| // Copyright 2016 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // Texture.cpp: Implements the Texture class and its derived classes |
| // Texture2D and TextureCubeMap. Implements GL texture objects and related |
| // functionality. |
| |
| #include "Texture.h" |
| |
| #include "main.h" |
| #include "mathutil.h" |
| #include "Framebuffer.h" |
| #include "Device.hpp" |
| #include "Display.h" |
| #include "common/debug.h" |
| |
| #include <algorithm> |
| |
| namespace gl |
| { |
| |
| Texture::Texture(GLuint name) : NamedObject(name) |
| { |
| mMinFilter = GL_NEAREST_MIPMAP_LINEAR; |
| mMagFilter = GL_LINEAR; |
| mWrapS = GL_REPEAT; |
| mWrapT = GL_REPEAT; |
| mMaxAnisotropy = 1.0f; |
| mMaxLevel = 1000; |
| |
| resource = new sw::Resource(0); |
| } |
| |
| Texture::~Texture() |
| { |
| resource->destruct(); |
| } |
| |
| sw::Resource *Texture::getResource() const |
| { |
| return resource; |
| } |
| |
| // Returns true on successful filter state update (valid enum parameter) |
| bool Texture::setMinFilter(GLenum filter) |
| { |
| switch(filter) |
| { |
| case GL_NEAREST: |
| case GL_LINEAR: |
| case GL_NEAREST_MIPMAP_NEAREST: |
| case GL_LINEAR_MIPMAP_NEAREST: |
| case GL_NEAREST_MIPMAP_LINEAR: |
| case GL_LINEAR_MIPMAP_LINEAR: |
| mMinFilter = filter; |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| // Returns true on successful filter state update (valid enum parameter) |
| bool Texture::setMagFilter(GLenum filter) |
| { |
| switch(filter) |
| { |
| case GL_NEAREST: |
| case GL_LINEAR: |
| mMagFilter = filter; |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| // Returns true on successful wrap state update (valid enum parameter) |
| bool Texture::setWrapS(GLenum wrap) |
| { |
| switch(wrap) |
| { |
| case GL_CLAMP: |
| case GL_REPEAT: |
| case GL_CLAMP_TO_EDGE: |
| case GL_MIRRORED_REPEAT: |
| mWrapS = wrap; |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| // Returns true on successful wrap state update (valid enum parameter) |
| bool Texture::setWrapT(GLenum wrap) |
| { |
| switch(wrap) |
| { |
| case GL_CLAMP: |
| case GL_REPEAT: |
| case GL_CLAMP_TO_EDGE: |
| case GL_MIRRORED_REPEAT: |
| mWrapT = wrap; |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| // Returns true on successful max anisotropy update (valid anisotropy value) |
| bool Texture::setMaxAnisotropy(float textureMaxAnisotropy) |
| { |
| textureMaxAnisotropy = std::min(textureMaxAnisotropy, MAX_TEXTURE_MAX_ANISOTROPY); |
| |
| if(textureMaxAnisotropy < 1.0f) |
| { |
| return false; |
| } |
| |
| if(mMaxAnisotropy != textureMaxAnisotropy) |
| { |
| mMaxAnisotropy = textureMaxAnisotropy; |
| } |
| |
| return true; |
| } |
| |
| bool Texture::setMaxLevel(int level) |
| { |
| if(level < 0) |
| { |
| return false; |
| } |
| |
| mMaxLevel = level; |
| |
| return true; |
| } |
| |
| GLenum Texture::getMinFilter() const |
| { |
| return mMinFilter; |
| } |
| |
| GLenum Texture::getMagFilter() const |
| { |
| return mMagFilter; |
| } |
| |
| GLenum Texture::getWrapS() const |
| { |
| return mWrapS; |
| } |
| |
| GLenum Texture::getWrapT() const |
| { |
| return mWrapT; |
| } |
| |
| GLfloat Texture::getMaxAnisotropy() const |
| { |
| return mMaxAnisotropy; |
| } |
| |
| void Texture::setImage(GLenum format, GLenum type, GLint unpackAlignment, const void *pixels, Image *image) |
| { |
| if(pixels && image) |
| { |
| image->loadImageData(0, 0, 0, image->getWidth(), image->getHeight(), 1, format, type, unpackAlignment, pixels); |
