| //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the implementation of the scalar evolution analysis |
| // engine, which is used primarily to analyze expressions involving induction |
| // variables in loops. |
| // |
| // There are several aspects to this library. First is the representation of |
| // scalar expressions, which are represented as subclasses of the SCEV class. |
| // These classes are used to represent certain types of subexpressions that we |
| // can handle. We only create one SCEV of a particular shape, so |
| // pointer-comparisons for equality are legal. |
| // |
| // One important aspect of the SCEV objects is that they are never cyclic, even |
| // if there is a cycle in the dataflow for an expression (ie, a PHI node). If |
| // the PHI node is one of the idioms that we can represent (e.g., a polynomial |
| // recurrence) then we represent it directly as a recurrence node, otherwise we |
| // represent it as a SCEVUnknown node. |
| // |
| // In addition to being able to represent expressions of various types, we also |
| // have folders that are used to build the *canonical* representation for a |
| // particular expression. These folders are capable of using a variety of |
| // rewrite rules to simplify the expressions. |
| // |
| // Once the folders are defined, we can implement the more interesting |
| // higher-level code, such as the code that recognizes PHI nodes of various |
| // types, computes the execution count of a loop, etc. |
| // |
| // TODO: We should use these routines and value representations to implement |
| // dependence analysis! |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // There are several good references for the techniques used in this analysis. |
| // |
| // Chains of recurrences -- a method to expedite the evaluation |
| // of closed-form functions |
| // Olaf Bachmann, Paul S. Wang, Eugene V. Zima |
| // |
| // On computational properties of chains of recurrences |
| // Eugene V. Zima |
| // |
| // Symbolic Evaluation of Chains of Recurrences for Loop Optimization |
| // Robert A. van Engelen |
| // |
| // Efficient Symbolic Analysis for Optimizing Compilers |
| // Robert A. van Engelen |
| // |
| // Using the chains of recurrences algebra for data dependence testing and |
| // induction variable substitution |
| // MS Thesis, Johnie Birch |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/EquivalenceClasses.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/ScopeExit.h" |
| #include "llvm/ADT/Sequence.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/InstIterator.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/SaveAndRestore.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <climits> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstdlib> |
| #include <map> |
| #include <memory> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "scalar-evolution" |
| |
| STATISTIC(NumArrayLenItCounts, |
| "Number of trip counts computed with array length"); |
| STATISTIC(NumTripCountsComputed, |
| "Number of loops with predictable loop counts"); |
| STATISTIC(NumTripCountsNotComputed, |
| "Number of loops without predictable loop counts"); |
| STATISTIC(NumBruteForceTripCountsComputed, |
| "Number of loops with trip counts computed by force"); |
| |
| static cl::opt<unsigned> |
| MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, |
| cl::ZeroOrMore, |
| cl::desc("Maximum number of iterations SCEV will " |
| "symbolically execute a constant " |
| "derived loop"), |
| cl::init(100)); |
| |
| // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. |
| static cl::opt<bool> VerifySCEV( |
| "verify-scev", cl::Hidden, |
| cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); |
| static cl::opt<bool> VerifySCEVStrict( |
| "verify-scev-strict", cl::Hidden, |
| cl::desc("Enable stricter verification with -verify-scev is passed")); |
| static cl::opt<bool> |
| VerifySCEVMap("verify-scev-maps", cl::Hidden, |
| cl::desc("Verify no dangling value in ScalarEvolution's " |
| "ExprValueMap (slow)")); |
| |
| static cl::opt<bool> VerifyIR( |
| "scev-verify-ir", cl::Hidden, |
| cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), |
| cl::init(false)); |
| |
| static cl::opt<unsigned> MulOpsInlineThreshold( |
| "scev-mulops-inline-threshold", cl::Hidden, |
| cl::desc("Threshold for inlining multiplication operands into a SCEV"), |
| cl::init(32)); |
| |
| static cl::opt<unsigned> AddOpsInlineThreshold( |
| "scev-addops-inline-threshold", cl::Hidden, |
| cl::desc("Threshold for inlining addition operands into a SCEV"), |
| cl::init(500)); |
| |
| static cl::opt<unsigned> MaxSCEVCompareDepth( |
| "scalar-evolution-max-scev-compare-depth", cl::Hidden, |
| cl::desc("Maximum depth of recursive SCEV complexity comparisons"), |
| cl::init(32)); |
| |
| static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( |
| "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, |
| cl::desc("Maximum depth of recursive SCEV operations implication analysis"), |
| cl::init(2)); |
| |
| static cl::opt<unsigned> MaxValueCompareDepth( |
| "scalar-evolution-max-value-compare-depth", cl::Hidden, |
| cl::desc("Maximum depth of recursive value complexity comparisons"), |
| cl::init(2)); |
| |
| static cl::opt<unsigned> |
| MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, |
| cl::desc("Maximum depth of recursive arithmetics"), |
| cl::init(32)); |
| |
| static cl::opt<unsigned> MaxConstantEvolvingDepth( |
| "scalar-evolution-max-constant-evolving-depth", cl::Hidden, |
| cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); |
| |
| static cl::opt<unsigned> |
| MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, |
| cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), |
| cl::init(8)); |
| |
| static cl::opt<unsigned> |
| MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, |
| cl::desc("Max coefficients in AddRec during evolving"), |
| cl::init(8)); |
| |
| static cl::opt<unsigned> |
| HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, |
| cl::desc("Size of the expression which is considered huge"), |
| cl::init(4096)); |
| |
| static cl::opt<bool> |
| ClassifyExpressions("scalar-evolution-classify-expressions", |
| cl::Hidden, cl::init(true), |
| cl::desc("When printing analysis, include information on every instruction")); |
| |
| |
| //===----------------------------------------------------------------------===// |
| // SCEV class definitions |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // Implementation of the SCEV class. |
| // |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void SCEV::dump() const { |
| print(dbgs()); |
| dbgs() << '\n'; |
| } |
| #endif |
| |
| void SCEV::print(raw_ostream &OS) const { |
| switch (static_cast<SCEVTypes>(getSCEVType())) { |
| case scConstant: |
| cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); |
| return; |
| case scTruncate: { |
| const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); |
| const SCEV *Op = Trunc->getOperand(); |
| OS << "(trunc " << *Op->getType() << " " << *Op << " to " |
| << *Trunc->getType() << ")"; |
| return; |
| } |
| case scZeroExtend: { |
| const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); |
| const SCEV *Op = ZExt->getOperand(); |
| OS << "(zext " << *Op->getType() << " " << *Op << " to " |
| << *ZExt->getType() << ")"; |
| return; |
| } |
| case scSignExtend: { |
| const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); |
| const SCEV *Op = SExt->getOperand(); |
| OS << "(sext " << *Op->getType() << " " << *Op << " to " |
| << *SExt->getType() << ")"; |
| return; |
| } |
| case scAddRecExpr: { |
| const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); |
| OS << "{" << *AR->getOperand(0); |
| for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) |
| OS << ",+," << *AR->getOperand(i); |
| OS << "}<"; |
| if (AR->hasNoUnsignedWrap()) |
| OS << "nuw><"; |
| if (AR->hasNoSignedWrap()) |
| OS << "nsw><"; |
| if (AR->hasNoSelfWrap() && |
| !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) |
| OS << "nw><"; |
| AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); |
| OS << ">"; |
| return; |
| } |
| case scAddExpr: |
| case scMulExpr: |
| case scUMaxExpr: |
| case scSMaxExpr: |
| case scUMinExpr: |
| case scSMinExpr: { |
| const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); |
| const char *OpStr = nullptr; |
| switch (NAry->getSCEVType()) { |
| case scAddExpr: OpStr = " + "; break; |
| case scMulExpr: OpStr = " * "; break; |
| case scUMaxExpr: OpStr = " umax "; break; |
| case scSMaxExpr: OpStr = " smax "; break; |
| case scUMinExpr: |
| OpStr = " umin "; |
| break; |
| case scSMinExpr: |
| OpStr = " smin "; |
| break; |
| } |
| OS << "("; |
| for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); |
| I != E; ++I) { |
| OS << **I; |
| if (std::next(I) != E) |
| OS << OpStr; |
| } |
| OS << ")"; |
| switch (NAry->getSCEVType()) { |
| case scAddExpr: |
| case scMulExpr: |
| if (NAry->hasNoUnsignedWrap()) |
| OS << "<nuw>"; |
| if (NAry->hasNoSignedWrap()) |
| OS << "<nsw>"; |
| } |
| return; |
| } |
| case scUDivExpr: { |
| const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); |
| OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; |
| return; |
| } |
| case scUnknown: { |
| const SCEVUnknown *U = cast<SCEVUnknown>(this); |
| Type *AllocTy; |
| if (U->isSizeOf(AllocTy)) { |
| OS << "sizeof(" << *AllocTy << ")"; |
| return; |
| } |
| if (U->isAlignOf(AllocTy)) { |
| OS << "alignof(" << *AllocTy << ")"; |
| return; |
| } |
| |
| Type *CTy; |
| Constant *FieldNo; |
| if (U->isOffsetOf(CTy, FieldNo)) { |
| OS << "offsetof(" << *CTy << ", "; |
| FieldNo->printAsOperand(OS, false); |
| OS << ")"; |
| return; |
| } |
| |
| // Otherwise just print it normally. |
| U->getValue()->printAsOperand(OS, false); |
| return; |
| } |
| case scCouldNotCompute: |
| OS << "***COULDNOTCOMPUTE***"; |
| return; |
| } |
| llvm_unreachable("Unknown SCEV kind!"); |
| } |
| |
| Type *SCEV::getType() const { |
| switch (static_cast<SCEVTypes>(getSCEVType())) { |
| case scConstant: |
| return cast<SCEVConstant>(this)->getType(); |
| case scTruncate: |
| case scZeroExtend: |
| case scSignExtend: |
| return cast<SCEVCastExpr>(this)->getType(); |
| case scAddRecExpr: |
| case scMulExpr: |
| case scUMaxExpr: |
| case scSMaxExpr: |
| case scUMinExpr: |
| case scSMinExpr: |
| return cast<SCEVNAryExpr>(this)->getType(); |
| case scAddExpr: |
| return cast<SCEVAddExpr>(this)->getType(); |
| case scUDivExpr: |
| return cast<SCEVUDivExpr>(this)->getType(); |
| case scUnknown: |
| return cast<SCEVUnknown>(this)->getType(); |
| case scCouldNotCompute: |
| llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); |
| } |
| llvm_unreachable("Unknown SCEV kind!"); |
| } |
| |
| bool SCEV::isZero() const { |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) |
| return SC->getValue()->isZero(); |
| return false; |
| } |
| |
| bool SCEV::isOne() const { |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) |
| return SC->getValue()->isOne(); |
| return false; |
| } |
| |
| bool SCEV::isAllOnesValue() const { |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) |
| return SC->getValue()->isMinusOne(); |
| return false; |
| } |
| |
| bool SCEV::isNonConstantNegative() const { |
| const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); |
| if (!Mul) return false; |
| |
| // If there is a constant factor, it will be first. |
| const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); |
| if (!SC) return false; |
| |
| // Return true if the value is negative, this matches things like (-42 * V). |
| return SC->getAPInt().isNegative(); |
| } |
| |
| SCEVCouldNotCompute::SCEVCouldNotCompute() : |
| SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} |
| |
| bool SCEVCouldNotCompute::classof(const SCEV *S) { |
| return S->getSCEVType() == scCouldNotCompute; |
| } |
| |
| const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { |
| FoldingSetNodeID ID; |
| ID.AddInteger(scConstant); |
| ID.AddPointer(V); |
| void *IP = nullptr; |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); |
| UniqueSCEVs.InsertNode(S, IP); |
| return S; |
| } |
| |
| const SCEV *ScalarEvolution::getConstant(const APInt &Val) { |
| return getConstant(ConstantInt::get(getContext(), Val)); |
| } |
| |
| const SCEV * |
| ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { |
| IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); |
| return getConstant(ConstantInt::get(ITy, V, isSigned)); |
| } |
| |
| SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, |
| unsigned SCEVTy, const SCEV *op, Type *ty) |
| : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {} |
| |
| SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, |
| const SCEV *op, Type *ty) |
| : SCEVCastExpr(ID, scTruncate, op, ty) { |
| assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
| "Cannot truncate non-integer value!"); |
| } |
| |
| SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, |
| const SCEV *op, Type *ty) |
| : SCEVCastExpr(ID, scZeroExtend, op, ty) { |
| assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
| "Cannot zero extend non-integer value!"); |
| } |
| |
| SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, |
| const SCEV *op, Type *ty) |
| : SCEVCastExpr(ID, scSignExtend, op, ty) { |
| assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
| "Cannot sign extend non-integer value!"); |
| } |
| |
| void SCEVUnknown::deleted() { |
| // Clear this SCEVUnknown from various maps. |
| SE->forgetMemoizedResults(this); |
| |
| // Remove this SCEVUnknown from the uniquing map. |
| SE->UniqueSCEVs.RemoveNode(this); |
| |
| // Release the value. |
| setValPtr(nullptr); |
| } |
| |
| void SCEVUnknown::allUsesReplacedWith(Value *New) { |
| // Remove this SCEVUnknown from the uniquing map. |
| SE->UniqueSCEVs.RemoveNode(this); |
| |
| // Update this SCEVUnknown to point to the new value. This is needed |
| // because there may still be outstanding SCEVs which still point to |
| // this SCEVUnknown. |
| setValPtr(New); |
| } |
| |
| bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { |
| if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) |
| if (VCE->getOpcode() == Instruction::PtrToInt) |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) |
| if (CE->getOpcode() == Instruction::GetElementPtr && |
| CE->getOperand(0)->isNullValue() && |
| CE->getNumOperands() == 2) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) |
| if (CI->isOne()) { |
| AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) |
| ->getElementType(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { |
| if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) |
| if (VCE->getOpcode() == Instruction::PtrToInt) |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) |
| if (CE->getOpcode() == Instruction::GetElementPtr && |
| CE->getOperand(0)->isNullValue()) { |
| Type *Ty = |
| cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); |
| if (StructType *STy = dyn_cast<StructType>(Ty)) |
| if (!STy->isPacked() && |
| CE->getNumOperands() == 3 && |
| CE->getOperand(1)->isNullValue()) { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) |
| if (CI->isOne() && |
| STy->getNumElements() == 2 && |
| STy->getElementType(0)->isIntegerTy(1)) { |
| AllocTy = STy->getElementType(1); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { |
| if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) |
| if (VCE->getOpcode() == Instruction::PtrToInt) |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) |
| if (CE->getOpcode() == Instruction::GetElementPtr && |
| CE->getNumOperands() == 3 && |
| CE->getOperand(0)->isNullValue() && |
| CE->getOperand(1)->isNullValue()) { |
| Type *Ty = |
| cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); |
| // Ignore vector types here so that ScalarEvolutionExpander doesn't |
| // emit getelementptrs that index into vectors. |
| if (Ty->isStructTy() || Ty->isArrayTy()) { |
| CTy = Ty; |
| FieldNo = CE->getOperand(2); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SCEV Utilities |
| //===----------------------------------------------------------------------===// |
| |
| /// Compare the two values \p LV and \p RV in terms of their "complexity" where |
| /// "complexity" is a partial (and somewhat ad-hoc) relation used to order |
| /// operands in SCEV expressions. \p EqCache is a set of pairs of values that |
| /// have been previously deemed to be "equally complex" by this routine. It is |
| /// intended to avoid exponential time complexity in cases like: |
| /// |
| /// %a = f(%x, %y) |
| /// %b = f(%a, %a) |
| /// %c = f(%b, %b) |
| /// |
| /// %d = f(%x, %y) |
| /// %e = f(%d, %d) |
| /// %f = f(%e, %e) |
| /// |
| /// CompareValueComplexity(%f, %c) |
| /// |
| /// Since we do not continue running this routine on expression trees once we |
| /// have seen unequal values, there is no need to track them in the cache. |
| static int |
| CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, |
| const LoopInfo *const LI, Value *LV, Value *RV, |
| unsigned Depth) { |
| if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) |
| return 0; |
| |
| // Order pointer values after integer values. This helps SCEVExpander form |
| // GEPs. |
| bool LIsPointer = LV->getType()->isPointerTy(), |
| RIsPointer = RV->getType()->isPointerTy(); |
| if (LIsPointer != RIsPointer) |
| return (int)LIsPointer - (int)RIsPointer; |
| |
| // Compare getValueID values. |
| unsigned LID = LV->getValueID(), RID = RV->getValueID(); |
| if (LID != RID) |
| return (int)LID - (int)RID; |
| |
| // Sort arguments by their position. |
| if (const auto *LA = dyn_cast<Argument>(LV)) { |
| const auto *RA = cast<Argument>(RV); |
| unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); |
| return (int)LArgNo - (int)RArgNo; |
| } |
| |
| if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { |
| const auto *RGV = cast<GlobalValue>(RV); |
| |
| const auto IsGVNameSemantic = [&](const GlobalValue *GV) { |
| auto LT = GV->getLinkage(); |
| return !(GlobalValue::isPrivateLinkage(LT) || |
| GlobalValue::isInternalLinkage(LT)); |
| }; |
| |
| // Use the names to distinguish the two values, but only if the |
| // names are semantically important. |
| if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) |
| return LGV->getName().compare(RGV->getName()); |
| } |
| |
| // For instructions, compare their loop depth, and their operand count. This |
| // is pretty loose. |
| if (const auto *LInst = dyn_cast<Instruction>(LV)) { |
| const auto *RInst = cast<Instruction>(RV); |
| |
| // Compare loop depths. |
| const BasicBlock *LParent = LInst->getParent(), |
| *RParent = RInst->getParent(); |
| if (LParent != RParent) { |
| unsigned LDepth = LI->getLoopDepth(LParent), |
| RDepth = LI->getLoopDepth(RParent); |
| if (LDepth != RDepth) |
| return (int)LDepth - (int)RDepth; |
| } |
| |
| // Compare the number of operands. |
| unsigned LNumOps = LInst->getNumOperands(), |
| RNumOps = RInst->getNumOperands(); |
| if (LNumOps != RNumOps) |
| return (int)LNumOps - (int)RNumOps; |
| |
| for (unsigned Idx : seq(0u, LNumOps)) { |
| int Result = |
| CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), |
| RInst->getOperand(Idx), Depth + 1); |
| if (Result != 0) |
| return Result; |
| } |
| } |
| |
| EqCacheValue.unionSets(LV, RV); |
| return 0; |
| } |
| |
| // Return negative, zero, or positive, if LHS is less than, equal to, or greater |
| // than RHS, respectively. A three-way result allows recursive comparisons to be |
| // more efficient. |
| static int CompareSCEVComplexity( |
| EquivalenceClasses<const SCEV *> &EqCacheSCEV, |
| EquivalenceClasses<const Value *> &EqCacheValue, |
| const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, |
| DominatorTree &DT, unsigned Depth = 0) { |
| // Fast-path: SCEVs are uniqued so we can do a quick equality check. |
| if (LHS == RHS) |
| return 0; |
| |
| // Primarily, sort the SCEVs by their getSCEVType(). |
| unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); |
| if (LType != RType) |
| return (int)LType - (int)RType; |
| |
| if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS)) |
| return 0; |
| // Aside from the getSCEVType() ordering, the particular ordering |
| // isn't very important except that it's beneficial to be consistent, |
| // so that (a + b) and (b + a) don't end up as different expressions. |
| switch (static_cast<SCEVTypes>(LType)) { |
| case scUnknown: { |
| const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); |
| const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); |
| |
| int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), |
| RU->getValue(), Depth + 1); |
| if (X == 0) |
| EqCacheSCEV.unionSets(LHS, RHS); |
| return X; |
| } |
| |
| case scConstant: { |
| const SCEVConstant *LC = cast<SCEVConstant>(LHS); |
| const SCEVConstant *RC = cast<SCEVConstant>(RHS); |
| |
| // Compare constant values. |
| const APInt &LA = LC->getAPInt(); |
| const APInt &RA = RC->getAPInt(); |
| unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); |
| if (LBitWidth != RBitWidth) |
| return (int)LBitWidth - (int)RBitWidth; |
| return LA.ult(RA) ? -1 : 1; |
| } |
| |
| case scAddRecExpr: { |
| const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); |
| const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); |
| |
| // There is always a dominance between two recs that are used by one SCEV, |
| // so we can safely sort recs by loop header dominance. We require such |
| // order in getAddExpr. |
| const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); |
| if (LLoop != RLoop) { |
| const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); |
| assert(LHead != RHead && "Two loops share the same header?"); |
| if (DT.dominates(LHead, RHead)) |
| return 1; |
| else |
| assert(DT.dominates(RHead, LHead) && |
| "No dominance between recurrences used by one SCEV?"); |
| return -1; |
| } |
| |
| // Addrec complexity grows with operand count. |
| unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); |
| if (LNumOps != RNumOps) |
| return (int)LNumOps - (int)RNumOps; |
| |
| // Lexicographically compare. |
| for (unsigned i = 0; i != LNumOps; ++i) { |
| int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, |
| LA->getOperand(i), RA->getOperand(i), DT, |
| Depth + 1); |
| if (X != 0) |
| return X; |
| } |
| EqCacheSCEV.unionSets(LHS, RHS); |
| return 0; |
| } |
| |
| case scAddExpr: |
| case scMulExpr: |
| case scSMaxExpr: |
| case scUMaxExpr: |
| case scSMinExpr: |
| case scUMinExpr: { |
| const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); |
| const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); |
| |
| // Lexicographically compare n-ary expressions. |
| unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); |
| if (LNumOps != RNumOps) |
| return (int)LNumOps - (int)RNumOps; |
| |
| for (unsigned i = 0; i != LNumOps; ++i) { |
| int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, |
| LC->getOperand(i), RC->getOperand(i), DT, |
| Depth + 1); |
| if (X != 0) |
| return X; |
| } |
| EqCacheSCEV.unionSets(LHS, RHS); |
| return 0; |
| } |
| |
| case scUDivExpr: { |
| const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); |
| const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); |
| |
| // Lexicographically compare udiv expressions. |
| int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), |
| RC->getLHS(), DT, Depth + 1); |
| if (X != 0) |
| return X; |
| X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), |
| RC->getRHS(), DT, Depth + 1); |
| if (X == 0) |
| EqCacheSCEV.unionSets(LHS, RHS); |
| return X; |
| } |
| |
| case scTruncate: |
| case scZeroExtend: |
| case scSignExtend: { |
| const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); |
| const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); |
| |
| // Compare cast expressions by operand. |
| int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, |
| LC->getOperand(), RC->getOperand(), DT, |
| Depth + 1); |
| if (X == 0) |
| EqCacheSCEV.unionSets(LHS, RHS); |
| return X; |
| } |
| |
| case scCouldNotCompute: |
| llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); |
| } |
| llvm_unreachable("Unknown SCEV kind!"); |
| } |
| |
| /// Given a list of SCEV objects, order them by their complexity, and group |
| /// objects of the same complexity together by value. When this routine is |
| /// finished, we know that any duplicates in the vector are consecutive and that |
| /// complexity is monotonically increasing. |
| /// |
| /// Note that we go take special precautions to ensure that we get deterministic |
| /// results from this routine. In other words, we don't want the results of |
| /// this to depend on where the addresses of various SCEV objects happened to |
| /// land in memory. |
| static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, |
| LoopInfo *LI, DominatorTree &DT) { |
| if (Ops.size() < 2) return; // Noop |
| |
| EquivalenceClasses<const SCEV *> EqCacheSCEV; |
| EquivalenceClasses<const Value *> EqCacheValue; |
| if (Ops.size() == 2) { |
| // This is the common case, which also happens to be trivially simple. |
| // Special case it. |
| const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; |
| if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0) |
| std::swap(LHS, RHS); |
| return; |
| } |
| |
| // Do the rough sort by complexity. |
| llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { |
| return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) < |
| 0; |
| }); |
| |
| // Now that we are sorted by complexity, group elements of the same |
| // complexity. Note that this is, at worst, N^2, but the vector is likely to |
| // be extremely short in practice. Note that we take this approach because we |
| // do not want to depend on the addresses of the objects we are grouping. |
| for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { |
| const SCEV *S = Ops[i]; |
| unsigned Complexity = S->getSCEVType(); |
| |
| // If there are any objects of the same complexity and same value as this |
| // one, group them. |
| for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { |
| if (Ops[j] == S) { // Found a duplicate. |
| // Move it to immediately after i'th element. |
| std::swap(Ops[i+1], Ops[j]); |
| ++i; // no need to rescan it. |
| if (i == e-2) return; // Done! |
| } |
| } |
| } |
| } |
| |
| // Returns the size of the SCEV S. |
| static inline int sizeOfSCEV(const SCEV *S) { |
| struct FindSCEVSize { |
| int Size = 0; |
| |
| FindSCEVSize() = default; |
| |
| bool follow(const SCEV *S) { |
| ++Size; |
| // Keep looking at all operands of S. |
| return true; |
| } |
| |
| bool isDone() const { |
| return false; |
| } |
| }; |
| |
| FindSCEVSize F; |
| SCEVTraversal<FindSCEVSize> ST(F); |
| ST.visitAll(S); |
| return F.Size; |
| } |
| |
| /// Returns true if the subtree of \p S contains at least HugeExprThreshold |
| /// nodes. |
| static bool isHugeExpression(const SCEV *S) { |
| return S->getExpressionSize() >= HugeExprThreshold; |
| } |
| |
| /// Returns true of \p Ops contains a huge SCEV (see definition above). |
| static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { |
| return any_of(Ops, isHugeExpression); |
| } |
| |
| namespace { |
| |
| struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { |
| public: |
| // Computes the Quotient and Remainder of the division of Numerator by |
| // Denominator. |
| static void divide(ScalarEvolution &SE, const SCEV *Numerator, |
| const SCEV *Denominator, const SCEV **Quotient, |
| const SCEV **Remainder) { |
| assert(Numerator && Denominator && "Uninitialized SCEV"); |
| |
| SCEVDivision D(SE, Numerator, Denominator); |
| |
| // Check for the trivial case here to avoid having to check for it in the |
| // rest of the code. |
| if (Numerator == Denominator) { |
| *Quotient = D.One; |
| *Remainder = D.Zero; |
| return; |
| } |
| |
| if (Numerator->isZero()) { |
| *Quotient = D.Zero; |
| *Remainder = D.Zero; |
| return; |
| } |
| |
| // A simple case when N/1. The quotient is N. |
| if (Denominator->isOne()) { |
| *Quotient = Numerator; |
| *Remainder = D.Zero; |
| return; |
| } |
| |
| // Split the Denominator when it is a product. |
| if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) { |
| const SCEV *Q, *R; |
| *Quotient = Numerator; |
| for (const SCEV *Op : T->operands()) { |
| divide(SE, *Quotient, Op, &Q, &R); |
| *Quotient = Q; |
| |
| // Bail out when the Numerator is not divisible by one of the terms of |
| // the Denominator. |
| if (!R->isZero()) { |
| *Quotient = D.Zero; |
| *Remainder = Numerator; |
| return; |
| } |
| } |
| *Remainder = D.Zero; |
| return; |
| } |
| |
| D.visit(Numerator); |
| *Quotient = D.Quotient; |
| *Remainder = D.Remainder; |
| } |
| |
| // Except in the trivial case described above, we do not know how to divide |
| // Expr by Denominator for the following functions with empty implementation. |
| void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} |
| void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} |
| void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} |
| void visitUDivExpr(const SCEVUDivExpr *Numerator) {} |
| void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} |
| void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} |
| void visitSMinExpr(const SCEVSMinExpr *Numerator) {} |
| void visitUMinExpr(const SCEVUMinExpr *Numerator) {} |
| void visitUnknown(const SCEVUnknown *Numerator) {} |
| void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} |
| |
| void visitConstant(const SCEVConstant *Numerator) { |
| if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { |
| APInt NumeratorVal = Numerator->getAPInt(); |
| APInt DenominatorVal = D->getAPInt(); |
| uint32_t NumeratorBW = NumeratorVal.getBitWidth(); |
| uint32_t DenominatorBW = DenominatorVal.getBitWidth(); |
| |
| if (NumeratorBW > DenominatorBW) |
| DenominatorVal = DenominatorVal.sext(NumeratorBW); |
| else if (NumeratorBW < DenominatorBW) |
| NumeratorVal = NumeratorVal.sext(DenominatorBW); |
| |
| APInt QuotientVal(NumeratorVal.getBitWidth(), 0); |
| APInt RemainderVal(NumeratorVal.getBitWidth(), 0); |
| APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); |
| Quotient = SE.getConstant(QuotientVal); |
| Remainder = SE.getConstant(RemainderVal); |
| return; |
| } |
| } |
| |
| void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { |
| const SCEV *StartQ, *StartR, *StepQ, *StepR; |
| if (!Numerator->isAffine()) |
| return cannotDivide(Numerator); |
| divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); |
| divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); |
| // Bail out if the types do not match. |
| Type *Ty = Denominator->getType(); |
| if (Ty != StartQ->getType() || Ty != StartR->getType() || |
| Ty != StepQ->getType() || Ty != StepR->getType()) |
| return cannotDivide(Numerator); |
| Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), |
| Numerator->getNoWrapFlags()); |
| Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), |
| Numerator->getNoWrapFlags()); |
| } |
| |
| void visitAddExpr(const SCEVAddExpr *Numerator) { |
| SmallVector<const SCEV *, 2> Qs, Rs; |
| Type *Ty = Denominator->getType(); |
| |
| for (const SCEV *Op : Numerator->operands()) { |
| const SCEV *Q, *R; |
| divide(SE, Op, Denominator, &Q, &R); |
| |
| // Bail out if types do not match. |
| if (Ty != Q->getType() || Ty != R->getType()) |
| return cannotDivide(Numerator); |
| |
| Qs.push_back(Q); |
| Rs.push_back(R); |
| } |
| |
| if (Qs.size() == 1) { |
| Quotient = Qs[0]; |
| Remainder = Rs[0]; |
| return; |
| } |
| |
| Quotient = SE.getAddExpr(Qs); |
| Remainder = SE.getAddExpr(Rs); |
| } |
| |
| void visitMulExpr(const SCEVMulExpr *Numerator) { |
| SmallVector<const SCEV *, 2> Qs; |
| Type *Ty = Denominator->getType(); |
| |
| bool FoundDenominatorTerm = false; |
| for (const SCEV *Op : Numerator->operands()) { |
| // Bail out if types do not match. |
| if (Ty != Op->getType()) |
| return cannotDivide(Numerator); |
| |
| if (FoundDenominatorTerm) { |
| Qs.push_back(Op); |
| continue; |
| } |
| |
| // Check whether Denominator divides one of the product operands. |
| const SCEV *Q, *R; |
| divide(SE, Op, Denominator, &Q, &R); |
| if (!R->isZero()) { |
| Qs.push_back(Op); |
| continue; |
| } |
| |
| // Bail out if types do not match. |
| if (Ty != Q->getType()) |
| return cannotDivide(Numerator); |
| |
| FoundDenominatorTerm = true; |
| Qs.push_back(Q); |
| } |
| |
| if (FoundDenominatorTerm) { |
| Remainder = Zero; |
| if (Qs.size() == 1) |
| Quotient = Qs[0]; |
| else |
| Quotient = SE.getMulExpr(Qs); |
| return; |
| } |
| |
| if (!isa<SCEVUnknown>(Denominator)) |
| return cannotDivide(Numerator); |
| |
| // The Remainder is obtained by replacing Denominator by 0 in Numerator. |
| ValueToValueMap RewriteMap; |
| RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = |
| cast<SCEVConstant>(Zero)->getValue(); |
| Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); |
| |
| if (Remainder->isZero()) { |
| // The Quotient is obtained by replacing Denominator by 1 in Numerator. |
| RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = |
| cast<SCEVConstant>(One)->getValue(); |
| Quotient = |
| SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); |
| return; |
| } |
| |
| // Quotient is (Numerator - Remainder) divided by Denominator. |
| const SCEV *Q, *R; |
| const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); |
| // This SCEV does not seem to simplify: fail the division here. |
| if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) |
| return cannotDivide(Numerator); |
| divide(SE, Diff, Denominator, &Q, &R); |
| if (R != Zero) |
| return cannotDivide(Numerator); |
| Quotient = Q; |
| } |
| |
| private: |
| SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, |
| const SCEV *Denominator) |
| : SE(S), Denominator(Denominator) { |
| Zero = SE.getZero(Denominator->getType()); |
| One = SE.getOne(Denominator->getType()); |
| |
| // We generally do not know how to divide Expr by Denominator. We |
| // initialize the division to a "cannot divide" state to simplify the rest |
| // of the code. |
| cannotDivide(Numerator); |
| } |
| |
| // Convenience function for giving up on the division. We set the quotient to |
| // be equal to zero and the remainder to be equal to the numerator. |
| void cannotDivide(const SCEV *Numerator) { |
| Quotient = Zero; |
| Remainder = Numerator; |
| } |
| |
| ScalarEvolution &SE; |
| const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; |
| }; |
| |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // Simple SCEV method implementations |
| //===----------------------------------------------------------------------===// |
| |
| /// Compute BC(It, K). The result has width W. Assume, K > 0. |
| static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, |
| ScalarEvolution &SE, |
| Type *ResultTy) { |
| // Handle the simplest case efficiently. |
| if (K == 1) |
| return SE.getTruncateOrZeroExtend(It, ResultTy); |
| |
| // We are using the following formula for BC(It, K): |
| // |
| // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! |
| // |
| // Suppose, W is the bitwidth of the return value. We must be prepared for |
| // overflow. Hence, we must assure that the result of our computation is |
| // equal to the accurate one modulo 2^W. Unfortunately, division isn't |
| // safe in modular arithmetic. |
| // |
| // However, this code doesn't use exactly that formula; the formula it uses |
| // is something like the following, where T is the number of factors of 2 in |
| // K! (i.e. trailing zeros in the binary representation of K!), and ^ is |
| // exponentiation: |
| // |
| // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) |
| // |
| // This formula is trivially equivalent to the previous formula. However, |
| // this formula can be implemented much more efficiently. The trick is that |
| // K! / 2^T is odd, and exact division by an odd number *is* safe in modular |
| // arithmetic. To do exact division in modular arithmetic, all we have |
| // to do is multiply by the inverse. Therefore, this step can be done at |
| // width W. |
| // |
| // The next issue is how to safely do the division by 2^T. The way this |
| // is done is by doing the multiplication step at a width of at least W + T |
| // bits. This way, the bottom W+T bits of the product are accurate. Then, |
| // when we perform the division by 2^T (which is equivalent to a right shift |
| // by T), the bottom W bits are accurate. Extra bits are okay; they'll get |
| // truncated out after the division by 2^T. |
| // |
| // In comparison to just directly using the first formula, this technique |
| // is much more efficient; using the first formula requires W * K bits, |
| // but this formula less than W + K bits. Also, the first formula requires |
| // a division step, whereas this formula only requires multiplies and shifts. |
| // |
| // It doesn't matter whether the subtraction step is done in the calculation |
| // width or the input iteration count's width; if the subtraction overflows, |
| // the result must be zero anyway. We prefer here to do it in the width of |
| // the induction variable because it helps a lot for certain cases; CodeGen |
| // isn't smart enough to ignore the overflow, which leads to much less |
| // efficient code if the width of the subtraction is wider than the native |
| // register width. |
| // |
| // (It's possible to not widen at all by pulling out factors of 2 before |
| // the multiplication; for example, K=2 can be calculated as |
| // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires |
| // extra arithmetic, so it's not an obvious win, and it gets |
| // much more complicated for K > 3.) |
| |
| // Protection from insane SCEVs; this bound is conservative, |
| // but it probably doesn't matter. |
| if (K > 1000) |
| return SE.getCouldNotCompute(); |
| |
| unsigned W = SE.getTypeSizeInBits(ResultTy); |
| |
| // Calculate K! / 2^T and T; we divide out the factors of two before |
| // multiplying for calculating K! / 2^T to avoid overflow. |
| // Other overflow doesn't matter because we only care about the bottom |
| // W bits of the result. |
| APInt OddFactorial(W, 1); |
| unsigned T = 1; |
| for (unsigned i = 3; i <= K; ++i) { |
| APInt Mult(W, i); |
| unsigned TwoFactors = Mult.countTrailingZeros(); |
| T += TwoFactors; |
| Mult.lshrInPlace(TwoFactors); |
| OddFactorial *= Mult; |
| } |
| |
| // We need at least W + T bits for the multiplication step |
| unsigned CalculationBits = W + T; |
| |
| // Calculate 2^T, at width T+W. |
| APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); |
| |
| // Calculate the multiplicative inverse of K! / 2^T; |
| // this multiplication factor will perform the exact division by |
| // K! / 2^T. |
| APInt Mod = APInt::getSignedMinValue(W+1); |
| APInt MultiplyFactor = OddFactorial.zext(W+1); |
| MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); |
| MultiplyFactor = MultiplyFactor.trunc(W); |
| |
| // Calculate the product, at width T+W |
| IntegerType *CalculationTy = IntegerType::get(SE.getContext(), |
| CalculationBits); |
| const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); |
| for (unsigned i = 1; i != K; ++i) { |
| const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); |
| Dividend = SE.getMulExpr(Dividend, |
| SE.getTruncateOrZeroExtend(S, CalculationTy)); |
| } |
| |
| // Divide by 2^T |
| const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); |
| |
| // Truncate the result, and divide by K! / 2^T. |
| |
| return SE.getMulExpr(SE.getConstant(MultiplyFactor), |
| SE.getTruncateOrZeroExtend(DivResult, ResultTy)); |
| } |
| |
| /// Return the value of this chain of recurrences at the specified iteration |
| /// number. We can evaluate this recurrence by multiplying each element in the |
| /// chain by the binomial coefficient corresponding to it. In other words, we |
| /// can evaluate {A,+,B,+,C,+,D} as: |
| /// |
| /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) |
| /// |
| /// where BC(It, k) stands for binomial coefficient. |
| const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, |
| ScalarEvolution &SE) const { |
| const SCEV *Result = getStart(); |
| for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { |
| // The computation is correct in the face of overflow provided that the |
| // multiplication is performed _after_ the evaluation of the binomial |
| // coefficient. |
| const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); |
| if (isa<SCEVCouldNotCompute>(Coeff)) |
| return Coeff; |
| |
| Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); |
| } |
| return Result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SCEV Expression folder implementations |
| //===----------------------------------------------------------------------===// |
| |
| const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, |
| unsigned Depth) { |
| assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && |
| "This is not a truncating conversion!"); |
| assert(isSCEVable(Ty) && |
| "This is not a conversion to a SCEVable type!"); |
| Ty = getEffectiveSCEVType(Ty); |
| |
| FoldingSetNodeID ID; |
| ID.AddInteger(scTruncate); |
| ID.AddPointer(Op); |
| ID.AddPointer(Ty); |
| void *IP = nullptr; |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| |
| // Fold if the operand is constant. |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) |
| return getConstant( |
| cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); |
| |
| // trunc(trunc(x)) --> trunc(x) |
| if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) |
| return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); |
| |
| // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing |
| if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) |
| return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); |
| |
| // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing |
| if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) |
| return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); |
| |
| if (Depth > MaxCastDepth) { |
| SCEV *S = |
| new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); |
| UniqueSCEVs.InsertNode(S, IP); |
| addToLoopUseLists(S); |
| return S; |
| } |
| |
| // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and |
| // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), |
| // if after transforming we have at most one truncate, not counting truncates |
| // that replace other casts. |
| if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { |
| auto *CommOp = cast<SCEVCommutativeExpr>(Op); |
| SmallVector<const SCEV *, 4> Operands; |
| unsigned numTruncs = 0; |
| for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; |
| ++i) { |
| const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); |
| if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S)) |
| numTruncs++; |
| Operands.push_back(S); |
| } |
| if (numTruncs < 2) { |
| if (isa<SCEVAddExpr>(Op)) |
| return getAddExpr(Operands); |
| else if (isa<SCEVMulExpr>(Op)) |
| return getMulExpr(Operands); |
| else |
| llvm_unreachable("Unexpected SCEV type for Op."); |
| } |
| // Although we checked in the beginning that ID is not in the cache, it is |
| // possible that during recursion and different modification ID was inserted |
| // into the cache. So if we find it, just return it. |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) |
| return S; |
| } |
| |
| // If the input value is a chrec scev, truncate the chrec's operands. |
| if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { |
| SmallVector<const SCEV *, 4> Operands; |
| for (const SCEV *Op : AddRec->operands()) |
| Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); |
| return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); |
| } |
| |
| // The cast wasn't folded; create an explicit cast node. We can reuse |
| // the existing insert position since if we get here, we won't have |
| // made any changes which would invalidate it. |
| SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), |
| Op, Ty); |
| UniqueSCEVs.InsertNode(S, IP); |
| addToLoopUseLists(S); |
| return S; |
| } |
| |
| // Get the limit of a recurrence such that incrementing by Step cannot cause |
| // signed overflow as long as the value of the recurrence within the |
| // loop does not exceed this limit before incrementing. |
| static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, |
| ICmpInst::Predicate *Pred, |
| ScalarEvolution *SE) { |
| unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); |
| if (SE->isKnownPositive(Step)) { |
| *Pred = ICmpInst::ICMP_SLT; |
| return SE->getConstant(APInt::getSignedMinValue(BitWidth) - |
| SE->getSignedRangeMax(Step)); |
| } |
| if (SE->isKnownNegative(Step)) { |
| *Pred = ICmpInst::ICMP_SGT; |
| return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - |
| SE->getSignedRangeMin(Step)); |
| } |
| return nullptr; |
| } |
| |
| // Get the limit of a recurrence such that incrementing by Step cannot cause |
| // unsigned overflow as long as the value of the recurrence within the loop does |
| // not exceed this limit before incrementing. |
| static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, |
| ICmpInst::Predicate *Pred, |
| ScalarEvolution *SE) { |
| unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); |
| *Pred = ICmpInst::ICMP_ULT; |
| |
| return SE->getConstant(APInt::getMinValue(BitWidth) - |
| SE->getUnsignedRangeMax(Step)); |
| } |
| |
| namespace { |
| |
| struct ExtendOpTraitsBase { |
| typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, |
| unsigned); |
| }; |
| |
| // Used to make code generic over signed and unsigned overflow. |
| template <typename ExtendOp> struct ExtendOpTraits { |
| // Members present: |
| // |
| // static const SCEV::NoWrapFlags WrapType; |
| // |
| // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; |
| // |
| // static const SCEV *getOverflowLimitForStep(const SCEV *Step, |
| // ICmpInst::Predicate *Pred, |
| // ScalarEvolution *SE); |
| }; |
| |
| template <> |
| struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { |
| static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; |
| |
| static const GetExtendExprTy GetExtendExpr; |
| |
| static const SCEV *getOverflowLimitForStep(const SCEV *Step, |
| ICmpInst::Predicate *Pred, |
| ScalarEvolution *SE) { |
| return getSignedOverflowLimitForStep(Step, Pred, SE); |
| } |
| }; |
| |
| const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< |
| SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; |
| |
| template <> |
| struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { |
| static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; |
| |
| static const GetExtendExprTy GetExtendExpr; |
| |
| static const SCEV *getOverflowLimitForStep(const SCEV *Step, |
| ICmpInst::Predicate *Pred, |
| ScalarEvolution *SE) { |
| return getUnsignedOverflowLimitForStep(Step, Pred, SE); |
| } |
| }; |
| |
| const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< |
| SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; |
| |
| } // end anonymous namespace |
| |
| // The recurrence AR has been shown to have no signed/unsigned wrap or something |
| // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as |
| // easily prove NSW/NUW for its preincrement or postincrement sibling. This |
| // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + |
| // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the |
| // expression "Step + sext/zext(PreIncAR)" is congruent with |
| // "sext/zext(PostIncAR)" |
| template <typename ExtendOpTy> |
| static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, |
| ScalarEvolution *SE, unsigned Depth) { |
| auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; |
| auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; |
| |
| const Loop *L = AR->getLoop(); |
| const SCEV *Start = AR->getStart(); |
| const SCEV *Step = AR->getStepRecurrence(*SE); |
| |
| // Check for a simple looking step prior to loop entry. |
| const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); |
| if (!SA) |
| return nullptr; |
| |
| // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV |
| // subtraction is expensive. For this purpose, perform a quick and dirty |
| // difference, by checking for Step in the operand list. |
| SmallVector<const SCEV *, 4> DiffOps; |
| for (const SCEV *Op : SA->operands()) |
| if (Op != Step) |
| DiffOps.push_back(Op); |
| |
| if (DiffOps.size() == SA->getNumOperands()) |
| return nullptr; |
| |
| // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + |
| // `Step`: |
| |
| // 1. NSW/NUW flags on the step increment. |
| auto PreStartFlags = |
| ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); |
| const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); |
| const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( |
| SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); |
| |
| // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies |
| // "S+X does not sign/unsign-overflow". |
| // |
| |
| const SCEV *BECount = SE->getBackedgeTakenCount(L); |
| if (PreAR && PreAR->getNoWrapFlags(WrapType) && |
| !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) |
| return PreStart; |
| |
| // 2. Direct overflow check on the step operation's expression. |
| unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); |
| Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); |
| const SCEV *OperandExtendedStart = |
| SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), |
| (SE->*GetExtendExpr)(Step, WideTy, Depth)); |
| if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { |
| if (PreAR && AR->getNoWrapFlags(WrapType)) { |
| // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW |
| // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then |
| // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. |
| const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); |
| } |
| return PreStart; |
| } |
| |
| // 3. Loop precondition. |
| ICmpInst::Predicate Pred; |
| const SCEV *OverflowLimit = |
| ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); |
| |
| if (OverflowLimit && |
| SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) |
| return PreStart; |
| |
| return nullptr; |
| } |
| |
| // Get the normalized zero or sign extended expression for this AddRec's Start. |
| template <typename ExtendOpTy> |
| static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, |
| ScalarEvolution *SE, |
| unsigned Depth) { |
| auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; |
| |
| const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); |
| if (!PreStart) |
| return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); |
| |
| return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, |
| Depth), |
| (SE->*GetExtendExpr)(PreStart, Ty, Depth)); |
| } |
| |
| // Try to prove away overflow by looking at "nearby" add recurrences. A |
| // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it |
| // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. |
| // |
| // Formally: |
| // |
| // {S,+,X} == {S-T,+,X} + T |
| // => Ext({S,+,X}) == Ext({S-T,+,X} + T) |
| // |
| // If ({S-T,+,X} + T) does not overflow ... (1) |
| // |
| // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) |
| // |
| // If {S-T,+,X} does not overflow ... (2) |
| // |
| // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) |
| // == {Ext(S-T)+Ext(T),+,Ext(X)} |
| // |
| // If (S-T)+T does not overflow ... (3) |
| // |
| // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} |
| // == {Ext(S),+,Ext(X)} == LHS |
| // |
| // Thus, if (1), (2) and (3) are true for some T, then |
| // Ext({S,+,X}) == {Ext(S),+,Ext(X)} |
| // |
| // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) |
| // does not overflow" restricted to the 0th iteration. Therefore we only need |
| // to check for (1) and (2). |
| // |
| // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T |
| // is `Delta` (defined below). |
| template <typename ExtendOpTy> |
| bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, |
| const SCEV *Step, |
| const Loop *L) { |
| auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; |
| |
| // We restrict `Start` to a constant to prevent SCEV from spending too much |
| // time here. It is correct (but more expensive) to continue with a |
| // non-constant `Start` and do a general SCEV subtraction to compute |
| // `PreStart` below. |
| const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); |
| if (!StartC) |
| return false; |
| |
| APInt StartAI = StartC->getAPInt(); |
| |
| for (unsigned Delta : {-2, -1, 1, 2}) { |
| const SCEV *PreStart = getConstant(StartAI - Delta); |
| |
| FoldingSetNodeID ID; |
| ID.AddInteger(scAddRecExpr); |
| ID.AddPointer(PreStart); |
| ID.AddPointer(Step); |
| ID.AddPointer(L); |
| void *IP = nullptr; |
| const auto *PreAR = |
| static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); |
| |
| // Give up if we don't already have the add recurrence we need because |
| // actually constructing an add recurrence is relatively expensive. |
| if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) |
| const SCEV *DeltaS = getConstant(StartC->getType(), Delta); |
| ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; |
| const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( |
| DeltaS, &Pred, this); |
| if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Finds an integer D for an expression (C + x + y + ...) such that the top |
| // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or |
| // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is |
| // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and |
| // the (C + x + y + ...) expression is \p WholeAddExpr. |
| static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, |
| const SCEVConstant *ConstantTerm, |
| const SCEVAddExpr *WholeAddExpr) { |
| const APInt C = ConstantTerm->getAPInt(); |
| const unsigned BitWidth = C.getBitWidth(); |
| // Find number of trailing zeros of (x + y + ...) w/o the C first: |
| uint32_t TZ = BitWidth; |
| for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) |
| TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); |
| if (TZ) { |
| // Set D to be as many least significant bits of C as possible while still |
| // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: |
| return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; |
| } |
| return APInt(BitWidth, 0); |
| } |
| |
| // Finds an integer D for an affine AddRec expression {C,+,x} such that the top |
| // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the |
| // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p |
| // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. |
| static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, |
| const APInt &ConstantStart, |
| const SCEV *Step) { |
| const unsigned BitWidth = ConstantStart.getBitWidth(); |
| const uint32_t TZ = SE.GetMinTrailingZeros(Step); |
| if (TZ) |
| return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) |
| : ConstantStart; |
| return APInt(BitWidth, 0); |
| } |
| |
| const SCEV * |
| ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { |
| assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && |
| "This is not an extending conversion!"); |
| assert(isSCEVable(Ty) && |
| "This is not a conversion to a SCEVable type!"); |
| Ty = getEffectiveSCEVType(Ty); |
| |
| // Fold if the operand is constant. |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) |
| return getConstant( |
| cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); |
| |
| // zext(zext(x)) --> zext(x) |
| if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) |
| return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); |
| |
| // Before doing any expensive analysis, check to see if we've already |
| // computed a SCEV for this Op and Ty. |
| FoldingSetNodeID ID; |
| ID.AddInteger(scZeroExtend); |
| ID.AddPointer(Op); |
| ID.AddPointer(Ty); |
| void *IP = nullptr; |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| if (Depth > MaxCastDepth) { |
| SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), |
| Op, Ty); |
| UniqueSCEVs.InsertNode(S, IP); |
| addToLoopUseLists(S); |
| return S; |
| } |
| |
| // zext(trunc(x)) --> zext(x) or x or trunc(x) |
| if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { |
| // It's possible the bits taken off by the truncate were all zero bits. If |
| // so, we should be able to simplify this further. |
| const SCEV *X = ST->getOperand(); |
| ConstantRange CR = getUnsignedRange(X); |
