blob: 6f30f0fcd929ef006d944b2f323b7d32d4dd33a9 [file] [log] [blame]
// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "VertexRoutine.hpp"
#include "Constants.hpp"
#include "SpirvShader.hpp"
#include "Device/Clipper.hpp"
#include "Device/Renderer.hpp"
#include "Device/Vertex.hpp"
#include "System/Debug.hpp"
#include "System/Half.hpp"
#include "Vulkan/VkDevice.hpp"
namespace sw {
VertexRoutine::VertexRoutine(
const VertexProcessor::State &state,
const vk::PipelineLayout *pipelineLayout,
const SpirvShader *spirvShader)
: routine(pipelineLayout)
, state(state)
, spirvShader(spirvShader)
{
spirvShader->emitProlog(&routine);
}
VertexRoutine::~VertexRoutine()
{
}
void VertexRoutine::generate()
{
Pointer<Byte> cache = task + OFFSET(VertexTask, vertexCache);
Pointer<Byte> vertexCache = cache + OFFSET(VertexCache, vertex);
Pointer<UInt> tagCache = Pointer<UInt>(cache + OFFSET(VertexCache, tag));
UInt vertexCount = *Pointer<UInt>(task + OFFSET(VertexTask, vertexCount));
constants = device + OFFSET(vk::Device, constants);
// Check the cache one vertex index at a time. If a hit occurs, copy from the cache to the 'vertex' output buffer.
// On a cache miss, process a SIMD width of consecutive indices from the input batch. They're written to the cache
// in reverse order to guarantee that the first one doesn't get evicted and can be written out.
Do
{
UInt index = *batch;
UInt cacheIndex = index & VertexCache::TAG_MASK;
If(tagCache[cacheIndex] != index)
{
readInput(batch);
program(batch, vertexCount);
computeClipFlags();
computeCullMask();
writeCache(vertexCache, tagCache, batch);
}
Pointer<Byte> cacheEntry = vertexCache + cacheIndex * UInt((int)sizeof(Vertex));
// For points, vertexCount is 1 per primitive, so duplicate vertex for all 3 vertices of the primitive
for(int i = 0; i < (state.isPoint ? 3 : 1); i++)
{
writeVertex(vertex, cacheEntry);
vertex += sizeof(Vertex);
}
batch = Pointer<UInt>(Pointer<Byte>(batch) + sizeof(uint32_t));
vertexCount--;
}
Until(vertexCount == 0);
Return();
}
void VertexRoutine::readInput(Pointer<UInt> &batch)
{
for(int i = 0; i < MAX_INTERFACE_COMPONENTS; i += 4)
{
if(spirvShader->inputs[i + 0].Type != SpirvShader::ATTRIBTYPE_UNUSED ||
spirvShader->inputs[i + 1].Type != SpirvShader::ATTRIBTYPE_UNUSED ||
spirvShader->inputs[i + 2].Type != SpirvShader::ATTRIBTYPE_UNUSED ||
spirvShader->inputs[i + 3].Type != SpirvShader::ATTRIBTYPE_UNUSED)
{
Pointer<Byte> input = *Pointer<Pointer<Byte>>(data + OFFSET(DrawData, input) + sizeof(void *) * (i / 4));
UInt stride = *Pointer<UInt>(data + OFFSET(DrawData, stride) + sizeof(uint32_t) * (i / 4));
Int baseVertex = *Pointer<Int>(data + OFFSET(DrawData, baseVertex));
UInt robustnessSize(0);
if(state.robustBufferAccess)
{
robustnessSize = *Pointer<UInt>(data + OFFSET(DrawData, robustnessSize) + sizeof(uint32_t) * (i / 4));
}
auto value = readStream(input, stride, state.input[i / 4], batch, state.robustBufferAccess, robustnessSize, baseVertex);
routine.inputs[i + 0] = value.x;
routine.inputs[i + 1] = value.y;
routine.inputs[i + 2] = value.z;
routine.inputs[i + 3] = value.w;
}
}
}
void VertexRoutine::computeClipFlags()
{
auto it = spirvShader->outputBuiltins.find(spv::BuiltInPosition);
if(it != spirvShader->outputBuiltins.end())
{
assert(it->second.SizeInComponents == 4);
auto &pos = routine.getVariable(it->second.Id);
auto posX = pos[it->second.FirstComponent + 0];
auto posY = pos[it->second.FirstComponent + 1];
auto posZ = pos[it->second.FirstComponent + 2];
auto posW = pos[it->second.FirstComponent + 3];
SIMD::Int maxX = CmpLT(posW, posX);
SIMD::Int maxY = CmpLT(posW, posY);
SIMD::Int minX = CmpNLE(-posW, posX);
SIMD::Int minY = CmpNLE(-posW, posY);
clipFlags = maxX & Clipper::CLIP_RIGHT;
clipFlags |= maxY & Clipper::CLIP_TOP;
clipFlags |= minX & Clipper::CLIP_LEFT;
clipFlags |= minY & Clipper::CLIP_BOTTOM;
if(state.depthClipEnable)
{
// If depthClipNegativeOneToOne is enabled, depth values are in [-1, 1] instead of [0, 1].
