| // Copyright 2016 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // Program.cpp: Implements the Program class. Implements GL program objects |
| // and related functionality. |
| |
| #include "Program.h" |
| |
| #include "main.h" |
| #include "Shader.h" |
| #include "utilities.h" |
| #include "common/debug.h" |
| #include "Shader/PixelShader.hpp" |
| #include "Shader/VertexShader.hpp" |
| |
| #include <string> |
| #include <stdlib.h> |
| |
| namespace gl |
| { |
| unsigned int Program::currentSerial = 1; |
| |
| std::string str(int i) |
| { |
| char buffer[20]; |
| sprintf(buffer, "%d", i); |
| return buffer; |
| } |
| |
| Uniform::Uniform(GLenum type, GLenum precision, const std::string &name, unsigned int arraySize) : type(type), precision(precision), name(name), arraySize(arraySize) |
| { |
| int bytes = UniformTypeSize(type) * size(); |
| data = new unsigned char[bytes]; |
| memset(data, 0, bytes); |
| dirty = true; |
| |
| psRegisterIndex = -1; |
| vsRegisterIndex = -1; |
| } |
| |
| Uniform::~Uniform() |
| { |
| delete[] data; |
| } |
| |
| bool Uniform::isArray() const |
| { |
| return arraySize >= 1; |
| } |
| |
| int Uniform::size() const |
| { |
| return arraySize > 0 ? arraySize : 1; |
| } |
| |
| int Uniform::registerCount() const |
| { |
| return size() * VariableRowCount(type); |
| } |
| |
| UniformLocation::UniformLocation(const std::string &name, unsigned int element, unsigned int index) : name(name), element(element), index(index) |
| { |
| } |
| |
| Program::Program(ResourceManager *manager, GLuint handle) : resourceManager(manager), handle(handle), serial(issueSerial()) |
| { |
| device = getDevice(); |
| |
| fragmentShader = 0; |
| vertexShader = 0; |
| pixelBinary = 0; |
| vertexBinary = 0; |
| |
| infoLog = 0; |
| validated = false; |
| |
| unlink(); |
| |
| orphaned = false; |
| referenceCount = 0; |
| } |
| |
| Program::~Program() |
| { |
| unlink(); |
| |
| if(vertexShader) |
| { |
| vertexShader->release(); |
| } |
| |
| if(fragmentShader) |
| { |
| fragmentShader->release(); |
| } |
| } |
| |
| bool Program::attachShader(Shader *shader) |
| { |
| if(shader->getType() == GL_VERTEX_SHADER) |
| { |
| if(vertexShader) |
| { |
| return false; |
| } |
| |
| vertexShader = (VertexShader*)shader; |
| vertexShader->addRef(); |
| } |
| else if(shader->getType() == GL_FRAGMENT_SHADER) |
| { |
| if(fragmentShader) |
| { |
| return false; |
| } |
| |
| fragmentShader = (FragmentShader*)shader; |
| fragmentShader->addRef(); |
| } |
| else UNREACHABLE(shader->getType()); |
| |
| return true; |
| } |
| |
| bool Program::detachShader(Shader *shader) |
| { |
| if(shader->getType() == GL_VERTEX_SHADER) |
| { |
| if(vertexShader != shader) |
| { |
| return false; |
| } |
| |
| vertexShader->release(); |
| vertexShader = 0; |
| } |
| else if(shader->getType() == GL_FRAGMENT_SHADER) |
| { |
| if(fragmentShader != shader) |
| { |
| return false; |
| } |
| |
| fragmentShader->release(); |
| fragmentShader = 0; |
| } |
| else UNREACHABLE(shader->getType()); |
| |
| return true; |
| } |
| |
| int Program::getAttachedShadersCount() const |
| { |
| return (vertexShader ? 1 : 0) + (fragmentShader ? 1 : 0); |
| } |
| |
| sw::PixelShader *Program::getPixelShader() |
| { |
| return pixelBinary; |
| } |
| |
| sw::VertexShader *Program::getVertexShader() |
| { |
| return vertexBinary; |
| } |
| |
| void Program::bindAttributeLocation(GLuint index, const char *name) |
| { |
| if(index < MAX_VERTEX_ATTRIBS) |
| { |
| for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++) |
| { |
| attributeBinding[i].erase(name); |
| } |
| |
| attributeBinding[index].insert(name); |
| } |
| } |
| |
| GLuint Program::getAttributeLocation(const char *name) |
| { |
| if(name) |
| { |
| for(int index = 0; index < MAX_VERTEX_ATTRIBS; index++) |
| { |
| if(linkedAttribute[index].name == std::string(name)) |
| { |
| return index; |
| } |
| } |
| } |
| |
| return -1; |
| } |
| |
| int Program::getAttributeStream(int attributeIndex) |
| { |
| ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS); |
| |
| return attributeStream[attributeIndex]; |
| } |
| |
| // Returns the index of the texture image unit (0-19) corresponding to a sampler index (0-15 for the pixel shader and 0-3 for the vertex shader) |
| GLint Program::getSamplerMapping(sw::SamplerType type, unsigned int samplerIndex) |
| { |
| GLuint logicalTextureUnit = -1; |
| |
| switch(type) |
| { |
| case sw::SAMPLER_PIXEL: |
| ASSERT(samplerIndex < sizeof(samplersPS) / sizeof(samplersPS[0])); |
| |
| if(samplersPS[samplerIndex].active) |
| { |
| logicalTextureUnit = samplersPS[samplerIndex].logicalTextureUnit; |
| } |
| break; |
| case sw::SAMPLER_VERTEX: |
| ASSERT(samplerIndex < sizeof(samplersVS) / sizeof(samplersVS[0])); |
| |
| if(samplersVS[samplerIndex].active) |
| { |
| logicalTextureUnit = samplersVS[samplerIndex].logicalTextureUnit; |
| } |
| break; |
| default: UNREACHABLE(type); |
| } |
| |
| if(logicalTextureUnit < MAX_COMBINED_TEXTURE_IMAGE_UNITS) |
| { |
| return logicalTextureUnit; |
| } |
| |
| return -1; |
| } |
| |
| // Returns the texture type for a given sampler type and index (0-15 for the pixel shader and 0-3 for the vertex shader) |
| TextureType Program::getSamplerTextureType(sw::SamplerType type, unsigned int samplerIndex) |
| { |
| switch(type) |
| { |
| case sw::SAMPLER_PIXEL: |
| ASSERT(samplerIndex < sizeof(samplersPS)/sizeof(samplersPS[0])); |
| ASSERT(samplersPS[samplerIndex].active); |
| return samplersPS[samplerIndex].textureType; |
| case sw::SAMPLER_VERTEX: |
| ASSERT(samplerIndex < sizeof(samplersVS)/sizeof(samplersVS[0])); |
| ASSERT(samplersVS[samplerIndex].active); |
| return samplersVS[samplerIndex].textureType; |
| default: UNREACHABLE(type); |
| } |
| |
| return TEXTURE_2D; |
| } |
| |
| GLint Program::getUniformLocation(std::string name) |
| { |
| int subscript = 0; |
| |
| // Strip any trailing array operator and retrieve the subscript |
| size_t open = name.find_last_of('['); |
| size_t close = name.find_last_of(']'); |
| if(open != std::string::npos && close == name.length() - 1) |
| { |
| subscript = atoi(name.substr(open + 1).c_str()); |
| name.erase(open); |
| } |
| |
| unsigned int numUniforms = uniformIndex.size(); |
| for(unsigned int location = 0; location < numUniforms; location++) |
| { |
| if(uniformIndex[location].name == name && |
| uniformIndex[location].element == subscript) |
| { |
| return location; |
| } |
| } |
| |
| return -1; |
| } |
| |
| bool Program::setUniform1fv(GLint location, GLsizei count, const GLfloat* v) |
| { |
