blob: 99a25a723b4a02d6506a2e7ea520ab41262cfe5e [file] [log] [blame]
//===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This library implements `print` family of functions in classes like
// Module, Function, Value, etc. In-memory representation of those classes is
// converted to IR strings.
//
// Note that these routines must be extremely tolerant of various errors in the
// LLVM code, because it can be used for debugging transformations.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/AssemblyAnnotationWriter.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalIFunc.h"
#include "llvm/IR/GlobalIndirectSymbol.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/TypeFinder.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/UseListOrder.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
// Make virtual table appear in this compilation unit.
AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//
namespace {
struct OrderMap {
DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
unsigned size() const { return IDs.size(); }
std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
std::pair<unsigned, bool> lookup(const Value *V) const {
return IDs.lookup(V);
}
void index(const Value *V) {
// Explicitly sequence get-size and insert-value operations to avoid UB.
unsigned ID = IDs.size() + 1;
IDs[V].first = ID;
}
};
} // end anonymous namespace
static void orderValue(const Value *V, OrderMap &OM) {
if (OM.lookup(V).first)
return;
if (const Constant *C = dyn_cast<Constant>(V))
if (C->getNumOperands() && !isa<GlobalValue>(C))
for (const Value *Op : C->operands())
if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
orderValue(Op, OM);
// Note: we cannot cache this lookup above, since inserting into the map
// changes the map's size, and thus affects the other IDs.
OM.index(V);
}
static OrderMap orderModule(const Module *M) {
// This needs to match the order used by ValueEnumerator::ValueEnumerator()
// and ValueEnumerator::incorporateFunction().
OrderMap OM;
for (const GlobalVariable &G : M->globals()) {
if (G.hasInitializer())
if (!isa<GlobalValue>(G.getInitializer()))
orderValue(G.getInitializer(), OM);
orderValue(&G, OM);
}
for (const GlobalAlias &A : M->aliases()) {
if (!isa<GlobalValue>(A.getAliasee()))
orderValue(A.getAliasee(), OM);
orderValue(&A, OM);
}
for (const GlobalIFunc &I : M->ifuncs()) {
if (!isa<GlobalValue>(I.getResolver()))
orderValue(I.getResolver(), OM);
orderValue(&I, OM);
}
for (const Function &F : *M) {
for (const Use &U : F.operands())
if (!isa<GlobalValue>(U.get()))
orderValue(U.get(), OM);
orderValue(&F, OM);
if (F.isDeclaration())
continue;
for (const Argument &A : F.args())
orderValue(&A, OM);
for (const BasicBlock &BB : F) {
orderValue(&BB, OM);
for (const Instruction &I : BB) {
for (const Value *Op : I.operands())
if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
isa<InlineAsm>(*Op))
orderValue(Op, OM);
orderValue(&I, OM);
}
}
}
return OM;
}
static void predictValueUseListOrderImpl(const Value *V, const Function *F,
unsigned ID, const OrderMap &OM,
UseListOrderStack &Stack) {
// Predict use-list order for this one.
using Entry = std::pair<const Use *, unsigned>;
SmallVector<Entry, 64> List;
for (const Use &U : V->uses())
// Check if this user will be serialized.
if (OM.lookup(U.getUser()).first)
List.push_back(std::make_pair(&U, List.size()));
if (List.size() < 2)
// We may have lost some users.
return;
bool GetsReversed =
!isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
if (auto *BA = dyn_cast<BlockAddress>(V))
ID = OM.lookup(BA->getBasicBlock()).first;
llvm::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
const Use *LU = L.first;
const Use *RU = R.first;
if (LU == RU)
return false;
auto LID = OM.lookup(LU->getUser()).first;
auto RID = OM.lookup(RU->getUser()).first;
// If ID is 4, then expect: 7 6 5 1 2 3.
if (LID < RID) {
if (GetsReversed)
if (RID <= ID)
return true;
return false;
}
if (RID < LID) {
if (GetsReversed)
if (LID <= ID)
return false;
return true;
}
// LID and RID are equal, so we have different operands of the same user.
// Assume operands are added in order for all instructions.
if (GetsReversed)
if (LID <= ID)
return LU->getOperandNo() < RU->getOperandNo();
return LU->getOperandNo() > RU->getOperandNo();
});
if (std::is_sorted(
List.begin(), List.end(),
[](const Entry &L, const Entry &R) { return L.second < R.second; }))
// Order is already correct.
return;
// Store the shuffle.
Stack.emplace_back(V, F, List.size());
assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
for (size_t I = 0, E = List.size(); I != E; ++I)
Stack.back().Shuffle[I] = List[I].second;
}
static void predictValueUseListOrder(const Value *V, const Function *F,
OrderMap &OM, UseListOrderStack &Stack) {
auto &IDPair = OM[V];
assert(IDPair.first && "Unmapped value");
if (IDPair.second)
// Already predicted.
return;
// Do the actual prediction.
IDPair.second = true;
if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
// Recursive descent into constants.
if (const Constant *C = dyn_cast<Constant>(V))
if (C->getNumOperands()) // Visit GlobalValues.
for (const Value *Op : C->operands())
if (isa<Constant>(Op)) // Visit GlobalValues.
predictValueUseListOrder(Op, F, OM, Stack);
}
static UseListOrderStack predictUseListOrder(const Module *M) {
OrderMap OM = orderModule(M);
// Use-list orders need to be serialized after all the users have been added
// to a value, or else the shuffles will be incomplete. Store them per
// function in a stack.
//
// Aside from function order, the order of values doesn't matter much here.
UseListOrderStack Stack;
// We want to visit the functions backward now so we can list function-local
// constants in the last Function they're used in. Module-level constants
// have already been visited above.
for (const Function &F : make_range(M->rbegin(), M->rend())) {
if (F.isDeclaration())
continue;
for (const BasicBlock &BB : F)
predictValueUseListOrder(&BB, &F, OM, Stack);
for (const Argument &A : F.args())
predictValueUseListOrder(&A, &F, OM, Stack);
for (const BasicBlock &BB : F)
for (const Instruction &I : BB)
for (const Value *Op : I.operands())
if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
predictValueUseListOrder(Op, &F, OM, Stack);
for (const BasicBlock &BB : F)
for (const Instruction &I : BB)
predictValueUseListOrder(&I, &F, OM, Stack);
}
// Visit globals last.
for (const GlobalVariable &G : M->globals())
predictValueUseListOrder(&G, nullptr, OM, Stack);
for (const Function &F : *M)
predictValueUseListOrder(&F, nullptr, OM, Stack);
for (const GlobalAlias &A : M->aliases())
predictValueUseListOrder(&A, nullptr, OM, Stack);
for (const GlobalIFunc &I : M->ifuncs())
predictValueUseListOrder(&I, nullptr, OM, Stack);
for (const GlobalVariable &G : M->globals())
if (G.hasInitializer())
predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
for (const GlobalAlias &A : M->aliases())
predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
for (const GlobalIFunc &I : M->ifuncs())
predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
for (const Function &F : *M)
for (const Use &U : F.operands())
predictValueUseListOrder(U.get(), nullptr, OM, Stack);
return Stack;
}
static const Module *getModuleFromVal(const Value *V) {
if (const Argument *MA = dyn_cast<Argument>(V))
return MA->getParent() ? MA->getParent()->getParent() : nullptr;
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
return BB->getParent() ? BB->getParent()->getParent() : nullptr;
if (const Instruction *I = dyn_cast<Instruction>(V)) {
const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
return M ? M->getParent() : nullptr;
}
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
return GV->getParent();
if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
for (const User *U : MAV->users())
if (isa<Instruction>(U))
if (const Module *M = getModuleFromVal(U))
return M;
return nullptr;
}
return nullptr;
}
static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
switch (cc) {
default: Out << "cc" << cc; break;
case CallingConv::Fast: Out << "fastcc"; break;
case CallingConv::Cold: Out << "coldcc"; break;
case CallingConv::WebKit_JS: Out << "webkit_jscc"; break;
case CallingConv::AnyReg: Out << "anyregcc"; break;
case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break;
case CallingConv::GHC: Out << "ghccc"; break;
case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break;
case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
case CallingConv::AVR_INTR: Out << "avr_intrcc "; break;
case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break;
case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
case CallingConv::PTX_Device: Out << "ptx_device"; break;
case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
case CallingConv::Win64: Out << "win64cc"; break;
case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
case CallingConv::Swift: Out << "swiftcc"; break;
case CallingConv::X86_INTR: Out << "x86_intrcc"; break;
case CallingConv::HHVM: Out << "hhvmcc"; break;
case CallingConv::HHVM_C: Out << "hhvm_ccc"; break;
case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break;
case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break;
case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break;
case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break;
case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break;
case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break;
case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break;
case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
}
}
enum PrefixType {
GlobalPrefix,
ComdatPrefix,
LabelPrefix,
LocalPrefix,
NoPrefix
};
void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
assert(!Name.empty() && "Cannot get empty name!");
// Scan the name to see if it needs quotes first.
bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
if (!NeedsQuotes) {
for (unsigned i = 0, e = Name.size(); i != e; ++i) {
// By making this unsigned, the value passed in to isalnum will always be
// in the range 0-255. This is important when building with MSVC because
// its implementation will assert. This situation can arise when dealing
// with UTF-8 multibyte characters.
unsigned char C = Name[i];
if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
C != '_') {
NeedsQuotes = true;
break;
}
}
}
// If we didn't need any quotes, just write out the name in one blast.
if (!NeedsQuotes) {
OS << Name;
return;
}
// Okay, we need quotes. Output the quotes and escape any scary characters as
// needed.
OS << '"';
printEscapedString(Name, OS);
OS << '"';
}
/// Turn the specified name into an 'LLVM name', which is either prefixed with %
/// (if the string only contains simple characters) or is surrounded with ""'s
/// (if it has special chars in it). Print it out.
static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
switch (Prefix) {
case NoPrefix:
break;
case GlobalPrefix:
OS << '@';
break;
case ComdatPrefix:
OS << '$';
break;
case LabelPrefix:
break;
case LocalPrefix:
OS << '%';
break;
}
printLLVMNameWithoutPrefix(OS, Name);
}
/// Turn the specified name into an 'LLVM name', which is either prefixed with %
/// (if the string only contains simple characters) or is surrounded with ""'s
/// (if it has special chars in it). Print it out.
static void PrintLLVMName(raw_ostream &OS, const Value *V) {
PrintLLVMName(OS, V->getName(),
isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
}
namespace {
class TypePrinting {
public:
TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
TypePrinting(const TypePrinting &) = delete;
TypePrinting &operator=(const TypePrinting &) = delete;
/// The named types that are used by the current module.
TypeFinder &getNamedTypes();
/// The numbered types, number to type mapping.
std::vector<StructType *> &getNumberedTypes();
bool empty();
void print(Type *Ty, raw_ostream &OS);
void printStructBody(StructType *Ty, raw_ostream &OS);
private:
void incorporateTypes();
/// A module to process lazily when needed. Set to nullptr as soon as used.
const Module *DeferredM;
TypeFinder NamedTypes;
// The numbered types, along with their value.
DenseMap<StructType *, unsigned> Type2Number;
std::vector<StructType *> NumberedTypes;
};
} // end anonymous namespace
TypeFinder &TypePrinting::getNamedTypes() {
incorporateTypes();
return NamedTypes;
}
std::vector<StructType *> &TypePrinting::getNumberedTypes() {
incorporateTypes();
// We know all the numbers that each type is used and we know that it is a
// dense assignment. Convert the map to an index table, if it's not done
// already (judging from the sizes):
if (NumberedTypes.size() == Type2Number.size())
return NumberedTypes;
NumberedTypes.resize(Type2Number.size());
for (const auto &P : Type2Number) {
assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
NumberedTypes[P.second] = P.first;
}
return NumberedTypes;
}
bool TypePrinting::empty() {
incorporateTypes();
return NamedTypes.empty() && Type2Number.empty();
}
void TypePrinting::incorporateTypes() {
if (!DeferredM)
return;
NamedTypes.run(*DeferredM, false);
DeferredM = nullptr;
// The list of struct types we got back includes all the struct types, split
// the unnamed ones out to a numbering and remove the anonymous structs.
unsigned NextNumber = 0;
std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
StructType *STy = *I;
// Ignore anonymous types.
if (STy->isLiteral())
continue;
if (STy->getName().empty())
Type2Number[STy] = NextNumber++;
else
*NextToUse++ = STy;
}
NamedTypes.erase(NextToUse, NamedTypes.end());
}
/// Write the specified type to the specified raw_ostream, making use of type
/// names or up references to shorten the type name where possible.
void TypePrinting::print(Type *Ty, raw_ostream &OS) {
switch (Ty->getTypeID()) {
case Type::VoidTyID: OS << "void"; return;
case Type::HalfTyID: OS << "half"; return;
case Type::FloatTyID: OS << "float"; return;
case Type::DoubleTyID: OS << "double"; return;
case Type::X86_FP80TyID: OS << "x86_fp80"; return;
case Type::FP128TyID: OS << "fp128"; return;
case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
case Type::LabelTyID: OS << "label"; return;
case Type::MetadataTyID: OS << "metadata"; return;
case Type::X86_MMXTyID: OS << "x86_mmx"; return;
case Type::TokenTyID: OS << "token"; return;
case Type::IntegerTyID:
OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
return;
case Type::FunctionTyID: {
FunctionType *FTy = cast<FunctionType>(Ty);
print(FTy->getReturnType(), OS);
OS << " (";
for (FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end(); I != E; ++I) {
if (I != FTy->param_begin())
OS << ", ";
print(*I, OS);
}
if (FTy->isVarArg()) {
if (FTy->getNumParams()) OS << ", ";
OS << "...";
}
OS << ')';
return;
}
case Type::StructTyID: {
StructType *STy = cast<StructType>(Ty);
if (STy->isLiteral())
return printStructBody(STy, OS);
if (!STy->getName().empty())
return PrintLLVMName(OS, STy->getName(), LocalPrefix);
incorporateTypes();
const auto I = Type2Number.find(STy);
if (I != Type2Number.end())
OS << '%' << I->second;
else // Not enumerated, print the hex address.