SIMD::Int maxZ = CmpLT(posW, posZ);
SIMD::Int minZ = CmpNLE(state.depthClipNegativeOneToOne ? -posW : 0.0f, posZ);
clipFlags |= maxZ & Clipper::CLIP_FAR;
clipFlags |= minZ & Clipper::CLIP_NEAR;
}
SIMD::Float maxPos = As<SIMD::Float>(SIMD::Int(0x7F7FFFFF));
SIMD::Int finiteX = CmpLE(Abs(posX), maxPos);
SIMD::Int finiteY = CmpLE(Abs(posY), maxPos);
SIMD::Int finiteZ = CmpLE(Abs(posZ), maxPos);
SIMD::Int finiteXYZ = finiteX & finiteY & finiteZ;
clipFlags |= finiteXYZ & Clipper::CLIP_FINITE;
}
}
void VertexRoutine::computeCullMask()
{
cullMask = Int(15);
auto it = spirvShader->outputBuiltins.find(spv::BuiltInCullDistance);
if(it != spirvShader->outputBuiltins.end())
{
auto count = spirvShader->getNumOutputCullDistances();
for(uint32_t i = 0; i < count; i++)
{
const auto &distance = routine.getVariable(it->second.Id)[it->second.FirstComponent + i];
auto mask = SignMask(CmpGE(distance, SIMD::Float(0)));
cullMask &= mask;
}
}
}
Vector4f VertexRoutine::readStream(Pointer<Byte> &buffer, UInt &stride, const Stream &stream, Pointer<UInt> &batch,
bool robustBufferAccess, UInt &robustnessSize, Int baseVertex)
{
Vector4f v;
// Because of the following rule in the Vulkan spec, we do not care if a very large negative
// baseVertex would overflow all the way back into a valid region of the index buffer:
// "Out-of-bounds buffer loads will return any of the following values :
// - Values from anywhere within the memory range(s) bound to the buffer (possibly including
// bytes of memory past the end of the buffer, up to the end of the bound range)."
UInt4 offsets = (*Pointer<UInt4>(As<Pointer<UInt4>>(batch)) + As<UInt4>(Int4(baseVertex))) * UInt4(stride);
Pointer<Byte> source0 = buffer + offsets.x;
Pointer<Byte> source1 = buffer + offsets.y;
Pointer<Byte> source2 = buffer + offsets.z;
Pointer<Byte> source3 = buffer + offsets.w;
vk::Format format(stream.format);
UInt4 zero(0);
if(robustBufferAccess)
{
// Prevent integer overflow on the addition below.
offsets = Min(offsets, UInt4(robustnessSize));
// "vertex input attributes are considered out of bounds if the offset of the attribute
// in the bound vertex buffer range plus the size of the attribute is greater than ..."
UInt4 limits = offsets + UInt4(format.bytes());
Pointer<Byte> zeroSource = As<Pointer<Byte>>(&zero);
// TODO(b/141124876): Optimize for wide-vector gather operations.