| if(location < 0 || location >= (int)uniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| int size = targetUniform->size(); |
| |
| if(size == 1 && count > 1) |
| { |
| return false; // Attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| } |
| |
| count = std::min(size - (int)uniformIndex[location].element, count); |
| |
| if(targetUniform->type == GL_FLOAT) |
| { |
| memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLfloat), |
| v, sizeof(GLfloat) * count); |
| } |
| else if(targetUniform->type == GL_BOOL) |
| { |
| GLboolean *boolParams = (GLboolean*)targetUniform->data + uniformIndex[location].element; |
| |
| for(int i = 0; i < count; i++) |
| { |
| if(v[i] == 0.0f) |
| { |
| boolParams[i] = GL_FALSE; |
| } |
| else |
| { |
| boolParams[i] = GL_TRUE; |
| } |
| } |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Program::setUniform2fv(GLint location, GLsizei count, const GLfloat *v) |
| { |
| if(location < 0 || location >= (int)uniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| int size = targetUniform->size(); |
| |
| if(size == 1 && count > 1) |
| { |
| return false; // Attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| } |
| |
| count = std::min(size - (int)uniformIndex[location].element, count); |
| |
| if(targetUniform->type == GL_FLOAT_VEC2) |
| { |
| memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLfloat) * 2, |
| v, 2 * sizeof(GLfloat) * count); |
| } |
| else if(targetUniform->type == GL_BOOL_VEC2) |
| { |
| GLboolean *boolParams = (GLboolean*)targetUniform->data + uniformIndex[location].element * 2; |
| |
| for(int i = 0; i < count * 2; i++) |
| { |
| if(v[i] == 0.0f) |
| { |
| boolParams[i] = GL_FALSE; |
| } |
| else |
| { |
| boolParams[i] = GL_TRUE; |
| } |
| } |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Program::setUniform3fv(GLint location, GLsizei count, const GLfloat *v) |
| { |
| if(location < 0 || location >= (int)uniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| int size = targetUniform->size(); |
| |
| if(size == 1 && count > 1) |
| { |
| return false; // Attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| } |
| |
| count = std::min(size - (int)uniformIndex[location].element, count); |
| |
| if(targetUniform->type == GL_FLOAT_VEC3) |
| { |
| memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLfloat) * 3, |
| v, 3 * sizeof(GLfloat) * count); |
| } |
| else if(targetUniform->type == GL_BOOL_VEC3) |
| { |
| GLboolean *boolParams = (GLboolean*)targetUniform->data + uniformIndex[location].element * 3; |
| |
| for(int i = 0; i < count * 3; i++) |
| { |
| if(v[i] == 0.0f) |
| { |
| boolParams[i] = GL_FALSE; |
| } |
| else |
| { |
| boolParams[i] = GL_TRUE; |
| } |
| } |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Program::setUniform4fv(GLint location, GLsizei count, const GLfloat *v) |
| { |
| if(location < 0 || location >= (int)uniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| int size = targetUniform->size(); |
| |
| if(size == 1 && count > 1) |
| { |
| return false; // Attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| } |
| |
| count = std::min(size - (int)uniformIndex[location].element, count); |
| |
| if(targetUniform->type == GL_FLOAT_VEC4) |
| { |
| memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLfloat) * 4, |
| v, 4 * sizeof(GLfloat) * count); |
| } |
| else if(targetUniform->type == GL_BOOL_VEC4) |
| { |
| GLboolean *boolParams = (GLboolean*)targetUniform->data + uniformIndex[location].element * 4; |
| |
| for(int i = 0; i < count * 4; i++) |
| { |
| if(v[i] == 0.0f) |
| { |
| boolParams[i] = GL_FALSE; |
| } |
| else |
| { |
| boolParams[i] = GL_TRUE; |
| } |
| } |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Program::setUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value) |
| { |
| if(location < 0 || location >= (int)uniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| if(targetUniform->type != GL_FLOAT_MAT2) |
| { |
| return false; |
| } |
| |
| int size = targetUniform->size(); |
| |
| if(size == 1 && count > 1) |
| { |
| return false; // Attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| } |
| |
| count = std::min(size - (int)uniformIndex[location].element, count); |
| |
| memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLfloat) * 4, |
| value, 4 * sizeof(GLfloat) * count); |
| |
| return true; |
| } |
| |
| bool Program::setUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value) |
| { |
| if(location < 0 || location >= (int)uniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| if(targetUniform->type != GL_FLOAT_MAT3) |
| { |
| return false; |
| } |
| |
| int size = targetUniform->size(); |
| |
| if(size == 1 && count > 1) |
| { |
| return false; // Attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| } |
| |
| count = std::min(size - (int)uniformIndex[location].element, count); |
| |
| memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLfloat) * 9, |
| value, 9 * sizeof(GLfloat) * count); |
| |
| return true; |
| } |
| |
| bool Program::setUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value) |
| { |
| if(location < 0 || location >= (int)uniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| if(targetUniform->type != GL_FLOAT_MAT4) |
| { |
| return false; |
| } |
| |
| int size = targetUniform->size(); |
| |
| if(size == 1 && count > 1) |
| { |
| return false; // Attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| } |
| |
| count = std::min(size - (int)uniformIndex[location].element, count); |
| |
| memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLfloat) * 16, |
| value, 16 * sizeof(GLfloat) * count); |
| |
| return true; |
| } |
| |
| bool Program::setUniform1iv(GLint location, GLsizei count, const GLint *v) |
| { |
| if(location < 0 || location >= (int)uniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| int size = targetUniform->size(); |
| |
| if(size == 1 && count > 1) |
| { |
| return false; // Attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| } |
| |
| count = std::min(size - (int)uniformIndex[location].element, count); |
| |
| if(targetUniform->type == GL_INT || |
| targetUniform->type == GL_SAMPLER_2D || |
| targetUniform->type == GL_SAMPLER_CUBE) |
| { |
| memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLint), |
| v, sizeof(GLint) * count); |
| } |
| else if(targetUniform->type == GL_BOOL) |
| { |
| GLboolean *boolParams = new GLboolean[count]; |
| |
| for(int i = 0; i < count; i++) |
| { |
| if(v[i] == 0) |
| { |
| boolParams[i] = GL_FALSE; |
| } |
| else |
| { |
| boolParams[i] = GL_TRUE; |
| } |
| } |
| |
| memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLboolean), |
| boolParams, sizeof(GLboolean) * count); |