| } |
| } |
| |
| void Texture::setCompressedImage(GLsizei imageSize, const void *pixels, Image *image) |
| { |
| if(pixels && image && (imageSize > 0)) // imageSize's correlation to width and height is already validated with egl::ComputeCompressedSize() at the API level |
| { |
| image->loadCompressedData(0, 0, 0, image->getWidth(), image->getHeight(), 1, imageSize, pixels); |
| } |
| } |
| |
| void Texture::subImage(GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels, Image *image) |
| { |
| if(!image) |
| { |
| return error(GL_INVALID_OPERATION); |
| } |
| |
| if(width + xoffset > image->getWidth() || height + yoffset > image->getHeight()) |
| { |
| return error(GL_INVALID_VALUE); |
| } |
| |
| if(IsCompressed(image->getFormat())) |
| { |
| return error(GL_INVALID_OPERATION); |
| } |
| |
| if(format != image->getFormat()) |
| { |
| return error(GL_INVALID_OPERATION); |
| } |
| |
| if(pixels) |
| { |
| image->loadImageData(xoffset, yoffset, 0, width, height, 1, format, type, unpackAlignment, pixels); |
| } |
| } |
| |
| void Texture::subImageCompressed(GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void *pixels, Image *image) |
| { |
| if(!image) |
| { |
| return error(GL_INVALID_OPERATION); |
| } |
| |
| if(width + xoffset > image->getWidth() || height + yoffset > image->getHeight()) |
| { |
| return error(GL_INVALID_VALUE); |
| } |
| |
| if(format != image->getFormat()) |
| { |
| return error(GL_INVALID_OPERATION); |
| } |
| |
| if(pixels && (imageSize > 0)) // imageSize's correlation to width and height is already validated with egl::ComputeCompressedSize() at the API level |
| { |
| image->loadCompressedData(xoffset, yoffset, 0, width, height, 1, imageSize, pixels); |
| } |
| } |
| |
| bool Texture::copy(Image *source, const sw::Rect &sourceRect, GLenum destFormat, GLint xoffset, GLint yoffset, Image *dest) |
| { |
| Device *device = getDevice(); |
| |
| sw::SliceRect destRect(xoffset, yoffset, xoffset + (sourceRect.x1 - sourceRect.x0), yoffset + (sourceRect.y1 - sourceRect.y0), 0); |
| sw::SliceRect sourceSliceRect(sourceRect); |
| bool success = device->stretchRect(source, &sourceSliceRect, dest, &destRect, false); |
| |
| if(!success) |
| { |
| return error(GL_OUT_OF_MEMORY, false); |
| } |
| |
| return true; |
| } |
| |
| bool Texture::isMipmapFiltered() const |
| { |
| switch(mMinFilter) |
| { |
| case GL_NEAREST: |
| case GL_LINEAR: |
| return false; |
| case GL_NEAREST_MIPMAP_NEAREST: |
| case GL_LINEAR_MIPMAP_NEAREST: |
| case GL_NEAREST_MIPMAP_LINEAR: |
| case GL_LINEAR_MIPMAP_LINEAR: |
| return true; |
| default: UNREACHABLE(mMinFilter); |
| } |
| |
| return false; |
| } |
| |
| Texture2D::Texture2D(GLuint name) : Texture(name) |
| { |
| for(int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++) |
| { |
| image[i] = 0; |
| } |
| |
| mColorbufferProxy = nullptr; |
| mProxyRefs = 0; |
| } |
| |
| Texture2D::~Texture2D() |
| { |
| for(int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++) |
| { |
| if(image[i]) |
| { |
| image[i]->unbind(); |
| image[i] = 0; |
| } |
| } |
| |
| mColorbufferProxy = nullptr; |
| } |
| |
| // We need to maintain a count of references to renderbuffers acting as |
| // proxies for this texture, so that we do not attempt to use a pointer |
| // to a renderbuffer proxy which has been deleted. |
| void Texture2D::addProxyRef(const Renderbuffer *proxy) |
| { |
| mProxyRefs++; |
| } |
| |
| void Texture2D::releaseProxy(const Renderbuffer *proxy) |
| { |