source0 = IfThenElse(limits.x > robustnessSize, zeroSource, source0);
source1 = IfThenElse(limits.y > robustnessSize, zeroSource, source1);
source2 = IfThenElse(limits.z > robustnessSize, zeroSource, source2);
source3 = IfThenElse(limits.w > robustnessSize, zeroSource, source3);
}
int componentCount = format.componentCount();
bool normalized = !format.isUnnormalizedInteger();
bool isNativeFloatAttrib = (stream.attribType == SpirvShader::ATTRIBTYPE_FLOAT) || normalized;
bool bgra = false;
switch(stream.format)
{
case VK_FORMAT_R32_SFLOAT:
case VK_FORMAT_R32G32_SFLOAT:
case VK_FORMAT_R32G32B32_SFLOAT:
case VK_FORMAT_R32G32B32A32_SFLOAT:
{
if(componentCount == 0)
{
// Null stream, all default components
}
else
{
if(componentCount == 1)
{
v.x.x = *Pointer<Float>(source0);
v.x.y = *Pointer<Float>(source1);
v.x.z = *Pointer<Float>(source2);
v.x.w = *Pointer<Float>(source3);
}
else
{
v.x = *Pointer<Float4>(source0);
v.y = *Pointer<Float4>(source1);
v.z = *Pointer<Float4>(source2);
v.w = *Pointer<Float4>(source3);
transpose4xN(v.x, v.y, v.z, v.w, componentCount);
}
}
}
break;
case VK_FORMAT_B8G8R8A8_UNORM:
bgra = true;
// [[fallthrough]]
case VK_FORMAT_R8_UNORM:
case VK_FORMAT_R8G8_UNORM:
case VK_FORMAT_R8G8B8A8_UNORM:
case VK_FORMAT_A8B8G8R8_UNORM_PACK32:
v.x = Float4(*Pointer<Byte4>(source0));
v.y = Float4(*Pointer<Byte4>(source1));
v.z = Float4(*Pointer<Byte4>(source2));
v.w = Float4(*Pointer<Byte4>(source3));
transpose4xN(v.x, v.y, v.z, v.w, componentCount);
if(componentCount >= 1) v.x *= (1.0f / 0xFF);
if(componentCount >= 2) v.y *= (1.0f / 0xFF);
if(componentCount >= 3) v.z *= (1.0f / 0xFF);
if(componentCount >= 4) v.w *= (1.0f / 0xFF);
break;
case VK_FORMAT_R8_UINT:
case VK_FORMAT_R8G8_UINT:
case VK_FORMAT_R8G8B8A8_UINT:
case VK_FORMAT_A8B8G8R8_UINT_PACK32:
v.x = As<Float4>(Int4(*Pointer<Byte4>(source0)));
v.y = As<Float4>(Int4(*Pointer<Byte4>(source1)));
v.z = As<Float4>(Int4(*Pointer<Byte4>(source2)));
v.w = As<Float4>(Int4(*Pointer<Byte4>(source3)));
transpose4xN(v.x, v.y, v.z, v.w, componentCount);
break;
case VK_FORMAT_R8_SNORM:
case VK_FORMAT_R8G8_SNORM:
case VK_FORMAT_R8G8B8A8_SNORM:
case VK_FORMAT_A8B8G8R8_SNORM_PACK32:
v.x = Float4(*Pointer<SByte4>(source0));
v.y = Float4(*Pointer<SByte4>(source1));
v.z = Float4(*Pointer<SByte4>(source2));
v.w = Float4(*Pointer<SByte4>(source3));
transpose4xN(v.x, v.y, v.z, v.w, componentCount);
if(componentCount >= 1) v.x = Max(v.x * (1.0f / 0x7F), Float4(-1.0f));
if(componentCount >= 2) v.y = Max(v.y * (1.0f / 0x7F), Float4(-1.0f));
if(componentCount >= 3) v.z = Max(v.z * (1.0f / 0x7F), Float4(-1.0f));
if(componentCount >= 4) v.w = Max(v.w * (1.0f / 0x7F), Float4(-1.0f));
break;
case VK_FORMAT_R8_USCALED:
case VK_FORMAT_R8G8_USCALED:
case VK_FORMAT_R8G8B8A8_USCALED:
case VK_FORMAT_A8B8G8R8_USCALED_PACK32:
v.x = Float4(*Pointer<Byte4>(source0));
v.y = Float4(*Pointer<Byte4>(source1));
v.z = Float4(*Pointer<Byte4>(source2));
v.w = Float4(*Pointer<Byte4>(source3));
transpose4xN(v.x, v.y, v.z, v.w, componentCount);
break;
case VK_FORMAT_R8_SSCALED:
case VK_FORMAT_R8G8_SSCALED:
case VK_FORMAT_R8G8B8A8_SSCALED:
case VK_FORMAT_A8B8G8R8_SSCALED_PACK32:
v.x = Float4(*Pointer<SByte4>(source0));