| |
| delete[] boolParams; |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Program::setUniform2iv(GLint location, GLsizei count, const GLint *v) |
| { |
| if(location < 0 || location >= (int)uniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| int size = targetUniform->size(); |
| |
| if(size == 1 && count > 1) |
| { |
| return false; // Attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| } |
| |
| count = std::min(size - (int)uniformIndex[location].element, count); |
| |
| if(targetUniform->type == GL_INT_VEC2) |
| { |
| memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLint) * 2, |
| v, 2 * sizeof(GLint) * count); |
| } |
| else if(targetUniform->type == GL_BOOL_VEC2) |
| { |
| GLboolean *boolParams = new GLboolean[count * 2]; |
| |
| for(int i = 0; i < count * 2; i++) |
| { |
| if(v[i] == 0) |
| { |
| boolParams[i] = GL_FALSE; |
| } |
| else |
| { |
| boolParams[i] = GL_TRUE; |
| } |
| } |
| |
| memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLboolean) * 2, |
| boolParams, 2 * sizeof(GLboolean) * count); |
| |
| delete[] boolParams; |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Program::setUniform3iv(GLint location, GLsizei count, const GLint *v) |
| { |
| if(location < 0 || location >= (int)uniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| int size = targetUniform->size(); |
| |
| if(size == 1 && count > 1) |
| { |
| return false; // Attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| } |
| |
| count = std::min(size - (int)uniformIndex[location].element, count); |
| |
| if(targetUniform->type == GL_INT_VEC3) |
| { |
| memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLint) * 3, |
| v, 3 * sizeof(GLint) * count); |
| } |
| else if(targetUniform->type == GL_BOOL_VEC3) |
| { |
| GLboolean *boolParams = new GLboolean[count * 3]; |
| |
| for(int i = 0; i < count * 3; i++) |
| { |
| if(v[i] == 0) |
| { |
| boolParams[i] = GL_FALSE; |
| } |
| else |
| { |
| boolParams[i] = GL_TRUE; |
| } |
| } |
| |
| memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLboolean) * 3, |
| boolParams, 3 * sizeof(GLboolean) * count); |
| |
| delete[] boolParams; |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Program::setUniform4iv(GLint location, GLsizei count, const GLint *v) |
| { |
| if(location < 0 || location >= (int)uniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| int size = targetUniform->size(); |
| |
| if(size == 1 && count > 1) |
| { |
| return false; // Attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| } |
| |
| count = std::min(size - (int)uniformIndex[location].element, count); |
| |
| if(targetUniform->type == GL_INT_VEC4) |
| { |
| memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLint) * 4, |
| v, 4 * sizeof(GLint) * count); |
| } |
| else if(targetUniform->type == GL_BOOL_VEC4) |
| { |
| GLboolean *boolParams = new GLboolean[count * 4]; |
| |
| for(int i = 0; i < count * 4; i++) |
| { |
| if(v[i] == 0) |
| { |
| boolParams[i] = GL_FALSE; |
| } |
| else |
| { |
| boolParams[i] = GL_TRUE; |
| } |
| } |
| |
| memcpy(targetUniform->data + uniformIndex[location].element * sizeof(GLboolean) * 4, |
| boolParams, 4 * sizeof(GLboolean) * count); |
| |
| delete[] boolParams; |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Program::getUniformfv(GLint location, GLsizei *bufSize, GLfloat *params) |
| { |
| if(location < 0 || location >= (int)uniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| unsigned int count = UniformComponentCount(targetUniform->type); |
| |
| // Sized query - ensure the provided buffer is large enough |
| if(bufSize && static_cast<unsigned int>(*bufSize) < count * sizeof(GLfloat)) |
| { |
| return false; |
| } |
| |
| switch(UniformComponentType(targetUniform->type)) |
| { |
| case GL_BOOL: |
| { |
| GLboolean *boolParams = (GLboolean*)targetUniform->data + uniformIndex[location].element * count; |
| |
| for(unsigned int i = 0; i < count; i++) |
| { |
| params[i] = (boolParams[i] == GL_FALSE) ? 0.0f : 1.0f; |
| } |
| } |
| break; |
| case GL_FLOAT: |
| memcpy(params, targetUniform->data + uniformIndex[location].element * count * sizeof(GLfloat), |
| count * sizeof(GLfloat)); |
| break; |
| case GL_INT: |
| { |
| GLint *intParams = (GLint*)targetUniform->data + uniformIndex[location].element * count; |
| |
| for(unsigned int i = 0; i < count; i++) |
| { |
| params[i] = (float)intParams[i]; |
| } |
| } |
| break; |
| default: UNREACHABLE(targetUniform->type); |
| } |
| |
| return true; |
| } |
| |
| bool Program::getUniformiv(GLint location, GLsizei *bufSize, GLint *params) |
| { |
| if(location < 0 || location >= (int)uniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| unsigned int count = UniformComponentCount(targetUniform->type); |
| |
| // Sized query - ensure the provided buffer is large enough |
| if(bufSize && static_cast<unsigned int>(*bufSize) < count *sizeof(GLint)) |
| { |
| return false; |
| } |
| |
| switch(UniformComponentType(targetUniform->type)) |
| { |
| case GL_BOOL: |
| { |
| GLboolean *boolParams = targetUniform->data + uniformIndex[location].element * count; |
| |
| for(unsigned int i = 0; i < count; i++) |
| { |
| params[i] = (GLint)boolParams[i]; |
| } |
| } |
| break; |
| case GL_FLOAT: |
| { |
| GLfloat *floatParams = (GLfloat*)targetUniform->data + uniformIndex[location].element * count; |
| |
| for(unsigned int i = 0; i < count; i++) |
| { |
| params[i] = (GLint)floatParams[i]; |
| } |
| } |
| break; |
| case GL_INT: |
| memcpy(params, targetUniform->data + uniformIndex[location].element * count * sizeof(GLint), |
| count * sizeof(GLint)); |
| break; |
| default: UNREACHABLE(targetUniform->type); |
| } |
| |
| return true; |
| } |
| |
| void Program::dirtyAllUniforms() |
| { |
| unsigned int numUniforms = uniforms.size(); |
| for(unsigned int index = 0; index < numUniforms; index++) |
| { |
| uniforms[index]->dirty = true; |
| } |
| } |
| |
| // Applies all the uniforms set for this program object to the device |
| void Program::applyUniforms() |
| { |
| unsigned int numUniforms = uniformIndex.size(); |
| for(unsigned int location = 0; location < numUniforms; location++) |
| { |
| if(uniformIndex[location].element != 0) |
| { |
| continue; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| |
| if(targetUniform->dirty) |
| { |
| int size = targetUniform->size(); |
| GLfloat *f = (GLfloat*)targetUniform->data; |
| GLint *i = (GLint*)targetUniform->data; |
| GLboolean *b = (GLboolean*)targetUniform->data; |
| |
| switch(targetUniform->type) |
| { |
| case GL_BOOL: applyUniform1bv(location, size, b); break; |