OS << "%\"type " << STy << '\"';
return;
}
case Type::PointerTyID: {
PointerType *PTy = cast<PointerType>(Ty);
print(PTy->getElementType(), OS);
if (unsigned AddressSpace = PTy->getAddressSpace())
OS << " addrspace(" << AddressSpace << ')';
OS << '*';
return;
}
case Type::ArrayTyID: {
ArrayType *ATy = cast<ArrayType>(Ty);
OS << '[' << ATy->getNumElements() << " x ";
print(ATy->getElementType(), OS);
OS << ']';
return;
}
case Type::VectorTyID: {
VectorType *PTy = cast<VectorType>(Ty);
OS << "<" << PTy->getNumElements() << " x ";
print(PTy->getElementType(), OS);
OS << '>';
return;
}
}
llvm_unreachable("Invalid TypeID");
}
void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
if (STy->isOpaque()) {
OS << "opaque";
return;
}
if (STy->isPacked())
OS << '<';
if (STy->getNumElements() == 0) {
OS << "{}";
} else {
StructType::element_iterator I = STy->element_begin();
OS << "{ ";
print(*I++, OS);
for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
OS << ", ";
print(*I, OS);
}
OS << " }";
}
if (STy->isPacked())
OS << '>';
}
namespace llvm {
//===----------------------------------------------------------------------===//
// SlotTracker Class: Enumerate slot numbers for unnamed values
//===----------------------------------------------------------------------===//
/// This class provides computation of slot numbers for LLVM Assembly writing.
///
class SlotTracker {
public:
/// ValueMap - A mapping of Values to slot numbers.
using ValueMap = DenseMap<const Value *, unsigned>;
private:
/// TheModule - The module for which we are holding slot numbers.
const Module* TheModule;
/// TheFunction - The function for which we are holding slot numbers.
const Function* TheFunction = nullptr;
bool FunctionProcessed = false;
bool ShouldInitializeAllMetadata;
/// The summary index for which we are holding slot numbers.
const ModuleSummaryIndex *TheIndex = nullptr;
/// mMap - The slot map for the module level data.
ValueMap mMap;
unsigned mNext = 0;
/// fMap - The slot map for the function level data.
ValueMap fMap;
unsigned fNext = 0;
/// mdnMap - Map for MDNodes.
DenseMap<const MDNode*, unsigned> mdnMap;
unsigned mdnNext = 0;
/// asMap - The slot map for attribute sets.
DenseMap<AttributeSet, unsigned> asMap;
unsigned asNext = 0;
/// ModulePathMap - The slot map for Module paths used in the summary index.
StringMap<unsigned> ModulePathMap;
unsigned ModulePathNext = 0;
/// GUIDMap - The slot map for GUIDs used in the summary index.
DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
unsigned GUIDNext = 0;
public:
/// Construct from a module.
///
/// If \c ShouldInitializeAllMetadata, initializes all metadata in all
/// functions, giving correct numbering for metadata referenced only from
/// within a function (even if no functions have been initialized).
explicit SlotTracker(const Module *M,
bool ShouldInitializeAllMetadata = false);
/// Construct from a function, starting out in incorp state.
///
/// If \c ShouldInitializeAllMetadata, initializes all metadata in all
/// functions, giving correct numbering for metadata referenced only from
/// within a function (even if no functions have been initialized).
explicit SlotTracker(const Function *F,
bool ShouldInitializeAllMetadata = false);
/// Construct from a module summary index.
explicit SlotTracker(const ModuleSummaryIndex *Index);
SlotTracker(const SlotTracker &) = delete;
SlotTracker &operator=(const SlotTracker &) = delete;
/// Return the slot number of the specified value in it's type
/// plane. If something is not in the SlotTracker, return -1.
int getLocalSlot(const Value *V);
int getGlobalSlot(const GlobalValue *V);
int getMetadataSlot(const MDNode *N);
int getAttributeGroupSlot(AttributeSet AS);
int getModulePathSlot(StringRef Path);
int getGUIDSlot(GlobalValue::GUID GUID);
/// If you'd like to deal with a function instead of just a module, use
/// this method to get its data into the SlotTracker.
void incorporateFunction(const Function *F) {
TheFunction = F;
FunctionProcessed = false;
}
const Function *getFunction() const { return TheFunction; }
/// After calling incorporateFunction, use this method to remove the
/// most recently incorporated function from the SlotTracker. This
/// will reset the state of the machine back to just the module contents.
void purgeFunction();
/// MDNode map iterators.
using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
mdn_iterator mdn_begin() { return mdnMap.begin(); }
mdn_iterator mdn_end() { return mdnMap.end(); }
unsigned mdn_size() const { return mdnMap.size(); }
bool mdn_empty() const { return mdnMap.empty(); }
/// AttributeSet map iterators.
using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
as_iterator as_begin() { return asMap.begin(); }
as_iterator as_end() { return asMap.end(); }
unsigned as_size() const { return asMap.size(); }
bool as_empty() const { return asMap.empty(); }
/// GUID map iterators.
using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
/// These functions do the actual initialization.
inline void initializeIfNeeded();
void initializeIndexIfNeeded();
// Implementation Details
private:
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
void CreateModuleSlot(const GlobalValue *V);
/// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
void CreateMetadataSlot(const MDNode *N);
/// CreateFunctionSlot - Insert the specified Value* into the slot table.
void CreateFunctionSlot(const Value *V);
/// Insert the specified AttributeSet into the slot table.
void CreateAttributeSetSlot(AttributeSet AS);
inline void CreateModulePathSlot(StringRef Path);
void CreateGUIDSlot(GlobalValue::GUID GUID);
/// Add all of the module level global variables (and their initializers)
/// and function declarations, but not the contents of those functions.
void processModule();
void processIndex();
/// Add all of the functions arguments, basic blocks, and instructions.
void processFunction();
/// Add the metadata directly attached to a GlobalObject.
void processGlobalObjectMetadata(const GlobalObject &GO);
/// Add all of the metadata from a function.
void processFunctionMetadata(const Function &F);
/// Add all of the metadata from an instruction.
void processInstructionMetadata(const Instruction &I);
};
} // end namespace llvm
ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
const Function *F)
: M(M), F(F), Machine(&Machine) {}
ModuleSlotTracker::ModuleSlotTracker(const Module *M,
bool ShouldInitializeAllMetadata)
: ShouldCreateStorage(M),
ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
ModuleSlotTracker::~ModuleSlotTracker() = default;
SlotTracker *ModuleSlotTracker::getMachine() {
if (!ShouldCreateStorage)
return Machine;
ShouldCreateStorage = false;
MachineStorage =
llvm::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
Machine = MachineStorage.get();
return Machine;
}
void ModuleSlotTracker::incorporateFunction(const Function &F) {
// Using getMachine() may lazily create the slot tracker.
if (!getMachine())
return;
// Nothing to do if this is the right function already.
if (this->F == &F)
return;
if (this->F)
Machine->purgeFunction();
Machine->incorporateFunction(&F);
this->F = &F;
}
int ModuleSlotTracker::getLocalSlot(const Value *V) {
assert(F && "No function incorporated");
return Machine->getLocalSlot(V);
}
static SlotTracker *createSlotTracker(const Value *V) {
if (const Argument *FA = dyn_cast<Argument>(V))
return new SlotTracker(FA->getParent());
if (const Instruction *I = dyn_cast<Instruction>(V))
if (I->getParent())
return new SlotTracker(I->getParent()->getParent());
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
return new SlotTracker(BB->getParent());
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
return new SlotTracker(GV->getParent());
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
return new SlotTracker(GA->getParent());
if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
return new SlotTracker(GIF->getParent());
if (const Function *Func = dyn_cast<Function>(V))
return new SlotTracker(Func);
return nullptr;
}
#if 0
#define ST_DEBUG(X) dbgs() << X
#else
#define ST_DEBUG(X)
#endif
// Module level constructor. Causes the contents of the Module (sans functions)
// to be added to the slot table.
SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
: TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
// Function level constructor. Causes the contents of the Module and the one
// function provided to be added to the slot table.
SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
: TheModule(F ? F->getParent() : nullptr), TheFunction(F),
ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
: TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
inline void SlotTracker::initializeIfNeeded() {
if (TheModule) {
processModule();
TheModule = nullptr; ///< Prevent re-processing next time we're called.
}
if (TheFunction && !FunctionProcessed)
processFunction();
}
void SlotTracker::initializeIndexIfNeeded() {
if (!TheIndex)
return;
processIndex();
TheIndex = nullptr; ///< Prevent re-processing next time we're called.
}
// Iterate through all the global variables, functions, and global
// variable initializers and create slots for them.
void SlotTracker::processModule() {
ST_DEBUG("begin processModule!\n");
// Add all of the unnamed global variables to the value table.
for (const GlobalVariable &Var : TheModule->globals()) {
if (!Var.hasName())
CreateModuleSlot(&Var);
processGlobalObjectMetadata(Var);
auto Attrs = Var.getAttributes();
if (Attrs.hasAttributes())
CreateAttributeSetSlot(Attrs);
}
for (const GlobalAlias &A : TheModule->aliases()) {
if (!A.hasName())
CreateModuleSlot(&A);
}
for (const GlobalIFunc &I : TheModule->ifuncs()) {
if (!I.hasName())
CreateModuleSlot(&I);
}
// Add metadata used by named metadata.
for (const NamedMDNode &NMD : TheModule->named_metadata()) {
for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
CreateMetadataSlot(NMD.getOperand(i));
}
for (const Function &F : *TheModule) {
if (!F.hasName())
// Add all the unnamed functions to the table.
CreateModuleSlot(&F);
if (ShouldInitializeAllMetadata)
processFunctionMetadata(F);
// Add all the function attributes to the table.
// FIXME: Add attributes of other objects?
AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
if (FnAttrs.hasAttributes())
CreateAttributeSetSlot(FnAttrs);
}
ST_DEBUG("end processModule!\n");
}
// Process the arguments, basic blocks, and instructions of a function.
void SlotTracker::processFunction() {
ST_DEBUG("begin processFunction!\n");
fNext = 0;
// Process function metadata if it wasn't hit at the module-level.
if (!ShouldInitializeAllMetadata)
processFunctionMetadata(*TheFunction);
// Add all the function arguments with no names.
for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
AE = TheFunction->arg_end(); AI != AE; ++AI)
if (!AI->hasName())
CreateFunctionSlot(&*AI);
ST_DEBUG("Inserting Instructions:\n");
// Add all of the basic blocks and instructions with no names.
for (auto &BB : *TheFunction) {
if (!BB.hasName())
CreateFunctionSlot(&BB);
for (auto &I : BB) {
if (!I.getType()->isVoidTy() && !I.hasName())
CreateFunctionSlot(&I);
// We allow direct calls to any llvm.foo function here, because the
// target may not be linked into the optimizer.
if (auto CS = ImmutableCallSite(&I)) {
// Add all the call attributes to the table.
AttributeSet Attrs = CS.getAttributes().getFnAttributes();
if (Attrs.hasAttributes())
CreateAttributeSetSlot(Attrs);
}
}
}
FunctionProcessed = true;
ST_DEBUG("end processFunction!\n");
}
// Iterate through all the GUID in the index and create slots for them.
void SlotTracker::processIndex() {
ST_DEBUG("begin processIndex!\n");
assert(TheIndex);
// The first block of slots are just the module ids, which start at 0 and are
// assigned consecutively. Since the StringMap iteration order isn't
// guaranteed, use a std::map to order by module ID before assigning slots.
std::map<uint64_t, StringRef> ModuleIdToPathMap;
for (auto &ModPath : TheIndex->modulePaths())
ModuleIdToPathMap[ModPath.second.first] = ModPath.first();
for (auto &ModPair : ModuleIdToPathMap)
CreateModulePathSlot(ModPair.second);
// Start numbering the GUIDs after the module ids.