v.y = Float4(*Pointer<SByte4>(source1));
v.z = Float4(*Pointer<SByte4>(source2));
v.w = Float4(*Pointer<SByte4>(source3));
transpose4xN(v.x, v.y, v.z, v.w, componentCount);
break;
case VK_FORMAT_R8_SINT:
case VK_FORMAT_R8G8_SINT:
case VK_FORMAT_R8G8B8A8_SINT:
case VK_FORMAT_A8B8G8R8_SINT_PACK32:
v.x = As<Float4>(Int4(*Pointer<SByte4>(source0)));
v.y = As<Float4>(Int4(*Pointer<SByte4>(source1)));
v.z = As<Float4>(Int4(*Pointer<SByte4>(source2)));
v.w = As<Float4>(Int4(*Pointer<SByte4>(source3)));
transpose4xN(v.x, v.y, v.z, v.w, componentCount);
break;
case VK_FORMAT_R16_UNORM:
case VK_FORMAT_R16G16_UNORM:
case VK_FORMAT_R16G16B16A16_UNORM:
v.x = Float4(*Pointer<UShort4>(source0));
v.y = Float4(*Pointer<UShort4>(source1));
v.z = Float4(*Pointer<UShort4>(source2));
v.w = Float4(*Pointer<UShort4>(source3));
transpose4xN(v.x, v.y, v.z, v.w, componentCount);
if(componentCount >= 1) v.x *= (1.0f / 0xFFFF);
if(componentCount >= 2) v.y *= (1.0f / 0xFFFF);
if(componentCount >= 3) v.z *= (1.0f / 0xFFFF);
if(componentCount >= 4) v.w *= (1.0f / 0xFFFF);
break;
case VK_FORMAT_R16_SNORM:
case VK_FORMAT_R16G16_SNORM:
case VK_FORMAT_R16G16B16A16_SNORM:
v.x = Float4(*Pointer<Short4>(source0));
v.y = Float4(*Pointer<Short4>(source1));
v.z = Float4(*Pointer<Short4>(source2));
v.w = Float4(*Pointer<Short4>(source3));
transpose4xN(v.x, v.y, v.z, v.w, componentCount);
if(componentCount >= 1) v.x = Max(v.x * (1.0f / 0x7FFF), Float4(-1.0f));
if(componentCount >= 2) v.y = Max(v.y * (1.0f / 0x7FFF), Float4(-1.0f));
if(componentCount >= 3) v.z = Max(v.z * (1.0f / 0x7FFF), Float4(-1.0f));
if(componentCount >= 4) v.w = Max(v.w * (1.0f / 0x7FFF), Float4(-1.0f));
break;
case VK_FORMAT_R16_USCALED:
case VK_FORMAT_R16G16_USCALED:
case VK_FORMAT_R16G16B16A16_USCALED:
v.x = Float4(*Pointer<UShort4>(source0));
v.y = Float4(*Pointer<UShort4>(source1));
v.z = Float4(*Pointer<UShort4>(source2));
v.w = Float4(*Pointer<UShort4>(source3));
transpose4xN(v.x, v.y, v.z, v.w, componentCount);
break;
case VK_FORMAT_R16_SSCALED:
case VK_FORMAT_R16G16_SSCALED:
case VK_FORMAT_R16G16B16A16_SSCALED:
v.x = Float4(*Pointer<Short4>(source0));
v.y = Float4(*Pointer<Short4>(source1));
v.z = Float4(*Pointer<Short4>(source2));
v.w = Float4(*Pointer<Short4>(source3));
transpose4xN(v.x, v.y, v.z, v.w, componentCount);
break;
case VK_FORMAT_R16_SINT:
case VK_FORMAT_R16G16_SINT:
case VK_FORMAT_R16G16B16A16_SINT:
v.x = As<Float4>(Int4(*Pointer<Short4>(source0)));
v.y = As<Float4>(Int4(*Pointer<Short4>(source1)));
v.z = As<Float4>(Int4(*Pointer<Short4>(source2)));
v.w = As<Float4>(Int4(*Pointer<Short4>(source3)));
transpose4xN(v.x, v.y, v.z, v.w, componentCount);
break;
case VK_FORMAT_R16_UINT:
case VK_FORMAT_R16G16_UINT:
case VK_FORMAT_R16G16B16A16_UINT:
v.x = As<Float4>(Int4(*Pointer<UShort4>(source0)));
v.y = As<Float4>(Int4(*Pointer<UShort4>(source1)));
v.z = As<Float4>(Int4(*Pointer<UShort4>(source2)));
v.w = As<Float4>(Int4(*Pointer<UShort4>(source3)));
transpose4xN(v.x, v.y, v.z, v.w, componentCount);
break;
case VK_FORMAT_R32_SINT:
case VK_FORMAT_R32G32_SINT:
case VK_FORMAT_R32G32B32_SINT:
case VK_FORMAT_R32G32B32A32_SINT:
v.x = *Pointer<Float4>(source0);
v.y = *Pointer<Float4>(source1);
v.z = *Pointer<Float4>(source2);