| unsigned TruncBits = getTypeSizeInBits(ST->getType()); |
| unsigned NewBits = getTypeSizeInBits(Ty); |
| if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( |
| CR.zextOrTrunc(NewBits))) |
| return getTruncateOrZeroExtend(X, Ty, Depth); |
| } |
| |
| // If the input value is a chrec scev, and we can prove that the value |
| // did not overflow the old, smaller, value, we can zero extend all of the |
| // operands (often constants). This allows analysis of something like |
| // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) |
| if (AR->isAffine()) { |
| const SCEV *Start = AR->getStart(); |
| const SCEV *Step = AR->getStepRecurrence(*this); |
| unsigned BitWidth = getTypeSizeInBits(AR->getType()); |
| const Loop *L = AR->getLoop(); |
| |
| if (!AR->hasNoUnsignedWrap()) { |
| auto NewFlags = proveNoWrapViaConstantRanges(AR); |
| const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); |
| } |
| |
| // If we have special knowledge that this addrec won't overflow, |
| // we don't need to do any further analysis. |
| if (AR->hasNoUnsignedWrap()) |
| return getAddRecExpr( |
| getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), |
| getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); |
| |
| // Check whether the backedge-taken count is SCEVCouldNotCompute. |
| // Note that this serves two purposes: It filters out loops that are |
| // simply not analyzable, and it covers the case where this code is |
| // being called from within backedge-taken count analysis, such that |
| // attempting to ask for the backedge-taken count would likely result |
| // in infinite recursion. In the later case, the analysis code will |
| // cope with a conservative value, and it will take care to purge |
| // that value once it has finished. |
| const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); |
| if (!isa<SCEVCouldNotCompute>(MaxBECount)) { |
| // Manually compute the final value for AR, checking for |
| // overflow. |
| |
| // Check whether the backedge-taken count can be losslessly casted to |
| // the addrec's type. The count is always unsigned. |
| const SCEV *CastedMaxBECount = |
| getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); |
| const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( |
| CastedMaxBECount, MaxBECount->getType(), Depth); |
| if (MaxBECount == RecastedMaxBECount) { |
| Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); |
| // Check whether Start+Step*MaxBECount has no unsigned overflow. |
| const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, |
| SCEV::FlagAnyWrap, Depth + 1); |
| const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, |
| SCEV::FlagAnyWrap, |
| Depth + 1), |
| WideTy, Depth + 1); |
| const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); |
| const SCEV *WideMaxBECount = |
| getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); |
| const SCEV *OperandExtendedAdd = |
| getAddExpr(WideStart, |
| getMulExpr(WideMaxBECount, |
| getZeroExtendExpr(Step, WideTy, Depth + 1), |
| SCEV::FlagAnyWrap, Depth + 1), |
| SCEV::FlagAnyWrap, Depth + 1); |
| if (ZAdd == OperandExtendedAdd) { |
| // Cache knowledge of AR NUW, which is propagated to this AddRec. |
| const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); |
| // Return the expression with the addrec on the outside. |
| return getAddRecExpr( |
| getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, |
| Depth + 1), |
| getZeroExtendExpr(Step, Ty, Depth + 1), L, |
| AR->getNoWrapFlags()); |
| } |
| // Similar to above, only this time treat the step value as signed. |
| // This covers loops that count down. |
| OperandExtendedAdd = |
| getAddExpr(WideStart, |
| getMulExpr(WideMaxBECount, |
| getSignExtendExpr(Step, WideTy, Depth + 1), |
| SCEV::FlagAnyWrap, Depth + 1), |
| SCEV::FlagAnyWrap, Depth + 1); |
| if (ZAdd == OperandExtendedAdd) { |
| // Cache knowledge of AR NW, which is propagated to this AddRec. |
| // Negative step causes unsigned wrap, but it still can't self-wrap. |
| const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); |
| // Return the expression with the addrec on the outside. |
| return getAddRecExpr( |
| getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, |
| Depth + 1), |
| getSignExtendExpr(Step, Ty, Depth + 1), L, |
| AR->getNoWrapFlags()); |
| } |
| } |
| } |
| |
| // Normally, in the cases we can prove no-overflow via a |
| // backedge guarding condition, we can also compute a backedge |
| // taken count for the loop. The exceptions are assumptions and |
| // guards present in the loop -- SCEV is not great at exploiting |
| // these to compute max backedge taken counts, but can still use |
| // these to prove lack of overflow. Use this fact to avoid |
| // doing extra work that may not pay off. |
| if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || |
| !AC.assumptions().empty()) { |
| // If the backedge is guarded by a comparison with the pre-inc |
| // value the addrec is safe. Also, if the entry is guarded by |
| // a comparison with the start value and the backedge is |
| // guarded by a comparison with the post-inc value, the addrec |
| // is safe. |
| if (isKnownPositive(Step)) { |
| const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - |
| getUnsignedRangeMax(Step)); |
| if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || |
| isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { |
| // Cache knowledge of AR NUW, which is propagated to this |
| // AddRec. |
| const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); |
| // Return the expression with the addrec on the outside. |
| return getAddRecExpr( |
| getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, |
| Depth + 1), |
| getZeroExtendExpr(Step, Ty, Depth + 1), L, |
| AR->getNoWrapFlags()); |
| } |
| } else if (isKnownNegative(Step)) { |
| const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - |
| getSignedRangeMin(Step)); |
| if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || |
| isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { |
| // Cache knowledge of AR NW, which is propagated to this |
| // AddRec. Negative step causes unsigned wrap, but it |
| // still can't self-wrap. |
| const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); |
| // Return the expression with the addrec on the outside. |
| return getAddRecExpr( |
| getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, |
| Depth + 1), |
| getSignExtendExpr(Step, Ty, Depth + 1), L, |
| AR->getNoWrapFlags()); |
| } |
| } |
| } |
| |
| // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> |
| // if D + (C - D + Step * n) could be proven to not unsigned wrap |
| // where D maximizes the number of trailing zeros of (C - D + Step * n) |
| if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { |
| const APInt &C = SC->getAPInt(); |
| const APInt &D = extractConstantWithoutWrapping(*this, C, Step); |
| if (D != 0) { |
| const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); |
| const SCEV *SResidual = |
| getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); |
| const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); |
| return getAddExpr(SZExtD, SZExtR, |
| (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), |
| Depth + 1); |
| } |
| } |
| |
| if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { |
| const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); |
| return getAddRecExpr( |
| getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), |
| getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); |
| } |
| } |
| |
| // zext(A % B) --> zext(A) % zext(B) |
| { |
| const SCEV *LHS; |
| const SCEV *RHS; |
| if (matchURem(Op, LHS, RHS)) |
| return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), |
| getZeroExtendExpr(RHS, Ty, Depth + 1)); |
| } |
| |
| // zext(A / B) --> zext(A) / zext(B). |
| if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) |
| return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), |
| getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); |
| |
| if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { |
| // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> |
| if (SA->hasNoUnsignedWrap()) { |
| // If the addition does not unsign overflow then we can, by definition, |
| // commute the zero extension with the addition operation. |
| SmallVector<const SCEV *, 4> Ops; |
| for (const auto *Op : SA->operands()) |
| Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); |
| return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); |
| } |
| |
| // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) |
| // if D + (C - D + x + y + ...) could be proven to not unsigned wrap |
| // where D maximizes the number of trailing zeros of (C - D + x + y + ...) |
| // |
| // Often address arithmetics contain expressions like |
| // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). |
| // This transformation is useful while proving that such expressions are |
| // equal or differ by a small constant amount, see LoadStoreVectorizer pass. |
| if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { |
| const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); |
| if (D != 0) { |
| const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); |
| const SCEV *SResidual = |
| getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); |
| const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); |
| return getAddExpr(SZExtD, SZExtR, |
| (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), |
| Depth + 1); |
| } |
| } |
| } |
| |
| if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { |
| // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> |
| if (SM->hasNoUnsignedWrap()) { |
| // If the multiply does not unsign overflow then we can, by definition, |
| // commute the zero extension with the multiply operation. |
| SmallVector<const SCEV *, 4> Ops; |
| for (const auto *Op : SM->operands()) |
| Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); |
| return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); |
| } |
| |
| // zext(2^K * (trunc X to iN)) to iM -> |
| // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> |
| // |
| // Proof: |
| // |
| // zext(2^K * (trunc X to iN)) to iM |
| // = zext((trunc X to iN) << K) to iM |
| // = zext((trunc X to i{N-K}) << K)<nuw> to iM |
| // (because shl removes the top K bits) |
| // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM |
| // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. |
| // |
| if (SM->getNumOperands() == 2) |
| if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) |
| if (MulLHS->getAPInt().isPowerOf2()) |
| if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { |
| int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - |
| MulLHS->getAPInt().logBase2(); |
| Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); |
| return getMulExpr( |
| getZeroExtendExpr(MulLHS, Ty), |
| getZeroExtendExpr( |
| getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), |
| SCEV::FlagNUW, Depth + 1); |
| } |
| } |
| |
| // The cast wasn't folded; create an explicit cast node. |
| // Recompute the insert position, as it may have been invalidated. |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), |
| Op, Ty); |
| UniqueSCEVs.InsertNode(S, IP); |
| addToLoopUseLists(S); |
| return S; |
| } |
| |
| const SCEV * |
| ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { |
| assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && |
| "This is not an extending conversion!"); |
| assert(isSCEVable(Ty) && |
| "This is not a conversion to a SCEVable type!"); |
| Ty = getEffectiveSCEVType(Ty); |
| |
| // Fold if the operand is constant. |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) |
| return getConstant( |
| cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); |
| |
| // sext(sext(x)) --> sext(x) |
| if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) |
| return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); |
| |
| // sext(zext(x)) --> zext(x) |
| if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) |
| return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); |
| |
| // Before doing any expensive analysis, check to see if we've already |
| // computed a SCEV for this Op and Ty. |
| FoldingSetNodeID ID; |
| ID.AddInteger(scSignExtend); |
| ID.AddPointer(Op); |
| ID.AddPointer(Ty); |
| void *IP = nullptr; |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| // Limit recursion depth. |
| if (Depth > MaxCastDepth) { |
| SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), |
| Op, Ty); |
| UniqueSCEVs.InsertNode(S, IP); |
| addToLoopUseLists(S); |
| return S; |
| } |
| |
| // sext(trunc(x)) --> sext(x) or x or trunc(x) |
| if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { |
| // It's possible the bits taken off by the truncate were all sign bits. If |
| // so, we should be able to simplify this further. |
| const SCEV *X = ST->getOperand(); |
| ConstantRange CR = getSignedRange(X); |
| unsigned TruncBits = getTypeSizeInBits(ST->getType()); |
| unsigned NewBits = getTypeSizeInBits(Ty); |
| if (CR.truncate(TruncBits).signExtend(NewBits).contains( |
| CR.sextOrTrunc(NewBits))) |
| return getTruncateOrSignExtend(X, Ty, Depth); |
| } |
| |
| if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { |
| // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> |
| if (SA->hasNoSignedWrap()) { |
| // If the addition does not sign overflow then we can, by definition, |
| // commute the sign extension with the addition operation. |
| SmallVector<const SCEV *, 4> Ops; |
| for (const auto *Op : SA->operands()) |
| Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); |
| return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); |
| } |
| |
| // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) |
| // if D + (C - D + x + y + ...) could be proven to not signed wrap |
| // where D maximizes the number of trailing zeros of (C - D + x + y + ...) |
| // |
| // For instance, this will bring two seemingly different expressions: |
| // 1 + sext(5 + 20 * %x + 24 * %y) and |
| // sext(6 + 20 * %x + 24 * %y) |
| // to the same form: |
| // 2 + sext(4 + 20 * %x + 24 * %y) |
| if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { |
| const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); |
| if (D != 0) { |
| const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); |
| const SCEV *SResidual = |
| getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); |
| const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); |
| return getAddExpr(SSExtD, SSExtR, |
| (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), |
| Depth + 1); |
| } |
| } |
| } |
| // If the input value is a chrec scev, and we can prove that the value |
| // did not overflow the old, smaller, value, we can sign extend all of the |
| // operands (often constants). This allows analysis of something like |
| // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) |
| if (AR->isAffine()) { |
| const SCEV *Start = AR->getStart(); |
| const SCEV *Step = AR->getStepRecurrence(*this); |
| unsigned BitWidth = getTypeSizeInBits(AR->getType()); |
| const Loop *L = AR->getLoop(); |
| |
| if (!AR->hasNoSignedWrap()) { |
| auto NewFlags = proveNoWrapViaConstantRanges(AR); |
| const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); |
| } |
| |
| // If we have special knowledge that this addrec won't overflow, |
| // we don't need to do any further analysis. |
| if (AR->hasNoSignedWrap()) |
| return getAddRecExpr( |
| getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), |
| getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); |
| |
| // Check whether the backedge-taken count is SCEVCouldNotCompute. |
| // Note that this serves two purposes: It filters out loops that are |
| // simply not analyzable, and it covers the case where this code is |
| // being called from within backedge-taken count analysis, such that |
| // attempting to ask for the backedge-taken count would likely result |
| // in infinite recursion. In the later case, the analysis code will |
| // cope with a conservative value, and it will take care to purge |
| // that value once it has finished. |
| const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); |
| if (!isa<SCEVCouldNotCompute>(MaxBECount)) { |
| // Manually compute the final value for AR, checking for |
| // overflow. |
| |
| // Check whether the backedge-taken count can be losslessly casted to |
| // the addrec's type. The count is always unsigned. |
| const SCEV *CastedMaxBECount = |
| getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); |
| const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( |
| CastedMaxBECount, MaxBECount->getType(), Depth); |
| if (MaxBECount == RecastedMaxBECount) { |
| Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); |
| // Check whether Start+Step*MaxBECount has no signed overflow. |
| const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, |
| SCEV::FlagAnyWrap, Depth + 1); |
| const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, |
| SCEV::FlagAnyWrap, |
| Depth + 1), |
| WideTy, Depth + 1); |
| const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); |
| const SCEV *WideMaxBECount = |
| getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); |
| const SCEV *OperandExtendedAdd = |
| getAddExpr(WideStart, |
| getMulExpr(WideMaxBECount, |
| getSignExtendExpr(Step, WideTy, Depth + 1), |
| SCEV::FlagAnyWrap, Depth + 1), |
| SCEV::FlagAnyWrap, Depth + 1); |
| if (SAdd == OperandExtendedAdd) { |
| // Cache knowledge of AR NSW, which is propagated to this AddRec. |
| const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); |
| // Return the expression with the addrec on the outside. |
| return getAddRecExpr( |
| getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, |
| Depth + 1), |
| getSignExtendExpr(Step, Ty, Depth + 1), L, |
| AR->getNoWrapFlags()); |
| } |
| // Similar to above, only this time treat the step value as unsigned. |
| // This covers loops that count up with an unsigned step. |
| OperandExtendedAdd = |
| getAddExpr(WideStart, |
| getMulExpr(WideMaxBECount, |
| getZeroExtendExpr(Step, WideTy, Depth + 1), |
| SCEV::FlagAnyWrap, Depth + 1), |
| SCEV::FlagAnyWrap, Depth + 1); |
| if (SAdd == OperandExtendedAdd) { |
| // If AR wraps around then |
| // |
| // abs(Step) * MaxBECount > unsigned-max(AR->getType()) |
| // => SAdd != OperandExtendedAdd |
| // |
| // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> |
| // (SAdd == OperandExtendedAdd => AR is NW) |
| |
| const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); |
| |
| // Return the expression with the addrec on the outside. |
| return getAddRecExpr( |
| getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, |
| Depth + 1), |
| getZeroExtendExpr(Step, Ty, Depth + 1), L, |
| AR->getNoWrapFlags()); |
| } |
| } |
| } |
| |
| // Normally, in the cases we can prove no-overflow via a |
| // backedge guarding condition, we can also compute a backedge |
| // taken count for the loop. The exceptions are assumptions and |
| // guards present in the loop -- SCEV is not great at exploiting |
| // these to compute max backedge taken counts, but can still use |
| // these to prove lack of overflow. Use this fact to avoid |
| // doing extra work that may not pay off. |
| |
| if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || |
| !AC.assumptions().empty()) { |
| // If the backedge is guarded by a comparison with the pre-inc |
| // value the addrec is safe. Also, if the entry is guarded by |
| // a comparison with the start value and the backedge is |
| // guarded by a comparison with the post-inc value, the addrec |
| // is safe. |
| ICmpInst::Predicate Pred; |
| const SCEV *OverflowLimit = |
| getSignedOverflowLimitForStep(Step, &Pred, this); |
| if (OverflowLimit && |
| (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || |
| isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { |
| // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. |
| const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); |
| return getAddRecExpr( |
| getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), |
| getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); |
| } |
| } |
| |
| // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> |
| // if D + (C - D + Step * n) could be proven to not signed wrap |
| // where D maximizes the number of trailing zeros of (C - D + Step * n) |
| if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { |
| const APInt &C = SC->getAPInt(); |
| const APInt &D = extractConstantWithoutWrapping(*this, C, Step); |
| if (D != 0) { |
| const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); |
| const SCEV *SResidual = |
| getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); |
| const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); |
| return getAddExpr(SSExtD, SSExtR, |
| (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), |
| Depth + 1); |
| } |
| } |
| |
| if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { |
| const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); |
| return getAddRecExpr( |
| getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), |
| getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); |
| } |
| } |
| |
| // If the input value is provably positive and we could not simplify |
| // away the sext build a zext instead. |
| if (isKnownNonNegative(Op)) |
| return getZeroExtendExpr(Op, Ty, Depth + 1); |
| |
| // The cast wasn't folded; create an explicit cast node. |
| // Recompute the insert position, as it may have been invalidated. |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), |
| Op, Ty); |
| UniqueSCEVs.InsertNode(S, IP); |
| addToLoopUseLists(S); |
| return S; |
| } |
| |
| /// getAnyExtendExpr - Return a SCEV for the given operand extended with |
| /// unspecified bits out to the given type. |
| const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, |
| Type *Ty) { |
| assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && |
| "This is not an extending conversion!"); |
| assert(isSCEVable(Ty) && |
| "This is not a conversion to a SCEVable type!"); |
| Ty = getEffectiveSCEVType(Ty); |
| |
| // Sign-extend negative constants. |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) |
| if (SC->getAPInt().isNegative()) |
| return getSignExtendExpr(Op, Ty); |
| |
| // Peel off a truncate cast. |
| if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { |
| const SCEV *NewOp = T->getOperand(); |
| if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) |
| return getAnyExtendExpr(NewOp, Ty); |
| return getTruncateOrNoop(NewOp, Ty); |
| } |
| |
| // Next try a zext cast. If the cast is folded, use it. |
| const SCEV *ZExt = getZeroExtendExpr(Op, Ty); |
| if (!isa<SCEVZeroExtendExpr>(ZExt)) |
| return ZExt; |
| |
| // Next try a sext cast. If the cast is folded, use it. |
| const SCEV *SExt = getSignExtendExpr(Op, Ty); |
| if (!isa<SCEVSignExtendExpr>(SExt)) |
| return SExt; |
| |
| // Force the cast to be folded into the operands of an addrec. |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { |
| SmallVector<const SCEV *, 4> Ops; |
| for (const SCEV *Op : AR->operands()) |
| Ops.push_back(getAnyExtendExpr(Op, Ty)); |
| return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); |
| } |
| |
| // If the expression is obviously signed, use the sext cast value. |
| if (isa<SCEVSMaxExpr>(Op)) |
| return SExt; |
| |
| // Absent any other information, use the zext cast value. |
| return ZExt; |
| } |
| |
| /// Process the given Ops list, which is a list of operands to be added under |
| /// the given scale, update the given map. This is a helper function for |
| /// getAddRecExpr. As an example of what it does, given a sequence of operands |
| /// that would form an add expression like this: |
| /// |
| /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) |
| /// |
| /// where A and B are constants, update the map with these values: |
| /// |
| /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) |
| /// |
| /// and add 13 + A*B*29 to AccumulatedConstant. |
| /// This will allow getAddRecExpr to produce this: |
| /// |
| /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) |
| /// |
| /// This form often exposes folding opportunities that are hidden in |
| /// the original operand list. |
| /// |
| /// Return true iff it appears that any interesting folding opportunities |
| /// may be exposed. This helps getAddRecExpr short-circuit extra work in |
| /// the common case where no interesting opportunities are present, and |
| /// is also used as a check to avoid infinite recursion. |
| static bool |
| CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, |
| SmallVectorImpl<const SCEV *> &NewOps, |
| APInt &AccumulatedConstant, |
| const SCEV *const *Ops, size_t NumOperands, |
| const APInt &Scale, |
| ScalarEvolution &SE) { |
| bool Interesting = false; |
| |
| // Iterate over the add operands. They are sorted, with constants first. |
| unsigned i = 0; |
| while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { |
| ++i; |
| // Pull a buried constant out to the outside. |
| if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) |
| Interesting = true; |
| AccumulatedConstant += Scale * C->getAPInt(); |
| } |
| |
| // Next comes everything else. We're especially interested in multiplies |
| // here, but they're in the middle, so just visit the rest with one loop. |
| for (; i != NumOperands; ++i) { |
| const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); |
| if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { |
| APInt NewScale = |
| Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); |
| if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { |
| // A multiplication of a constant with another add; recurse. |
| const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); |
| Interesting |= |
| CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, |
| Add->op_begin(), Add->getNumOperands(), |
| NewScale, SE); |
| } else { |
| // A multiplication of a constant with some other value. Update |
| // the map. |
| SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); |
| const SCEV *Key = SE.getMulExpr(MulOps); |
| auto Pair = M.insert({Key, NewScale}); |
| if (Pair.second) { |
| NewOps.push_back(Pair.first->first); |
| } else { |
| Pair.first->second += NewScale; |
| // The map already had an entry for this value, which may indicate |
| // a folding opportunity. |
| Interesting = true; |
| } |
| } |
| } else { |
| // An ordinary operand. Update the map. |
| std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = |
| M.insert({Ops[i], Scale}); |
| if (Pair.second) { |
| NewOps.push_back(Pair.first->first); |
| } else { |
| Pair.first->second += Scale; |
| // The map already had an entry for this value, which may indicate |
| // a folding opportunity. |
| Interesting = true; |
| } |
| } |
| } |
| |
| return Interesting; |
| } |
| |
| // We're trying to construct a SCEV of type `Type' with `Ops' as operands and |
| // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of |
| // can't-overflow flags for the operation if possible. |
| static SCEV::NoWrapFlags |
| StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, |
| const ArrayRef<const SCEV *> Ops, |
| SCEV::NoWrapFlags Flags) { |
| using namespace std::placeholders; |
| |
| using OBO = OverflowingBinaryOperator; |
| |
| bool CanAnalyze = |
| Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; |
| (void)CanAnalyze; |
| assert(CanAnalyze && "don't call from other places!"); |
| |
| int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; |
| SCEV::NoWrapFlags SignOrUnsignWrap = |
| ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); |
| |
| // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. |
| auto IsKnownNonNegative = [&](const SCEV *S) { |
| return SE->isKnownNonNegative(S); |
| }; |
| |
| if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) |
| Flags = |
| ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); |
| |
| SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); |
| |
| if (SignOrUnsignWrap != SignOrUnsignMask && |
| (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && |
| isa<SCEVConstant>(Ops[0])) { |
| |
| auto Opcode = [&] { |
| switch (Type) { |
| case scAddExpr: |
| return Instruction::Add; |
| case scMulExpr: |
| return Instruction::Mul; |
| default: |
| llvm_unreachable("Unexpected SCEV op."); |
| } |
| }(); |
| |
| const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); |
| |
| // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. |
| if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { |
| auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( |
| Opcode, C, OBO::NoSignedWrap); |
| if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) |
| Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); |
| } |
| |
| // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. |
| if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { |
| auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( |
| Opcode, C, OBO::NoUnsignedWrap); |
| if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) |
| Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); |
| } |
| } |
| |
| return Flags; |
| } |
| |
| bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { |
| return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); |
| } |
| |
| /// Get a canonical add expression, or something simpler if possible. |
| const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, |
| SCEV::NoWrapFlags Flags, |
| unsigned Depth) { |
| assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && |
| "only nuw or nsw allowed"); |
| assert(!Ops.empty() && "Cannot get empty add!"); |
| if (Ops.size() == 1) return Ops[0]; |
| #ifndef NDEBUG |
| Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); |
| for (unsigned i = 1, e = Ops.size(); i != e; ++i) |
| assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && |
| "SCEVAddExpr operand types don't match!"); |
| #endif |
| |
| // Sort by complexity, this groups all similar expression types together. |
| GroupByComplexity(Ops, &LI, DT); |
| |
| Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); |
| |
| // If there are any constants, fold them together. |
| unsigned Idx = 0; |
| if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { |
| ++Idx; |
| assert(Idx < Ops.size()); |
| while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { |
| // We found two constants, fold them together! |
| Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); |
| if (Ops.size() == 2) return Ops[0]; |
| Ops.erase(Ops.begin()+1); // Erase the folded element |
| LHSC = cast<SCEVConstant>(Ops[0]); |
| } |
| |
| // If we are left with a constant zero being added, strip it off. |
| if (LHSC->getValue()->isZero()) { |
| Ops.erase(Ops.begin()); |
| --Idx; |
| } |
| |
| if (Ops.size() == 1) return Ops[0]; |
| } |
| |
| // Limit recursion calls depth. |
| if (Depth > MaxArithDepth || hasHugeExpression(Ops)) |
| return getOrCreateAddExpr(Ops, Flags); |
| |
| // Okay, check to see if the same value occurs in the operand list more than |
| // once. If so, merge them together into an multiply expression. Since we |
| // sorted the list, these values are required to be adjacent. |
| Type *Ty = Ops[0]->getType(); |
| bool FoundMatch = false; |
| for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) |
| if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 |
| // Scan ahead to count how many equal operands there are. |
| unsigned Count = 2; |
| while (i+Count != e && Ops[i+Count] == Ops[i]) |
| ++Count; |
| // Merge the values into a multiply. |
| const SCEV *Scale = getConstant(Ty, Count); |
| const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); |
| if (Ops.size() == Count) |
| return Mul; |
| Ops[i] = Mul; |
| Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); |
| --i; e -= Count - 1; |
| FoundMatch = true; |
| } |
| if (FoundMatch) |
| return getAddExpr(Ops, Flags, Depth + 1); |
| |
| // Check for truncates. If all the operands are truncated from the same |
| // type, see if factoring out the truncate would permit the result to be |
| // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) |
| // if the contents of the resulting outer trunc fold to something simple. |
| auto FindTruncSrcType = [&]() -> Type * { |
| // We're ultimately looking to fold an addrec of truncs and muls of only |
| // constants and truncs, so if we find any other types of SCEV |
| // as operands of the addrec then we bail and return nullptr here. |
| // Otherwise, we return the type of the operand of a trunc that we find. |
| if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) |
| return T->getOperand()->getType(); |
| if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { |
| const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); |
| if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) |
| return T->getOperand()->getType(); |
| } |
| return nullptr; |
| }; |
| if (auto *SrcType = FindTruncSrcType()) { |
| SmallVector<const SCEV *, 8> LargeOps; |
| bool Ok = true; |
| // Check all the operands to see if they can be represented in the |
| // source type of the truncate. |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { |
| if (T->getOperand()->getType() != SrcType) { |
| Ok = false; |
| break; |
| } |
| LargeOps.push_back(T->getOperand()); |
| } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { |
| LargeOps.push_back(getAnyExtendExpr(C, SrcType)); |
| } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { |
| SmallVector<const SCEV *, 8> LargeMulOps; |
| for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { |
| if (const SCEVTruncateExpr *T = |
| dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { |
| if (T->getOperand()->getType() != SrcType) { |
| Ok = false; |
| break; |
| } |
| LargeMulOps.push_back(T->getOperand()); |
| } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { |
| LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); |
| } else { |
| Ok = false; |
| break; |
| } |
| } |
| if (Ok) |
| LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); |
| } else { |
| Ok = false; |
| break; |
| } |
| } |
| if (Ok) { |
| // Evaluate the expression in the larger type. |
| const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); |
| // If it folds to something simple, use it. Otherwise, don't. |
| if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) |
| return getTruncateExpr(Fold, Ty); |
| } |
| } |
| |
| // Skip past any other cast SCEVs. |
| while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) |
| ++Idx; |
| |
| // If there are add operands they would be next. |
| if (Idx < Ops.size()) { |
| bool DeletedAdd = false; |
| while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { |
| if (Ops.size() > AddOpsInlineThreshold || |
| Add->getNumOperands() > AddOpsInlineThreshold) |
| break; |
| // If we have an add, expand the add operands onto the end of the operands |
| // list. |
| Ops.erase(Ops.begin()+Idx); |
| Ops.append(Add->op_begin(), Add->op_end()); |
| DeletedAdd = true; |
| } |
| |
| // If we deleted at least one add, we added operands to the end of the list, |
| // and they are not necessarily sorted. Recurse to resort and resimplify |
| // any operands we just acquired. |
| if (DeletedAdd) |
| return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); |
| } |
| |
| // Skip over the add expression until we get to a multiply. |
| while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) |
| ++Idx; |
| |
| // Check to see if there are any folding opportunities present with |
| // operands multiplied by constant values. |
| if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { |
| uint64_t BitWidth = getTypeSizeInBits(Ty); |
| DenseMap<const SCEV *, APInt> M; |
| SmallVector<const SCEV *, 8> NewOps; |
| APInt AccumulatedConstant(BitWidth, 0); |
| if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, |
| Ops.data(), Ops.size(), |
| APInt(BitWidth, 1), *this)) { |
| struct APIntCompare { |
| bool operator()(const APInt &LHS, const APInt &RHS) const { |
| return LHS.ult(RHS); |
| } |
| }; |
| |
| // Some interesting folding opportunity is present, so its worthwhile to |
| // re-generate the operands list. Group the operands by constant scale, |
| // to avoid multiplying by the same constant scale multiple times. |
| std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; |
| for (const SCEV *NewOp : NewOps) |
| MulOpLists[M.find(NewOp)->second].push_back(NewOp); |
| // Re-generate the operands list. |
| Ops.clear(); |
| if (AccumulatedConstant != 0) |
| Ops.push_back(getConstant(AccumulatedConstant)); |
| for (auto &MulOp : MulOpLists) |
| if (MulOp.first != 0) |
| Ops.push_back(getMulExpr( |
| getConstant(MulOp.first), |
| getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), |
| SCEV::FlagAnyWrap, Depth + 1)); |
| if (Ops.empty()) |
| return getZero(Ty); |
| if (Ops.size() == 1) |
| return Ops[0]; |
| return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); |
| } |
| } |
| |
| // If we are adding something to a multiply expression, make sure the |
| // something is not already an operand of the multiply. If so, merge it into |
| // the multiply. |
| for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { |
| const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); |
| for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { |
| const SCEV *MulOpSCEV = Mul->getOperand(MulOp); |
| if (isa<SCEVConstant>(MulOpSCEV)) |
| continue; |
| for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) |
| if (MulOpSCEV == Ops[AddOp]) { |
| // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) |
| const SCEV *InnerMul = Mul->getOperand(MulOp == 0); |
| if (Mul->getNumOperands() != 2) { |
| // If the multiply has more than two operands, we must get the |
| // Y*Z term. |
| SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), |
| Mul->op_begin()+MulOp); |
| MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); |
| InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); |
| } |
| SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; |
| const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); |
| const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, |
| SCEV::FlagAnyWrap, Depth + 1); |
| if (Ops.size() == 2) return OuterMul; |
| if (AddOp < Idx) { |
| Ops.erase(Ops.begin()+AddOp); |
| Ops.erase(Ops.begin()+Idx-1); |
| } else { |
| Ops.erase(Ops.begin()+Idx); |
| Ops.erase(Ops.begin()+AddOp-1); |
| } |
| Ops.push_back(OuterMul); |
| return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); |
| } |
| |
| // Check this multiply against other multiplies being added together. |
| for (unsigned OtherMulIdx = Idx+1; |
| OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); |
| ++OtherMulIdx) { |
| const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); |
| // If MulOp occurs in OtherMul, we can fold the two multiplies |
| // together. |
| for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); |
| OMulOp != e; ++OMulOp) |
| if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { |
| // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) |
| const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); |
| if (Mul->getNumOperands() != 2) { |
| SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), |
| Mul->op_begin()+MulOp); |
| MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); |
| InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); |
| } |
| const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); |
| if (OtherMul->getNumOperands() != 2) { |
| SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), |
| OtherMul->op_begin()+OMulOp); |
| MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); |
| InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); |
| } |
| SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; |
| const SCEV *InnerMulSum = |
| getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); |
| const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, |
| SCEV::FlagAnyWrap, Depth + 1); |
| if (Ops.size() == 2) return OuterMul; |
| Ops.erase(Ops.begin()+Idx); |
| Ops.erase(Ops.begin()+OtherMulIdx-1); |
| Ops.push_back(OuterMul); |
| return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); |
| } |
| } |
| } |
| } |
| |
| // If there are any add recurrences in the operands list, see if any other |
| // added values are loop invariant. If so, we can fold them into the |
| // recurrence. |
| while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) |
| ++Idx; |
| |
| // Scan over all recurrences, trying to fold loop invariants into them. |
| for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { |
| // Scan all of the other operands to this add and add them to the vector if |
| // they are loop invariant w.r.t. the recurrence. |
| SmallVector<const SCEV *, 8> LIOps; |
| const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); |
| const Loop *AddRecLoop = AddRec->getLoop(); |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { |
| LIOps.push_back(Ops[i]); |
| Ops.erase(Ops.begin()+i); |
| --i; --e; |
| } |
| |
| // If we found some loop invariants, fold them into the recurrence. |
| if (!LIOps.empty()) { |
| // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} |
| LIOps.push_back(AddRec->getStart()); |
| |
| SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), |
| AddRec->op_end()); |
| // This follows from the fact that the no-wrap flags on the outer add |
| // expression are applicable on the 0th iteration, when the add recurrence |
| // will be equal to its start value. |
| AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); |
| |
| // Build the new addrec. Propagate the NUW and NSW flags if both the |
| // outer add and the inner addrec are guaranteed to have no overflow. |
| // Always propagate NW. |
| Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); |
| const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); |
| |
| // If all of the other operands were loop invariant, we are done. |
| if (Ops.size() == 1) return NewRec; |
| |
| // Otherwise, add the folded AddRec by the non-invariant parts. |
| for (unsigned i = 0;; ++i) |
| if (Ops[i] == AddRec) { |
| Ops[i] = NewRec; |
| break; |
| } |
| return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); |
| } |
| |
| // Okay, if there weren't any loop invariants to be folded, check to see if |
| // there are multiple AddRec's with the same loop induction variable being |
| // added together. If so, we can fold them. |
| for (unsigned OtherIdx = Idx+1; |
| OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); |
| ++OtherIdx) { |
| // We expect the AddRecExpr's to be sorted in reverse dominance order, |
| // so that the 1st found AddRecExpr is dominated by all others. |
| assert(DT.dominates( |
| cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), |
| AddRec->getLoop()->getHeader()) && |
| "AddRecExprs are not sorted in reverse dominance order?"); |
| if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { |
| // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> |
| SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), |
| AddRec->op_end()); |
| for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); |
| ++OtherIdx) { |
| const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); |
| if (OtherAddRec->getLoop() == AddRecLoop) { |
| for (unsigned i = 0, e = OtherAddRec->getNumOperands(); |
| i != e; ++i) { |
| if (i >= AddRecOps.size()) { |
| AddRecOps.append(OtherAddRec->op_begin()+i, |
| OtherAddRec->op_end()); |
| break; |
| } |
| SmallVector<const SCEV *, 2> TwoOps = { |
| AddRecOps[i], OtherAddRec->getOperand(i)}; |
| AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); |
| } |
| Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; |
| } |
| } |
| // Step size has changed, so we cannot guarantee no self-wraparound. |
| Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); |
| return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); |
| } |
| } |
| |
| // Otherwise couldn't fold anything into this recurrence. Move onto the |
| // next one. |
| } |
| |
| // Okay, it looks like we really DO need an add expr. Check to see if we |
| // already have one, otherwise create a new one. |
| return getOrCreateAddExpr(Ops, Flags); |
| } |
| |
| const SCEV * |
| ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, |
| SCEV::NoWrapFlags Flags) { |
| FoldingSetNodeID ID; |
| ID.AddInteger(scAddExpr); |
| for (const SCEV *Op : Ops) |
| ID.AddPointer(Op); |
| void *IP = nullptr; |
| SCEVAddExpr *S = |
| static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); |
| if (!S) { |
| const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); |
| std::uninitialized_copy(Ops.begin(), Ops.end(), O); |
| S = new (SCEVAllocator) |
| SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); |
| UniqueSCEVs.InsertNode(S, IP); |
| addToLoopUseLists(S); |
| } |
| S->setNoWrapFlags(Flags); |
| return S; |
| } |
| |
| const SCEV * |
| ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, |
| const Loop *L, SCEV::NoWrapFlags Flags) { |
| FoldingSetNodeID ID; |
| ID.AddInteger(scAddRecExpr); |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| ID.AddPointer(Ops[i]); |
| ID.AddPointer(L); |
| void *IP = nullptr; |
| SCEVAddRecExpr *S = |
| static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); |
| if (!S) { |
| const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); |
| std::uninitialized_copy(Ops.begin(), Ops.end(), O); |
| S = new (SCEVAllocator) |
| SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); |
| UniqueSCEVs.InsertNode(S, IP); |
| addToLoopUseLists(S); |
| } |
| S->setNoWrapFlags(Flags); |
| return S; |
| } |
| |
| const SCEV * |
| ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, |
| SCEV::NoWrapFlags Flags) { |
| FoldingSetNodeID ID; |
| ID.AddInteger(scMulExpr); |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| ID.AddPointer(Ops[i]); |
| void *IP = nullptr; |
| SCEVMulExpr *S = |
| static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); |
| if (!S) { |
| const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); |
| std::uninitialized_copy(Ops.begin(), Ops.end(), O); |
| S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), |
| O, Ops.size()); |
| UniqueSCEVs.InsertNode(S, IP); |
| addToLoopUseLists(S); |
| } |
| S->setNoWrapFlags(Flags); |
| return S; |
| } |
| |
| static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { |
| uint64_t k = i*j; |
| if (j > 1 && k / j != i) Overflow = true; |
| return k; |
| } |
| |
| /// Compute the result of "n choose k", the binomial coefficient. If an |
| /// intermediate computation overflows, Overflow will be set and the return will |
| /// be garbage. Overflow is not cleared on absence of overflow. |
| static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { |
| // We use the multiplicative formula: |
| // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . |
| // At each iteration, we take the n-th term of the numeral and divide by the |
| // (k-n)th term of the denominator. This division will always produce an |
| // integral result, and helps reduce the chance of overflow in the |
| // intermediate computations. However, we can still overflow even when the |
| // final result would fit. |
| |
| if (n == 0 || n == k) return 1; |
| if (k > n) return 0; |
| |
| if (k > n/2) |
| k = n-k; |
| |
| uint64_t r = 1; |
| for (uint64_t i = 1; i <= k; ++i) { |
| r = umul_ov(r, n-(i-1), Overflow); |
| r /= i; |
| } |
| return r; |
| } |
| |
| /// Determine if any of the operands in this SCEV are a constant or if |
| /// any of the add or multiply expressions in this SCEV contain a constant. |
| static bool containsConstantInAddMulChain(const SCEV *StartExpr) { |
| struct FindConstantInAddMulChain { |
| bool FoundConstant = false; |
| |
| bool follow(const SCEV *S) { |
| FoundConstant |= isa<SCEVConstant>(S); |
| return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); |
| } |
| |
| bool isDone() const { |
| return FoundConstant; |
| } |
| }; |
| |
| FindConstantInAddMulChain F; |
| SCEVTraversal<FindConstantInAddMulChain> ST(F); |
| ST.visitAll(StartExpr); |
| return F.FoundConstant; |
| } |
| |
| /// Get a canonical multiply expression, or something simpler if possible. |
| const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, |
| SCEV::NoWrapFlags Flags, |
| unsigned Depth) { |
| assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && |
| "only nuw or nsw allowed"); |
| assert(!Ops.empty() && "Cannot get empty mul!"); |
| if (Ops.size() == 1) return Ops[0]; |
| #ifndef NDEBUG |
| Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); |
| for (unsigned i = 1, e = Ops.size(); i != e; ++i) |
| assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && |
| "SCEVMulExpr operand types don't match!"); |
| #endif |
| |
| // Sort by complexity, this groups all similar expression types together. |
| GroupByComplexity(Ops, &LI, DT); |
| |
| Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); |
| |
| // Limit recursion calls depth. |
| if (Depth > MaxArithDepth || hasHugeExpression(Ops)) |
| return getOrCreateMulExpr(Ops, Flags); |
| |
| // If there are any constants, fold them together. |
| unsigned Idx = 0; |
| if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { |
| |
| if (Ops.size() == 2) |
| // C1*(C2+V) -> C1*C2 + C1*V |
| if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) |
| // If any of Add's ops are Adds or Muls with a constant, apply this |
| // transformation as well. |
| // |
| // TODO: There are some cases where this transformation is not |
| // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of |
| // this transformation should be narrowed down. |
| if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) |
| return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), |
| SCEV::FlagAnyWrap, Depth + 1), |
| getMulExpr(LHSC, Add->getOperand(1), |
| SCEV::FlagAnyWrap, Depth + 1), |
| SCEV::FlagAnyWrap, Depth + 1); |
| |
| ++Idx; |
| while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { |
| // We found two constants, fold them together! |
| ConstantInt *Fold = |
| ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); |
| Ops[0] = getConstant(Fold); |
| Ops.erase(Ops.begin()+1); // Erase the folded element |
| if (Ops.size() == 1) return Ops[0]; |
| LHSC = cast<SCEVConstant>(Ops[0]); |
| } |
| |
| // If we are left with a constant one being multiplied, strip it off. |
| if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) { |
| Ops.erase(Ops.begin()); |
| --Idx; |
| } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { |
| // If we have a multiply of zero, it will always be zero. |
| return Ops[0]; |
| } else if (Ops[0]->isAllOnesValue()) { |
| // If we have a mul by -1 of an add, try distributing the -1 among the |
| // add operands. |
| if (Ops.size() == 2) { |
| if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { |
| SmallVector<const SCEV *, 4> NewOps; |
| bool AnyFolded = false; |
| for (const SCEV *AddOp : Add->operands()) { |
| const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, |
| Depth + 1); |
| if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; |
| NewOps.push_back(Mul); |
| } |
| if (AnyFolded) |
| return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); |
| } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { |
| // Negation preserves a recurrence's no self-wrap property. |
| SmallVector<const SCEV *, 4> Operands; |
| for (const SCEV *AddRecOp : AddRec->operands()) |
| Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, |
| Depth + 1)); |
| |
| return getAddRecExpr(Operands, AddRec->getLoop(), |
| AddRec->getNoWrapFlags(SCEV::FlagNW)); |
| } |
| } |
| } |
| |
| if (Ops.size() == 1) |
| return Ops[0]; |
| } |
| |
| // Skip over the add expression until we get to a multiply. |
| while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) |
| ++Idx; |
| |
| // If there are mul operands inline them all into this expression. |
| if (Idx < Ops.size()) { |
| bool DeletedMul = false; |
| while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { |
| if (Ops.size() > MulOpsInlineThreshold) |
| break; |
| // If we have an mul, expand the mul operands onto the end of the |
| // operands list. |
| Ops.erase(Ops.begin()+Idx); |
| Ops.append(Mul->op_begin(), Mul->op_end()); |
| DeletedMul = true; |
| } |
| |
| // If we deleted at least one mul, we added operands to the end of the |
| // list, and they are not necessarily sorted. Recurse to resort and |
| // resimplify any operands we just acquired. |
| if (DeletedMul) |
| return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); |
| } |
| |
| // If there are any add recurrences in the operands list, see if any other |
| // added values are loop invariant. If so, we can fold them into the |
| // recurrence. |
| while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) |
| ++Idx; |
| |
| // Scan over all recurrences, trying to fold loop invariants into them. |
| for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { |
| // Scan all of the other operands to this mul and add them to the vector |
| // if they are loop invariant w.r.t. the recurrence. |
| SmallVector<const SCEV *, 8> LIOps; |
| const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); |
| const Loop *AddRecLoop = AddRec->getLoop(); |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { |
| LIOps.push_back(Ops[i]); |
| Ops.erase(Ops.begin()+i); |
| --i; --e; |
| } |
| |
| // If we found some loop invariants, fold them into the recurrence. |
| if (!LIOps.empty()) { |
| // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} |
| SmallVector<const SCEV *, 4> NewOps; |
| NewOps.reserve(AddRec->getNumOperands()); |
| const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); |
| for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) |
| NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), |
| SCEV::FlagAnyWrap, Depth + 1)); |
| |
| // Build the new addrec. Propagate the NUW and NSW flags if both the |
| // outer mul and the inner addrec are guaranteed to have no overflow. |
| // |
| // No self-wrap cannot be guaranteed after changing the step size, but |
| // will be inferred if either NUW or NSW is true. |
| Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); |
| const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); |
| |
| // If all of the other operands were loop invariant, we are done. |
| if (Ops.size() == 1) return NewRec; |
| |
| // Otherwise, multiply the folded AddRec by the non-invariant parts. |
| for (unsigned i = 0;; ++i) |
| if (Ops[i] == AddRec) { |
| Ops[i] = NewRec; |
| break; |
| } |
| return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); |
| } |
| |
| // Okay, if there weren't any loop invariants to be folded, check to see |
| // if there are multiple AddRec's with the same loop induction variable |
| // being multiplied together. If so, we can fold them. |
| |
| // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> |
| // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ |
| // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z |
| // ]]],+,...up to x=2n}. |
| // Note that the arguments to choose() are always integers with values |
| // known at compile time, never SCEV objects. |
| // |
| // The implementation avoids pointless extra computations when the two |
| // addrec's are of different length (mathematically, it's equivalent to |
| // an infinite stream of zeros on the right). |
| bool OpsModified = false; |
| for (unsigned OtherIdx = Idx+1; |
| OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); |
| ++OtherIdx) { |
| const SCEVAddRecExpr *OtherAddRec = |
| dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); |
| if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) |
| continue; |
| |
| // Limit max number of arguments to avoid creation of unreasonably big |
| // SCEVAddRecs with very complex operands. |
| if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > |
| MaxAddRecSize || isHugeExpression(AddRec) || |
| isHugeExpression(OtherAddRec)) |
| continue; |
| |
| bool Overflow = false; |
| Type *Ty = AddRec->getType(); |
| bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; |
| SmallVector<const SCEV*, 7> AddRecOps; |
| for (int x = 0, xe = AddRec->getNumOperands() + |
| OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { |
| SmallVector <const SCEV *, 7> SumOps; |
| for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { |
| uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); |
| for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), |
| ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); |
| z < ze && !Overflow; ++z) { |
| uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); |
| uint64_t Coeff; |
| if (LargerThan64Bits) |
| Coeff = umul_ov(Coeff1, Coeff2, Overflow); |
| else |
| Coeff = Coeff1*Coeff2; |
| const SCEV *CoeffTerm = getConstant(Ty, Coeff); |
| const SCEV *Term1 = AddRec->getOperand(y-z); |
| const SCEV *Term2 = OtherAddRec->getOperand(z); |
| SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, |
| SCEV::FlagAnyWrap, Depth + 1)); |
| } |
| } |
| if (SumOps.empty()) |
| SumOps.push_back(getZero(Ty)); |
| AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); |
| } |
| if (!Overflow) { |
| const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, |
| SCEV::FlagAnyWrap); |
| if (Ops.size() == 2) return NewAddRec; |
| Ops[Idx] = NewAddRec; |
| Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; |
| OpsModified = true; |
| AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); |
| if (!AddRec) |
| break; |
| } |
| } |
| if (OpsModified) |
| return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); |
| |
| // Otherwise couldn't fold anything into this recurrence. Move onto the |
| // next one. |
| } |
| |
| // Okay, it looks like we really DO need an mul expr. Check to see if we |
| // already have one, otherwise create a new one. |
| return getOrCreateMulExpr(Ops, Flags); |
| } |
| |
| /// Represents an unsigned remainder expression based on unsigned division. |
| const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, |
| const SCEV *RHS) { |
| assert(getEffectiveSCEVType(LHS->getType()) == |
| getEffectiveSCEVType(RHS->getType()) && |
| "SCEVURemExpr operand types don't match!"); |
| |
| // Short-circuit easy cases |
| if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { |
| // If constant is one, the result is trivial |
| if (RHSC->getValue()->isOne()) |
| return getZero(LHS->getType()); // X urem 1 --> 0 |
| |
| // If constant is a power of two, fold into a zext(trunc(LHS)). |
| if (RHSC->getAPInt().isPowerOf2()) { |
| Type *FullTy = LHS->getType(); |
| Type *TruncTy = |
| IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); |
| return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); |
| } |
| } |
| |
| // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) |
| const SCEV *UDiv = getUDivExpr(LHS, RHS); |
| const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); |
| return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); |
| } |
| |
| /// Get a canonical unsigned division expression, or something simpler if |
| /// possible. |
| const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, |
| const SCEV *RHS) { |
| assert(getEffectiveSCEVType(LHS->getType()) == |
| getEffectiveSCEVType(RHS->getType()) && |
| "SCEVUDivExpr operand types don't match!"); |
| |
| if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { |
| if (RHSC->getValue()->isOne()) |
| return LHS; // X udiv 1 --> x |
| // If the denominator is zero, the result of the udiv is undefined. Don't |
| // try to analyze it, because the resolution chosen here may differ from |
| // the resolution chosen in other parts of the compiler. |
| if (!RHSC->getValue()->isZero()) { |
| // Determine if the division can be folded into the operands of |
| // its operands. |
| // TODO: Generalize this to non-constants by using known-bits information. |
| Type *Ty = LHS->getType(); |
| unsigned LZ = RHSC->getAPInt().countLeadingZeros(); |
| unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; |
| // For non-power-of-two values, effectively round the value up to the |
| // nearest power of two. |
| if (!RHSC->getAPInt().isPowerOf2()) |
| ++MaxShiftAmt; |
| IntegerType *ExtTy = |
| IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) |
| if (const SCEVConstant *Step = |
| dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { |
| // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. |
| const APInt &StepInt = Step->getAPInt(); |
| const APInt &DivInt = RHSC->getAPInt(); |
| if (!StepInt.urem(DivInt) && |
| getZeroExtendExpr(AR, ExtTy) == |
| getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), |
| getZeroExtendExpr(Step, ExtTy), |
| AR->getLoop(), SCEV::FlagAnyWrap)) { |
| SmallVector<const SCEV *, 4> Operands; |
| for (const SCEV *Op : AR->operands()) |
| Operands.push_back(getUDivExpr(Op, RHS)); |
| return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); |
| } |
| /// Get a canonical UDivExpr for a recurrence. |
| /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. |
| // We can currently only fold X%N if X is constant. |
| const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); |
| if (StartC && !DivInt.urem(StepInt) && |
| getZeroExtendExpr(AR, ExtTy) == |
| getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), |
| getZeroExtendExpr(Step, ExtTy), |
| AR->getLoop(), SCEV::FlagAnyWrap)) { |
| const APInt &StartInt = StartC->getAPInt(); |
| const APInt &StartRem = StartInt.urem(StepInt); |
| if (StartRem != 0) |
| LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, |
| AR->getLoop(), SCEV::FlagNW); |
| } |
| } |
| // (A*B)/C --> A*(B/C) if safe and B/C can be folded. |
| if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { |
| SmallVector<const SCEV *, 4> Operands; |
| for (const SCEV *Op : M->operands()) |
| Operands.push_back(getZeroExtendExpr(Op, ExtTy)); |
| if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) |
| // Find an operand that's safely divisible. |
| for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { |
| const SCEV *Op = M->getOperand(i); |
| const SCEV *Div = getUDivExpr(Op, RHSC); |
| if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { |
| Operands = SmallVector<const SCEV *, 4>(M->op_begin(), |
| M->op_end()); |
| Operands[i] = Div; |
| return getMulExpr(Operands); |
| } |
| } |
| } |
| |
| // (A/B)/C --> A/(B*C) if safe and B*C can be folded. |
| if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { |
| if (auto *DivisorConstant = |
| dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { |
| bool Overflow = false; |
| APInt NewRHS = |
| DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); |
| if (Overflow) { |
| return getConstant(RHSC->getType(), 0, false); |
| } |
| return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); |
| } |
| } |
| |
| // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. |
| if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { |
| SmallVector<const SCEV *, 4> Operands; |
| for (const SCEV *Op : A->operands()) |
| Operands.push_back(getZeroExtendExpr(Op, ExtTy)); |
| if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { |
| Operands.clear(); |
| for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { |
| const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); |
| if (isa<SCEVUDivExpr>(Op) || |
| getMulExpr(Op, RHS) != A->getOperand(i)) |
| break; |
| Operands.push_back(Op); |
| } |
| if (Operands.size() == A->getNumOperands()) |
| return getAddExpr(Operands); |
| } |
| } |
| |
| // Fold if both operands are constant. |
| if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { |
| Constant *LHSCV = LHSC->getValue(); |
| Constant *RHSCV = RHSC->getValue(); |
| return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, |
| RHSCV))); |
| } |
| } |
| } |
| |
| FoldingSetNodeID ID; |
| ID.AddInteger(scUDivExpr); |
| ID.AddPointer(LHS); |
| ID.AddPointer(RHS); |
| void *IP = nullptr; |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), |
| LHS, RHS); |
| UniqueSCEVs.InsertNode(S, IP); |
| addToLoopUseLists(S); |
| return S; |
| } |
| |
| static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { |
| APInt A = C1->getAPInt().abs(); |
| APInt B = C2->getAPInt().abs(); |
| uint32_t ABW = A.getBitWidth(); |
| uint32_t BBW = B.getBitWidth(); |
| |
| if (ABW > BBW) |
| B = B.zext(ABW); |
| else if (ABW < BBW) |
| A = A.zext(BBW); |
| |
| return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); |
| } |
| |
| /// Get a canonical unsigned division expression, or something simpler if |
| /// possible. There is no representation for an exact udiv in SCEV IR, but we |
| /// can attempt to remove factors from the LHS and RHS. We can't do this when |
| /// it's not exact because the udiv may be clearing bits. |
| const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, |
| const SCEV *RHS) { |
| // TODO: we could try to find factors in all sorts of things, but for now we |
| // just deal with u/exact (multiply, constant). See SCEVDivision towards the |
| // end of this file for inspiration. |
| |
| const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); |
| if (!Mul || !Mul->hasNoUnsignedWrap()) |
| return getUDivExpr(LHS, RHS); |
| |
| if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { |
| // If the mulexpr multiplies by a constant, then that constant must be the |
| // first element of the mulexpr. |
| if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { |
| if (LHSCst == RHSCst) { |
| SmallVector<const SCEV *, 2> Operands; |
| Operands.append(Mul->op_begin() + 1, Mul->op_end()); |
| return getMulExpr(Operands); |
| } |
| |
| // We can't just assume that LHSCst divides RHSCst cleanly, it could be |
| // that there's a factor provided by one of the other terms. We need to |
| // check. |
| APInt Factor = gcd(LHSCst, RHSCst); |
| if (!Factor.isIntN(1)) { |
| LHSCst = |
| cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); |
| RHSCst = |
| cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); |
| SmallVector<const SCEV *, 2> Operands; |
| Operands.push_back(LHSCst); |
| Operands.append(Mul->op_begin() + 1, Mul->op_end()); |
| LHS = getMulExpr(Operands); |
| RHS = RHSCst; |
| Mul = dyn_cast<SCEVMulExpr>(LHS); |
| if (!Mul) |
| return getUDivExactExpr(LHS, RHS); |
| } |
| } |
| } |
| |
| for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { |
| if (Mul->getOperand(i) == RHS) { |
| SmallVector<const SCEV *, 2> Operands; |
| Operands.append(Mul->op_begin(), Mul->op_begin() + i); |
| Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); |
| return getMulExpr(Operands); |
| } |
| } |
| |
| return getUDivExpr(LHS, RHS); |
| } |
| |
| /// Get an add recurrence expression for the specified loop. Simplify the |
| /// expression as much as possible. |
| const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, |
| const Loop *L, |
| SCEV::NoWrapFlags Flags) { |
| SmallVector<const SCEV *, 4> Operands; |
| Operands.push_back(Start); |
| if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) |
| if (StepChrec->getLoop() == L) { |
| Operands.append(StepChrec->op_begin(), StepChrec->op_end()); |
| return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); |
| } |
| |
| Operands.push_back(Step); |
| return getAddRecExpr(Operands, L, Flags); |
| } |
| |
| /// Get an add recurrence expression for the specified loop. Simplify the |
| /// expression as much as possible. |
| const SCEV * |
| ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, |
| const Loop *L, SCEV::NoWrapFlags Flags) { |
| if (Operands.size() == 1) return Operands[0]; |
| #ifndef NDEBUG |
| Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); |
| for (unsigned i = 1, e = Operands.size(); i != e; ++i) |
| assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && |
| "SCEVAddRecExpr operand types don't match!"); |
| for (unsigned i = 0, e = Operands.size(); i != e; ++i) |
| assert(isLoopInvariant(Operands[i], L) && |
| "SCEVAddRecExpr operand is not loop-invariant!"); |
| #endif |
| |
| if (Operands.back()->isZero()) { |
| Operands.pop_back(); |
| return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X |
| } |
| |
| // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and |
| // use that information to infer NUW and NSW flags. However, computing a |
| // BE count requires calling getAddRecExpr, so we may not yet have a |
| // meaningful BE count at this point (and if we don't, we'd be stuck |
| // with a SCEVCouldNotCompute as the cached BE count). |
| |
| Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); |
| |
| // Canonicalize nested AddRecs in by nesting them in order of loop depth. |
| if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { |
| const Loop *NestedLoop = NestedAR->getLoop(); |
| if (L->contains(NestedLoop) |
| ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) |
| : (!NestedLoop->contains(L) && |
| DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { |
| SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), |
| NestedAR->op_end()); |
| Operands[0] = NestedAR->getStart(); |
| // AddRecs require their operands be loop-invariant with respect to their |
| // loops. Don't perform this transformation if it would break this |
| // requirement. |
| bool AllInvariant = all_of( |
| Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); |
| |
| if (AllInvariant) { |
| // Create a recurrence for the outer loop with the same step size. |
| // |
| // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the |
| // inner recurrence has the same property. |
| SCEV::NoWrapFlags OuterFlags = |
| maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); |
| |
| NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); |
| AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { |
| return isLoopInvariant(Op, NestedLoop); |
| }); |
| |
| if (AllInvariant) { |
| // Ok, both add recurrences are valid after the transformation. |
| // |
| // The inner recurrence keeps its NW flag but only keeps NUW/NSW if |
| // the outer recurrence has the same property. |
| SCEV::NoWrapFlags InnerFlags = |
| maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); |
| return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); |
| } |
| } |
| // Reset Operands to its original state. |
| Operands[0] = NestedAR; |
| } |
| } |
| |
| // Okay, it looks like we really DO need an addrec expr. Check to see if we |
| // already have one, otherwise create a new one. |
| return getOrCreateAddRecExpr(Operands, L, Flags); |
| } |
| |
| const SCEV * |
| ScalarEvolution::getGEPExpr(GEPOperator *GEP, |
| const SmallVectorImpl<const SCEV *> &IndexExprs) { |
| const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); |
| // getSCEV(Base)->getType() has the same address space as Base->getType() |
| // because SCEV::getType() preserves the address space. |
| Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); |
| // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP |
| // instruction to its SCEV, because the Instruction may be guarded by control |
| // flow and the no-overflow bits may not be valid for the expression in any |
| // context. This can be fixed similarly to how these flags are handled for |
| // adds. |
| SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW |
| : SCEV::FlagAnyWrap; |
| |
| const SCEV *TotalOffset = getZero(IntIdxTy); |
| // The array size is unimportant. The first thing we do on CurTy is getting |
| // its element type. |
| Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0); |
| for (const SCEV *IndexExpr : IndexExprs) { |
| // Compute the (potentially symbolic) offset in bytes for this index. |
| if (StructType *STy = dyn_cast<StructType>(CurTy)) { |
| // For a struct, add the member offset. |
| ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); |
| unsigned FieldNo = Index->getZExtValue(); |
| const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); |
| |
| // Add the field offset to the running total offset. |
| TotalOffset = getAddExpr(TotalOffset, FieldOffset); |
| |
| // Update CurTy to the type of the field at Index. |
| CurTy = STy->getTypeAtIndex(Index); |
| } else { |
| // Update CurTy to its element type. |
| CurTy = cast<SequentialType>(CurTy)->getElementType(); |
| // For an array, add the element offset, explicitly scaled. |
| const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); |
| // Getelementptr indices are signed. |
| IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); |
| |
| // Multiply the index by the element size to compute the element offset. |
| const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); |
| |
| // Add the element offset to the running total offset. |
| TotalOffset = getAddExpr(TotalOffset, LocalOffset); |
| } |
| } |
| |
| // Add the total offset from all the GEP indices to the base. |
| return getAddExpr(BaseExpr, TotalOffset, Wrap); |
| } |
| |
| std::tuple<const SCEV *, FoldingSetNodeID, void *> |
| ScalarEvolution::findExistingSCEVInCache(int SCEVType, |
| ArrayRef<const SCEV *> Ops) { |
| FoldingSetNodeID ID; |
| void *IP = nullptr; |
| ID.AddInteger(SCEVType); |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| ID.AddPointer(Ops[i]); |
| return std::tuple<const SCEV *, FoldingSetNodeID, void *>( |
| UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP); |
| } |
| |
| const SCEV *ScalarEvolution::getMinMaxExpr(unsigned Kind, |
| SmallVectorImpl<const SCEV *> &Ops) { |
| assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); |
| if (Ops.size() == 1) return Ops[0]; |
| #ifndef NDEBUG |
| Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); |
| for (unsigned i = 1, e = Ops.size(); i != e; ++i) |
| assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && |
| "Operand types don't match!"); |
| #endif |
| |
| bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; |
| bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; |
| |
| // Sort by complexity, this groups all similar expression types together. |
| GroupByComplexity(Ops, &LI, DT); |
| |
| // Check if we have created the same expression before. |
| if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) { |
| return S; |
| } |
| |
| // If there are any constants, fold them together. |
| unsigned Idx = 0; |
| if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { |
| ++Idx; |
| assert(Idx < Ops.size()); |
| auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { |
| if (Kind == scSMaxExpr) |
| return APIntOps::smax(LHS, RHS); |
| else if (Kind == scSMinExpr) |
| return APIntOps::smin(LHS, RHS); |
| else if (Kind == scUMaxExpr) |
| return APIntOps::umax(LHS, RHS); |
| else if (Kind == scUMinExpr) |
| return APIntOps::umin(LHS, RHS); |
| llvm_unreachable("Unknown SCEV min/max opcode"); |
| }; |
| |
| while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { |
| // We found two constants, fold them together! |
| ConstantInt *Fold = ConstantInt::get( |
| getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); |
| Ops[0] = getConstant(Fold); |
| Ops.erase(Ops.begin()+1); // Erase the folded element |
| if (Ops.size() == 1) return Ops[0]; |
| LHSC = cast<SCEVConstant>(Ops[0]); |
| } |
| |
| bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); |
| bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); |
| |
| if (IsMax ? IsMinV : IsMaxV) { |
| // If we are left with a constant minimum(/maximum)-int, strip it off. |
| Ops.erase(Ops.begin()); |
| --Idx; |
| } else if (IsMax ? IsMaxV : IsMinV) { |
| // If we have a max(/min) with a constant maximum(/minimum)-int, |
| // it will always be the extremum. |
| return LHSC; |
| } |
| |
| if (Ops.size() == 1) return Ops[0]; |
| } |
| |
| // Find the first operation of the same kind |
| while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) |
| ++Idx; |
| |
| // Check to see if one of the operands is of the same kind. If so, expand its |
| // operands onto our operand list, and recurse to simplify. |
| if (Idx < Ops.size()) { |
| bool DeletedAny = false; |
| while (Ops[Idx]->getSCEVType() == Kind) { |
| const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); |
| Ops.erase(Ops.begin()+Idx); |
| Ops.append(SMME->op_begin(), SMME->op_end()); |
| DeletedAny = true; |
| } |
| |
| if (DeletedAny) |
| return getMinMaxExpr(Kind, Ops); |
| } |
| |
| // Okay, check to see if the same value occurs in the operand list twice. If |
| // so, delete one. Since we sorted the list, these values are required to |
| // be adjacent. |
| llvm::CmpInst::Predicate GEPred = |
| IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; |
| llvm::CmpInst::Predicate LEPred = |
| IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; |
| llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; |
| llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; |
| for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { |
| if (Ops[i] == Ops[i + 1] || |
| isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { |
| // X op Y op Y --> X op Y |
| // X op Y --> X, if we know X, Y are ordered appropriately |
| Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); |
| --i; |
| --e; |
| } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], |
| Ops[i + 1])) { |
| // X op Y --> Y, if we know X, Y are ordered appropriately |
| Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); |
| --i; |
| --e; |
| } |
| } |
| |
| if (Ops.size() == 1) return Ops[0]; |
| |
| assert(!Ops.empty() && "Reduced smax down to nothing!"); |
| |
| // Okay, it looks like we really DO need an expr. Check to see if we |
| // already have one, otherwise create a new one. |
| const SCEV *ExistingSCEV; |
| FoldingSetNodeID ID; |
| void *IP; |
| std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops); |
| if (ExistingSCEV) |
| return ExistingSCEV; |
| const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); |
| std::uninitialized_copy(Ops.begin(), Ops.end(), O); |
| SCEV *S = new (SCEVAllocator) SCEVMinMaxExpr( |
| ID.Intern(SCEVAllocator), static_cast<SCEVTypes>(Kind), O, Ops.size()); |
| |
| UniqueSCEVs.InsertNode(S, IP); |
| addToLoopUseLists(S); |
| return S; |
| } |
| |
| const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { |
| SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; |
| return getSMaxExpr(Ops); |
| } |
| |
| const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { |
| return getMinMaxExpr(scSMaxExpr, Ops); |
| } |
| |
| const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { |
| SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; |
| return getUMaxExpr(Ops); |
| } |
| |
| const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { |
| return getMinMaxExpr(scUMaxExpr, Ops); |
| } |
| |
| const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, |
| const SCEV *RHS) { |
| SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; |
| return getSMinExpr(Ops); |
| } |
| |
| const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { |
| return getMinMaxExpr(scSMinExpr, Ops); |
| } |
| |
| const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, |
| const SCEV *RHS) { |
| SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; |
| return getUMinExpr(Ops); |
| } |
| |
| const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { |
| return getMinMaxExpr(scUMinExpr, Ops); |
| } |
| |
| const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { |
| // We can bypass creating a target-independent |
| // constant expression and then folding it back into a ConstantInt. |
| // This is just a compile-time optimization. |
| return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); |
| } |
| |
| const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, |
| StructType *STy, |
| unsigned FieldNo) { |
| // We can bypass creating a target-independent |
| // constant expression and then folding it back into a ConstantInt. |
| // This is just a compile-time optimization. |
| return getConstant( |
| IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); |
| } |
| |
| const SCEV *ScalarEvolution::getUnknown(Value *V) { |
| // Don't attempt to do anything other than create a SCEVUnknown object |
| // here. createSCEV only calls getUnknown after checking for all other |
| // interesting possibilities, and any other code that calls getUnknown |
| // is doing so in order to hide a value from SCEV canonicalization. |
| |
| FoldingSetNodeID ID; |
| ID.AddInteger(scUnknown); |
| ID.AddPointer(V); |
| void *IP = nullptr; |
| if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { |
| assert(cast<SCEVUnknown>(S)->getValue() == V && |
| "Stale SCEVUnknown in uniquing map!"); |
| return S; |
| } |
| SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, |
| FirstUnknown); |
| FirstUnknown = cast<SCEVUnknown>(S); |
| UniqueSCEVs.InsertNode(S, IP); |
| return S; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Basic SCEV Analysis and PHI Idiom Recognition Code |
| // |
| |
| /// Test if values of the given type are analyzable within the SCEV |
| /// framework. This primarily includes integer types, and it can optionally |
| /// include pointer types if the ScalarEvolution class has access to |
| /// target-specific information. |
| bool ScalarEvolution::isSCEVable(Type *Ty) const { |
| // Integers and pointers are always SCEVable. |
| return Ty->isIntOrPtrTy(); |
| } |
| |
| /// Return the size in bits of the specified type, for which isSCEVable must |
| /// return true. |
| uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { |
| assert(isSCEVable(Ty) && "Type is not SCEVable!"); |
| if (Ty->isPointerTy()) |
| return getDataLayout().getIndexTypeSizeInBits(Ty); |
| return getDataLayout().getTypeSizeInBits(Ty); |
| } |
| |
| /// Return a type with the same bitwidth as the given type and which represents |
| /// how SCEV will treat the given type, for which isSCEVable must return |
| /// true. For pointer types, this is the pointer index sized integer type. |
| Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { |
| assert(isSCEVable(Ty) && "Type is not SCEVable!"); |
| |
| if (Ty->isIntegerTy()) |
| return Ty; |
| |
| // The only other support type is pointer. |
| assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); |
| return getDataLayout().getIndexType(Ty); |
| } |
| |
| Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { |
| return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; |
| } |
| |
| const SCEV *ScalarEvolution::getCouldNotCompute() { |
| return CouldNotCompute.get(); |
| } |
| |
| bool ScalarEvolution::checkValidity(const SCEV *S) const { |
| bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { |
| auto *SU = dyn_cast<SCEVUnknown>(S); |
| return SU && SU->getValue() == nullptr; |
| }); |
| |
| return !ContainsNulls; |
| } |
| |
| bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { |
| HasRecMapType::iterator I = HasRecMap.find(S); |
| if (I != HasRecMap.end()) |
| return I->second; |
| |
| bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>); |
| HasRecMap.insert({S, FoundAddRec}); |
| return FoundAddRec; |
| } |
| |
| /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. |
| /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an |
| /// offset I, then return {S', I}, else return {\p S, nullptr}. |
| static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { |
| const auto *Add = dyn_cast<SCEVAddExpr>(S); |
| if (!Add) |
| return {S, nullptr}; |
| |
| if (Add->getNumOperands() != 2) |
| return {S, nullptr}; |
| |
| auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); |
| if (!ConstOp) |
| return {S, nullptr}; |
| |
| return {Add->getOperand(1), ConstOp->getValue()}; |
| } |
| |
| /// Return the ValueOffsetPair set for \p S. \p S can be represented |
| /// by the value and offset from any ValueOffsetPair in the set. |
| SetVector<ScalarEvolution::ValueOffsetPair> * |
| ScalarEvolution::getSCEVValues(const SCEV *S) { |
| ExprValueMapType::iterator SI = ExprValueMap.find_as(S); |
| if (SI == ExprValueMap.end()) |
| return nullptr; |
| #ifndef NDEBUG |
| if (VerifySCEVMap) { |
| // Check there is no dangling Value in the set returned. |
| for (const auto &VE : SI->second) |
| assert(ValueExprMap.count(VE.first)); |
| } |
| #endif |
| return &SI->second; |
| } |
| |
| /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) |
| /// cannot be used separately. eraseValueFromMap should be used to remove |
| /// V from ValueExprMap and ExprValueMap at the same time. |
| void ScalarEvolution::eraseValueFromMap(Value *V) { |
| ValueExprMapType::iterator I = ValueExprMap.find_as(V); |
| if (I != ValueExprMap.end()) { |
| const SCEV *S = I->second; |
| // Remove {V, 0} from the set of ExprValueMap[S] |
| if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) |
| SV->remove({V, nullptr}); |
| |
| // Remove {V, Offset} from the set of ExprValueMap[Stripped] |
| const SCEV *Stripped; |
| ConstantInt *Offset; |
| std::tie(Stripped, Offset) = splitAddExpr(S); |
| if (Offset != nullptr) { |
| if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) |
| SV->remove({V, Offset}); |
| } |
| ValueExprMap.erase(V); |
| } |
| } |
| |
| /// Check whether value has nuw/nsw/exact set but SCEV does not. |
| /// TODO: In reality it is better to check the poison recursively |
| /// but this is better than nothing. |
| static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { |
| if (auto *I = dyn_cast<Instruction>(V)) { |
| if (isa<OverflowingBinaryOperator>(I)) { |
| if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { |
| if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) |
| return true; |
| if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) |
| return true; |
| } |
| } else if (isa<PossiblyExactOperator>(I) && I->isExact()) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Return an existing SCEV if it exists, otherwise analyze the expression and |
| /// create a new one. |
| const SCEV *ScalarEvolution::getSCEV(Value *V) { |
| assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); |
| |
| const SCEV *S = getExistingSCEV(V); |
| if (S == nullptr) { |
| S = createSCEV(V); |
| // During PHI resolution, it is possible to create two SCEVs for the same |
| // V, so it is needed to double check whether V->S is inserted into |
| // ValueExprMap before insert S->{V, 0} into ExprValueMap. |
| std::pair<ValueExprMapType::iterator, bool> Pair = |
| ValueExprMap.insert({SCEVCallbackVH(V, this), S}); |
| if (Pair.second && !SCEVLostPoisonFlags(S, V)) { |
| ExprValueMap[S].insert({V, nullptr}); |
| |
| // If S == Stripped + Offset, add Stripped -> {V, Offset} into |
| // ExprValueMap. |
| const SCEV *Stripped = S; |
| ConstantInt *Offset = nullptr; |
| std::tie(Stripped, Offset) = splitAddExpr(S); |
| // If stripped is SCEVUnknown, don't bother to save |
| // Stripped -> {V, offset}. It doesn't simplify and sometimes even |
| // increase the complexity of the expansion code. |
| // If V is GetElementPtrInst, don't save Stripped -> {V, offset} |
| // because it may generate add/sub instead of GEP in SCEV expansion. |
| if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && |
| !isa<GetElementPtrInst>(V)) |
| ExprValueMap[Stripped].insert({V, Offset}); |
| } |
| } |
| return S; |
| } |
| |
| const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { |
| assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); |
| |
| ValueExprMapType::iterator I = ValueExprMap.find_as(V); |
| if (I != ValueExprMap.end()) { |
| const SCEV *S = I->second; |
| if (checkValidity(S)) |
| return S; |
| eraseValueFromMap(V); |
| forgetMemoizedResults(S); |
| } |
| return nullptr; |
| } |
| |
| /// Return a SCEV corresponding to -V = -1*V |
| const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, |
| SCEV::NoWrapFlags Flags) { |
| if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) |
| return getConstant( |
| cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); |
| |
| Type *Ty = V->getType(); |
| Ty = getEffectiveSCEVType(Ty); |
| return getMulExpr( |
| V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); |
| } |
| |
| /// If Expr computes ~A, return A else return nullptr |
| static const SCEV *MatchNotExpr(const SCEV *Expr) { |
| const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); |
| if (!Add || Add->getNumOperands() != 2 || |
| !Add->getOperand(0)->isAllOnesValue()) |
| return nullptr; |
| |
| const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); |
| if (!AddRHS || AddRHS->getNumOperands() != 2 || |
| !AddRHS->getOperand(0)->isAllOnesValue()) |
| return nullptr; |
| |
| return AddRHS->getOperand(1); |
| } |
| |
| /// Return a SCEV corresponding to ~V = -1-V |
| const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { |
| if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) |
| return getConstant( |
| cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); |
| |
| // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) |
| if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { |
| auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { |
| SmallVector<const SCEV *, 2> MatchedOperands; |
| for (const SCEV *Operand : MME->operands()) { |
| const SCEV *Matched = MatchNotExpr(Operand); |
| if (!Matched) |
| return (const SCEV *)nullptr; |
| MatchedOperands.push_back(Matched); |
| } |
| return getMinMaxExpr( |
| SCEVMinMaxExpr::negate(static_cast<SCEVTypes>(MME->getSCEVType())), |
| MatchedOperands); |
| }; |
| if (const SCEV *Replaced = MatchMinMaxNegation(MME)) |
| return Replaced; |
| } |
| |
| Type *Ty = V->getType(); |
| Ty = getEffectiveSCEVType(Ty); |
| const SCEV *AllOnes = |
| getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); |
| return getMinusSCEV(AllOnes, V); |
| } |
| |
| const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, |
| SCEV::NoWrapFlags Flags, |
| unsigned Depth) { |
| // Fast path: X - X --> 0. |
| if (LHS == RHS) |
| return getZero(LHS->getType()); |
| |
| // We represent LHS - RHS as LHS + (-1)*RHS. This transformation |
| // makes it so that we cannot make much use of NUW. |
| auto AddFlags = SCEV::FlagAnyWrap; |
| const bool RHSIsNotMinSigned = |
| !getSignedRangeMin(RHS).isMinSignedValue(); |
| if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { |
| // Let M be the minimum representable signed value. Then (-1)*RHS |
| // signed-wraps if and only if RHS is M. That can happen even for |
| // a NSW subtraction because e.g. (-1)*M signed-wraps even though |
| // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + |
| // (-1)*RHS, we need to prove that RHS != M. |
| // |
| // If LHS is non-negative and we know that LHS - RHS does not |
| // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap |
| // either by proving that RHS > M or that LHS >= 0. |
| if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { |
| AddFlags = SCEV::FlagNSW; |
| } |
| } |
| |
| // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - |
| // RHS is NSW and LHS >= 0. |
| // |
| // The difficulty here is that the NSW flag may have been proven |
| // relative to a loop that is to be found in a recurrence in LHS and |
| // not in RHS. Applying NSW to (-1)*M may then let the NSW have a |
| // larger scope than intended. |
| auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; |
| |
| return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); |
| } |
| |
| const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, |
| unsigned Depth) { |
| Type *SrcTy = V->getType(); |
| assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
| "Cannot truncate or zero extend with non-integer arguments!"); |
| if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) |
| return V; // No conversion |
| if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) |
| return getTruncateExpr(V, Ty, Depth); |
| return getZeroExtendExpr(V, Ty, Depth); |
| } |
| |
| const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, |
| unsigned Depth) { |
| Type *SrcTy = V->getType(); |
| assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
| "Cannot truncate or zero extend with non-integer arguments!"); |
| if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) |
| return V; // No conversion |
| if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) |
| return getTruncateExpr(V, Ty, Depth); |
| return getSignExtendExpr(V, Ty, Depth); |
| } |
| |
| const SCEV * |
| ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { |
| Type *SrcTy = V->getType(); |
| assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
| "Cannot noop or zero extend with non-integer arguments!"); |
| assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && |
| "getNoopOrZeroExtend cannot truncate!"); |
| if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) |
| return V; // No conversion |
| return getZeroExtendExpr(V, Ty); |
| } |
| |
| const SCEV * |
| ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { |
| Type *SrcTy = V->getType(); |
| assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
| "Cannot noop or sign extend with non-integer arguments!"); |
| assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && |
| "getNoopOrSignExtend cannot truncate!"); |
| if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) |
| return V; // No conversion |
| return getSignExtendExpr(V, Ty); |
| } |
| |
| const SCEV * |
| ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { |
| Type *SrcTy = V->getType(); |
| assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
| "Cannot noop or any extend with non-integer arguments!"); |
| assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && |
| "getNoopOrAnyExtend cannot truncate!"); |
| if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) |
| return V; // No conversion |
| return getAnyExtendExpr(V, Ty); |
| } |
| |
| const SCEV * |
| ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { |
| Type *SrcTy = V->getType(); |
| assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
| "Cannot truncate or noop with non-integer arguments!"); |
| assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && |
| "getTruncateOrNoop cannot extend!"); |
| if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) |
| return V; // No conversion |
| return getTruncateExpr(V, Ty); |
| } |
| |
| const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, |
| const SCEV *RHS) { |
| const SCEV *PromotedLHS = LHS; |
| const SCEV *PromotedRHS = RHS; |
| |
| if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) |
| PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); |
| else |
| PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); |
| |
| return getUMaxExpr(PromotedLHS, PromotedRHS); |
| } |
| |
| const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, |
| const SCEV *RHS) { |
| SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; |
| return getUMinFromMismatchedTypes(Ops); |
| } |
| |
| const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( |
| SmallVectorImpl<const SCEV *> &Ops) { |
| assert(!Ops.empty() && "At least one operand must be!"); |
| // Trivial case. |
| if (Ops.size() == 1) |
| return Ops[0]; |
| |
| // Find the max type first. |
| Type *MaxType = nullptr; |
| for (auto *S : Ops) |
| if (MaxType) |
| MaxType = getWiderType(MaxType, S->getType()); |
| else |
| MaxType = S->getType(); |
| |
| // Extend all ops to max type. |
| SmallVector<const SCEV *, 2> PromotedOps; |
| for (auto *S : Ops) |
| PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); |
| |
| // Generate umin. |
| return getUMinExpr(PromotedOps); |
| } |
| |
| const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { |
| // A pointer operand may evaluate to a nonpointer expression, such as null. |
| if (!V->getType()->isPointerTy()) |
| return V; |
| |
| if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { |
| return getPointerBase(Cast->getOperand()); |
| } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { |
| const SCEV *PtrOp = nullptr; |
| for (const SCEV *NAryOp : NAry->operands()) { |
| if (NAryOp->getType()->isPointerTy()) { |
| // Cannot find the base of an expression with multiple pointer operands. |
| if (PtrOp) |
| return V; |
| PtrOp = NAryOp; |
| } |
| } |
| if (!PtrOp) |
| return V; |
| return getPointerBase(PtrOp); |
| } |
| return V; |
| } |
| |
| /// Push users of the given Instruction onto the given Worklist. |
| static void |
| PushDefUseChildren(Instruction *I, |
| SmallVectorImpl<Instruction *> &Worklist) { |
| // Push the def-use children onto the Worklist stack. |
| for (User *U : I->users()) |
| Worklist.push_back(cast<Instruction>(U)); |
| } |
| |
| void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { |
| SmallVector<Instruction *, 16> Worklist; |
| PushDefUseChildren(PN, Worklist); |
| |
| SmallPtrSet<Instruction *, 8> Visited; |
| Visited.insert(PN); |
| while (!Worklist.empty()) { |
| Instruction *I = Worklist.pop_back_val(); |
| if (!Visited.insert(I).second) |
| continue; |
| |
| auto It = ValueExprMap.find_as(static_cast<Value *>(I)); |
| if (It != ValueExprMap.end()) { |
| const SCEV *Old = It->second; |
| |
| // Short-circuit the def-use traversal if the symbolic name |
| // ceases to appear in expressions. |
| if (Old != SymName && !hasOperand(Old, SymName)) |
| continue; |
| |
| // SCEVUnknown for a PHI either means that it has an unrecognized |
| // structure, it's a PHI that's in the progress of being computed |
| // by createNodeForPHI, or it's a single-value PHI. In the first case, |
| // additional loop trip count information isn't going to change anything. |
| // In the second case, createNodeForPHI will perform the necessary |
| // updates on its own when it gets to that point. In the third, we do |
| // want to forget the SCEVUnknown. |
| if (!isa<PHINode>(I) || |
| !isa<SCEVUnknown>(Old) || |
| (I != PN && Old == SymName)) { |
| eraseValueFromMap(It->first); |
| forgetMemoizedResults(Old); |
| } |
| } |
| |
| PushDefUseChildren(I, Worklist); |
| } |
| } |
| |
| namespace { |
| |
| /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start |
| /// expression in case its Loop is L. If it is not L then |
| /// if IgnoreOtherLoops is true then use AddRec itself |
| /// otherwise rewrite cannot be done. |
| /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. |
| class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { |
| public: |
| static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, |
| bool IgnoreOtherLoops = true) { |
| SCEVInitRewriter Rewriter(L, SE); |
| const SCEV *Result = Rewriter.visit(S); |
| if (Rewriter.hasSeenLoopVariantSCEVUnknown()) |
| return SE.getCouldNotCompute(); |
| return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops |
| ? SE.getCouldNotCompute() |
| : Result; |
| } |
| |
| const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
| if (!SE.isLoopInvariant(Expr, L)) |
| SeenLoopVariantSCEVUnknown = true; |
| return Expr; |
| } |
| |
| const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { |
| // Only re-write AddRecExprs for this loop. |
| if (Expr->getLoop() == L) |
| return Expr->getStart(); |
| SeenOtherLoops = true; |
| return Expr; |
| } |
| |
| bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } |
| |
| bool hasSeenOtherLoops() { return SeenOtherLoops; } |
| |
| private: |
| explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) |
| : SCEVRewriteVisitor(SE), L(L) {} |
| |
| const Loop *L; |
| bool SeenLoopVariantSCEVUnknown = false; |
| bool SeenOtherLoops = false; |
| }; |
| |
| /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post |
| /// increment expression in case its Loop is L. If it is not L then |
| /// use AddRec itself. |
| /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. |
| class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { |
| public: |
| static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { |
| SCEVPostIncRewriter Rewriter(L, SE); |
| const SCEV *Result = Rewriter.visit(S); |
| return Rewriter.hasSeenLoopVariantSCEVUnknown() |
| ? SE.getCouldNotCompute() |
| : Result; |
| } |
| |
| const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
| if (!SE.isLoopInvariant(Expr, L)) |
| SeenLoopVariantSCEVUnknown = true; |
| return Expr; |
| } |
| |
| const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { |
| // Only re-write AddRecExprs for this loop. |
| if (Expr->getLoop() == L) |
| return Expr->getPostIncExpr(SE); |
| SeenOtherLoops = true; |
| return Expr; |
| } |
| |
| bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } |
| |
| bool hasSeenOtherLoops() { return SeenOtherLoops; } |
| |
| private: |
| explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) |
| : SCEVRewriteVisitor(SE), L(L) {} |
| |
| const Loop *L; |
| bool SeenLoopVariantSCEVUnknown = false; |
| bool SeenOtherLoops = false; |
| }; |
| |
| /// This class evaluates the compare condition by matching it against the |
| /// condition of loop latch. If there is a match we assume a true value |
| /// for the condition while building SCEV nodes. |
| class SCEVBackedgeConditionFolder |
| : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { |
| public: |
| static const SCEV *rewrite(const SCEV *S, const Loop *L, |
| ScalarEvolution &SE) { |
| bool IsPosBECond = false; |
| Value *BECond = nullptr; |
| if (BasicBlock *Latch = L->getLoopLatch()) { |
| BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); |
| if (BI && BI->isConditional()) { |
| assert(BI->getSuccessor(0) != BI->getSuccessor(1) && |
| "Both outgoing branches should not target same header!"); |
| BECond = BI->getCondition(); |
| IsPosBECond = BI->getSuccessor(0) == L->getHeader(); |
| } else { |
| return S; |
| } |
| } |
| SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); |
| return Rewriter.visit(S); |
| } |
| |
| const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
| const SCEV *Result = Expr; |
| bool InvariantF = SE.isLoopInvariant(Expr, L); |
| |
| if (!InvariantF) { |
| Instruction *I = cast<Instruction>(Expr->getValue()); |
| switch (I->getOpcode()) { |
| case Instruction::Select: { |
| SelectInst *SI = cast<SelectInst>(I); |
| Optional<const SCEV *> Res = |
| compareWithBackedgeCondition(SI->getCondition()); |
| if (Res.hasValue()) { |
| bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); |
| Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); |
| } |
| break; |
| } |
| default: { |
| Optional<const SCEV *> Res = compareWithBackedgeCondition(I); |
| if (Res.hasValue()) |
| Result = Res.getValue(); |
| break; |
| } |
| } |
| } |
| return Result; |
| } |
| |
| private: |
| explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, |
| bool IsPosBECond, ScalarEvolution &SE) |
| : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), |
| IsPositiveBECond(IsPosBECond) {} |
| |
| Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); |
| |
| const Loop *L; |
| /// Loop back condition. |
| Value *BackedgeCond = nullptr; |
| /// Set to true if loop back is on positive branch condition. |
| bool IsPositiveBECond; |
| }; |
| |
| Optional<const SCEV *> |
| SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { |
| |
| // If value matches the backedge condition for loop latch, |
| // then return a constant evolution node based on loopback |
| // branch taken. |
| if (BackedgeCond == IC) |
| return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) |
| : SE.getZero(Type::getInt1Ty(SE.getContext())); |
| return None; |
| } |
| |
| class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { |
| public: |
| static const SCEV *rewrite(const SCEV *S, const Loop *L, |
| ScalarEvolution &SE) { |
| SCEVShiftRewriter Rewriter(L, SE); |
| const SCEV *Result = Rewriter.visit(S); |
| return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); |
| } |
| |
| const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
| // Only allow AddRecExprs for this loop. |
| if (!SE.isLoopInvariant(Expr, L)) |
| Valid = false; |
| return Expr; |
| } |
| |
| const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { |
| if (Expr->getLoop() == L && Expr->isAffine()) |
| return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); |
| Valid = false; |
| return Expr; |
| } |
| |
| bool isValid() { return Valid; } |
| |
| private: |
| explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) |
| : SCEVRewriteVisitor(SE), L(L) {} |
| |
| const Loop *L; |
| bool Valid = true; |
| }; |
| |
| } // end anonymous namespace |
| |
| SCEV::NoWrapFlags |
| ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { |
| if (!AR->isAffine()) |
| return SCEV::FlagAnyWrap; |
| |
| using OBO = OverflowingBinaryOperator; |
| |
| SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; |
| |
| if (!AR->hasNoSignedWrap()) { |
| ConstantRange AddRecRange = getSignedRange(AR); |
| ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); |
| |
| auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Add, IncRange, OBO::NoSignedWrap); |
| if (NSWRegion.contains(AddRecRange)) |
| Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); |
| } |
| |
| if (!AR->hasNoUnsignedWrap()) { |
| ConstantRange AddRecRange = getUnsignedRange(AR); |
| ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); |
| |
| auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Add, IncRange, OBO::NoUnsignedWrap); |
| if (NUWRegion.contains(AddRecRange)) |
| Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); |
| } |
| |
| return Result; |
| } |
| |
| namespace { |
| |
| /// Represents an abstract binary operation. This may exist as a |
| /// normal instruction or constant expression, or may have been |
| /// derived from an expression tree. |
| struct BinaryOp { |
| unsigned Opcode; |
| Value *LHS; |
| Value *RHS; |
| bool IsNSW = false; |
| bool IsNUW = false; |
| |
| /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or |
| /// constant expression. |
| Operator *Op = nullptr; |
| |
| explicit BinaryOp(Operator *Op) |
| : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), |
| Op(Op) { |
| if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { |
| IsNSW = OBO->hasNoSignedWrap(); |
| IsNUW = OBO->hasNoUnsignedWrap(); |
| } |
| } |
| |
| explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, |
| bool IsNUW = false) |
| : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Try to map \p V into a BinaryOp, and return \c None on failure. |
| static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { |
| auto *Op = dyn_cast<Operator>(V); |
| if (!Op) |
| return None; |
| |
| // Implementation detail: all the cleverness here should happen without |
| // creating new SCEV expressions -- our caller knowns tricks to avoid creating |
| // SCEV expressions when possible, and we should not break that. |
| |
| switch (Op->getOpcode()) { |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| case Instruction::UDiv: |
| case Instruction::URem: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::AShr: |
| case Instruction::Shl: |
| return BinaryOp(Op); |
| |
| case Instruction::Xor: |
| if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) |
| // If the RHS of the xor is a signmask, then this is just an add. |
| // Instcombine turns add of signmask into xor as a strength reduction step. |
| if (RHSC->getValue().isSignMask()) |
| return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); |
| return BinaryOp(Op); |
| |
| case Instruction::LShr: |
| // Turn logical shift right of a constant into a unsigned divide. |
| if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { |
| uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); |
| |
| // If the shift count is not less than the bitwidth, the result of |
| // the shift is undefined. Don't try to analyze it, because the |
| // resolution chosen here may differ from the resolution chosen in |
| // other parts of the compiler. |
| if (SA->getValue().ult(BitWidth)) { |
| Constant *X = |
| ConstantInt::get(SA->getContext(), |
| APInt::getOneBitSet(BitWidth, SA->getZExtValue())); |
| return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); |
| } |
| } |
| return BinaryOp(Op); |
| |
| case Instruction::ExtractValue: { |
| auto *EVI = cast<ExtractValueInst>(Op); |
| if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) |
| break; |
| |
| auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); |
| if (!WO) |
| break; |
| |
| Instruction::BinaryOps BinOp = WO->getBinaryOp(); |
| bool Signed = WO->isSigned(); |
| // TODO: Should add nuw/nsw flags for mul as well. |
| if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) |
| return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); |
| |
| // Now that we know that all uses of the arithmetic-result component of |
| // CI are guarded by the overflow check, we can go ahead and pretend |
| // that the arithmetic is non-overflowing. |
| return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), |
| /* IsNSW = */ Signed, /* IsNUW = */ !Signed); |
| } |
| |
| default: |
| break; |
| } |
| |
| // Recognise intrinsic loop.decrement.reg, and as this has exactly the same |
| // semantics as a Sub, return a binary sub expression. |
| if (auto *II = dyn_cast<IntrinsicInst>(V)) |
| if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) |
| return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); |
| |
| return None; |
| } |
| |
| /// Helper function to createAddRecFromPHIWithCasts. We have a phi |
| /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via |
| /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the |
| /// way. This function checks if \p Op, an operand of this SCEVAddExpr, |
| /// follows one of the following patterns: |
| /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) |
| /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) |
| /// If the SCEV expression of \p Op conforms with one of the expected patterns |
| /// we return the type of the truncation operation, and indicate whether the |
| /// truncated type should be treated as signed/unsigned by setting |
| /// \p Signed to true/false, respectively. |
| static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, |
| bool &Signed, ScalarEvolution &SE) { |
| // The case where Op == SymbolicPHI (that is, with no type conversions on |
| // the way) is handled by the regular add recurrence creating logic and |
| // would have already been triggered in createAddRecForPHI. Reaching it here |
| // means that createAddRecFromPHI had failed for this PHI before (e.g., |
| // because one of the other operands of the SCEVAddExpr updating this PHI is |
| // not invariant). |
| // |
| // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in |
| // this case predicates that allow us to prove that Op == SymbolicPHI will |
| // be added. |
| if (Op == SymbolicPHI) |
| return nullptr; |
| |
| unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); |
| unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); |
| if (SourceBits != NewBits) |
| return nullptr; |
| |
| const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); |
| const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); |
| if (!SExt && !ZExt) |
| return nullptr; |
| const SCEVTruncateExpr *Trunc = |
| SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) |
| : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); |
| if (!Trunc) |
| return nullptr; |
| const SCEV *X = Trunc->getOperand(); |
| if (X != SymbolicPHI) |
| return nullptr; |
| Signed = SExt != nullptr; |
| return Trunc->getType(); |
| } |
| |
| static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { |
| if (!PN->getType()->isIntegerTy()) |
| return nullptr; |
| const Loop *L = LI.getLoopFor(PN->getParent()); |
| if (!L || L->getHeader() != PN->getParent()) |
| return nullptr; |
| return L; |
| } |
| |
| // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the |
| // computation that updates the phi follows the following pattern: |
| // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum |
| // which correspond to a phi->trunc->sext/zext->add->phi update chain. |
| // If so, try to see if it can be rewritten as an AddRecExpr under some |
| // Predicates. If successful, return them as a pair. Also cache the results |
| // of the analysis. |
| // |
| // Example usage scenario: |
| // Say the Rewriter is called for the following SCEV: |
| // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) |
| // where: |
| // %X = phi i64 (%Start, %BEValue) |
| // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), |
| // and call this function with %SymbolicPHI = %X. |
| // |
| // The analysis will find that the value coming around the backedge has |
| // the following SCEV: |
| // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) |
| // Upon concluding that this matches the desired pattern, the function |
| // will return the pair {NewAddRec, SmallPredsVec} where: |
| // NewAddRec = {%Start,+,%Step} |
| // SmallPredsVec = {P1, P2, P3} as follows: |
| // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> |
| // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) |
| // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) |
| // The returned pair means that SymbolicPHI can be rewritten into NewAddRec |
| // under the predicates {P1,P2,P3}. |
| // This predicated rewrite will be cached in PredicatedSCEVRewrites: |
| // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} |
| // |
| // TODO's: |
| // |
| // 1) Extend the Induction descriptor to also support inductions that involve |