| case GL_BOOL_VEC2: applyUniform2bv(location, size, b); break; |
| case GL_BOOL_VEC3: applyUniform3bv(location, size, b); break; |
| case GL_BOOL_VEC4: applyUniform4bv(location, size, b); break; |
| case GL_FLOAT: applyUniform1fv(location, size, f); break; |
| case GL_FLOAT_VEC2: applyUniform2fv(location, size, f); break; |
| case GL_FLOAT_VEC3: applyUniform3fv(location, size, f); break; |
| case GL_FLOAT_VEC4: applyUniform4fv(location, size, f); break; |
| case GL_FLOAT_MAT2: applyUniformMatrix2fv(location, size, f); break; |
| case GL_FLOAT_MAT3: applyUniformMatrix3fv(location, size, f); break; |
| case GL_FLOAT_MAT4: applyUniformMatrix4fv(location, size, f); break; |
| case GL_SAMPLER_2D: |
| case GL_SAMPLER_CUBE: |
| case GL_INT: applyUniform1iv(location, size, i); break; |
| case GL_INT_VEC2: applyUniform2iv(location, size, i); break; |
| case GL_INT_VEC3: applyUniform3iv(location, size, i); break; |
| case GL_INT_VEC4: applyUniform4iv(location, size, i); break; |
| default: |
| UNREACHABLE(targetUniform->type); |
| } |
| |
| targetUniform->dirty = false; |
| } |
| } |
| } |
| |
| // Packs varyings into generic varying registers. |
| // Returns the number of used varying registers, or -1 if unsuccesful |
| int Program::packVaryings(const glsl::Varying *packing[][4]) |
| { |
| for(glsl::VaryingList::iterator varying = fragmentShader->varyings.begin(); varying != fragmentShader->varyings.end(); varying++) |
| { |
| int n = VariableRowCount(varying->type) * varying->size(); |
| int m = VariableColumnCount(varying->type); |
| bool success = false; |
| |
| if(m == 2 || m == 3 || m == 4) |
| { |
| for(int r = 0; r <= MAX_VARYING_VECTORS - n && !success; r++) |
| { |
| bool available = true; |
| |
| for(int y = 0; y < n && available; y++) |
| { |
| for(int x = 0; x < m && available; x++) |
| { |
| if(packing[r + y][x]) |
| { |
| available = false; |
| } |
| } |
| } |
| |
| if(available) |
| { |
| varying->reg = r; |
| varying->col = 0; |
| |
| for(int y = 0; y < n; y++) |
| { |
| for(int x = 0; x < m; x++) |
| { |
| packing[r + y][x] = &*varying; |
| } |
| } |
| |
| success = true; |
| } |
| } |
| |
| if(!success && m == 2) |
| { |
| for(int r = MAX_VARYING_VECTORS - n; r >= 0 && !success; r--) |
| { |
| bool available = true; |
| |
| for(int y = 0; y < n && available; y++) |
| { |
| for(int x = 2; x < 4 && available; x++) |
| { |
| if(packing[r + y][x]) |
| { |
| available = false; |
| } |
| } |
| } |
| |
| if(available) |
| { |
| varying->reg = r; |
| varying->col = 2; |
| |
| for(int y = 0; y < n; y++) |
| { |
| for(int x = 2; x < 4; x++) |
| { |
| packing[r + y][x] = &*varying; |
| } |
| } |
| |
| success = true; |
| } |
| } |
| } |
| } |
| else if(m == 1) |
| { |
| int space[4] = {0}; |
| |
| for(int y = 0; y < MAX_VARYING_VECTORS; y++) |
| { |
| for(int x = 0; x < 4; x++) |
| { |
| space[x] += packing[y][x] ? 0 : 1; |
| } |
| } |
| |
| int column = 0; |
| |
| for(int x = 0; x < 4; x++) |
| { |
| if(space[x] >= n && space[x] < space[column]) |
| { |
| column = x; |
| } |
| } |
| |
| if(space[column] >= n) |
| { |
| for(int r = 0; r < MAX_VARYING_VECTORS; r++) |
| { |
| if(!packing[r][column]) |
| { |
| varying->reg = r; |
| |
| for(int y = r; y < r + n; y++) |
| { |
| packing[y][column] = &*varying; |
| } |
| |
| break; |
| } |
| } |
| |
| varying->col = column; |
| |
| success = true; |
| } |
| } |
| else UNREACHABLE(m); |
| |
| if(!success) |
| { |
| appendToInfoLog("Could not pack varying %s", varying->name.c_str()); |
| |
| return -1; |
| } |
| } |
| |
| // Return the number of used registers |
| int registers = 0; |
| |
| for(int r = 0; r < MAX_VARYING_VECTORS; r++) |
| { |
| if(packing[r][0] || packing[r][1] || packing[r][2] || packing[r][3]) |
| { |
| registers++; |
| } |
| } |
| |
| return registers; |
| } |
| |
| bool Program::linkVaryings() |
| { |
| for(glsl::VaryingList::iterator input = fragmentShader->varyings.begin(); input != fragmentShader->varyings.end(); input++) |
| { |
| bool matched = false; |
| |
| for(glsl::VaryingList::iterator output = vertexShader->varyings.begin(); output != vertexShader->varyings.end(); output++) |
| { |
| if(output->name == input->name) |
| { |
| if(output->type != input->type || output->size() != input->size()) |
| { |
| appendToInfoLog("Type of vertex varying %s does not match that of the fragment varying", output->name.c_str()); |
| |
| return false; |
| } |
| |
| matched = true; |
| break; |
| } |
| } |
| |
| if(!matched) |
| { |
| appendToInfoLog("Fragment varying %s does not match any vertex varying", input->name.c_str()); |
| |
| return false; |
| } |
| } |
| |
| glsl::VaryingList &psVaryings = fragmentShader->varyings; |
| glsl::VaryingList &vsVaryings = vertexShader->varyings; |
| |
| for(glsl::VaryingList::iterator output = vsVaryings.begin(); output != vsVaryings.end(); output++) |
| { |
| for(glsl::VaryingList::iterator input = psVaryings.begin(); input != psVaryings.end(); input++) |
| { |
| if(output->name == input->name) |
| { |
| int in = input->reg; |
| int out = output->reg; |
| int components = VariableColumnCount(output->type); |
| int registers = VariableRowCount(output->type) * output->size(); |
| |
| ASSERT(in >= 0); |
| |
| if(in + registers > MAX_VARYING_VECTORS) |
| { |
| appendToInfoLog("Too many varyings"); |
| return false; |
| } |
| |
| if(out >= 0) |
| { |
| if(out + registers > MAX_VARYING_VECTORS) |
| { |
| appendToInfoLog("Too many varyings"); |
| return false; |
| } |
| |
| for(int i = 0; i < registers; i++) |
| { |
| vertexBinary->setOutput(out + i, components, sw::Shader::Semantic(sw::Shader::USAGE_COLOR, in + i)); |
| } |
| } |
| else // Vertex varying is declared but not written to |
| { |
| for(int i = 0; i < registers; i++) |
| { |
| pixelBinary->setInput(in + i, components, sw::Shader::Semantic()); |
| } |
| } |
| |
| break; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| // Links the code of the vertex and pixel shader by matching up their varyings, |
| // compiling them into binaries, determining the attribute mappings, and collecting |
| // a list of uniforms |
| void Program::link() |
| { |
| unlink(); |
| |
| if(!fragmentShader || !fragmentShader->isCompiled()) |
| { |
| return; |
| } |
| |
| if(!vertexShader || !vertexShader->isCompiled()) |
| { |
| return; |
| } |
| |
| vertexBinary = new sw::VertexShader(vertexShader->getVertexShader()); |
| pixelBinary = new sw::PixelShader(fragmentShader->getPixelShader()); |
| |
| if(!linkVaryings()) |
| { |
| return; |
| } |
| |
| if(!linkAttributes()) |
| { |
| return; |
| } |
| |
| if(!linkUniforms(fragmentShader)) |
| { |
| return; |
| } |
| |
| if(!linkUniforms(vertexShader)) |