| if(mProxyRefs > 0) |
| { |
| mProxyRefs--; |
| } |
| |
| if(mProxyRefs == 0) |
| { |
| mColorbufferProxy = nullptr; |
| } |
| } |
| |
| GLenum Texture2D::getTarget() const |
| { |
| return GL_TEXTURE_2D; |
| } |
| |
| GLsizei Texture2D::getWidth(GLenum target, GLint level) const |
| { |
| ASSERT(target == GL_TEXTURE_2D || target == GL_PROXY_TEXTURE_2D); |
| return image[level] ? image[level]->getWidth() : 0; |
| } |
| |
| GLsizei Texture2D::getHeight(GLenum target, GLint level) const |
| { |
| ASSERT(target == GL_TEXTURE_2D || target == GL_PROXY_TEXTURE_2D); |
| return image[level] ? image[level]->getHeight() : 0; |
| } |
| |
| GLenum Texture2D::getFormat(GLenum target, GLint level) const |
| { |
| ASSERT(target == GL_TEXTURE_2D || target == GL_PROXY_TEXTURE_2D); |
| return image[level] ? image[level]->getFormat() : GL_NONE; |
| } |
| |
| GLenum Texture2D::getType(GLenum target, GLint level) const |
| { |
| ASSERT(target == GL_TEXTURE_2D || target == GL_PROXY_TEXTURE_2D); |
| return image[level] ? image[level]->getType() : GL_NONE; |
| } |
| |
| sw::Format Texture2D::getInternalFormat(GLenum target, GLint level) const |
| { |
| ASSERT(target == GL_TEXTURE_2D || target == GL_PROXY_TEXTURE_2D); |
| return image[level] ? image[level]->getInternalFormat() : sw::FORMAT_NULL; |
| } |
| |
| int Texture2D::getTopLevel() const |
| { |
| ASSERT(isSamplerComplete()); |
| int levels = 0; |
| |
| while(levels < IMPLEMENTATION_MAX_TEXTURE_LEVELS && image[levels]) |
| { |
| levels++; |
| } |
| |
| return levels; |
| } |
| |
| void Texture2D::setImage(GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels) |
| { |
| if(image[level]) |
| { |
| image[level]->unbind(); |
| } |
| |
| image[level] = new Image(this, width, height, format, type); |
| |
| if(!image[level]) |
| { |
| return error(GL_OUT_OF_MEMORY); |
| } |
| |
| Texture::setImage(format, type, unpackAlignment, pixels, image[level]); |
| } |
| |
| void Texture2D::setCompressedImage(GLint level, GLenum format, GLsizei width, GLsizei height, GLsizei imageSize, const void *pixels) |
| { |
| if(image[level]) |
| { |
| image[level]->unbind(); |
| } |
| |
| image[level] = new Image(this, width, height, format, GL_UNSIGNED_BYTE); |
| |
| if(!image[level]) |
| { |
| return error(GL_OUT_OF_MEMORY); |
| } |
| |
| Texture::setCompressedImage(imageSize, pixels, image[level]); |
| } |
| |
| void Texture2D::subImage(GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels) |
| { |
| Texture::subImage(xoffset, yoffset, width, height, format, type, unpackAlignment, pixels, image[level]); |
| } |
| |
| void Texture2D::subImageCompressed(GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void *pixels) |
| { |
| Texture::subImageCompressed(xoffset, yoffset, width, height, format, imageSize, pixels, image[level]); |
| } |
| |
| void Texture2D::copyImage(GLint level, GLenum format, GLint x, GLint y, GLsizei width, GLsizei height, Framebuffer *source) |
| { |
| Image *renderTarget = source->getRenderTarget(); |
| |
| if(!renderTarget) |
| { |
| ERR("Failed to retrieve the render target."); |
| return error(GL_OUT_OF_MEMORY); |
| } |
| |
| if(image[level]) |
| { |
| image[level]->unbind(); |
| } |
| |
| image[level] = new Image(this, width, height, format, GL_UNSIGNED_BYTE); |
| |
| if(!image[level]) |
| { |
| return error(GL_OUT_OF_MEMORY); |
| } |
| |
| if(width != 0 && height != 0) |
| { |
| sw::Rect sourceRect = {x, y, x + width, y + height}; |