v.w = *Pointer<Float4>(source3);
transpose4xN(v.x, v.y, v.z, v.w, componentCount);
break;
case VK_FORMAT_R32_UINT:
case VK_FORMAT_R32G32_UINT:
case VK_FORMAT_R32G32B32_UINT:
case VK_FORMAT_R32G32B32A32_UINT:
v.x = *Pointer<Float4>(source0);
v.y = *Pointer<Float4>(source1);
v.z = *Pointer<Float4>(source2);
v.w = *Pointer<Float4>(source3);
transpose4xN(v.x, v.y, v.z, v.w, componentCount);
break;
case VK_FORMAT_R16_SFLOAT:
case VK_FORMAT_R16G16_SFLOAT:
case VK_FORMAT_R16G16B16A16_SFLOAT:
{
if(componentCount >= 1)
{
UShort x0 = *Pointer<UShort>(source0 + 0);
UShort x1 = *Pointer<UShort>(source1 + 0);
UShort x2 = *Pointer<UShort>(source2 + 0);
UShort x3 = *Pointer<UShort>(source3 + 0);
v.x.x = *Pointer<Float>(constants + OFFSET(Constants, half2float) + Int(x0) * 4);
v.x.y = *Pointer<Float>(constants + OFFSET(Constants, half2float) + Int(x1) * 4);
v.x.z = *Pointer<Float>(constants + OFFSET(Constants, half2float) + Int(x2) * 4);
v.x.w = *Pointer<Float>(constants + OFFSET(Constants, half2float) + Int(x3) * 4);
}
if(componentCount >= 2)
{
UShort y0 = *Pointer<UShort>(source0 + 2);
UShort y1 = *Pointer<UShort>(source1 + 2);
UShort y2 = *Pointer<UShort>(source2 + 2);
UShort y3 = *Pointer<UShort>(source3 + 2);
v.y.x = *Pointer<Float>(constants + OFFSET(Constants, half2float) + Int(y0) * 4);
v.y.y = *Pointer<Float>(constants + OFFSET(Constants, half2float) + Int(y1) * 4);
v.y.z = *Pointer<Float>(constants + OFFSET(Constants, half2float) + Int(y2) * 4);
v.y.w = *Pointer<Float>(constants + OFFSET(Constants, half2float) + Int(y3) * 4);
}
if(componentCount >= 3)
{
UShort z0 = *Pointer<UShort>(source0 + 4);
UShort z1 = *Pointer<UShort>(source1 + 4);
UShort z2 = *Pointer<UShort>(source2 + 4);
UShort z3 = *Pointer<UShort>(source3 + 4);
v.z.x = *Pointer<Float>(constants + OFFSET(Constants, half2float) + Int(z0) * 4);
v.z.y = *Pointer<Float>(constants + OFFSET(Constants, half2float) + Int(z1) * 4);
v.z.z = *Pointer<Float>(constants + OFFSET(Constants, half2float) + Int(z2) * 4);
v.z.w = *Pointer<Float>(constants + OFFSET(Constants, half2float) + Int(z3) * 4);
}
if(componentCount >= 4)
{
UShort w0 = *Pointer<UShort>(source0 + 6);
UShort w1 = *Pointer<UShort>(source1 + 6);
UShort w2 = *Pointer<UShort>(source2 + 6);
UShort w3 = *Pointer<UShort>(source3 + 6);
v.w.x = *Pointer<Float>(constants + OFFSET(Constants, half2float) + Int(w0) * 4);
v.w.y = *Pointer<Float>(constants + OFFSET(Constants, half2float) + Int(w1) * 4);
v.w.z = *Pointer<Float>(constants + OFFSET(Constants, half2float) + Int(w2) * 4);
v.w.w = *Pointer<Float>(constants + OFFSET(Constants, half2float) + Int(w3) * 4);
}
}
break;
case VK_FORMAT_A2R10G10B10_SNORM_PACK32:
bgra = true;
// [[fallthrough]]
case VK_FORMAT_A2B10G10R10_SNORM_PACK32:
{
Int4 src;
src = Insert(src, *Pointer<Int>(source0), 0);
src = Insert(src, *Pointer<Int>(source1), 1);
src = Insert(src, *Pointer<Int>(source2), 2);
src = Insert(src, *Pointer<Int>(source3), 3);
v.x = Float4((src << 22) >> 22);
v.y = Float4((src << 12) >> 22);
v.z = Float4((src << 02) >> 22);
v.w = Float4(src >> 30);
v.x = Max(v.x * Float4(1.0f / 0x1FF), Float4(-1.0f));
v.y = Max(v.y * Float4(1.0f / 0x1FF), Float4(-1.0f));
v.z = Max(v.z * Float4(1.0f / 0x1FF), Float4(-1.0f));