| // casts: When needed (namely, when we are called in the context of the |
| // vectorizer induction analysis), a Set of cast instructions will be |
| // populated by this method, and provided back to isInductionPHI. This is |
| // needed to allow the vectorizer to properly record them to be ignored by |
| // the cost model and to avoid vectorizing them (otherwise these casts, |
| // which are redundant under the runtime overflow checks, will be |
| // vectorized, which can be costly). |
| // |
| // 2) Support additional induction/PHISCEV patterns: We also want to support |
| // inductions where the sext-trunc / zext-trunc operations (partly) occur |
| // after the induction update operation (the induction increment): |
| // |
| // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) |
| // which correspond to a phi->add->trunc->sext/zext->phi update chain. |
| // |
| // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) |
| // which correspond to a phi->trunc->add->sext/zext->phi update chain. |
| // |
| // 3) Outline common code with createAddRecFromPHI to avoid duplication. |
| Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> |
| ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { |
| SmallVector<const SCEVPredicate *, 3> Predicates; |
| |
| // *** Part1: Analyze if we have a phi-with-cast pattern for which we can |
| // return an AddRec expression under some predicate. |
| |
| auto *PN = cast<PHINode>(SymbolicPHI->getValue()); |
| const Loop *L = isIntegerLoopHeaderPHI(PN, LI); |
| assert(L && "Expecting an integer loop header phi"); |
| |
| // The loop may have multiple entrances or multiple exits; we can analyze |
| // this phi as an addrec if it has a unique entry value and a unique |
| // backedge value. |
| Value *BEValueV = nullptr, *StartValueV = nullptr; |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| Value *V = PN->getIncomingValue(i); |
| if (L->contains(PN->getIncomingBlock(i))) { |
| if (!BEValueV) { |
| BEValueV = V; |
| } else if (BEValueV != V) { |
| BEValueV = nullptr; |
| break; |
| } |
| } else if (!StartValueV) { |
| StartValueV = V; |
| } else if (StartValueV != V) { |
| StartValueV = nullptr; |
| break; |
| } |
| } |
| if (!BEValueV || !StartValueV) |
| return None; |
| |
| const SCEV *BEValue = getSCEV(BEValueV); |
| |
| // If the value coming around the backedge is an add with the symbolic |
| // value we just inserted, possibly with casts that we can ignore under |
| // an appropriate runtime guard, then we found a simple induction variable! |
| const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); |
| if (!Add) |
| return None; |
| |
| // If there is a single occurrence of the symbolic value, possibly |
| // casted, replace it with a recurrence. |
| unsigned FoundIndex = Add->getNumOperands(); |
| Type *TruncTy = nullptr; |
| bool Signed; |
| for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) |
| if ((TruncTy = |
| isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) |
| if (FoundIndex == e) { |
| FoundIndex = i; |
| break; |
| } |
| |
| if (FoundIndex == Add->getNumOperands()) |
| return None; |
| |
| // Create an add with everything but the specified operand. |
| SmallVector<const SCEV *, 8> Ops; |
| for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) |
| if (i != FoundIndex) |
| Ops.push_back(Add->getOperand(i)); |
| const SCEV *Accum = getAddExpr(Ops); |
| |
| // The runtime checks will not be valid if the step amount is |
| // varying inside the loop. |
| if (!isLoopInvariant(Accum, L)) |
| return None; |
| |
| // *** Part2: Create the predicates |
| |
| // Analysis was successful: we have a phi-with-cast pattern for which we |
| // can return an AddRec expression under the following predicates: |
| // |
| // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) |
| // fits within the truncated type (does not overflow) for i = 0 to n-1. |
| // P2: An Equal predicate that guarantees that |
| // Start = (Ext ix (Trunc iy (Start) to ix) to iy) |
| // P3: An Equal predicate that guarantees that |
| // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) |
| // |
| // As we next prove, the above predicates guarantee that: |
| // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) |
| // |
| // |
| // More formally, we want to prove that: |
| // Expr(i+1) = Start + (i+1) * Accum |
| // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum |
| // |
| // Given that: |
| // 1) Expr(0) = Start |
| // 2) Expr(1) = Start + Accum |
| // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 |
| // 3) Induction hypothesis (step i): |
| // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum |
| // |
| // Proof: |
| // Expr(i+1) = |
| // = Start + (i+1)*Accum |
| // = (Start + i*Accum) + Accum |
| // = Expr(i) + Accum |
| // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum |
| // :: from step i |
| // |
| // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum |
| // |
| // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) |
| // + (Ext ix (Trunc iy (Accum) to ix) to iy) |
| // + Accum :: from P3 |
| // |
| // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) |
| // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) |
| // |
| // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum |
| // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum |
| // |
| // By induction, the same applies to all iterations 1<=i<n: |
| // |
| |
| // Create a truncated addrec for which we will add a no overflow check (P1). |
| const SCEV *StartVal = getSCEV(StartValueV); |
| const SCEV *PHISCEV = |
| getAddRecExpr(getTruncateExpr(StartVal, TruncTy), |
| getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); |
| |
| // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. |
| // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV |
| // will be constant. |
| // |
| // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't |
| // add P1. |
| if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { |
| SCEVWrapPredicate::IncrementWrapFlags AddedFlags = |
| Signed ? SCEVWrapPredicate::IncrementNSSW |
| : SCEVWrapPredicate::IncrementNUSW; |
| const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); |
| Predicates.push_back(AddRecPred); |
| } |
| |
| // Create the Equal Predicates P2,P3: |
| |
| // It is possible that the predicates P2 and/or P3 are computable at |
| // compile time due to StartVal and/or Accum being constants. |
| // If either one is, then we can check that now and escape if either P2 |
| // or P3 is false. |
| |
| // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) |
| // for each of StartVal and Accum |
| auto getExtendedExpr = [&](const SCEV *Expr, |
| bool CreateSignExtend) -> const SCEV * { |
| assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); |
| const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); |
| const SCEV *ExtendedExpr = |
| CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) |
| : getZeroExtendExpr(TruncatedExpr, Expr->getType()); |
| return ExtendedExpr; |
| }; |
| |
| // Given: |
| // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy |
| // = getExtendedExpr(Expr) |
| // Determine whether the predicate P: Expr == ExtendedExpr |
| // is known to be false at compile time |
| auto PredIsKnownFalse = [&](const SCEV *Expr, |
| const SCEV *ExtendedExpr) -> bool { |
| return Expr != ExtendedExpr && |
| isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); |
| }; |
| |
| const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); |
| if (PredIsKnownFalse(StartVal, StartExtended)) { |
| LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); |
| return None; |
| } |
| |
| // The Step is always Signed (because the overflow checks are either |
| // NSSW or NUSW) |
| const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); |
| if (PredIsKnownFalse(Accum, AccumExtended)) { |
| LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); |
| return None; |
| } |
| |
| auto AppendPredicate = [&](const SCEV *Expr, |
| const SCEV *ExtendedExpr) -> void { |
| if (Expr != ExtendedExpr && |
| !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { |
| const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); |
| LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); |
| Predicates.push_back(Pred); |
| } |
| }; |
| |
| AppendPredicate(StartVal, StartExtended); |
| AppendPredicate(Accum, AccumExtended); |
| |
| // *** Part3: Predicates are ready. Now go ahead and create the new addrec in |
| // which the casts had been folded away. The caller can rewrite SymbolicPHI |
| // into NewAR if it will also add the runtime overflow checks specified in |
| // Predicates. |
| auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); |
| |
| std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = |
| std::make_pair(NewAR, Predicates); |
| // Remember the result of the analysis for this SCEV at this locayyytion. |
| PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; |
| return PredRewrite; |
| } |
| |
| Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> |
| ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { |
| auto *PN = cast<PHINode>(SymbolicPHI->getValue()); |
| const Loop *L = isIntegerLoopHeaderPHI(PN, LI); |
| if (!L) |
| return None; |
| |
| // Check to see if we already analyzed this PHI. |
| auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); |
| if (I != PredicatedSCEVRewrites.end()) { |
| std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = |
| I->second; |
| // Analysis was done before and failed to create an AddRec: |
| if (Rewrite.first == SymbolicPHI) |
| return None; |
| // Analysis was done before and succeeded to create an AddRec under |
| // a predicate: |
| assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); |
| assert(!(Rewrite.second).empty() && "Expected to find Predicates"); |
| return Rewrite; |
| } |
| |
| Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> |
| Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); |
| |
| // Record in the cache that the analysis failed |
| if (!Rewrite) { |
| SmallVector<const SCEVPredicate *, 3> Predicates; |
| PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; |
| return None; |
| } |
| |
| return Rewrite; |
| } |
| |
| // FIXME: This utility is currently required because the Rewriter currently |
| // does not rewrite this expression: |
| // {0, +, (sext ix (trunc iy to ix) to iy)} |
| // into {0, +, %step}, |
| // even when the following Equal predicate exists: |
| // "%step == (sext ix (trunc iy to ix) to iy)". |
| bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( |
| const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { |
| if (AR1 == AR2) |
| return true; |
| |
| auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { |
| if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && |
| !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) |
| return false; |
| return true; |
| }; |
| |
| if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || |
| !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) |
| return false; |
| return true; |
| } |
| |
| /// A helper function for createAddRecFromPHI to handle simple cases. |
| /// |
| /// This function tries to find an AddRec expression for the simplest (yet most |
| /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). |
| /// If it fails, createAddRecFromPHI will use a more general, but slow, |
| /// technique for finding the AddRec expression. |
| const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, |
| Value *BEValueV, |
| Value *StartValueV) { |
| const Loop *L = LI.getLoopFor(PN->getParent()); |
| assert(L && L->getHeader() == PN->getParent()); |
| assert(BEValueV && StartValueV); |
| |
| auto BO = MatchBinaryOp(BEValueV, DT); |
| if (!BO) |
| return nullptr; |
| |
| if (BO->Opcode != Instruction::Add) |
| return nullptr; |
| |
| const SCEV *Accum = nullptr; |
| if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) |
| Accum = getSCEV(BO->RHS); |
| else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) |
| Accum = getSCEV(BO->LHS); |
| |
| if (!Accum) |
| return nullptr; |
| |
| SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; |
| if (BO->IsNUW) |
| Flags = setFlags(Flags, SCEV::FlagNUW); |
| if (BO->IsNSW) |
| Flags = setFlags(Flags, SCEV::FlagNSW); |
| |
| const SCEV *StartVal = getSCEV(StartValueV); |
| const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); |
| |
| ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; |
| |
| // We can add Flags to the post-inc expression only if we |
| // know that it is *undefined behavior* for BEValueV to |
| // overflow. |
| if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) |
| if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) |
| (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); |
| |
| return PHISCEV; |
| } |
| |
| const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { |
| const Loop *L = LI.getLoopFor(PN->getParent()); |
| if (!L || L->getHeader() != PN->getParent()) |
| return nullptr; |
| |
| // The loop may have multiple entrances or multiple exits; we can analyze |
| // this phi as an addrec if it has a unique entry value and a unique |
| // backedge value. |
| Value *BEValueV = nullptr, *StartValueV = nullptr; |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| Value *V = PN->getIncomingValue(i); |
| if (L->contains(PN->getIncomingBlock(i))) { |
| if (!BEValueV) { |
| BEValueV = V; |
| } else if (BEValueV != V) { |
| BEValueV = nullptr; |
| break; |
| } |
| } else if (!StartValueV) { |
| StartValueV = V; |
| } else if (StartValueV != V) { |
| StartValueV = nullptr; |
| break; |
| } |
| } |
| if (!BEValueV || !StartValueV) |
| return nullptr; |
| |
| assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && |
| "PHI node already processed?"); |
| |
| // First, try to find AddRec expression without creating a fictituos symbolic |
| // value for PN. |
| if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) |
| return S; |
| |
| // Handle PHI node value symbolically. |
| const SCEV *SymbolicName = getUnknown(PN); |
| ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); |
| |
| // Using this symbolic name for the PHI, analyze the value coming around |
| // the back-edge. |
| const SCEV *BEValue = getSCEV(BEValueV); |
| |
| // NOTE: If BEValue is loop invariant, we know that the PHI node just |
| // has a special value for the first iteration of the loop. |
| |
| // If the value coming around the backedge is an add with the symbolic |
| // value we just inserted, then we found a simple induction variable! |
| if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { |
| // If there is a single occurrence of the symbolic value, replace it |
| // with a recurrence. |
| unsigned FoundIndex = Add->getNumOperands(); |
| for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) |
| if (Add->getOperand(i) == SymbolicName) |
| if (FoundIndex == e) { |
| FoundIndex = i; |
| break; |
| } |
| |
| if (FoundIndex != Add->getNumOperands()) { |
| // Create an add with everything but the specified operand. |
| SmallVector<const SCEV *, 8> Ops; |
| for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) |
| if (i != FoundIndex) |
| Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), |
| L, *this)); |
| const SCEV *Accum = getAddExpr(Ops); |
| |
| // This is not a valid addrec if the step amount is varying each |
| // loop iteration, but is not itself an addrec in this loop. |
| if (isLoopInvariant(Accum, L) || |
| (isa<SCEVAddRecExpr>(Accum) && |
| cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { |
| SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; |
| |
| if (auto BO = MatchBinaryOp(BEValueV, DT)) { |
| if (BO->Opcode == Instruction::Add && BO->LHS == PN) { |
| if (BO->IsNUW) |
| Flags = setFlags(Flags, SCEV::FlagNUW); |
| if (BO->IsNSW) |
| Flags = setFlags(Flags, SCEV::FlagNSW); |
| } |
| } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { |
| // If the increment is an inbounds GEP, then we know the address |
| // space cannot be wrapped around. We cannot make any guarantee |
| // about signed or unsigned overflow because pointers are |
| // unsigned but we may have a negative index from the base |
| // pointer. We can guarantee that no unsigned wrap occurs if the |
| // indices form a positive value. |
| if (GEP->isInBounds() && GEP->getOperand(0) == PN) { |
| Flags = setFlags(Flags, SCEV::FlagNW); |
| |
| const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); |
| if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) |
| Flags = setFlags(Flags, SCEV::FlagNUW); |
| } |
| |
| // We cannot transfer nuw and nsw flags from subtraction |
| // operations -- sub nuw X, Y is not the same as add nuw X, -Y |
| // for instance. |
| } |
| |
| const SCEV *StartVal = getSCEV(StartValueV); |
| const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); |
| |
| // Okay, for the entire analysis of this edge we assumed the PHI |
| // to be symbolic. We now need to go back and purge all of the |
| // entries for the scalars that use the symbolic expression. |
| forgetSymbolicName(PN, SymbolicName); |
| ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; |
| |
| // We can add Flags to the post-inc expression only if we |
| // know that it is *undefined behavior* for BEValueV to |
| // overflow. |
| if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) |
| if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) |
| (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); |
| |
| return PHISCEV; |
| } |
| } |
| } else { |
| // Otherwise, this could be a loop like this: |
| // i = 0; for (j = 1; ..; ++j) { .... i = j; } |
| // In this case, j = {1,+,1} and BEValue is j. |
| // Because the other in-value of i (0) fits the evolution of BEValue |
| // i really is an addrec evolution. |
| // |
| // We can generalize this saying that i is the shifted value of BEValue |
| // by one iteration: |
| // PHI(f(0), f({1,+,1})) --> f({0,+,1}) |
| const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); |
| const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); |
| if (Shifted != getCouldNotCompute() && |
| Start != getCouldNotCompute()) { |
| const SCEV *StartVal = getSCEV(StartValueV); |
| if (Start == StartVal) { |
| // Okay, for the entire analysis of this edge we assumed the PHI |
| // to be symbolic. We now need to go back and purge all of the |
| // entries for the scalars that use the symbolic expression. |
| forgetSymbolicName(PN, SymbolicName); |
| ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; |
| return Shifted; |
| } |
| } |
| } |
| |
| // Remove the temporary PHI node SCEV that has been inserted while intending |
| // to create an AddRecExpr for this PHI node. We can not keep this temporary |
| // as it will prevent later (possibly simpler) SCEV expressions to be added |
| // to the ValueExprMap. |
| eraseValueFromMap(PN); |
| |
| return nullptr; |
| } |
| |
| // Checks if the SCEV S is available at BB. S is considered available at BB |
| // if S can be materialized at BB without introducing a fault. |
| static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, |
| BasicBlock *BB) { |
| struct CheckAvailable { |
| bool TraversalDone = false; |
| bool Available = true; |
| |
| const Loop *L = nullptr; // The loop BB is in (can be nullptr) |
| BasicBlock *BB = nullptr; |
| DominatorTree &DT; |
| |
| CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) |
| : L(L), BB(BB), DT(DT) {} |
| |
| bool setUnavailable() { |
| TraversalDone = true; |
| Available = false; |
| return false; |
| } |
| |
| bool follow(const SCEV *S) { |
| switch (S->getSCEVType()) { |
| case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: |
| case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: |
| case scUMinExpr: |
| case scSMinExpr: |
| // These expressions are available if their operand(s) is/are. |
| return true; |
| |
| case scAddRecExpr: { |
| // We allow add recurrences that are on the loop BB is in, or some |
| // outer loop. This guarantees availability because the value of the |
| // add recurrence at BB is simply the "current" value of the induction |
| // variable. We can relax this in the future; for instance an add |
| // recurrence on a sibling dominating loop is also available at BB. |
| const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); |
| if (L && (ARLoop == L || ARLoop->contains(L))) |
| return true; |
| |
| return setUnavailable(); |
| } |
| |
| case scUnknown: { |
| // For SCEVUnknown, we check for simple dominance. |
| const auto *SU = cast<SCEVUnknown>(S); |
| Value *V = SU->getValue(); |
| |
| if (isa<Argument>(V)) |
| return false; |
| |
| if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) |
| return false; |
| |
| return setUnavailable(); |
| } |
| |
| case scUDivExpr: |
| case scCouldNotCompute: |
| // We do not try to smart about these at all. |
| return setUnavailable(); |
| } |
| llvm_unreachable("switch should be fully covered!"); |
| } |
| |
| bool isDone() { return TraversalDone; } |
| }; |
| |
| CheckAvailable CA(L, BB, DT); |
| SCEVTraversal<CheckAvailable> ST(CA); |
| |
| ST.visitAll(S); |
| return CA.Available; |
| } |
| |
| // Try to match a control flow sequence that branches out at BI and merges back |
| // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful |
| // match. |
| static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, |
| Value *&C, Value *&LHS, Value *&RHS) { |
| C = BI->getCondition(); |
| |
| BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); |
| BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); |
| |
| if (!LeftEdge.isSingleEdge()) |
| return false; |
| |
| assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); |
| |
| Use &LeftUse = Merge->getOperandUse(0); |
| Use &RightUse = Merge->getOperandUse(1); |
| |
| if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { |
| LHS = LeftUse; |
| RHS = RightUse; |
| return true; |
| } |
| |
| if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { |
| LHS = RightUse; |
| RHS = LeftUse; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { |
| auto IsReachable = |
| [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; |
| if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { |
| const Loop *L = LI.getLoopFor(PN->getParent()); |
| |
| // We don't want to break LCSSA, even in a SCEV expression tree. |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) |
| return nullptr; |
| |
| // Try to match |
| // |
| // br %cond, label %left, label %right |
| // left: |
| // br label %merge |
| // right: |
| // br label %merge |
| // merge: |
| // V = phi [ %x, %left ], [ %y, %right ] |
| // |
| // as "select %cond, %x, %y" |
| |
| BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); |
| assert(IDom && "At least the entry block should dominate PN"); |
| |
| auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); |
| Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; |
| |
| if (BI && BI->isConditional() && |
| BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && |
| IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && |
| IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) |
| return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); |
| } |
| |
| return nullptr; |
| } |
| |
| const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { |
| if (const SCEV *S = createAddRecFromPHI(PN)) |
| return S; |
| |
| if (const SCEV *S = createNodeFromSelectLikePHI(PN)) |
| return S; |
| |
| // If the PHI has a single incoming value, follow that value, unless the |
| // PHI's incoming blocks are in a different loop, in which case doing so |
| // risks breaking LCSSA form. Instcombine would normally zap these, but |
| // it doesn't have DominatorTree information, so it may miss cases. |
| if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) |
| if (LI.replacementPreservesLCSSAForm(PN, V)) |
| return getSCEV(V); |
| |
| // If it's not a loop phi, we can't handle it yet. |
| return getUnknown(PN); |
| } |
| |
| const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, |
| Value *Cond, |
| Value *TrueVal, |
| Value *FalseVal) { |
| // Handle "constant" branch or select. This can occur for instance when a |
| // loop pass transforms an inner loop and moves on to process the outer loop. |
| if (auto *CI = dyn_cast<ConstantInt>(Cond)) |
| return getSCEV(CI->isOne() ? TrueVal : FalseVal); |
| |
| // Try to match some simple smax or umax patterns. |
| auto *ICI = dyn_cast<ICmpInst>(Cond); |
| if (!ICI) |
| return getUnknown(I); |
| |
| Value *LHS = ICI->getOperand(0); |
| Value *RHS = ICI->getOperand(1); |
| |
| switch (ICI->getPredicate()) { |
| case ICmpInst::ICMP_SLT: |
| case ICmpInst::ICMP_SLE: |
| std::swap(LHS, RHS); |
| LLVM_FALLTHROUGH; |
| case ICmpInst::ICMP_SGT: |
| case ICmpInst::ICMP_SGE: |
| // a >s b ? a+x : b+x -> smax(a, b)+x |
| // a >s b ? b+x : a+x -> smin(a, b)+x |
| if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { |
| const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); |
| const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); |
| const SCEV *LA = getSCEV(TrueVal); |
| const SCEV *RA = getSCEV(FalseVal); |
| const SCEV *LDiff = getMinusSCEV(LA, LS); |
| const SCEV *RDiff = getMinusSCEV(RA, RS); |
| if (LDiff == RDiff) |
| return getAddExpr(getSMaxExpr(LS, RS), LDiff); |
| LDiff = getMinusSCEV(LA, RS); |
| RDiff = getMinusSCEV(RA, LS); |
| if (LDiff == RDiff) |
| return getAddExpr(getSMinExpr(LS, RS), LDiff); |
| } |
| break; |
| case ICmpInst::ICMP_ULT: |
| case ICmpInst::ICMP_ULE: |
| std::swap(LHS, RHS); |
| LLVM_FALLTHROUGH; |
| case ICmpInst::ICMP_UGT: |
| case ICmpInst::ICMP_UGE: |
| // a >u b ? a+x : b+x -> umax(a, b)+x |
| // a >u b ? b+x : a+x -> umin(a, b)+x |
| if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { |
| const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); |
| const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); |
| const SCEV *LA = getSCEV(TrueVal); |
| const SCEV *RA = getSCEV(FalseVal); |
| const SCEV *LDiff = getMinusSCEV(LA, LS); |
| const SCEV *RDiff = getMinusSCEV(RA, RS); |
| if (LDiff == RDiff) |
| return getAddExpr(getUMaxExpr(LS, RS), LDiff); |
| LDiff = getMinusSCEV(LA, RS); |
| RDiff = getMinusSCEV(RA, LS); |
| if (LDiff == RDiff) |
| return getAddExpr(getUMinExpr(LS, RS), LDiff); |
| } |
| break; |
| case ICmpInst::ICMP_NE: |
| // n != 0 ? n+x : 1+x -> umax(n, 1)+x |
| if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && |
| isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { |
| const SCEV *One = getOne(I->getType()); |
| const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); |
| const SCEV *LA = getSCEV(TrueVal); |
| const SCEV *RA = getSCEV(FalseVal); |
| const SCEV *LDiff = getMinusSCEV(LA, LS); |
| const SCEV *RDiff = getMinusSCEV(RA, One); |
| if (LDiff == RDiff) |
| return getAddExpr(getUMaxExpr(One, LS), LDiff); |
| } |
| break; |
| case ICmpInst::ICMP_EQ: |
| // n == 0 ? 1+x : n+x -> umax(n, 1)+x |
| if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && |
| isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { |
| const SCEV *One = getOne(I->getType()); |
| const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); |
| const SCEV *LA = getSCEV(TrueVal); |
| const SCEV *RA = getSCEV(FalseVal); |
| const SCEV *LDiff = getMinusSCEV(LA, One); |
| const SCEV *RDiff = getMinusSCEV(RA, LS); |
| if (LDiff == RDiff) |
| return getAddExpr(getUMaxExpr(One, LS), LDiff); |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return getUnknown(I); |
| } |
| |
| /// Expand GEP instructions into add and multiply operations. This allows them |
| /// to be analyzed by regular SCEV code. |
| const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { |
| // Don't attempt to analyze GEPs over unsized objects. |
| if (!GEP->getSourceElementType()->isSized()) |
| return getUnknown(GEP); |
| |
| SmallVector<const SCEV *, 4> IndexExprs; |
| for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) |
| IndexExprs.push_back(getSCEV(*Index)); |
| return getGEPExpr(GEP, IndexExprs); |
| } |
| |
| uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { |
| if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) |
| return C->getAPInt().countTrailingZeros(); |
| |
| if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) |
| return std::min(GetMinTrailingZeros(T->getOperand()), |
| (uint32_t)getTypeSizeInBits(T->getType())); |
| |
| if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { |
| uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); |
| return OpRes == getTypeSizeInBits(E->getOperand()->getType()) |
| ? getTypeSizeInBits(E->getType()) |
| : OpRes; |
| } |
| |
| if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { |
| uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); |
| return OpRes == getTypeSizeInBits(E->getOperand()->getType()) |
| ? getTypeSizeInBits(E->getType()) |
| : OpRes; |
| } |
| |
| if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { |
| // The result is the min of all operands results. |
| uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); |
| for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) |
| MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); |
| return MinOpRes; |
| } |
| |
| if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { |
| // The result is the sum of all operands results. |
| uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); |
| uint32_t BitWidth = getTypeSizeInBits(M->getType()); |
| for (unsigned i = 1, e = M->getNumOperands(); |
| SumOpRes != BitWidth && i != e; ++i) |
| SumOpRes = |
| std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); |
| return SumOpRes; |
| } |
| |
| if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { |
| // The result is the min of all operands results. |
| uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); |
| for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) |
| MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); |
| return MinOpRes; |
| } |
| |
| if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { |
| // The result is the min of all operands results. |
| uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); |
| for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) |
| MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); |
| return MinOpRes; |
| } |
| |
| if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { |
| // The result is the min of all operands results. |
| uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); |
| for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) |
| MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); |
| return MinOpRes; |
| } |
| |
| if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { |
| // For a SCEVUnknown, ask ValueTracking. |
| KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); |
| return Known.countMinTrailingZeros(); |
| } |
| |
| // SCEVUDivExpr |
| return 0; |
| } |
| |
| uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { |
| auto I = MinTrailingZerosCache.find(S); |
| if (I != MinTrailingZerosCache.end()) |
| return I->second; |
| |
| uint32_t Result = GetMinTrailingZerosImpl(S); |
| auto InsertPair = MinTrailingZerosCache.insert({S, Result}); |
| assert(InsertPair.second && "Should insert a new key"); |
| return InsertPair.first->second; |
| } |
| |
| /// Helper method to assign a range to V from metadata present in the IR. |
| static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) |
| return getConstantRangeFromMetadata(*MD); |
| |
| return None; |
| } |
| |
| /// Determine the range for a particular SCEV. If SignHint is |
| /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges |
| /// with a "cleaner" unsigned (resp. signed) representation. |
| const ConstantRange & |
| ScalarEvolution::getRangeRef(const SCEV *S, |
| ScalarEvolution::RangeSignHint SignHint) { |
| DenseMap<const SCEV *, ConstantRange> &Cache = |
| SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges |
| : SignedRanges; |
| ConstantRange::PreferredRangeType RangeType = |
| SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED |
| ? ConstantRange::Unsigned : ConstantRange::Signed; |
| |
| // See if we've computed this range already. |
| DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); |
| if (I != Cache.end()) |
| return I->second; |
| |
| if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) |
| return setRange(C, SignHint, ConstantRange(C->getAPInt())); |
| |
| unsigned BitWidth = getTypeSizeInBits(S->getType()); |
| ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); |
| using OBO = OverflowingBinaryOperator; |
| |
| // If the value has known zeros, the maximum value will have those known zeros |
| // as well. |
| uint32_t TZ = GetMinTrailingZeros(S); |
| if (TZ != 0) { |
| if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) |
| ConservativeResult = |
| ConstantRange(APInt::getMinValue(BitWidth), |
| APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); |
| else |
| ConservativeResult = ConstantRange( |
| APInt::getSignedMinValue(BitWidth), |
| APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); |
| } |
| |
| if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
| ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); |
| unsigned WrapType = OBO::AnyWrap; |
| if (Add->hasNoSignedWrap()) |
| WrapType |= OBO::NoSignedWrap; |
| if (Add->hasNoUnsignedWrap()) |
| WrapType |= OBO::NoUnsignedWrap; |
| for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) |
| X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), |
| WrapType, RangeType); |
| return setRange(Add, SignHint, |
| ConservativeResult.intersectWith(X, RangeType)); |
| } |
| |
| if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { |
| ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); |
| for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) |
| X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); |
| return setRange(Mul, SignHint, |
| ConservativeResult.intersectWith(X, RangeType)); |
| } |
| |
| if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { |
| ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); |
| for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) |
| X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); |
| return setRange(SMax, SignHint, |
| ConservativeResult.intersectWith(X, RangeType)); |
| } |
| |
| if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { |
| ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); |
| for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) |
| X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); |
| return setRange(UMax, SignHint, |
| ConservativeResult.intersectWith(X, RangeType)); |
| } |
| |
| if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { |
| ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); |
| for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) |
| X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); |
| return setRange(SMin, SignHint, |
| ConservativeResult.intersectWith(X, RangeType)); |
| } |
| |
| if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { |
| ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); |
| for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) |
| X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); |
| return setRange(UMin, SignHint, |
| ConservativeResult.intersectWith(X, RangeType)); |
| } |
| |
| if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { |
| ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); |
| ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); |
| return setRange(UDiv, SignHint, |
| ConservativeResult.intersectWith(X.udiv(Y), RangeType)); |
| } |
| |
| if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { |
| ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); |
| return setRange(ZExt, SignHint, |
| ConservativeResult.intersectWith(X.zeroExtend(BitWidth), |
| RangeType)); |
| } |
| |
| if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { |
| ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); |
| return setRange(SExt, SignHint, |
| ConservativeResult.intersectWith(X.signExtend(BitWidth), |
| RangeType)); |
| } |
| |
| if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { |
| ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); |
| return setRange(Trunc, SignHint, |
| ConservativeResult.intersectWith(X.truncate(BitWidth), |
| RangeType)); |
| } |
| |
| if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { |
| // If there's no unsigned wrap, the value will never be less than its |
| // initial value. |
| if (AddRec->hasNoUnsignedWrap()) { |
| APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); |
| if (!UnsignedMinValue.isNullValue()) |
| ConservativeResult = ConservativeResult.intersectWith( |
| ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); |
| } |
| |
| // If there's no signed wrap, and all the operands except initial value have |
| // the same sign or zero, the value won't ever be: |
| // 1: smaller than initial value if operands are non negative, |
| // 2: bigger than initial value if operands are non positive. |
| // For both cases, value can not cross signed min/max boundary. |
| if (AddRec->hasNoSignedWrap()) { |
| bool AllNonNeg = true; |
| bool AllNonPos = true; |
| for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { |
| if (!isKnownNonNegative(AddRec->getOperand(i))) |
| AllNonNeg = false; |
| if (!isKnownNonPositive(AddRec->getOperand(i))) |
| AllNonPos = false; |
| } |
| if (AllNonNeg) |
| ConservativeResult = ConservativeResult.intersectWith( |
| ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), |
| APInt::getSignedMinValue(BitWidth)), |
| RangeType); |
| else if (AllNonPos) |
| ConservativeResult = ConservativeResult.intersectWith( |
| ConstantRange::getNonEmpty( |
| APInt::getSignedMinValue(BitWidth), |
| getSignedRangeMax(AddRec->getStart()) + 1), |
| RangeType); |
| } |
| |
| // TODO: non-affine addrec |
| if (AddRec->isAffine()) { |
| const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); |
| if (!isa<SCEVCouldNotCompute>(MaxBECount) && |
| getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { |
| auto RangeFromAffine = getRangeForAffineAR( |
| AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, |
| BitWidth); |
| if (!RangeFromAffine.isFullSet()) |
| ConservativeResult = |
| ConservativeResult.intersectWith(RangeFromAffine, RangeType); |
| |
| auto RangeFromFactoring = getRangeViaFactoring( |
| AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, |
| BitWidth); |
| if (!RangeFromFactoring.isFullSet()) |
| ConservativeResult = |
| ConservativeResult.intersectWith(RangeFromFactoring, RangeType); |
| } |
| } |
| |
| return setRange(AddRec, SignHint, std::move(ConservativeResult)); |
| } |
| |
| if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { |
| // Check if the IR explicitly contains !range metadata. |
| Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); |
| if (MDRange.hasValue()) |
| ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), |
| RangeType); |
| |
| // Split here to avoid paying the compile-time cost of calling both |
| // computeKnownBits and ComputeNumSignBits. This restriction can be lifted |
| // if needed. |
| const DataLayout &DL = getDataLayout(); |
| if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { |
| // For a SCEVUnknown, ask ValueTracking. |
| KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); |
| if (Known.getBitWidth() != BitWidth) |
| Known = Known.zextOrTrunc(BitWidth, true); |
| // If Known does not result in full-set, intersect with it. |
| if (Known.getMinValue() != Known.getMaxValue() + 1) |
| ConservativeResult = ConservativeResult.intersectWith( |
| ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), |
| RangeType); |
| } else { |
| assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && |
| "generalize as needed!"); |
| unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); |
| // If the pointer size is larger than the index size type, this can cause |
| // NS to be larger than BitWidth. So compensate for this. |
| if (U->getType()->isPointerTy()) { |
| unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); |
| int ptrIdxDiff = ptrSize - BitWidth; |
| if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) |
| NS -= ptrIdxDiff; |
| } |
| |
| if (NS > 1) |
| ConservativeResult = ConservativeResult.intersectWith( |
| ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), |
| APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), |
| RangeType); |
| } |
| |
| // A range of Phi is a subset of union of all ranges of its input. |
| if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { |
| // Make sure that we do not run over cycled Phis. |
| if (PendingPhiRanges.insert(Phi).second) { |
| ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); |
| for (auto &Op : Phi->operands()) { |
| auto OpRange = getRangeRef(getSCEV(Op), SignHint); |
| RangeFromOps = RangeFromOps.unionWith(OpRange); |
| // No point to continue if we already have a full set. |
| if (RangeFromOps.isFullSet()) |
| break; |
| } |
| ConservativeResult = |
| ConservativeResult.intersectWith(RangeFromOps, RangeType); |
| bool Erased = PendingPhiRanges.erase(Phi); |
| assert(Erased && "Failed to erase Phi properly?"); |
| (void) Erased; |
| } |
| } |
| |
| return setRange(U, SignHint, std::move(ConservativeResult)); |
| } |
| |
| return setRange(S, SignHint, std::move(ConservativeResult)); |
| } |
| |
| // Given a StartRange, Step and MaxBECount for an expression compute a range of |
| // values that the expression can take. Initially, the expression has a value |
| // from StartRange and then is changed by Step up to MaxBECount times. Signed |
| // argument defines if we treat Step as signed or unsigned. |
| static ConstantRange getRangeForAffineARHelper(APInt Step, |
| const ConstantRange &StartRange, |
| const APInt &MaxBECount, |
| unsigned BitWidth, bool Signed) { |
| // If either Step or MaxBECount is 0, then the expression won't change, and we |
| // just need to return the initial range. |
| if (Step == 0 || MaxBECount == 0) |
| return StartRange; |
| |
| // If we don't know anything about the initial value (i.e. StartRange is |
| // FullRange), then we don't know anything about the final range either. |
| // Return FullRange. |
| if (StartRange.isFullSet()) |
| return ConstantRange::getFull(BitWidth); |
| |
| // If Step is signed and negative, then we use its absolute value, but we also |
| // note that we're moving in the opposite direction. |
| bool Descending = Signed && Step.isNegative(); |
| |
| if (Signed) |
| // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: |
| // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. |
| // This equations hold true due to the well-defined wrap-around behavior of |
| // APInt. |
| Step = Step.abs(); |
| |
| // Check if Offset is more than full span of BitWidth. If it is, the |
| // expression is guaranteed to overflow. |
| if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) |
| return ConstantRange::getFull(BitWidth); |
| |
| // Offset is by how much the expression can change. Checks above guarantee no |
| // overflow here. |
| APInt Offset = Step * MaxBECount; |
| |
| // Minimum value of the final range will match the minimal value of StartRange |
| // if the expression is increasing and will be decreased by Offset otherwise. |
| // Maximum value of the final range will match the maximal value of StartRange |
| // if the expression is decreasing and will be increased by Offset otherwise. |
| APInt StartLower = StartRange.getLower(); |
| APInt StartUpper = StartRange.getUpper() - 1; |
| APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) |
| : (StartUpper + std::move(Offset)); |
| |
| // It's possible that the new minimum/maximum value will fall into the initial |
| // range (due to wrap around). This means that the expression can take any |
| // value in this bitwidth, and we have to return full range. |
| if (StartRange.contains(MovedBoundary)) |
| return ConstantRange::getFull(BitWidth); |
| |
| APInt NewLower = |
| Descending ? std::move(MovedBoundary) : std::move(StartLower); |
| APInt NewUpper = |
| Descending ? std::move(StartUpper) : std::move(MovedBoundary); |
| NewUpper += 1; |
| |
| // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. |
| return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); |
| } |
| |
| ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, |
| const SCEV *Step, |
| const SCEV *MaxBECount, |
| unsigned BitWidth) { |
| assert(!isa<SCEVCouldNotCompute>(MaxBECount) && |
| getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && |
| "Precondition!"); |
| |
| MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); |
| APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); |
| |
| // First, consider step signed. |
| ConstantRange StartSRange = getSignedRange(Start); |
| ConstantRange StepSRange = getSignedRange(Step); |
| |
| // If Step can be both positive and negative, we need to find ranges for the |
| // maximum absolute step values in both directions and union them. |
| ConstantRange SR = |
| getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, |
| MaxBECountValue, BitWidth, /* Signed = */ true); |
| SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), |
| StartSRange, MaxBECountValue, |
| BitWidth, /* Signed = */ true)); |
| |
| // Next, consider step unsigned. |
| ConstantRange UR = getRangeForAffineARHelper( |
| getUnsignedRangeMax(Step), getUnsignedRange(Start), |
| MaxBECountValue, BitWidth, /* Signed = */ false); |
| |
| // Finally, intersect signed and unsigned ranges. |
| return SR.intersectWith(UR, ConstantRange::Smallest); |
| } |
| |
| ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, |
| const SCEV *Step, |
| const SCEV *MaxBECount, |
| unsigned BitWidth) { |
| // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) |
| // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) |
| |
| struct SelectPattern { |
| Value *Condition = nullptr; |
| APInt TrueValue; |
| APInt FalseValue; |
| |
| explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, |
| const SCEV *S) { |
| Optional<unsigned> CastOp; |
| APInt Offset(BitWidth, 0); |
| |
| assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && |
| "Should be!"); |
| |
| // Peel off a constant offset: |
| if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { |
| // In the future we could consider being smarter here and handle |
| // {Start+Step,+,Step} too. |
| if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) |
| return; |
| |
| Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); |
| S = SA->getOperand(1); |
| } |
| |
| // Peel off a cast operation |
| if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { |
| CastOp = SCast->getSCEVType(); |
| S = SCast->getOperand(); |
| } |
| |
| using namespace llvm::PatternMatch; |
| |
| auto *SU = dyn_cast<SCEVUnknown>(S); |
| const APInt *TrueVal, *FalseVal; |
| if (!SU || |
| !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), |
| m_APInt(FalseVal)))) { |
| Condition = nullptr; |
| return; |
| } |
| |
| TrueValue = *TrueVal; |
| FalseValue = *FalseVal; |
| |
| // Re-apply the cast we peeled off earlier |
| if (CastOp.hasValue()) |
| switch (*CastOp) { |
| default: |
| llvm_unreachable("Unknown SCEV cast type!"); |
| |
| case scTruncate: |
| TrueValue = TrueValue.trunc(BitWidth); |
| FalseValue = FalseValue.trunc(BitWidth); |
| break; |
| case scZeroExtend: |
| TrueValue = TrueValue.zext(BitWidth); |
| FalseValue = FalseValue.zext(BitWidth); |
| break; |
| case scSignExtend: |
| TrueValue = TrueValue.sext(BitWidth); |
| FalseValue = FalseValue.sext(BitWidth); |
| break; |
| } |
| |
| // Re-apply the constant offset we peeled off earlier |
| TrueValue += Offset; |
| FalseValue += Offset; |
| } |
| |
| bool isRecognized() { return Condition != nullptr; } |
| }; |
| |
| SelectPattern StartPattern(*this, BitWidth, Start); |
| if (!StartPattern.isRecognized()) |
| return ConstantRange::getFull(BitWidth); |
| |
| SelectPattern StepPattern(*this, BitWidth, Step); |
| if (!StepPattern.isRecognized()) |
| return ConstantRange::getFull(BitWidth); |
| |
| if (StartPattern.Condition != StepPattern.Condition) { |
| // We don't handle this case today; but we could, by considering four |
| // possibilities below instead of two. I'm not sure if there are cases where |
| // that will help over what getRange already does, though. |
| return ConstantRange::getFull(BitWidth); |
| } |
| |
| // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to |
| // construct arbitrary general SCEV expressions here. This function is called |
| // from deep in the call stack, and calling getSCEV (on a sext instruction, |
| // say) can end up caching a suboptimal value. |
| |
| // FIXME: without the explicit `this` receiver below, MSVC errors out with |
| // C2352 and C2512 (otherwise it isn't needed). |
| |
| const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); |
| const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); |
| const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); |
| const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); |
| |
| ConstantRange TrueRange = |
| this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); |
| ConstantRange FalseRange = |
| this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); |
| |
| return TrueRange.unionWith(FalseRange); |
| } |
| |
| SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { |
| if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; |
| const BinaryOperator *BinOp = cast<BinaryOperator>(V); |
| |
| // Return early if there are no flags to propagate to the SCEV. |
| SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; |
| if (BinOp->hasNoUnsignedWrap()) |
| Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); |
| if (BinOp->hasNoSignedWrap()) |
| Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); |
| if (Flags == SCEV::FlagAnyWrap) |
| return SCEV::FlagAnyWrap; |
| |
| return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; |
| } |
| |
| bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { |
| // Here we check that I is in the header of the innermost loop containing I, |
| // since we only deal with instructions in the loop header. The actual loop we |
| // need to check later will come from an add recurrence, but getting that |
| // requires computing the SCEV of the operands, which can be expensive. This |
| // check we can do cheaply to rule out some cases early. |
| Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); |
| if (InnermostContainingLoop == nullptr || |
| InnermostContainingLoop->getHeader() != I->getParent()) |
| return false; |
| |
| // Only proceed if we can prove that I does not yield poison. |
| if (!programUndefinedIfFullPoison(I)) |
| return false; |
| |
| // At this point we know that if I is executed, then it does not wrap |
| // according to at least one of NSW or NUW. If I is not executed, then we do |
| // not know if the calculation that I represents would wrap. Multiple |
| // instructions can map to the same SCEV. If we apply NSW or NUW from I to |
| // the SCEV, we must guarantee no wrapping for that SCEV also when it is |
| // derived from other instructions that map to the same SCEV. We cannot make |
| // that guarantee for cases where I is not executed. So we need to find the |
| // loop that I is considered in relation to and prove that I is executed for |
| // every iteration of that loop. That implies that the value that I |
| // calculates does not wrap anywhere in the loop, so then we can apply the |
| // flags to the SCEV. |
| // |
| // We check isLoopInvariant to disambiguate in case we are adding recurrences |
| // from different loops, so that we know which loop to prove that I is |
| // executed in. |
| for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { |
| // I could be an extractvalue from a call to an overflow intrinsic. |
| // TODO: We can do better here in some cases. |
| if (!isSCEVable(I->getOperand(OpIndex)->getType())) |
| return false; |
| const SCEV *Op = getSCEV(I->getOperand(OpIndex)); |
| if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { |
| bool AllOtherOpsLoopInvariant = true; |
| for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); |
| ++OtherOpIndex) { |
| if (OtherOpIndex != OpIndex) { |
| const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); |
| if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { |
| AllOtherOpsLoopInvariant = false; |
| break; |
| } |
| } |
| } |
| if (AllOtherOpsLoopInvariant && |
| isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { |
| // If we know that \c I can never be poison period, then that's enough. |
| if (isSCEVExprNeverPoison(I)) |
| return true; |
| |
| // For an add recurrence specifically, we assume that infinite loops without |
| // side effects are undefined behavior, and then reason as follows: |
| // |
| // If the add recurrence is poison in any iteration, it is poison on all |
| // future iterations (since incrementing poison yields poison). If the result |
| // of the add recurrence is fed into the loop latch condition and the loop |
| // does not contain any throws or exiting blocks other than the latch, we now |
| // have the ability to "choose" whether the backedge is taken or not (by |
| // choosing a sufficiently evil value for the poison feeding into the branch) |
| // for every iteration including and after the one in which \p I first became |
| // poison. There are two possibilities (let's call the iteration in which \p |
| // I first became poison as K): |
| // |
| // 1. In the set of iterations including and after K, the loop body executes |
| // no side effects. In this case executing the backege an infinte number |
| // of times will yield undefined behavior. |
| // |
| // 2. In the set of iterations including and after K, the loop body executes |
| // at least one side effect. In this case, that specific instance of side |
| // effect is control dependent on poison, which also yields undefined |
| // behavior. |
| |
| auto *ExitingBB = L->getExitingBlock(); |
| auto *LatchBB = L->getLoopLatch(); |
| if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) |
| return false; |
| |
| SmallPtrSet<const Instruction *, 16> Pushed; |
| SmallVector<const Instruction *, 8> PoisonStack; |
| |
| // We start by assuming \c I, the post-inc add recurrence, is poison. Only |
| // things that are known to be fully poison under that assumption go on the |
| // PoisonStack. |
| Pushed.insert(I); |
| PoisonStack.push_back(I); |
| |
| bool LatchControlDependentOnPoison = false; |
| while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { |
| const Instruction *Poison = PoisonStack.pop_back_val(); |
| |
| for (auto *PoisonUser : Poison->users()) { |
| if (propagatesFullPoison(cast<Instruction>(PoisonUser))) { |
| if (Pushed.insert(cast<Instruction>(PoisonUser)).second) |
| PoisonStack.push_back(cast<Instruction>(PoisonUser)); |
| } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { |
| assert(BI->isConditional() && "Only possibility!"); |
| if (BI->getParent() == LatchBB) { |
| LatchControlDependentOnPoison = true; |
| break; |
| } |
| } |
| } |
| } |
| |
| return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); |
| } |
| |
| ScalarEvolution::LoopProperties |
| ScalarEvolution::getLoopProperties(const Loop *L) { |
| using LoopProperties = ScalarEvolution::LoopProperties; |
| |
| auto Itr = LoopPropertiesCache.find(L); |
| if (Itr == LoopPropertiesCache.end()) { |
| auto HasSideEffects = [](Instruction *I) { |
| if (auto *SI = dyn_cast<StoreInst>(I)) |
| return !SI->isSimple(); |
| |
| return I->mayHaveSideEffects(); |
| }; |
| |
| LoopProperties LP = {/* HasNoAbnormalExits */ true, |
| /*HasNoSideEffects*/ true}; |
| |
| for (auto *BB : L->getBlocks()) |
| for (auto &I : *BB) { |
| if (!isGuaranteedToTransferExecutionToSuccessor(&I)) |
| LP.HasNoAbnormalExits = false; |
| if (HasSideEffects(&I)) |
| LP.HasNoSideEffects = false; |
| if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) |
| break; // We're already as pessimistic as we can get. |
| } |
| |
| auto InsertPair = LoopPropertiesCache.insert({L, LP}); |
| assert(InsertPair.second && "We just checked!"); |
| Itr = InsertPair.first; |
| } |
| |
| return Itr->second; |
| } |
| |
| const SCEV *ScalarEvolution::createSCEV(Value *V) { |
| if (!isSCEVable(V->getType())) |
| return getUnknown(V); |
| |
| if (Instruction *I = dyn_cast<Instruction>(V)) { |
| // Don't attempt to analyze instructions in blocks that aren't |
| // reachable. Such instructions don't matter, and they aren't required |