| { |
| return; |
| } |
| |
| linked = true; // Success |
| } |
| |
| // Determines the mapping between GL attributes and vertex stream usage indices |
| bool Program::linkAttributes() |
| { |
| unsigned int usedLocations = 0; |
| |
| // Link attributes that have a binding location |
| for(glsl::ActiveAttributes::iterator attribute = vertexShader->activeAttributes.begin(); attribute != vertexShader->activeAttributes.end(); attribute++) |
| { |
| int location = getAttributeBinding(attribute->name); |
| |
| if(location != -1) // Set by glBindAttribLocation |
| { |
| if(!linkedAttribute[location].name.empty()) |
| { |
| // Multiple active attributes bound to the same location; not an error |
| } |
| |
| linkedAttribute[location] = *attribute; |
| |
| int rows = VariableRowCount(attribute->type); |
| |
| if(rows + location > MAX_VERTEX_ATTRIBS) |
| { |
| appendToInfoLog("Active attribute (%s) at location %d is too big to fit", attribute->name.c_str(), location); |
| return false; |
| } |
| |
| for(int i = 0; i < rows; i++) |
| { |
| usedLocations |= 1 << (location + i); |
| } |
| } |
| } |
| |
| // Link attributes that don't have a binding location |
| for(glsl::ActiveAttributes::iterator attribute = vertexShader->activeAttributes.begin(); attribute != vertexShader->activeAttributes.end(); attribute++) |
| { |
| int location = getAttributeBinding(attribute->name); |
| |
| if(location == -1) // Not set by glBindAttribLocation |
| { |
| int rows = VariableRowCount(attribute->type); |
| int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS); |
| |
| if(availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS) |
| { |
| appendToInfoLog("Too many active attributes (%s)", attribute->name.c_str()); |
| return false; // Fail to link |
| } |
| |
| linkedAttribute[availableIndex] = *attribute; |
| } |
| } |
| |
| for(int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; ) |
| { |
| int index = vertexShader->getSemanticIndex(linkedAttribute[attributeIndex].name); |
| int rows = std::max(VariableRowCount(linkedAttribute[attributeIndex].type), 1); |
| |
| for(int r = 0; r < rows; r++) |
| { |
| attributeStream[attributeIndex++] = index++; |
| } |
| } |
| |
| return true; |
| } |
| |
| int Program::getAttributeBinding(const std::string &name) |
| { |
| for(int location = 0; location < MAX_VERTEX_ATTRIBS; location++) |
| { |
| if(attributeBinding[location].find(name) != attributeBinding[location].end()) |
| { |
| return location; |
| } |
| } |
| |
| return -1; |
| } |
| |
| bool Program::linkUniforms(Shader *shader) |
| { |
| const glsl::ActiveUniforms &activeUniforms = shader->activeUniforms; |
| |
| for(unsigned int uniformIndex = 0; uniformIndex < activeUniforms.size(); uniformIndex++) |
| { |
| const glsl::Uniform &uniform = activeUniforms[uniformIndex]; |
| |
| if(!defineUniform(shader->getType(), uniform.type, uniform.precision, uniform.name, uniform.arraySize, uniform.registerIndex)) |
| { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool Program::defineUniform(GLenum shader, GLenum type, GLenum precision, const std::string &name, unsigned int arraySize, int registerIndex) |
| { |
| if(type == GL_SAMPLER_2D || type == GL_SAMPLER_CUBE) |
| { |
| int index = registerIndex; |
| |
| do |
| { |
| if(shader == GL_VERTEX_SHADER) |
| { |
| if(index < MAX_VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| samplersVS[index].active = true; |
| samplersVS[index].textureType = (type == GL_SAMPLER_CUBE) ? TEXTURE_CUBE : TEXTURE_2D; |
| samplersVS[index].logicalTextureUnit = 0; |
| } |
| else |
| { |
| appendToInfoLog("Vertex shader sampler count exceeds MAX_VERTEX_TEXTURE_IMAGE_UNITS (%d).", MAX_VERTEX_TEXTURE_IMAGE_UNITS); |
| return false; |
| } |
| } |
| else if(shader == GL_FRAGMENT_SHADER) |
| { |
| if(index < MAX_TEXTURE_IMAGE_UNITS) |
| { |
| samplersPS[index].active = true; |
| samplersPS[index].textureType = (type == GL_SAMPLER_CUBE) ? TEXTURE_CUBE : TEXTURE_2D; |
| samplersPS[index].logicalTextureUnit = 0; |
| } |
| else |
| { |
| appendToInfoLog("Pixel shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (%d).", MAX_TEXTURE_IMAGE_UNITS); |
| return false; |
| } |
| } |
| else UNREACHABLE(shader); |
| |
| index++; |
| } |
| while(index < registerIndex + static_cast<int>(arraySize)); |
| } |
| |
| Uniform *uniform = 0; |
| GLint location = getUniformLocation(name); |
| |
| if(location >= 0) // Previously defined, types must match |
| { |
| uniform = uniforms[uniformIndex[location].index]; |
| |
| if(uniform->type != type) |
| { |
| appendToInfoLog("Types for uniform %s do not match between the vertex and fragment shader", uniform->name.c_str()); |
| return false; |
| } |
| |
| if(uniform->precision != precision) |
| { |
| appendToInfoLog("Precisions for uniform %s do not match between the vertex and fragment shader", uniform->name.c_str()); |
| return false; |
| } |
| } |
| else |
| { |
| uniform = new Uniform(type, precision, name, arraySize); |
| } |
| |
| if(!uniform) |
| { |
| return false; |
| } |
| |
| if(shader == GL_VERTEX_SHADER) |
| { |
| uniform->vsRegisterIndex = registerIndex; |
| } |
| else if(shader == GL_FRAGMENT_SHADER) |
| { |
| uniform->psRegisterIndex = registerIndex; |
| } |
| else UNREACHABLE(shader); |
| |
| if(location == -1) // Not previously defined |
| { |
| uniforms.push_back(uniform); |
| unsigned int index = uniforms.size() - 1; |
| |
| for(int i = 0; i < uniform->size(); i++) |
| { |
| uniformIndex.push_back(UniformLocation(name, i, index)); |
| } |
| } |
| |
| if(shader == GL_VERTEX_SHADER) |
| { |
| if(registerIndex + uniform->registerCount() > MAX_VERTEX_UNIFORM_VECTORS) |
| { |
| appendToInfoLog("Vertex shader active uniforms exceed GL_MAX_VERTEX_UNIFORM_VECTORS (%d)", MAX_VERTEX_UNIFORM_VECTORS); |
| return false; |
| } |
| } |
| else if(shader == GL_FRAGMENT_SHADER) |
| { |
| if(registerIndex + uniform->registerCount() > MAX_FRAGMENT_UNIFORM_VECTORS) |
| { |
| appendToInfoLog("Fragment shader active uniforms exceed GL_MAX_FRAGMENT_UNIFORM_VECTORS (%d)", MAX_FRAGMENT_UNIFORM_VECTORS); |
| return false; |
| } |
| } |
| else UNREACHABLE(shader); |
| |
| return true; |
| } |
| |
| bool Program::applyUniform1bv(GLint location, GLsizei count, const GLboolean *v) |
| { |
| int vector[MAX_UNIFORM_VECTORS][4]; |
| |
| for(int i = 0; i < count; i++) |
| { |
| vector[i][0] = (v[0] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF); |
| vector[i][1] = 0; |
| vector[i][2] = 0; |
| vector[i][3] = 0; |
| |
| v += 1; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| |
| if(targetUniform->psRegisterIndex != -1) |
| { |