| sourceRect.clip(0, 0, source->getColorbuffer()->getWidth(), source->getColorbuffer()->getHeight()); |
| |
| copy(renderTarget, sourceRect, format, 0, 0, image[level]); |
| } |
| |
| renderTarget->release(); |
| } |
| |
| void Texture2D::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height, Framebuffer *source) |
| { |
| if(!image[level]) |
| { |
| return error(GL_INVALID_OPERATION); |
| } |
| |
| if(xoffset + width > image[level]->getWidth() || yoffset + height > image[level]->getHeight()) |
| { |
| return error(GL_INVALID_VALUE); |
| } |
| |
| Image *renderTarget = source->getRenderTarget(); |
| |
| if(!renderTarget) |
| { |
| ERR("Failed to retrieve the render target."); |
| return error(GL_OUT_OF_MEMORY); |
| } |
| |
| sw::Rect sourceRect = {x, y, x + width, y + height}; |
| sourceRect.clip(0, 0, source->getColorbuffer()->getWidth(), source->getColorbuffer()->getHeight()); |
| |
| copy(renderTarget, sourceRect, image[level]->getFormat(), xoffset, yoffset, image[level]); |
| |
| renderTarget->release(); |
| } |
| |
| void Texture2D::setImage(Image *sharedImage) |
| { |
| sharedImage->addRef(); |
| |
| if(image[0]) |
| { |
| image[0]->unbind(); |
| } |
| |
| image[0] = sharedImage; |
| } |
| |
| // Tests for 2D texture sampling completeness. |
| bool Texture2D::isSamplerComplete() const |
| { |
| if(!image[0]) |
| { |
| return false; |
| } |
| |
| GLsizei width = image[0]->getWidth(); |
| GLsizei height = image[0]->getHeight(); |
| |
| if(width <= 0 || height <= 0) |
| { |
| return false; |
| } |
| |
| if(isMipmapFiltered()) |
| { |
| if(!isMipmapComplete()) |
| { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| // Tests for 2D texture (mipmap) completeness. |
| bool Texture2D::isMipmapComplete() const |
| { |
| GLsizei width = image[0]->getWidth(); |
| GLsizei height = image[0]->getHeight(); |
| |
| int q = log2(std::max(width, height)); |
| |
| for(int level = 1; level <= q && level <= mMaxLevel; level++) |
| { |
| if(!image[level]) |
| { |
| return false; |
| } |
| |
| if(image[level]->getFormat() != image[0]->getFormat()) |
| { |
| return false; |
| } |
| |
| if(image[level]->getType() != image[0]->getType()) |
| { |
| return false; |
| } |
| |
| if(image[level]->getWidth() != std::max(1, width >> level)) |
| { |
| return false; |
| } |
| |
| if(image[level]->getHeight() != std::max(1, height >> level)) |
| { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool Texture2D::isCompressed(GLenum target, GLint level) const |
| { |
| return IsCompressed(getFormat(target, level)); |
| } |
| |
| bool Texture2D::isDepth(GLenum target, GLint level) const |
| { |
| return IsDepthTexture(getFormat(target, level)); |
| } |
| |
| void Texture2D::generateMipmaps() |
| { |
| if(!image[0]) |
| { |
| return; // FIXME: error? |
| } |
| |
| unsigned int q = log2(std::max(image[0]->getWidth(), image[0]->getHeight())); |
| |
| for(unsigned int i = 1; i <= q; i++) |
| { |
| if(image[i]) |
| { |
| image[i]->unbind(); |
| } |
| |
| image[i] = new Image(this, std::max(image[0]->getWidth() >> i, 1), std::max(image[0]->getHeight() >> i, 1), image[0]->getFormat(), image[0]->getType()); |
| |
| if(!image[i]) |
| { |
| return error(GL_OUT_OF_MEMORY); |
| } |
| |
| getDevice()->stretchRect(image[i - 1], 0, image[i], 0, true); |
| } |
| } |
| |
| Image *Texture2D::getImage(unsigned int level) |
| { |
| return image[level]; |
| } |
| |
| Renderbuffer *Texture2D::getRenderbuffer(GLenum target) |
| { |
| if(target != GL_TEXTURE_2D) |
| { |
| return error(GL_INVALID_OPERATION, (Renderbuffer*)nullptr); |