| // to obey basic rules for definitions dominating uses which this |
| // analysis depends on. |
| if (!DT.isReachableFromEntry(I->getParent())) |
| return getUnknown(UndefValue::get(V->getType())); |
| } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) |
| return getConstant(CI); |
| else if (isa<ConstantPointerNull>(V)) |
| return getZero(V->getType()); |
| else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) |
| return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); |
| else if (!isa<ConstantExpr>(V)) |
| return getUnknown(V); |
| |
| Operator *U = cast<Operator>(V); |
| if (auto BO = MatchBinaryOp(U, DT)) { |
| switch (BO->Opcode) { |
| case Instruction::Add: { |
| // The simple thing to do would be to just call getSCEV on both operands |
| // and call getAddExpr with the result. However if we're looking at a |
| // bunch of things all added together, this can be quite inefficient, |
| // because it leads to N-1 getAddExpr calls for N ultimate operands. |
| // Instead, gather up all the operands and make a single getAddExpr call. |
| // LLVM IR canonical form means we need only traverse the left operands. |
| SmallVector<const SCEV *, 4> AddOps; |
| do { |
| if (BO->Op) { |
| if (auto *OpSCEV = getExistingSCEV(BO->Op)) { |
| AddOps.push_back(OpSCEV); |
| break; |
| } |
| |
| // If a NUW or NSW flag can be applied to the SCEV for this |
| // addition, then compute the SCEV for this addition by itself |
| // with a separate call to getAddExpr. We need to do that |
| // instead of pushing the operands of the addition onto AddOps, |
| // since the flags are only known to apply to this particular |
| // addition - they may not apply to other additions that can be |
| // formed with operands from AddOps. |
| const SCEV *RHS = getSCEV(BO->RHS); |
| SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); |
| if (Flags != SCEV::FlagAnyWrap) { |
| const SCEV *LHS = getSCEV(BO->LHS); |
| if (BO->Opcode == Instruction::Sub) |
| AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); |
| else |
| AddOps.push_back(getAddExpr(LHS, RHS, Flags)); |
| break; |
| } |
| } |
| |
| if (BO->Opcode == Instruction::Sub) |
| AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); |
| else |
| AddOps.push_back(getSCEV(BO->RHS)); |
| |
| auto NewBO = MatchBinaryOp(BO->LHS, DT); |
| if (!NewBO || (NewBO->Opcode != Instruction::Add && |
| NewBO->Opcode != Instruction::Sub)) { |
| AddOps.push_back(getSCEV(BO->LHS)); |
| break; |
| } |
| BO = NewBO; |
| } while (true); |
| |
| return getAddExpr(AddOps); |
| } |
| |
| case Instruction::Mul: { |
| SmallVector<const SCEV *, 4> MulOps; |
| do { |
| if (BO->Op) { |
| if (auto *OpSCEV = getExistingSCEV(BO->Op)) { |
| MulOps.push_back(OpSCEV); |
| break; |
| } |
| |
| SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); |
| if (Flags != SCEV::FlagAnyWrap) { |
| MulOps.push_back( |
| getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); |
| break; |
| } |
| } |
| |
| MulOps.push_back(getSCEV(BO->RHS)); |
| auto NewBO = MatchBinaryOp(BO->LHS, DT); |
| if (!NewBO || NewBO->Opcode != Instruction::Mul) { |
| MulOps.push_back(getSCEV(BO->LHS)); |
| break; |
| } |
| BO = NewBO; |
| } while (true); |
| |
| return getMulExpr(MulOps); |
| } |
| case Instruction::UDiv: |
| return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); |
| case Instruction::URem: |
| return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); |
| case Instruction::Sub: { |
| SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; |
| if (BO->Op) |
| Flags = getNoWrapFlagsFromUB(BO->Op); |
| return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); |
| } |
| case Instruction::And: |
| // For an expression like x&255 that merely masks off the high bits, |
| // use zext(trunc(x)) as the SCEV expression. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { |
| if (CI->isZero()) |
| return getSCEV(BO->RHS); |
| if (CI->isMinusOne()) |
| return getSCEV(BO->LHS); |
| const APInt &A = CI->getValue(); |
| |
| // Instcombine's ShrinkDemandedConstant may strip bits out of |
| // constants, obscuring what would otherwise be a low-bits mask. |
| // Use computeKnownBits to compute what ShrinkDemandedConstant |
| // knew about to reconstruct a low-bits mask value. |
| unsigned LZ = A.countLeadingZeros(); |
| unsigned TZ = A.countTrailingZeros(); |
| unsigned BitWidth = A.getBitWidth(); |
| KnownBits Known(BitWidth); |
| computeKnownBits(BO->LHS, Known, getDataLayout(), |
| 0, &AC, nullptr, &DT); |
| |
| APInt EffectiveMask = |
| APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); |
| if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { |
| const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); |
| const SCEV *LHS = getSCEV(BO->LHS); |
| const SCEV *ShiftedLHS = nullptr; |
| if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { |
| if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { |
| // For an expression like (x * 8) & 8, simplify the multiply. |
| unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); |
| unsigned GCD = std::min(MulZeros, TZ); |
| APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); |
| SmallVector<const SCEV*, 4> MulOps; |
| MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); |
| MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); |
| auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); |
| ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); |
| } |
| } |
| if (!ShiftedLHS) |
| ShiftedLHS = getUDivExpr(LHS, MulCount); |
| return getMulExpr( |
| getZeroExtendExpr( |
| getTruncateExpr(ShiftedLHS, |
| IntegerType::get(getContext(), BitWidth - LZ - TZ)), |
| BO->LHS->getType()), |
| MulCount); |
| } |
| } |
| break; |
| |
| case Instruction::Or: |
| // If the RHS of the Or is a constant, we may have something like: |
| // X*4+1 which got turned into X*4|1. Handle this as an Add so loop |
| // optimizations will transparently handle this case. |
| // |
| // In order for this transformation to be safe, the LHS must be of the |
| // form X*(2^n) and the Or constant must be less than 2^n. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { |
| const SCEV *LHS = getSCEV(BO->LHS); |
| const APInt &CIVal = CI->getValue(); |
| if (GetMinTrailingZeros(LHS) >= |
| (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { |
| // Build a plain add SCEV. |
| const SCEV *S = getAddExpr(LHS, getSCEV(CI)); |
| // If the LHS of the add was an addrec and it has no-wrap flags, |
| // transfer the no-wrap flags, since an or won't introduce a wrap. |
| if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { |
| const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); |
| const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( |
| OldAR->getNoWrapFlags()); |
| } |
| return S; |
| } |
| } |
| break; |
| |
| case Instruction::Xor: |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { |
| // If the RHS of xor is -1, then this is a not operation. |
| if (CI->isMinusOne()) |
| return getNotSCEV(getSCEV(BO->LHS)); |
| |
| // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. |
| // This is a variant of the check for xor with -1, and it handles |
| // the case where instcombine has trimmed non-demanded bits out |
| // of an xor with -1. |
| if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) |
| if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) |
| if (LBO->getOpcode() == Instruction::And && |
| LCI->getValue() == CI->getValue()) |
| if (const SCEVZeroExtendExpr *Z = |
| dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { |
| Type *UTy = BO->LHS->getType(); |
| const SCEV *Z0 = Z->getOperand(); |
| Type *Z0Ty = Z0->getType(); |
| unsigned Z0TySize = getTypeSizeInBits(Z0Ty); |
| |
| // If C is a low-bits mask, the zero extend is serving to |
| // mask off the high bits. Complement the operand and |
| // re-apply the zext. |
| if (CI->getValue().isMask(Z0TySize)) |
| return getZeroExtendExpr(getNotSCEV(Z0), UTy); |
| |
| // If C is a single bit, it may be in the sign-bit position |
| // before the zero-extend. In this case, represent the xor |
| // using an add, which is equivalent, and re-apply the zext. |
| APInt Trunc = CI->getValue().trunc(Z0TySize); |
| if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && |
| Trunc.isSignMask()) |
| return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), |
| UTy); |
| } |
| } |
| break; |
| |
| case Instruction::Shl: |
| // Turn shift left of a constant amount into a multiply. |
| if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { |
| uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); |
| |
| // If the shift count is not less than the bitwidth, the result of |
| // the shift is undefined. Don't try to analyze it, because the |
| // resolution chosen here may differ from the resolution chosen in |
| // other parts of the compiler. |
| if (SA->getValue().uge(BitWidth)) |
| break; |
| |
| // It is currently not resolved how to interpret NSW for left |
| // shift by BitWidth - 1, so we avoid applying flags in that |
| // case. Remove this check (or this comment) once the situation |
| // is resolved. See |
| // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html |
| // and http://reviews.llvm.org/D8890 . |
| auto Flags = SCEV::FlagAnyWrap; |
| if (BO->Op && SA->getValue().ult(BitWidth - 1)) |
| Flags = getNoWrapFlagsFromUB(BO->Op); |
| |
| Constant *X = ConstantInt::get( |
| getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); |
| return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); |
| } |
| break; |
| |
| case Instruction::AShr: { |
| // AShr X, C, where C is a constant. |
| ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); |
| if (!CI) |
| break; |
| |
| Type *OuterTy = BO->LHS->getType(); |
| uint64_t BitWidth = getTypeSizeInBits(OuterTy); |
| // If the shift count is not less than the bitwidth, the result of |
| // the shift is undefined. Don't try to analyze it, because the |
| // resolution chosen here may differ from the resolution chosen in |
| // other parts of the compiler. |
| if (CI->getValue().uge(BitWidth)) |
| break; |
| |
| if (CI->isZero()) |
| return getSCEV(BO->LHS); // shift by zero --> noop |
| |
| uint64_t AShrAmt = CI->getZExtValue(); |
| Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); |
| |
| Operator *L = dyn_cast<Operator>(BO->LHS); |
| if (L && L->getOpcode() == Instruction::Shl) { |
| // X = Shl A, n |
| // Y = AShr X, m |
| // Both n and m are constant. |
| |
| const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); |
| if (L->getOperand(1) == BO->RHS) |
| // For a two-shift sext-inreg, i.e. n = m, |
| // use sext(trunc(x)) as the SCEV expression. |
| return getSignExtendExpr( |
| getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); |
| |
| ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); |
| if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { |
| uint64_t ShlAmt = ShlAmtCI->getZExtValue(); |
| if (ShlAmt > AShrAmt) { |
| // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV |
| // expression. We already checked that ShlAmt < BitWidth, so |
| // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as |
| // ShlAmt - AShrAmt < Amt. |
| APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, |
| ShlAmt - AShrAmt); |
| return getSignExtendExpr( |
| getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), |
| getConstant(Mul)), OuterTy); |
| } |
| } |
| } |
| break; |
| } |
| } |
| } |
| |
| switch (U->getOpcode()) { |
| case Instruction::Trunc: |
| return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); |
| |
| case Instruction::ZExt: |
| return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); |
| |
| case Instruction::SExt: |
| if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { |
| // The NSW flag of a subtract does not always survive the conversion to |
| // A + (-1)*B. By pushing sign extension onto its operands we are much |
| // more likely to preserve NSW and allow later AddRec optimisations. |
| // |
| // NOTE: This is effectively duplicating this logic from getSignExtend: |
| // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> |
| // but by that point the NSW information has potentially been lost. |
| if (BO->Opcode == Instruction::Sub && BO->IsNSW) { |
| Type *Ty = U->getType(); |
| auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); |
| auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); |
| return getMinusSCEV(V1, V2, SCEV::FlagNSW); |
| } |
| } |
| return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); |
| |
| case Instruction::BitCast: |
| // BitCasts are no-op casts so we just eliminate the cast. |
| if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) |
| return getSCEV(U->getOperand(0)); |
| break; |
| |
| // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can |
| // lead to pointer expressions which cannot safely be expanded to GEPs, |
| // because ScalarEvolution doesn't respect the GEP aliasing rules when |
| // simplifying integer expressions. |
| |
| case Instruction::GetElementPtr: |
| return createNodeForGEP(cast<GEPOperator>(U)); |
| |
| case Instruction::PHI: |
| return createNodeForPHI(cast<PHINode>(U)); |
| |
| case Instruction::Select: |
| // U can also be a select constant expr, which let fall through. Since |
| // createNodeForSelect only works for a condition that is an `ICmpInst`, and |
| // constant expressions cannot have instructions as operands, we'd have |
| // returned getUnknown for a select constant expressions anyway. |
| if (isa<Instruction>(U)) |
| return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), |
| U->getOperand(1), U->getOperand(2)); |
| break; |
| |
| case Instruction::Call: |
| case Instruction::Invoke: |
| if (Value *RV = CallSite(U).getReturnedArgOperand()) |
| return getSCEV(RV); |
| break; |
| } |
| |
| return getUnknown(V); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Iteration Count Computation Code |
| // |
| |
| static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { |
| if (!ExitCount) |
| return 0; |
| |
| ConstantInt *ExitConst = ExitCount->getValue(); |
| |
| // Guard against huge trip counts. |
| if (ExitConst->getValue().getActiveBits() > 32) |
| return 0; |
| |
| // In case of integer overflow, this returns 0, which is correct. |
| return ((unsigned)ExitConst->getZExtValue()) + 1; |
| } |
| |
| unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { |
| if (BasicBlock *ExitingBB = L->getExitingBlock()) |
| return getSmallConstantTripCount(L, ExitingBB); |
| |
| // No trip count information for multiple exits. |
| return 0; |
| } |
| |
| unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L, |
| BasicBlock *ExitingBlock) { |
| assert(ExitingBlock && "Must pass a non-null exiting block!"); |
| assert(L->isLoopExiting(ExitingBlock) && |
| "Exiting block must actually branch out of the loop!"); |
| const SCEVConstant *ExitCount = |
| dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); |
| return getConstantTripCount(ExitCount); |
| } |
| |
| unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { |
| const auto *MaxExitCount = |
| dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); |
| return getConstantTripCount(MaxExitCount); |
| } |
| |
| unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { |
| if (BasicBlock *ExitingBB = L->getExitingBlock()) |
| return getSmallConstantTripMultiple(L, ExitingBB); |
| |
| // No trip multiple information for multiple exits. |
| return 0; |
| } |
| |
| /// Returns the largest constant divisor of the trip count of this loop as a |
| /// normal unsigned value, if possible. This means that the actual trip count is |
| /// always a multiple of the returned value (don't forget the trip count could |
| /// very well be zero as well!). |
| /// |
| /// Returns 1 if the trip count is unknown or not guaranteed to be the |
| /// multiple of a constant (which is also the case if the trip count is simply |
| /// constant, use getSmallConstantTripCount for that case), Will also return 1 |
| /// if the trip count is very large (>= 2^32). |
| /// |
| /// As explained in the comments for getSmallConstantTripCount, this assumes |
| /// that control exits the loop via ExitingBlock. |
| unsigned |
| ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, |
| BasicBlock *ExitingBlock) { |
| assert(ExitingBlock && "Must pass a non-null exiting block!"); |
| assert(L->isLoopExiting(ExitingBlock) && |
| "Exiting block must actually branch out of the loop!"); |
| const SCEV *ExitCount = getExitCount(L, ExitingBlock); |
| if (ExitCount == getCouldNotCompute()) |
| return 1; |
| |
| // Get the trip count from the BE count by adding 1. |
| const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); |
| |
| const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); |
| if (!TC) |
| // Attempt to factor more general cases. Returns the greatest power of |
| // two divisor. If overflow happens, the trip count expression is still |
| // divisible by the greatest power of 2 divisor returned. |
| return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); |
| |
| ConstantInt *Result = TC->getValue(); |
| |
| // Guard against huge trip counts (this requires checking |
| // for zero to handle the case where the trip count == -1 and the |
| // addition wraps). |
| if (!Result || Result->getValue().getActiveBits() > 32 || |
| Result->getValue().getActiveBits() == 0) |
| return 1; |
| |
| return (unsigned)Result->getZExtValue(); |
| } |
| |
| const SCEV *ScalarEvolution::getExitCount(const Loop *L, |
| BasicBlock *ExitingBlock, |
| ExitCountKind Kind) { |
| switch (Kind) { |
| case Exact: |
| return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); |
| case ConstantMaximum: |
| return getBackedgeTakenInfo(L).getMax(ExitingBlock, this); |
| }; |
| llvm_unreachable("Invalid ExitCountKind!"); |
| } |
| |
| const SCEV * |
| ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, |
| SCEVUnionPredicate &Preds) { |
| return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); |
| } |
| |
| const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, |
| ExitCountKind Kind) { |
| switch (Kind) { |
| case Exact: |
| return getBackedgeTakenInfo(L).getExact(L, this); |
| case ConstantMaximum: |
| return getBackedgeTakenInfo(L).getMax(this); |
| }; |
| llvm_unreachable("Invalid ExitCountKind!"); |
| } |
| |
| bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { |
| return getBackedgeTakenInfo(L).isMaxOrZero(this); |
| } |
| |
| /// Push PHI nodes in the header of the given loop onto the given Worklist. |
| static void |
| PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { |
| BasicBlock *Header = L->getHeader(); |
| |
| // Push all Loop-header PHIs onto the Worklist stack. |
| for (PHINode &PN : Header->phis()) |
| Worklist.push_back(&PN); |
| } |
| |
| const ScalarEvolution::BackedgeTakenInfo & |
| ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { |
| auto &BTI = getBackedgeTakenInfo(L); |
| if (BTI.hasFullInfo()) |
| return BTI; |
| |
| auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); |
| |
| if (!Pair.second) |
| return Pair.first->second; |
| |
| BackedgeTakenInfo Result = |
| computeBackedgeTakenCount(L, /*AllowPredicates=*/true); |
| |
| return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); |
| } |
| |
| const ScalarEvolution::BackedgeTakenInfo & |
| ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { |
| // Initially insert an invalid entry for this loop. If the insertion |
| // succeeds, proceed to actually compute a backedge-taken count and |
| // update the value. The temporary CouldNotCompute value tells SCEV |
| // code elsewhere that it shouldn't attempt to request a new |
| // backedge-taken count, which could result in infinite recursion. |
| std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = |
| BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); |
| if (!Pair.second) |
| return Pair.first->second; |
| |
| // computeBackedgeTakenCount may allocate memory for its result. Inserting it |
| // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result |
| // must be cleared in this scope. |
| BackedgeTakenInfo Result = computeBackedgeTakenCount(L); |
| |
| // In product build, there are no usage of statistic. |
| (void)NumTripCountsComputed; |
| (void)NumTripCountsNotComputed; |
| #if LLVM_ENABLE_STATS || !defined(NDEBUG) |
| const SCEV *BEExact = Result.getExact(L, this); |
| if (BEExact != getCouldNotCompute()) { |
| assert(isLoopInvariant(BEExact, L) && |
| isLoopInvariant(Result.getMax(this), L) && |
| "Computed backedge-taken count isn't loop invariant for loop!"); |
| ++NumTripCountsComputed; |
| } |
| else if (Result.getMax(this) == getCouldNotCompute() && |
| isa<PHINode>(L->getHeader()->begin())) { |
| // Only count loops that have phi nodes as not being computable. |
| ++NumTripCountsNotComputed; |
| } |
| #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) |
| |
| // Now that we know more about the trip count for this loop, forget any |
| // existing SCEV values for PHI nodes in this loop since they are only |
| // conservative estimates made without the benefit of trip count |
| // information. This is similar to the code in forgetLoop, except that |
| // it handles SCEVUnknown PHI nodes specially. |
| if (Result.hasAnyInfo()) { |
| SmallVector<Instruction *, 16> Worklist; |
| PushLoopPHIs(L, Worklist); |
| |
| SmallPtrSet<Instruction *, 8> Discovered; |
| while (!Worklist.empty()) { |
| Instruction *I = Worklist.pop_back_val(); |
| |
| ValueExprMapType::iterator It = |
| ValueExprMap.find_as(static_cast<Value *>(I)); |
| if (It != ValueExprMap.end()) { |
| const SCEV *Old = It->second; |
| |
| // SCEVUnknown for a PHI either means that it has an unrecognized |
| // structure, or it's a PHI that's in the progress of being computed |
| // by createNodeForPHI. In the former case, additional loop trip |
| // count information isn't going to change anything. In the later |
| // case, createNodeForPHI will perform the necessary updates on its |
| // own when it gets to that point. |
| if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { |
| eraseValueFromMap(It->first); |
| forgetMemoizedResults(Old); |
| } |
| if (PHINode *PN = dyn_cast<PHINode>(I)) |
| ConstantEvolutionLoopExitValue.erase(PN); |
| } |
| |
| // Since we don't need to invalidate anything for correctness and we're |
| // only invalidating to make SCEV's results more precise, we get to stop |
| // early to avoid invalidating too much. This is especially important in |
| // cases like: |
| // |
| // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node |
| // loop0: |
| // %pn0 = phi |
| // ... |
| // loop1: |
| // %pn1 = phi |
| // ... |
| // |
| // where both loop0 and loop1's backedge taken count uses the SCEV |
| // expression for %v. If we don't have the early stop below then in cases |
| // like the above, getBackedgeTakenInfo(loop1) will clear out the trip |
| // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip |
| // count for loop1, effectively nullifying SCEV's trip count cache. |
| for (auto *U : I->users()) |
| if (auto *I = dyn_cast<Instruction>(U)) { |
| auto *LoopForUser = LI.getLoopFor(I->getParent()); |
| if (LoopForUser && L->contains(LoopForUser) && |
| Discovered.insert(I).second) |
| Worklist.push_back(I); |
| } |
| } |
| } |
| |
| // Re-lookup the insert position, since the call to |
| // computeBackedgeTakenCount above could result in a |
| // recusive call to getBackedgeTakenInfo (on a different |
| // loop), which would invalidate the iterator computed |
| // earlier. |
| return BackedgeTakenCounts.find(L)->second = std::move(Result); |
| } |
| |
| void ScalarEvolution::forgetAllLoops() { |
| // This method is intended to forget all info about loops. It should |
| // invalidate caches as if the following happened: |
| // - The trip counts of all loops have changed arbitrarily |
| // - Every llvm::Value has been updated in place to produce a different |
| // result. |
| BackedgeTakenCounts.clear(); |
| PredicatedBackedgeTakenCounts.clear(); |
| LoopPropertiesCache.clear(); |
| ConstantEvolutionLoopExitValue.clear(); |
| ValueExprMap.clear(); |
| ValuesAtScopes.clear(); |
| LoopDispositions.clear(); |
| BlockDispositions.clear(); |
| UnsignedRanges.clear(); |
| SignedRanges.clear(); |
| ExprValueMap.clear(); |
| HasRecMap.clear(); |
| MinTrailingZerosCache.clear(); |
| PredicatedSCEVRewrites.clear(); |
| } |
| |
| void ScalarEvolution::forgetLoop(const Loop *L) { |
| // Drop any stored trip count value. |
| auto RemoveLoopFromBackedgeMap = |
| [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) { |
| auto BTCPos = Map.find(L); |
| if (BTCPos != Map.end()) { |
| BTCPos->second.clear(); |
| Map.erase(BTCPos); |
| } |
| }; |
| |
| SmallVector<const Loop *, 16> LoopWorklist(1, L); |
| SmallVector<Instruction *, 32> Worklist; |
| SmallPtrSet<Instruction *, 16> Visited; |
| |
| // Iterate over all the loops and sub-loops to drop SCEV information. |
| while (!LoopWorklist.empty()) { |
| auto *CurrL = LoopWorklist.pop_back_val(); |
| |
| RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL); |
| RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL); |
| |
| // Drop information about predicated SCEV rewrites for this loop. |
| for (auto I = PredicatedSCEVRewrites.begin(); |
| I != PredicatedSCEVRewrites.end();) { |
| std::pair<const SCEV *, const Loop *> Entry = I->first; |
| if (Entry.second == CurrL) |
| PredicatedSCEVRewrites.erase(I++); |
| else |
| ++I; |
| } |
| |
| auto LoopUsersItr = LoopUsers.find(CurrL); |
| if (LoopUsersItr != LoopUsers.end()) { |
| for (auto *S : LoopUsersItr->second) |
| forgetMemoizedResults(S); |
| LoopUsers.erase(LoopUsersItr); |
| } |
| |
| // Drop information about expressions based on loop-header PHIs. |
| PushLoopPHIs(CurrL, Worklist); |
| |
| while (!Worklist.empty()) { |
| Instruction *I = Worklist.pop_back_val(); |
| if (!Visited.insert(I).second) |
| continue; |
| |
| ValueExprMapType::iterator It = |
| ValueExprMap.find_as(static_cast<Value *>(I)); |
| if (It != ValueExprMap.end()) { |
| eraseValueFromMap(It->first); |
| forgetMemoizedResults(It->second); |
| if (PHINode *PN = dyn_cast<PHINode>(I)) |
| ConstantEvolutionLoopExitValue.erase(PN); |
| } |
| |
| PushDefUseChildren(I, Worklist); |
| } |
| |
| LoopPropertiesCache.erase(CurrL); |
| // Forget all contained loops too, to avoid dangling entries in the |
| // ValuesAtScopes map. |
| LoopWorklist.append(CurrL->begin(), CurrL->end()); |
| } |
| } |
| |
| void ScalarEvolution::forgetTopmostLoop(const Loop *L) { |
| while (Loop *Parent = L->getParentLoop()) |
| L = Parent; |
| forgetLoop(L); |
| } |
| |
| void ScalarEvolution::forgetValue(Value *V) { |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I) return; |
| |
| // Drop information about expressions based on loop-header PHIs. |
| SmallVector<Instruction *, 16> Worklist; |
| Worklist.push_back(I); |
| |
| SmallPtrSet<Instruction *, 8> Visited; |
| while (!Worklist.empty()) { |
| I = Worklist.pop_back_val(); |
| if (!Visited.insert(I).second) |
| continue; |
| |
| ValueExprMapType::iterator It = |
| ValueExprMap.find_as(static_cast<Value *>(I)); |
| if (It != ValueExprMap.end()) { |
| eraseValueFromMap(It->first); |
| forgetMemoizedResults(It->second); |
| if (PHINode *PN = dyn_cast<PHINode>(I)) |
| ConstantEvolutionLoopExitValue.erase(PN); |
| } |
| |
| PushDefUseChildren(I, Worklist); |
| } |
| } |
| |
| /// Get the exact loop backedge taken count considering all loop exits. A |
| /// computable result can only be returned for loops with all exiting blocks |
| /// dominating the latch. howFarToZero assumes that the limit of each loop test |
| /// is never skipped. This is a valid assumption as long as the loop exits via |
| /// that test. For precise results, it is the caller's responsibility to specify |
| /// the relevant loop exiting block using getExact(ExitingBlock, SE). |
| const SCEV * |
| ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, |
| SCEVUnionPredicate *Preds) const { |
| // If any exits were not computable, the loop is not computable. |
| if (!isComplete() || ExitNotTaken.empty()) |
| return SE->getCouldNotCompute(); |
| |
| const BasicBlock *Latch = L->getLoopLatch(); |
| // All exiting blocks we have collected must dominate the only backedge. |
| if (!Latch) |
| return SE->getCouldNotCompute(); |
| |
| // All exiting blocks we have gathered dominate loop's latch, so exact trip |
| // count is simply a minimum out of all these calculated exit counts. |
| SmallVector<const SCEV *, 2> Ops; |
| for (auto &ENT : ExitNotTaken) { |
| const SCEV *BECount = ENT.ExactNotTaken; |
| assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); |
| assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && |
| "We should only have known counts for exiting blocks that dominate " |
| "latch!"); |
| |
| Ops.push_back(BECount); |
| |
| if (Preds && !ENT.hasAlwaysTruePredicate()) |
| Preds->add(ENT.Predicate.get()); |
| |
| assert((Preds || ENT.hasAlwaysTruePredicate()) && |
| "Predicate should be always true!"); |
| } |
| |
| return SE->getUMinFromMismatchedTypes(Ops); |
| } |
| |
| /// Get the exact not taken count for this loop exit. |
| const SCEV * |
| ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, |
| ScalarEvolution *SE) const { |
| for (auto &ENT : ExitNotTaken) |
| if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) |
| return ENT.ExactNotTaken; |
| |
| return SE->getCouldNotCompute(); |
| } |
| |
| const SCEV * |
| ScalarEvolution::BackedgeTakenInfo::getMax(BasicBlock *ExitingBlock, |
| ScalarEvolution *SE) const { |
| for (auto &ENT : ExitNotTaken) |
| if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) |
| return ENT.MaxNotTaken; |
| |
| return SE->getCouldNotCompute(); |
| } |
| |
| /// getMax - Get the max backedge taken count for the loop. |
| const SCEV * |
| ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { |
| auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { |
| return !ENT.hasAlwaysTruePredicate(); |
| }; |
| |
| if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) |
| return SE->getCouldNotCompute(); |
| |
| assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) && |
| "No point in having a non-constant max backedge taken count!"); |
| return getMax(); |
| } |
| |
| bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { |
| auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { |
| return !ENT.hasAlwaysTruePredicate(); |
| }; |
| return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); |
| } |
| |
| bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, |
| ScalarEvolution *SE) const { |
| if (getMax() && getMax() != SE->getCouldNotCompute() && |
| SE->hasOperand(getMax(), S)) |
| return true; |
| |
| for (auto &ENT : ExitNotTaken) |
| if (ENT.ExactNotTaken != SE->getCouldNotCompute() && |
| SE->hasOperand(ENT.ExactNotTaken, S)) |
| return true; |
| |
| return false; |
| } |
| |
| ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) |
| : ExactNotTaken(E), MaxNotTaken(E) { |
| assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || |
| isa<SCEVConstant>(MaxNotTaken)) && |
| "No point in having a non-constant max backedge taken count!"); |
| } |
| |
| ScalarEvolution::ExitLimit::ExitLimit( |
| const SCEV *E, const SCEV *M, bool MaxOrZero, |
| ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) |
| : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { |
| assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || |
| !isa<SCEVCouldNotCompute>(MaxNotTaken)) && |
| "Exact is not allowed to be less precise than Max"); |
| assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || |
| isa<SCEVConstant>(MaxNotTaken)) && |
| "No point in having a non-constant max backedge taken count!"); |
| for (auto *PredSet : PredSetList) |
| for (auto *P : *PredSet) |
| addPredicate(P); |
| } |
| |
| ScalarEvolution::ExitLimit::ExitLimit( |
| const SCEV *E, const SCEV *M, bool MaxOrZero, |
| const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) |
| : ExitLimit(E, M, MaxOrZero, {&PredSet}) { |
| assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || |
| isa<SCEVConstant>(MaxNotTaken)) && |
| "No point in having a non-constant max backedge taken count!"); |
| } |
| |
| ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, |
| bool MaxOrZero) |
| : ExitLimit(E, M, MaxOrZero, None) { |
| assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || |
| isa<SCEVConstant>(MaxNotTaken)) && |
| "No point in having a non-constant max backedge taken count!"); |
| } |
| |
| /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each |
| /// computable exit into a persistent ExitNotTakenInfo array. |
| ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( |
| ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> |
| ExitCounts, |
| bool Complete, const SCEV *MaxCount, bool MaxOrZero) |
| : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { |
| using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; |
| |
| ExitNotTaken.reserve(ExitCounts.size()); |
| std::transform( |
| ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), |
| [&](const EdgeExitInfo &EEI) { |
| BasicBlock *ExitBB = EEI.first; |
| const ExitLimit &EL = EEI.second; |
| if (EL.Predicates.empty()) |
| return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, |
| nullptr); |
| |
| std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); |
| for (auto *Pred : EL.Predicates) |
| Predicate->add(Pred); |
| |
| return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, |
| std::move(Predicate)); |
| }); |
| assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) && |
| "No point in having a non-constant max backedge taken count!"); |
| } |
| |
| /// Invalidate this result and free the ExitNotTakenInfo array. |
| void ScalarEvolution::BackedgeTakenInfo::clear() { |
| ExitNotTaken.clear(); |
| } |
| |
| /// Compute the number of times the backedge of the specified loop will execute. |
| ScalarEvolution::BackedgeTakenInfo |
| ScalarEvolution::computeBackedgeTakenCount(const Loop *L, |
| bool AllowPredicates) { |
| SmallVector<BasicBlock *, 8> ExitingBlocks; |
| L->getExitingBlocks(ExitingBlocks); |
| |
| using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; |
| |
| SmallVector<EdgeExitInfo, 4> ExitCounts; |
| bool CouldComputeBECount = true; |
| BasicBlock *Latch = L->getLoopLatch(); // may be NULL. |
| const SCEV *MustExitMaxBECount = nullptr; |
| const SCEV *MayExitMaxBECount = nullptr; |
| bool MustExitMaxOrZero = false; |
| |
| // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts |
| // and compute maxBECount. |
| // Do a union of all the predicates here. |
| for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { |
| BasicBlock *ExitBB = ExitingBlocks[i]; |
| |
| // We canonicalize untaken exits to br (constant), ignore them so that |
| // proving an exit untaken doesn't negatively impact our ability to reason |
| // about the loop as whole. |
| if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) |
| if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { |
| bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); |
| if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne())) |
| continue; |
| } |
| |
| ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); |
| |
| assert((AllowPredicates || EL.Predicates.empty()) && |
| "Predicated exit limit when predicates are not allowed!"); |
| |
| // 1. For each exit that can be computed, add an entry to ExitCounts. |
| // CouldComputeBECount is true only if all exits can be computed. |
| if (EL.ExactNotTaken == getCouldNotCompute()) |
| // We couldn't compute an exact value for this exit, so |
| // we won't be able to compute an exact value for the loop. |
| CouldComputeBECount = false; |
| else |
| ExitCounts.emplace_back(ExitBB, EL); |
| |
| // 2. Derive the loop's MaxBECount from each exit's max number of |
| // non-exiting iterations. Partition the loop exits into two kinds: |
| // LoopMustExits and LoopMayExits. |
| // |
| // If the exit dominates the loop latch, it is a LoopMustExit otherwise it |
| // is a LoopMayExit. If any computable LoopMustExit is found, then |
| // MaxBECount is the minimum EL.MaxNotTaken of computable |
| // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum |
| // EL.MaxNotTaken, where CouldNotCompute is considered greater than any |
| // computable EL.MaxNotTaken. |
| if (EL.MaxNotTaken != getCouldNotCompute() && Latch && |
| DT.dominates(ExitBB, Latch)) { |
| if (!MustExitMaxBECount) { |
| MustExitMaxBECount = EL.MaxNotTaken; |
| MustExitMaxOrZero = EL.MaxOrZero; |
| } else { |
| MustExitMaxBECount = |
| getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); |
| } |
| } else if (MayExitMaxBECount != getCouldNotCompute()) { |
| if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) |
| MayExitMaxBECount = EL.MaxNotTaken; |
| else { |
| MayExitMaxBECount = |
| getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); |
| } |
| } |
| } |
| const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : |
| (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); |
| // The loop backedge will be taken the maximum or zero times if there's |
| // a single exit that must be taken the maximum or zero times. |
| bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); |
| return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, |
| MaxBECount, MaxOrZero); |
| } |
| |
| ScalarEvolution::ExitLimit |
| ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, |
| bool AllowPredicates) { |
| assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); |
| // If our exiting block does not dominate the latch, then its connection with |
| // loop's exit limit may be far from trivial. |
| const BasicBlock *Latch = L->getLoopLatch(); |
| if (!Latch || !DT.dominates(ExitingBlock, Latch)) |
| return getCouldNotCompute(); |
| |
| bool IsOnlyExit = (L->getExitingBlock() != nullptr); |
| Instruction *Term = ExitingBlock->getTerminator(); |
| if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { |
| assert(BI->isConditional() && "If unconditional, it can't be in loop!"); |
| bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); |
| assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && |
| "It should have one successor in loop and one exit block!"); |
| // Proceed to the next level to examine the exit condition expression. |
| return computeExitLimitFromCond( |
| L, BI->getCondition(), ExitIfTrue, |
| /*ControlsExit=*/IsOnlyExit, AllowPredicates); |
| } |
| |
| if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { |
| // For switch, make sure that there is a single exit from the loop. |
| BasicBlock *Exit = nullptr; |
| for (auto *SBB : successors(ExitingBlock)) |
| if (!L->contains(SBB)) { |
| if (Exit) // Multiple exit successors. |
| return getCouldNotCompute(); |
| Exit = SBB; |
| } |
| assert(Exit && "Exiting block must have at least one exit"); |
| return computeExitLimitFromSingleExitSwitch(L, SI, Exit, |
| /*ControlsExit=*/IsOnlyExit); |
| } |
| |
| return getCouldNotCompute(); |
| } |
| |
| ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( |
| const Loop *L, Value *ExitCond, bool ExitIfTrue, |
| bool ControlsExit, bool AllowPredicates) { |
| ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); |
| return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, |
| ControlsExit, AllowPredicates); |
| } |
| |
| Optional<ScalarEvolution::ExitLimit> |
| ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, |
| bool ExitIfTrue, bool ControlsExit, |
| bool AllowPredicates) { |
| (void)this->L; |
| (void)this->ExitIfTrue; |
| (void)this->AllowPredicates; |
| |
| assert(this->L == L && this->ExitIfTrue == ExitIfTrue && |
| this->AllowPredicates == AllowPredicates && |
| "Variance in assumed invariant key components!"); |
| auto Itr = TripCountMap.find({ExitCond, ControlsExit}); |
| if (Itr == TripCountMap.end()) |
| return None; |
| return Itr->second; |
| } |
| |
| void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, |
| bool ExitIfTrue, |
| bool ControlsExit, |
| bool AllowPredicates, |
| const ExitLimit &EL) { |
| assert(this->L == L && this->ExitIfTrue == ExitIfTrue && |
| this->AllowPredicates == AllowPredicates && |
| "Variance in assumed invariant key components!"); |
| |
| auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); |
| assert(InsertResult.second && "Expected successful insertion!"); |
| (void)InsertResult; |
| (void)ExitIfTrue; |
| } |
| |
| ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( |
| ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, |
| bool ControlsExit, bool AllowPredicates) { |
| |
| if (auto MaybeEL = |
| Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) |
| return *MaybeEL; |
| |
| ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, |
| ControlsExit, AllowPredicates); |
| Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); |
| return EL; |
| } |
| |
| ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( |
| ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, |
| bool ControlsExit, bool AllowPredicates) { |
| // Check if the controlling expression for this loop is an And or Or. |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { |
| if (BO->getOpcode() == Instruction::And) { |
| // Recurse on the operands of the and. |
| bool EitherMayExit = !ExitIfTrue; |
| ExitLimit EL0 = computeExitLimitFromCondCached( |
| Cache, L, BO->getOperand(0), ExitIfTrue, |
| ControlsExit && !EitherMayExit, AllowPredicates); |
| ExitLimit EL1 = computeExitLimitFromCondCached( |
| Cache, L, BO->getOperand(1), ExitIfTrue, |
| ControlsExit && !EitherMayExit, AllowPredicates); |
| // Be robust against unsimplified IR for the form "and i1 X, true" |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) |
| return CI->isOne() ? EL0 : EL1; |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0))) |
| return CI->isOne() ? EL1 : EL0; |
| const SCEV *BECount = getCouldNotCompute(); |
| const SCEV *MaxBECount = getCouldNotCompute(); |
| if (EitherMayExit) { |
| // Both conditions must be true for the loop to continue executing. |
| // Choose the less conservative count. |
| if (EL0.ExactNotTaken == getCouldNotCompute() || |
| EL1.ExactNotTaken == getCouldNotCompute()) |
| BECount = getCouldNotCompute(); |
| else |
| BECount = |
| getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); |
| if (EL0.MaxNotTaken == getCouldNotCompute()) |
| MaxBECount = EL1.MaxNotTaken; |
| else if (EL1.MaxNotTaken == getCouldNotCompute()) |
| MaxBECount = EL0.MaxNotTaken; |
| else |
| MaxBECount = |
| getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); |
| } else { |
| // Both conditions must be true at the same time for the loop to exit. |
| // For now, be conservative. |
| if (EL0.MaxNotTaken == EL1.MaxNotTaken) |
| MaxBECount = EL0.MaxNotTaken; |
| if (EL0.ExactNotTaken == EL1.ExactNotTaken) |
| BECount = EL0.ExactNotTaken; |
| } |
| |
| // There are cases (e.g. PR26207) where computeExitLimitFromCond is able |
| // to be more aggressive when computing BECount than when computing |
| // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and |
| // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken |
| // to not. |
| if (isa<SCEVCouldNotCompute>(MaxBECount) && |
| !isa<SCEVCouldNotCompute>(BECount)) |
| MaxBECount = getConstant(getUnsignedRangeMax(BECount)); |
| |
| return ExitLimit(BECount, MaxBECount, false, |
| {&EL0.Predicates, &EL1.Predicates}); |
| } |
| if (BO->getOpcode() == Instruction::Or) { |
| // Recurse on the operands of the or. |
| bool EitherMayExit = ExitIfTrue; |
| ExitLimit EL0 = computeExitLimitFromCondCached( |
| Cache, L, BO->getOperand(0), ExitIfTrue, |
| ControlsExit && !EitherMayExit, AllowPredicates); |
| ExitLimit EL1 = computeExitLimitFromCondCached( |
| Cache, L, BO->getOperand(1), ExitIfTrue, |
| ControlsExit && !EitherMayExit, AllowPredicates); |
| // Be robust against unsimplified IR for the form "or i1 X, true" |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) |
| return CI->isZero() ? EL0 : EL1; |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0))) |
| return CI->isZero() ? EL1 : EL0; |
| const SCEV *BECount = getCouldNotCompute(); |
| const SCEV *MaxBECount = getCouldNotCompute(); |
| if (EitherMayExit) { |
| // Both conditions must be false for the loop to continue executing. |
| // Choose the less conservative count. |
| if (EL0.ExactNotTaken == getCouldNotCompute() || |
| EL1.ExactNotTaken == getCouldNotCompute()) |
| BECount = getCouldNotCompute(); |
| else |
| BECount = |
| getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); |
| if (EL0.MaxNotTaken == getCouldNotCompute()) |
| MaxBECount = EL1.MaxNotTaken; |
| else if (EL1.MaxNotTaken == getCouldNotCompute()) |
| MaxBECount = EL0.MaxNotTaken; |
| else |
| MaxBECount = |
| getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); |
| } else { |
| // Both conditions must be false at the same time for the loop to exit. |
| // For now, be conservative. |
| if (EL0.MaxNotTaken == EL1.MaxNotTaken) |
| MaxBECount = EL0.MaxNotTaken; |
| if (EL0.ExactNotTaken == EL1.ExactNotTaken) |
| BECount = EL0.ExactNotTaken; |
| } |
| // There are cases (e.g. PR26207) where computeExitLimitFromCond is able |
| // to be more aggressive when computing BECount than when computing |
| // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and |
| // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken |
| // to not. |
| if (isa<SCEVCouldNotCompute>(MaxBECount) && |
| !isa<SCEVCouldNotCompute>(BECount)) |
| MaxBECount = getConstant(getUnsignedRangeMax(BECount)); |
| |
| return ExitLimit(BECount, MaxBECount, false, |
| {&EL0.Predicates, &EL1.Predicates}); |
| } |
| } |
| |
| // With an icmp, it may be feasible to compute an exact backedge-taken count. |
| // Proceed to the next level to examine the icmp. |
| if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { |
| ExitLimit EL = |
| computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); |
| if (EL.hasFullInfo() || !AllowPredicates) |
| return EL; |
| |
| // Try again, but use SCEV predicates this time. |
| return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, |
| /*AllowPredicates=*/true); |
| } |
| |
| // Check for a constant condition. These are normally stripped out by |
| // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to |
| // preserve the CFG and is temporarily leaving constant conditions |
| // in place. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { |
| if (ExitIfTrue == !CI->getZExtValue()) |
| // The backedge is always taken. |
| return getCouldNotCompute(); |
| else |
| // The backedge is never taken. |
| return getZero(CI->getType()); |
| } |
| |
| // If it's not an integer or pointer comparison then compute it the hard way. |
| return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); |
| } |
| |
| ScalarEvolution::ExitLimit |
| ScalarEvolution::computeExitLimitFromICmp(const Loop *L, |
| ICmpInst *ExitCond, |
| bool ExitIfTrue, |
| bool ControlsExit, |
| bool AllowPredicates) { |
| // If the condition was exit on true, convert the condition to exit on false |
| ICmpInst::Predicate Pred; |
| if (!ExitIfTrue) |
| Pred = ExitCond->getPredicate(); |
| else |
| Pred = ExitCond->getInversePredicate(); |
| const ICmpInst::Predicate OriginalPred = Pred; |
| |
| // Handle common loops like: for (X = "string"; *X; ++X) |
| if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) |
| if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { |
| ExitLimit ItCnt = |
| computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); |
| if (ItCnt.hasAnyInfo()) |
| return ItCnt; |
| } |
| |
| const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); |
| const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); |
| |
| // Try to evaluate any dependencies out of the loop. |
| LHS = getSCEVAtScope(LHS, L); |
| RHS = getSCEVAtScope(RHS, L); |
| |
| // At this point, we would like to compute how many iterations of the |
| // loop the predicate will return true for these inputs. |
| if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { |
| // If there is a loop-invariant, force it into the RHS. |
| std::swap(LHS, RHS); |
| Pred = ICmpInst::getSwappedPredicate(Pred); |
| } |
| |
| // Simplify the operands before analyzing them. |
| (void)SimplifyICmpOperands(Pred, LHS, RHS); |
| |
| // If we have a comparison of a chrec against a constant, try to use value |
| // ranges to answer this query. |
| if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) |
| if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) |
| if (AddRec->getLoop() == L) { |
| // Form the constant range. |
| ConstantRange CompRange = |
| ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); |
| |
| const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); |
| if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; |
| } |
| |
| switch (Pred) { |
| case ICmpInst::ICMP_NE: { // while (X != Y) |
| // Convert to: while (X-Y != 0) |
| ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, |
| AllowPredicates); |
| if (EL.hasAnyInfo()) return EL; |
| break; |
| } |
| case ICmpInst::ICMP_EQ: { // while (X == Y) |
| // Convert to: while (X-Y == 0) |
| ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); |
| if (EL.hasAnyInfo()) return EL; |
| break; |
| } |
| case ICmpInst::ICMP_SLT: |
| case ICmpInst::ICMP_ULT: { // while (X < Y) |
| bool IsSigned = Pred == ICmpInst::ICMP_SLT; |
| ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, |
| AllowPredicates); |
| if (EL.hasAnyInfo()) return EL; |
| break; |
| } |
| case ICmpInst::ICMP_SGT: |
| case ICmpInst::ICMP_UGT: { // while (X > Y) |
| bool IsSigned = Pred == ICmpInst::ICMP_SGT; |
| ExitLimit EL = |
| howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, |
| AllowPredicates); |
| if (EL.hasAnyInfo()) return EL; |
| break; |
| } |
| default: |
| break; |
| } |
| |
| auto *ExhaustiveCount = |
| computeExitCountExhaustively(L, ExitCond, ExitIfTrue); |
| |
| if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) |
| return ExhaustiveCount; |
| |
| return computeShiftCompareExitLimit(ExitCond->getOperand(0), |
| ExitCond->getOperand(1), L, OriginalPred); |
| } |
| |
| ScalarEvolution::ExitLimit |
| ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, |
| SwitchInst *Switch, |
| BasicBlock *ExitingBlock, |
| bool ControlsExit) { |
| assert(!L->contains(ExitingBlock) && "Not an exiting block!"); |
| |
| // Give up if the exit is the default dest of a switch. |
| if (Switch->getDefaultDest() == ExitingBlock) |
| return getCouldNotCompute(); |
| |
| assert(L->contains(Switch->getDefaultDest()) && |
| "Default case must not exit the loop!"); |
| const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); |
| const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); |
| |
| // while (X != Y) --> while (X-Y != 0) |
| ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); |
| if (EL.hasAnyInfo()) |
| return EL; |
| |
| return getCouldNotCompute(); |
| } |
| |
| static ConstantInt * |
| EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, |
| ScalarEvolution &SE) { |
| const SCEV *InVal = SE.getConstant(C); |
| const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); |
| assert(isa<SCEVConstant>(Val) && |
| "Evaluation of SCEV at constant didn't fold correctly?"); |
| return cast<SCEVConstant>(Val)->getValue(); |
| } |
| |
| /// Given an exit condition of 'icmp op load X, cst', try to see if we can |
| /// compute the backedge execution count. |
| ScalarEvolution::ExitLimit |
| ScalarEvolution::computeLoadConstantCompareExitLimit( |
| LoadInst *LI, |
| Constant *RHS, |
| const Loop *L, |
| ICmpInst::Predicate predicate) { |
| if (LI->isVolatile()) return getCouldNotCompute(); |
| |
| // Check to see if the loaded pointer is a getelementptr of a global. |
| // TODO: Use SCEV instead of manually grubbing with GEPs. |
| GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); |
| if (!GEP) return getCouldNotCompute(); |
| |
| // Make sure that it is really a constant global we are gepping, with an |
| // initializer, and make sure the first IDX is really 0. |
| GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); |
| if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || |
| GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || |
| !cast<Constant>(GEP->getOperand(1))->isNullValue()) |
| return getCouldNotCompute(); |
| |
| // Okay, we allow one non-constant index into the GEP instruction. |
| Value *VarIdx = nullptr; |
| std::vector<Constant*> Indexes; |
| unsigned VarIdxNum = 0; |
| for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { |
| Indexes.push_back(CI); |
| } else if (!isa<ConstantInt>(GEP->getOperand(i))) { |
| if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. |
| VarIdx = GEP->getOperand(i); |
| VarIdxNum = i-2; |
| Indexes.push_back(nullptr); |
| } |
| |
| // Loop-invariant loads may be a byproduct of loop optimization. Skip them. |
| if (!VarIdx) |
| return getCouldNotCompute(); |
| |
| // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. |
| // Check to see if X is a loop variant variable value now. |
| const SCEV *Idx = getSCEV(VarIdx); |
| Idx = getSCEVAtScope(Idx, L); |
| |
| // We can only recognize very limited forms of loop index expressions, in |
| // particular, only affine AddRec's like {C1,+,C2}. |
| const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); |
| if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || |
| !isa<SCEVConstant>(IdxExpr->getOperand(0)) || |
| !isa<SCEVConstant>(IdxExpr->getOperand(1))) |
| return getCouldNotCompute(); |
| |
| unsigned MaxSteps = MaxBruteForceIterations; |
| for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { |
| ConstantInt *ItCst = ConstantInt::get( |
| cast<IntegerType>(IdxExpr->getType()), IterationNum); |
| ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); |
| |
| // Form the GEP offset. |
| Indexes[VarIdxNum] = Val; |
| |
| Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), |
| Indexes); |
| if (!Result) break; // Cannot compute! |
| |
| // Evaluate the condition for this iteration. |
| Result = ConstantExpr::getICmp(predicate, Result, RHS); |
| if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure |
| if (cast<ConstantInt>(Result)->getValue().isMinValue()) { |
| ++NumArrayLenItCounts; |
| return getConstant(ItCst); // Found terminating iteration! |
| } |
| } |
| return getCouldNotCompute(); |
| } |
| |
| ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( |
| Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { |
| ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); |
| if (!RHS) |
| return getCouldNotCompute(); |
| |
| const BasicBlock *Latch = L->getLoopLatch(); |
| if (!Latch) |
| return getCouldNotCompute(); |
| |
| const BasicBlock *Predecessor = L->getLoopPredecessor(); |
| if (!Predecessor) |
| return getCouldNotCompute(); |
| |
| // Return true if V is of the form "LHS `shift_op` <positive constant>". |
| // Return LHS in OutLHS and shift_opt in OutOpCode. |
| auto MatchPositiveShift = |
| [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { |
| |
| using namespace PatternMatch; |
| |
| ConstantInt *ShiftAmt; |
| if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) |
| OutOpCode = Instruction::LShr; |
| else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) |
| OutOpCode = Instruction::AShr; |
| else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) |
| OutOpCode = Instruction::Shl; |
| else |
| return false; |
| |
| return ShiftAmt->getValue().isStrictlyPositive(); |
| }; |
| |
| // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in |
| // |
| // loop: |
| // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] |
| // %iv.shifted = lshr i32 %iv, <positive constant> |
| // |
| // Return true on a successful match. Return the corresponding PHI node (%iv |
| // above) in PNOut and the opcode of the shift operation in OpCodeOut. |
| auto MatchShiftRecurrence = |
| [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { |
| Optional<Instruction::BinaryOps> PostShiftOpCode; |
| |
| { |
| Instruction::BinaryOps OpC; |
| Value *V; |
| |
| // If we encounter a shift instruction, "peel off" the shift operation, |
| // and remember that we did so. Later when we inspect %iv's backedge |
| // value, we will make sure that the backedge value uses the same |
| // operation. |
| // |
| // Note: the peeled shift operation does not have to be the same |
| // instruction as the one feeding into the PHI's backedge value. We only |
| // really care about it being the same *kind* of shift instruction -- |
| // that's all that is required for our later inferences to hold. |
| if (MatchPositiveShift(LHS, V, OpC)) { |
| PostShiftOpCode = OpC; |