| device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)vector, targetUniform->registerCount()); |
| } |
| |
| if(targetUniform->vsRegisterIndex != -1) |
| { |
| device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)vector, targetUniform->registerCount()); |
| } |
| |
| return true; |
| } |
| |
| bool Program::applyUniform2bv(GLint location, GLsizei count, const GLboolean *v) |
| { |
| int vector[MAX_UNIFORM_VECTORS][4]; |
| |
| for(int i = 0; i < count; i++) |
| { |
| vector[i][0] = (v[0] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF); |
| vector[i][1] = (v[1] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF); |
| vector[i][2] = 0; |
| vector[i][3] = 0; |
| |
| v += 2; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| |
| if(targetUniform->psRegisterIndex != -1) |
| { |
| device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)vector, targetUniform->registerCount()); |
| } |
| |
| if(targetUniform->vsRegisterIndex != -1) |
| { |
| device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)vector, targetUniform->registerCount()); |
| } |
| |
| return true; |
| } |
| |
| bool Program::applyUniform3bv(GLint location, GLsizei count, const GLboolean *v) |
| { |
| int vector[MAX_UNIFORM_VECTORS][4]; |
| |
| for(int i = 0; i < count; i++) |
| { |
| vector[i][0] = (v[0] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF); |
| vector[i][1] = (v[1] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF); |
| vector[i][2] = (v[2] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF); |
| vector[i][3] = 0; |
| |
| v += 3; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| |
| if(targetUniform->psRegisterIndex != -1) |
| { |
| device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)vector, targetUniform->registerCount()); |
| } |
| |
| if(targetUniform->vsRegisterIndex != -1) |
| { |
| device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)vector, targetUniform->registerCount()); |
| } |
| |
| return true; |
| } |
| |
| bool Program::applyUniform4bv(GLint location, GLsizei count, const GLboolean *v) |
| { |
| int vector[MAX_UNIFORM_VECTORS][4]; |
| |
| for(int i = 0; i < count; i++) |
| { |
| vector[i][0] = (v[0] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF); |
| vector[i][1] = (v[1] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF); |
| vector[i][2] = (v[2] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF); |
| vector[i][3] = (v[3] == GL_FALSE ? 0x00000000 : 0xFFFFFFFF); |
| |
| v += 4; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| |
| if(targetUniform->psRegisterIndex != -1) |
| { |
| device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)vector, targetUniform->registerCount()); |
| } |
| |
| if(targetUniform->vsRegisterIndex != -1) |
| { |
| device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)vector, targetUniform->registerCount()); |
| } |
| |
| return true; |
| } |
| |
| bool Program::applyUniform1fv(GLint location, GLsizei count, const GLfloat *v) |
| { |
| float vector[MAX_UNIFORM_VECTORS][4]; |
| |
| for(int i = 0; i < count; i++) |
| { |
| vector[i][0] = v[0]; |
| vector[i][1] = 0; |
| vector[i][2] = 0; |
| vector[i][3] = 0; |
| |
| v += 1; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| |
| if(targetUniform->psRegisterIndex != -1) |
| { |
| device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)vector, targetUniform->registerCount()); |
| } |
| |
| if(targetUniform->vsRegisterIndex != -1) |
| { |
| device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)vector, targetUniform->registerCount()); |
| } |
| |
| return true; |
| } |
| |
| bool Program::applyUniform2fv(GLint location, GLsizei count, const GLfloat *v) |
| { |
| float vector[MAX_UNIFORM_VECTORS][4]; |
| |
| for(int i = 0; i < count; i++) |
| { |
| vector[i][0] = v[0]; |
| vector[i][1] = v[1]; |
| vector[i][2] = 0; |
| vector[i][3] = 0; |
| |
| v += 2; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| |
| if(targetUniform->psRegisterIndex != -1) |
| { |
| device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)vector, targetUniform->registerCount()); |
| } |
| |
| if(targetUniform->vsRegisterIndex != -1) |
| { |
| device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)vector, targetUniform->registerCount()); |
| } |
| |
| return true; |
| } |
| |
| bool Program::applyUniform3fv(GLint location, GLsizei count, const GLfloat *v) |
| { |
| float vector[MAX_UNIFORM_VECTORS][4]; |
| |
| for(int i = 0; i < count; i++) |
| { |
| vector[i][0] = v[0]; |
| vector[i][1] = v[1]; |
| vector[i][2] = v[2]; |
| vector[i][3] = 0; |
| |
| v += 3; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| |
| if(targetUniform->psRegisterIndex != -1) |
| { |
| device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)vector, targetUniform->registerCount()); |
| } |
| |
| if(targetUniform->vsRegisterIndex != -1) |
| { |
| device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)vector, targetUniform->registerCount()); |
| } |
| |
| return true; |
| } |
| |
| bool Program::applyUniform4fv(GLint location, GLsizei count, const GLfloat *v) |
| { |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| |
| if(targetUniform->psRegisterIndex != -1) |
| { |
| device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)v, targetUniform->registerCount()); |
| } |
| |
| if(targetUniform->vsRegisterIndex != -1) |
| { |
| device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)v, targetUniform->registerCount()); |
| } |
| |
| return true; |
| } |
| |
| bool Program::applyUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value) |
| { |
| float matrix[(MAX_UNIFORM_VECTORS + 1) / 2][2][4]; |
| |
| for(int i = 0; i < count; i++) |
| { |
| matrix[i][0][0] = value[0]; matrix[i][0][1] = value[1]; matrix[i][0][2] = 0; matrix[i][0][3] = 0; |
| matrix[i][1][0] = value[2]; matrix[i][1][1] = value[3]; matrix[i][1][2] = 0; matrix[i][1][3] = 0; |
| |
| value += 4; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| |
| if(targetUniform->psRegisterIndex != -1) |
| { |
| device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)matrix, targetUniform->registerCount()); |
| } |
| |
| if(targetUniform->vsRegisterIndex != -1) |
| { |
| device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)matrix, targetUniform->registerCount()); |
| } |
| |
| return true; |
| } |
| |
| bool Program::applyUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value) |
| { |
| float matrix[(MAX_UNIFORM_VECTORS + 2) / 3][3][4]; |
| |
| for(int i = 0; i < count; i++) |
| { |
| matrix[i][0][0] = value[0]; matrix[i][0][1] = value[1]; matrix[i][0][2] = value[2]; matrix[i][0][3] = 0; |
