |
| Printer.printString("header", N->getHeader()); |
| if (N->getNumDwarfOperands()) { |
| Out << Printer.FS << "operands: {"; |
| FieldSeparator IFS; |
| for (auto &I : N->dwarf_operands()) { |
| Out << IFS; |
| writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context); |
| } |
| Out << "}"; |
| } |
| Out << ")"; |
| } |
| |
| static void writeDILocation(raw_ostream &Out, const DILocation *DL, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DILocation("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| // Always output the line, since 0 is a relevant and important value for it. |
| Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false); |
| Printer.printInt("column", DL->getColumn()); |
| Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false); |
| Printer.printMetadata("inlinedAt", DL->getRawInlinedAt()); |
| Out << ")"; |
| } |
| |
| static void writeDISubrange(raw_ostream &Out, const DISubrange *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DISubrange("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| if (auto *CE = N->getCount().dyn_cast<ConstantInt*>()) |
| Printer.printInt("count", CE->getSExtValue(), /* ShouldSkipZero */ false); |
| else |
| Printer.printMetadata("count", N->getCount().dyn_cast<DIVariable*>(), |
| /*ShouldSkipNull */ false); |
| Printer.printInt("lowerBound", N->getLowerBound()); |
| Out << ")"; |
| } |
| |
| static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N, |
| TypePrinting *, SlotTracker *, const Module *) { |
| Out << "!DIEnumerator("; |
| MDFieldPrinter Printer(Out); |
| Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false); |
| if (N->isUnsigned()) { |
| auto Value = static_cast<uint64_t>(N->getValue()); |
| Printer.printInt("value", Value, /* ShouldSkipZero */ false); |
| Printer.printBool("isUnsigned", true); |
| } else { |
| Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false); |
| } |
| Out << ")"; |
| } |
| |
| static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N, |
| TypePrinting *, SlotTracker *, const Module *) { |
| Out << "!DIBasicType("; |
| MDFieldPrinter Printer(Out); |
| if (N->getTag() != dwarf::DW_TAG_base_type) |
| Printer.printTag(N); |
| Printer.printString("name", N->getName()); |
| Printer.printInt("size", N->getSizeInBits()); |
| Printer.printInt("align", N->getAlignInBits()); |
| Printer.printDwarfEnum("encoding", N->getEncoding(), |
| dwarf::AttributeEncodingString); |
| Out << ")"; |
| } |
| |
| static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DIDerivedType("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printTag(N); |
| Printer.printString("name", N->getName()); |
| Printer.printMetadata("scope", N->getRawScope()); |
| Printer.printMetadata("file", N->getRawFile()); |
| Printer.printInt("line", N->getLine()); |
| Printer.printMetadata("baseType", N->getRawBaseType(), |
| /* ShouldSkipNull */ false); |
| Printer.printInt("size", N->getSizeInBits()); |
| Printer.printInt("align", N->getAlignInBits()); |
| Printer.printInt("offset", N->getOffsetInBits()); |
| Printer.printDIFlags("flags", N->getFlags()); |
| Printer.printMetadata("extraData", N->getRawExtraData()); |
| if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) |
| Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace, |
| /* ShouldSkipZero */ false); |
| Out << ")"; |
| } |
| |
| static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, const Module *Context) { |
| Out << "!DICompositeType("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printTag(N); |
| Printer.printString("name", N->getName()); |
| Printer.printMetadata("scope", N->getRawScope()); |
| Printer.printMetadata("file", N->getRawFile()); |
| Printer.printInt("line", N->getLine()); |
| Printer.printMetadata("baseType", N->getRawBaseType()); |
| Printer.printInt("size", N->getSizeInBits()); |
| Printer.printInt("align", N->getAlignInBits()); |
| Printer.printInt("offset", N->getOffsetInBits()); |
| Printer.printDIFlags("flags", N->getFlags()); |
| Printer.printMetadata("elements", N->getRawElements()); |
| Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(), |
| dwarf::LanguageString); |
| Printer.printMetadata("vtableHolder", N->getRawVTableHolder()); |
| Printer.printMetadata("templateParams", N->getRawTemplateParams()); |
| Printer.printString("identifier", N->getIdentifier()); |
| Printer.printMetadata("discriminator", N->getRawDiscriminator()); |
| Out << ")"; |
| } |
| |
| static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, const Module *Context) { |
| Out << "!DISubroutineType("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printDIFlags("flags", N->getFlags()); |
| Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString); |
| Printer.printMetadata("types", N->getRawTypeArray(), |
| /* ShouldSkipNull */ false); |
| Out << ")"; |
| } |
| |
| static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *, |
| SlotTracker *, const Module *) { |
| Out << "!DIFile("; |
| MDFieldPrinter Printer(Out); |
| Printer.printString("filename", N->getFilename(), |
| /* ShouldSkipEmpty */ false); |
| Printer.printString("directory", N->getDirectory(), |
| /* ShouldSkipEmpty */ false); |
| // Print all values for checksum together, or not at all. |
| if (N->getChecksum()) |
| Printer.printChecksum(*N->getChecksum()); |
| Printer.printString("source", N->getSource().getValueOr(StringRef()), |
| /* ShouldSkipEmpty */ true); |
| Out << ")"; |
| } |
| |
| static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DICompileUnit("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printDwarfEnum("language", N->getSourceLanguage(), |
| dwarf::LanguageString, /* ShouldSkipZero */ false); |
| Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false); |
| Printer.printString("producer", N->getProducer()); |
| Printer.printBool("isOptimized", N->isOptimized()); |
| Printer.printString("flags", N->getFlags()); |
| Printer.printInt("runtimeVersion", N->getRuntimeVersion(), |
| /* ShouldSkipZero */ false); |
| Printer.printString("splitDebugFilename", N->getSplitDebugFilename()); |
| Printer.printEmissionKind("emissionKind", N->getEmissionKind()); |
| Printer.printMetadata("enums", N->getRawEnumTypes()); |
| Printer.printMetadata("retainedTypes", N->getRawRetainedTypes()); |
| Printer.printMetadata("globals", N->getRawGlobalVariables()); |
| Printer.printMetadata("imports", N->getRawImportedEntities()); |
| Printer.printMetadata("macros", N->getRawMacros()); |
| Printer.printInt("dwoId", N->getDWOId()); |
| Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true); |
| Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(), |
| false); |
| Printer.printBool("gnuPubnames", N->getGnuPubnames(), false); |
| Out << ")"; |
| } |
| |
| static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DISubprogram("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printString("name", N->getName()); |
| Printer.printString("linkageName", N->getLinkageName()); |
| Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); |
| Printer.printMetadata("file", N->getRawFile()); |
| Printer.printInt("line", N->getLine()); |
| Printer.printMetadata("type", N->getRawType()); |
| Printer.printBool("isLocal", N->isLocalToUnit()); |
| Printer.printBool("isDefinition", N->isDefinition()); |
| Printer.printInt("scopeLine", N->getScopeLine()); |
| Printer.printMetadata("containingType", N->getRawContainingType()); |
| Printer.printDwarfEnum("virtuality", N->getVirtuality(), |
| dwarf::VirtualityString); |
| if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none || |
| N->getVirtualIndex() != 0) |
| Printer.printInt("virtualIndex", N->getVirtualIndex(), false); |
| Printer.printInt("thisAdjustment", N->getThisAdjustment()); |
| Printer.printDIFlags("flags", N->getFlags()); |
| Printer.printBool("isOptimized", N->isOptimized()); |
| Printer.printMetadata("unit", N->getRawUnit()); |
| Printer.printMetadata("templateParams", N->getRawTemplateParams()); |
| Printer.printMetadata("declaration", N->getRawDeclaration()); |
| Printer.printMetadata("retainedNodes", N->getRawRetainedNodes()); |
| Printer.printMetadata("thrownTypes", N->getRawThrownTypes()); |
| Out << ")"; |
| } |
| |
| static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DILexicalBlock("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); |
| Printer.printMetadata("file", N->getRawFile()); |
| Printer.printInt("line", N->getLine()); |
| Printer.printInt("column", N->getColumn()); |
| Out << ")"; |
| } |
| |
| static void writeDILexicalBlockFile(raw_ostream &Out, |
| const DILexicalBlockFile *N, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DILexicalBlockFile("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); |
| Printer.printMetadata("file", N->getRawFile()); |
| Printer.printInt("discriminator", N->getDiscriminator(), |
| /* ShouldSkipZero */ false); |
| Out << ")"; |
| } |
| |
| static void writeDINamespace(raw_ostream &Out, const DINamespace *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DINamespace("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printString("name", N->getName()); |
| Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); |
| Printer.printBool("exportSymbols", N->getExportSymbols(), false); |
| Out << ")"; |
| } |
| |
| static void writeDIMacro(raw_ostream &Out, const DIMacro *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DIMacro("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printMacinfoType(N); |
| Printer.printInt("line", N->getLine()); |
| Printer.printString("name", N->getName()); |
| Printer.printString("value", N->getValue()); |
| Out << ")"; |
| } |
| |
| static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DIMacroFile("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printInt("line", N->getLine()); |
| Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false); |
| Printer.printMetadata("nodes", N->getRawElements()); |
| Out << ")"; |
| } |
| |
| static void writeDIModule(raw_ostream &Out, const DIModule *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DIModule("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); |
| Printer.printString("name", N->getName()); |