| LHS = V; |
| } |
| } |
| |
| PNOut = dyn_cast<PHINode>(LHS); |
| if (!PNOut || PNOut->getParent() != L->getHeader()) |
| return false; |
| |
| Value *BEValue = PNOut->getIncomingValueForBlock(Latch); |
| Value *OpLHS; |
| |
| return |
| // The backedge value for the PHI node must be a shift by a positive |
| // amount |
| MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && |
| |
| // of the PHI node itself |
| OpLHS == PNOut && |
| |
| // and the kind of shift should be match the kind of shift we peeled |
| // off, if any. |
| (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); |
| }; |
| |
| PHINode *PN; |
| Instruction::BinaryOps OpCode; |
| if (!MatchShiftRecurrence(LHS, PN, OpCode)) |
| return getCouldNotCompute(); |
| |
| const DataLayout &DL = getDataLayout(); |
| |
| // The key rationale for this optimization is that for some kinds of shift |
| // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 |
| // within a finite number of iterations. If the condition guarding the |
| // backedge (in the sense that the backedge is taken if the condition is true) |
| // is false for the value the shift recurrence stabilizes to, then we know |
| // that the backedge is taken only a finite number of times. |
| |
| ConstantInt *StableValue = nullptr; |
| switch (OpCode) { |
| default: |
| llvm_unreachable("Impossible case!"); |
| |
| case Instruction::AShr: { |
| // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most |
| // bitwidth(K) iterations. |
| Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); |
| KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, |
| Predecessor->getTerminator(), &DT); |
| auto *Ty = cast<IntegerType>(RHS->getType()); |
| if (Known.isNonNegative()) |
| StableValue = ConstantInt::get(Ty, 0); |
| else if (Known.isNegative()) |
| StableValue = ConstantInt::get(Ty, -1, true); |
| else |
| return getCouldNotCompute(); |
| |
| break; |
| } |
| case Instruction::LShr: |
| case Instruction::Shl: |
| // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} |
| // stabilize to 0 in at most bitwidth(K) iterations. |
| StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); |
| break; |
| } |
| |
| auto *Result = |
| ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); |
| assert(Result->getType()->isIntegerTy(1) && |
| "Otherwise cannot be an operand to a branch instruction"); |
| |
| if (Result->isZeroValue()) { |
| unsigned BitWidth = getTypeSizeInBits(RHS->getType()); |
| const SCEV *UpperBound = |
| getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); |
| return ExitLimit(getCouldNotCompute(), UpperBound, false); |
| } |
| |
| return getCouldNotCompute(); |
| } |
| |
| /// Return true if we can constant fold an instruction of the specified type, |
| /// assuming that all operands were constants. |
| static bool CanConstantFold(const Instruction *I) { |
| if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || |
| isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || |
| isa<LoadInst>(I) || isa<ExtractValueInst>(I)) |
| return true; |
| |
| if (const CallInst *CI = dyn_cast<CallInst>(I)) |
| if (const Function *F = CI->getCalledFunction()) |
| return canConstantFoldCallTo(CI, F); |
| return false; |
| } |
| |
| /// Determine whether this instruction can constant evolve within this loop |
| /// assuming its operands can all constant evolve. |
| static bool canConstantEvolve(Instruction *I, const Loop *L) { |
| // An instruction outside of the loop can't be derived from a loop PHI. |
| if (!L->contains(I)) return false; |
| |
| if (isa<PHINode>(I)) { |
| // We don't currently keep track of the control flow needed to evaluate |
| // PHIs, so we cannot handle PHIs inside of loops. |
| return L->getHeader() == I->getParent(); |
| } |
| |
| // If we won't be able to constant fold this expression even if the operands |
| // are constants, bail early. |
| return CanConstantFold(I); |
| } |
| |
| /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by |
| /// recursing through each instruction operand until reaching a loop header phi. |
| static PHINode * |
| getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, |
| DenseMap<Instruction *, PHINode *> &PHIMap, |
| unsigned Depth) { |
| if (Depth > MaxConstantEvolvingDepth) |
| return nullptr; |
| |
| // Otherwise, we can evaluate this instruction if all of its operands are |
| // constant or derived from a PHI node themselves. |
| PHINode *PHI = nullptr; |
| for (Value *Op : UseInst->operands()) { |
| if (isa<Constant>(Op)) continue; |
| |
| Instruction *OpInst = dyn_cast<Instruction>(Op); |
| if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; |
| |
| PHINode *P = dyn_cast<PHINode>(OpInst); |
| if (!P) |
| // If this operand is already visited, reuse the prior result. |
| // We may have P != PHI if this is the deepest point at which the |
| // inconsistent paths meet. |
| P = PHIMap.lookup(OpInst); |
| if (!P) { |
| // Recurse and memoize the results, whether a phi is found or not. |
| // This recursive call invalidates pointers into PHIMap. |
| P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); |
| PHIMap[OpInst] = P; |
| } |
| if (!P) |
| return nullptr; // Not evolving from PHI |
| if (PHI && PHI != P) |
| return nullptr; // Evolving from multiple different PHIs. |
| PHI = P; |
| } |
| // This is a expression evolving from a constant PHI! |
| return PHI; |
| } |
| |
| /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node |
| /// in the loop that V is derived from. We allow arbitrary operations along the |
| /// way, but the operands of an operation must either be constants or a value |
| /// derived from a constant PHI. If this expression does not fit with these |
| /// constraints, return null. |
| static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I || !canConstantEvolve(I, L)) return nullptr; |
| |
| if (PHINode *PN = dyn_cast<PHINode>(I)) |
| return PN; |
| |
| // Record non-constant instructions contained by the loop. |
| DenseMap<Instruction *, PHINode *> PHIMap; |
| return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); |
| } |
| |
| /// EvaluateExpression - Given an expression that passes the |
| /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node |
| /// in the loop has the value PHIVal. If we can't fold this expression for some |
| /// reason, return null. |
| static Constant *EvaluateExpression(Value *V, const Loop *L, |
| DenseMap<Instruction *, Constant *> &Vals, |
| const DataLayout &DL, |
| const TargetLibraryInfo *TLI) { |
| // Convenient constant check, but redundant for recursive calls. |
| if (Constant *C = dyn_cast<Constant>(V)) return C; |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I) return nullptr; |
| |
| if (Constant *C = Vals.lookup(I)) return C; |
| |
| // An instruction inside the loop depends on a value outside the loop that we |
| // weren't given a mapping for, or a value such as a call inside the loop. |
| if (!canConstantEvolve(I, L)) return nullptr; |
| |
| // An unmapped PHI can be due to a branch or another loop inside this loop, |
| // or due to this not being the initial iteration through a loop where we |
| // couldn't compute the evolution of this particular PHI last time. |
| if (isa<PHINode>(I)) return nullptr; |
| |
| std::vector<Constant*> Operands(I->getNumOperands()); |
| |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { |
| Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); |
| if (!Operand) { |
| Operands[i] = dyn_cast<Constant>(I->getOperand(i)); |
| if (!Operands[i]) return nullptr; |
| continue; |
| } |
| Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); |
| Vals[Operand] = C; |
| if (!C) return nullptr; |
| Operands[i] = C; |
| } |
| |
| if (CmpInst *CI = dyn_cast<CmpInst>(I)) |
| return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], |
| Operands[1], DL, TLI); |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| if (!LI->isVolatile()) |
| return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); |
| } |
| return ConstantFoldInstOperands(I, Operands, DL, TLI); |
| } |
| |
| |
| // If every incoming value to PN except the one for BB is a specific Constant, |
| // return that, else return nullptr. |
| static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { |
| Constant *IncomingVal = nullptr; |
| |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| if (PN->getIncomingBlock(i) == BB) |
| continue; |
| |
| auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); |
| if (!CurrentVal) |
| return nullptr; |
| |
| if (IncomingVal != CurrentVal) { |
| if (IncomingVal) |
| return nullptr; |
| IncomingVal = CurrentVal; |
| } |
| } |
| |
| return IncomingVal; |
| } |
| |
| /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is |
| /// in the header of its containing loop, we know the loop executes a |
| /// constant number of times, and the PHI node is just a recurrence |
| /// involving constants, fold it. |
| Constant * |
| ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, |
| const APInt &BEs, |
| const Loop *L) { |
| auto I = ConstantEvolutionLoopExitValue.find(PN); |
| if (I != ConstantEvolutionLoopExitValue.end()) |
| return I->second; |
| |
| if (BEs.ugt(MaxBruteForceIterations)) |
| return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. |
| |
| Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; |
| |
| DenseMap<Instruction *, Constant *> CurrentIterVals; |
| BasicBlock *Header = L->getHeader(); |
| assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); |
| |
| BasicBlock *Latch = L->getLoopLatch(); |
| if (!Latch) |
| return nullptr; |
| |
| for (PHINode &PHI : Header->phis()) { |
| if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) |
| CurrentIterVals[&PHI] = StartCST; |
| } |
| if (!CurrentIterVals.count(PN)) |
| return RetVal = nullptr; |
| |
| Value *BEValue = PN->getIncomingValueForBlock(Latch); |
| |
| // Execute the loop symbolically to determine the exit value. |
| assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && |
| "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); |
| |
| unsigned NumIterations = BEs.getZExtValue(); // must be in range |
| unsigned IterationNum = 0; |
| const DataLayout &DL = getDataLayout(); |
| for (; ; ++IterationNum) { |
| if (IterationNum == NumIterations) |
| return RetVal = CurrentIterVals[PN]; // Got exit value! |
| |
| // Compute the value of the PHIs for the next iteration. |
| // EvaluateExpression adds non-phi values to the CurrentIterVals map. |
| DenseMap<Instruction *, Constant *> NextIterVals; |
| Constant *NextPHI = |
| EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); |
| if (!NextPHI) |
| return nullptr; // Couldn't evaluate! |
| NextIterVals[PN] = NextPHI; |
| |
| bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; |
| |
| // Also evaluate the other PHI nodes. However, we don't get to stop if we |
| // cease to be able to evaluate one of them or if they stop evolving, |
| // because that doesn't necessarily prevent us from computing PN. |
| SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; |
| for (const auto &I : CurrentIterVals) { |
| PHINode *PHI = dyn_cast<PHINode>(I.first); |
| if (!PHI || PHI == PN || PHI->getParent() != Header) continue; |
| PHIsToCompute.emplace_back(PHI, I.second); |
| } |
| // We use two distinct loops because EvaluateExpression may invalidate any |
| // iterators into CurrentIterVals. |
| for (const auto &I : PHIsToCompute) { |
| PHINode *PHI = I.first; |
| Constant *&NextPHI = NextIterVals[PHI]; |
| if (!NextPHI) { // Not already computed. |
| Value *BEValue = PHI->getIncomingValueForBlock(Latch); |
| NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); |
| } |
| if (NextPHI != I.second) |
| StoppedEvolving = false; |
| } |
| |
| // If all entries in CurrentIterVals == NextIterVals then we can stop |
| // iterating, the loop can't continue to change. |
| if (StoppedEvolving) |
| return RetVal = CurrentIterVals[PN]; |
| |
| CurrentIterVals.swap(NextIterVals); |
| } |
| } |
| |
| const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, |
| Value *Cond, |
| bool ExitWhen) { |
| PHINode *PN = getConstantEvolvingPHI(Cond, L); |
| if (!PN) return getCouldNotCompute(); |
| |
| // If the loop is canonicalized, the PHI will have exactly two entries. |
| // That's the only form we support here. |
| if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); |
| |
| DenseMap<Instruction *, Constant *> CurrentIterVals; |
| BasicBlock *Header = L->getHeader(); |
| assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); |
| |
| BasicBlock *Latch = L->getLoopLatch(); |
| assert(Latch && "Should follow from NumIncomingValues == 2!"); |
| |
| for (PHINode &PHI : Header->phis()) { |
| if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) |
| CurrentIterVals[&PHI] = StartCST; |
| } |
| if (!CurrentIterVals.count(PN)) |
| return getCouldNotCompute(); |
| |
| // Okay, we find a PHI node that defines the trip count of this loop. Execute |
| // the loop symbolically to determine when the condition gets a value of |
| // "ExitWhen". |
| unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. |
| const DataLayout &DL = getDataLayout(); |
| for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ |
| auto *CondVal = dyn_cast_or_null<ConstantInt>( |
| EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); |
| |
| // Couldn't symbolically evaluate. |
| if (!CondVal) return getCouldNotCompute(); |
| |
| if (CondVal->getValue() == uint64_t(ExitWhen)) { |
| ++NumBruteForceTripCountsComputed; |
| return getConstant(Type::getInt32Ty(getContext()), IterationNum); |
| } |
| |
| // Update all the PHI nodes for the next iteration. |
| DenseMap<Instruction *, Constant *> NextIterVals; |
| |
| // Create a list of which PHIs we need to compute. We want to do this before |
| // calling EvaluateExpression on them because that may invalidate iterators |
| // into CurrentIterVals. |
| SmallVector<PHINode *, 8> PHIsToCompute; |
| for (const auto &I : CurrentIterVals) { |
| PHINode *PHI = dyn_cast<PHINode>(I.first); |
| if (!PHI || PHI->getParent() != Header) continue; |
| PHIsToCompute.push_back(PHI); |
| } |
| for (PHINode *PHI : PHIsToCompute) { |
| Constant *&NextPHI = NextIterVals[PHI]; |
| if (NextPHI) continue; // Already computed! |
| |
| Value *BEValue = PHI->getIncomingValueForBlock(Latch); |
| NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); |
| } |
| CurrentIterVals.swap(NextIterVals); |
| } |
| |
| // Too many iterations were needed to evaluate. |
| return getCouldNotCompute(); |
| } |
| |
| const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { |
| SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = |
| ValuesAtScopes[V]; |
| // Check to see if we've folded this expression at this loop before. |
| for (auto &LS : Values) |
| if (LS.first == L) |
| return LS.second ? LS.second : V; |
| |
| Values.emplace_back(L, nullptr); |
| |
| // Otherwise compute it. |
| const SCEV *C = computeSCEVAtScope(V, L); |
| for (auto &LS : reverse(ValuesAtScopes[V])) |
| if (LS.first == L) { |
| LS.second = C; |
| break; |
| } |
| return C; |
| } |
| |
| /// This builds up a Constant using the ConstantExpr interface. That way, we |
| /// will return Constants for objects which aren't represented by a |
| /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. |
| /// Returns NULL if the SCEV isn't representable as a Constant. |
| static Constant *BuildConstantFromSCEV(const SCEV *V) { |
| switch (static_cast<SCEVTypes>(V->getSCEVType())) { |
| case scCouldNotCompute: |
| case scAddRecExpr: |
| break; |
| case scConstant: |
| return cast<SCEVConstant>(V)->getValue(); |
| case scUnknown: |
| return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); |
| case scSignExtend: { |
| const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); |
| if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) |
| return ConstantExpr::getSExt(CastOp, SS->getType()); |
| break; |
| } |
| case scZeroExtend: { |
| const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); |
| if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) |
| return ConstantExpr::getZExt(CastOp, SZ->getType()); |
| break; |
| } |
| case scTruncate: { |
| const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); |
| if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) |
| return ConstantExpr::getTrunc(CastOp, ST->getType()); |
| break; |
| } |
| case scAddExpr: { |
| const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); |
| if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { |
| if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { |
| unsigned AS = PTy->getAddressSpace(); |
| Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); |
| C = ConstantExpr::getBitCast(C, DestPtrTy); |
| } |
| for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { |
| Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); |
| if (!C2) return nullptr; |
| |
| // First pointer! |
| if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { |
| unsigned AS = C2->getType()->getPointerAddressSpace(); |
| std::swap(C, C2); |
| Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); |
| // The offsets have been converted to bytes. We can add bytes to an |
| // i8* by GEP with the byte count in the first index. |
| C = ConstantExpr::getBitCast(C, DestPtrTy); |
| } |
| |
| // Don't bother trying to sum two pointers. We probably can't |
| // statically compute a load that results from it anyway. |
| if (C2->getType()->isPointerTy()) |
| return nullptr; |
| |
| if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { |
| if (PTy->getElementType()->isStructTy()) |
| C2 = ConstantExpr::getIntegerCast( |
| C2, Type::getInt32Ty(C->getContext()), true); |
| C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); |
| } else |
| C = ConstantExpr::getAdd(C, C2); |
| } |
| return C; |
| } |
| break; |
| } |
| case scMulExpr: { |
| const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); |
| if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { |
| // Don't bother with pointers at all. |
| if (C->getType()->isPointerTy()) return nullptr; |
| for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { |
| Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); |
| if (!C2 || C2->getType()->isPointerTy()) return nullptr; |
| C = ConstantExpr::getMul(C, C2); |
| } |
| return C; |
| } |
| break; |
| } |
| case scUDivExpr: { |
| const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); |
| if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) |
| if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) |
| if (LHS->getType() == RHS->getType()) |
| return ConstantExpr::getUDiv(LHS, RHS); |
| break; |
| } |
| case scSMaxExpr: |
| case scUMaxExpr: |
| case scSMinExpr: |
| case scUMinExpr: |
| break; // TODO: smax, umax, smin, umax. |
| } |
| return nullptr; |
| } |
| |
| const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { |
| if (isa<SCEVConstant>(V)) return V; |
| |
| // If this instruction is evolved from a constant-evolving PHI, compute the |
| // exit value from the loop without using SCEVs. |
| if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { |
| if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { |
| if (PHINode *PN = dyn_cast<PHINode>(I)) { |
| const Loop *LI = this->LI[I->getParent()]; |
| // Looking for loop exit value. |
| if (LI && LI->getParentLoop() == L && |
| PN->getParent() == LI->getHeader()) { |
| // Okay, there is no closed form solution for the PHI node. Check |
| // to see if the loop that contains it has a known backedge-taken |
| // count. If so, we may be able to force computation of the exit |
| // value. |
| const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); |
| // This trivial case can show up in some degenerate cases where |
| // the incoming IR has not yet been fully simplified. |
| if (BackedgeTakenCount->isZero()) { |
| Value *InitValue = nullptr; |
| bool MultipleInitValues = false; |
| for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { |
| if (!LI->contains(PN->getIncomingBlock(i))) { |
| if (!InitValue) |
| InitValue = PN->getIncomingValue(i); |
| else if (InitValue != PN->getIncomingValue(i)) { |
| MultipleInitValues = true; |
| break; |
| } |
| } |
| } |
| if (!MultipleInitValues && InitValue) |
| return getSCEV(InitValue); |
| } |
| // Do we have a loop invariant value flowing around the backedge |
| // for a loop which must execute the backedge? |
| if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && |
| isKnownPositive(BackedgeTakenCount) && |
| PN->getNumIncomingValues() == 2) { |
| unsigned InLoopPred = LI->contains(PN->getIncomingBlock(0)) ? 0 : 1; |
| const SCEV *OnBackedge = getSCEV(PN->getIncomingValue(InLoopPred)); |
| if (IsAvailableOnEntry(LI, DT, OnBackedge, PN->getParent())) |
| return OnBackedge; |
| } |
| if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { |
| // Okay, we know how many times the containing loop executes. If |
| // this is a constant evolving PHI node, get the final value at |
| // the specified iteration number. |
| Constant *RV = |
| getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); |
| if (RV) return getSCEV(RV); |
| } |
| } |
| |
| // If there is a single-input Phi, evaluate it at our scope. If we can |
| // prove that this replacement does not break LCSSA form, use new value. |
| if (PN->getNumOperands() == 1) { |
| const SCEV *Input = getSCEV(PN->getOperand(0)); |
| const SCEV *InputAtScope = getSCEVAtScope(Input, L); |
| // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, |
| // for the simplest case just support constants. |
| if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; |
| } |
| } |
| |
| // Okay, this is an expression that we cannot symbolically evaluate |
| // into a SCEV. Check to see if it's possible to symbolically evaluate |
| // the arguments into constants, and if so, try to constant propagate the |
| // result. This is particularly useful for computing loop exit values. |
| if (CanConstantFold(I)) { |
| SmallVector<Constant *, 4> Operands; |
| bool MadeImprovement = false; |
| for (Value *Op : I->operands()) { |
| if (Constant *C = dyn_cast<Constant>(Op)) { |
| Operands.push_back(C); |
| continue; |
| } |
| |
| // If any of the operands is non-constant and if they are |
| // non-integer and non-pointer, don't even try to analyze them |
| // with scev techniques. |
| if (!isSCEVable(Op->getType())) |
| return V; |
| |
| const SCEV *OrigV = getSCEV(Op); |
| const SCEV *OpV = getSCEVAtScope(OrigV, L); |
| MadeImprovement |= OrigV != OpV; |
| |
| Constant *C = BuildConstantFromSCEV(OpV); |
| if (!C) return V; |
| if (C->getType() != Op->getType()) |
| C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, |
| Op->getType(), |
| false), |
| C, Op->getType()); |
| Operands.push_back(C); |
| } |
| |
| // Check to see if getSCEVAtScope actually made an improvement. |
| if (MadeImprovement) { |
| Constant *C = nullptr; |
| const DataLayout &DL = getDataLayout(); |
| if (const CmpInst *CI = dyn_cast<CmpInst>(I)) |
| C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], |
| Operands[1], DL, &TLI); |
| else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| if (!LI->isVolatile()) |
| C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); |
| } else |
| C = ConstantFoldInstOperands(I, Operands, DL, &TLI); |
| if (!C) return V; |
| return getSCEV(C); |
| } |
| } |
| } |
| |
| // This is some other type of SCEVUnknown, just return it. |
| return V; |
| } |
| |
| if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { |
| // Avoid performing the look-up in the common case where the specified |
| // expression has no loop-variant portions. |
| for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { |
| const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); |
| if (OpAtScope != Comm->getOperand(i)) { |
| // Okay, at least one of these operands is loop variant but might be |
| // foldable. Build a new instance of the folded commutative expression. |
| SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), |
| Comm->op_begin()+i); |
| NewOps.push_back(OpAtScope); |
| |
| for (++i; i != e; ++i) { |
| OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); |
| NewOps.push_back(OpAtScope); |
| } |
| if (isa<SCEVAddExpr>(Comm)) |
| return getAddExpr(NewOps, Comm->getNoWrapFlags()); |
| if (isa<SCEVMulExpr>(Comm)) |
| return getMulExpr(NewOps, Comm->getNoWrapFlags()); |
| if (isa<SCEVMinMaxExpr>(Comm)) |
| return getMinMaxExpr(Comm->getSCEVType(), NewOps); |
| llvm_unreachable("Unknown commutative SCEV type!"); |
| } |
| } |
| // If we got here, all operands are loop invariant. |
| return Comm; |
| } |
| |
| if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { |
| const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); |
| const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); |
| if (LHS == Div->getLHS() && RHS == Div->getRHS()) |
| return Div; // must be loop invariant |
| return getUDivExpr(LHS, RHS); |
| } |
| |
| // If this is a loop recurrence for a loop that does not contain L, then we |
| // are dealing with the final value computed by the loop. |
| if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { |
| // First, attempt to evaluate each operand. |
| // Avoid performing the look-up in the common case where the specified |
| // expression has no loop-variant portions. |
| for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { |
| const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); |
| if (OpAtScope == AddRec->getOperand(i)) |
| continue; |
| |
| // Okay, at least one of these operands is loop variant but might be |
| // foldable. Build a new instance of the folded commutative expression. |
| SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), |
| AddRec->op_begin()+i); |
| NewOps.push_back(OpAtScope); |
| for (++i; i != e; ++i) |
| NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); |
| |
| const SCEV *FoldedRec = |
| getAddRecExpr(NewOps, AddRec->getLoop(), |
| AddRec->getNoWrapFlags(SCEV::FlagNW)); |
| AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); |
| // The addrec may be folded to a nonrecurrence, for example, if the |
| // induction variable is multiplied by zero after constant folding. Go |
| // ahead and return the folded value. |
| if (!AddRec) |
| return FoldedRec; |
| break; |
| } |
| |
| // If the scope is outside the addrec's loop, evaluate it by using the |
| // loop exit value of the addrec. |
| if (!AddRec->getLoop()->contains(L)) { |
| // To evaluate this recurrence, we need to know how many times the AddRec |
| // loop iterates. Compute this now. |
| const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); |
| if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; |
| |
| // Then, evaluate the AddRec. |
| return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); |
| } |
| |
| return AddRec; |
| } |
| |
| if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { |
| const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); |
| if (Op == Cast->getOperand()) |
| return Cast; // must be loop invariant |
| return getZeroExtendExpr(Op, Cast->getType()); |
| } |
| |
| if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { |
| const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); |
| if (Op == Cast->getOperand()) |
| return Cast; // must be loop invariant |
| return getSignExtendExpr(Op, Cast->getType()); |
| } |
| |
| if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { |
| const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); |
| if (Op == Cast->getOperand()) |
| return Cast; // must be loop invariant |
| return getTruncateExpr(Op, Cast->getType()); |
| } |
| |
| llvm_unreachable("Unknown SCEV type!"); |
| } |
| |
| const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { |
| return getSCEVAtScope(getSCEV(V), L); |
| } |
| |
| const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { |
| if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) |
| return stripInjectiveFunctions(ZExt->getOperand()); |
| if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) |
| return stripInjectiveFunctions(SExt->getOperand()); |
| return S; |
| } |
| |
| /// Finds the minimum unsigned root of the following equation: |
| /// |
| /// A * X = B (mod N) |
| /// |
| /// where N = 2^BW and BW is the common bit width of A and B. The signedness of |
| /// A and B isn't important. |
| /// |
| /// If the equation does not have a solution, SCEVCouldNotCompute is returned. |
| static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, |
| ScalarEvolution &SE) { |
| uint32_t BW = A.getBitWidth(); |
| assert(BW == SE.getTypeSizeInBits(B->getType())); |
| assert(A != 0 && "A must be non-zero."); |
| |
| // 1. D = gcd(A, N) |
| // |
| // The gcd of A and N may have only one prime factor: 2. The number of |
| // trailing zeros in A is its multiplicity |
| uint32_t Mult2 = A.countTrailingZeros(); |
| // D = 2^Mult2 |
| |
| // 2. Check if B is divisible by D. |
| // |
| // B is divisible by D if and only if the multiplicity of prime factor 2 for B |
| // is not less than multiplicity of this prime factor for D. |
| if (SE.GetMinTrailingZeros(B) < Mult2) |
| return SE.getCouldNotCompute(); |
| |
| // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic |
| // modulo (N / D). |
| // |
| // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent |
| // (N / D) in general. The inverse itself always fits into BW bits, though, |
| // so we immediately truncate it. |
| APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D |
| APInt Mod(BW + 1, 0); |
| Mod.setBit(BW - Mult2); // Mod = N / D |
| APInt I = AD.multiplicativeInverse(Mod).trunc(BW); |
| |
| // 4. Compute the minimum unsigned root of the equation: |
| // I * (B / D) mod (N / D) |
| // To simplify the computation, we factor out the divide by D: |
| // (I * B mod N) / D |
| const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); |
| return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); |
| } |
| |
| /// For a given quadratic addrec, generate coefficients of the corresponding |
| /// quadratic equation, multiplied by a common value to ensure that they are |
| /// integers. |
| /// The returned value is a tuple { A, B, C, M, BitWidth }, where |
| /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C |
| /// were multiplied by, and BitWidth is the bit width of the original addrec |
| /// coefficients. |
| /// This function returns None if the addrec coefficients are not compile- |
| /// time constants. |
| static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> |
| GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { |
| assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); |
| const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); |
| const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); |
| const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); |
| LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " |
| << *AddRec << '\n'); |
| |
| // We currently can only solve this if the coefficients are constants. |
| if (!LC || !MC || !NC) { |
| LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); |
| return None; |
| } |
| |
| APInt L = LC->getAPInt(); |
| APInt M = MC->getAPInt(); |
| APInt N = NC->getAPInt(); |
| assert(!N.isNullValue() && "This is not a quadratic addrec"); |
| |
| unsigned BitWidth = LC->getAPInt().getBitWidth(); |
| unsigned NewWidth = BitWidth + 1; |
| LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " |
| << BitWidth << '\n'); |
| // The sign-extension (as opposed to a zero-extension) here matches the |
| // extension used in SolveQuadraticEquationWrap (with the same motivation). |
| N = N.sext(NewWidth); |
| M = M.sext(NewWidth); |
| L = L.sext(NewWidth); |
| |
| // The increments are M, M+N, M+2N, ..., so the accumulated values are |
| // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, |
| // L+M, L+2M+N, L+3M+3N, ... |
| // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. |
| // |
| // The equation Acc = 0 is then |
| // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. |
| // In a quadratic form it becomes: |
| // N n^2 + (2M-N) n + 2L = 0. |
| |
| APInt A = N; |
| APInt B = 2 * M - A; |
| APInt C = 2 * L; |
| APInt T = APInt(NewWidth, 2); |
| LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B |
| << "x + " << C << ", coeff bw: " << NewWidth |
| << ", multiplied by " << T << '\n'); |
| return std::make_tuple(A, B, C, T, BitWidth); |
| } |
| |
| /// Helper function to compare optional APInts: |
| /// (a) if X and Y both exist, return min(X, Y), |
| /// (b) if neither X nor Y exist, return None, |
| /// (c) if exactly one of X and Y exists, return that value. |
| static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { |
| if (X.hasValue() && Y.hasValue()) { |
| unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); |
| APInt XW = X->sextOrSelf(W); |
| APInt YW = Y->sextOrSelf(W); |
| return XW.slt(YW) ? *X : *Y; |
| } |
| if (!X.hasValue() && !Y.hasValue()) |
| return None; |
| return X.hasValue() ? *X : *Y; |
| } |
| |
| /// Helper function to truncate an optional APInt to a given BitWidth. |
| /// When solving addrec-related equations, it is preferable to return a value |
| /// that has the same bit width as the original addrec's coefficients. If the |
| /// solution fits in the original bit width, truncate it (except for i1). |
| /// Returning a value of a different bit width may inhibit some optimizations. |
| /// |
| /// In general, a solution to a quadratic equation generated from an addrec |
| /// may require BW+1 bits, where BW is the bit width of the addrec's |
| /// coefficients. The reason is that the coefficients of the quadratic |
| /// equation are BW+1 bits wide (to avoid truncation when converting from |
| /// the addrec to the equation). |
| static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { |
| if (!X.hasValue()) |
| return None; |
| unsigned W = X->getBitWidth(); |
| if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) |
| return X->trunc(BitWidth); |
| return X; |
| } |
| |
| /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n |
| /// iterations. The values L, M, N are assumed to be signed, and they |
| /// should all have the same bit widths. |
| /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, |
| /// where BW is the bit width of the addrec's coefficients. |
| /// If the calculated value is a BW-bit integer (for BW > 1), it will be |
| /// returned as such, otherwise the bit width of the returned value may |
| /// be greater than BW. |
| /// |
| /// This function returns None if |
| /// (a) the addrec coefficients are not constant, or |
| /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases |
| /// like x^2 = 5, no integer solutions exist, in other cases an integer |
| /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. |
| static Optional<APInt> |
| SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { |
| APInt A, B, C, M; |
| unsigned BitWidth; |
| auto T = GetQuadraticEquation(AddRec); |
| if (!T.hasValue()) |
| return None; |
| |
| std::tie(A, B, C, M, BitWidth) = *T; |
| LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); |
| Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); |
| if (!X.hasValue()) |
| return None; |
| |
| ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); |
| ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); |
| if (!V->isZero()) |
| return None; |
| |
| return TruncIfPossible(X, BitWidth); |
| } |
| |
| /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n |
| /// iterations. The values M, N are assumed to be signed, and they |
| /// should all have the same bit widths. |
| /// Find the least n such that c(n) does not belong to the given range, |
| /// while c(n-1) does. |
| /// |
| /// This function returns None if |
| /// (a) the addrec coefficients are not constant, or |
| /// (b) SolveQuadraticEquationWrap was unable to find a solution for the |
| /// bounds of the range. |
| static Optional<APInt> |
| SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, |
| const ConstantRange &Range, ScalarEvolution &SE) { |
| assert(AddRec->getOperand(0)->isZero() && |
| "Starting value of addrec should be 0"); |
| LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " |
| << Range << ", addrec " << *AddRec << '\n'); |
| // This case is handled in getNumIterationsInRange. Here we can assume that |
| // we start in the range. |
| assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && |
| "Addrec's initial value should be in range"); |
| |
| APInt A, B, C, M; |
| unsigned BitWidth; |
| auto T = GetQuadraticEquation(AddRec); |
| if (!T.hasValue()) |
| return None; |
| |
| // Be careful about the return value: there can be two reasons for not |
| // returning an actual number. First, if no solutions to the equations |
| // were found, and second, if the solutions don't leave the given range. |
| // The first case means that the actual solution is "unknown", the second |
| // means that it's known, but not valid. If the solution is unknown, we |
| // cannot make any conclusions. |
| // Return a pair: the optional solution and a flag indicating if the |
| // solution was found. |
| auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { |
| // Solve for signed overflow and unsigned overflow, pick the lower |
| // solution. |
| LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " |
| << Bound << " (before multiplying by " << M << ")\n"); |
| Bound *= M; // The quadratic equation multiplier. |
| |
| Optional<APInt> SO = None; |
| if (BitWidth > 1) { |
| LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " |
| "signed overflow\n"); |
| SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); |
| } |
| LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " |
| "unsigned overflow\n"); |
| Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, |
| BitWidth+1); |
| |
| auto LeavesRange = [&] (const APInt &X) { |
| ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); |
| ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); |
| if (Range.contains(V0->getValue())) |
| return false; |
| // X should be at least 1, so X-1 is non-negative. |
| ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); |
| ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); |
| if (Range.contains(V1->getValue())) |
| return true; |
| return false; |
| }; |
| |
| // If SolveQuadraticEquationWrap returns None, it means that there can |
| // be a solution, but the function failed to find it. We cannot treat it |
| // as "no solution". |
| if (!SO.hasValue() || !UO.hasValue()) |
| return { None, false }; |
| |
| // Check the smaller value first to see if it leaves the range. |
| // At this point, both SO and UO must have values. |
| Optional<APInt> Min = MinOptional(SO, UO); |
| if (LeavesRange(*Min)) |
| return { Min, true }; |
| Optional<APInt> Max = Min == SO ? UO : SO; |
| if (LeavesRange(*Max)) |
| return { Max, true }; |
| |
| // Solutions were found, but were eliminated, hence the "true". |
| return { None, true }; |
| }; |
| |
| std::tie(A, B, C, M, BitWidth) = *T; |
| // Lower bound is inclusive, subtract 1 to represent the exiting value. |
| APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; |
| APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); |
| auto SL = SolveForBoundary(Lower); |
| auto SU = SolveForBoundary(Upper); |
| // If any of the solutions was unknown, no meaninigful conclusions can |
| // be made. |
| if (!SL.second || !SU.second) |
| return None; |
| |
| // Claim: The correct solution is not some value between Min and Max. |
| // |
| // Justification: Assuming that Min and Max are different values, one of |
| // them is when the first signed overflow happens, the other is when the |
| // first unsigned overflow happens. Crossing the range boundary is only |
| // possible via an overflow (treating 0 as a special case of it, modeling |
| // an overflow as crossing k*2^W for some k). |
| // |
| // The interesting case here is when Min was eliminated as an invalid |
| // solution, but Max was not. The argument is that if there was another |
| // overflow between Min and Max, it would also have been eliminated if |
| // it was considered. |
| // |
| // For a given boundary, it is possible to have two overflows of the same |
| // type (signed/unsigned) without having the other type in between: this |
| // can happen when the vertex of the parabola is between the iterations |
| // corresponding to the overflows. This is only possible when the two |
| // overflows cross k*2^W for the same k. In such case, if the second one |
| // left the range (and was the first one to do so), the first overflow |
| // would have to enter the range, which would mean that either we had left |
| // the range before or that we started outside of it. Both of these cases |
| // are contradictions. |
| // |
| // Claim: In the case where SolveForBoundary returns None, the correct |
| // solution is not some value between the Max for this boundary and the |
| // Min of the other boundary. |
| // |
| // Justification: Assume that we had such Max_A and Min_B corresponding |
| // to range boundaries A and B and such that Max_A < Min_B. If there was |
| // a solution between Max_A and Min_B, it would have to be caused by an |
| // overflow corresponding to either A or B. It cannot correspond to B, |
| // since Min_B is the first occurrence of such an overflow. If it |
| // corresponded to A, it would have to be either a signed or an unsigned |
| // overflow that is larger than both eliminated overflows for A. But |
| // between the eliminated overflows and this overflow, the values would |
| // cover the entire value space, thus crossing the other boundary, which |
| // is a contradiction. |
| |
| return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); |
| } |
| |
| ScalarEvolution::ExitLimit |
| ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, |
| bool AllowPredicates) { |
| |
| // This is only used for loops with a "x != y" exit test. The exit condition |
| // is now expressed as a single expression, V = x-y. So the exit test is |
| // effectively V != 0. We know and take advantage of the fact that this |
| // expression only being used in a comparison by zero context. |
| |
| SmallPtrSet<const SCEVPredicate *, 4> Predicates; |
| // If the value is a constant |
| if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { |
| // If the value is already zero, the branch will execute zero times. |
| if (C->getValue()->isZero()) return C; |
| return getCouldNotCompute(); // Otherwise it will loop infinitely. |
| } |
| |
| const SCEVAddRecExpr *AddRec = |
| dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); |
| |
| if (!AddRec && AllowPredicates) |
| // Try to make this an AddRec using runtime tests, in the first X |
| // iterations of this loop, where X is the SCEV expression found by the |
| // algorithm below. |
| AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); |
| |
| if (!AddRec || AddRec->getLoop() != L) |
| return getCouldNotCompute(); |
| |
| // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of |
| // the quadratic equation to solve it. |
| if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { |
| // We can only use this value if the chrec ends up with an exact zero |
| // value at this index. When solving for "X*X != 5", for example, we |
| // should not accept a root of 2. |
| if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { |
| const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); |
| return ExitLimit(R, R, false, Predicates); |
| } |
| return getCouldNotCompute(); |
| } |
| |
| // Otherwise we can only handle this if it is affine. |
| if (!AddRec->isAffine()) |
| return getCouldNotCompute(); |
| |
| // If this is an affine expression, the execution count of this branch is |
| // the minimum unsigned root of the following equation: |
| // |
| // Start + Step*N = 0 (mod 2^BW) |
| // |
| // equivalent to: |
| // |
| // Step*N = -Start (mod 2^BW) |
| // |
| // where BW is the common bit width of Start and Step. |
| |
| // Get the initial value for the loop. |
| const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); |
| const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); |
| |
| // For now we handle only constant steps. |
| // |
| // TODO: Handle a nonconstant Step given AddRec<NUW>. If the |
| // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap |
| // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. |
| // We have not yet seen any such cases. |
| const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); |
| if (!StepC || StepC->getValue()->isZero()) |
| return getCouldNotCompute(); |
| |
| // For positive steps (counting up until unsigned overflow): |
| // N = -Start/Step (as unsigned) |
| // For negative steps (counting down to zero): |
| // N = Start/-Step |
| // First compute the unsigned distance from zero in the direction of Step. |
| bool CountDown = StepC->getAPInt().isNegative(); |
| const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); |
| |
| // Handle unitary steps, which cannot wraparound. |
| // 1*N = -Start; -1*N = Start (mod 2^BW), so: |
| // N = Distance (as unsigned) |
| if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { |
| APInt MaxBECount = getUnsignedRangeMax(Distance); |
| |
| // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, |
| // we end up with a loop whose backedge-taken count is n - 1. Detect this |
| // case, and see if we can improve the bound. |
| // |
| // Explicitly handling this here is necessary because getUnsignedRange |
| // isn't context-sensitive; it doesn't know that we only care about the |
| // range inside the loop. |
| const SCEV *Zero = getZero(Distance->getType()); |
| const SCEV *One = getOne(Distance->getType()); |
| const SCEV *DistancePlusOne = getAddExpr(Distance, One); |
| if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { |
| // If Distance + 1 doesn't overflow, we can compute the maximum distance |
| // as "unsigned_max(Distance + 1) - 1". |
| ConstantRange CR = getUnsignedRange(DistancePlusOne); |
| MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); |
| } |
| return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); |
| } |
| |
| // If the condition controls loop exit (the loop exits only if the expression |
| // is true) and the addition is no-wrap we can use unsigned divide to |
| // compute the backedge count. In this case, the step may not divide the |
| // distance, but we don't care because if the condition is "missed" the loop |
| // will have undefined behavior due to wrapping. |
| if (ControlsExit && AddRec->hasNoSelfWrap() && |
| loopHasNoAbnormalExits(AddRec->getLoop())) { |
| const SCEV *Exact = |
| getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); |
| const SCEV *Max = |
| Exact == getCouldNotCompute() |
| ? Exact |
| : getConstant(getUnsignedRangeMax(Exact)); |
| return ExitLimit(Exact, Max, false, Predicates); |
| } |
| |
| // Solve the general equation. |
| const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), |
| getNegativeSCEV(Start), *this); |
| const SCEV *M = E == getCouldNotCompute() |
| ? E |
| : getConstant(getUnsignedRangeMax(E)); |
| return ExitLimit(E, M, false, Predicates); |
| } |
| |
| ScalarEvolution::ExitLimit |
| ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { |
| // Loops that look like: while (X == 0) are very strange indeed. We don't |
| // handle them yet except for the trivial case. This could be expanded in the |
| // future as needed. |
| |
| // If the value is a constant, check to see if it is known to be non-zero |
| // already. If so, the backedge will execute zero times. |
| if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { |
| if (!C->getValue()->isZero()) |
| return getZero(C->getType()); |
| return getCouldNotCompute(); // Otherwise it will loop infinitely. |
| } |
| |
| // We could implement others, but I really doubt anyone writes loops like |
| // this, and if they did, they would already be constant folded. |
| return getCouldNotCompute(); |
| } |
| |
| std::pair<BasicBlock *, BasicBlock *> |
| ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { |
| // If the block has a unique predecessor, then there is no path from the |
| // predecessor to the block that does not go through the direct edge |
| // from the predecessor to the block. |
| if (BasicBlock *Pred = BB->getSinglePredecessor()) |
| return {Pred, BB}; |
| |
| // A loop's header is defined to be a block that dominates the loop. |
| // If the header has a unique predecessor outside the loop, it must be |
| // a block that has exactly one successor that can reach the loop. |
| if (Loop *L = LI.getLoopFor(BB)) |
| return {L->getLoopPredecessor(), L->getHeader()}; |
| |
| return {nullptr, nullptr}; |
| } |
| |
| /// SCEV structural equivalence is usually sufficient for testing whether two |
| /// expressions are equal, however for the purposes of looking for a condition |
| /// guarding a loop, it can be useful to be a little more general, since a |
| /// front-end may have replicated the controlling expression. |
| static bool HasSameValue(const SCEV *A, const SCEV *B) { |
| // Quick check to see if they are the same SCEV. |
| if (A == B) return true; |
| |
| auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { |
| // Not all instructions that are "identical" compute the same value. For |
| // instance, two distinct alloca instructions allocating the same type are |
| // identical and do not read memory; but compute distinct values. |
| return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); |
| }; |
| |
| // Otherwise, if they're both SCEVUnknown, it's possible that they hold |
| // two different instructions with the same value. Check for this case. |
| if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) |
| if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) |
| if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) |
| if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) |
| if (ComputesEqualValues(AI, BI)) |
| return true; |
| |
| // Otherwise assume they may have a different value. |
| return false; |
| } |
| |
| bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, |
| const SCEV *&LHS, const SCEV *&RHS, |
| unsigned Depth) { |
| bool Changed = false; |
| // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or |
| // '0 != 0'. |
| auto TrivialCase = [&](bool TriviallyTrue) { |
| LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); |
| Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; |
| return true; |
| }; |
| // If we hit the max recursion limit bail out. |
| if (Depth >= 3) |
| return false; |
| |
| // Canonicalize a constant to the right side. |
| if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { |
| // Check for both operands constant. |
| if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { |
| if (ConstantExpr::getICmp(Pred, |
| LHSC->getValue(), |
| RHSC->getValue())->isNullValue()) |
| return TrivialCase(false); |
| else |
| return TrivialCase(true); |
| } |
| // Otherwise swap the operands to put the constant on the right. |
| std::swap(LHS, RHS); |
| Pred = ICmpInst::getSwappedPredicate(Pred); |
| Changed = true; |
| } |
| |
| // If we're comparing an addrec with a value which is loop-invariant in the |
| // addrec's loop, put the addrec on the left. Also make a dominance check, |
| // as both operands could be addrecs loop-invariant in each other's loop. |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { |
| const Loop *L = AR->getLoop(); |
| if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { |
| std::swap(LHS, RHS); |
| Pred = ICmpInst::getSwappedPredicate(Pred); |
| Changed = true; |
| } |
| } |
| |
| // If there's a constant operand, canonicalize comparisons with boundary |
| // cases, and canonicalize *-or-equal comparisons to regular comparisons. |
| if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { |
| const APInt &RA = RC->getAPInt(); |
| |
| bool SimplifiedByConstantRange = false; |
| |
| if (!ICmpInst::isEquality(Pred)) { |
| ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); |
| if (ExactCR.isFullSet()) |
| return TrivialCase(true); |
| else if (ExactCR.isEmptySet()) |
| return TrivialCase(false); |
| |
| APInt NewRHS; |
| CmpInst::Predicate NewPred; |
| if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && |
| ICmpInst::isEquality(NewPred)) { |
| // We were able to convert an inequality to an equality. |
| Pred = NewPred; |
| RHS = getConstant(NewRHS); |
| Changed = SimplifiedByConstantRange = true; |
| } |
| } |
| |
| if (!SimplifiedByConstantRange) { |
| switch (Pred) { |
| default: |
| break; |
| case ICmpInst::ICMP_EQ: |
| case ICmpInst::ICMP_NE: |
| // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. |
| if (!RA) |
| if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) |
| if (const SCEVMulExpr *ME = |
| dyn_cast<SCEVMulExpr>(AE->getOperand(0))) |
| if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && |
| ME->getOperand(0)->isAllOnesValue()) { |
| RHS = AE->getOperand(1); |
| LHS = ME->getOperand(1); |
| Changed = true; |
| } |
| break; |
| |
| |
| // The "Should have been caught earlier!" messages refer to the fact |
| // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above |
| // should have fired on the corresponding cases, and canonicalized the |
| // check to trivial case. |
| |
| case ICmpInst::ICMP_UGE: |
| assert(!RA.isMinValue() && "Should have been caught earlier!"); |
| Pred = ICmpInst::ICMP_UGT; |
| RHS = getConstant(RA - 1); |
| Changed = true; |
| break; |
| case ICmpInst::ICMP_ULE: |
| assert(!RA.isMaxValue() && "Should have been caught earlier!"); |
| Pred = ICmpInst::ICMP_ULT; |
| RHS = getConstant(RA + 1); |
| Changed = true; |
| break; |
| case ICmpInst::ICMP_SGE: |
| assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); |
| Pred = ICmpInst::ICMP_SGT; |
| RHS = getConstant(RA - 1); |
| Changed = true; |
| break; |
| case ICmpInst::ICMP_SLE: |
| assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); |
| Pred = ICmpInst::ICMP_SLT; |
| RHS = getConstant(RA + 1); |
| Changed = true; |
| break; |
| } |
| } |
| } |
| |
| // Check for obvious equality. |
| if (HasSameValue(LHS, RHS)) { |
| if (ICmpInst::isTrueWhenEqual(Pred)) |
| return TrivialCase(true); |
| if (ICmpInst::isFalseWhenEqual(Pred)) |
| return TrivialCase(false); |
| } |
| |
| // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by |
| // adding or subtracting 1 from one of the operands. |
| switch (Pred) { |
| case ICmpInst::ICMP_SLE: |
| if (!getSignedRangeMax(RHS).isMaxSignedValue()) { |
| RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, |
| SCEV::FlagNSW); |
| Pred = ICmpInst::ICMP_SLT; |
| Changed = true; |
| } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { |
| LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, |
| SCEV::FlagNSW); |
| Pred = ICmpInst::ICMP_SLT; |
| Changed = true; |
| } |
| break; |
| case ICmpInst::ICMP_SGE: |
| if (!getSignedRangeMin(RHS).isMinSignedValue()) { |
| RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, |
| SCEV::FlagNSW); |
| Pred = ICmpInst::ICMP_SGT; |
| Changed = true; |
| } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { |
| LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, |
| SCEV::FlagNSW); |
| Pred = ICmpInst::ICMP_SGT; |
| Changed = true; |
| } |
| break; |
| case ICmpInst::ICMP_ULE: |
| if (!getUnsignedRangeMax(RHS).isMaxValue()) { |
| RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, |
| SCEV::FlagNUW); |
| Pred = ICmpInst::ICMP_ULT; |
| Changed = true; |
| } else if (!getUnsignedRangeMin(LHS).isMinValue()) { |
| LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); |
| Pred = ICmpInst::ICMP_ULT; |
| Changed = true; |
| } |
| break; |
| case ICmpInst::ICMP_UGE: |
| if (!getUnsignedRangeMin(RHS).isMinValue()) { |
| RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); |
| Pred = ICmpInst::ICMP_UGT; |
| Changed = true; |
| } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { |
| LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, |
| SCEV::FlagNUW); |
| Pred = ICmpInst::ICMP_UGT; |
| Changed = true; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| // TODO: More simplifications are possible here. |
| |
| // Recursively simplify until we either hit a recursion limit or nothing |
| // changes. |
| if (Changed) |
| return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); |
| |
| return Changed; |
| } |
| |
| bool ScalarEvolution::isKnownNegative(const SCEV *S) { |
| return getSignedRangeMax(S).isNegative(); |
| } |
| |
| bool ScalarEvolution::isKnownPositive(const SCEV *S) { |