GUIDNext = ModulePathNext;
for (auto &GlobalList : *TheIndex)
CreateGUIDSlot(GlobalList.first);
for (auto &TId : TheIndex->typeIds())
CreateGUIDSlot(GlobalValue::getGUID(TId.first));
ST_DEBUG("end processIndex!\n");
}
void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
GO.getAllMetadata(MDs);
for (auto &MD : MDs)
CreateMetadataSlot(MD.second);
}
void SlotTracker::processFunctionMetadata(const Function &F) {
processGlobalObjectMetadata(F);
for (auto &BB : F) {
for (auto &I : BB)
processInstructionMetadata(I);
}
}
void SlotTracker::processInstructionMetadata(const Instruction &I) {
// Process metadata used directly by intrinsics.
if (const CallInst *CI = dyn_cast<CallInst>(&I))
if (Function *F = CI->getCalledFunction())
if (F->isIntrinsic())
for (auto &Op : I.operands())
if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
CreateMetadataSlot(N);
// Process metadata attached to this instruction.
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
I.getAllMetadata(MDs);
for (auto &MD : MDs)
CreateMetadataSlot(MD.second);
}
/// Clean up after incorporating a function. This is the only way to get out of
/// the function incorporation state that affects get*Slot/Create*Slot. Function
/// incorporation state is indicated by TheFunction != 0.
void SlotTracker::purgeFunction() {
ST_DEBUG("begin purgeFunction!\n");
fMap.clear(); // Simply discard the function level map
TheFunction = nullptr;
FunctionProcessed = false;
ST_DEBUG("end purgeFunction!\n");
}
/// getGlobalSlot - Get the slot number of a global value.
int SlotTracker::getGlobalSlot(const GlobalValue *V) {
// Check for uninitialized state and do lazy initialization.
initializeIfNeeded();
// Find the value in the module map
ValueMap::iterator MI = mMap.find(V);
return MI == mMap.end() ? -1 : (int)MI->second;
}
/// getMetadataSlot - Get the slot number of a MDNode.
int SlotTracker::getMetadataSlot(const MDNode *N) {
// Check for uninitialized state and do lazy initialization.
initializeIfNeeded();
// Find the MDNode in the module map
mdn_iterator MI = mdnMap.find(N);
return MI == mdnMap.end() ? -1 : (int)MI->second;
}
/// getLocalSlot - Get the slot number for a value that is local to a function.
int SlotTracker::getLocalSlot(const Value *V) {
assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
// Check for uninitialized state and do lazy initialization.
initializeIfNeeded();
ValueMap::iterator FI = fMap.find(V);
return FI == fMap.end() ? -1 : (int)FI->second;
}
int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
// Check for uninitialized state and do lazy initialization.
initializeIfNeeded();
// Find the AttributeSet in the module map.
as_iterator AI = asMap.find(AS);
return AI == asMap.end() ? -1 : (int)AI->second;
}
int SlotTracker::getModulePathSlot(StringRef Path) {
// Check for uninitialized state and do lazy initialization.
initializeIndexIfNeeded();
// Find the Module path in the map
auto I = ModulePathMap.find(Path);
return I == ModulePathMap.end() ? -1 : (int)I->second;
}
int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
// Check for uninitialized state and do lazy initialization.
initializeIndexIfNeeded();
// Find the GUID in the map
guid_iterator I = GUIDMap.find(GUID);
return I == GUIDMap.end() ? -1 : (int)I->second;
}
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
assert(V && "Can't insert a null Value into SlotTracker!");
assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
assert(!V->hasName() && "Doesn't need a slot!");
unsigned DestSlot = mNext++;
mMap[V] = DestSlot;
ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
DestSlot << " [");
// G = Global, F = Function, A = Alias, I = IFunc, o = other
ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
(isa<Function>(V) ? 'F' :
(isa<GlobalAlias>(V) ? 'A' :
(isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
}
/// CreateSlot - Create a new slot for the specified value if it has no name.
void SlotTracker::CreateFunctionSlot(const Value *V) {
assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
unsigned DestSlot = fNext++;
fMap[V] = DestSlot;
// G = Global, F = Function, o = other
ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
DestSlot << " [o]\n");
}
/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
void SlotTracker::CreateMetadataSlot(const MDNode *N) {
assert(N && "Can't insert a null Value into SlotTracker!");
// Don't make slots for DIExpressions. We just print them inline everywhere.
if (isa<DIExpression>(N))
return;
unsigned DestSlot = mdnNext;
if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
return;
++mdnNext;
// Recursively add any MDNodes referenced by operands.
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
CreateMetadataSlot(Op);
}
void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
assert(AS.hasAttributes() && "Doesn't need a slot!");
as_iterator I = asMap.find(AS);
if (I != asMap.end())
return;
unsigned DestSlot = asNext++;
asMap[AS] = DestSlot;
}
/// Create a new slot for the specified Module
void SlotTracker::CreateModulePathSlot(StringRef Path) {
ModulePathMap[Path] = ModulePathNext++;
}
/// Create a new slot for the specified GUID
void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
GUIDMap[GUID] = GUIDNext++;
}
//===----------------------------------------------------------------------===//
// AsmWriter Implementation
//===----------------------------------------------------------------------===//
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context);
static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context,
bool FromValue = false);
static void writeAtomicRMWOperation(raw_ostream &Out,
AtomicRMWInst::BinOp Op) {
switch (Op) {
default: Out << " <unknown operation " << Op << ">"; break;
case AtomicRMWInst::Xchg: Out << " xchg"; break;
case AtomicRMWInst::Add: Out << " add"; break;
case AtomicRMWInst::Sub: Out << " sub"; break;
case AtomicRMWInst::And: Out << " and"; break;
case AtomicRMWInst::Nand: Out << " nand"; break;
case AtomicRMWInst::Or: Out << " or"; break;
case AtomicRMWInst::Xor: Out << " xor"; break;
case AtomicRMWInst::Max: Out << " max"; break;
case AtomicRMWInst::Min: Out << " min"; break;
case AtomicRMWInst::UMax: Out << " umax"; break;
case AtomicRMWInst::UMin: Out << " umin"; break;
}
}
static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
// 'Fast' is an abbreviation for all fast-math-flags.
if (FPO->isFast())
Out << " fast";
else {
if (FPO->hasAllowReassoc())
Out << " reassoc";
if (FPO->hasNoNaNs())
Out << " nnan";
if (FPO->hasNoInfs())
Out << " ninf";
if (FPO->hasNoSignedZeros())
Out << " nsz";
if (FPO->hasAllowReciprocal())
Out << " arcp";
if (FPO->hasAllowContract())
Out << " contract";
if (FPO->hasApproxFunc())
Out << " afn";
}
}
if (const OverflowingBinaryOperator *OBO =
dyn_cast<OverflowingBinaryOperator>(U)) {
if (OBO->hasNoUnsignedWrap())
Out << " nuw";
if (OBO->hasNoSignedWrap())
Out << " nsw";
} else if (const PossiblyExactOperator *Div =
dyn_cast<PossiblyExactOperator>(U)) {
if (Div->isExact())
Out << " exact";
} else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
if (GEP->isInBounds())
Out << " inbounds";
}
}
static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
TypePrinting &TypePrinter,
SlotTracker *Machine,
const Module *Context) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
if (CI->getType()->isIntegerTy(1)) {
Out << (CI->getZExtValue() ? "true" : "false");
return;
}
Out << CI->getValue();
return;
}
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
const APFloat &APF = CFP->getValueAPF();
if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
&APF.getSemantics() == &APFloat::IEEEdouble()) {
// We would like to output the FP constant value in exponential notation,
// but we cannot do this if doing so will lose precision. Check here to
// make sure that we only output it in exponential format if we can parse
// the value back and get the same value.
//
bool ignored;
bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
bool isInf = APF.isInfinity();
bool isNaN = APF.isNaN();
if (!isInf && !isNaN) {
double Val = isDouble ? APF.convertToDouble() : APF.convertToFloat();
SmallString<128> StrVal;
APF.toString(StrVal, 6, 0, false);
// Check to make sure that the stringized number is not some string like
// "Inf" or NaN, that atof will accept, but the lexer will not. Check
// that the string matches the "[-+]?[0-9]" regex.
//
assert(((StrVal[0] >= '0' && StrVal[0] <= '9') ||
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
"[-+]?[0-9] regex does not match!");
// Reparse stringized version!
if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
Out << StrVal;
return;
}
}
// Otherwise we could not reparse it to exactly the same value, so we must
// output the string in hexadecimal format! Note that loading and storing
// floating point types changes the bits of NaNs on some hosts, notably
// x86, so we must not use these types.
static_assert(sizeof(double) == sizeof(uint64_t),
"assuming that double is 64 bits!");
APFloat apf = APF;
// Floats are represented in ASCII IR as double, convert.
if (!isDouble)
apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
&ignored);
Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
return;
}
// Either half, or some form of long double.
// These appear as a magic letter identifying the type, then a
// fixed number of hex digits.
Out << "0x";
APInt API = APF.bitcastToAPInt();
if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
Out << 'K';
Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
/*Upper=*/true);
Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
/*Upper=*/true);
return;
} else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
Out << 'L';
Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
/*Upper=*/true);
Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
/*Upper=*/true);
} else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
Out << 'M';
Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
/*Upper=*/true);
Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
/*Upper=*/true);
} else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
Out << 'H';
Out << format_hex_no_prefix(API.getZExtValue(), 4,
/*Upper=*/true);
} else
llvm_unreachable("Unsupported floating point type");
return;
}
if (isa<ConstantAggregateZero>(CV)) {
Out << "zeroinitializer";
return;
}
if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
Out << "blockaddress(";
WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
Context);
Out << ", ";
WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
Context);
Out << ")";
return;
}
if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
Type *ETy = CA->getType()->getElementType();
Out << '[';
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CA->getOperand(0),
&TypePrinter, Machine,
Context);
for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
Out << ", ";
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
Context);
}
Out << ']';
return;
}
if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
// As a special case, print the array as a string if it is an array of
// i8 with ConstantInt values.