| } |
| |
| if(!mColorbufferProxy) |
| { |
| mColorbufferProxy = new Renderbuffer(name, new RenderbufferTexture2D(this)); |
| } |
| |
| return mColorbufferProxy; |
| } |
| |
| Image *Texture2D::getRenderTarget(GLenum target, unsigned int level) |
| { |
| ASSERT(target == GL_TEXTURE_2D); |
| ASSERT(level < IMPLEMENTATION_MAX_TEXTURE_LEVELS); |
| |
| if(image[level]) |
| { |
| image[level]->addRef(); |
| } |
| |
| return image[level]; |
| } |
| |
| TextureCubeMap::TextureCubeMap(GLuint name) : Texture(name) |
| { |
| for(int f = 0; f < 6; f++) |
| { |
| for(int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++) |
| { |
| image[f][i] = 0; |
| } |
| } |
| |
| for(int f = 0; f < 6; f++) |
| { |
| mFaceProxies[f] = nullptr; |
| mFaceProxyRefs[f] = 0; |
| } |
| } |
| |
| TextureCubeMap::~TextureCubeMap() |
| { |
| for(int f = 0; f < 6; f++) |
| { |
| for(int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++) |
| { |
| if(image[f][i]) |
| { |
| image[f][i]->unbind(); |
| image[f][i] = 0; |
| } |
| } |
| } |
| |
| for(int i = 0; i < 6; i++) |
| { |
| mFaceProxies[i] = nullptr; |
| } |
| } |
| |
| // We need to maintain a count of references to renderbuffers acting as |
| // proxies for this texture, so that the texture is not deleted while |
| // proxy references still exist. If the reference count drops to zero, |
| // we set our proxy pointer null, so that a new attempt at referencing |
| // will cause recreation. |
| void TextureCubeMap::addProxyRef(const Renderbuffer *proxy) |
| { |
| for(int f = 0; f < 6; f++) |
| { |
| if(mFaceProxies[f] == proxy) |
| { |
| mFaceProxyRefs[f]++; |
| } |
| } |
| } |
| |
| void TextureCubeMap::releaseProxy(const Renderbuffer *proxy) |
| { |
| for(int f = 0; f < 6; f++) |
| { |
| if(mFaceProxies[f] == proxy) |
| { |
| if(mFaceProxyRefs[f] > 0) |
| { |
| mFaceProxyRefs[f]--; |
| } |
| |
| if(mFaceProxyRefs[f] == 0) |
| { |
| mFaceProxies[f] = nullptr; |
| } |
| } |
| } |
| } |
| |
| GLenum TextureCubeMap::getTarget() const |
| { |
| return GL_TEXTURE_CUBE_MAP; |
| } |
| |
| GLsizei TextureCubeMap::getWidth(GLenum target, GLint level) const |
| { |
| int face = CubeFaceIndex(target); |
| return image[face][level] ? image[face][level]->getWidth() : 0; |
| } |
| |
| GLsizei TextureCubeMap::getHeight(GLenum target, GLint level) const |
| { |
| int face = CubeFaceIndex(target); |
| return image[face][level] ? image[face][level]->getHeight() : 0; |
| } |
| |
| GLenum TextureCubeMap::getFormat(GLenum target, GLint level) const |
| { |
| int face = CubeFaceIndex(target); |
| return image[face][level] ? image[face][level]->getFormat() : GL_NONE; |
| } |
| |
| GLenum TextureCubeMap::getType(GLenum target, GLint level) const |
| { |
| int face = CubeFaceIndex(target); |
| return image[face][level] ? image[face][level]->getType() : GL_NONE; |
| } |
| |
| sw::Format TextureCubeMap::getInternalFormat(GLenum target, GLint level) const |
| { |
| int face = CubeFaceIndex(target); |
| return image[face][level] ? image[face][level]->getInternalFormat() : sw::FORMAT_NULL; |
| } |
| |
| int TextureCubeMap::getTopLevel() const |
| { |
| ASSERT(isSamplerComplete()); |
| int levels = 0; |
| |
| while(levels < IMPLEMENTATION_MAX_TEXTURE_LEVELS && image[0][levels]) |
| { |
| levels++; |
| } |
| |
| return levels; |
| } |
| |
| void TextureCubeMap::setCompressedImage(GLenum target, GLint level, GLenum format, GLsizei width, GLsizei height, GLsizei imageSize, const void *pixels) |