| matrix[i][1][0] = value[3]; matrix[i][1][1] = value[4]; matrix[i][1][2] = value[5]; matrix[i][1][3] = 0; |
| matrix[i][2][0] = value[6]; matrix[i][2][1] = value[7]; matrix[i][2][2] = value[8]; matrix[i][2][3] = 0; |
| |
| value += 9; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| |
| if(targetUniform->psRegisterIndex != -1) |
| { |
| device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)matrix, targetUniform->registerCount()); |
| } |
| |
| if(targetUniform->vsRegisterIndex != -1) |
| { |
| device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)matrix, targetUniform->registerCount()); |
| } |
| |
| return true; |
| } |
| |
| bool Program::applyUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value) |
| { |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| |
| if(targetUniform->psRegisterIndex != -1) |
| { |
| device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)value, targetUniform->registerCount()); |
| } |
| |
| if(targetUniform->vsRegisterIndex != -1) |
| { |
| device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)value, targetUniform->registerCount()); |
| } |
| |
| return true; |
| } |
| |
| bool Program::applyUniform1iv(GLint location, GLsizei count, const GLint *v) |
| { |
| float vector[MAX_UNIFORM_VECTORS][4]; |
| |
| for(int i = 0; i < count; i++) |
| { |
| vector[i][0] = (float)v[i]; |
| vector[i][1] = 0; |
| vector[i][2] = 0; |
| vector[i][3] = 0; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| |
| if(targetUniform->psRegisterIndex != -1) |
| { |
| if(targetUniform->type == GL_SAMPLER_2D || |
| targetUniform->type == GL_SAMPLER_CUBE) |
| { |
| for(int i = 0; i < count; i++) |
| { |
| unsigned int samplerIndex = targetUniform->psRegisterIndex + i; |
| |
| if(samplerIndex < MAX_TEXTURE_IMAGE_UNITS) |
| { |
| ASSERT(samplersPS[samplerIndex].active); |
| samplersPS[samplerIndex].logicalTextureUnit = v[i]; |
| } |
| } |
| } |
| else |
| { |
| device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)vector, targetUniform->registerCount()); |
| } |
| } |
| |
| if(targetUniform->vsRegisterIndex != -1) |
| { |
| if(targetUniform->type == GL_SAMPLER_2D || |
| targetUniform->type == GL_SAMPLER_CUBE) |
| { |
| for(int i = 0; i < count; i++) |
| { |
| unsigned int samplerIndex = targetUniform->vsRegisterIndex + i; |
| |
| if(samplerIndex < MAX_VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| ASSERT(samplersVS[samplerIndex].active); |
| samplersVS[samplerIndex].logicalTextureUnit = v[i]; |
| } |
| } |
| } |
| else |
| { |
| device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)vector, targetUniform->registerCount()); |
| } |
| } |
| |
| return true; |
| } |
| |
| bool Program::applyUniform2iv(GLint location, GLsizei count, const GLint *v) |
| { |
| float vector[MAX_UNIFORM_VECTORS][4]; |
| |
| for(int i = 0; i < count; i++) |
| { |
| vector[i][0] = (float)v[0]; |
| vector[i][1] = (float)v[1]; |
| vector[i][2] = 0; |
| vector[i][3] = 0; |
| |
| v += 2; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| |
| if(targetUniform->psRegisterIndex != -1) |
| { |
| device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)vector, targetUniform->registerCount()); |
| } |
| |
| if(targetUniform->vsRegisterIndex != -1) |
| { |
| device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)vector, targetUniform->registerCount()); |
| } |
| |
| return true; |
| } |
| |
| bool Program::applyUniform3iv(GLint location, GLsizei count, const GLint *v) |
| { |
| float vector[MAX_UNIFORM_VECTORS][4]; |
| |
| for(int i = 0; i < count; i++) |
| { |
| vector[i][0] = (float)v[0]; |
| vector[i][1] = (float)v[1]; |
| vector[i][2] = (float)v[2]; |
| vector[i][3] = 0; |
| |
| v += 3; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| |
| if(targetUniform->psRegisterIndex != -1) |
| { |
| device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)vector, targetUniform->registerCount()); |
| } |
| |
| if(targetUniform->vsRegisterIndex != -1) |
| { |
| device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)vector, targetUniform->registerCount()); |
| } |
| |
| return true; |
| } |
| |
| bool Program::applyUniform4iv(GLint location, GLsizei count, const GLint *v) |
| { |
| float vector[MAX_UNIFORM_VECTORS][4]; |
| |
| for(int i = 0; i < count; i++) |
| { |
| vector[i][0] = (float)v[0]; |
| vector[i][1] = (float)v[1]; |
| vector[i][2] = (float)v[2]; |
| vector[i][3] = (float)v[3]; |
| |
| v += 4; |
| } |
| |
| Uniform *targetUniform = uniforms[uniformIndex[location].index]; |
| |
| if(targetUniform->psRegisterIndex != -1) |
| { |
| device->setPixelShaderConstantF(targetUniform->psRegisterIndex, (float*)vector, targetUniform->registerCount()); |
| } |
| |
| if(targetUniform->vsRegisterIndex != -1) |
| { |
| device->setVertexShaderConstantF(targetUniform->vsRegisterIndex, (float*)vector, targetUniform->registerCount()); |
| } |
| |
| return true; |
| } |
| |
| void Program::appendToInfoLog(const char *format, ...) |
| { |
| if(!format) |
| { |
| return; |
| } |
| |
| char info[1024]; |
| |
| va_list vararg; |
| va_start(vararg, format); |
| vsnprintf(info, sizeof(info), format, vararg); |
| va_end(vararg); |
| |
| size_t infoLength = strlen(info); |
| |
| if(!infoLog) |
| { |
| infoLog = new char[infoLength + 2]; |
| strcpy(infoLog, info); |
| strcpy(infoLog + infoLength, "\n"); |
| } |
| else |
| { |
| size_t logLength = strlen(infoLog); |
| char *newLog = new char[logLength + infoLength + 2]; |
| strcpy(newLog, infoLog); |
| strcpy(newLog + logLength, info); |
| strcpy(newLog + logLength + infoLength, "\n"); |
| |
| delete[] infoLog; |
| infoLog = newLog; |
| } |
| } |
| |
| void Program::resetInfoLog() |
| { |
| if(infoLog) |
| { |
| delete[] infoLog; |
| infoLog = 0; |
| } |
| } |
| |
| // Returns the program object to an unlinked state, before re-linking, or at destruction |
| void Program::unlink() |
| { |
| delete vertexBinary; |
| vertexBinary = 0; |
| delete pixelBinary; |
| pixelBinary = 0; |
| |
| for(int index = 0; index < MAX_VERTEX_ATTRIBS; index++) |
| { |
| linkedAttribute[index].name.clear(); |
| attributeStream[index] = -1; |
| } |
| |
| for(int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; index++) |
| { |
| samplersPS[index].active = false; |
| } |
| |
| for(int index = 0; index < MAX_VERTEX_TEXTURE_IMAGE_UNITS; index++) |
| { |
| samplersVS[index].active = false; |
| } |
| |
| while(!uniforms.empty()) |
| { |
| delete uniforms.back(); |
| uniforms.pop_back(); |
| } |
| |
| uniformIndex.clear(); |
| |
| delete[] infoLog; |
| infoLog = 0; |
| |
| linked = false; |
| } |
| |
| bool Program::isLinked() |
| { |
| return linked; |
| } |
| |