if (CA->isString()) {
Out << "c\"";
printEscapedString(CA->getAsString(), Out);
Out << '"';
return;
}
Type *ETy = CA->getType()->getElementType();
Out << '[';
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
&TypePrinter, Machine,
Context);
for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
Out << ", ";
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
Machine, Context);
}
Out << ']';
return;
}
if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
if (CS->getType()->isPacked())
Out << '<';
Out << '{';
unsigned N = CS->getNumOperands();
if (N) {
Out << ' ';
TypePrinter.print(CS->getOperand(0)->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
Context);
for (unsigned i = 1; i < N; i++) {
Out << ", ";
TypePrinter.print(CS->getOperand(i)->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
Context);
}
Out << ' ';
}
Out << '}';
if (CS->getType()->isPacked())
Out << '>';
return;
}
if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
Type *ETy = CV->getType()->getVectorElementType();
Out << '<';
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
Machine, Context);
for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
Out << ", ";
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
Machine, Context);
}
Out << '>';
return;
}
if (isa<ConstantPointerNull>(CV)) {
Out << "null";
return;
}
if (isa<ConstantTokenNone>(CV)) {
Out << "none";
return;
}
if (isa<UndefValue>(CV)) {
Out << "undef";
return;
}
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
Out << CE->getOpcodeName();
WriteOptimizationInfo(Out, CE);
if (CE->isCompare())
Out << ' ' << CmpInst::getPredicateName(
static_cast<CmpInst::Predicate>(CE->getPredicate()));
Out << " (";
Optional<unsigned> InRangeOp;
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
TypePrinter.print(GEP->getSourceElementType(), Out);
Out << ", ";
InRangeOp = GEP->getInRangeIndex();
if (InRangeOp)
++*InRangeOp;
}
for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
Out << "inrange ";
TypePrinter.print((*OI)->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
if (OI+1 != CE->op_end())
Out << ", ";
}
if (CE->hasIndices()) {
ArrayRef<unsigned> Indices = CE->getIndices();
for (unsigned i = 0, e = Indices.size(); i != e; ++i)
Out << ", " << Indices[i];
}
if (CE->isCast()) {
Out << " to ";
TypePrinter.print(CE->getType(), Out);
}
Out << ')';
return;
}
Out << "<placeholder or erroneous Constant>";
}
static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!{";
for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
const Metadata *MD = Node->getOperand(mi);
if (!MD)
Out << "null";
else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
Value *V = MDV->getValue();
TypePrinter->print(V->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
} else {
WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
}
if (mi + 1 != me)
Out << ", ";
}
Out << "}";
}
namespace {
struct FieldSeparator {
bool Skip = true;
const char *Sep;
FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
};
raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
if (FS.Skip) {
FS.Skip = false;
return OS;
}
return OS << FS.Sep;
}
struct MDFieldPrinter {
raw_ostream &Out;
FieldSeparator FS;
TypePrinting *TypePrinter = nullptr;
SlotTracker *Machine = nullptr;
const Module *Context = nullptr;
explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {}
MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context)
: Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
}
void printTag(const DINode *N);
void printMacinfoType(const DIMacroNode *N);
void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
void printString(StringRef Name, StringRef Value,
bool ShouldSkipEmpty = true);
void printMetadata(StringRef Name, const Metadata *MD,
bool ShouldSkipNull = true);
template <class IntTy>
void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
void printDIFlags(StringRef Name, DINode::DIFlags Flags);
template <class IntTy, class Stringifier>
void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
bool ShouldSkipZero = true);
void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
};
} // end anonymous namespace
void MDFieldPrinter::printTag(const DINode *N) {
Out << FS << "tag: ";
auto Tag = dwarf::TagString(N->getTag());
if (!Tag.empty())
Out << Tag;
else
Out << N->getTag();
}
void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
Out << FS << "type: ";
auto Type = dwarf::MacinfoString(N->getMacinfoType());
if (!Type.empty())
Out << Type;
else
Out << N->getMacinfoType();
}
void MDFieldPrinter::printChecksum(
const DIFile::ChecksumInfo<StringRef> &Checksum) {
Out << FS << "checksumkind: " << Checksum.getKindAsString();
printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
}
void MDFieldPrinter::printString(StringRef Name, StringRef Value,
bool ShouldSkipEmpty) {
if (ShouldSkipEmpty && Value.empty())
return;
Out << FS << Name << ": \"";
printEscapedString(Value, Out);
Out << "\"";
}
static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
if (!MD) {
Out << "null";
return;
}
WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
}
void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
bool ShouldSkipNull) {
if (ShouldSkipNull && !MD)
return;
Out << FS << Name << ": ";
writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
}
template <class IntTy>
void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
if (ShouldSkipZero && !Int)
return;
Out << FS << Name << ": " << Int;
}
void MDFieldPrinter::printBool(StringRef Name, bool Value,
Optional<bool> Default) {
if (Default && Value == *Default)
return;
Out << FS << Name << ": " << (Value ? "true" : "false");
}
void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
if (!Flags)
return;
Out << FS << Name << ": ";
SmallVector<DINode::DIFlags, 8> SplitFlags;
auto Extra = DINode::splitFlags(Flags, SplitFlags);
FieldSeparator FlagsFS(" | ");
for (auto F : SplitFlags) {
auto StringF = DINode::getFlagString(F);
assert(!StringF.empty() && "Expected valid flag");
Out << FlagsFS << StringF;
}
if (Extra || SplitFlags.empty())
Out << FlagsFS << Extra;
}
void MDFieldPrinter::printEmissionKind(StringRef Name,
DICompileUnit::DebugEmissionKind EK) {
Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
}
template <class IntTy, class Stringifier>
void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
Stringifier toString, bool ShouldSkipZero) {
if (!Value)
return;
Out << FS << Name << ": ";
auto S = toString(Value);
if (!S.empty())
Out << S;
else
Out << Value;
}
static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!GenericDINode(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printTag(N);
Printer.printString("header", N->getHeader());
if (N->getNumDwarfOperands()) {
Out << Printer.FS << "operands: {";
FieldSeparator IFS;
for (auto &I : N->dwarf_operands()) {
Out << IFS;
writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
}
Out << "}";
}
Out << ")";
}
static void writeDILocation(raw_ostream &Out, const DILocation *DL,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DILocation(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
// Always output the line, since 0 is a relevant and important value for it.
Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
Printer.printInt("column", DL->getColumn());
Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
Out << ")";
}
static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DISubrange(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
if (auto *CE = N->getCount().dyn_cast<ConstantInt*>())
Printer.printInt("count", CE->getSExtValue(), /* ShouldSkipZero */ false);
else
Printer.printMetadata("count", N->getCount().dyn_cast<DIVariable*>(),
/*ShouldSkipNull */ false);
Printer.printInt("lowerBound", N->getLowerBound());
Out << ")";
}
static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
TypePrinting *, SlotTracker *, const Module *) {
Out << "!DIEnumerator(";
MDFieldPrinter Printer(Out);
Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
if (N->isUnsigned()) {
auto Value = static_cast<uint64_t>(N->getValue());
Printer.printInt("value", Value, /* ShouldSkipZero */ false);
Printer.printBool("isUnsigned", true);
} else {
Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
}
Out << ")";
}
static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
TypePrinting *, SlotTracker *, const Module *) {
Out << "!DIBasicType(";
MDFieldPrinter Printer(Out);
if (N->getTag() != dwarf::DW_TAG_base_type)
Printer.printTag(N);
Printer.printString("name", N->getName());
Printer.printInt("size", N->getSizeInBits());
Printer.printInt("align", N->getAlignInBits());
Printer.printDwarfEnum("encoding", N->getEncoding(),
dwarf::AttributeEncodingString);
Out << ")";
}
static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DIDerivedType(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printTag(N);
Printer.printString("name", N->getName());
Printer.printMetadata("scope", N->getRawScope());
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Printer.printMetadata("baseType", N->getRawBaseType(),
/* ShouldSkipNull */ false);
Printer.printInt("size", N->getSizeInBits());
Printer.printInt("align", N->getAlignInBits());
Printer.printInt("offset", N->getOffsetInBits());
Printer.printDIFlags("flags", N->getFlags());
Printer.printMetadata("extraData", N->getRawExtraData());
if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
/* ShouldSkipZero */ false);
Out << ")";
}
static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!DICompositeType(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printTag(N);
Printer.printString("name", N->getName());
Printer.printMetadata("scope", N->getRawScope());
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Printer.printMetadata("baseType", N->getRawBaseType());
Printer.printInt("size", N->getSizeInBits());
Printer.printInt("align", N->getAlignInBits());
Printer.printInt("offset", N->getOffsetInBits());
Printer.printDIFlags("flags", N->getFlags());
Printer.printMetadata("elements", N->getRawElements());
Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
dwarf::LanguageString);
Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
Printer.printMetadata("templateParams", N->getRawTemplateParams());
Printer.printString("identifier", N->getIdentifier());
Printer.printMetadata("discriminator", N->getRawDiscriminator());
Out << ")";
}
static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!DISubroutineType(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printDIFlags("flags", N->getFlags());
Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
Printer.printMetadata("types", N->getRawTypeArray(),
/* ShouldSkipNull */ false);
Out << ")";
}
static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
SlotTracker *, const Module *) {
Out << "!DIFile(";
MDFieldPrinter Printer(Out);
Printer.printString("filename", N->getFilename(),
/* ShouldSkipEmpty */ false);
Printer.printString("directory", N->getDirectory(),
/* ShouldSkipEmpty */ false);
// Print all values for checksum together, or not at all.
if (N->getChecksum())
Printer.printChecksum(*N->getChecksum());
Printer.printString("source", N->getSource().getValueOr(StringRef()),
/* ShouldSkipEmpty */ true);
Out << ")";
}
static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DICompileUnit(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printDwarfEnum("language", N->getSourceLanguage(),
dwarf::LanguageString, /* ShouldSkipZero */ false);
Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
Printer.printString("producer", N->getProducer());
Printer.printBool("isOptimized", N->isOptimized());
Printer.printString("flags", N->getFlags());
Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
/* ShouldSkipZero */ false);
Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
Printer.printEmissionKind("emissionKind", N->getEmissionKind());
Printer.printMetadata("enums", N->getRawEnumTypes());
Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
Printer.printMetadata("globals", N->getRawGlobalVariables());
Printer.printMetadata("imports", N->getRawImportedEntities());
Printer.printMetadata("macros", N->getRawMacros());
Printer.printInt("dwoId", N->getDWOId());
Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
false);
Printer.printBool("gnuPubnames", N->getGnuPubnames(), false);
Out << ")";
}
static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DISubprogram(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printString("name", N->getName());
Printer.printString("linkageName", N->getLinkageName());
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Printer.printMetadata("type", N->getRawType());
Printer.printBool("isLocal", N->isLocalToUnit());
Printer.printBool("isDefinition", N->isDefinition());
Printer.printInt("scopeLine", N->getScopeLine());
Printer.printMetadata("containingType", N->getRawContainingType());
Printer.printDwarfEnum("virtuality", N->getVirtuality(),
dwarf::VirtualityString);
if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
N->getVirtualIndex() != 0)
Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
Printer.printInt("thisAdjustment", N->getThisAdjustment());
Printer.printDIFlags("flags", N->getFlags());
Printer.printBool("isOptimized", N->isOptimized());
Printer.printMetadata("unit", N->getRawUnit());
Printer.printMetadata("templateParams", N->getRawTemplateParams());
Printer.printMetadata("declaration", N->getRawDeclaration());
Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
Out << ")";
}
static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DILexicalBlock(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Printer.printInt("column", N->getColumn());
Out << ")";
}
static void writeDILexicalBlockFile(raw_ostream &Out,
const DILexicalBlockFile *N,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
Out << "!DILexicalBlockFile(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("discriminator", N->getDiscriminator(),
/* ShouldSkipZero */ false);
Out << ")";
}
static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DINamespace(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printString("name", N->getName());
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printBool("exportSymbols", N->getExportSymbols(), false);
Out << ")";
}
static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DIMacro(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printMacinfoType(N);
Printer.printInt("line", N->getLine());
Printer.printString("name", N->getName());
Printer.printString("value", N->getValue());
Out << ")";
}
static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DIMacroFile(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printInt("line", N->getLine());
Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
Printer.printMetadata("nodes", N->getRawElements());
Out << ")";
}
static void writeDIModule(raw_ostream &Out, const DIModule *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DIModule(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printString("name", N->getName());
Printer.printString("configMacros", N->getConfigurationMacros());
Printer.printString("includePath", N->getIncludePath());
Printer.printString("isysroot", N->getISysRoot());
Out << ")";
}
static void writeDITemplateTypeParameter(raw_ostream &Out,
const DITemplateTypeParameter *N,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
Out << "!DITemplateTypeParameter(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printString("name", N->getName());
Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
Out << ")";
}
static void writeDITemplateValueParameter(raw_ostream &Out,
const DITemplateValueParameter *N,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
Out << "!DITemplateValueParameter(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
Printer.printTag(N);
Printer.printString("name", N->getName());
Printer.printMetadata("type", N->getRawType());
Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
Out << ")";
}
static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!DIGlobalVariable(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printString("name", N->getName());
Printer.printString("linkageName", N->getLinkageName());
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Printer.printMetadata("type", N->getRawType());
Printer.printBool("isLocal", N->isLocalToUnit());
Printer.printBool("isDefinition", N->isDefinition());
Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
Printer.printInt("align", N->getAlignInBits());
Out << ")";
}
static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!DILocalVariable(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printString("name", N->getName());
Printer.printInt("arg", N->getArg());
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Printer.printMetadata("type", N->getRawType());
Printer.printDIFlags("flags", N->getFlags());
Printer.printInt("align", N->getAlignInBits());
Out << ")";
}
static void writeDILabel(raw_ostream &Out, const DILabel *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!DILabel(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printString("name", N->getName());
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Out << ")";
}
static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DIExpression(";
FieldSeparator FS;
if (N->isValid()) {
for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
auto OpStr = dwarf::OperationEncodingString(I->getOp());
assert(!OpStr.empty() && "Expected valid opcode");
Out << FS << OpStr;
for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
Out << FS << I->getArg(A);
}
} else {
for (const auto &I : N->getElements())
Out << FS << I;
}
Out << ")";
}
static void writeDIGlobalVariableExpression(raw_ostream &Out,
const DIGlobalVariableExpression *N,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
Out << "!DIGlobalVariableExpression(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printMetadata("var", N->getVariable());
Printer.printMetadata("expr", N->getExpression());
Out << ")";
}
static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DIObjCProperty(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printString("name", N->getName());
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Printer.printString("setter", N->getSetterName());
Printer.printString("getter", N->getGetterName());
Printer.printInt("attributes", N->getAttributes());
Printer.printMetadata("type", N->getRawType());
Out << ")";
}
static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!DIImportedEntity(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printTag(N);
Printer.printString("name", N->getName());
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printMetadata("entity", N->getRawEntity());
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Out << ")";
}
static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
if (Node->isDistinct())
Out << "distinct ";
else if (Node->isTemporary())
Out << "<temporary!> "; // Handle broken code.
switch (Node->getMetadataID()) {
default:
llvm_unreachable("Expected uniquable MDNode");
#define HANDLE_MDNODE_LEAF(CLASS) \
case Metadata::CLASS##Kind: \
write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \
break;
#include "llvm/IR/Metadata.def"
}
}
// Full implementation of printing a Value as an operand with support for
// TypePrinting, etc.