| Printer.printString("configMacros", N->getConfigurationMacros()); |
| Printer.printString("includePath", N->getIncludePath()); |
| Printer.printString("isysroot", N->getISysRoot()); |
| Out << ")"; |
| } |
| |
| |
| static void writeDITemplateTypeParameter(raw_ostream &Out, |
| const DITemplateTypeParameter *N, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DITemplateTypeParameter("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printString("name", N->getName()); |
| Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false); |
| Out << ")"; |
| } |
| |
| static void writeDITemplateValueParameter(raw_ostream &Out, |
| const DITemplateValueParameter *N, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DITemplateValueParameter("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| if (N->getTag() != dwarf::DW_TAG_template_value_parameter) |
| Printer.printTag(N); |
| Printer.printString("name", N->getName()); |
| Printer.printMetadata("type", N->getRawType()); |
| Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false); |
| Out << ")"; |
| } |
| |
| static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, const Module *Context) { |
| Out << "!DIGlobalVariable("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printString("name", N->getName()); |
| Printer.printString("linkageName", N->getLinkageName()); |
| Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); |
| Printer.printMetadata("file", N->getRawFile()); |
| Printer.printInt("line", N->getLine()); |
| Printer.printMetadata("type", N->getRawType()); |
| Printer.printBool("isLocal", N->isLocalToUnit()); |
| Printer.printBool("isDefinition", N->isDefinition()); |
| Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration()); |
| Printer.printInt("align", N->getAlignInBits()); |
| Out << ")"; |
| } |
| |
| static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, const Module *Context) { |
| Out << "!DILocalVariable("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printString("name", N->getName()); |
| Printer.printInt("arg", N->getArg()); |
| Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); |
| Printer.printMetadata("file", N->getRawFile()); |
| Printer.printInt("line", N->getLine()); |
| Printer.printMetadata("type", N->getRawType()); |
| Printer.printDIFlags("flags", N->getFlags()); |
| Printer.printInt("align", N->getAlignInBits()); |
| Out << ")"; |
| } |
| |
| static void writeDILabel(raw_ostream &Out, const DILabel *N, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, const Module *Context) { |
| Out << "!DILabel("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); |
| Printer.printString("name", N->getName()); |
| Printer.printMetadata("file", N->getRawFile()); |
| Printer.printInt("line", N->getLine()); |
| Out << ")"; |
| } |
| |
| static void writeDIExpression(raw_ostream &Out, const DIExpression *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DIExpression("; |
| FieldSeparator FS; |
| if (N->isValid()) { |
| for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) { |
| auto OpStr = dwarf::OperationEncodingString(I->getOp()); |
| assert(!OpStr.empty() && "Expected valid opcode"); |
| |
| Out << FS << OpStr; |
| for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A) |
| Out << FS << I->getArg(A); |
| } |
| } else { |
| for (const auto &I : N->getElements()) |
| Out << FS << I; |
| } |
| Out << ")"; |
| } |
| |
| static void writeDIGlobalVariableExpression(raw_ostream &Out, |
| const DIGlobalVariableExpression *N, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DIGlobalVariableExpression("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printMetadata("var", N->getVariable()); |
| Printer.printMetadata("expr", N->getExpression()); |
| Out << ")"; |
| } |
| |
| static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DIObjCProperty("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printString("name", N->getName()); |
| Printer.printMetadata("file", N->getRawFile()); |
| Printer.printInt("line", N->getLine()); |
| Printer.printString("setter", N->getSetterName()); |
| Printer.printString("getter", N->getGetterName()); |
| Printer.printInt("attributes", N->getAttributes()); |
| Printer.printMetadata("type", N->getRawType()); |
| Out << ")"; |
| } |
| |
| static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, const Module *Context) { |
| Out << "!DIImportedEntity("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printTag(N); |
| Printer.printString("name", N->getName()); |
| Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); |
| Printer.printMetadata("entity", N->getRawEntity()); |
| Printer.printMetadata("file", N->getRawFile()); |
| Printer.printInt("line", N->getLine()); |
| Out << ")"; |
| } |
| |
| static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, |
| const Module *Context) { |
| if (Node->isDistinct()) |
| Out << "distinct "; |
| else if (Node->isTemporary()) |
| Out << "<temporary!> "; // Handle broken code. |
| |
| switch (Node->getMetadataID()) { |
| default: |
| llvm_unreachable("Expected uniquable MDNode"); |
| #define HANDLE_MDNODE_LEAF(CLASS) \ |
| case Metadata::CLASS##Kind: \ |
| write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \ |
| break; |
| #include "llvm/IR/Metadata.def" |
| } |
| } |
| |
| // Full implementation of printing a Value as an operand with support for |
| // TypePrinting, etc. |
| static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, |
| const Module *Context) { |
| if (V->hasName()) { |
| PrintLLVMName(Out, V); |
| return; |
| } |
| |
| const Constant *CV = dyn_cast<Constant>(V); |
| if (CV && !isa<GlobalValue>(CV)) { |
| assert(TypePrinter && "Constants require TypePrinting!"); |
| WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context); |
| return; |
| } |
| |
| if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { |
| Out << "asm "; |
| if (IA->hasSideEffects()) |
| Out << "sideeffect "; |
| if (IA->isAlignStack()) |
| Out << "alignstack "; |
| // We don't emit the AD_ATT dialect as it's the assumed default. |
| if (IA->getDialect() == InlineAsm::AD_Intel) |
| Out << "inteldialect "; |
| Out << '"'; |
| printEscapedString(IA->getAsmString(), Out); |
| Out << "\", \""; |
| printEscapedString(IA->getConstraintString(), Out); |
| Out << '"'; |
| return; |
| } |
| |
| if (auto *MD = dyn_cast<MetadataAsValue>(V)) { |
| WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine, |
| Context, /* FromValue */ true); |
| return; |
| } |
| |
| char Prefix = '%'; |
| int Slot; |
| // If we have a SlotTracker, use it. |
| if (Machine) { |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| Slot = Machine->getGlobalSlot(GV); |
| Prefix = '@'; |
| } else { |
| Slot = Machine->getLocalSlot(V); |
| |
| // If the local value didn't succeed, then we may be referring to a value |
| // from a different function. Translate it, as this can happen when using |
| // address of blocks. |
| if (Slot == -1) |
| if ((Machine = createSlotTracker(V))) { |
| Slot = Machine->getLocalSlot(V); |
| delete Machine; |
| } |
| } |
| } else if ((Machine = createSlotTracker(V))) { |
| // Otherwise, create one to get the # and then destroy it. |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| Slot = Machine->getGlobalSlot(GV); |
| Prefix = '@'; |
| } else { |
| Slot = Machine->getLocalSlot(V); |
| } |
| delete Machine; |
| Machine = nullptr; |
| } else { |
| Slot = -1; |
| } |
| |
| if (Slot != -1) |
| Out << Prefix << Slot; |
| else |
| Out << "<badref>"; |
| } |
| |
| static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, const Module *Context, |
| bool FromValue) { |
| // Write DIExpressions inline when used as a value. Improves readability of |
| // debug info intrinsics. |
| if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) { |
| writeDIExpression(Out, Expr, TypePrinter, Machine, Context); |
| return; |
| } |
| |
| if (const MDNode *N = dyn_cast<MDNode>(MD)) { |
| std::unique_ptr<SlotTracker> MachineStorage; |
| if (!Machine) { |
| MachineStorage = make_unique<SlotTracker>(Context); |
| Machine = MachineStorage.get(); |
| } |
| int Slot = Machine->getMetadataSlot(N); |
| if (Slot == -1) |
| // Give the pointer value instead of "badref", since this comes up all |
| // the time when debugging. |
| Out << "<" << N << ">"; |
| else |
| Out << '!' << Slot; |
| return; |
| } |
| |
| if (const MDString *MDS = dyn_cast<MDString>(MD)) { |
| Out << "!\""; |
| printEscapedString(MDS->getString(), Out); |
| Out << '"'; |
| return; |
| } |
| |
| auto *V = cast<ValueAsMetadata>(MD); |
| assert(TypePrinter && "TypePrinter required for metadata values"); |
| assert((FromValue || !isa<LocalAsMetadata>(V)) && |
| "Unexpected function-local metadata outside of value argument"); |
| |
| TypePrinter->print(V->getValue()->getType(), Out); |
| Out << ' '; |
| WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context); |
| } |
| |
| namespace { |
| |
| class AssemblyWriter { |
| formatted_raw_ostream &Out; |
| const Module *TheModule = nullptr; |
| const ModuleSummaryIndex *TheIndex = nullptr; |
| std::unique_ptr<SlotTracker> SlotTrackerStorage; |
| SlotTracker &Machine; |
| TypePrinting TypePrinter; |
| AssemblyAnnotationWriter *AnnotationWriter = nullptr; |
| SetVector<const Comdat *> Comdats; |
| bool IsForDebug; |
| bool ShouldPreserveUseListOrder; |
| UseListOrderStack UseListOrders; |
| SmallVector<StringRef, 8> MDNames; |
| /// Synchronization scope names registered with LLVMContext. |
| SmallVector<StringRef, 8> SSNs; |
| DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap; |
| |
| public: |
| /// Construct an AssemblyWriter with an external SlotTracker |
| AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M, |
| AssemblyAnnotationWriter *AAW, bool IsForDebug, |
| bool ShouldPreserveUseListOrder = false); |
| |
| AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, |
| const ModuleSummaryIndex *Index, bool IsForDebug); |
| |
| void printMDNodeBody(const MDNode *MD); |
| void printNamedMDNode(const NamedMDNode *NMD); |
| |
| void printModule(const Module *M); |
| |
| void writeOperand(const Value *Op, bool PrintType); |
| void writeParamOperand(const Value *Operand, AttributeSet Attrs); |