| { |
| int face = CubeFaceIndex(target); |
| |
| if(image[face][level]) |
| { |
| image[face][level]->unbind(); |
| } |
| |
| image[face][level] = new Image(this, width, height, format, GL_UNSIGNED_BYTE); |
| |
| if(!image[face][level]) |
| { |
| return error(GL_OUT_OF_MEMORY); |
| } |
| |
| Texture::setCompressedImage(imageSize, pixels, image[face][level]); |
| } |
| |
| void TextureCubeMap::subImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels) |
| { |
| Texture::subImage(xoffset, yoffset, width, height, format, type, unpackAlignment, pixels, image[CubeFaceIndex(target)][level]); |
| } |
| |
| void TextureCubeMap::subImageCompressed(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void *pixels) |
| { |
| Texture::subImageCompressed(xoffset, yoffset, width, height, format, imageSize, pixels, image[CubeFaceIndex(target)][level]); |
| } |
| |
| // Tests for cube map sampling completeness. |
| bool TextureCubeMap::isSamplerComplete() const |
| { |
| for(int face = 0; face < 6; face++) |
| { |
| if(!image[face][0]) |
| { |
| return false; |
| } |
| } |
| |
| int size = image[0][0]->getWidth(); |
| |
| if(size <= 0) |
| { |
| return false; |
| } |
| |
| if(!isMipmapFiltered()) |
| { |
| if(!isCubeComplete()) |
| { |
| return false; |
| } |
| } |
| else |
| { |
| if(!isMipmapCubeComplete()) // Also tests for isCubeComplete() |
| { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| // Tests for cube texture completeness. |
| bool TextureCubeMap::isCubeComplete() const |
| { |
| if(image[0][0]->getWidth() <= 0 || image[0][0]->getHeight() != image[0][0]->getWidth()) |
| { |
| return false; |
| } |
| |
| for(unsigned int face = 1; face < 6; face++) |
| { |
| if(image[face][0]->getWidth() != image[0][0]->getWidth() || |
| image[face][0]->getWidth() != image[0][0]->getHeight() || |
| image[face][0]->getFormat() != image[0][0]->getFormat() || |
| image[face][0]->getType() != image[0][0]->getType()) |
| { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool TextureCubeMap::isMipmapCubeComplete() const |
| { |
| if(!isCubeComplete()) |
| { |
| return false; |
| } |
| |
| GLsizei size = image[0][0]->getWidth(); |
| int q = log2(size); |
| |
| for(int face = 0; face < 6; face++) |
| { |
| for(int level = 1; level <= q; level++) |
| { |
| if(!image[face][level]) |
| { |
| return false; |
| } |
| |
| if(image[face][level]->getFormat() != image[0][0]->getFormat()) |
| { |
| return false; |
| } |
| |
| if(image[face][level]->getType() != image[0][0]->getType()) |
| { |
| return false; |
| } |
| |
| if(image[face][level]->getWidth() != std::max(1, size >> level)) |
| { |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| bool TextureCubeMap::isCompressed(GLenum target, GLint level) const |
| { |
| return IsCompressed(getFormat(target, level)); |
| } |
| |
| bool TextureCubeMap::isDepth(GLenum target, GLint level) const |
| { |
| return IsDepthTexture(getFormat(target, level)); |
| } |
| |
| void TextureCubeMap::setImage(GLenum target, GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels) |
| { |
| int face = CubeFaceIndex(target); |
| |
| if(image[face][level]) |
| { |
| image[face][level]->unbind(); |
| } |
| |
| image[face][level] = new Image(this, width, height, format, type); |
| |
| if(!image[face][level]) |
| { |
| return error(GL_OUT_OF_MEMORY); |
| } |
| |
| Texture::setImage(format, type, unpackAlignment, pixels, image[face][level]); |
| } |
| |