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
if (V->hasName()) {
PrintLLVMName(Out, V);
return;
}
const Constant *CV = dyn_cast<Constant>(V);
if (CV && !isa<GlobalValue>(CV)) {
assert(TypePrinter && "Constants require TypePrinting!");
WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
return;
}
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
Out << "asm ";
if (IA->hasSideEffects())
Out << "sideeffect ";
if (IA->isAlignStack())
Out << "alignstack ";
// We don't emit the AD_ATT dialect as it's the assumed default.
if (IA->getDialect() == InlineAsm::AD_Intel)
Out << "inteldialect ";
Out << '"';
printEscapedString(IA->getAsmString(), Out);
Out << "\", \"";
printEscapedString(IA->getConstraintString(), Out);
Out << '"';
return;
}
if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
Context, /* FromValue */ true);
return;
}
char Prefix = '%';
int Slot;
// If we have a SlotTracker, use it.
if (Machine) {
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Slot = Machine->getGlobalSlot(GV);
Prefix = '@';
} else {
Slot = Machine->getLocalSlot(V);
// If the local value didn't succeed, then we may be referring to a value
// from a different function. Translate it, as this can happen when using
// address of blocks.
if (Slot == -1)
if ((Machine = createSlotTracker(V))) {
Slot = Machine->getLocalSlot(V);
delete Machine;
}
}
} else if ((Machine = createSlotTracker(V))) {
// Otherwise, create one to get the # and then destroy it.
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Slot = Machine->getGlobalSlot(GV);
Prefix = '@';
} else {
Slot = Machine->getLocalSlot(V);
}
delete Machine;
Machine = nullptr;
} else {
Slot = -1;
}
if (Slot != -1)
Out << Prefix << Slot;
else
Out << "<badref>";
}
static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context,
bool FromValue) {
// Write DIExpressions inline when used as a value. Improves readability of
// debug info intrinsics.
if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
writeDIExpression(Out, Expr, TypePrinter, Machine, Context);
return;
}
if (const MDNode *N = dyn_cast<MDNode>(MD)) {
std::unique_ptr<SlotTracker> MachineStorage;
if (!Machine) {
MachineStorage = make_unique<SlotTracker>(Context);
Machine = MachineStorage.get();
}
int Slot = Machine->getMetadataSlot(N);
if (Slot == -1)
// Give the pointer value instead of "badref", since this comes up all
// the time when debugging.
Out << "<" << N << ">";
else
Out << '!' << Slot;
return;
}
if (const MDString *MDS = dyn_cast<MDString>(MD)) {
Out << "!\"";
printEscapedString(MDS->getString(), Out);
Out << '"';
return;
}
auto *V = cast<ValueAsMetadata>(MD);
assert(TypePrinter && "TypePrinter required for metadata values");
assert((FromValue || !isa<LocalAsMetadata>(V)) &&
"Unexpected function-local metadata outside of value argument");
TypePrinter->print(V->getValue()->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
}
namespace {
class AssemblyWriter {
formatted_raw_ostream &Out;
const Module *TheModule = nullptr;
const ModuleSummaryIndex *TheIndex = nullptr;
std::unique_ptr<SlotTracker> SlotTrackerStorage;
SlotTracker &Machine;
TypePrinting TypePrinter;
AssemblyAnnotationWriter *AnnotationWriter = nullptr;
SetVector<const Comdat *> Comdats;
bool IsForDebug;
bool ShouldPreserveUseListOrder;
UseListOrderStack UseListOrders;
SmallVector<StringRef, 8> MDNames;
/// Synchronization scope names registered with LLVMContext.
SmallVector<StringRef, 8> SSNs;
DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
public:
/// Construct an AssemblyWriter with an external SlotTracker
AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
AssemblyAnnotationWriter *AAW, bool IsForDebug,
bool ShouldPreserveUseListOrder = false);
AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
const ModuleSummaryIndex *Index, bool IsForDebug);
void printMDNodeBody(const MDNode *MD);
void printNamedMDNode(const NamedMDNode *NMD);
void printModule(const Module *M);
void writeOperand(const Value *Op, bool PrintType);
void writeParamOperand(const Value *Operand, AttributeSet Attrs);
void writeOperandBundles(ImmutableCallSite CS);
void writeSyncScope(const LLVMContext &Context,
SyncScope::ID SSID);
void writeAtomic(const LLVMContext &Context,
AtomicOrdering Ordering,
SyncScope::ID SSID);
void writeAtomicCmpXchg(const LLVMContext &Context,
AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering,
SyncScope::ID SSID);
void writeAllMDNodes();
void writeMDNode(unsigned Slot, const MDNode *Node);
void writeAllAttributeGroups();
void printTypeIdentities();
void printGlobal(const GlobalVariable *GV);
void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
void printComdat(const Comdat *C);
void printFunction(const Function *F);
void printArgument(const Argument *FA, AttributeSet Attrs);
void printBasicBlock(const BasicBlock *BB);
void printInstructionLine(const Instruction &I);
void printInstruction(const Instruction &I);
void printUseListOrder(const UseListOrder &Order);
void printUseLists(const Function *F);
void printModuleSummaryIndex();
void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
void printSummary(const GlobalValueSummary &Summary);
void printAliasSummary(const AliasSummary *AS);
void printGlobalVarSummary(const GlobalVarSummary *GS);
void printFunctionSummary(const FunctionSummary *FS);
void printTypeIdSummary(const TypeIdSummary &TIS);
void printTypeTestResolution(const TypeTestResolution &TTRes);
void printArgs(const std::vector<uint64_t> &Args);
void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
void printVFuncId(const FunctionSummary::VFuncId VFId);
void
printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> VCallList,
const char *Tag);
void
printConstVCalls(const std::vector<FunctionSummary::ConstVCall> VCallList,
const char *Tag);
private:
/// Print out metadata attachments.
void printMetadataAttachments(
const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
StringRef Separator);
// printInfoComment - Print a little comment after the instruction indicating
// which slot it occupies.
void printInfoComment(const Value &V);
// printGCRelocateComment - print comment after call to the gc.relocate
// intrinsic indicating base and derived pointer names.
void printGCRelocateComment(const GCRelocateInst &Relocate);
};
} // end anonymous namespace
AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
const Module *M, AssemblyAnnotationWriter *AAW,
bool IsForDebug, bool ShouldPreserveUseListOrder)
: Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
IsForDebug(IsForDebug),
ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
if (!TheModule)
return;
for (const GlobalObject &GO : TheModule->global_objects())
if (const Comdat *C = GO.getComdat())
Comdats.insert(C);
}
AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
const ModuleSummaryIndex *Index, bool IsForDebug)
: Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
if (!Operand) {
Out << "<null operand!>";
return;
}
if (PrintType) {
TypePrinter.print(Operand->getType(), Out);
Out << ' ';
}
WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
}
void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
SyncScope::ID SSID) {
switch (SSID) {
case SyncScope::System: {
break;
}
default: {
if (SSNs.empty())
Context.getSyncScopeNames(SSNs);
Out << " syncscope(\"";
printEscapedString(SSNs[SSID], Out);
Out << "\")";
break;
}
}
}
void AssemblyWriter::writeAtomic(const LLVMContext &Context,
AtomicOrdering Ordering,
SyncScope::ID SSID) {
if (Ordering == AtomicOrdering::NotAtomic)
return;
writeSyncScope(Context, SSID);
Out << " " << toIRString(Ordering);
}
void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering,
SyncScope::ID SSID) {
assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
FailureOrdering != AtomicOrdering::NotAtomic);
writeSyncScope(Context, SSID);
Out << " " << toIRString(SuccessOrdering);
Out << " " << toIRString(FailureOrdering);
}
void AssemblyWriter::writeParamOperand(const Value *Operand,
AttributeSet Attrs) {
if (!Operand) {
Out << "<null operand!>";
return;
}
// Print the type
TypePrinter.print(Operand->getType(), Out);
// Print parameter attributes list
if (Attrs.hasAttributes())
Out << ' ' << Attrs.getAsString();
Out << ' ';
// Print the operand
WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
}
void AssemblyWriter::writeOperandBundles(ImmutableCallSite CS) {
if (!CS.hasOperandBundles())
return;
Out << " [ ";
bool FirstBundle = true;
for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
OperandBundleUse BU = CS.getOperandBundleAt(i);
if (!FirstBundle)
Out << ", ";
FirstBundle = false;
Out << '"';
printEscapedString(BU.getTagName(), Out);
Out << '"';
Out << '(';
bool FirstInput = true;
for (const auto &Input : BU.Inputs) {
if (!FirstInput)
Out << ", ";
FirstInput = false;
TypePrinter.print(Input->getType(), Out);
Out << " ";
WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
}
Out << ')';
}
Out << " ]";
}
void AssemblyWriter::printModule(const Module *M) {
Machine.initializeIfNeeded();
if (ShouldPreserveUseListOrder)
UseListOrders = predictUseListOrder(M);
if (!M->getModuleIdentifier().empty() &&
// Don't print the ID if it will start a new line (which would
// require a comment char before it).
M->getModuleIdentifier().find('\n') == std::string::npos)
Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
if (!M->getSourceFileName().empty()) {
Out << "source_filename = \"";
printEscapedString(M->getSourceFileName(), Out);
Out << "\"\n";
}
const std::string &DL = M->getDataLayoutStr();
if (!DL.empty())
Out << "target datalayout = \"" << DL << "\"\n";
if (!M->getTargetTriple().empty())
Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
if (!M->getModuleInlineAsm().empty()) {
Out << '\n';
// Split the string into lines, to make it easier to read the .ll file.
StringRef Asm = M->getModuleInlineAsm();
do {
StringRef Front;
std::tie(Front, Asm) = Asm.split('\n');
// We found a newline, print the portion of the asm string from the
// last newline up to this newline.
Out << "module asm \"";
printEscapedString(Front, Out);
Out << "\"\n";
} while (!Asm.empty());
}
printTypeIdentities();
// Output all comdats.
if (!Comdats.empty())
Out << '\n';
for (const Comdat *C : Comdats) {
printComdat(C);
if (C != Comdats.back())
Out << '\n';
}
// Output all globals.
if (!M->global_empty()) Out << '\n';
for (const GlobalVariable &GV : M->globals()) {
printGlobal(&GV); Out << '\n';
}
// Output all aliases.
if (!M->alias_empty()) Out << "\n";
for (const GlobalAlias &GA : M->aliases())
printIndirectSymbol(&GA);
// Output all ifuncs.
if (!M->ifunc_empty()) Out << "\n";
for (const GlobalIFunc &GI : M->ifuncs())
printIndirectSymbol(&GI);
// Output global use-lists.
printUseLists(nullptr);
// Output all of the functions.
for (const Function &F : *M)
printFunction(&F);
assert(UseListOrders.empty() && "All use-lists should have been consumed");
// Output all attribute groups.
if (!Machine.as_empty()) {
Out << '\n';
writeAllAttributeGroups();
}
// Output named metadata.
if (!M->named_metadata_empty()) Out << '\n';
for (const NamedMDNode &Node : M->named_metadata())
printNamedMDNode(&Node);
// Output metadata.
if (!Machine.mdn_empty()) {
Out << '\n';
writeAllMDNodes();
}
}
void AssemblyWriter::printModuleSummaryIndex() {
assert(TheIndex);
Machine.initializeIndexIfNeeded();
Out << "\n";
// Print module path entries. To print in order, add paths to a vector
// indexed by module slot.
std::vector<std::pair<std::string, ModuleHash>> moduleVec;
std::string RegularLTOModuleName = "[Regular LTO]";
moduleVec.resize(TheIndex->modulePaths().size());
for (auto &ModPath : TheIndex->modulePaths())
moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair(
// A module id of -1 is a special entry for a regular LTO module created
// during the thin link.
ModPath.second.first == -1u ? RegularLTOModuleName
: (std::string)ModPath.first(),
ModPath.second.second);
unsigned i = 0;
for (auto &ModPair : moduleVec) {
Out << "^" << i++ << " = module: (";
Out << "path: \"";
printEscapedString(ModPair.first, Out);
Out << "\", hash: (";
FieldSeparator FS;
for (auto Hash : ModPair.second)
Out << FS << Hash;
Out << "))\n";
}
// FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
// for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
for (auto &GlobalList : *TheIndex) {
auto GUID = GlobalList.first;
for (auto &Summary : GlobalList.second.SummaryList)
SummaryToGUIDMap[Summary.get()] = GUID;
}
// Print the global value summary entries.
for (auto &GlobalList : *TheIndex) {
auto GUID = GlobalList.first;
auto VI = TheIndex->getValueInfo(GlobalList);
printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
}
// Print the TypeIdMap entries.
for (auto &TId : TheIndex->typeIds()) {
auto GUID = GlobalValue::getGUID(TId.first);
Out << "^" << Machine.getGUIDSlot(GUID) << " = typeid: (name: \""
<< TId.first << "\"";
printTypeIdSummary(TId.second);
Out << ") ; guid = " << GUID << "\n";
}
}
static const char *
getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
switch (K) {
case WholeProgramDevirtResolution::Indir:
return "indir";
case WholeProgramDevirtResolution::SingleImpl:
return "singleImpl";
case WholeProgramDevirtResolution::BranchFunnel:
return "branchFunnel";
}
llvm_unreachable("invalid WholeProgramDevirtResolution kind");
}
static const char *getWholeProgDevirtResByArgKindName(
WholeProgramDevirtResolution::ByArg::Kind K) {
switch (K) {
case WholeProgramDevirtResolution::ByArg::Indir:
return "indir";
case WholeProgramDevirtResolution::ByArg::UniformRetVal:
return "uniformRetVal";
case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
return "uniqueRetVal";
case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
return "virtualConstProp";
}
llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
}
static const char *getTTResKindName(TypeTestResolution::Kind K) {
switch (K) {
case TypeTestResolution::Unsat:
return "unsat";
case TypeTestResolution::ByteArray:
return "byteArray";
case TypeTestResolution::Inline:
return "inline";
case TypeTestResolution::Single:
return "single";
case TypeTestResolution::AllOnes:
return "allOnes";
}
llvm_unreachable("invalid TypeTestResolution kind");
}
void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
<< ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
// The following fields are only used if the target does not support the use
// of absolute symbols to store constants. Print only if non-zero.
if (TTRes.AlignLog2)
Out << ", alignLog2: " << TTRes.AlignLog2;
if (TTRes.SizeM1)
Out << ", sizeM1: " << TTRes.SizeM1;
if (TTRes.BitMask)
// BitMask is uint8_t which causes it to print the corresponding char.