| void writeOperandBundles(ImmutableCallSite CS); |
| void writeSyncScope(const LLVMContext &Context, |
| SyncScope::ID SSID); |
| void writeAtomic(const LLVMContext &Context, |
| AtomicOrdering Ordering, |
| SyncScope::ID SSID); |
| void writeAtomicCmpXchg(const LLVMContext &Context, |
| AtomicOrdering SuccessOrdering, |
| AtomicOrdering FailureOrdering, |
| SyncScope::ID SSID); |
| |
| void writeAllMDNodes(); |
| void writeMDNode(unsigned Slot, const MDNode *Node); |
| void writeAllAttributeGroups(); |
| |
| void printTypeIdentities(); |
| void printGlobal(const GlobalVariable *GV); |
| void printIndirectSymbol(const GlobalIndirectSymbol *GIS); |
| void printComdat(const Comdat *C); |
| void printFunction(const Function *F); |
| void printArgument(const Argument *FA, AttributeSet Attrs); |
| void printBasicBlock(const BasicBlock *BB); |
| void printInstructionLine(const Instruction &I); |
| void printInstruction(const Instruction &I); |
| |
| void printUseListOrder(const UseListOrder &Order); |
| void printUseLists(const Function *F); |
| |
| void printModuleSummaryIndex(); |
| void printSummaryInfo(unsigned Slot, const ValueInfo &VI); |
| void printSummary(const GlobalValueSummary &Summary); |
| void printAliasSummary(const AliasSummary *AS); |
| void printGlobalVarSummary(const GlobalVarSummary *GS); |
| void printFunctionSummary(const FunctionSummary *FS); |
| void printTypeIdSummary(const TypeIdSummary &TIS); |
| void printTypeTestResolution(const TypeTestResolution &TTRes); |
| void printArgs(const std::vector<uint64_t> &Args); |
| void printWPDRes(const WholeProgramDevirtResolution &WPDRes); |
| void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo); |
| void printVFuncId(const FunctionSummary::VFuncId VFId); |
| void |
| printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> VCallList, |
| const char *Tag); |
| void |
| printConstVCalls(const std::vector<FunctionSummary::ConstVCall> VCallList, |
| const char *Tag); |
| |
| private: |
| /// Print out metadata attachments. |
| void printMetadataAttachments( |
| const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs, |
| StringRef Separator); |
| |
| // printInfoComment - Print a little comment after the instruction indicating |
| // which slot it occupies. |
| void printInfoComment(const Value &V); |
| |
| // printGCRelocateComment - print comment after call to the gc.relocate |
| // intrinsic indicating base and derived pointer names. |
| void printGCRelocateComment(const GCRelocateInst &Relocate); |
| }; |
| |
| } // end anonymous namespace |
| |
| AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, |
| const Module *M, AssemblyAnnotationWriter *AAW, |
| bool IsForDebug, bool ShouldPreserveUseListOrder) |
| : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW), |
| IsForDebug(IsForDebug), |
| ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { |
| if (!TheModule) |
| return; |
| for (const GlobalObject &GO : TheModule->global_objects()) |
| if (const Comdat *C = GO.getComdat()) |
| Comdats.insert(C); |
| } |
| |
| AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, |
| const ModuleSummaryIndex *Index, bool IsForDebug) |
| : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr), |
| IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {} |
| |
| void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { |
| if (!Operand) { |
| Out << "<null operand!>"; |
| return; |
| } |
| if (PrintType) { |
| TypePrinter.print(Operand->getType(), Out); |
| Out << ' '; |
| } |
| WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); |
| } |
| |
| void AssemblyWriter::writeSyncScope(const LLVMContext &Context, |
| SyncScope::ID SSID) { |
| switch (SSID) { |
| case SyncScope::System: { |
| break; |
| } |
| default: { |
| if (SSNs.empty()) |
| Context.getSyncScopeNames(SSNs); |
| |
| Out << " syncscope(\""; |
| printEscapedString(SSNs[SSID], Out); |
| Out << "\")"; |
| break; |
| } |
| } |
| } |
| |
| void AssemblyWriter::writeAtomic(const LLVMContext &Context, |
| AtomicOrdering Ordering, |
| SyncScope::ID SSID) { |
| if (Ordering == AtomicOrdering::NotAtomic) |
| return; |
| |
| writeSyncScope(Context, SSID); |
| Out << " " << toIRString(Ordering); |
| } |
| |
| void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context, |
| AtomicOrdering SuccessOrdering, |
| AtomicOrdering FailureOrdering, |
| SyncScope::ID SSID) { |
| assert(SuccessOrdering != AtomicOrdering::NotAtomic && |
| FailureOrdering != AtomicOrdering::NotAtomic); |
| |
| writeSyncScope(Context, SSID); |
| Out << " " << toIRString(SuccessOrdering); |
| Out << " " << toIRString(FailureOrdering); |
| } |
| |
| void AssemblyWriter::writeParamOperand(const Value *Operand, |
| AttributeSet Attrs) { |
| if (!Operand) { |
| Out << "<null operand!>"; |
| return; |
| } |
| |
| // Print the type |
| TypePrinter.print(Operand->getType(), Out); |
| // Print parameter attributes list |
| if (Attrs.hasAttributes()) |
| Out << ' ' << Attrs.getAsString(); |
| Out << ' '; |
| // Print the operand |
| WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); |
| } |
| |
| void AssemblyWriter::writeOperandBundles(ImmutableCallSite CS) { |
| if (!CS.hasOperandBundles()) |
| return; |
| |
| Out << " [ "; |
| |
| bool FirstBundle = true; |
| for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { |
| OperandBundleUse BU = CS.getOperandBundleAt(i); |
| |
| if (!FirstBundle) |
| Out << ", "; |
| FirstBundle = false; |
| |
| Out << '"'; |
| printEscapedString(BU.getTagName(), Out); |
| Out << '"'; |
| |
| Out << '('; |
| |
| bool FirstInput = true; |
| for (const auto &Input : BU.Inputs) { |
| if (!FirstInput) |
| Out << ", "; |
| FirstInput = false; |
| |
| TypePrinter.print(Input->getType(), Out); |
| Out << " "; |
| WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule); |
| } |
| |
| Out << ')'; |
| } |
| |
| Out << " ]"; |
| } |
| |
| void AssemblyWriter::printModule(const Module *M) { |
| Machine.initializeIfNeeded(); |
| |
| if (ShouldPreserveUseListOrder) |
| UseListOrders = predictUseListOrder(M); |
| |
| if (!M->getModuleIdentifier().empty() && |
| // Don't print the ID if it will start a new line (which would |
| // require a comment char before it). |
| M->getModuleIdentifier().find('\n') == std::string::npos) |
| Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; |
| |
| if (!M->getSourceFileName().empty()) { |
| Out << "source_filename = \""; |
| printEscapedString(M->getSourceFileName(), Out); |
| Out << "\"\n"; |
| } |
| |
| const std::string &DL = M->getDataLayoutStr(); |
| if (!DL.empty()) |
| Out << "target datalayout = \"" << DL << "\"\n"; |
| if (!M->getTargetTriple().empty()) |
| Out << "target triple = \"" << M->getTargetTriple() << "\"\n"; |
| |
| if (!M->getModuleInlineAsm().empty()) { |
| Out << '\n'; |
| |
| // Split the string into lines, to make it easier to read the .ll file. |
| StringRef Asm = M->getModuleInlineAsm(); |
| do { |
| StringRef Front; |
| std::tie(Front, Asm) = Asm.split('\n'); |
| |
| // We found a newline, print the portion of the asm string from the |
| // last newline up to this newline. |
| Out << "module asm \""; |
| printEscapedString(Front, Out); |
| Out << "\"\n"; |
| } while (!Asm.empty()); |
| } |
| |
| printTypeIdentities(); |
| |
| // Output all comdats. |
| if (!Comdats.empty()) |
| Out << '\n'; |
| for (const Comdat *C : Comdats) { |
| printComdat(C); |
| if (C != Comdats.back()) |
| Out << '\n'; |
| } |
| |
| // Output all globals. |
| if (!M->global_empty()) Out << '\n'; |
| for (const GlobalVariable &GV : M->globals()) { |
| printGlobal(&GV); Out << '\n'; |
| } |
| |
| // Output all aliases. |
| if (!M->alias_empty()) Out << "\n"; |
| for (const GlobalAlias &GA : M->aliases()) |
| printIndirectSymbol(&GA); |
| |
| // Output all ifuncs. |
| if (!M->ifunc_empty()) Out << "\n"; |
| for (const GlobalIFunc &GI : M->ifuncs()) |
| printIndirectSymbol(&GI); |
| |
| // Output global use-lists. |
| printUseLists(nullptr); |
| |
| // Output all of the functions. |
| for (const Function &F : *M) |
| printFunction(&F); |
| assert(UseListOrders.empty() && "All use-lists should have been consumed"); |
| |
| // Output all attribute groups. |
| if (!Machine.as_empty()) { |
| Out << '\n'; |
| writeAllAttributeGroups(); |
| } |
| |
| // Output named metadata. |
| if (!M->named_metadata_empty()) Out << '\n'; |
| |
| for (const NamedMDNode &Node : M->named_metadata()) |
| printNamedMDNode(&Node); |
| |
| // Output metadata. |
| if (!Machine.mdn_empty()) { |
| Out << '\n'; |
| writeAllMDNodes(); |
| } |
| } |
| |
| void AssemblyWriter::printModuleSummaryIndex() { |
| assert(TheIndex); |
| Machine.initializeIndexIfNeeded(); |
| |
| Out << "\n"; |
| |
| // Print module path entries. To print in order, add paths to a vector |
| // indexed by module slot. |
| std::vector<std::pair<std::string, ModuleHash>> moduleVec; |
| std::string RegularLTOModuleName = "[Regular LTO]"; |
| moduleVec.resize(TheIndex->modulePaths().size()); |
| for (auto &ModPath : TheIndex->modulePaths()) |
| moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair( |
| // A module id of -1 is a special entry for a regular LTO module created |
| // during the thin link. |
| ModPath.second.first == -1u ? RegularLTOModuleName |
| : (std::string)ModPath.first(), |
| ModPath.second.second); |
| |
| unsigned i = 0; |
| for (auto &ModPair : moduleVec) { |
| Out << "^" << i++ << " = module: ("; |
| Out << "path: \""; |
| printEscapedString(ModPair.first, Out); |
| Out << "\", hash: ("; |
| FieldSeparator FS; |
| for (auto Hash : ModPair.second) |
| Out << FS << Hash; |
| Out << "))\n"; |
| } |
| |
| // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer |
| // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID). |
| for (auto &GlobalList : *TheIndex) { |
| auto GUID = GlobalList.first; |
| for (auto &Summary : GlobalList.second.SummaryList) |
| SummaryToGUIDMap[Summary.get()] = GUID; |
| } |
| |
| // Print the global value summary entries. |
| for (auto &GlobalList : *TheIndex) { |
| auto GUID = GlobalList.first; |
| auto VI = TheIndex->getValueInfo(GlobalList); |
| printSummaryInfo(Machine.getGUIDSlot(GUID), VI); |