| void TextureCubeMap::copyImage(GLenum target, GLint level, GLenum format, GLint x, GLint y, GLsizei width, GLsizei height, Framebuffer *source) |
| { |
| Image *renderTarget = source->getRenderTarget(); |
| |
| if(!renderTarget) |
| { |
| ERR("Failed to retrieve the render target."); |
| return error(GL_OUT_OF_MEMORY); |
| } |
| |
| int face = CubeFaceIndex(target); |
| |
| if(image[face][level]) |
| { |
| image[face][level]->unbind(); |
| } |
| |
| image[face][level] = new Image(this, width, height, format, GL_UNSIGNED_BYTE); |
| |
| if(!image[face][level]) |
| { |
| return error(GL_OUT_OF_MEMORY); |
| } |
| |
| if(width != 0 && height != 0) |
| { |
| sw::Rect sourceRect = {x, y, x + width, y + height}; |
| sourceRect.clip(0, 0, source->getColorbuffer()->getWidth(), source->getColorbuffer()->getHeight()); |
| |
| copy(renderTarget, sourceRect, format, 0, 0, image[face][level]); |
| } |
| |
| renderTarget->release(); |
| } |
| |
| Image *TextureCubeMap::getImage(int face, unsigned int level) |
| { |
| return image[face][level]; |
| } |
| |
| Image *TextureCubeMap::getImage(GLenum face, unsigned int level) |
| { |
| return image[CubeFaceIndex(face)][level]; |
| } |
| |
| void TextureCubeMap::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height, Framebuffer *source) |
| { |
| int face = CubeFaceIndex(target); |
| |
| if(!image[face][level]) |
| { |
| return error(GL_INVALID_OPERATION); |
| } |
| |
| GLsizei size = image[face][level]->getWidth(); |
| |
| if(xoffset + width > size || yoffset + height > size) |
| { |
| return error(GL_INVALID_VALUE); |
| } |
| |
| Image *renderTarget = source->getRenderTarget(); |
| |
| if(!renderTarget) |
| { |
| ERR("Failed to retrieve the render target."); |
| return error(GL_OUT_OF_MEMORY); |
| } |
| |
| sw::Rect sourceRect = {x, y, x + width, y + height}; |
| sourceRect.clip(0, 0, source->getColorbuffer()->getWidth(), source->getColorbuffer()->getHeight()); |
| |
| copy(renderTarget, sourceRect, image[face][level]->getFormat(), xoffset, yoffset, image[face][level]); |
| |
| renderTarget->release(); |
| } |
| |
| void TextureCubeMap::generateMipmaps() |
| { |
| if(!isCubeComplete()) |
| { |
| return error(GL_INVALID_OPERATION); |
| } |
| |
| unsigned int q = log2(image[0][0]->getWidth()); |
| |
| for(unsigned int f = 0; f < 6; f++) |
| { |
| for(unsigned int i = 1; i <= q; i++) |
| { |
| if(image[f][i]) |
| { |
| image[f][i]->unbind(); |
| } |
| |
| image[f][i] = new Image(this, std::max(image[0][0]->getWidth() >> i, 1), std::max(image[0][0]->getHeight() >> i, 1), image[0][0]->getFormat(), image[0][0]->getType()); |
| |
| if(!image[f][i]) |
| { |
| return error(GL_OUT_OF_MEMORY); |
| } |
| |
| getDevice()->stretchRect(image[f][i - 1], 0, image[f][i], 0, true); |
| } |
| } |
| } |
| |
| Renderbuffer *TextureCubeMap::getRenderbuffer(GLenum target) |
| { |
| if(!IsCubemapTextureTarget(target)) |
| { |
| return error(GL_INVALID_OPERATION, (Renderbuffer *)nullptr); |
| } |
| |
| int face = CubeFaceIndex(target); |
| |
| if(!mFaceProxies[face]) |
| { |
| mFaceProxies[face] = new Renderbuffer(name, new RenderbufferTextureCubeMap(this, target)); |
| } |
| |
| return mFaceProxies[face]; |
| } |
| |
| Image *TextureCubeMap::getRenderTarget(GLenum target, unsigned int level) |
| { |
| ASSERT(IsCubemapTextureTarget(target)); |
| ASSERT(level < IMPLEMENTATION_MAX_TEXTURE_LEVELS); |
| |
| int face = CubeFaceIndex(target); |
| |
| if(image[face][level]) |
| { |
| image[face][level]->addRef(); |
| } |
| |
| return image[face][level]; |
| } |
| |
| } |