| bool Program::isValidated() const |
| { |
| return validated; |
| } |
| |
| void Program::release() |
| { |
| referenceCount--; |
| |
| if(referenceCount == 0 && orphaned) |
| { |
| resourceManager->deleteProgram(handle); |
| } |
| } |
| |
| void Program::addRef() |
| { |
| referenceCount++; |
| } |
| |
| unsigned int Program::getRefCount() const |
| { |
| return referenceCount; |
| } |
| |
| unsigned int Program::getSerial() const |
| { |
| return serial; |
| } |
| |
| unsigned int Program::issueSerial() |
| { |
| return currentSerial++; |
| } |
| |
| int Program::getInfoLogLength() const |
| { |
| if(!infoLog) |
| { |
| return 0; |
| } |
| else |
| { |
| return strlen(infoLog) + 1; |
| } |
| } |
| |
| void Program::getInfoLog(GLsizei bufSize, GLsizei *length, char *buffer) |
| { |
| int index = 0; |
| |
| if(bufSize > 0) |
| { |
| if(infoLog) |
| { |
| index = std::min(bufSize - 1, (int)strlen(infoLog)); |
| memcpy(buffer, infoLog, index); |
| } |
| |
| buffer[index] = '\0'; |
| } |
| |
| if(length) |
| { |
| *length = index; |
| } |
| } |
| |
| void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, GLuint *shaders) |
| { |
| int total = 0; |
| |
| if(vertexShader) |
| { |
| if(total < maxCount) |
| { |
| shaders[total] = vertexShader->getName(); |
| } |
| |
| total++; |
| } |
| |
| if(fragmentShader) |
| { |
| if(total < maxCount) |
| { |
| shaders[total] = fragmentShader->getName(); |
| } |
| |
| total++; |
| } |
| |
| if(count) |
| { |
| *count = total; |
| } |
| } |
| |
| void Program::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const |
| { |
| // Skip over inactive attributes |
| unsigned int activeAttribute = 0; |
| unsigned int attribute; |
| for(attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++) |
| { |
| if(linkedAttribute[attribute].name.empty()) |
| { |
| continue; |
| } |
| |
| if(activeAttribute == index) |
| { |
| break; |
| } |
| |
| activeAttribute++; |
| } |
| |
| if(bufsize > 0) |
| { |
| const char *string = linkedAttribute[attribute].name.c_str(); |
| |
| strncpy(name, string, bufsize); |
| name[bufsize - 1] = '\0'; |
| |
| if(length) |
| { |
| *length = strlen(name); |
| } |
| } |
| |
| *size = 1; // Always a single 'type' instance |
| |
| *type = linkedAttribute[attribute].type; |
| } |
| |
| size_t Program::getActiveAttributeCount() const |
| { |
| size_t count = 0; |
| |
| for(size_t attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; ++attributeIndex) |
| { |
| if(!linkedAttribute[attributeIndex].name.empty()) |
| { |
| count++; |
| } |
| } |
| |
| return count; |
| } |
| |
| GLint Program::getActiveAttributeMaxLength() const |
| { |
| int maxLength = 0; |
| |
| for(int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) |
| { |
| if(!linkedAttribute[attributeIndex].name.empty()) |
| { |
| maxLength = std::max((int)(linkedAttribute[attributeIndex].name.length() + 1), maxLength); |
| } |
| } |
| |
| return maxLength; |
| } |
| |
| void Program::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const |
| { |
| if(bufsize > 0) |
| { |
| std::string string = uniforms[index]->name; |
| |
| if(uniforms[index]->isArray()) |
| { |
| string += "[0]"; |
| } |
| |
| strncpy(name, string.c_str(), bufsize); |
| name[bufsize - 1] = '\0'; |
| |
| if(length) |
| { |
| *length = strlen(name); |
| } |
| } |
| |
| *size = uniforms[index]->size(); |
| |
| *type = uniforms[index]->type; |
| } |
| |
| size_t Program::getActiveUniformCount() const |
| { |
| return uniforms.size(); |
| } |
| |
| GLint Program::getActiveUniformMaxLength() const |
| { |
| int maxLength = 0; |
| |
| unsigned int numUniforms = uniforms.size(); |
| for(unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++) |
| { |
| if(!uniforms[uniformIndex]->name.empty()) |
| { |
| int length = (int)(uniforms[uniformIndex]->name.length() + 1); |
| if(uniforms[uniformIndex]->isArray()) |
| { |
| length += 3; // Counting in "[0]". |
| } |
| maxLength = std::max(length, maxLength); |
| } |
| } |
| |
| return maxLength; |
| } |
| |
| void Program::flagForDeletion() |
| { |
| orphaned = true; |
| } |
| |
| bool Program::isFlaggedForDeletion() const |
| { |
| return orphaned; |
| } |
| |
| void Program::validate() |
| { |
| resetInfoLog(); |
| |
| if(!isLinked()) |
| { |
| appendToInfoLog("Program has not been successfully linked."); |
| validated = false; |
| } |
| else |
| { |
| applyUniforms(); |
| if(!validateSamplers(true)) |
| { |
| validated = false; |
| } |
| else |
| { |
| validated = true; |
| } |
| } |
| } |
| |
| bool Program::validateSamplers(bool logErrors) |
| { |
| // if any two active samplers in a program are of different types, but refer to the same |
| // texture image unit, and this is the current program, then ValidateProgram will fail, and |
| // DrawArrays and DrawElements will issue the INVALID_OPERATION error. |
| |
| TextureType textureUnitType[MAX_COMBINED_TEXTURE_IMAGE_UNITS]; |
| |
| for(unsigned int i = 0; i < MAX_COMBINED_TEXTURE_IMAGE_UNITS; i++) |
| { |
| textureUnitType[i] = TEXTURE_UNKNOWN; |
| } |
| |
| for(unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; i++) |
| { |
| if(samplersPS[i].active) |
| { |
| unsigned int unit = samplersPS[i].logicalTextureUnit; |
| |
| if(unit >= MAX_COMBINED_TEXTURE_IMAGE_UNITS) |
| { |
| if(logErrors) |
| { |
| appendToInfoLog("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, MAX_COMBINED_TEXTURE_IMAGE_UNITS); |
| } |
| |
| return false; |
| } |
| |
| if(textureUnitType[unit] != TEXTURE_UNKNOWN) |
| { |
| if(samplersPS[i].textureType != textureUnitType[unit]) |
| { |
| if(logErrors) |
| { |
| appendToInfoLog("Samplers of conflicting types refer to the same texture image unit (%d).", unit); |
| } |
| |
| return false; |
| } |
| } |
| else |
| { |
| textureUnitType[unit] = samplersPS[i].textureType; |
| } |
| } |
| } |
| |
| for(unsigned int i = 0; i < MAX_VERTEX_TEXTURE_IMAGE_UNITS; i++) |
| { |
| if(samplersVS[i].active) |
| { |
| unsigned int unit = samplersVS[i].logicalTextureUnit; |
| |
| if(unit >= MAX_COMBINED_TEXTURE_IMAGE_UNITS) |
| { |
| if(logErrors) |
| { |
| appendToInfoLog("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, MAX_COMBINED_TEXTURE_IMAGE_UNITS); |
| } |
| |
| return false; |
| } |
| |
| if(textureUnitType[unit] != TEXTURE_UNKNOWN) |
| { |
| if(samplersVS[i].textureType != textureUnitType[unit]) |
| { |
| if(logErrors) |
| { |
| appendToInfoLog("Samplers of conflicting types refer to the same texture image unit (%d).", unit); |
| } |
| |
| return false; |
| } |
| } |
| else |
| { |
| textureUnitType[unit] = samplersVS[i].textureType; |
| } |
| } |
| } |
| |
| return true; |
| } |
| } |