| } |
| |
| // Print the TypeIdMap entries. |
| for (auto &TId : TheIndex->typeIds()) { |
| auto GUID = GlobalValue::getGUID(TId.first); |
| Out << "^" << Machine.getGUIDSlot(GUID) << " = typeid: (name: \"" |
| << TId.first << "\""; |
| printTypeIdSummary(TId.second); |
| Out << ") ; guid = " << GUID << "\n"; |
| } |
| } |
| |
| static const char * |
| getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) { |
| switch (K) { |
| case WholeProgramDevirtResolution::Indir: |
| return "indir"; |
| case WholeProgramDevirtResolution::SingleImpl: |
| return "singleImpl"; |
| case WholeProgramDevirtResolution::BranchFunnel: |
| return "branchFunnel"; |
| } |
| llvm_unreachable("invalid WholeProgramDevirtResolution kind"); |
| } |
| |
| static const char *getWholeProgDevirtResByArgKindName( |
| WholeProgramDevirtResolution::ByArg::Kind K) { |
| switch (K) { |
| case WholeProgramDevirtResolution::ByArg::Indir: |
| return "indir"; |
| case WholeProgramDevirtResolution::ByArg::UniformRetVal: |
| return "uniformRetVal"; |
| case WholeProgramDevirtResolution::ByArg::UniqueRetVal: |
| return "uniqueRetVal"; |
| case WholeProgramDevirtResolution::ByArg::VirtualConstProp: |
| return "virtualConstProp"; |
| } |
| llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind"); |
| } |
| |
| static const char *getTTResKindName(TypeTestResolution::Kind K) { |
| switch (K) { |
| case TypeTestResolution::Unsat: |
| return "unsat"; |
| case TypeTestResolution::ByteArray: |
| return "byteArray"; |
| case TypeTestResolution::Inline: |
| return "inline"; |
| case TypeTestResolution::Single: |
| return "single"; |
| case TypeTestResolution::AllOnes: |
| return "allOnes"; |
| } |
| llvm_unreachable("invalid TypeTestResolution kind"); |
| } |
| |
| void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) { |
| Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind) |
| << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth; |
| |
| // The following fields are only used if the target does not support the use |
| // of absolute symbols to store constants. Print only if non-zero. |
| if (TTRes.AlignLog2) |
| Out << ", alignLog2: " << TTRes.AlignLog2; |
| if (TTRes.SizeM1) |
| Out << ", sizeM1: " << TTRes.SizeM1; |
| if (TTRes.BitMask) |
| // BitMask is uint8_t which causes it to print the corresponding char. |
| Out << ", bitMask: " << (unsigned)TTRes.BitMask; |
| if (TTRes.InlineBits) |
| Out << ", inlineBits: " << TTRes.InlineBits; |
| |
| Out << ")"; |
| } |
| |
| void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) { |
| Out << ", summary: ("; |
| printTypeTestResolution(TIS.TTRes); |
| if (!TIS.WPDRes.empty()) { |
| Out << ", wpdResolutions: ("; |
| FieldSeparator FS; |
| for (auto &WPDRes : TIS.WPDRes) { |
| Out << FS; |
| Out << "(offset: " << WPDRes.first << ", "; |
| printWPDRes(WPDRes.second); |
| Out << ")"; |
| } |
| Out << ")"; |
| } |
| Out << ")"; |
| } |
| |
| void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) { |
| Out << "args: ("; |
| FieldSeparator FS; |
| for (auto arg : Args) { |
| Out << FS; |
| Out << arg; |
| } |
| Out << ")"; |
| } |
| |
| void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) { |
| Out << "wpdRes: (kind: "; |
| Out << getWholeProgDevirtResKindName(WPDRes.TheKind); |
| |
| if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl) |
| Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\""; |
| |
| if (!WPDRes.ResByArg.empty()) { |
| Out << ", resByArg: ("; |
| FieldSeparator FS; |
| for (auto &ResByArg : WPDRes.ResByArg) { |
| Out << FS; |
| printArgs(ResByArg.first); |
| Out << ", byArg: (kind: "; |
| Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind); |
| if (ResByArg.second.TheKind == |
| WholeProgramDevirtResolution::ByArg::UniformRetVal || |
| ResByArg.second.TheKind == |
| WholeProgramDevirtResolution::ByArg::UniqueRetVal) |
| Out << ", info: " << ResByArg.second.Info; |
| |
| // The following fields are only used if the target does not support the |
| // use of absolute symbols to store constants. Print only if non-zero. |
| if (ResByArg.second.Byte || ResByArg.second.Bit) |
| Out << ", byte: " << ResByArg.second.Byte |
| << ", bit: " << ResByArg.second.Bit; |
| |
| Out << ")"; |
| } |
| Out << ")"; |
| } |
| Out << ")"; |
| } |
| |
| static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) { |
| switch (SK) { |
| case GlobalValueSummary::AliasKind: |
| return "alias"; |
| case GlobalValueSummary::FunctionKind: |
| return "function"; |
| case GlobalValueSummary::GlobalVarKind: |
| return "variable"; |
| } |
| llvm_unreachable("invalid summary kind"); |
| } |
| |
| void AssemblyWriter::printAliasSummary(const AliasSummary *AS) { |
| Out << ", aliasee: "; |
| // The indexes emitted for distributed backends may not include the |
| // aliasee summary (only if it is being imported directly). Handle |
| // that case by just emitting "null" as the aliasee. |
| if (AS->hasAliasee()) |
| Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]); |
| else |
| Out << "null"; |
| } |
| |
| void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) { |
| // Nothing for now |
| } |
| |
| static std::string getLinkageName(GlobalValue::LinkageTypes LT) { |
| switch (LT) { |
| case GlobalValue::ExternalLinkage: |
| return "external"; |
| case GlobalValue::PrivateLinkage: |
| return "private"; |
| case GlobalValue::InternalLinkage: |
| return "internal"; |
| case GlobalValue::LinkOnceAnyLinkage: |
| return "linkonce"; |
| case GlobalValue::LinkOnceODRLinkage: |
| return "linkonce_odr"; |
| case GlobalValue::WeakAnyLinkage: |
| return "weak"; |
| case GlobalValue::WeakODRLinkage: |
| return "weak_odr"; |
| case GlobalValue::CommonLinkage: |
| return "common"; |
| case GlobalValue::AppendingLinkage: |
| return "appending"; |
| case GlobalValue::ExternalWeakLinkage: |
| return "extern_weak"; |
| case GlobalValue::AvailableExternallyLinkage: |
| return "available_externally"; |
| } |
| llvm_unreachable("invalid linkage"); |
| } |
| |
| // When printing the linkage types in IR where the ExternalLinkage is |
| // not printed, and other linkage types are expected to be printed with |
| // a space after the name. |
| static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) { |
| if (LT == GlobalValue::ExternalLinkage) |
| return ""; |
| return getLinkageName(LT) + " "; |
| } |
| |
| static const char *getHotnessName(CalleeInfo::HotnessType HT) { |
| switch (HT) { |
| case CalleeInfo::HotnessType::Unknown: |
| return "unknown"; |
| case CalleeInfo::HotnessType::Cold: |
| return "cold"; |
| case CalleeInfo::HotnessType::None: |
| return "none"; |
| case CalleeInfo::HotnessType::Hot: |
| return "hot"; |
| case CalleeInfo::HotnessType::Critical: |
| return "critical"; |
| } |
| llvm_unreachable("invalid hotness"); |
| } |
| |
| void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) { |
| Out << ", insts: " << FS->instCount(); |
| |
| FunctionSummary::FFlags FFlags = FS->fflags(); |
| if (FFlags.ReadNone | FFlags.ReadOnly | FFlags.NoRecurse | |
| FFlags.ReturnDoesNotAlias) { |
| Out << ", funcFlags: ("; |
| Out << "readNone: " << FFlags.ReadNone; |
| Out << ", readOnly: " << FFlags.ReadOnly; |
| Out << ", noRecurse: " << FFlags.NoRecurse; |
| Out << ", returnDoesNotAlias: " << FFlags.ReturnDoesNotAlias; |
| Out << ")"; |
| } |
| if (!FS->calls().empty()) { |
| Out << ", calls: ("; |
| FieldSeparator IFS; |
| for (auto &Call : FS->calls()) { |
| Out << IFS; |
| Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID()); |
| if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown) |
| Out << ", hotness: " << getHotnessName(Call.second.getHotness()); |
| else if (Call.second.RelBlockFreq) |
| Out << ", relbf: " << Call.second.RelBlockFreq; |
| Out << ")"; |
| } |
| Out << ")"; |
| } |
| |
| if (const auto *TIdInfo = FS->getTypeIdInfo()) |
| printTypeIdInfo(*TIdInfo); |
| } |
| |
| void AssemblyWriter::printTypeIdInfo( |
| const FunctionSummary::TypeIdInfo &TIDInfo) { |
| Out << ", typeIdInfo: ("; |
| FieldSeparator TIDFS; |
| if (!TIDInfo.TypeTests.empty()) { |
| Out << TIDFS; |
| Out << "typeTests: ("; |
| FieldSeparator FS; |
| for (auto &GUID : TIDInfo.TypeTests) { |
| Out << FS; |
| auto Slot = Machine.getGUIDSlot(GUID); |
| if (Slot != -1) |
| Out << "^" << Slot; |
| else |
| Out << GUID; |
| } |
| Out << ")"; |
| } |
| if (!TIDInfo.TypeTestAssumeVCalls.empty()) { |
| Out << TIDFS; |
| printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls"); |
| } |
| if (!TIDInfo.TypeCheckedLoadVCalls.empty()) { |
| Out << TIDFS; |
| printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls"); |
| } |
| if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) { |
| Out << TIDFS; |
| printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls, |
| "typeTestAssumeConstVCalls"); |
| } |
| if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) { |
| Out << TIDFS; |
| printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls, |
| "typeCheckedLoadConstVCalls"); |
| } |
| Out << ")"; |
| } |
| |
| void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) { |
| Out << "vFuncId: ("; |
| auto Slot = Machine.getGUIDSlot(VFId.GUID); |
| if (Slot != -1) |
| Out << "^" << Slot; |
| else |
| Out << "guid: " << VFId.GUID; |
| Out << ", offset: " << VFId.Offset; |
| Out << ")"; |
| } |
| |
| void AssemblyWriter::printNonConstVCalls( |
| const std::vector<FunctionSummary::VFuncId> VCallList, const char *Tag) { |
| Out << Tag << ": ("; |
| FieldSeparator FS; |
| for (auto &VFuncId : VCallList) { |
| Out << FS; |
| printVFuncId(VFuncId); |
| } |
| Out << ")"; |
| } |
| |
| void AssemblyWriter::printConstVCalls( |
| const std::vector<FunctionSummary::ConstVCall> VCallList, const char *Tag) { |
| Out << Tag << ": ("; |
| FieldSeparator FS; |
| for (auto &ConstVCall : VCallList) { |
| Out << FS; |
| printVFuncId(ConstVCall.VFunc); |
| if (!ConstVCall.Args.empty()) { |
| Out << ", "; |
| printArgs(ConstVCall.Args); |
| } |
| } |
| Out << ")"; |
| } |
| |
| void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) { |
| GlobalValueSummary::GVFlags GVFlags = Summary.flags(); |
| GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage; |