v.w = Max(v.w, Float4(-1.0f));
}
break;
case VK_FORMAT_A2R10G10B10_SINT_PACK32:
bgra = true;
// [[fallthrough]]
case VK_FORMAT_A2B10G10R10_SINT_PACK32:
{
Int4 src;
src = Insert(src, *Pointer<Int>(source0), 0);
src = Insert(src, *Pointer<Int>(source1), 1);
src = Insert(src, *Pointer<Int>(source2), 2);
src = Insert(src, *Pointer<Int>(source3), 3);
v.x = As<Float4>((src << 22) >> 22);
v.y = As<Float4>((src << 12) >> 22);
v.z = As<Float4>((src << 02) >> 22);
v.w = As<Float4>(src >> 30);
}
break;
case VK_FORMAT_A2R10G10B10_UNORM_PACK32:
bgra = true;
// [[fallthrough]]
case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
{
Int4 src;
src = Insert(src, *Pointer<Int>(source0), 0);
src = Insert(src, *Pointer<Int>(source1), 1);
src = Insert(src, *Pointer<Int>(source2), 2);
src = Insert(src, *Pointer<Int>(source3), 3);
v.x = Float4(src & Int4(0x3FF));
v.y = Float4((src >> 10) & Int4(0x3FF));
v.z = Float4((src >> 20) & Int4(0x3FF));
v.w = Float4((src >> 30) & Int4(0x3));
v.x *= Float4(1.0f / 0x3FF);
v.y *= Float4(1.0f / 0x3FF);
v.z *= Float4(1.0f / 0x3FF);
v.w *= Float4(1.0f / 0x3);
}
break;
case VK_FORMAT_A2R10G10B10_UINT_PACK32:
bgra = true;
// [[fallthrough]]
case VK_FORMAT_A2B10G10R10_UINT_PACK32:
{
Int4 src;
src = Insert(src, *Pointer<Int>(source0), 0);
src = Insert(src, *Pointer<Int>(source1), 1);
src = Insert(src, *Pointer<Int>(source2), 2);
src = Insert(src, *Pointer<Int>(source3), 3);
v.x = As<Float4>(src & Int4(0x3FF));
v.y = As<Float4>((src >> 10) & Int4(0x3FF));
v.z = As<Float4>((src >> 20) & Int4(0x3FF));
v.w = As<Float4>((src >> 30) & Int4(0x3));
}
break;
default:
UNSUPPORTED("stream.format %d", int(stream.format));
}
if(bgra)
{
// Swap red and blue
Float4 t = v.x;
v.x = v.z;
v.z = t;
}
if(componentCount < 1) v.x = Float4(0.0f);
if(componentCount < 2) v.y = Float4(0.0f);
if(componentCount < 3) v.z = Float4(0.0f);
if(componentCount < 4) v.w = isNativeFloatAttrib ? As<Float4>(Float4(1.0f)) : As<Float4>(Int4(1));
return v;
}
void VertexRoutine::writeCache(Pointer<Byte> &vertexCache, Pointer<UInt> &tagCache, Pointer<UInt> &batch)
{
ASSERT(SIMD::Width == 4);
UInt index0 = batch[0];
UInt index1 = batch[1];
UInt index2 = batch[2];
UInt index3 = batch[3];
UInt cacheIndex0 = index0 & VertexCache::TAG_MASK;
UInt cacheIndex1 = index1 & VertexCache::TAG_MASK;
UInt cacheIndex2 = index2 & VertexCache::TAG_MASK;
UInt cacheIndex3 = index3 & VertexCache::TAG_MASK;
// We processed a SIMD group of vertices, with the first one being the one that missed the cache tag check.
// Write them out in reverse order here and below to ensure the first one is now guaranteed to be in the cache.
tagCache[cacheIndex3] = index3;
tagCache[cacheIndex2] = index2;
tagCache[cacheIndex1] = index1;
tagCache[cacheIndex0] = index0;
auto it = spirvShader->outputBuiltins.find(spv::BuiltInPosition);
if(it != spirvShader->outputBuiltins.end())
{
assert(it->second.SizeInComponents == 4);
auto &position = routine.getVariable(it->second.Id);
SIMD::Float4 pos;
pos.x = position[it->second.FirstComponent + 0];
pos.y = position[it->second.FirstComponent + 1];
pos.z = position[it->second.FirstComponent + 2];
pos.w = position[it->second.FirstComponent + 3];
// Projection and viewport transform.