Out << ", bitMask: " << (unsigned)TTRes.BitMask;
if (TTRes.InlineBits)
Out << ", inlineBits: " << TTRes.InlineBits;
Out << ")";
}
void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
Out << ", summary: (";
printTypeTestResolution(TIS.TTRes);
if (!TIS.WPDRes.empty()) {
Out << ", wpdResolutions: (";
FieldSeparator FS;
for (auto &WPDRes : TIS.WPDRes) {
Out << FS;
Out << "(offset: " << WPDRes.first << ", ";
printWPDRes(WPDRes.second);
Out << ")";
}
Out << ")";
}
Out << ")";
}
void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
Out << "args: (";
FieldSeparator FS;
for (auto arg : Args) {
Out << FS;
Out << arg;
}
Out << ")";
}
void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
Out << "wpdRes: (kind: ";
Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
if (!WPDRes.ResByArg.empty()) {
Out << ", resByArg: (";
FieldSeparator FS;
for (auto &ResByArg : WPDRes.ResByArg) {
Out << FS;
printArgs(ResByArg.first);
Out << ", byArg: (kind: ";
Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
if (ResByArg.second.TheKind ==
WholeProgramDevirtResolution::ByArg::UniformRetVal ||
ResByArg.second.TheKind ==
WholeProgramDevirtResolution::ByArg::UniqueRetVal)
Out << ", info: " << ResByArg.second.Info;
// The following fields are only used if the target does not support the
// use of absolute symbols to store constants. Print only if non-zero.
if (ResByArg.second.Byte || ResByArg.second.Bit)
Out << ", byte: " << ResByArg.second.Byte
<< ", bit: " << ResByArg.second.Bit;
Out << ")";
}
Out << ")";
}
Out << ")";
}
static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
switch (SK) {
case GlobalValueSummary::AliasKind:
return "alias";
case GlobalValueSummary::FunctionKind:
return "function";
case GlobalValueSummary::GlobalVarKind:
return "variable";
}
llvm_unreachable("invalid summary kind");
}
void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
Out << ", aliasee: ";
// The indexes emitted for distributed backends may not include the
// aliasee summary (only if it is being imported directly). Handle
// that case by just emitting "null" as the aliasee.
if (AS->hasAliasee())
Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
else
Out << "null";
}
void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
// Nothing for now
}
static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
switch (LT) {
case GlobalValue::ExternalLinkage:
return "external";
case GlobalValue::PrivateLinkage:
return "private";
case GlobalValue::InternalLinkage:
return "internal";
case GlobalValue::LinkOnceAnyLinkage:
return "linkonce";
case GlobalValue::LinkOnceODRLinkage:
return "linkonce_odr";
case GlobalValue::WeakAnyLinkage:
return "weak";
case GlobalValue::WeakODRLinkage:
return "weak_odr";
case GlobalValue::CommonLinkage:
return "common";
case GlobalValue::AppendingLinkage:
return "appending";
case GlobalValue::ExternalWeakLinkage:
return "extern_weak";
case GlobalValue::AvailableExternallyLinkage:
return "available_externally";
}
llvm_unreachable("invalid linkage");
}
// When printing the linkage types in IR where the ExternalLinkage is
// not printed, and other linkage types are expected to be printed with
// a space after the name.
static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
if (LT == GlobalValue::ExternalLinkage)
return "";
return getLinkageName(LT) + " ";
}
static const char *getHotnessName(CalleeInfo::HotnessType HT) {
switch (HT) {
case CalleeInfo::HotnessType::Unknown:
return "unknown";
case CalleeInfo::HotnessType::Cold:
return "cold";
case CalleeInfo::HotnessType::None:
return "none";
case CalleeInfo::HotnessType::Hot:
return "hot";
case CalleeInfo::HotnessType::Critical:
return "critical";
}
llvm_unreachable("invalid hotness");
}
void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
Out << ", insts: " << FS->instCount();
FunctionSummary::FFlags FFlags = FS->fflags();
if (FFlags.ReadNone | FFlags.ReadOnly | FFlags.NoRecurse |
FFlags.ReturnDoesNotAlias) {
Out << ", funcFlags: (";
Out << "readNone: " << FFlags.ReadNone;
Out << ", readOnly: " << FFlags.ReadOnly;
Out << ", noRecurse: " << FFlags.NoRecurse;
Out << ", returnDoesNotAlias: " << FFlags.ReturnDoesNotAlias;
Out << ")";
}
if (!FS->calls().empty()) {
Out << ", calls: (";
FieldSeparator IFS;
for (auto &Call : FS->calls()) {
Out << IFS;
Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
Out << ", hotness: " << getHotnessName(Call.second.getHotness());
else if (Call.second.RelBlockFreq)
Out << ", relbf: " << Call.second.RelBlockFreq;
Out << ")";
}
Out << ")";
}
if (const auto *TIdInfo = FS->getTypeIdInfo())
printTypeIdInfo(*TIdInfo);
}
void AssemblyWriter::printTypeIdInfo(
const FunctionSummary::TypeIdInfo &TIDInfo) {
Out << ", typeIdInfo: (";
FieldSeparator TIDFS;
if (!TIDInfo.TypeTests.empty()) {
Out << TIDFS;
Out << "typeTests: (";
FieldSeparator FS;
for (auto &GUID : TIDInfo.TypeTests) {
Out << FS;
auto Slot = Machine.getGUIDSlot(GUID);
if (Slot != -1)
Out << "^" << Slot;
else
Out << GUID;
}
Out << ")";
}
if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
Out << TIDFS;
printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
}
if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
Out << TIDFS;
printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
}
if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
Out << TIDFS;
printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
"typeTestAssumeConstVCalls");
}
if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
Out << TIDFS;
printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
"typeCheckedLoadConstVCalls");
}
Out << ")";
}
void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
Out << "vFuncId: (";
auto Slot = Machine.getGUIDSlot(VFId.GUID);
if (Slot != -1)
Out << "^" << Slot;
else
Out << "guid: " << VFId.GUID;
Out << ", offset: " << VFId.Offset;
Out << ")";
}
void AssemblyWriter::printNonConstVCalls(
const std::vector<FunctionSummary::VFuncId> VCallList, const char *Tag) {
Out << Tag << ": (";
FieldSeparator FS;
for (auto &VFuncId : VCallList) {
Out << FS;
printVFuncId(VFuncId);
}
Out << ")";
}
void AssemblyWriter::printConstVCalls(
const std::vector<FunctionSummary::ConstVCall> VCallList, const char *Tag) {
Out << Tag << ": (";
FieldSeparator FS;
for (auto &ConstVCall : VCallList) {
Out << FS;
printVFuncId(ConstVCall.VFunc);
if (!ConstVCall.Args.empty()) {
Out << ", ";
printArgs(ConstVCall.Args);
}
}
Out << ")";
}
void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
GlobalValueSummary::GVFlags GVFlags = Summary.flags();
GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
<< ", flags: (";
Out << "linkage: " << getLinkageName(LT);
Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
Out << ", live: " << GVFlags.Live;
Out << ", dsoLocal: " << GVFlags.DSOLocal;
Out << ")";
if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
printAliasSummary(cast<AliasSummary>(&Summary));
else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
printFunctionSummary(cast<FunctionSummary>(&Summary));
else
printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
auto RefList = Summary.refs();
if (!RefList.empty()) {
Out << ", refs: (";
FieldSeparator FS;
for (auto &Ref : RefList) {
Out << FS;
Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
}
Out << ")";
}
Out << ")";
}
void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
Out << "^" << Slot << " = gv: (";
if (!VI.name().empty())
Out << "name: \"" << VI.name() << "\"";
else
Out << "guid: " << VI.getGUID();
if (!VI.getSummaryList().empty()) {
Out << ", summaries: (";
FieldSeparator FS;
for (auto &Summary : VI.getSummaryList()) {
Out << FS;
printSummary(*Summary);
}
Out << ")";
}
Out << ")";
if (!VI.name().empty())
Out << " ; guid = " << VI.getGUID();
Out << "\n";
}
static void printMetadataIdentifier(StringRef Name,
formatted_raw_ostream &Out) {
if (Name.empty()) {
Out << "<empty name> ";
} else {
if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
Out << Name[0];
else
Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
for (unsigned i = 1, e = Name.size(); i != e; ++i) {
unsigned char C = Name[i];
if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
C == '.' || C == '_')
Out << C;
else
Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
}
}
}
void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
Out << '!';
printMetadataIdentifier(NMD->getName(), Out);
Out << " = !{";
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
if (i)
Out << ", ";
// Write DIExpressions inline.
// FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
MDNode *Op = NMD->getOperand(i);
if (auto *Expr = dyn_cast<DIExpression>(Op)) {
writeDIExpression(Out, Expr, nullptr, nullptr, nullptr);
continue;
}
int Slot = Machine.getMetadataSlot(Op);
if (Slot == -1)
Out << "<badref>";
else
Out << '!' << Slot;
}
Out << "}\n";
}
static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
formatted_raw_ostream &Out) {
switch (Vis) {
case GlobalValue::DefaultVisibility: break;
case GlobalValue::HiddenVisibility: Out << "hidden "; break;
case GlobalValue::ProtectedVisibility: Out << "protected "; break;
}
}
static void PrintDSOLocation(const GlobalValue &GV,
formatted_raw_ostream &Out) {
// GVs with local linkage or non default visibility are implicitly dso_local,
// so we don't print it.
bool Implicit = GV.hasLocalLinkage() ||
(!GV.hasExternalWeakLinkage() && !GV.hasDefaultVisibility());
if (GV.isDSOLocal() && !Implicit)
Out << "dso_local ";
}
static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
formatted_raw_ostream &Out) {
switch (SCT) {
case GlobalValue::DefaultStorageClass: break;
case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
}
}
static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
formatted_raw_ostream &Out) {
switch (TLM) {
case GlobalVariable::NotThreadLocal:
break;
case GlobalVariable::GeneralDynamicTLSModel:
Out << "thread_local ";
break;
case GlobalVariable::LocalDynamicTLSModel:
Out << "thread_local(localdynamic) ";
break;
case GlobalVariable::InitialExecTLSModel:
Out << "thread_local(initialexec) ";
break;
case GlobalVariable::LocalExecTLSModel:
Out << "thread_local(localexec) ";
break;
}
}
static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
switch (UA) {
case GlobalVariable::UnnamedAddr::None:
return "";
case GlobalVariable::UnnamedAddr::Local:
return "local_unnamed_addr";
case GlobalVariable::UnnamedAddr::Global:
return "unnamed_addr";
}
llvm_unreachable("Unknown UnnamedAddr");
}
static void maybePrintComdat(formatted_raw_ostream &Out,
const GlobalObject &GO) {
const Comdat *C = GO.getComdat();
if (!C)
return;
if (isa<GlobalVariable>(GO))
Out << ',';
Out << " comdat";
if (GO.getName() == C->getName())
return;
Out << '(';
PrintLLVMName(Out, C->getName(), ComdatPrefix);
Out << ')';
}
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
if (GV->isMaterializable())
Out << "; Materializable\n";
WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
Out << " = ";
if (!GV->hasInitializer() && GV->hasExternalLinkage())
Out << "external ";
Out << getLinkageNameWithSpace(GV->getLinkage());
PrintDSOLocation(*GV, Out);
PrintVisibility(GV->getVisibility(), Out);
PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
if (!UA.empty())
Out << UA << ' ';
if (unsigned AddressSpace = GV->getType()->getAddressSpace())
Out << "addrspace(" << AddressSpace << ") ";
if (GV->isExternallyInitialized()) Out << "externally_initialized ";
Out << (GV->isConstant() ? "constant " : "global ");
TypePrinter.print(GV->getValueType(), Out);
if (GV->hasInitializer()) {
Out << ' ';
writeOperand(GV->getInitializer(), false);
}
if (GV->hasSection()) {
Out << ", section \"";
printEscapedString(GV->getSection(), Out);
Out << '"';
}
maybePrintComdat(Out, *GV);
if (GV->getAlignment())
Out << ", align " << GV->getAlignment();
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
GV->getAllMetadata(MDs);
printMetadataAttachments(MDs, ", ");
auto Attrs = GV->getAttributes();
if (Attrs.hasAttributes())
Out << " #" << Machine.getAttributeGroupSlot(Attrs);
printInfoComment(*GV);
}
void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
if (GIS->isMaterializable())
Out << "; Materializable\n";
WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
Out << " = ";
Out << getLinkageNameWithSpace(GIS->getLinkage());
PrintDSOLocation(*GIS, Out);
PrintVisibility(GIS->getVisibility(), Out);
PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
if (!UA.empty())
Out << UA << ' ';
if (isa<GlobalAlias>(GIS))
Out << "alias ";
else if (isa<GlobalIFunc>(GIS))
Out << "ifunc ";
else
llvm_unreachable("Not an alias or ifunc!");
TypePrinter.print(GIS->getValueType(), Out);
Out << ", ";
const Constant *IS = GIS->getIndirectSymbol();
if (!IS) {
TypePrinter.print(GIS->getType(), Out);
Out << " <<NULL ALIASEE>>";
} else {
writeOperand(IS, !isa<ConstantExpr>(IS));
}
printInfoComment(*GIS);
Out << '\n';
}
void AssemblyWriter::printComdat(const Comdat *C) {
C->print(Out);
}
void AssemblyWriter::printTypeIdentities() {
if (TypePrinter.empty())
return;
Out << '\n';
// Emit all numbered types.