| Out << getSummaryKindName(Summary.getSummaryKind()) << ": "; |
| Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath()) |
| << ", flags: ("; |
| Out << "linkage: " << getLinkageName(LT); |
| Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport; |
| Out << ", live: " << GVFlags.Live; |
| Out << ", dsoLocal: " << GVFlags.DSOLocal; |
| Out << ")"; |
| |
| if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind) |
| printAliasSummary(cast<AliasSummary>(&Summary)); |
| else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind) |
| printFunctionSummary(cast<FunctionSummary>(&Summary)); |
| else |
| printGlobalVarSummary(cast<GlobalVarSummary>(&Summary)); |
| |
| auto RefList = Summary.refs(); |
| if (!RefList.empty()) { |
| Out << ", refs: ("; |
| FieldSeparator FS; |
| for (auto &Ref : RefList) { |
| Out << FS; |
| Out << "^" << Machine.getGUIDSlot(Ref.getGUID()); |
| } |
| Out << ")"; |
| } |
| |
| Out << ")"; |
| } |
| |
| void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) { |
| Out << "^" << Slot << " = gv: ("; |
| if (!VI.name().empty()) |
| Out << "name: \"" << VI.name() << "\""; |
| else |
| Out << "guid: " << VI.getGUID(); |
| if (!VI.getSummaryList().empty()) { |
| Out << ", summaries: ("; |
| FieldSeparator FS; |
| for (auto &Summary : VI.getSummaryList()) { |
| Out << FS; |
| printSummary(*Summary); |
| } |
| Out << ")"; |
| } |
| Out << ")"; |
| if (!VI.name().empty()) |
| Out << " ; guid = " << VI.getGUID(); |
| Out << "\n"; |
| } |
| |
| static void printMetadataIdentifier(StringRef Name, |
| formatted_raw_ostream &Out) { |
| if (Name.empty()) { |
| Out << "<empty name> "; |
| } else { |
| if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' || |
| Name[0] == '$' || Name[0] == '.' || Name[0] == '_') |
| Out << Name[0]; |
| else |
| Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F); |
| for (unsigned i = 1, e = Name.size(); i != e; ++i) { |
| unsigned char C = Name[i]; |
| if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' || |
| C == '.' || C == '_') |
| Out << C; |
| else |
| Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); |
| } |
| } |
| } |
| |
| void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) { |
| Out << '!'; |
| printMetadataIdentifier(NMD->getName(), Out); |
| Out << " = !{"; |
| for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { |
| if (i) |
| Out << ", "; |
| |
| // Write DIExpressions inline. |
| // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose. |
| MDNode *Op = NMD->getOperand(i); |
| if (auto *Expr = dyn_cast<DIExpression>(Op)) { |
| writeDIExpression(Out, Expr, nullptr, nullptr, nullptr); |
| continue; |
| } |
| |
| int Slot = Machine.getMetadataSlot(Op); |
| if (Slot == -1) |
| Out << "<badref>"; |
| else |
| Out << '!' << Slot; |
| } |
| Out << "}\n"; |
| } |
| |
| static void PrintVisibility(GlobalValue::VisibilityTypes Vis, |
| formatted_raw_ostream &Out) { |
| switch (Vis) { |
| case GlobalValue::DefaultVisibility: break; |
| case GlobalValue::HiddenVisibility: Out << "hidden "; break; |
| case GlobalValue::ProtectedVisibility: Out << "protected "; break; |
| } |
| } |
| |
| static void PrintDSOLocation(const GlobalValue &GV, |
| formatted_raw_ostream &Out) { |
| // GVs with local linkage or non default visibility are implicitly dso_local, |
| // so we don't print it. |
| bool Implicit = GV.hasLocalLinkage() || |
| (!GV.hasExternalWeakLinkage() && !GV.hasDefaultVisibility()); |
| if (GV.isDSOLocal() && !Implicit) |
| Out << "dso_local "; |
| } |
| |
| static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT, |
| formatted_raw_ostream &Out) { |
| switch (SCT) { |
| case GlobalValue::DefaultStorageClass: break; |
| case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break; |
| case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break; |
| } |
| } |
| |
| static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM, |
| formatted_raw_ostream &Out) { |
| switch (TLM) { |
| case GlobalVariable::NotThreadLocal: |
| break; |
| case GlobalVariable::GeneralDynamicTLSModel: |
| Out << "thread_local "; |
| break; |
| case GlobalVariable::LocalDynamicTLSModel: |
| Out << "thread_local(localdynamic) "; |
| break; |
| case GlobalVariable::InitialExecTLSModel: |
| Out << "thread_local(initialexec) "; |
| break; |
| case GlobalVariable::LocalExecTLSModel: |
| Out << "thread_local(localexec) "; |
| break; |
| } |
| } |
| |
| static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) { |
| switch (UA) { |
| case GlobalVariable::UnnamedAddr::None: |
| return ""; |
| case GlobalVariable::UnnamedAddr::Local: |
| return "local_unnamed_addr"; |
| case GlobalVariable::UnnamedAddr::Global: |
| return "unnamed_addr"; |
| } |
| llvm_unreachable("Unknown UnnamedAddr"); |
| } |
| |
| static void maybePrintComdat(formatted_raw_ostream &Out, |
| const GlobalObject &GO) { |
| const Comdat *C = GO.getComdat(); |
| if (!C) |
| return; |
| |
| if (isa<GlobalVariable>(GO)) |
| Out << ','; |
| Out << " comdat"; |
| |
| if (GO.getName() == C->getName()) |
| return; |
| |
| Out << '('; |
| PrintLLVMName(Out, C->getName(), ComdatPrefix); |
| Out << ')'; |
| } |
| |
| void AssemblyWriter::printGlobal(const GlobalVariable *GV) { |
| if (GV->isMaterializable()) |
| Out << "; Materializable\n"; |
| |
| WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent()); |
| Out << " = "; |
| |
| if (!GV->hasInitializer() && GV->hasExternalLinkage()) |
| Out << "external "; |
| |
| Out << getLinkageNameWithSpace(GV->getLinkage()); |
| PrintDSOLocation(*GV, Out); |
| PrintVisibility(GV->getVisibility(), Out); |
| PrintDLLStorageClass(GV->getDLLStorageClass(), Out); |
| PrintThreadLocalModel(GV->getThreadLocalMode(), Out); |
| StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr()); |
| if (!UA.empty()) |
| Out << UA << ' '; |
| |
| if (unsigned AddressSpace = GV->getType()->getAddressSpace()) |
| Out << "addrspace(" << AddressSpace << ") "; |
| if (GV->isExternallyInitialized()) Out << "externally_initialized "; |
| Out << (GV->isConstant() ? "constant " : "global "); |
| TypePrinter.print(GV->getValueType(), Out); |
| |
| if (GV->hasInitializer()) { |
| Out << ' '; |
| writeOperand(GV->getInitializer(), false); |
| } |
| |
| if (GV->hasSection()) { |
| Out << ", section \""; |
| printEscapedString(GV->getSection(), Out); |
| Out << '"'; |
| } |
| maybePrintComdat(Out, *GV); |
| if (GV->getAlignment()) |
| Out << ", align " << GV->getAlignment(); |
| |
| SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; |
| GV->getAllMetadata(MDs); |
| printMetadataAttachments(MDs, ", "); |
| |
| auto Attrs = GV->getAttributes(); |
| if (Attrs.hasAttributes()) |
| Out << " #" << Machine.getAttributeGroupSlot(Attrs); |
| |
| printInfoComment(*GV); |
| } |
| |
| void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) { |
| if (GIS->isMaterializable()) |
| Out << "; Materializable\n"; |
| |
| WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent()); |
| Out << " = "; |
| |
| Out << getLinkageNameWithSpace(GIS->getLinkage()); |
| PrintDSOLocation(*GIS, Out); |
| PrintVisibility(GIS->getVisibility(), Out); |
| PrintDLLStorageClass(GIS->getDLLStorageClass(), Out); |
| PrintThreadLocalModel(GIS->getThreadLocalMode(), Out); |
| StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr()); |
| if (!UA.empty()) |
| Out << UA << ' '; |
| |
| if (isa<GlobalAlias>(GIS)) |
| Out << "alias "; |
| else if (isa<GlobalIFunc>(GIS)) |
| Out << "ifunc "; |
| else |
| llvm_unreachable("Not an alias or ifunc!"); |
| |
| TypePrinter.print(GIS->getValueType(), Out); |
| |
| Out << ", "; |
| |
| const Constant *IS = GIS->getIndirectSymbol(); |
| |
| if (!IS) { |
| TypePrinter.print(GIS->getType(), Out); |
| Out << " <<NULL ALIASEE>>"; |
| } else { |
| writeOperand(IS, !isa<ConstantExpr>(IS)); |
| } |
| |
| printInfoComment(*GIS); |
| Out << '\n'; |
| } |
| |
| void AssemblyWriter::printComdat(const Comdat *C) { |
| C->print(Out); |
| } |
| |
| void AssemblyWriter::printTypeIdentities() { |
| if (TypePrinter.empty()) |
| return; |
| |
| Out << '\n'; |
| |
| // Emit all numbered types. |
| auto &NumberedTypes = TypePrinter.getNumberedTypes(); |
| for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) { |
| Out << '%' << I << " = type "; |
| |
| // Make sure we print out at least one level of the type structure, so |
| // that we do not get %2 = type %2 |
| TypePrinter.printStructBody(NumberedTypes[I], Out); |
| Out << '\n'; |
| } |
| |
| auto &NamedTypes = TypePrinter.getNamedTypes(); |
| for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) { |
| PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix); |
| Out << " = type "; |
| |
| // Make sure we print out at least one level of the type structure, so |
| // that we do not get %FILE = type %FILE |
| TypePrinter.printStructBody(NamedTypes[I], Out); |
| Out << '\n'; |
| } |
| } |
| |
| /// printFunction - Print all aspects of a function. |
| void AssemblyWriter::printFunction(const Function *F) { |
| // Print out the return type and name. |
| Out << '\n'; |
| |
| if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out); |
| |
| if (F->isMaterializable()) |
| Out << "; Materializable\n"; |
| |
| const AttributeList &Attrs = F->getAttributes(); |
| if (Attrs.hasAttributes(AttributeList::FunctionIndex)) { |
| AttributeSet AS = Attrs.getFnAttributes(); |
| std::string AttrStr; |
| |
| for (const Attribute &Attr : AS) { |
| if (!Attr.isStringAttribute()) { |
| if (!AttrStr.empty()) AttrStr += ' '; |
| AttrStr += Attr.getAsString(); |
| } |
| } |
| |
| if (!AttrStr.empty()) |
| Out << "; Function Attrs: " << AttrStr << '\n'; |
| } |
| |
| Machine.incorporateFunction(F); |
| |
| if (F->isDeclaration()) { |
| Out << "declare"; |
| SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; |
| F->getAllMetadata(MDs); |
| printMetadataAttachments(MDs, " "); |
| Out << ' '; |
| } else |
| Out << "define "; |
| |
| Out << getLinkageNameWithSpace(F->getLinkage()); |
| PrintDSOLocation(*F, Out); |
| PrintVisibility(F->getVisibility(), Out); |
| PrintDLLStorageClass(F->getDLLStorageClass(), Out); |
| |
| // Print the calling convention. |
| if (F->getCallingConv() != CallingConv::C) { |