| return getSignedRangeMin(S).isStrictlyPositive(); |
| } |
| |
| bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { |
| return !getSignedRangeMin(S).isNegative(); |
| } |
| |
| bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { |
| return !getSignedRangeMax(S).isStrictlyPositive(); |
| } |
| |
| bool ScalarEvolution::isKnownNonZero(const SCEV *S) { |
| return isKnownNegative(S) || isKnownPositive(S); |
| } |
| |
| std::pair<const SCEV *, const SCEV *> |
| ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { |
| // Compute SCEV on entry of loop L. |
| const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); |
| if (Start == getCouldNotCompute()) |
| return { Start, Start }; |
| // Compute post increment SCEV for loop L. |
| const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); |
| assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); |
| return { Start, PostInc }; |
| } |
| |
| bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, |
| const SCEV *LHS, const SCEV *RHS) { |
| // First collect all loops. |
| SmallPtrSet<const Loop *, 8> LoopsUsed; |
| getUsedLoops(LHS, LoopsUsed); |
| getUsedLoops(RHS, LoopsUsed); |
| |
| if (LoopsUsed.empty()) |
| return false; |
| |
| // Domination relationship must be a linear order on collected loops. |
| #ifndef NDEBUG |
| for (auto *L1 : LoopsUsed) |
| for (auto *L2 : LoopsUsed) |
| assert((DT.dominates(L1->getHeader(), L2->getHeader()) || |
| DT.dominates(L2->getHeader(), L1->getHeader())) && |
| "Domination relationship is not a linear order"); |
| #endif |
| |
| const Loop *MDL = |
| *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), |
| [&](const Loop *L1, const Loop *L2) { |
| return DT.properlyDominates(L1->getHeader(), L2->getHeader()); |
| }); |
| |
| // Get init and post increment value for LHS. |
| auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); |
| // if LHS contains unknown non-invariant SCEV then bail out. |
| if (SplitLHS.first == getCouldNotCompute()) |
| return false; |
| assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); |
| // Get init and post increment value for RHS. |
| auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); |
| // if RHS contains unknown non-invariant SCEV then bail out. |
| if (SplitRHS.first == getCouldNotCompute()) |
| return false; |
| assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); |
| // It is possible that init SCEV contains an invariant load but it does |
| // not dominate MDL and is not available at MDL loop entry, so we should |
| // check it here. |
| if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || |
| !isAvailableAtLoopEntry(SplitRHS.first, MDL)) |
| return false; |
| |
| return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) && |
| isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, |
| SplitRHS.second); |
| } |
| |
| bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, |
| const SCEV *LHS, const SCEV *RHS) { |
| // Canonicalize the inputs first. |
| (void)SimplifyICmpOperands(Pred, LHS, RHS); |
| |
| if (isKnownViaInduction(Pred, LHS, RHS)) |
| return true; |
| |
| if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) |
| return true; |
| |
| // Otherwise see what can be done with some simple reasoning. |
| return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); |
| } |
| |
| bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, |
| const SCEVAddRecExpr *LHS, |
| const SCEV *RHS) { |
| const Loop *L = LHS->getLoop(); |
| return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && |
| isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); |
| } |
| |
| bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, |
| ICmpInst::Predicate Pred, |
| bool &Increasing) { |
| bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); |
| |
| #ifndef NDEBUG |
| // Verify an invariant: inverting the predicate should turn a monotonically |
| // increasing change to a monotonically decreasing one, and vice versa. |
| bool IncreasingSwapped; |
| bool ResultSwapped = isMonotonicPredicateImpl( |
| LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); |
| |
| assert(Result == ResultSwapped && "should be able to analyze both!"); |
| if (ResultSwapped) |
| assert(Increasing == !IncreasingSwapped && |
| "monotonicity should flip as we flip the predicate"); |
| #endif |
| |
| return Result; |
| } |
| |
| bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, |
| ICmpInst::Predicate Pred, |
| bool &Increasing) { |
| |
| // A zero step value for LHS means the induction variable is essentially a |
| // loop invariant value. We don't really depend on the predicate actually |
| // flipping from false to true (for increasing predicates, and the other way |
| // around for decreasing predicates), all we care about is that *if* the |
| // predicate changes then it only changes from false to true. |
| // |
| // A zero step value in itself is not very useful, but there may be places |
| // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be |
| // as general as possible. |
| |
| switch (Pred) { |
| default: |
| return false; // Conservative answer |
| |
| case ICmpInst::ICMP_UGT: |
| case ICmpInst::ICMP_UGE: |
| case ICmpInst::ICMP_ULT: |
| case ICmpInst::ICMP_ULE: |
| if (!LHS->hasNoUnsignedWrap()) |
| return false; |
| |
| Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; |
| return true; |
| |
| case ICmpInst::ICMP_SGT: |
| case ICmpInst::ICMP_SGE: |
| case ICmpInst::ICMP_SLT: |
| case ICmpInst::ICMP_SLE: { |
| if (!LHS->hasNoSignedWrap()) |
| return false; |
| |
| const SCEV *Step = LHS->getStepRecurrence(*this); |
| |
| if (isKnownNonNegative(Step)) { |
| Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; |
| return true; |
| } |
| |
| if (isKnownNonPositive(Step)) { |
| Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| } |
| |
| llvm_unreachable("switch has default clause!"); |
| } |
| |
| bool ScalarEvolution::isLoopInvariantPredicate( |
| ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, |
| ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, |
| const SCEV *&InvariantRHS) { |
| |
| // If there is a loop-invariant, force it into the RHS, otherwise bail out. |
| if (!isLoopInvariant(RHS, L)) { |
| if (!isLoopInvariant(LHS, L)) |
| return false; |
| |
| std::swap(LHS, RHS); |
| Pred = ICmpInst::getSwappedPredicate(Pred); |
| } |
| |
| const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); |
| if (!ArLHS || ArLHS->getLoop() != L) |
| return false; |
| |
| bool Increasing; |
| if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) |
| return false; |
| |
| // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to |
| // true as the loop iterates, and the backedge is control dependent on |
| // "ArLHS `Pred` RHS" == true then we can reason as follows: |
| // |
| // * if the predicate was false in the first iteration then the predicate |
| // is never evaluated again, since the loop exits without taking the |
| // backedge. |
| // * if the predicate was true in the first iteration then it will |
| // continue to be true for all future iterations since it is |
| // monotonically increasing. |
| // |
| // For both the above possibilities, we can replace the loop varying |
| // predicate with its value on the first iteration of the loop (which is |
| // loop invariant). |
| // |
| // A similar reasoning applies for a monotonically decreasing predicate, by |
| // replacing true with false and false with true in the above two bullets. |
| |
| auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); |
| |
| if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) |
| return false; |
| |
| InvariantPred = Pred; |
| InvariantLHS = ArLHS->getStart(); |
| InvariantRHS = RHS; |
| return true; |
| } |
| |
| bool ScalarEvolution::isKnownPredicateViaConstantRanges( |
| ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { |
| if (HasSameValue(LHS, RHS)) |
| return ICmpInst::isTrueWhenEqual(Pred); |
| |
| // This code is split out from isKnownPredicate because it is called from |
| // within isLoopEntryGuardedByCond. |
| |
| auto CheckRanges = |
| [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { |
| return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) |
| .contains(RangeLHS); |
| }; |
| |
| // The check at the top of the function catches the case where the values are |
| // known to be equal. |
| if (Pred == CmpInst::ICMP_EQ) |
| return false; |
| |
| if (Pred == CmpInst::ICMP_NE) |
| return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || |
| CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || |
| isKnownNonZero(getMinusSCEV(LHS, RHS)); |
| |
| if (CmpInst::isSigned(Pred)) |
| return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); |
| |
| return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); |
| } |
| |
| bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, |
| const SCEV *LHS, |
| const SCEV *RHS) { |
| // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. |
| // Return Y via OutY. |
| auto MatchBinaryAddToConst = |
| [this](const SCEV *Result, const SCEV *X, APInt &OutY, |
| SCEV::NoWrapFlags ExpectedFlags) { |
| const SCEV *NonConstOp, *ConstOp; |
| SCEV::NoWrapFlags FlagsPresent; |
| |
| if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || |
| !isa<SCEVConstant>(ConstOp) || NonConstOp != X) |
| return false; |
| |
| OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); |
| return (FlagsPresent & ExpectedFlags) == ExpectedFlags; |
| }; |
| |
| APInt C; |
| |
| switch (Pred) { |
| default: |
| break; |
| |
| case ICmpInst::ICMP_SGE: |
| std::swap(LHS, RHS); |
| LLVM_FALLTHROUGH; |
| case ICmpInst::ICMP_SLE: |
| // X s<= (X + C)<nsw> if C >= 0 |
| if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) |
| return true; |
| |
| // (X + C)<nsw> s<= X if C <= 0 |
| if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && |
| !C.isStrictlyPositive()) |
| return true; |
| break; |
| |
| case ICmpInst::ICMP_SGT: |
| std::swap(LHS, RHS); |
| LLVM_FALLTHROUGH; |
| case ICmpInst::ICMP_SLT: |
| // X s< (X + C)<nsw> if C > 0 |
| if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && |
| C.isStrictlyPositive()) |
| return true; |
| |
| // (X + C)<nsw> s< X if C < 0 |
| if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) |
| return true; |
| break; |
| } |
| |
| return false; |
| } |
| |
| bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, |
| const SCEV *LHS, |
| const SCEV *RHS) { |
| if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) |
| return false; |
| |
| // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on |
| // the stack can result in exponential time complexity. |
| SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); |
| |
| // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L |
| // |
| // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use |
| // isKnownPredicate. isKnownPredicate is more powerful, but also more |
| // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the |
| // interesting cases seen in practice. We can consider "upgrading" L >= 0 to |
| // use isKnownPredicate later if needed. |
| return isKnownNonNegative(RHS) && |
| isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && |
| isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); |
| } |
| |
| bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, |
| ICmpInst::Predicate Pred, |
| const SCEV *LHS, const SCEV *RHS) { |
| // No need to even try if we know the module has no guards. |
| if (!HasGuards) |
| return false; |
| |
| return any_of(*BB, [&](Instruction &I) { |
| using namespace llvm::PatternMatch; |
| |
| Value *Condition; |
| return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( |
| m_Value(Condition))) && |
| isImpliedCond(Pred, LHS, RHS, Condition, false); |
| }); |
| } |
| |
| /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is |
| /// protected by a conditional between LHS and RHS. This is used to |
| /// to eliminate casts. |
| bool |
| ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, |
| ICmpInst::Predicate Pred, |
| const SCEV *LHS, const SCEV *RHS) { |
| // Interpret a null as meaning no loop, where there is obviously no guard |
| // (interprocedural conditions notwithstanding). |
| if (!L) return true; |
| |
| if (VerifyIR) |
| assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && |
| "This cannot be done on broken IR!"); |
| |
| |
| if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) |
| return true; |
| |
| BasicBlock *Latch = L->getLoopLatch(); |
| if (!Latch) |
| return false; |
| |
| BranchInst *LoopContinuePredicate = |
| dyn_cast<BranchInst>(Latch->getTerminator()); |
| if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && |
| isImpliedCond(Pred, LHS, RHS, |
| LoopContinuePredicate->getCondition(), |
| LoopContinuePredicate->getSuccessor(0) != L->getHeader())) |
| return true; |
| |
| // We don't want more than one activation of the following loops on the stack |
| // -- that can lead to O(n!) time complexity. |
| if (WalkingBEDominatingConds) |
| return false; |
| |
| SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); |
| |
| // See if we can exploit a trip count to prove the predicate. |
| const auto &BETakenInfo = getBackedgeTakenInfo(L); |
| const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); |
| if (LatchBECount != getCouldNotCompute()) { |
| // We know that Latch branches back to the loop header exactly |
| // LatchBECount times. This means the backdege condition at Latch is |
| // equivalent to "{0,+,1} u< LatchBECount". |
| Type *Ty = LatchBECount->getType(); |
| auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); |
| const SCEV *LoopCounter = |
| getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); |
| if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, |
| LatchBECount)) |
| return true; |
| } |
| |
| // Check conditions due to any @llvm.assume intrinsics. |
| for (auto &AssumeVH : AC.assumptions()) { |
| if (!AssumeVH) |
| continue; |
| auto *CI = cast<CallInst>(AssumeVH); |
| if (!DT.dominates(CI, Latch->getTerminator())) |
| continue; |
| |
| if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) |
| return true; |
| } |
| |
| // If the loop is not reachable from the entry block, we risk running into an |
| // infinite loop as we walk up into the dom tree. These loops do not matter |
| // anyway, so we just return a conservative answer when we see them. |
| if (!DT.isReachableFromEntry(L->getHeader())) |
| return false; |
| |
| if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) |
| return true; |
| |
| for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; |
| DTN != HeaderDTN; DTN = DTN->getIDom()) { |
| assert(DTN && "should reach the loop header before reaching the root!"); |
| |
| BasicBlock *BB = DTN->getBlock(); |
| if (isImpliedViaGuard(BB, Pred, LHS, RHS)) |
| return true; |
| |
| BasicBlock *PBB = BB->getSinglePredecessor(); |
| if (!PBB) |
| continue; |
| |
| BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); |
| if (!ContinuePredicate || !ContinuePredicate->isConditional()) |
| continue; |
| |
| Value *Condition = ContinuePredicate->getCondition(); |
| |
| // If we have an edge `E` within the loop body that dominates the only |
| // latch, the condition guarding `E` also guards the backedge. This |
| // reasoning works only for loops with a single latch. |
| |
| BasicBlockEdge DominatingEdge(PBB, BB); |
| if (DominatingEdge.isSingleEdge()) { |
| // We're constructively (and conservatively) enumerating edges within the |
| // loop body that dominate the latch. The dominator tree better agree |
| // with us on this: |
| assert(DT.dominates(DominatingEdge, Latch) && "should be!"); |
| |
| if (isImpliedCond(Pred, LHS, RHS, Condition, |
| BB != ContinuePredicate->getSuccessor(0))) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool |
| ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, |
| ICmpInst::Predicate Pred, |
| const SCEV *LHS, const SCEV *RHS) { |
| // Interpret a null as meaning no loop, where there is obviously no guard |
| // (interprocedural conditions notwithstanding). |
| if (!L) return false; |
| |
| if (VerifyIR) |
| assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && |
| "This cannot be done on broken IR!"); |
| |
| // Both LHS and RHS must be available at loop entry. |
| assert(isAvailableAtLoopEntry(LHS, L) && |
| "LHS is not available at Loop Entry"); |
| assert(isAvailableAtLoopEntry(RHS, L) && |
| "RHS is not available at Loop Entry"); |
| |
| if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) |
| return true; |
| |
| // If we cannot prove strict comparison (e.g. a > b), maybe we can prove |
| // the facts (a >= b && a != b) separately. A typical situation is when the |
| // non-strict comparison is known from ranges and non-equality is known from |
| // dominating predicates. If we are proving strict comparison, we always try |
| // to prove non-equality and non-strict comparison separately. |
| auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); |
| const bool ProvingStrictComparison = (Pred != NonStrictPredicate); |
| bool ProvedNonStrictComparison = false; |
| bool ProvedNonEquality = false; |
| |
| if (ProvingStrictComparison) { |
| ProvedNonStrictComparison = |
| isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS); |
| ProvedNonEquality = |
| isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS); |
| if (ProvedNonStrictComparison && ProvedNonEquality) |
| return true; |
| } |
| |
| // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. |
| auto ProveViaGuard = [&](BasicBlock *Block) { |
| if (isImpliedViaGuard(Block, Pred, LHS, RHS)) |
| return true; |
| if (ProvingStrictComparison) { |
| if (!ProvedNonStrictComparison) |
| ProvedNonStrictComparison = |
| isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS); |
| if (!ProvedNonEquality) |
| ProvedNonEquality = |
| isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS); |
| if (ProvedNonStrictComparison && ProvedNonEquality) |
| return true; |
| } |
| return false; |
| }; |
| |
| // Try to prove (Pred, LHS, RHS) using isImpliedCond. |
| auto ProveViaCond = [&](Value *Condition, bool Inverse) { |
| if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse)) |
| return true; |
| if (ProvingStrictComparison) { |
| if (!ProvedNonStrictComparison) |
| ProvedNonStrictComparison = |
| isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse); |
| if (!ProvedNonEquality) |
| ProvedNonEquality = |
| isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse); |
| if (ProvedNonStrictComparison && ProvedNonEquality) |
| return true; |
| } |
| return false; |
| }; |
| |
| // Starting at the loop predecessor, climb up the predecessor chain, as long |
| // as there are predecessors that can be found that have unique successors |
| // leading to the original header. |
| for (std::pair<BasicBlock *, BasicBlock *> |
| Pair(L->getLoopPredecessor(), L->getHeader()); |
| Pair.first; |
| Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { |
| |
| if (ProveViaGuard(Pair.first)) |
| return true; |
| |
| BranchInst *LoopEntryPredicate = |
| dyn_cast<BranchInst>(Pair.first->getTerminator()); |
| if (!LoopEntryPredicate || |
| LoopEntryPredicate->isUnconditional()) |
| continue; |
| |
| if (ProveViaCond(LoopEntryPredicate->getCondition(), |
| LoopEntryPredicate->getSuccessor(0) != Pair.second)) |
| return true; |
| } |
| |
| // Check conditions due to any @llvm.assume intrinsics. |
| for (auto &AssumeVH : AC.assumptions()) { |
| if (!AssumeVH) |
| continue; |
| auto *CI = cast<CallInst>(AssumeVH); |
| if (!DT.dominates(CI, L->getHeader())) |
| continue; |
| |
| if (ProveViaCond(CI->getArgOperand(0), false)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, |
| const SCEV *LHS, const SCEV *RHS, |
| Value *FoundCondValue, |
| bool Inverse) { |
| if (!PendingLoopPredicates.insert(FoundCondValue).second) |
| return false; |
| |
| auto ClearOnExit = |
| make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); |
| |
| // Recursively handle And and Or conditions. |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { |
| if (BO->getOpcode() == Instruction::And) { |
| if (!Inverse) |
| return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || |
| isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); |
| } else if (BO->getOpcode() == Instruction::Or) { |
| if (Inverse) |
| return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || |
| isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); |
| } |
| } |
| |
| ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); |
| if (!ICI) return false; |
| |
| // Now that we found a conditional branch that dominates the loop or controls |
| // the loop latch. Check to see if it is the comparison we are looking for. |
| ICmpInst::Predicate FoundPred; |
| if (Inverse) |
| FoundPred = ICI->getInversePredicate(); |
| else |
| FoundPred = ICI->getPredicate(); |
| |
| const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); |
| const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); |
| |
| return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); |
| } |
| |
| bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, |
| const SCEV *RHS, |
| ICmpInst::Predicate FoundPred, |
| const SCEV *FoundLHS, |
| const SCEV *FoundRHS) { |
| // Balance the types. |
| if (getTypeSizeInBits(LHS->getType()) < |
| getTypeSizeInBits(FoundLHS->getType())) { |
| if (CmpInst::isSigned(Pred)) { |
| LHS = getSignExtendExpr(LHS, FoundLHS->getType()); |
| RHS = getSignExtendExpr(RHS, FoundLHS->getType()); |
| } else { |
| LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); |
| RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); |
| } |
| } else if (getTypeSizeInBits(LHS->getType()) > |
| getTypeSizeInBits(FoundLHS->getType())) { |
| if (CmpInst::isSigned(FoundPred)) { |
| FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); |
| FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); |
| } else { |
| FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); |
| FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); |
| } |
| } |
| |
| // Canonicalize the query to match the way instcombine will have |
| // canonicalized the comparison. |
| if (SimplifyICmpOperands(Pred, LHS, RHS)) |
| if (LHS == RHS) |
| return CmpInst::isTrueWhenEqual(Pred); |
| if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) |
| if (FoundLHS == FoundRHS) |
| return CmpInst::isFalseWhenEqual(FoundPred); |
| |
| // Check to see if we can make the LHS or RHS match. |
| if (LHS == FoundRHS || RHS == FoundLHS) { |
| if (isa<SCEVConstant>(RHS)) { |
| std::swap(FoundLHS, FoundRHS); |
| FoundPred = ICmpInst::getSwappedPredicate(FoundPred); |
| } else { |
| std::swap(LHS, RHS); |
| Pred = ICmpInst::getSwappedPredicate(Pred); |
| } |
| } |
| |
| // Check whether the found predicate is the same as the desired predicate. |
| if (FoundPred == Pred) |
| return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); |
| |
| // Check whether swapping the found predicate makes it the same as the |
| // desired predicate. |
| if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { |
| if (isa<SCEVConstant>(RHS)) |
| return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); |
| else |
| return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), |
| RHS, LHS, FoundLHS, FoundRHS); |
| } |
| |
| // Unsigned comparison is the same as signed comparison when both the operands |
| // are non-negative. |
| if (CmpInst::isUnsigned(FoundPred) && |
| CmpInst::getSignedPredicate(FoundPred) == Pred && |
| isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) |
| return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); |
| |
| // Check if we can make progress by sharpening ranges. |
| if (FoundPred == ICmpInst::ICMP_NE && |
| (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { |
| |
| const SCEVConstant *C = nullptr; |
| const SCEV *V = nullptr; |
| |
| if (isa<SCEVConstant>(FoundLHS)) { |
| C = cast<SCEVConstant>(FoundLHS); |
| V = FoundRHS; |
| } else { |
| C = cast<SCEVConstant>(FoundRHS); |
| V = FoundLHS; |
| } |
| |
| // The guarding predicate tells us that C != V. If the known range |
| // of V is [C, t), we can sharpen the range to [C + 1, t). The |
| // range we consider has to correspond to same signedness as the |
| // predicate we're interested in folding. |
| |
| APInt Min = ICmpInst::isSigned(Pred) ? |
| getSignedRangeMin(V) : getUnsignedRangeMin(V); |
| |
| if (Min == C->getAPInt()) { |
| // Given (V >= Min && V != Min) we conclude V >= (Min + 1). |
| // This is true even if (Min + 1) wraps around -- in case of |
| // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). |
| |
| APInt SharperMin = Min + 1; |
| |
| switch (Pred) { |
| case ICmpInst::ICMP_SGE: |
| case ICmpInst::ICMP_UGE: |
| // We know V `Pred` SharperMin. If this implies LHS `Pred` |
| // RHS, we're done. |
| if (isImpliedCondOperands(Pred, LHS, RHS, V, |
| getConstant(SharperMin))) |
| return true; |
| LLVM_FALLTHROUGH; |
| |
| case ICmpInst::ICMP_SGT: |
| case ICmpInst::ICMP_UGT: |
| // We know from the range information that (V `Pred` Min || |
| // V == Min). We know from the guarding condition that !(V |
| // == Min). This gives us |
| // |
| // V `Pred` Min || V == Min && !(V == Min) |
| // => V `Pred` Min |
| // |
| // If V `Pred` Min implies LHS `Pred` RHS, we're done. |
| |
| if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) |
| return true; |
| LLVM_FALLTHROUGH; |
| |
| default: |
| // No change |
| break; |
| } |
| } |
| } |
| |
| // Check whether the actual condition is beyond sufficient. |
| if (FoundPred == ICmpInst::ICMP_EQ) |
| if (ICmpInst::isTrueWhenEqual(Pred)) |
| if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) |
| return true; |
| if (Pred == ICmpInst::ICMP_NE) |
| if (!ICmpInst::isTrueWhenEqual(FoundPred)) |
| if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) |
| return true; |
| |
| // Otherwise assume the worst. |
| return false; |
| } |
| |
| bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, |
| const SCEV *&L, const SCEV *&R, |
| SCEV::NoWrapFlags &Flags) { |
| const auto *AE = dyn_cast<SCEVAddExpr>(Expr); |
| if (!AE || AE->getNumOperands() != 2) |
| return false; |
| |
| L = AE->getOperand(0); |
| R = AE->getOperand(1); |
| Flags = AE->getNoWrapFlags(); |
| return true; |
| } |
| |
| Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, |
| const SCEV *Less) { |
| // We avoid subtracting expressions here because this function is usually |
| // fairly deep in the call stack (i.e. is called many times). |
| |
| // X - X = 0. |
| if (More == Less) |
| return APInt(getTypeSizeInBits(More->getType()), 0); |
| |
| if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { |
| const auto *LAR = cast<SCEVAddRecExpr>(Less); |
| const auto *MAR = cast<SCEVAddRecExpr>(More); |
| |
| if (LAR->getLoop() != MAR->getLoop()) |
| return None; |
| |
| // We look at affine expressions only; not for correctness but to keep |
| // getStepRecurrence cheap. |
| if (!LAR->isAffine() || !MAR->isAffine()) |
| return None; |
| |
| if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) |
| return None; |
| |
| Less = LAR->getStart(); |
| More = MAR->getStart(); |
| |
| // fall through |
| } |
| |
| if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { |
| const auto &M = cast<SCEVConstant>(More)->getAPInt(); |
| const auto &L = cast<SCEVConstant>(Less)->getAPInt(); |
| return M - L; |
| } |
| |
| SCEV::NoWrapFlags Flags; |
| const SCEV *LLess = nullptr, *RLess = nullptr; |
| const SCEV *LMore = nullptr, *RMore = nullptr; |
| const SCEVConstant *C1 = nullptr, *C2 = nullptr; |
| // Compare (X + C1) vs X. |
| if (splitBinaryAdd(Less, LLess, RLess, Flags)) |
| if ((C1 = dyn_cast<SCEVConstant>(LLess))) |
| if (RLess == More) |
| return -(C1->getAPInt()); |
| |
| // Compare X vs (X + C2). |
| if (splitBinaryAdd(More, LMore, RMore, Flags)) |
| if ((C2 = dyn_cast<SCEVConstant>(LMore))) |
| if (RMore == Less) |
| return C2->getAPInt(); |
| |
| // Compare (X + C1) vs (X + C2). |
| if (C1 && C2 && RLess == RMore) |
| return C2->getAPInt() - C1->getAPInt(); |
| |
| return None; |
| } |
| |
| bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( |
| ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, |
| const SCEV *FoundLHS, const SCEV *FoundRHS) { |
| if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) |
| return false; |
| |
| const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); |
| if (!AddRecLHS) |
| return false; |
| |
| const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); |
| if (!AddRecFoundLHS) |
| return false; |
| |
| // We'd like to let SCEV reason about control dependencies, so we constrain |
| // both the inequalities to be about add recurrences on the same loop. This |
| // way we can use isLoopEntryGuardedByCond later. |
| |
| const Loop *L = AddRecFoundLHS->getLoop(); |
| if (L != AddRecLHS->getLoop()) |
| return false; |
| |
| // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) |
| // |
| // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) |
| // ... (2) |
| // |
| // Informal proof for (2), assuming (1) [*]: |
| // |
| // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] |
| // |
| // Then |
| // |
| // FoundLHS s< FoundRHS s< INT_MIN - C |
| // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] |
| // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] |
| // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< |
| // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] |
| // <=> FoundLHS + C s< FoundRHS + C |
| // |
| // [*]: (1) can be proved by ruling out overflow. |
| // |
| // [**]: This can be proved by analyzing all the four possibilities: |
| // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and |
| // (A s>= 0, B s>= 0). |
| // |
| // Note: |
| // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" |
| // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS |
| // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS |
| // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is |
| // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + |
| // C)". |
| |
| Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); |
| Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); |
| if (!LDiff || !RDiff || *LDiff != *RDiff) |
| return false; |
| |
| if (LDiff->isMinValue()) |
| return true; |
| |
| APInt FoundRHSLimit; |
| |
| if (Pred == CmpInst::ICMP_ULT) { |
| FoundRHSLimit = -(*RDiff); |
| } else { |
| assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); |
| FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; |
| } |
| |
| // Try to prove (1) or (2), as needed. |
| return isAvailableAtLoopEntry(FoundRHS, L) && |
| isLoopEntryGuardedByCond(L, Pred, FoundRHS, |
| getConstant(FoundRHSLimit)); |
| } |
| |
| bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, |
| const SCEV *LHS, const SCEV *RHS, |
| const SCEV *FoundLHS, |
| const SCEV *FoundRHS, unsigned Depth) { |
| const PHINode *LPhi = nullptr, *RPhi = nullptr; |
| |
| auto ClearOnExit = make_scope_exit([&]() { |
| if (LPhi) { |
| bool Erased = PendingMerges.erase(LPhi); |
| assert(Erased && "Failed to erase LPhi!"); |
| (void)Erased; |
| } |
| if (RPhi) { |
| bool Erased = PendingMerges.erase(RPhi); |
| assert(Erased && "Failed to erase RPhi!"); |
| (void)Erased; |
| } |
| }); |
| |
| // Find respective Phis and check that they are not being pending. |
| if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) |
| if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { |
| if (!PendingMerges.insert(Phi).second) |
| return false; |
| LPhi = Phi; |
| } |
| if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) |
| if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { |
| // If we detect a loop of Phi nodes being processed by this method, for |
| // example: |
| // |
| // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] |
| // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] |
| // |
| // we don't want to deal with a case that complex, so return conservative |
| // answer false. |
| if (!PendingMerges.insert(Phi).second) |
| return false; |
| RPhi = Phi; |
| } |
| |
| // If none of LHS, RHS is a Phi, nothing to do here. |
| if (!LPhi && !RPhi) |
| return false; |
| |
| // If there is a SCEVUnknown Phi we are interested in, make it left. |
| if (!LPhi) { |
| std::swap(LHS, RHS); |
| std::swap(FoundLHS, FoundRHS); |
| std::swap(LPhi, RPhi); |
| Pred = ICmpInst::getSwappedPredicate(Pred); |
| } |
| |
| assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); |
| const BasicBlock *LBB = LPhi->getParent(); |
| const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); |
| |
| auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { |
| return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || |
| isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || |
| isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); |
| }; |
| |
| if (RPhi && RPhi->getParent() == LBB) { |
| // Case one: RHS is also a SCEVUnknown Phi from the same basic block. |
| // If we compare two Phis from the same block, and for each entry block |
| // the predicate is true for incoming values from this block, then the |
| // predicate is also true for the Phis. |
| for (const BasicBlock *IncBB : predecessors(LBB)) { |
| const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); |
| const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); |
| if (!ProvedEasily(L, R)) |
| return false; |
| } |
| } else if (RAR && RAR->getLoop()->getHeader() == LBB) { |
| // Case two: RHS is also a Phi from the same basic block, and it is an |
| // AddRec. It means that there is a loop which has both AddRec and Unknown |
| // PHIs, for it we can compare incoming values of AddRec from above the loop |
| // and latch with their respective incoming values of LPhi. |
| // TODO: Generalize to handle loops with many inputs in a header. |
| if (LPhi->getNumIncomingValues() != 2) return false; |
| |
| auto *RLoop = RAR->getLoop(); |
| auto *Predecessor = RLoop->getLoopPredecessor(); |
| assert(Predecessor && "Loop with AddRec with no predecessor?"); |
| const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); |
| if (!ProvedEasily(L1, RAR->getStart())) |
| return false; |
| auto *Latch = RLoop->getLoopLatch(); |
| assert(Latch && "Loop with AddRec with no latch?"); |
| const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); |
| if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) |
| return false; |
| } else { |
| // In all other cases go over inputs of LHS and compare each of them to RHS, |
| // the predicate is true for (LHS, RHS) if it is true for all such pairs. |
| // At this point RHS is either a non-Phi, or it is a Phi from some block |
| // different from LBB. |
| for (const BasicBlock *IncBB : predecessors(LBB)) { |
| // Check that RHS is available in this block. |
| if (!dominates(RHS, IncBB)) |
| return false; |
| const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); |
| if (!ProvedEasily(L, RHS)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, |
| const SCEV *LHS, const SCEV *RHS, |
| const SCEV *FoundLHS, |
| const SCEV *FoundRHS) { |
| if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) |
| return true; |
| |
| if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) |
| return true; |
| |
| return isImpliedCondOperandsHelper(Pred, LHS, RHS, |
| FoundLHS, FoundRHS) || |
| // ~x < ~y --> x > y |
| isImpliedCondOperandsHelper(Pred, LHS, RHS, |
| getNotSCEV(FoundRHS), |
| getNotSCEV(FoundLHS)); |
| } |
| |
| /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? |
| template <typename MinMaxExprType> |
| static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, |
| const SCEV *Candidate) { |
| const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); |
| if (!MinMaxExpr) |
| return false; |
| |
| return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end(); |
| } |
| |
| static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, |
| ICmpInst::Predicate Pred, |
| const SCEV *LHS, const SCEV *RHS) { |
| // If both sides are affine addrecs for the same loop, with equal |
| // steps, and we know the recurrences don't wrap, then we only |
| // need to check the predicate on the starting values. |
| |
| if (!ICmpInst::isRelational(Pred)) |
| return false; |
| |
| const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); |
| if (!LAR) |
| return false; |
| const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); |
| if (!RAR) |
| return false; |
| if (LAR->getLoop() != RAR->getLoop()) |
| return false; |
| if (!LAR->isAffine() || !RAR->isAffine()) |
| return false; |
| |
| if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) |
| return false; |
| |
| SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? |
| SCEV::FlagNSW : SCEV::FlagNUW; |
| if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) |
| return false; |
| |
| return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); |
| } |
| |
| /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max |
| /// expression? |
| static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, |
| ICmpInst::Predicate Pred, |
| const SCEV *LHS, const SCEV *RHS) { |
| switch (Pred) { |
| default: |
| return false; |
| |
| case ICmpInst::ICMP_SGE: |
| std::swap(LHS, RHS); |
| LLVM_FALLTHROUGH; |
| case ICmpInst::ICMP_SLE: |
| return |
| // min(A, ...) <= A |
| IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || |
| // A <= max(A, ...) |
| IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); |
| |
| case ICmpInst::ICMP_UGE: |
| std::swap(LHS, RHS); |
| LLVM_FALLTHROUGH; |
| case ICmpInst::ICMP_ULE: |
| return |
| // min(A, ...) <= A |
| IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || |
| // A <= max(A, ...) |
| IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); |
| } |
| |
| llvm_unreachable("covered switch fell through?!"); |
| } |
| |
| bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, |
| const SCEV *LHS, const SCEV *RHS, |
| const SCEV *FoundLHS, |
| const SCEV *FoundRHS, |
| unsigned Depth) { |
| assert(getTypeSizeInBits(LHS->getType()) == |
| getTypeSizeInBits(RHS->getType()) && |
| "LHS and RHS have different sizes?"); |
| assert(getTypeSizeInBits(FoundLHS->getType()) == |
| getTypeSizeInBits(FoundRHS->getType()) && |
| "FoundLHS and FoundRHS have different sizes?"); |
| // We want to avoid hurting the compile time with analysis of too big trees. |
| if (Depth > MaxSCEVOperationsImplicationDepth) |
| return false; |
| // We only want to work with ICMP_SGT comparison so far. |
| // TODO: Extend to ICMP_UGT? |
| if (Pred == ICmpInst::ICMP_SLT) { |
| Pred = ICmpInst::ICMP_SGT; |
| std::swap(LHS, RHS); |
| std::swap(FoundLHS, FoundRHS); |
| } |
| if (Pred != ICmpInst::ICMP_SGT) |
| return false; |
| |
| auto GetOpFromSExt = [&](const SCEV *S) { |
| if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) |
| return Ext->getOperand(); |
| // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off |
| // the constant in some cases. |
| return S; |
| }; |
| |
| // Acquire values from extensions. |
| auto *OrigLHS = LHS; |
| auto *OrigFoundLHS = FoundLHS; |
| LHS = GetOpFromSExt(LHS); |
| FoundLHS = GetOpFromSExt(FoundLHS); |
| |
| // Is the SGT predicate can be proved trivially or using the found context. |
| auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { |
| return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || |
| isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, |
| FoundRHS, Depth + 1); |
| }; |
| |
| if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { |
| // We want to avoid creation of any new non-constant SCEV. Since we are |
| // going to compare the operands to RHS, we should be certain that we don't |
| // need any size extensions for this. So let's decline all cases when the |
| // sizes of types of LHS and RHS do not match. |
| // TODO: Maybe try to get RHS from sext to catch more cases? |
| if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) |
| return false; |
| |
| // Should not overflow. |
| if (!LHSAddExpr->hasNoSignedWrap()) |
| return false; |
| |
| auto *LL = LHSAddExpr->getOperand(0); |
| auto *LR = LHSAddExpr->getOperand(1); |
| auto *MinusOne = getNegativeSCEV(getOne(RHS->getType())); |
| |
| // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. |
| auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { |
| return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); |
| }; |
| // Try to prove the following rule: |
| // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). |
| // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). |
| if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) |
| return true; |
| } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { |
| Value *LL, *LR; |
| // FIXME: Once we have SDiv implemented, we can get rid of this matching. |
| |
| using namespace llvm::PatternMatch; |
| |
| if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { |
| // Rules for division. |
| // We are going to perform some comparisons with Denominator and its |
| // derivative expressions. In general case, creating a SCEV for it may |
| // lead to a complex analysis of the entire graph, and in particular it |
| // can request trip count recalculation for the same loop. This would |
| // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid |
| // this, we only want to create SCEVs that are constants in this section. |
| // So we bail if Denominator is not a constant. |
| if (!isa<ConstantInt>(LR)) |
| return false; |
| |
| auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); |
| |
| // We want to make sure that LHS = FoundLHS / Denominator. If it is so, |
| // then a SCEV for the numerator already exists and matches with FoundLHS. |
| auto *Numerator = getExistingSCEV(LL); |
| if (!Numerator || Numerator->getType() != FoundLHS->getType()) |
| return false; |
| |
| // Make sure that the numerator matches with FoundLHS and the denominator |
| // is positive. |
| if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) |
| return false; |
| |
| auto *DTy = Denominator->getType(); |
| auto *FRHSTy = FoundRHS->getType(); |
| if (DTy->isPointerTy() != FRHSTy->isPointerTy()) |
| // One of types is a pointer and another one is not. We cannot extend |
| // them properly to a wider type, so let us just reject this case. |
| // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help |
| // to avoid this check. |
| return false; |
| |
| // Given that: |
| // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. |
| auto *WTy = getWiderType(DTy, FRHSTy); |
| auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); |
| auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); |
| |
| // Try to prove the following rule: |
| // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). |
| // For example, given that FoundLHS > 2. It means that FoundLHS is at |
| // least 3. If we divide it by Denominator < 4, we will have at least 1. |
| auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); |
| if (isKnownNonPositive(RHS) && |
| IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) |
| return true; |
| |
| // Try to prove the following rule: |
| // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). |
| // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. |
| // If we divide it by Denominator > 2, then: |
| // 1. If FoundLHS is negative, then the result is 0. |
| // 2. If FoundLHS is non-negative, then the result is non-negative. |
| // Anyways, the result is non-negative. |
| auto *MinusOne = getNegativeSCEV(getOne(WTy)); |
| auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); |
| if (isKnownNegative(RHS) && |
| IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) |
| return true; |
| } |
| } |
| |
| // If our expression contained SCEVUnknown Phis, and we split it down and now |
| // need to prove something for them, try to prove the predicate for every |
| // possible incoming values of those Phis. |
| if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) |
| return true; |
| |
| return false; |
| } |
| |
| static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, |
| const SCEV *LHS, const SCEV *RHS) { |
| // zext x u<= sext x, sext x s<= zext x |
| switch (Pred) { |
| case ICmpInst::ICMP_SGE: |
| std::swap(LHS, RHS); |
| LLVM_FALLTHROUGH; |
| case ICmpInst::ICMP_SLE: { |
| // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. |
| const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); |
| const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); |
| if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) |
| return true; |
| break; |
| } |
| case ICmpInst::ICMP_UGE: |
| std::swap(LHS, RHS); |
| LLVM_FALLTHROUGH; |
| case ICmpInst::ICMP_ULE: { |
| // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. |
| const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); |
| const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); |
| if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) |
| return true; |
| break; |
| } |
| default: |
| break; |
| }; |
| return false; |
| } |
| |
| bool |
| ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, |
| const SCEV *LHS, const SCEV *RHS) { |
| return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || |
| isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || |
| IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || |
| IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || |
| isKnownPredicateViaNoOverflow(Pred, LHS, RHS); |
| } |
| |
| bool |
| ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, |
| const SCEV *LHS, const SCEV *RHS, |
| const SCEV *FoundLHS, |
| const SCEV *FoundRHS) { |
| switch (Pred) { |
| default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); |
| case ICmpInst::ICMP_EQ: |
| case ICmpInst::ICMP_NE: |
| if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) |
| return true; |
| break; |
| case ICmpInst::ICMP_SLT: |
| case ICmpInst::ICMP_SLE: |
| if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && |
| isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) |
| return true; |
| break; |
| case ICmpInst::ICMP_SGT: |
| case ICmpInst::ICMP_SGE: |
| if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && |
| isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) |
| return true; |
| break; |
| case ICmpInst::ICMP_ULT: |
| case ICmpInst::ICMP_ULE: |
| if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && |
| isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) |
| return true; |
| break; |
| case ICmpInst::ICMP_UGT: |
| case ICmpInst::ICMP_UGE: |
| if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && |
| isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) |
| return true; |
| break; |
| } |
| |
| // Maybe it can be proved via operations? |
| if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) |
| return true; |
| |
| return false; |
| } |
| |
| bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, |
| const SCEV *LHS, |
| const SCEV *RHS, |
| const SCEV *FoundLHS, |
| const SCEV *FoundRHS) { |
| if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) |
| // The restriction on `FoundRHS` be lifted easily -- it exists only to |
| // reduce the compile time impact of this optimization. |
| return false; |
| |
| Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); |
| if (!Addend) |
| return false; |
| |
| const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); |
| |
| // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the |
| // antecedent "`FoundLHS` `Pred` `FoundRHS`". |
| ConstantRange FoundLHSRange = |
| ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); |
| |
| // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: |
| ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); |
| |
| // We can also compute the range of values for `LHS` that satisfy the |
| // consequent, "`LHS` `Pred` `RHS`": |
| const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); |
| ConstantRange SatisfyingLHSRange = |
| ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); |
| |
| // The antecedent implies the consequent if every value of `LHS` that |
| // satisfies the antecedent also satisfies the consequent. |
| return SatisfyingLHSRange.contains(LHSRange); |
| } |
| |
| bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, |
| bool IsSigned, bool NoWrap) { |
| assert(isKnownPositive(Stride) && "Positive stride expected!"); |
| |
| if (NoWrap) return false; |
| |
| unsigned BitWidth = getTypeSizeInBits(RHS->getType()); |
| const SCEV *One = getOne(Stride->getType()); |
| |
| if (IsSigned) { |
| APInt MaxRHS = getSignedRangeMax(RHS); |
| APInt MaxValue = APInt::getSignedMaxValue(BitWidth); |
| APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); |
| |
| // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! |
| return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); |
| } |
| |
| APInt MaxRHS = getUnsignedRangeMax(RHS); |
| APInt MaxValue = APInt::getMaxValue(BitWidth); |
| APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); |
| |
| // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! |
| return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); |
| } |
| |
| bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, |
| bool IsSigned, bool NoWrap) { |
| if (NoWrap) return false; |
| |
| unsigned BitWidth = getTypeSizeInBits(RHS->getType()); |
| const SCEV *One = getOne(Stride->getType()); |
| |
| if (IsSigned) { |
| APInt MinRHS = getSignedRangeMin(RHS); |
| APInt MinValue = APInt::getSignedMinValue(BitWidth); |
| APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); |
| |
| // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! |
| return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); |
| } |
| |
| APInt MinRHS = getUnsignedRangeMin(RHS); |
| APInt MinValue = APInt::getMinValue(BitWidth); |
| APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); |
| |
| // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! |
| return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); |
| } |
| |
| const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, |
| bool Equality) { |
| const SCEV *One = getOne(Step->getType()); |
| Delta = Equality ? getAddExpr(Delta, Step) |
| : getAddExpr(Delta, getMinusSCEV(Step, One)); |
| return getUDivExpr(Delta, Step); |
| } |
| |
| const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, |
| const SCEV *Stride, |
| const SCEV *End, |
| unsigned BitWidth, |
| bool IsSigned) { |
| |
| assert(!isKnownNonPositive(Stride) && |
| "Stride is expected strictly positive!"); |
| // Calculate the maximum backedge count based on the range of values |
| // permitted by Start, End, and Stride. |
| const SCEV *MaxBECount; |
| APInt MinStart = |
| IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); |
| |
| APInt StrideForMaxBECount = |
| IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); |
| |
| // We already know that the stride is positive, so we paper over conservatism |
| // in our range computation by forcing StrideForMaxBECount to be at least one. |
| // In theory this is unnecessary, but we expect MaxBECount to be a |
| // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there |
| // is nothing to constant fold it to). |
| APInt One(BitWidth, 1, IsSigned); |
| StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); |
| |
| APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) |
| : APInt::getMaxValue(BitWidth); |
| APInt Limit = MaxValue - (StrideForMaxBECount - 1); |
| |
| // Although End can be a MAX expression we estimate MaxEnd considering only |
| // the case End = RHS of the loop termination condition. This is safe because |
| // in the other case (End - Start) is zero, leading to a zero maximum backedge |
| // taken count. |
| APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) |
| : APIntOps::umin(getUnsignedRangeMax(End), Limit); |
| |
| MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, |
| getConstant(StrideForMaxBECount) /* Step */, |
| false /* Equality */); |
| |
| return MaxBECount; |
| } |
| |
| ScalarEvolution::ExitLimit |
| ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, |
| const Loop *L, bool IsSigned, |
| bool ControlsExit, bool AllowPredicates) { |
| SmallPtrSet<const SCEVPredicate *, 4> Predicates; |
| |
| const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); |
| bool PredicatedIV = false; |
| |
| if (!IV && AllowPredicates) { |
| // Try to make this an AddRec using runtime tests, in the first X |
| // iterations of this loop, where X is the SCEV expression found by the |
| // algorithm below. |
| IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); |
| PredicatedIV = true; |
| } |
| |
| // Avoid weird loops |
| if (!IV || IV->getLoop() != L || !IV->isAffine()) |
| return getCouldNotCompute(); |
| |
| bool NoWrap = ControlsExit && |
| IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); |
| |
| const SCEV *Stride = IV->getStepRecurrence(*this); |
| |
| bool PositiveStride = isKnownPositive(Stride); |
| |
| // Avoid negative or zero stride values. |
| if (!PositiveStride) { |
| // We can compute the correct backedge taken count for loops with unknown |
| // strides if we can prove that the loop is not an infinite loop with side |
| // effects. Here's the loop structure we are trying to handle - |
| // |
| // i = start |
| // do { |
| // A[i] = i; |
| // i += s; |
| // } while (i < end); |
| // |
| // The backedge taken count for such loops is evaluated as - |
| // (max(end, start + stride) - start - 1) /u stride |
| // |
| // The additional preconditions that we need to check to prove correctness |
| // of the above formula is as follows - |
| // |
| // a) IV is either nuw or nsw depending upon signedness (indicated by the |
| // NoWrap flag). |
| // b) loop is single exit with no side effects. |
| // |
| // |
| // Precondition a) implies that if the stride is negative, this is a single |
| // trip loop. The backedge taken count formula reduces to zero in this case. |
| // |
| // Precondition b) implies that the unknown stride cannot be zero otherwise |
| // we have UB. |
| // |
| // The positive stride case is the same as isKnownPositive(Stride) returning |
| // true (original behavior of the function). |
| // |
| // We want to make sure that the stride is truly unknown as there are edge |
| // cases where ScalarEvolution propagates no wrap flags to the |
| // post-increment/decrement IV even though the increment/decrement operation |
| // itself is wrapping. The computed backedge taken count may be wrong in |
| // such cases. This is prevented by checking that the stride is not known to |
| // be either positive or non-positive. For example, no wrap flags are |
| // propagated to the post-increment IV of this loop with a trip count of 2 - |
| // |
| // unsigned char i; |
| // for(i=127; i<128; i+=129) |
| // A[i] = i; |
| // |
| if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || |
| !loopHasNoSideEffects(L)) |
| return getCouldNotCompute(); |
| } else if (!Stride->isOne() && |
| doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) |
| // Avoid proven overflow cases: this will ensure that the backedge taken |
| // count will not generate any unsigned overflow. Relaxed no-overflow |
| // conditions exploit NoWrapFlags, allowing to optimize in presence of |
| // undefined behaviors like the case of C language. |
| return getCouldNotCompute(); |
| |
| ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT |
| : ICmpInst::ICMP_ULT; |
| const SCEV *Start = IV->getStart(); |
| const SCEV *End = RHS; |
| // When the RHS is not invariant, we do not know the end bound of the loop and |
| // cannot calculate the ExactBECount needed by ExitLimit. However, we can |
| // calculate the MaxBECount, given the start, stride and max value for the end |
| // bound of the loop (RHS), and the fact that IV does not overflow (which is |
| // checked above). |
| if (!isLoopInvariant(RHS, L)) { |
| const SCEV *MaxBECount = computeMaxBECountForLT( |
| Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); |
| return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, |
| false /*MaxOrZero*/, Predicates); |
| } |
| // If the backedge is taken at least once, then it will be taken |
| // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start |
| // is the LHS value of the less-than comparison the first time it is evaluated |
| // and End is the RHS. |
| const SCEV *BECountIfBackedgeTaken = |
| computeBECount(getMinusSCEV(End, Start), Stride, false); |
| // If the loop entry is guarded by the result of the backedge test of the |
| // first loop iteration, then we know the backedge will be taken at least |