auto &NumberedTypes = TypePrinter.getNumberedTypes();
for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
Out << '%' << I << " = type ";
// Make sure we print out at least one level of the type structure, so
// that we do not get %2 = type %2
TypePrinter.printStructBody(NumberedTypes[I], Out);
Out << '\n';
}
auto &NamedTypes = TypePrinter.getNamedTypes();
for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) {
PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix);
Out << " = type ";
// Make sure we print out at least one level of the type structure, so
// that we do not get %FILE = type %FILE
TypePrinter.printStructBody(NamedTypes[I], Out);
Out << '\n';
}
}
/// printFunction - Print all aspects of a function.
void AssemblyWriter::printFunction(const Function *F) {
// Print out the return type and name.
Out << '\n';
if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
if (F->isMaterializable())
Out << "; Materializable\n";
const AttributeList &Attrs = F->getAttributes();
if (Attrs.hasAttributes(AttributeList::FunctionIndex)) {
AttributeSet AS = Attrs.getFnAttributes();
std::string AttrStr;
for (const Attribute &Attr : AS) {
if (!Attr.isStringAttribute()) {
if (!AttrStr.empty()) AttrStr += ' ';
AttrStr += Attr.getAsString();
}
}
if (!AttrStr.empty())
Out << "; Function Attrs: " << AttrStr << '\n';
}
Machine.incorporateFunction(F);
if (F->isDeclaration()) {
Out << "declare";
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
F->getAllMetadata(MDs);
printMetadataAttachments(MDs, " ");
Out << ' ';
} else
Out << "define ";
Out << getLinkageNameWithSpace(F->getLinkage());
PrintDSOLocation(*F, Out);
PrintVisibility(F->getVisibility(), Out);
PrintDLLStorageClass(F->getDLLStorageClass(), Out);
// Print the calling convention.
if (F->getCallingConv() != CallingConv::C) {
PrintCallingConv(F->getCallingConv(), Out);
Out << " ";
}
FunctionType *FT = F->getFunctionType();
if (Attrs.hasAttributes(AttributeList::ReturnIndex))
Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
TypePrinter.print(F->getReturnType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
Out << '(';
// Loop over the arguments, printing them...
if (F->isDeclaration() && !IsForDebug) {
// We're only interested in the type here - don't print argument names.
for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
// Insert commas as we go... the first arg doesn't get a comma
if (I)
Out << ", ";
// Output type...
TypePrinter.print(FT->getParamType(I), Out);
AttributeSet ArgAttrs = Attrs.getParamAttributes(I);
if (ArgAttrs.hasAttributes())
Out << ' ' << ArgAttrs.getAsString();
}
} else {
// The arguments are meaningful here, print them in detail.
for (const Argument &Arg : F->args()) {
// Insert commas as we go... the first arg doesn't get a comma
if (Arg.getArgNo() != 0)
Out << ", ";
printArgument(&Arg, Attrs.getParamAttributes(Arg.getArgNo()));
}
}
// Finish printing arguments...
if (FT->isVarArg()) {
if (FT->getNumParams()) Out << ", ";
Out << "..."; // Output varargs portion of signature!
}
Out << ')';
StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
if (!UA.empty())
Out << ' ' << UA;
if (Attrs.hasAttributes(AttributeList::FunctionIndex))
Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
if (F->hasSection()) {
Out << " section \"";
printEscapedString(F->getSection(), Out);
Out << '"';
}
maybePrintComdat(Out, *F);
if (F->getAlignment())
Out << " align " << F->getAlignment();
if (F->hasGC())
Out << " gc \"" << F->getGC() << '"';
if (F->hasPrefixData()) {
Out << " prefix ";
writeOperand(F->getPrefixData(), true);
}
if (F->hasPrologueData()) {
Out << " prologue ";
writeOperand(F->getPrologueData(), true);
}
if (F->hasPersonalityFn()) {
Out << " personality ";
writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
}
if (F->isDeclaration()) {
Out << '\n';
} else {
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
F->getAllMetadata(MDs);
printMetadataAttachments(MDs, " ");
Out << " {";
// Output all of the function's basic blocks.
for (const BasicBlock &BB : *F)
printBasicBlock(&BB);
// Output the function's use-lists.
printUseLists(F);
Out << "}\n";
}
Machine.purgeFunction();
}
/// printArgument - This member is called for every argument that is passed into
/// the function. Simply print it out
void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
// Output type...
TypePrinter.print(Arg->getType(), Out);
// Output parameter attributes list
if (Attrs.hasAttributes())
Out << ' ' << Attrs.getAsString();
// Output name, if available...
if (Arg->hasName()) {
Out << ' ';
PrintLLVMName(Out, Arg);
}
}
/// printBasicBlock - This member is called for each basic block in a method.
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
if (BB->hasName()) { // Print out the label if it exists...
Out << "\n";
PrintLLVMName(Out, BB->getName(), LabelPrefix);
Out << ':';
} else if (!BB->use_empty()) { // Don't print block # of no uses...
Out << "\n; <label>:";
int Slot = Machine.getLocalSlot(BB);
if (Slot != -1)
Out << Slot << ":";
else
Out << "<badref>";
}
if (!BB->getParent()) {
Out.PadToColumn(50);
Out << "; Error: Block without parent!";
} else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
// Output predecessors for the block.
Out.PadToColumn(50);
Out << ";";
const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
if (PI == PE) {
Out << " No predecessors!";
} else {
Out << " preds = ";
writeOperand(*PI, false);
for (++PI; PI != PE; ++PI) {
Out << ", ";
writeOperand(*PI, false);
}
}
}
Out << "\n";
if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
// Output all of the instructions in the basic block...
for (const Instruction &I : *BB) {
printInstructionLine(I);
}
if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
}
/// printInstructionLine - Print an instruction and a newline character.
void AssemblyWriter::printInstructionLine(const Instruction &I) {
printInstruction(I);
Out << '\n';
}
/// printGCRelocateComment - print comment after call to the gc.relocate
/// intrinsic indicating base and derived pointer names.
void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
Out << " ; (";
writeOperand(Relocate.getBasePtr(), false);
Out << ", ";
writeOperand(Relocate.getDerivedPtr(), false);
Out << ")";
}
/// printInfoComment - Print a little comment after the instruction indicating
/// which slot it occupies.
void AssemblyWriter::printInfoComment(const Value &V) {
if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
printGCRelocateComment(*Relocate);
if (AnnotationWriter)
AnnotationWriter->printInfoComment(V, Out);
}
// This member is called for each Instruction in a function..
void AssemblyWriter::printInstruction(const Instruction &I) {
if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
// Print out indentation for an instruction.
Out << " ";
// Print out name if it exists...
if (I.hasName()) {
PrintLLVMName(Out, &I);
Out << " = ";
} else if (!I.getType()->isVoidTy()) {
// Print out the def slot taken.
int SlotNum = Machine.getLocalSlot(&I);
if (SlotNum == -1)
Out << "<badref> = ";
else
Out << '%' << SlotNum << " = ";
}
if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
if (CI->isMustTailCall())
Out << "musttail ";
else if (CI->isTailCall())
Out << "tail ";
else if (CI->isNoTailCall())
Out << "notail ";
}
// Print out the opcode...
Out << I.getOpcodeName();
// If this is an atomic load or store, print out the atomic marker.
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
(isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
Out << " atomic";
if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
Out << " weak";
// If this is a volatile operation, print out the volatile marker.
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
(isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
(isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
(isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
Out << " volatile";
// Print out optimization information.
WriteOptimizationInfo(Out, &I);
// Print out the compare instruction predicates
if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
// Print out the atomicrmw operation
if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
writeAtomicRMWOperation(Out, RMWI->getOperation());
// Print out the type of the operands...
const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
// Special case conditional branches to swizzle the condition out to the front
if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
const BranchInst &BI(cast<BranchInst>(I));
Out << ' ';
writeOperand(BI.getCondition(), true);
Out << ", ";
writeOperand(BI.getSuccessor(0), true);
Out << ", ";
writeOperand(BI.getSuccessor(1), true);
} else if (isa<SwitchInst>(I)) {
const SwitchInst& SI(cast<SwitchInst>(I));
// Special case switch instruction to get formatting nice and correct.
Out << ' ';
writeOperand(SI.getCondition(), true);
Out << ", ";
writeOperand(SI.getDefaultDest(), true);
Out << " [";
for (auto Case : SI.cases()) {
Out << "\n ";
writeOperand(Case.getCaseValue(), true);
Out << ", ";
writeOperand(Case.getCaseSuccessor(), true);
}
Out << "\n ]";
} else if (isa<IndirectBrInst>(I)) {
// Special case indirectbr instruction to get formatting nice and correct.
Out << ' ';
writeOperand(Operand, true);
Out << ", [";
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
if (i != 1)
Out << ", ";
writeOperand(I.getOperand(i), true);
}
Out << ']';
} else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
Out << ' ';
TypePrinter.print(I.getType(), Out);
Out << ' ';
for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
if (op) Out << ", ";
Out << "[ ";
writeOperand(PN->getIncomingValue(op), false); Out << ", ";
writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
}
} else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
Out << ' ';
writeOperand(I.getOperand(0), true);
for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
Out << ", " << *i;
} else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
Out << ' ';
writeOperand(I.getOperand(0), true); Out << ", ";
writeOperand(I.getOperand(1), true);
for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
Out << ", " << *i;
} else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
Out << ' ';
TypePrinter.print(I.getType(), Out);
if (LPI->isCleanup() || LPI->getNumClauses() != 0)
Out << '\n';
if (LPI->isCleanup())
Out << " cleanup";
for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
if (i != 0 || LPI->isCleanup()) Out << "\n";
if (LPI->isCatch(i))
Out << " catch ";
else
Out << " filter ";
writeOperand(LPI->getClause(i), true);
}
} else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
Out << " within ";
writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
Out << " [";
unsigned Op = 0;
for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
if (Op > 0)
Out << ", ";
writeOperand(PadBB, /*PrintType=*/true);
++Op;
}
Out << "] unwind ";
if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
writeOperand(UnwindDest, /*PrintType=*/true);
else
Out << "to caller";
} else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
Out << " within ";
writeOperand(FPI->getParentPad(), /*PrintType=*/false);
Out << " [";
for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
++Op) {
if (Op > 0)
Out << ", ";
writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
}
Out << ']';
} else if (isa<ReturnInst>(I) && !Operand) {
Out << " void";
} else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
Out << " from ";
writeOperand(CRI->getOperand(0), /*PrintType=*/false);
Out << " to ";
writeOperand(CRI->getOperand(1), /*PrintType=*/true);
} else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
Out << " from ";
writeOperand(CRI->getOperand(0), /*PrintType=*/false);
Out << " unwind ";
if (CRI->hasUnwindDest())
writeOperand(CRI->getOperand(1), /*PrintType=*/true);
else
Out << "to caller";
} else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
// Print the calling convention being used.
if (CI->getCallingConv() != CallingConv::C) {
Out << " ";
PrintCallingConv(CI->getCallingConv(), Out);
}
Operand = CI->getCalledValue();
FunctionType *FTy = CI->getFunctionType();
Type *RetTy = FTy->getReturnType();
const AttributeList &PAL = CI->getAttributes();
if (PAL.hasAttributes(AttributeList::ReturnIndex))
Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
// If possible, print out the short form of the call instruction. We can
// only do this if the first argument is a pointer to a nonvararg function,
// and if the return type is not a pointer to a function.