| PrintCallingConv(F->getCallingConv(), Out); |
| Out << " "; |
| } |
| |
| FunctionType *FT = F->getFunctionType(); |
| if (Attrs.hasAttributes(AttributeList::ReturnIndex)) |
| Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' '; |
| TypePrinter.print(F->getReturnType(), Out); |
| Out << ' '; |
| WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent()); |
| Out << '('; |
| |
| // Loop over the arguments, printing them... |
| if (F->isDeclaration() && !IsForDebug) { |
| // We're only interested in the type here - don't print argument names. |
| for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) { |
| // Insert commas as we go... the first arg doesn't get a comma |
| if (I) |
| Out << ", "; |
| // Output type... |
| TypePrinter.print(FT->getParamType(I), Out); |
| |
| AttributeSet ArgAttrs = Attrs.getParamAttributes(I); |
| if (ArgAttrs.hasAttributes()) |
| Out << ' ' << ArgAttrs.getAsString(); |
| } |
| } else { |
| // The arguments are meaningful here, print them in detail. |
| for (const Argument &Arg : F->args()) { |
| // Insert commas as we go... the first arg doesn't get a comma |
| if (Arg.getArgNo() != 0) |
| Out << ", "; |
| printArgument(&Arg, Attrs.getParamAttributes(Arg.getArgNo())); |
| } |
| } |
| |
| // Finish printing arguments... |
| if (FT->isVarArg()) { |
| if (FT->getNumParams()) Out << ", "; |
| Out << "..."; // Output varargs portion of signature! |
| } |
| Out << ')'; |
| StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr()); |
| if (!UA.empty()) |
| Out << ' ' << UA; |
| if (Attrs.hasAttributes(AttributeList::FunctionIndex)) |
| Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes()); |
| if (F->hasSection()) { |
| Out << " section \""; |
| printEscapedString(F->getSection(), Out); |
| Out << '"'; |
| } |
| maybePrintComdat(Out, *F); |
| if (F->getAlignment()) |
| Out << " align " << F->getAlignment(); |
| if (F->hasGC()) |
| Out << " gc \"" << F->getGC() << '"'; |
| if (F->hasPrefixData()) { |
| Out << " prefix "; |
| writeOperand(F->getPrefixData(), true); |
| } |
| if (F->hasPrologueData()) { |
| Out << " prologue "; |
| writeOperand(F->getPrologueData(), true); |
| } |
| if (F->hasPersonalityFn()) { |
| Out << " personality "; |
| writeOperand(F->getPersonalityFn(), /*PrintType=*/true); |
| } |
| |
| if (F->isDeclaration()) { |
| Out << '\n'; |
| } else { |
| SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; |
| F->getAllMetadata(MDs); |
| printMetadataAttachments(MDs, " "); |
| |
| Out << " {"; |
| // Output all of the function's basic blocks. |
| for (const BasicBlock &BB : *F) |
| printBasicBlock(&BB); |
| |
| // Output the function's use-lists. |
| printUseLists(F); |
| |
| Out << "}\n"; |
| } |
| |
| Machine.purgeFunction(); |
| } |
| |
| /// printArgument - This member is called for every argument that is passed into |
| /// the function. Simply print it out |
| void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) { |
| // Output type... |
| TypePrinter.print(Arg->getType(), Out); |
| |
| // Output parameter attributes list |
| if (Attrs.hasAttributes()) |
| Out << ' ' << Attrs.getAsString(); |
| |
| // Output name, if available... |
| if (Arg->hasName()) { |
| Out << ' '; |
| PrintLLVMName(Out, Arg); |
| } |
| } |
| |
| /// printBasicBlock - This member is called for each basic block in a method. |
| void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { |
| if (BB->hasName()) { // Print out the label if it exists... |
| Out << "\n"; |
| PrintLLVMName(Out, BB->getName(), LabelPrefix); |
| Out << ':'; |
| } else if (!BB->use_empty()) { // Don't print block # of no uses... |
| Out << "\n; <label>:"; |
| int Slot = Machine.getLocalSlot(BB); |
| if (Slot != -1) |
| Out << Slot << ":"; |
| else |
| Out << "<badref>"; |
| } |
| |
| if (!BB->getParent()) { |
| Out.PadToColumn(50); |
| Out << "; Error: Block without parent!"; |
| } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block? |
| // Output predecessors for the block. |
| Out.PadToColumn(50); |
| Out << ";"; |
| const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB); |
| |
| if (PI == PE) { |
| Out << " No predecessors!"; |
| } else { |
| Out << " preds = "; |
| writeOperand(*PI, false); |
| for (++PI; PI != PE; ++PI) { |
| Out << ", "; |
| writeOperand(*PI, false); |
| } |
| } |
| } |
| |
| Out << "\n"; |
| |
| if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out); |
| |
| // Output all of the instructions in the basic block... |
| for (const Instruction &I : *BB) { |
| printInstructionLine(I); |
| } |
| |
| if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out); |
| } |
| |
| /// printInstructionLine - Print an instruction and a newline character. |
| void AssemblyWriter::printInstructionLine(const Instruction &I) { |
| printInstruction(I); |
| Out << '\n'; |
| } |
| |
| /// printGCRelocateComment - print comment after call to the gc.relocate |
| /// intrinsic indicating base and derived pointer names. |
| void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) { |
| Out << " ; ("; |
| writeOperand(Relocate.getBasePtr(), false); |
| Out << ", "; |
| writeOperand(Relocate.getDerivedPtr(), false); |
| Out << ")"; |
| } |
| |
| /// printInfoComment - Print a little comment after the instruction indicating |
| /// which slot it occupies. |
| void AssemblyWriter::printInfoComment(const Value &V) { |
| if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V)) |
| printGCRelocateComment(*Relocate); |
| |
| if (AnnotationWriter) |
| AnnotationWriter->printInfoComment(V, Out); |
| } |
| |
| // This member is called for each Instruction in a function.. |
| void AssemblyWriter::printInstruction(const Instruction &I) { |
| if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out); |
| |
| // Print out indentation for an instruction. |
| Out << " "; |
| |
| // Print out name if it exists... |
| if (I.hasName()) { |
| PrintLLVMName(Out, &I); |
| Out << " = "; |
| } else if (!I.getType()->isVoidTy()) { |
| // Print out the def slot taken. |
| int SlotNum = Machine.getLocalSlot(&I); |
| if (SlotNum == -1) |
| Out << "<badref> = "; |
| else |
| Out << '%' << SlotNum << " = "; |
| } |
| |
| if (const CallInst *CI = dyn_cast<CallInst>(&I)) { |
| if (CI->isMustTailCall()) |
| Out << "musttail "; |
| else if (CI->isTailCall()) |
| Out << "tail "; |
| else if (CI->isNoTailCall()) |
| Out << "notail "; |
| } |
| |
| // Print out the opcode... |
| Out << I.getOpcodeName(); |
| |
| // If this is an atomic load or store, print out the atomic marker. |
| if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) || |
| (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic())) |
| Out << " atomic"; |
| |
| if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak()) |
| Out << " weak"; |
| |
| // If this is a volatile operation, print out the volatile marker. |
| if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) || |
| (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) || |
| (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) || |
| (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile())) |
| Out << " volatile"; |
| |
| // Print out optimization information. |
| WriteOptimizationInfo(Out, &I); |
| |
| // Print out the compare instruction predicates |
| if (const CmpInst *CI = dyn_cast<CmpInst>(&I)) |
| Out << ' ' << CmpInst::getPredicateName(CI->getPredicate()); |
| |
| // Print out the atomicrmw operation |
| if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) |
| writeAtomicRMWOperation(Out, RMWI->getOperation()); |
| |
| // Print out the type of the operands... |
| const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr; |
| |
| // Special case conditional branches to swizzle the condition out to the front |
| if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) { |
| const BranchInst &BI(cast<BranchInst>(I)); |
| Out << ' '; |
| writeOperand(BI.getCondition(), true); |
| Out << ", "; |
| writeOperand(BI.getSuccessor(0), true); |
| Out << ", "; |
| writeOperand(BI.getSuccessor(1), true); |
| |
| } else if (isa<SwitchInst>(I)) { |
| const SwitchInst& SI(cast<SwitchInst>(I)); |
| // Special case switch instruction to get formatting nice and correct. |
| Out << ' '; |
| writeOperand(SI.getCondition(), true); |
| Out << ", "; |
| writeOperand(SI.getDefaultDest(), true); |
| Out << " ["; |
| for (auto Case : SI.cases()) { |
| Out << "\n "; |
| writeOperand(Case.getCaseValue(), true); |
| Out << ", "; |
| writeOperand(Case.getCaseSuccessor(), true); |
| } |
| Out << "\n ]"; |
| } else if (isa<IndirectBrInst>(I)) { |
| // Special case indirectbr instruction to get formatting nice and correct. |
| Out << ' '; |
| writeOperand(Operand, true); |
| Out << ", ["; |
| |
| for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { |
| if (i != 1) |
| Out << ", "; |
| writeOperand(I.getOperand(i), true); |
| } |
| Out << ']'; |
| } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) { |
| Out << ' '; |
| TypePrinter.print(I.getType(), Out); |
| Out << ' '; |
| |
| for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) { |
| if (op) Out << ", "; |
| Out << "[ "; |
| writeOperand(PN->getIncomingValue(op), false); Out << ", "; |
| writeOperand(PN->getIncomingBlock(op), false); Out << " ]"; |
| } |
| } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) { |
| Out << ' '; |
| writeOperand(I.getOperand(0), true); |
| for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) |
| Out << ", " << *i; |
| } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) { |
| Out << ' '; |
| writeOperand(I.getOperand(0), true); Out << ", "; |
| writeOperand(I.getOperand(1), true); |
| for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) |
| Out << ", " << *i; |
| } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) { |
| Out << ' '; |
| TypePrinter.print(I.getType(), Out); |
| if (LPI->isCleanup() || LPI->getNumClauses() != 0) |
| Out << '\n'; |
| |
| if (LPI->isCleanup()) |
| Out << " cleanup"; |
| |
| for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) { |
| if (i != 0 || LPI->isCleanup()) Out << "\n"; |
| if (LPI->isCatch(i)) |
| Out << " catch "; |
| else |
| Out << " filter "; |
| |