SIMD::Float w = As<SIMD::Float>(As<SIMD::Int>(pos.w) | (As<SIMD::Int>(CmpEQ(pos.w, 0.0f)) & As<SIMD::Int>(SIMD::Float(1.0f))));
SIMD::Float rhw = 1.0f / w;
SIMD::Float4 proj;
proj.x = As<Float4>(RoundIntClamped(SIMD::Float(*Pointer<Float>(data + OFFSET(DrawData, X0xF))) + pos.x * rhw * SIMD::Float(*Pointer<Float>(data + OFFSET(DrawData, WxF)))));
proj.y = As<Float4>(RoundIntClamped(SIMD::Float(*Pointer<Float>(data + OFFSET(DrawData, Y0xF))) + pos.y * rhw * SIMD::Float(*Pointer<Float>(data + OFFSET(DrawData, HxF)))));
proj.z = pos.z * rhw;
proj.w = rhw;
Float4 pos_x = Extract128(pos.x, 0);
Float4 pos_y = Extract128(pos.y, 0);
Float4 pos_z = Extract128(pos.z, 0);
Float4 pos_w = Extract128(pos.w, 0);
transpose4x4(pos_x, pos_y, pos_z, pos_w);
*Pointer<Float4>(vertexCache + sizeof(Vertex) * cacheIndex3 + OFFSET(Vertex, position), 16) = pos_w;
*Pointer<Float4>(vertexCache + sizeof(Vertex) * cacheIndex2 + OFFSET(Vertex, position), 16) = pos_z;
*Pointer<Float4>(vertexCache + sizeof(Vertex) * cacheIndex1 + OFFSET(Vertex, position), 16) = pos_y;
*Pointer<Float4>(vertexCache + sizeof(Vertex) * cacheIndex0 + OFFSET(Vertex, position), 16) = pos_x;
*Pointer<Int>(vertexCache + sizeof(Vertex) * cacheIndex3 + OFFSET(Vertex, clipFlags)) = Extract(clipFlags, 3);
*Pointer<Int>(vertexCache + sizeof(Vertex) * cacheIndex2 + OFFSET(Vertex, clipFlags)) = Extract(clipFlags, 2);
*Pointer<Int>(vertexCache + sizeof(Vertex) * cacheIndex1 + OFFSET(Vertex, clipFlags)) = Extract(clipFlags, 1);
*Pointer<Int>(vertexCache + sizeof(Vertex) * cacheIndex0 + OFFSET(Vertex, clipFlags)) = Extract(clipFlags, 0);
Float4 proj_x = Extract128(proj.x, 0);
Float4 proj_y = Extract128(proj.y, 0);
Float4 proj_z = Extract128(proj.z, 0);
Float4 proj_w = Extract128(proj.w, 0);
transpose4x4(proj_x, proj_y, proj_z, proj_w);
*Pointer<Float4>(vertexCache + sizeof(Vertex) * cacheIndex3 + OFFSET(Vertex, projected), 16) = proj_w;
*Pointer<Float4>(vertexCache + sizeof(Vertex) * cacheIndex2 + OFFSET(Vertex, projected), 16) = proj_z;
*Pointer<Float4>(vertexCache + sizeof(Vertex) * cacheIndex1 + OFFSET(Vertex, projected), 16) = proj_y;
*Pointer<Float4>(vertexCache + sizeof(Vertex) * cacheIndex0 + OFFSET(Vertex, projected), 16) = proj_x;
}
it = spirvShader->outputBuiltins.find(spv::BuiltInPointSize);
if(it != spirvShader->outputBuiltins.end())
{
ASSERT(it->second.SizeInComponents == 1);
auto psize = routine.getVariable(it->second.Id)[it->second.FirstComponent];
*Pointer<Float>(vertexCache + sizeof(Vertex) * cacheIndex3 + OFFSET(Vertex, pointSize)) = Extract(psize, 3);
*Pointer<Float>(vertexCache + sizeof(Vertex) * cacheIndex2 + OFFSET(Vertex, pointSize)) = Extract(psize, 2);
*Pointer<Float>(vertexCache + sizeof(Vertex) * cacheIndex1 + OFFSET(Vertex, pointSize)) = Extract(psize, 1);
*Pointer<Float>(vertexCache + sizeof(Vertex) * cacheIndex0 + OFFSET(Vertex, pointSize)) = Extract(psize, 0);
}
it = spirvShader->outputBuiltins.find(spv::BuiltInClipDistance);
if(it != spirvShader->outputBuiltins.end())
{
auto count = spirvShader->getNumOutputClipDistances();
for(unsigned int i = 0; i < count; i++)
{
auto dist = routine.getVariable(it->second.Id)[it->second.FirstComponent + i];
*Pointer<Float>(vertexCache + sizeof(Vertex) * cacheIndex3 + OFFSET(Vertex, clipDistance[i])) = Extract(dist, 3);
*Pointer<Float>(vertexCache + sizeof(Vertex) * cacheIndex2 + OFFSET(Vertex, clipDistance[i])) = Extract(dist, 2);
*Pointer<Float>(vertexCache + sizeof(Vertex) * cacheIndex1 + OFFSET(Vertex, clipDistance[i])) = Extract(dist, 1);