//
Out << ' ';
TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
Out << ' ';
writeOperand(Operand, false);
Out << '(';
for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
if (op > 0)
Out << ", ";
writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op));
}
// Emit an ellipsis if this is a musttail call in a vararg function. This
// is only to aid readability, musttail calls forward varargs by default.
if (CI->isMustTailCall() && CI->getParent() &&
CI->getParent()->getParent() &&
CI->getParent()->getParent()->isVarArg())
Out << ", ...";
Out << ')';
if (PAL.hasAttributes(AttributeList::FunctionIndex))
Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
writeOperandBundles(CI);
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
Operand = II->getCalledValue();
FunctionType *FTy = II->getFunctionType();
Type *RetTy = FTy->getReturnType();
const AttributeList &PAL = II->getAttributes();
// Print the calling convention being used.
if (II->getCallingConv() != CallingConv::C) {
Out << " ";
PrintCallingConv(II->getCallingConv(), Out);
}
if (PAL.hasAttributes(AttributeList::ReturnIndex))
Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
// If possible, print out the short form of the invoke instruction. We can
// only do this if the first argument is a pointer to a nonvararg function,
// and if the return type is not a pointer to a function.
//
Out << ' ';
TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
Out << ' ';
writeOperand(Operand, false);
Out << '(';
for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
if (op)
Out << ", ";
writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op));
}
Out << ')';
if (PAL.hasAttributes(AttributeList::FunctionIndex))
Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
writeOperandBundles(II);
Out << "\n to ";
writeOperand(II->getNormalDest(), true);
Out << " unwind ";
writeOperand(II->getUnwindDest(), true);
} else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
Out << ' ';
if (AI->isUsedWithInAlloca())
Out << "inalloca ";
if (AI->isSwiftError())
Out << "swifterror ";
TypePrinter.print(AI->getAllocatedType(), Out);
// Explicitly write the array size if the code is broken, if it's an array
// allocation, or if the type is not canonical for scalar allocations. The
// latter case prevents the type from mutating when round-tripping through
// assembly.
if (!AI->getArraySize() || AI->isArrayAllocation() ||
!AI->getArraySize()->getType()->isIntegerTy(32)) {
Out << ", ";
writeOperand(AI->getArraySize(), true);
}
if (AI->getAlignment()) {
Out << ", align " << AI->getAlignment();
}
unsigned AddrSpace = AI->getType()->getAddressSpace();
if (AddrSpace != 0) {
Out << ", addrspace(" << AddrSpace << ')';
}
} else if (isa<CastInst>(I)) {
if (Operand) {
Out << ' ';
writeOperand(Operand, true); // Work with broken code
}
Out << " to ";
TypePrinter.print(I.getType(), Out);
} else if (isa<VAArgInst>(I)) {
if (Operand) {
Out << ' ';
writeOperand(Operand, true); // Work with broken code
}
Out << ", ";
TypePrinter.print(I.getType(), Out);
} else if (Operand) { // Print the normal way.
if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
Out << ' ';
TypePrinter.print(GEP->getSourceElementType(), Out);
Out << ',';
} else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
Out << ' ';
TypePrinter.print(LI->getType(), Out);
Out << ',';
}
// PrintAllTypes - Instructions who have operands of all the same type
// omit the type from all but the first operand. If the instruction has
// different type operands (for example br), then they are all printed.
bool PrintAllTypes = false;
Type *TheType = Operand->getType();
// Select, Store and ShuffleVector always print all types.
if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
|| isa<ReturnInst>(I)) {
PrintAllTypes = true;
} else {
for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
Operand = I.getOperand(i);
// note that Operand shouldn't be null, but the test helps make dump()
// more tolerant of malformed IR
if (Operand && Operand->getType() != TheType) {
PrintAllTypes = true; // We have differing types! Print them all!
break;
}
}
}
if (!PrintAllTypes) {
Out << ' ';
TypePrinter.print(TheType, Out);
}
Out << ' ';
for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
if (i) Out << ", ";
writeOperand(I.getOperand(i), PrintAllTypes);
}
}
// Print atomic ordering/alignment for memory operations
if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
if (LI->isAtomic())
writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
if (LI->getAlignment())
Out << ", align " << LI->getAlignment();
} else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
if (SI->isAtomic())
writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
if (SI->getAlignment())
Out << ", align " << SI->getAlignment();
} else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
CXI->getFailureOrdering(), CXI->getSyncScopeID());
} else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
RMWI->getSyncScopeID());
} else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
}
// Print Metadata info.
SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
I.getAllMetadata(InstMD);
printMetadataAttachments(InstMD, ", ");
// Print a nice comment.
printInfoComment(I);
}
void AssemblyWriter::printMetadataAttachments(
const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
StringRef Separator) {
if (MDs.empty())
return;
if (MDNames.empty())
MDs[0].second->getContext().getMDKindNames(MDNames);
for (const auto &I : MDs) {
unsigned Kind = I.first;
Out << Separator;
if (Kind < MDNames.size()) {
Out << "!";
printMetadataIdentifier(MDNames[Kind], Out);
} else
Out << "!<unknown kind #" << Kind << ">";
Out << ' ';
WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
}
}
void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
Out << '!' << Slot << " = ";
printMDNodeBody(Node);
Out << "\n";
}
void AssemblyWriter::writeAllMDNodes() {
SmallVector<const MDNode *, 16> Nodes;
Nodes.resize(Machine.mdn_size());
for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
I != E; ++I)
Nodes[I->second] = cast<MDNode>(I->first);
for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
writeMDNode(i, Nodes[i]);
}
}
void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
}
void AssemblyWriter::writeAllAttributeGroups() {
std::vector<std::pair<AttributeSet, unsigned>> asVec;
asVec.resize(Machine.as_size());
for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
I != E; ++I)
asVec[I->second] = *I;
for (const auto &I : asVec)
Out << "attributes #" << I.second << " = { "
<< I.first.getAsString(true) << " }\n";
}
void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
bool IsInFunction = Machine.getFunction();
if (IsInFunction)
Out << " ";
Out << "uselistorder";
if (const BasicBlock *BB =
IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
Out << "_bb ";
writeOperand(BB->getParent(), false);
Out << ", ";
writeOperand(BB, false);
} else {
Out << " ";
writeOperand(Order.V, true);
}
Out << ", { ";
assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
Out << Order.Shuffle[0];
for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
Out << ", " << Order.Shuffle[I];
Out << " }\n";
}
void AssemblyWriter::printUseLists(const Function *F) {
auto hasMore =
[&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
if (!hasMore())
// Nothing to do.
return;
Out << "\n; uselistorder directives\n";
while (hasMore()) {
printUseListOrder(UseListOrders.back());
UseListOrders.pop_back();
}
}
//===----------------------------------------------------------------------===//
// External Interface declarations
//===----------------------------------------------------------------------===//
void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
bool ShouldPreserveUseListOrder,
bool IsForDebug) const {
SlotTracker SlotTable(this->getParent());
formatted_raw_ostream OS(ROS);
AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
IsForDebug,
ShouldPreserveUseListOrder);
W.printFunction(this);
}
void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
bool ShouldPreserveUseListOrder, bool IsForDebug) const {
SlotTracker SlotTable(this);
formatted_raw_ostream OS(ROS);
AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
ShouldPreserveUseListOrder);
W.printModule(this);
}
void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
SlotTracker SlotTable(getParent());
formatted_raw_ostream OS(ROS);
AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
W.printNamedMDNode(this);
}
void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
bool IsForDebug) const {
Optional<SlotTracker> LocalST;
SlotTracker *SlotTable;
if (auto *ST = MST.getMachine())
SlotTable = ST;
else {
LocalST.emplace(getParent());
SlotTable = &*LocalST;
}
formatted_raw_ostream OS(ROS);
AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
W.printNamedMDNode(this);
}
void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
PrintLLVMName(ROS, getName(), ComdatPrefix);
ROS << " = comdat ";
switch (getSelectionKind()) {
case Comdat::Any:
ROS << "any";
break;
case Comdat::ExactMatch:
ROS << "exactmatch";
break;
case Comdat::Largest:
ROS << "largest";
break;
case Comdat::NoDuplicates:
ROS << "noduplicates";
break;
case Comdat::SameSize:
ROS << "samesize";
break;
}
ROS << '\n';
}
void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
TypePrinting TP;
TP.print(const_cast<Type*>(this), OS);
if (NoDetails)
return;
// If the type is a named struct type, print the body as well.
if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
if (!STy->isLiteral()) {
OS << " = type ";
TP.printStructBody(STy, OS);
}
}
static bool isReferencingMDNode(const Instruction &I) {
if (const auto *CI = dyn_cast<CallInst>(&I))
if (Function *F = CI->getCalledFunction())
if (F->isIntrinsic())
for (auto &Op : I.operands())
if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
if (isa<MDNode>(V->getMetadata()))
return true;
return false;
}
void Value::print(raw_ostream &ROS, bool IsForDebug) const {
bool ShouldInitializeAllMetadata = false;
if (auto *I = dyn_cast<Instruction>(this))
ShouldInitializeAllMetadata = isReferencingMDNode(*I);
else if (isa<Function>(this) || isa<MetadataAsValue>(this))
ShouldInitializeAllMetadata = true;
ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
print(ROS, MST, IsForDebug);
}
void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
bool IsForDebug) const {
formatted_raw_ostream OS(ROS);
SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
SlotTracker &SlotTable =
MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
auto incorporateFunction = [&](const Function *F) {
if (F)
MST.incorporateFunction(*F);
};
if (const Instruction *I = dyn_cast<Instruction>(this)) {
incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
W.printInstruction(*I);
} else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
incorporateFunction(BB->getParent());
AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
W.printBasicBlock(BB);
} else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
W.printGlobal(V);
else if (const Function *F = dyn_cast<Function>(GV))
W.printFunction(F);
else
W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
} else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
} else if (const Constant *C = dyn_cast<Constant>(this)) {
TypePrinting TypePrinter;
TypePrinter.print(C->getType(), OS);
OS << ' ';
WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
} else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
this->printAsOperand(OS, /* PrintType */ true, MST);
} else {
llvm_unreachable("Unknown value to print out!");
}
}
/// Print without a type, skipping the TypePrinting object.
///
/// \return \c true iff printing was successful.
static bool printWithoutType(const Value &V, raw_ostream &O,
SlotTracker *Machine, const Module *M) {
if (V.hasName() || isa<GlobalValue>(V) ||
(!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
WriteAsOperandInternal(O, &V, nullptr, Machine, M);
return true;
}
return false;
}
static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
ModuleSlotTracker &MST) {
TypePrinting TypePrinter(MST.getModule());
if (PrintType) {
TypePrinter.print(V.getType(), O);
O << ' ';
}
WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
MST.getModule());
}
void Value::printAsOperand(raw_ostream &O, bool PrintType,
const Module *M) const {
if (!M)
M = getModuleFromVal(this);
if (!PrintType)
if (printWithoutType(*this, O, nullptr, M))
return;
SlotTracker Machine(
M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
ModuleSlotTracker MST(Machine, M);
printAsOperandImpl(*this, O, PrintType, MST);
}
void Value::printAsOperand(raw_ostream &O, bool PrintType,
ModuleSlotTracker &MST) const {
if (!PrintType)
if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
return;
printAsOperandImpl(*this, O, PrintType, MST);
}
static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
ModuleSlotTracker &MST, const Module *M,
bool OnlyAsOperand) {
formatted_raw_ostream OS(ROS);
TypePrinting TypePrinter(M);
WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
/* FromValue */ true);
auto *N = dyn_cast<MDNode>(&MD);
if (OnlyAsOperand || !N || isa<DIExpression>(MD))
return;
OS << " = ";
WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
}
void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
ModuleSlotTracker MST(M, isa<MDNode>(this));
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
}
void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
const Module *M) const {
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
}
void Metadata::print(raw_ostream &OS, const Module *M,
bool /*IsForDebug*/) const {
ModuleSlotTracker MST(M, isa<MDNode>(this));
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
}
void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
const Module *M, bool /*IsForDebug*/) const {
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
}
void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
SlotTracker SlotTable(this);
formatted_raw_ostream OS(ROS);
AssemblyWriter W(OS, SlotTable, this, IsForDebug);
W.printModuleSummaryIndex();
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
// Value::dump - allow easy printing of Values from the debugger.
LLVM_DUMP_METHOD
void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
// Type::dump - allow easy printing of Types from the debugger.
LLVM_DUMP_METHOD
void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
// Module::dump() - Allow printing of Modules from the debugger.
LLVM_DUMP_METHOD
void Module::dump() const {
print(dbgs(), nullptr,
/*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
}
// Allow printing of Comdats from the debugger.
LLVM_DUMP_METHOD
void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
LLVM_DUMP_METHOD
void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
LLVM_DUMP_METHOD
void Metadata::dump() const { dump(nullptr); }
LLVM_DUMP_METHOD
void Metadata::dump(const Module *M) const {
print(dbgs(), M, /*IsForDebug=*/true);
dbgs() << '\n';
}
// Allow printing of ModuleSummaryIndex from the debugger.
LLVM_DUMP_METHOD
void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
#endif