| writeOperand(LPI->getClause(i), true); |
| } |
| } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) { |
| Out << " within "; |
| writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false); |
| Out << " ["; |
| unsigned Op = 0; |
| for (const BasicBlock *PadBB : CatchSwitch->handlers()) { |
| if (Op > 0) |
| Out << ", "; |
| writeOperand(PadBB, /*PrintType=*/true); |
| ++Op; |
| } |
| Out << "] unwind "; |
| if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest()) |
| writeOperand(UnwindDest, /*PrintType=*/true); |
| else |
| Out << "to caller"; |
| } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) { |
| Out << " within "; |
| writeOperand(FPI->getParentPad(), /*PrintType=*/false); |
| Out << " ["; |
| for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps; |
| ++Op) { |
| if (Op > 0) |
| Out << ", "; |
| writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true); |
| } |
| Out << ']'; |
| } else if (isa<ReturnInst>(I) && !Operand) { |
| Out << " void"; |
| } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) { |
| Out << " from "; |
| writeOperand(CRI->getOperand(0), /*PrintType=*/false); |
| |
| Out << " to "; |
| writeOperand(CRI->getOperand(1), /*PrintType=*/true); |
| } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) { |
| Out << " from "; |
| writeOperand(CRI->getOperand(0), /*PrintType=*/false); |
| |
| Out << " unwind "; |
| if (CRI->hasUnwindDest()) |
| writeOperand(CRI->getOperand(1), /*PrintType=*/true); |
| else |
| Out << "to caller"; |
| } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) { |
| // Print the calling convention being used. |
| if (CI->getCallingConv() != CallingConv::C) { |
| Out << " "; |
| PrintCallingConv(CI->getCallingConv(), Out); |
| } |
| |
| Operand = CI->getCalledValue(); |
| FunctionType *FTy = CI->getFunctionType(); |
| Type *RetTy = FTy->getReturnType(); |
| const AttributeList &PAL = CI->getAttributes(); |
| |
| if (PAL.hasAttributes(AttributeList::ReturnIndex)) |
| Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); |
| |
| // If possible, print out the short form of the call instruction. We can |
| // only do this if the first argument is a pointer to a nonvararg function, |
| // and if the return type is not a pointer to a function. |
| // |
| Out << ' '; |
| TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); |
| Out << ' '; |
| writeOperand(Operand, false); |
| Out << '('; |
| for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) { |
| if (op > 0) |
| Out << ", "; |
| writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op)); |
| } |
| |
| // Emit an ellipsis if this is a musttail call in a vararg function. This |
| // is only to aid readability, musttail calls forward varargs by default. |
| if (CI->isMustTailCall() && CI->getParent() && |
| CI->getParent()->getParent() && |
| CI->getParent()->getParent()->isVarArg()) |
| Out << ", ..."; |
| |
| Out << ')'; |
| if (PAL.hasAttributes(AttributeList::FunctionIndex)) |
| Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes()); |
| |
| writeOperandBundles(CI); |
| } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) { |
| Operand = II->getCalledValue(); |
| FunctionType *FTy = II->getFunctionType(); |
| Type *RetTy = FTy->getReturnType(); |
| const AttributeList &PAL = II->getAttributes(); |
| |
| // Print the calling convention being used. |
| if (II->getCallingConv() != CallingConv::C) { |
| Out << " "; |
| PrintCallingConv(II->getCallingConv(), Out); |
| } |
| |
| if (PAL.hasAttributes(AttributeList::ReturnIndex)) |
| Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); |
| |
| // If possible, print out the short form of the invoke instruction. We can |
| // only do this if the first argument is a pointer to a nonvararg function, |
| // and if the return type is not a pointer to a function. |
| // |
| Out << ' '; |
| TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); |
| Out << ' '; |
| writeOperand(Operand, false); |
| Out << '('; |
| for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) { |
| if (op) |
| Out << ", "; |
| writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op)); |
| } |
| |
| Out << ')'; |
| if (PAL.hasAttributes(AttributeList::FunctionIndex)) |
| Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes()); |
| |
| writeOperandBundles(II); |
| |
| Out << "\n to "; |
| writeOperand(II->getNormalDest(), true); |
| Out << " unwind "; |
| writeOperand(II->getUnwindDest(), true); |
| } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { |
| Out << ' '; |
| if (AI->isUsedWithInAlloca()) |
| Out << "inalloca "; |
| if (AI->isSwiftError()) |
| Out << "swifterror "; |
| TypePrinter.print(AI->getAllocatedType(), Out); |
| |
| // Explicitly write the array size if the code is broken, if it's an array |
| // allocation, or if the type is not canonical for scalar allocations. The |
| // latter case prevents the type from mutating when round-tripping through |
| // assembly. |
| if (!AI->getArraySize() || AI->isArrayAllocation() || |
| !AI->getArraySize()->getType()->isIntegerTy(32)) { |
| Out << ", "; |
| writeOperand(AI->getArraySize(), true); |
| } |
| if (AI->getAlignment()) { |
| Out << ", align " << AI->getAlignment(); |
| } |
| |
| unsigned AddrSpace = AI->getType()->getAddressSpace(); |
| if (AddrSpace != 0) { |
| Out << ", addrspace(" << AddrSpace << ')'; |
| } |
| } else if (isa<CastInst>(I)) { |
| if (Operand) { |
| Out << ' '; |
| writeOperand(Operand, true); // Work with broken code |
| } |
| Out << " to "; |
| TypePrinter.print(I.getType(), Out); |
| } else if (isa<VAArgInst>(I)) { |
| if (Operand) { |
| Out << ' '; |
| writeOperand(Operand, true); // Work with broken code |
| } |
| Out << ", "; |
| TypePrinter.print(I.getType(), Out); |
| } else if (Operand) { // Print the normal way. |
| if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { |
| Out << ' '; |
| TypePrinter.print(GEP->getSourceElementType(), Out); |
| Out << ','; |
| } else if (const auto *LI = dyn_cast<LoadInst>(&I)) { |
| Out << ' '; |
| TypePrinter.print(LI->getType(), Out); |
| Out << ','; |
| } |
| |
| // PrintAllTypes - Instructions who have operands of all the same type |
| // omit the type from all but the first operand. If the instruction has |
| // different type operands (for example br), then they are all printed. |
| bool PrintAllTypes = false; |
| Type *TheType = Operand->getType(); |
| |
| // Select, Store and ShuffleVector always print all types. |
| if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) |
| || isa<ReturnInst>(I)) { |
| PrintAllTypes = true; |
| } else { |
| for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) { |
| Operand = I.getOperand(i); |
| // note that Operand shouldn't be null, but the test helps make dump() |
| // more tolerant of malformed IR |
| if (Operand && Operand->getType() != TheType) { |
| PrintAllTypes = true; // We have differing types! Print them all! |
| break; |
| } |
| } |
| } |
| |
| if (!PrintAllTypes) { |
| Out << ' '; |
| TypePrinter.print(TheType, Out); |
| } |
| |
| Out << ' '; |
| for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) { |
| if (i) Out << ", "; |
| writeOperand(I.getOperand(i), PrintAllTypes); |
| } |
| } |
| |
| // Print atomic ordering/alignment for memory operations |
| if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { |
| if (LI->isAtomic()) |
| writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID()); |
| if (LI->getAlignment()) |
| Out << ", align " << LI->getAlignment(); |
| } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { |
| if (SI->isAtomic()) |
| writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID()); |
| if (SI->getAlignment()) |
| Out << ", align " << SI->getAlignment(); |
| } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) { |
| writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(), |
| CXI->getFailureOrdering(), CXI->getSyncScopeID()); |
| } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) { |
| writeAtomic(RMWI->getContext(), RMWI->getOrdering(), |
| RMWI->getSyncScopeID()); |
| } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) { |
| writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID()); |
| } |
| |
| // Print Metadata info. |
| SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD; |
| I.getAllMetadata(InstMD); |
| printMetadataAttachments(InstMD, ", "); |
| |
| // Print a nice comment. |
| printInfoComment(I); |
| } |
| |
| void AssemblyWriter::printMetadataAttachments( |
| const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs, |
| StringRef Separator) { |
| if (MDs.empty()) |
| return; |
| |
| if (MDNames.empty()) |
| MDs[0].second->getContext().getMDKindNames(MDNames); |
| |
| for (const auto &I : MDs) { |
| unsigned Kind = I.first; |
| Out << Separator; |
| if (Kind < MDNames.size()) { |
| Out << "!"; |
| printMetadataIdentifier(MDNames[Kind], Out); |
| } else |
| Out << "!<unknown kind #" << Kind << ">"; |
| Out << ' '; |
| WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule); |
| } |
| } |
| |
| void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) { |
| Out << '!' << Slot << " = "; |
| printMDNodeBody(Node); |
| Out << "\n"; |
| } |
| |
| void AssemblyWriter::writeAllMDNodes() { |
| SmallVector<const MDNode *, 16> Nodes; |
| Nodes.resize(Machine.mdn_size()); |
| for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end(); |
| I != E; ++I) |
| Nodes[I->second] = cast<MDNode>(I->first); |
| |
| for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { |
| writeMDNode(i, Nodes[i]); |
| } |
| } |
| |
| void AssemblyWriter::printMDNodeBody(const MDNode *Node) { |
| WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule); |
| } |
| |
| void AssemblyWriter::writeAllAttributeGroups() { |
| std::vector<std::pair<AttributeSet, unsigned>> asVec; |
| asVec.resize(Machine.as_size()); |
| |
| for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end(); |
| I != E; ++I) |
| asVec[I->second] = *I; |
| |
| for (const auto &I : asVec) |
| Out << "attributes #" << I.second << " = { " |
| << I.first.getAsString(true) << " }\n"; |
| } |
| |
| void AssemblyWriter::printUseListOrder(const UseListOrder &Order) { |