*Pointer<Float>(vertexCache + sizeof(Vertex) * cacheIndex0 + OFFSET(Vertex, clipDistance[i])) = Extract(dist, 0);
}
}
it = spirvShader->outputBuiltins.find(spv::BuiltInCullDistance);
if(it != spirvShader->outputBuiltins.end())
{
auto count = spirvShader->getNumOutputCullDistances();
for(unsigned int i = 0; i < count; i++)
{
auto dist = routine.getVariable(it->second.Id)[it->second.FirstComponent + i];
*Pointer<Float>(vertexCache + sizeof(Vertex) * cacheIndex3 + OFFSET(Vertex, cullDistance[i])) = Extract(dist, 3);
*Pointer<Float>(vertexCache + sizeof(Vertex) * cacheIndex2 + OFFSET(Vertex, cullDistance[i])) = Extract(dist, 2);
*Pointer<Float>(vertexCache + sizeof(Vertex) * cacheIndex1 + OFFSET(Vertex, cullDistance[i])) = Extract(dist, 1);
*Pointer<Float>(vertexCache + sizeof(Vertex) * cacheIndex0 + OFFSET(Vertex, cullDistance[i])) = Extract(dist, 0);
}
}
*Pointer<Int>(vertexCache + sizeof(Vertex) * cacheIndex3 + OFFSET(Vertex, cullMask)) = -((cullMask >> 3) & 1);
*Pointer<Int>(vertexCache + sizeof(Vertex) * cacheIndex2 + OFFSET(Vertex, cullMask)) = -((cullMask >> 2) & 1);
*Pointer<Int>(vertexCache + sizeof(Vertex) * cacheIndex1 + OFFSET(Vertex, cullMask)) = -((cullMask >> 1) & 1);
*Pointer<Int>(vertexCache + sizeof(Vertex) * cacheIndex0 + OFFSET(Vertex, cullMask)) = -((cullMask >> 0) & 1);
for(int i = 0; i < MAX_INTERFACE_COMPONENTS; i += 4)
{
if(spirvShader->outputs[i + 0].Type != SpirvShader::ATTRIBTYPE_UNUSED ||
spirvShader->outputs[i + 1].Type != SpirvShader::ATTRIBTYPE_UNUSED ||
spirvShader->outputs[i + 2].Type != SpirvShader::ATTRIBTYPE_UNUSED ||
spirvShader->outputs[i + 3].Type != SpirvShader::ATTRIBTYPE_UNUSED)
{
Vector4f v;
v.x = Extract128(routine.outputs[i + 0], 0);
v.y = Extract128(routine.outputs[i + 1], 0);
v.z = Extract128(routine.outputs[i + 2], 0);
v.w = Extract128(routine.outputs[i + 3], 0);
transpose4x4(v.x, v.y, v.z, v.w);
*Pointer<Float4>(vertexCache + sizeof(Vertex) * cacheIndex3 + OFFSET(Vertex, v[i]), 16) = v.w;
*Pointer<Float4>(vertexCache + sizeof(Vertex) * cacheIndex2 + OFFSET(Vertex, v[i]), 16) = v.z;
*Pointer<Float4>(vertexCache + sizeof(Vertex) * cacheIndex1 + OFFSET(Vertex, v[i]), 16) = v.y;
*Pointer<Float4>(vertexCache + sizeof(Vertex) * cacheIndex0 + OFFSET(Vertex, v[i]), 16) = v.x;
}
}
}
void VertexRoutine::writeVertex(const Pointer<Byte> &vertex, Pointer<Byte> &cacheEntry)
{
*Pointer<Int4>(vertex + OFFSET(Vertex, position)) = *Pointer<Int4>(cacheEntry + OFFSET(Vertex, position));
*Pointer<Int>(vertex + OFFSET(Vertex, pointSize)) = *Pointer<Int>(cacheEntry + OFFSET(Vertex, pointSize));
*Pointer<Int>(vertex + OFFSET(Vertex, clipFlags)) = *Pointer<Int>(cacheEntry + OFFSET(Vertex, clipFlags));
*Pointer<Int>(vertex + OFFSET(Vertex, cullMask)) = *Pointer<Int>(cacheEntry + OFFSET(Vertex, cullMask));
*Pointer<Int4>(vertex + OFFSET(Vertex, projected)) = *Pointer<Int4>(cacheEntry + OFFSET(Vertex, projected));
for(int i = 0; i < MAX_INTERFACE_COMPONENTS; i++)
{
if(spirvShader->outputs[i].Type != SpirvShader::ATTRIBTYPE_UNUSED)
{
*Pointer<Int>(vertex + OFFSET(Vertex, v[i]), 4) = *Pointer<Int>(cacheEntry + OFFSET(Vertex, v[i]), 4);
}
}
for(unsigned int i = 0; i < spirvShader->getNumOutputClipDistances(); i++)
{
*Pointer<Float>(vertex + OFFSET(Vertex, clipDistance[i]), 4) = *Pointer<Float>(cacheEntry + OFFSET(Vertex, clipDistance[i]), 4);
}
for(unsigned int i = 0; i < spirvShader->getNumOutputCullDistances(); i++)
{
*Pointer<Float>(vertex + OFFSET(Vertex, cullDistance[i]), 4) = *Pointer<Float>(cacheEntry + OFFSET(Vertex, cullDistance[i]), 4);
}
}
} // namespace sw