| bool IsInFunction = Machine.getFunction(); |
| if (IsInFunction) |
| Out << " "; |
| |
| Out << "uselistorder"; |
| if (const BasicBlock *BB = |
| IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) { |
| Out << "_bb "; |
| writeOperand(BB->getParent(), false); |
| Out << ", "; |
| writeOperand(BB, false); |
| } else { |
| Out << " "; |
| writeOperand(Order.V, true); |
| } |
| Out << ", { "; |
| |
| assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); |
| Out << Order.Shuffle[0]; |
| for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I) |
| Out << ", " << Order.Shuffle[I]; |
| Out << " }\n"; |
| } |
| |
| void AssemblyWriter::printUseLists(const Function *F) { |
| auto hasMore = |
| [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; }; |
| if (!hasMore()) |
| // Nothing to do. |
| return; |
| |
| Out << "\n; uselistorder directives\n"; |
| while (hasMore()) { |
| printUseListOrder(UseListOrders.back()); |
| UseListOrders.pop_back(); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // External Interface declarations |
| //===----------------------------------------------------------------------===// |
| |
| void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW, |
| bool ShouldPreserveUseListOrder, |
| bool IsForDebug) const { |
| SlotTracker SlotTable(this->getParent()); |
| formatted_raw_ostream OS(ROS); |
| AssemblyWriter W(OS, SlotTable, this->getParent(), AAW, |
| IsForDebug, |
| ShouldPreserveUseListOrder); |
| W.printFunction(this); |
| } |
| |
| void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW, |
| bool ShouldPreserveUseListOrder, bool IsForDebug) const { |
| SlotTracker SlotTable(this); |
| formatted_raw_ostream OS(ROS); |
| AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug, |
| ShouldPreserveUseListOrder); |
| W.printModule(this); |
| } |
| |
| void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const { |
| SlotTracker SlotTable(getParent()); |
| formatted_raw_ostream OS(ROS); |
| AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug); |
| W.printNamedMDNode(this); |
| } |
| |
| void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST, |
| bool IsForDebug) const { |
| Optional<SlotTracker> LocalST; |
| SlotTracker *SlotTable; |
| if (auto *ST = MST.getMachine()) |
| SlotTable = ST; |
| else { |
| LocalST.emplace(getParent()); |
| SlotTable = &*LocalST; |
| } |
| |
| formatted_raw_ostream OS(ROS); |
| AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug); |
| W.printNamedMDNode(this); |
| } |
| |
| void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const { |
| PrintLLVMName(ROS, getName(), ComdatPrefix); |
| ROS << " = comdat "; |
| |
| switch (getSelectionKind()) { |
| case Comdat::Any: |
| ROS << "any"; |
| break; |
| case Comdat::ExactMatch: |
| ROS << "exactmatch"; |
| break; |
| case Comdat::Largest: |
| ROS << "largest"; |
| break; |
| case Comdat::NoDuplicates: |
| ROS << "noduplicates"; |
| break; |
| case Comdat::SameSize: |
| ROS << "samesize"; |
| break; |
| } |
| |
| ROS << '\n'; |
| } |
| |
| void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const { |
| TypePrinting TP; |
| TP.print(const_cast<Type*>(this), OS); |
| |
| if (NoDetails) |
| return; |
| |
| // If the type is a named struct type, print the body as well. |
| if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this))) |
| if (!STy->isLiteral()) { |
| OS << " = type "; |
| TP.printStructBody(STy, OS); |
| } |
| } |
| |
| static bool isReferencingMDNode(const Instruction &I) { |
| if (const auto *CI = dyn_cast<CallInst>(&I)) |
| if (Function *F = CI->getCalledFunction()) |
| if (F->isIntrinsic()) |
| for (auto &Op : I.operands()) |
| if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op)) |
| if (isa<MDNode>(V->getMetadata())) |
| return true; |
| return false; |
| } |
| |
| void Value::print(raw_ostream &ROS, bool IsForDebug) const { |
| bool ShouldInitializeAllMetadata = false; |
| if (auto *I = dyn_cast<Instruction>(this)) |
| ShouldInitializeAllMetadata = isReferencingMDNode(*I); |
| else if (isa<Function>(this) || isa<MetadataAsValue>(this)) |
| ShouldInitializeAllMetadata = true; |
| |
| ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata); |
| print(ROS, MST, IsForDebug); |
| } |
| |
| void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST, |
| bool IsForDebug) const { |
| formatted_raw_ostream OS(ROS); |
| SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr)); |
| SlotTracker &SlotTable = |
| MST.getMachine() ? *MST.getMachine() : EmptySlotTable; |
| auto incorporateFunction = [&](const Function *F) { |
| if (F) |
| MST.incorporateFunction(*F); |
| }; |
| |
| if (const Instruction *I = dyn_cast<Instruction>(this)) { |
| incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr); |
| AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug); |
| W.printInstruction(*I); |
| } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) { |
| incorporateFunction(BB->getParent()); |
| AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug); |
| W.printBasicBlock(BB); |
| } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { |
| AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug); |
| if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV)) |
| W.printGlobal(V); |
| else if (const Function *F = dyn_cast<Function>(GV)) |
| W.printFunction(F); |
| else |
| W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV)); |
| } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) { |
| V->getMetadata()->print(ROS, MST, getModuleFromVal(V)); |
| } else if (const Constant *C = dyn_cast<Constant>(this)) { |
| TypePrinting TypePrinter; |
| TypePrinter.print(C->getType(), OS); |
| OS << ' '; |
| WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr); |
| } else if (isa<InlineAsm>(this) || isa<Argument>(this)) { |
| this->printAsOperand(OS, /* PrintType */ true, MST); |
| } else { |
| llvm_unreachable("Unknown value to print out!"); |
| } |
| } |
| |
| /// Print without a type, skipping the TypePrinting object. |
| /// |
| /// \return \c true iff printing was successful. |
| static bool printWithoutType(const Value &V, raw_ostream &O, |
| SlotTracker *Machine, const Module *M) { |
| if (V.hasName() || isa<GlobalValue>(V) || |
| (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) { |
| WriteAsOperandInternal(O, &V, nullptr, Machine, M); |
| return true; |
| } |
| return false; |
| } |
| |
| static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType, |
| ModuleSlotTracker &MST) { |
| TypePrinting TypePrinter(MST.getModule()); |
| if (PrintType) { |
| TypePrinter.print(V.getType(), O); |
| O << ' '; |
| } |
| |
| WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(), |
| MST.getModule()); |
| } |
| |
| void Value::printAsOperand(raw_ostream &O, bool PrintType, |
| const Module *M) const { |
| if (!M) |
| M = getModuleFromVal(this); |
| |
| if (!PrintType) |
| if (printWithoutType(*this, O, nullptr, M)) |
| return; |
| |
| SlotTracker Machine( |
| M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this)); |
| ModuleSlotTracker MST(Machine, M); |
| printAsOperandImpl(*this, O, PrintType, MST); |
| } |
| |
| void Value::printAsOperand(raw_ostream &O, bool PrintType, |
| ModuleSlotTracker &MST) const { |
| if (!PrintType) |
| if (printWithoutType(*this, O, MST.getMachine(), MST.getModule())) |
| return; |
| |
| printAsOperandImpl(*this, O, PrintType, MST); |
| } |
| |
| static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD, |
| ModuleSlotTracker &MST, const Module *M, |
| bool OnlyAsOperand) { |
| formatted_raw_ostream OS(ROS); |
| |
| TypePrinting TypePrinter(M); |
| |
| WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M, |
| /* FromValue */ true); |
| |
| auto *N = dyn_cast<MDNode>(&MD); |
| if (OnlyAsOperand || !N || isa<DIExpression>(MD)) |
| return; |
| |
| OS << " = "; |
| WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M); |
| } |
| |
| void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const { |
| ModuleSlotTracker MST(M, isa<MDNode>(this)); |
| printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true); |
| } |
| |
| void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST, |
| const Module *M) const { |
| printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true); |
| } |
| |
| void Metadata::print(raw_ostream &OS, const Module *M, |
| bool /*IsForDebug*/) const { |
| ModuleSlotTracker MST(M, isa<MDNode>(this)); |
| printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false); |
| } |
| |
| void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST, |
| const Module *M, bool /*IsForDebug*/) const { |
| printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false); |
| } |
| |
| void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const { |
| SlotTracker SlotTable(this); |
| formatted_raw_ostream OS(ROS); |
| AssemblyWriter W(OS, SlotTable, this, IsForDebug); |
| W.printModuleSummaryIndex(); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| // Value::dump - allow easy printing of Values from the debugger. |
| LLVM_DUMP_METHOD |
| void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; } |
| |
| // Type::dump - allow easy printing of Types from the debugger. |
| LLVM_DUMP_METHOD |
| void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; } |
| |
| // Module::dump() - Allow printing of Modules from the debugger. |
| LLVM_DUMP_METHOD |
| void Module::dump() const { |
| print(dbgs(), nullptr, |
| /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true); |
| } |
| |
| // Allow printing of Comdats from the debugger. |
| LLVM_DUMP_METHOD |
| void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); } |
| |
| // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger. |
| LLVM_DUMP_METHOD |
| void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); } |
| |
| LLVM_DUMP_METHOD |
| void Metadata::dump() const { dump(nullptr); } |
| |
| LLVM_DUMP_METHOD |
| void Metadata::dump(const Module *M) const { |
| print(dbgs(), M, /*IsForDebug=*/true); |
| dbgs() << '\n'; |
| } |
| |
| // Allow printing of ModuleSummaryIndex from the debugger. |
| LLVM_DUMP_METHOD |
| void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); } |
| #endif |