| // once and so the backedge taken count is as above. If not then we use the |
| // expression (max(End,Start)-Start)/Stride to describe the backedge count, |
| // as if the backedge is taken at least once max(End,Start) is End and so the |
| // result is as above, and if not max(End,Start) is Start so we get a backedge |
| // count of zero. |
| const SCEV *BECount; |
| if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) |
| BECount = BECountIfBackedgeTaken; |
| else { |
| End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); |
| BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); |
| } |
| |
| const SCEV *MaxBECount; |
| bool MaxOrZero = false; |
| if (isa<SCEVConstant>(BECount)) |
| MaxBECount = BECount; |
| else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { |
| // If we know exactly how many times the backedge will be taken if it's |
| // taken at least once, then the backedge count will either be that or |
| // zero. |
| MaxBECount = BECountIfBackedgeTaken; |
| MaxOrZero = true; |
| } else { |
| MaxBECount = computeMaxBECountForLT( |
| Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); |
| } |
| |
| if (isa<SCEVCouldNotCompute>(MaxBECount) && |
| !isa<SCEVCouldNotCompute>(BECount)) |
| MaxBECount = getConstant(getUnsignedRangeMax(BECount)); |
| |
| return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); |
| } |
| |
| ScalarEvolution::ExitLimit |
| ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, |
| const Loop *L, bool IsSigned, |
| bool ControlsExit, bool AllowPredicates) { |
| SmallPtrSet<const SCEVPredicate *, 4> Predicates; |
| // We handle only IV > Invariant |
| if (!isLoopInvariant(RHS, L)) |
| return getCouldNotCompute(); |
| |
| const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); |
| if (!IV && AllowPredicates) |
| // Try to make this an AddRec using runtime tests, in the first X |
| // iterations of this loop, where X is the SCEV expression found by the |
| // algorithm below. |
| IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); |
| |
| // Avoid weird loops |
| if (!IV || IV->getLoop() != L || !IV->isAffine()) |
| return getCouldNotCompute(); |
| |
| bool NoWrap = ControlsExit && |
| IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); |
| |
| const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); |
| |
| // Avoid negative or zero stride values |
| if (!isKnownPositive(Stride)) |
| return getCouldNotCompute(); |
| |
| // Avoid proven overflow cases: this will ensure that the backedge taken count |
| // will not generate any unsigned overflow. Relaxed no-overflow conditions |
| // exploit NoWrapFlags, allowing to optimize in presence of undefined |
| // behaviors like the case of C language. |
| if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) |
| return getCouldNotCompute(); |
| |
| ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT |
| : ICmpInst::ICMP_UGT; |
| |
| const SCEV *Start = IV->getStart(); |
| const SCEV *End = RHS; |
| if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) |
| End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); |
| |
| const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); |
| |
| APInt MaxStart = IsSigned ? getSignedRangeMax(Start) |
| : getUnsignedRangeMax(Start); |
| |
| APInt MinStride = IsSigned ? getSignedRangeMin(Stride) |
| : getUnsignedRangeMin(Stride); |
| |
| unsigned BitWidth = getTypeSizeInBits(LHS->getType()); |
| APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) |
| : APInt::getMinValue(BitWidth) + (MinStride - 1); |
| |
| // Although End can be a MIN expression we estimate MinEnd considering only |
| // the case End = RHS. This is safe because in the other case (Start - End) |
| // is zero, leading to a zero maximum backedge taken count. |
| APInt MinEnd = |
| IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) |
| : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); |
| |
| const SCEV *MaxBECount = isa<SCEVConstant>(BECount) |
| ? BECount |
| : computeBECount(getConstant(MaxStart - MinEnd), |
| getConstant(MinStride), false); |
| |
| if (isa<SCEVCouldNotCompute>(MaxBECount)) |
| MaxBECount = BECount; |
| |
| return ExitLimit(BECount, MaxBECount, false, Predicates); |
| } |
| |
| const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, |
| ScalarEvolution &SE) const { |
| if (Range.isFullSet()) // Infinite loop. |
| return SE.getCouldNotCompute(); |
| |
| // If the start is a non-zero constant, shift the range to simplify things. |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) |
| if (!SC->getValue()->isZero()) { |
| SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); |
| Operands[0] = SE.getZero(SC->getType()); |
| const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), |
| getNoWrapFlags(FlagNW)); |
| if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) |
| return ShiftedAddRec->getNumIterationsInRange( |
| Range.subtract(SC->getAPInt()), SE); |
| // This is strange and shouldn't happen. |
| return SE.getCouldNotCompute(); |
| } |
| |
| // The only time we can solve this is when we have all constant indices. |
| // Otherwise, we cannot determine the overflow conditions. |
| if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) |
| return SE.getCouldNotCompute(); |
| |
| // Okay at this point we know that all elements of the chrec are constants and |
| // that the start element is zero. |
| |
| // First check to see if the range contains zero. If not, the first |
| // iteration exits. |
| unsigned BitWidth = SE.getTypeSizeInBits(getType()); |
| if (!Range.contains(APInt(BitWidth, 0))) |
| return SE.getZero(getType()); |
| |
| if (isAffine()) { |
| // If this is an affine expression then we have this situation: |
| // Solve {0,+,A} in Range === Ax in Range |
| |
| // We know that zero is in the range. If A is positive then we know that |
| // the upper value of the range must be the first possible exit value. |
| // If A is negative then the lower of the range is the last possible loop |
| // value. Also note that we already checked for a full range. |
| APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); |
| APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); |
| |
| // The exit value should be (End+A)/A. |
| APInt ExitVal = (End + A).udiv(A); |
| ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); |
| |
| // Evaluate at the exit value. If we really did fall out of the valid |
| // range, then we computed our trip count, otherwise wrap around or other |
| // things must have happened. |
| ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); |
| if (Range.contains(Val->getValue())) |
| return SE.getCouldNotCompute(); // Something strange happened |
| |
| // Ensure that the previous value is in the range. This is a sanity check. |
| assert(Range.contains( |
| EvaluateConstantChrecAtConstant(this, |
| ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && |
| "Linear scev computation is off in a bad way!"); |
| return SE.getConstant(ExitValue); |
| } |
| |
| if (isQuadratic()) { |
| if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) |
| return SE.getConstant(S.getValue()); |
| } |
| |
| return SE.getCouldNotCompute(); |
| } |
| |
| const SCEVAddRecExpr * |
| SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { |
| assert(getNumOperands() > 1 && "AddRec with zero step?"); |
| // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), |
| // but in this case we cannot guarantee that the value returned will be an |
| // AddRec because SCEV does not have a fixed point where it stops |
| // simplification: it is legal to return ({rec1} + {rec2}). For example, it |
| // may happen if we reach arithmetic depth limit while simplifying. So we |
| // construct the returned value explicitly. |
| SmallVector<const SCEV *, 3> Ops; |
| // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and |
| // (this + Step) is {A+B,+,B+C,+...,+,N}. |
| for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) |
| Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); |
| // We know that the last operand is not a constant zero (otherwise it would |
| // have been popped out earlier). This guarantees us that if the result has |
| // the same last operand, then it will also not be popped out, meaning that |
| // the returned value will be an AddRec. |
| const SCEV *Last = getOperand(getNumOperands() - 1); |
| assert(!Last->isZero() && "Recurrency with zero step?"); |
| Ops.push_back(Last); |
| return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), |
| SCEV::FlagAnyWrap)); |
| } |
| |
| // Return true when S contains at least an undef value. |
| static inline bool containsUndefs(const SCEV *S) { |
| return SCEVExprContains(S, [](const SCEV *S) { |
| if (const auto *SU = dyn_cast<SCEVUnknown>(S)) |
| return isa<UndefValue>(SU->getValue()); |
| return false; |
| }); |
| } |
| |
| namespace { |
| |
| // Collect all steps of SCEV expressions. |
| struct SCEVCollectStrides { |
| ScalarEvolution &SE; |
| SmallVectorImpl<const SCEV *> &Strides; |
| |
| SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) |
| : SE(SE), Strides(S) {} |
| |
| bool follow(const SCEV *S) { |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) |
| Strides.push_back(AR->getStepRecurrence(SE)); |
| return true; |
| } |
| |
| bool isDone() const { return false; } |
| }; |
| |
| // Collect all SCEVUnknown and SCEVMulExpr expressions. |
| struct SCEVCollectTerms { |
| SmallVectorImpl<const SCEV *> &Terms; |
| |
| SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} |
| |
| bool follow(const SCEV *S) { |
| if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || |
| isa<SCEVSignExtendExpr>(S)) { |
| if (!containsUndefs(S)) |
| Terms.push_back(S); |
| |
| // Stop recursion: once we collected a term, do not walk its operands. |
| return false; |
| } |
| |
| // Keep looking. |
| return true; |
| } |
| |
| bool isDone() const { return false; } |
| }; |
| |
| // Check if a SCEV contains an AddRecExpr. |
| struct SCEVHasAddRec { |
| bool &ContainsAddRec; |
| |
| SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { |
| ContainsAddRec = false; |
| } |
| |
| bool follow(const SCEV *S) { |
| if (isa<SCEVAddRecExpr>(S)) { |
| ContainsAddRec = true; |
| |
| // Stop recursion: once we collected a term, do not walk its operands. |
| return false; |
| } |
| |
| // Keep looking. |
| return true; |
| } |
| |
| bool isDone() const { return false; } |
| }; |
| |
| // Find factors that are multiplied with an expression that (possibly as a |
| // subexpression) contains an AddRecExpr. In the expression: |
| // |
| // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) |
| // |
| // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" |
| // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size |
| // parameters as they form a product with an induction variable. |
| // |
| // This collector expects all array size parameters to be in the same MulExpr. |
| // It might be necessary to later add support for collecting parameters that are |
| // spread over different nested MulExpr. |
| struct SCEVCollectAddRecMultiplies { |
| SmallVectorImpl<const SCEV *> &Terms; |
| ScalarEvolution &SE; |
| |
| SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) |
| : Terms(T), SE(SE) {} |
| |
| bool follow(const SCEV *S) { |
| if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { |
| bool HasAddRec = false; |
| SmallVector<const SCEV *, 0> Operands; |
| for (auto Op : Mul->operands()) { |
| const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); |
| if (Unknown && !isa<CallInst>(Unknown->getValue())) { |
| Operands.push_back(Op); |
| } else if (Unknown) { |
| HasAddRec = true; |
| } else { |
| bool ContainsAddRec = false; |
| SCEVHasAddRec ContiansAddRec(ContainsAddRec); |
| visitAll(Op, ContiansAddRec); |
| HasAddRec |= ContainsAddRec; |
| } |
| } |
| if (Operands.size() == 0) |
| return true; |
| |
| if (!HasAddRec) |
| return false; |
| |
| Terms.push_back(SE.getMulExpr(Operands)); |
| // Stop recursion: once we collected a term, do not walk its operands. |
| return false; |
| } |
| |
| // Keep looking. |
| return true; |
| } |
| |
| bool isDone() const { return false; } |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in |
| /// two places: |
| /// 1) The strides of AddRec expressions. |
| /// 2) Unknowns that are multiplied with AddRec expressions. |
| void ScalarEvolution::collectParametricTerms(const SCEV *Expr, |
| SmallVectorImpl<const SCEV *> &Terms) { |
| SmallVector<const SCEV *, 4> Strides; |
| SCEVCollectStrides StrideCollector(*this, Strides); |
| visitAll(Expr, StrideCollector); |
| |
| LLVM_DEBUG({ |
| dbgs() << "Strides:\n"; |
| for (const SCEV *S : Strides) |
| dbgs() << *S << "\n"; |
| }); |
| |
| for (const SCEV *S : Strides) { |
| SCEVCollectTerms TermCollector(Terms); |
| visitAll(S, TermCollector); |
| } |
| |
| LLVM_DEBUG({ |
| dbgs() << "Terms:\n"; |
| for (const SCEV *T : Terms) |
| dbgs() << *T << "\n"; |
| }); |
| |
| SCEVCollectAddRecMultiplies MulCollector(Terms, *this); |
| visitAll(Expr, MulCollector); |
| } |
| |
| static bool findArrayDimensionsRec(ScalarEvolution &SE, |
| SmallVectorImpl<const SCEV *> &Terms, |
| SmallVectorImpl<const SCEV *> &Sizes) { |
| int Last = Terms.size() - 1; |
| const SCEV *Step = Terms[Last]; |
| |
| // End of recursion. |
| if (Last == 0) { |
| if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { |
| SmallVector<const SCEV *, 2> Qs; |
| for (const SCEV *Op : M->operands()) |
| if (!isa<SCEVConstant>(Op)) |
| Qs.push_back(Op); |
| |
| Step = SE.getMulExpr(Qs); |
| } |
| |
| Sizes.push_back(Step); |
| return true; |
| } |
| |
| for (const SCEV *&Term : Terms) { |
| // Normalize the terms before the next call to findArrayDimensionsRec. |
| const SCEV *Q, *R; |
| SCEVDivision::divide(SE, Term, Step, &Q, &R); |
| |
| // Bail out when GCD does not evenly divide one of the terms. |
| if (!R->isZero()) |
| return false; |
| |
| Term = Q; |
| } |
| |
| // Remove all SCEVConstants. |
| Terms.erase( |
| remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), |
| Terms.end()); |
| |
| if (Terms.size() > 0) |
| if (!findArrayDimensionsRec(SE, Terms, Sizes)) |
| return false; |
| |
| Sizes.push_back(Step); |
| return true; |
| } |
| |
| // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. |
| static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { |
| for (const SCEV *T : Terms) |
| if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>)) |
| return true; |
| return false; |
| } |
| |
| // Return the number of product terms in S. |
| static inline int numberOfTerms(const SCEV *S) { |
| if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) |
| return Expr->getNumOperands(); |
| return 1; |
| } |
| |
| static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { |
| if (isa<SCEVConstant>(T)) |
| return nullptr; |
| |
| if (isa<SCEVUnknown>(T)) |
| return T; |
| |
| if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { |
| SmallVector<const SCEV *, 2> Factors; |
| for (const SCEV *Op : M->operands()) |
| if (!isa<SCEVConstant>(Op)) |
| Factors.push_back(Op); |
| |
| return SE.getMulExpr(Factors); |
| } |
| |
| return T; |
| } |
| |
| /// Return the size of an element read or written by Inst. |
| const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { |
| Type *Ty; |
| if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) |
| Ty = Store->getValueOperand()->getType(); |
| else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) |
| Ty = Load->getType(); |
| else |
| return nullptr; |
| |
| Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); |
| return getSizeOfExpr(ETy, Ty); |
| } |
| |
| void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, |
| SmallVectorImpl<const SCEV *> &Sizes, |
| const SCEV *ElementSize) { |
| if (Terms.size() < 1 || !ElementSize) |
| return; |
| |
| // Early return when Terms do not contain parameters: we do not delinearize |
| // non parametric SCEVs. |
| if (!containsParameters(Terms)) |
| return; |
| |
| LLVM_DEBUG({ |
| dbgs() << "Terms:\n"; |
| for (const SCEV *T : Terms) |
| dbgs() << *T << "\n"; |
| }); |
| |
| // Remove duplicates. |
| array_pod_sort(Terms.begin(), Terms.end()); |
| Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); |
| |
| // Put larger terms first. |
| llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { |
| return numberOfTerms(LHS) > numberOfTerms(RHS); |
| }); |
| |
| // Try to divide all terms by the element size. If term is not divisible by |
| // element size, proceed with the original term. |
| for (const SCEV *&Term : Terms) { |
| const SCEV *Q, *R; |
| SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); |
| if (!Q->isZero()) |
| Term = Q; |
| } |
| |
| SmallVector<const SCEV *, 4> NewTerms; |
| |
| // Remove constant factors. |
| for (const SCEV *T : Terms) |
| if (const SCEV *NewT = removeConstantFactors(*this, T)) |
| NewTerms.push_back(NewT); |
| |
| LLVM_DEBUG({ |
| dbgs() << "Terms after sorting:\n"; |
| for (const SCEV *T : NewTerms) |
| dbgs() << *T << "\n"; |
| }); |
| |
| if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { |
| Sizes.clear(); |
| return; |
| } |
| |
| // The last element to be pushed into Sizes is the size of an element. |
| Sizes.push_back(ElementSize); |
| |
| LLVM_DEBUG({ |
| dbgs() << "Sizes:\n"; |
| for (const SCEV *S : Sizes) |
| dbgs() << *S << "\n"; |
| }); |
| } |
| |
| void ScalarEvolution::computeAccessFunctions( |
| const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, |
| SmallVectorImpl<const SCEV *> &Sizes) { |
| // Early exit in case this SCEV is not an affine multivariate function. |
| if (Sizes.empty()) |
| return; |
| |
| if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) |
| if (!AR->isAffine()) |
| return; |
| |
| const SCEV *Res = Expr; |
| int Last = Sizes.size() - 1; |
| for (int i = Last; i >= 0; i--) { |
| const SCEV *Q, *R; |
| SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); |
| |
| LLVM_DEBUG({ |
| dbgs() << "Res: " << *Res << "\n"; |
| dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; |
| dbgs() << "Res divided by Sizes[i]:\n"; |
| dbgs() << "Quotient: " << *Q << "\n"; |
| dbgs() << "Remainder: " << *R << "\n"; |
| }); |
| |
| Res = Q; |
| |
| // Do not record the last subscript corresponding to the size of elements in |
| // the array. |
| if (i == Last) { |
| |
| // Bail out if the remainder is too complex. |
| if (isa<SCEVAddRecExpr>(R)) { |
| Subscripts.clear(); |
| Sizes.clear(); |
| return; |
| } |
| |
| continue; |
| } |
| |
| // Record the access function for the current subscript. |
| Subscripts.push_back(R); |
| } |
| |
| // Also push in last position the remainder of the last division: it will be |
| // the access function of the innermost dimension. |
| Subscripts.push_back(Res); |
| |
| std::reverse(Subscripts.begin(), Subscripts.end()); |
| |
| LLVM_DEBUG({ |
| dbgs() << "Subscripts:\n"; |
| for (const SCEV *S : Subscripts) |
| dbgs() << *S << "\n"; |
| }); |
| } |
| |
| /// Splits the SCEV into two vectors of SCEVs representing the subscripts and |
| /// sizes of an array access. Returns the remainder of the delinearization that |
| /// is the offset start of the array. The SCEV->delinearize algorithm computes |
| /// the multiples of SCEV coefficients: that is a pattern matching of sub |
| /// expressions in the stride and base of a SCEV corresponding to the |
| /// computation of a GCD (greatest common divisor) of base and stride. When |
| /// SCEV->delinearize fails, it returns the SCEV unchanged. |
| /// |
| /// For example: when analyzing the memory access A[i][j][k] in this loop nest |
| /// |
| /// void foo(long n, long m, long o, double A[n][m][o]) { |
| /// |
| /// for (long i = 0; i < n; i++) |
| /// for (long j = 0; j < m; j++) |
| /// for (long k = 0; k < o; k++) |
| /// A[i][j][k] = 1.0; |
| /// } |
| /// |
| /// the delinearization input is the following AddRec SCEV: |
| /// |
| /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> |
| /// |
| /// From this SCEV, we are able to say that the base offset of the access is %A |
| /// because it appears as an offset that does not divide any of the strides in |
| /// the loops: |
| /// |
| /// CHECK: Base offset: %A |
| /// |
| /// and then SCEV->delinearize determines the size of some of the dimensions of |
| /// the array as these are the multiples by which the strides are happening: |
| /// |
| /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. |
| /// |
| /// Note that the outermost dimension remains of UnknownSize because there are |
| /// no strides that would help identifying the size of the last dimension: when |
| /// the array has been statically allocated, one could compute the size of that |
| /// dimension by dividing the overall size of the array by the size of the known |
| /// dimensions: %m * %o * 8. |
| /// |
| /// Finally delinearize provides the access functions for the array reference |
| /// that does correspond to A[i][j][k] of the above C testcase: |
| /// |
| /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] |
| /// |
| /// The testcases are checking the output of a function pass: |
| /// DelinearizationPass that walks through all loads and stores of a function |
| /// asking for the SCEV of the memory access with respect to all enclosing |
| /// loops, calling SCEV->delinearize on that and printing the results. |
| void ScalarEvolution::delinearize(const SCEV *Expr, |
| SmallVectorImpl<const SCEV *> &Subscripts, |
| SmallVectorImpl<const SCEV *> &Sizes, |
| const SCEV *ElementSize) { |
| // First step: collect parametric terms. |
| SmallVector<const SCEV *, 4> Terms; |
| collectParametricTerms(Expr, Terms); |
| |
| if (Terms.empty()) |
| return; |
| |
| // Second step: find subscript sizes. |
| findArrayDimensions(Terms, Sizes, ElementSize); |
| |
| if (Sizes.empty()) |
| return; |
| |
| // Third step: compute the access functions for each subscript. |
| computeAccessFunctions(Expr, Subscripts, Sizes); |
| |
| if (Subscripts.empty()) |
| return; |
| |
| LLVM_DEBUG({ |
| dbgs() << "succeeded to delinearize " << *Expr << "\n"; |
| dbgs() << "ArrayDecl[UnknownSize]"; |
| for (const SCEV *S : Sizes) |
| dbgs() << "[" << *S << "]"; |
| |
| dbgs() << "\nArrayRef"; |
| for (const SCEV *S : Subscripts) |
| dbgs() << "[" << *S << "]"; |
| dbgs() << "\n"; |
| }); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SCEVCallbackVH Class Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void ScalarEvolution::SCEVCallbackVH::deleted() { |
| assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); |
| if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) |
| SE->ConstantEvolutionLoopExitValue.erase(PN); |
| SE->eraseValueFromMap(getValPtr()); |
| // this now dangles! |
| } |
| |
| void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { |
| assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); |
| |
| // Forget all the expressions associated with users of the old value, |
| // so that future queries will recompute the expressions using the new |
| // value. |
| Value *Old = getValPtr(); |
| SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); |
| SmallPtrSet<User *, 8> Visited; |
| while (!Worklist.empty()) { |
| User *U = Worklist.pop_back_val(); |
| // Deleting the Old value will cause this to dangle. Postpone |
| // that until everything else is done. |
| if (U == Old) |
| continue; |
| if (!Visited.insert(U).second) |
| continue; |
| if (PHINode *PN = dyn_cast<PHINode>(U)) |
| SE->ConstantEvolutionLoopExitValue.erase(PN); |
| SE->eraseValueFromMap(U); |
| Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); |
| } |
| // Delete the Old value. |
| if (PHINode *PN = dyn_cast<PHINode>(Old)) |
| SE->ConstantEvolutionLoopExitValue.erase(PN); |
| SE->eraseValueFromMap(Old); |
| // this now dangles! |
| } |
| |
| ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) |
| : CallbackVH(V), SE(se) {} |
| |
| //===----------------------------------------------------------------------===// |
| // ScalarEvolution Class Implementation |
| //===----------------------------------------------------------------------===// |
| |
| ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, |
| AssumptionCache &AC, DominatorTree &DT, |
| LoopInfo &LI) |
| : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), |
| CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), |
| LoopDispositions(64), BlockDispositions(64) { |
| // To use guards for proving predicates, we need to scan every instruction in |
| // relevant basic blocks, and not just terminators. Doing this is a waste of |
| // time if the IR does not actually contain any calls to |
| // @llvm.experimental.guard, so do a quick check and remember this beforehand. |
| // |
| // This pessimizes the case where a pass that preserves ScalarEvolution wants |
| // to _add_ guards to the module when there weren't any before, and wants |
| // ScalarEvolution to optimize based on those guards. For now we prefer to be |
| // efficient in lieu of being smart in that rather obscure case. |
| |
| auto *GuardDecl = F.getParent()->getFunction( |
| Intrinsic::getName(Intrinsic::experimental_guard)); |
| HasGuards = GuardDecl && !GuardDecl->use_empty(); |
| } |
| |
| ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) |
| : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), |
| LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), |
| ValueExprMap(std::move(Arg.ValueExprMap)), |
| PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), |
| PendingPhiRanges(std::move(Arg.PendingPhiRanges)), |
| PendingMerges(std::move(Arg.PendingMerges)), |
| MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), |
| BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), |
| PredicatedBackedgeTakenCounts( |
| std::move(Arg.PredicatedBackedgeTakenCounts)), |
| ConstantEvolutionLoopExitValue( |
| std::move(Arg.ConstantEvolutionLoopExitValue)), |
| ValuesAtScopes(std::move(Arg.ValuesAtScopes)), |
| LoopDispositions(std::move(Arg.LoopDispositions)), |
| LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), |
| BlockDispositions(std::move(Arg.BlockDispositions)), |
| UnsignedRanges(std::move(Arg.UnsignedRanges)), |
| SignedRanges(std::move(Arg.SignedRanges)), |
| UniqueSCEVs(std::move(Arg.UniqueSCEVs)), |
| UniquePreds(std::move(Arg.UniquePreds)), |
| SCEVAllocator(std::move(Arg.SCEVAllocator)), |
| LoopUsers(std::move(Arg.LoopUsers)), |
| PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), |
| FirstUnknown(Arg.FirstUnknown) { |
| Arg.FirstUnknown = nullptr; |
| } |
| |
| ScalarEvolution::~ScalarEvolution() { |
| // Iterate through all the SCEVUnknown instances and call their |
| // destructors, so that they release their references to their values. |
| for (SCEVUnknown *U = FirstUnknown; U;) { |
| SCEVUnknown *Tmp = U; |
| U = U->Next; |
| Tmp->~SCEVUnknown(); |
| } |
| FirstUnknown = nullptr; |
| |
| ExprValueMap.clear(); |
| ValueExprMap.clear(); |
| HasRecMap.clear(); |
| |
| // Free any extra memory created for ExitNotTakenInfo in the unlikely event |
| // that a loop had multiple computable exits. |
| for (auto &BTCI : BackedgeTakenCounts) |
| BTCI.second.clear(); |
| for (auto &BTCI : PredicatedBackedgeTakenCounts) |
| BTCI.second.clear(); |
| |
| assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); |
| assert(PendingPhiRanges.empty() && "getRangeRef garbage"); |
| assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); |
| assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); |
| assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); |
| } |
| |
| bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { |
| return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); |
| } |
| |
| static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, |
| const Loop *L) { |
| // Print all inner loops first |
| for (Loop *I : *L) |
| PrintLoopInfo(OS, SE, I); |
| |
| OS << "Loop "; |
| L->getHeader()->printAsOperand(OS, /*PrintType=*/false); |
| OS << ": "; |
| |
| SmallVector<BasicBlock *, 8> ExitingBlocks; |
| L->getExitingBlocks(ExitingBlocks); |
| if (ExitingBlocks.size() != 1) |
| OS << "<multiple exits> "; |
| |
| if (SE->hasLoopInvariantBackedgeTakenCount(L)) |
| OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; |
| else |
| OS << "Unpredictable backedge-taken count.\n"; |
| |
| if (ExitingBlocks.size() > 1) |
| for (BasicBlock *ExitingBlock : ExitingBlocks) { |
| OS << " exit count for " << ExitingBlock->getName() << ": " |
| << *SE->getExitCount(L, ExitingBlock) << "\n"; |
| } |
| |
| OS << "Loop "; |
| L->getHeader()->printAsOperand(OS, /*PrintType=*/false); |
| OS << ": "; |
| |
| if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { |
| OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); |
| if (SE->isBackedgeTakenCountMaxOrZero(L)) |
| OS << ", actual taken count either this or zero."; |
| } else { |
| OS << "Unpredictable max backedge-taken count. "; |
| } |
| |
| OS << "\n" |
| "Loop "; |
| L->getHeader()->printAsOperand(OS, /*PrintType=*/false); |
| OS << ": "; |
| |
| SCEVUnionPredicate Pred; |
| auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); |
| if (!isa<SCEVCouldNotCompute>(PBT)) { |
| OS << "Predicated backedge-taken count is " << *PBT << "\n"; |
| OS << " Predicates:\n"; |
| Pred.print(OS, 4); |
| } else { |
| OS << "Unpredictable predicated backedge-taken count. "; |
| } |
| OS << "\n"; |
| |
| if (SE->hasLoopInvariantBackedgeTakenCount(L)) { |
| OS << "Loop "; |
| L->getHeader()->printAsOperand(OS, /*PrintType=*/false); |
| OS << ": "; |
| OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; |
| } |
| } |
| |
| static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { |
| switch (LD) { |
| case ScalarEvolution::LoopVariant: |
| return "Variant"; |
| case ScalarEvolution::LoopInvariant: |
| return "Invariant"; |
| case ScalarEvolution::LoopComputable: |
| return "Computable"; |
| } |
| llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); |
| } |
| |
| void ScalarEvolution::print(raw_ostream &OS) const { |
| // ScalarEvolution's implementation of the print method is to print |
| // out SCEV values of all instructions that are interesting. Doing |
| // this potentially causes it to create new SCEV objects though, |
| // which technically conflicts with the const qualifier. This isn't |
| // observable from outside the class though, so casting away the |
| // const isn't dangerous. |
| ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); |
| |
| if (ClassifyExpressions) { |
| OS << "Classifying expressions for: "; |
| F.printAsOperand(OS, /*PrintType=*/false); |
| OS << "\n"; |
| for (Instruction &I : instructions(F)) |
| if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { |
| OS << I << '\n'; |
| OS << " --> "; |
| const SCEV *SV = SE.getSCEV(&I); |
| SV->print(OS); |
| if (!isa<SCEVCouldNotCompute>(SV)) { |
| OS << " U: "; |
| SE.getUnsignedRange(SV).print(OS); |
| OS << " S: "; |
| SE.getSignedRange(SV).print(OS); |
| } |
| |
| const Loop *L = LI.getLoopFor(I.getParent()); |
| |
| const SCEV *AtUse = SE.getSCEVAtScope(SV, L); |
| if (AtUse != SV) { |
| OS << " --> "; |
| AtUse->print(OS); |
| if (!isa<SCEVCouldNotCompute>(AtUse)) { |
| OS << " U: "; |
| SE.getUnsignedRange(AtUse).print(OS); |
| OS << " S: "; |
| SE.getSignedRange(AtUse).print(OS); |
| } |
| } |
| |
| if (L) { |
| OS << "\t\t" "Exits: "; |
| const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); |
| if (!SE.isLoopInvariant(ExitValue, L)) { |
| OS << "<<Unknown>>"; |
| } else { |
| OS << *ExitValue; |
| } |
| |
| bool First = true; |
| for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { |
| if (First) { |
| OS << "\t\t" "LoopDispositions: { "; |
| First = false; |
| } else { |
| OS << ", "; |
| } |
| |
| Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); |
| OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); |
| } |
| |
| for (auto *InnerL : depth_first(L)) { |
| if (InnerL == L) |
| continue; |
| if (First) { |
| OS << "\t\t" "LoopDispositions: { "; |
| First = false; |
| } else { |
| OS << ", "; |
| } |
| |
| InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); |
| OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); |
| } |
| |
| OS << " }"; |
| } |
| |
| OS << "\n"; |
| } |
| } |
| |
| OS << "Determining loop execution counts for: "; |
| F.printAsOperand(OS, /*PrintType=*/false); |
| OS << "\n"; |
| for (Loop *I : LI) |
| PrintLoopInfo(OS, &SE, I); |
| } |
| |
| ScalarEvolution::LoopDisposition |
| ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { |
| auto &Values = LoopDispositions[S]; |
| for (auto &V : Values) { |
| if (V.getPointer() == L) |
| return V.getInt(); |
| } |
| Values.emplace_back(L, LoopVariant); |
| LoopDisposition D = computeLoopDisposition(S, L); |
| auto &Values2 = LoopDispositions[S]; |
| for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { |
| if (V.getPointer() == L) { |
| V.setInt(D); |
| break; |
| } |
| } |
| return D; |
| } |
| |
| ScalarEvolution::LoopDisposition |
| ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { |
| switch (static_cast<SCEVTypes>(S->getSCEVType())) { |
| case scConstant: |
| return LoopInvariant; |
| case scTruncate: |
| case scZeroExtend: |
| case scSignExtend: |
| return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); |
| case scAddRecExpr: { |
| const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); |
| |
| // If L is the addrec's loop, it's computable. |
| if (AR->getLoop() == L) |
| return LoopComputable; |
| |
| // Add recurrences are never invariant in the function-body (null loop). |
| if (!L) |
| return LoopVariant; |
| |
| // Everything that is not defined at loop entry is variant. |
| if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) |
| return LoopVariant; |
| assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" |
| " dominate the contained loop's header?"); |
| |
| // This recurrence is invariant w.r.t. L if AR's loop contains L. |
| if (AR->getLoop()->contains(L)) |
| return LoopInvariant; |
| |
| // This recurrence is variant w.r.t. L if any of its operands |
| // are variant. |
| for (auto *Op : AR->operands()) |
| if (!isLoopInvariant(Op, L)) |
| return LoopVariant; |
| |
| // Otherwise it's loop-invariant. |
| return LoopInvariant; |
| } |
| case scAddExpr: |
| case scMulExpr: |
| case scUMaxExpr: |
| case scSMaxExpr: |
| case scUMinExpr: |
| case scSMinExpr: { |
| bool HasVarying = false; |
| for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { |
| LoopDisposition D = getLoopDisposition(Op, L); |
| if (D == LoopVariant) |
| return LoopVariant; |
| if (D == LoopComputable) |
| HasVarying = true; |
| } |
| return HasVarying ? LoopComputable : LoopInvariant; |
| } |
| case scUDivExpr: { |
| const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); |
| LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); |
| if (LD == LoopVariant) |
| return LoopVariant; |
| LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); |
| if (RD == LoopVariant) |
| return LoopVariant; |
| return (LD == LoopInvariant && RD == LoopInvariant) ? |
| LoopInvariant : LoopComputable; |
| } |
| case scUnknown: |
| // All non-instruction values are loop invariant. All instructions are loop |
| // invariant if they are not contained in the specified loop. |
| // Instructions are never considered invariant in the function body |
| // (null loop) because they are defined within the "loop". |
| if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) |
| return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; |
| return LoopInvariant; |
| case scCouldNotCompute: |
| llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); |
| } |
| llvm_unreachable("Unknown SCEV kind!"); |
| } |
| |
| bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { |
| return getLoopDisposition(S, L) == LoopInvariant; |
| } |
| |
| bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { |
| return getLoopDisposition(S, L) == LoopComputable; |
| } |
| |
| ScalarEvolution::BlockDisposition |
| ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { |
| auto &Values = BlockDispositions[S]; |
| for (auto &V : Values) { |
| if (V.getPointer() == BB) |
| return V.getInt(); |
| } |
| Values.emplace_back(BB, DoesNotDominateBlock); |
| BlockDisposition D = computeBlockDisposition(S, BB); |
| auto &Values2 = BlockDispositions[S]; |
| for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { |
| if (V.getPointer() == BB) { |
| V.setInt(D); |
| break; |
| } |
| } |
| return D; |
| } |
| |
| ScalarEvolution::BlockDisposition |
| ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { |
| switch (static_cast<SCEVTypes>(S->getSCEVType())) { |
| case scConstant: |
| return ProperlyDominatesBlock; |
| case scTruncate: |
| case scZeroExtend: |
| case scSignExtend: |
| return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); |
| case scAddRecExpr: { |
| // This uses a "dominates" query instead of "properly dominates" query |
| // to test for proper dominance too, because the instruction which |
| // produces the addrec's value is a PHI, and a PHI effectively properly |
| // dominates its entire containing block. |
| const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); |
| if (!DT.dominates(AR->getLoop()->getHeader(), BB)) |
| return DoesNotDominateBlock; |
| |
| // Fall through into SCEVNAryExpr handling. |
| LLVM_FALLTHROUGH; |
| } |
| case scAddExpr: |
| case scMulExpr: |
| case scUMaxExpr: |
| case scSMaxExpr: |
| case scUMinExpr: |
| case scSMinExpr: { |
| const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); |
| bool Proper = true; |
| for (const SCEV *NAryOp : NAry->operands()) { |
| BlockDisposition D = getBlockDisposition(NAryOp, BB); |
| if (D == DoesNotDominateBlock) |
| return DoesNotDominateBlock; |
| if (D == DominatesBlock) |
| Proper = false; |
| } |
| return Proper ? ProperlyDominatesBlock : DominatesBlock; |
| } |
| case scUDivExpr: { |
| const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); |
| const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); |
| BlockDisposition LD = getBlockDisposition(LHS, BB); |
| if (LD == DoesNotDominateBlock) |
| return DoesNotDominateBlock; |
| BlockDisposition RD = getBlockDisposition(RHS, BB); |
| if (RD == DoesNotDominateBlock) |
| return DoesNotDominateBlock; |
| return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? |
| ProperlyDominatesBlock : DominatesBlock; |
| } |
| case scUnknown: |
| if (Instruction *I = |
| dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { |
| if (I->getParent() == BB) |
| return DominatesBlock; |
| if (DT.properlyDominates(I->getParent(), BB)) |
| return ProperlyDominatesBlock; |
| return DoesNotDominateBlock; |
| } |
| return ProperlyDominatesBlock; |
| case scCouldNotCompute: |
| llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); |
| } |
| llvm_unreachable("Unknown SCEV kind!"); |
| } |
| |
| bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { |
| return getBlockDisposition(S, BB) >= DominatesBlock; |
| } |
| |
| bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { |
| return getBlockDisposition(S, BB) == ProperlyDominatesBlock; |
| } |
| |
| bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { |
| return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); |
| } |
| |
| bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const { |
| auto IsS = [&](const SCEV *X) { return S == X; }; |
| auto ContainsS = [&](const SCEV *X) { |
| return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS); |
| }; |
| return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken); |
| } |
| |
| void |
| ScalarEvolution::forgetMemoizedResults(const SCEV *S) { |
| ValuesAtScopes.erase(S); |
| LoopDispositions.erase(S); |
| BlockDispositions.erase(S); |
| UnsignedRanges.erase(S); |
| SignedRanges.erase(S); |
| ExprValueMap.erase(S); |
| HasRecMap.erase(S); |
| MinTrailingZerosCache.erase(S); |
| |
| for (auto I = PredicatedSCEVRewrites.begin(); |
| I != PredicatedSCEVRewrites.end();) { |
| std::pair<const SCEV *, const Loop *> Entry = I->first; |
| if (Entry.first == S) |
| PredicatedSCEVRewrites.erase(I++); |
| else |
| ++I; |
| } |
| |
| auto RemoveSCEVFromBackedgeMap = |
| [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { |
| for (auto I = Map.begin(), E = Map.end(); I != E;) { |
| BackedgeTakenInfo &BEInfo = I->second; |
| if (BEInfo.hasOperand(S, this)) { |
| BEInfo.clear(); |
| Map.erase(I++); |
| } else |
| ++I; |
| } |
| }; |
| |
| RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); |
| RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); |
| } |
| |
| void |
| ScalarEvolution::getUsedLoops(const SCEV *S, |
| SmallPtrSetImpl<const Loop *> &LoopsUsed) { |
| struct FindUsedLoops { |
| FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) |
| : LoopsUsed(LoopsUsed) {} |
| SmallPtrSetImpl<const Loop *> &LoopsUsed; |
| bool follow(const SCEV *S) { |
| if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) |
| LoopsUsed.insert(AR->getLoop()); |
| return true; |
| } |
| |
| bool isDone() const { return false; } |
| }; |
| |
| FindUsedLoops F(LoopsUsed); |
| SCEVTraversal<FindUsedLoops>(F).visitAll(S); |
| } |
| |
| void ScalarEvolution::addToLoopUseLists(const SCEV *S) { |
| SmallPtrSet<const Loop *, 8> LoopsUsed; |
| getUsedLoops(S, LoopsUsed); |
| for (auto *L : LoopsUsed) |
| LoopUsers[L].push_back(S); |
| } |
| |
| void ScalarEvolution::verify() const { |
| ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); |
| ScalarEvolution SE2(F, TLI, AC, DT, LI); |
| |
| SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); |
| |
| // Map's SCEV expressions from one ScalarEvolution "universe" to another. |
| struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { |
| SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} |
| |
| const SCEV *visitConstant(const SCEVConstant *Constant) { |
| return SE.getConstant(Constant->getAPInt()); |
| } |
| |
| const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
| return SE.getUnknown(Expr->getValue()); |
| } |
| |
| const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { |
| return SE.getCouldNotCompute(); |
| } |
| }; |
| |
| SCEVMapper SCM(SE2); |
| |
| while (!LoopStack.empty()) { |
| auto *L = LoopStack.pop_back_val(); |
| LoopStack.insert(LoopStack.end(), L->begin(), L->end()); |
| |
| auto *CurBECount = SCM.visit( |
| const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); |
| auto *NewBECount = SE2.getBackedgeTakenCount(L); |
| |
| if (CurBECount == SE2.getCouldNotCompute() || |
| NewBECount == SE2.getCouldNotCompute()) { |
| // NB! This situation is legal, but is very suspicious -- whatever pass |
| // change the loop to make a trip count go from could not compute to |
| // computable or vice-versa *should have* invalidated SCEV. However, we |
| // choose not to assert here (for now) since we don't want false |
| // positives. |
| continue; |
| } |
| |
| if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { |
| // SCEV treats "undef" as an unknown but consistent value (i.e. it does |
| // not propagate undef aggressively). This means we can (and do) fail |
| // verification in cases where a transform makes the trip count of a loop |
| // go from "undef" to "undef+1" (say). The transform is fine, since in |
| // both cases the loop iterates "undef" times, but SCEV thinks we |
| // increased the trip count of the loop by 1 incorrectly. |
| continue; |
| } |
| |
| if (SE.getTypeSizeInBits(CurBECount->getType()) > |
| SE.getTypeSizeInBits(NewBECount->getType())) |
| NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); |
| else if (SE.getTypeSizeInBits(CurBECount->getType()) < |
| SE.getTypeSizeInBits(NewBECount->getType())) |
| CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); |
| |
| const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); |
| |
| // Unless VerifySCEVStrict is set, we only compare constant deltas. |
| if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { |
| dbgs() << "Trip Count for " << *L << " Changed!\n"; |
| dbgs() << "Old: " << *CurBECount << "\n"; |
| dbgs() << "New: " << *NewBECount << "\n"; |
| dbgs() << "Delta: " << *Delta << "\n"; |
| std::abort(); |
| } |
| } |
| } |
| |
| bool ScalarEvolution::invalidate( |
| Function &F, const PreservedAnalyses &PA, |
| FunctionAnalysisManager::Invalidator &Inv) { |
| // Invalidate the ScalarEvolution object whenever it isn't preserved or one |
| // of its dependencies is invalidated. |
| auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); |
| return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || |
| Inv.invalidate<AssumptionAnalysis>(F, PA) || |
| Inv.invalidate<DominatorTreeAnalysis>(F, PA) || |
| Inv.invalidate<LoopAnalysis>(F, PA); |
| } |
| |
| AnalysisKey ScalarEvolutionAnalysis::Key; |
| |
| ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, |
| FunctionAnalysisManager &AM) { |
| return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), |
| AM.getResult<AssumptionAnalysis>(F), |
| AM.getResult<DominatorTreeAnalysis>(F), |
| AM.getResult<LoopAnalysis>(F)); |
| } |
| |
| PreservedAnalyses |
| ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { |
| AM.getResult<ScalarEvolutionAnalysis>(F).verify(); |
| return PreservedAnalyses::all(); |
| } |
| |
| PreservedAnalyses |
| ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { |
| AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); |
| return PreservedAnalyses::all(); |
| } |
| |
| INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", |
| "Scalar Evolution Analysis", false, true) |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", |
| "Scalar Evolution Analysis", false, true) |
| |
| char ScalarEvolutionWrapperPass::ID = 0; |
| |
| ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { |
| initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { |
| SE.reset(new ScalarEvolution( |
| F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), |
| getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), |
| getAnalysis<DominatorTreeWrapperPass>().getDomTree(), |
| getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); |
| return false; |
| } |
| |
| void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } |
| |
| void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { |
| SE->print(OS); |
| } |
| |
| void ScalarEvolutionWrapperPass::verifyAnalysis() const { |
| if (!VerifySCEV) |
| return; |
| |
| SE->verify(); |
| } |
| |
| void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequiredTransitive<AssumptionCacheTracker>(); |
| AU.addRequiredTransitive<LoopInfoWrapperPass>(); |
| AU.addRequiredTransitive<DominatorTreeWrapperPass>(); |
| AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); |
| } |
| |
| const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, |
| const SCEV *RHS) { |
| FoldingSetNodeID ID; |
| assert(LHS->getType() == RHS->getType() && |
| "Type mismatch between LHS and RHS"); |
| // Unique this node based on the arguments |
| ID.AddInteger(SCEVPredicate::P_Equal); |
| ID.AddPointer(LHS); |
| ID.AddPointer(RHS); |
| void *IP = nullptr; |
| if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) |
| return S; |
| SCEVEqualPredicate *Eq = new (SCEVAllocator) |
| SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); |
| UniquePreds.InsertNode(Eq, IP); |
| return Eq; |
| } |
| |
| const SCEVPredicate *ScalarEvolution::getWrapPredicate( |
| const SCEVAddRecExpr *AR, |
| SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { |
| FoldingSetNodeID ID; |
| // Unique this node based on the arguments |
| ID.AddInteger(SCEVPredicate::P_Wrap); |
| ID.AddPointer(AR); |
| ID.AddInteger(AddedFlags); |
| void *IP = nullptr; |
| if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) |
| return S; |
| auto *OF = new (SCEVAllocator) |
| SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); |
| UniquePreds.InsertNode(OF, IP); |
| return OF; |
| } |
| |
| namespace { |
| |
| class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { |
| public: |
| |
| /// Rewrites \p S in the context of a loop L and the SCEV predication |
| /// infrastructure. |
| /// |
| /// If \p Pred is non-null, the SCEV expression is rewritten to respect the |
| /// equivalences present in \p Pred. |
| /// |
| /// If \p NewPreds is non-null, rewrite is free to add further predicates to |
| /// \p NewPreds such that the result will be an AddRecExpr. |
| static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, |
| SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, |
| SCEVUnionPredicate *Pred) { |
| SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); |
| return Rewriter.visit(S); |
| } |
| |
| const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
| if (Pred) { |
| auto ExprPreds = Pred->getPredicatesForExpr(Expr); |
| for (auto *Pred : ExprPreds) |
| if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) |
| if (IPred->getLHS() == Expr) |
| return IPred->getRHS(); |
| } |
| return convertToAddRecWithPreds(Expr); |
| } |
| |
| const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { |
| const SCEV *Operand = visit(Expr->getOperand()); |
| const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); |
| if (AR && AR->getLoop() == L && AR->isAffine()) { |
| // This couldn't be folded because the operand didn't have the nuw |
| // flag. Add the nusw flag as an assumption that we could make. |
| const SCEV *Step = AR->getStepRecurrence(SE); |
| Type *Ty = Expr->getType(); |
| if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) |
| return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), |
| SE.getSignExtendExpr(Step, Ty), L, |
| AR->getNoWrapFlags()); |
| } |
| return SE.getZeroExtendExpr(Operand, Expr->getType()); |
| } |
| |
| const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { |
| const SCEV *Operand = visit(Expr->getOperand()); |
| const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); |
| if (AR && AR->getLoop() == L && AR->isAffine()) { |
| // This couldn't be folded because the operand didn't have the nsw |
| // flag. Add the nssw flag as an assumption that we could make. |
| const SCEV *Step = AR->getStepRecurrence(SE); |
| Type *Ty = Expr->getType(); |
| if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) |
| return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), |
| SE.getSignExtendExpr(Step, Ty), L, |
| AR->getNoWrapFlags()); |
| } |
| return SE.getSignExtendExpr(Operand, Expr->getType()); |
| } |
| |
| private: |
| explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, |
| SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, |
| SCEVUnionPredicate *Pred) |
| : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} |
| |
| bool addOverflowAssumption(const SCEVPredicate *P) { |
| if (!NewPreds) { |
| // Check if we've already made this assumption. |
| return Pred && Pred->implies(P); |
| } |
| NewPreds->insert(P); |
| return true; |
| } |
| |
| bool addOverflowAssumption(const SCEVAddRecExpr *AR, |
| SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { |
| auto *A = SE.getWrapPredicate(AR, AddedFlags); |
| return addOverflowAssumption(A); |
| } |
| |
| // If \p Expr represents a PHINode, we try to see if it can be represented |
| // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible |
| // to add this predicate as a runtime overflow check, we return the AddRec. |
| // If \p Expr does not meet these conditions (is not a PHI node, or we |
| // couldn't create an AddRec for it, or couldn't add the predicate), we just |
| // return \p Expr. |
| const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { |
| if (!isa<PHINode>(Expr->getValue())) |
| return Expr; |
| Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> |
| PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); |
| if (!PredicatedRewrite) |
| return Expr; |
| for (auto *P : PredicatedRewrite->second){ |
| // Wrap predicates from outer loops are not supported. |
| if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { |
| auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); |
| if (L != AR->getLoop()) |
| return Expr; |
| } |
| if (!addOverflowAssumption(P)) |
| return Expr; |
| } |
| return PredicatedRewrite->first; |
| } |
| |
| SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; |
| SCEVUnionPredicate *Pred; |
| const Loop *L; |
| }; |
| |
| } // end anonymous namespace |
| |
| const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, |
| SCEVUnionPredicate &Preds) { |
| return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); |
| } |
| |
| const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( |
| const SCEV *S, const Loop *L, |
| SmallPtrSetImpl<const SCEVPredicate *> &Preds) { |
| SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; |
| S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); |
| auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); |
| |
| if (!AddRec) |
| return nullptr; |
| |
| // Since the transformation was successful, we can now transfer the SCEV |
| // predicates. |
| for (auto *P : TransformPreds) |
| Preds.insert(P); |
| |
| return AddRec; |
| } |
| |
| /// SCEV predicates |
| SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, |
| SCEVPredicateKind Kind) |
| : FastID(ID), Kind(Kind) {} |
| |
| SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, |
| const SCEV *LHS, const SCEV *RHS) |
| : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { |
| assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); |
| assert(LHS != RHS && "LHS and RHS are the same SCEV"); |
| } |
| |
| bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { |
| const auto *Op = dyn_cast<SCEVEqualPredicate>(N); |
| |
| if (!Op) |
| return false; |
| |
| return Op->LHS == LHS && Op->RHS == RHS; |
| } |
| |
| bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } |
| |
| const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } |
| |
| void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { |
| OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; |
| } |
| |
| SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, |
| const SCEVAddRecExpr *AR, |
| IncrementWrapFlags Flags) |
| : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} |
| |
| const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } |
| |
| bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { |
| const auto *Op = dyn_cast<SCEVWrapPredicate>(N); |
| |
| return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; |
| } |
| |
| bool SCEVWrapPredicate::isAlwaysTrue() const { |
| SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); |
| IncrementWrapFlags IFlags = Flags; |
| |
| if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) |
| IFlags = clearFlags(IFlags, IncrementNSSW); |
| |
| return IFlags == IncrementAnyWrap; |
| } |
| |
| void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { |
| OS.indent(Depth) << *getExpr() << " Added Flags: "; |
| if (SCEVWrapPredicate::IncrementNUSW & getFlags()) |
| OS << "<nusw>"; |
| if (SCEVWrapPredicate::IncrementNSSW & getFlags()) |
| OS << "<nssw>"; |
| OS << "\n"; |
| } |
| |
| SCEVWrapPredicate::IncrementWrapFlags |
| SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, |
| ScalarEvolution &SE) { |
| IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; |
| SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); |
| |
| // We can safely transfer the NSW flag as NSSW. |
| if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) |
| ImpliedFlags = IncrementNSSW; |
| |
| if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { |
| // If the increment is positive, the SCEV NUW flag will also imply the |
| // WrapPredicate NUSW flag. |
| if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) |
| if (Step->getValue()->getValue().isNonNegative()) |
| ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); |
| } |
| |
| return ImpliedFlags; |
| } |
| |
| /// Union predicates don't get cached so create a dummy set ID for it. |
| SCEVUnionPredicate::SCEVUnionPredicate() |
| : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} |
| |
| bool SCEVUnionPredicate::isAlwaysTrue() const { |
| return all_of(Preds, |
| [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); |
| } |
| |
| ArrayRef<const SCEVPredicate *> |
| SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { |
| auto I = SCEVToPreds.find(Expr); |
| if (I == SCEVToPreds.end()) |
| return ArrayRef<const SCEVPredicate *>(); |
| return I->second; |
| } |
| |
| bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { |
| if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) |
| return all_of(Set->Preds, |
| [this](const SCEVPredicate *I) { return this->implies(I); }); |
| |
| auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); |
| if (ScevPredsIt == SCEVToPreds.end()) |
| return false; |
| auto &SCEVPreds = ScevPredsIt->second; |
| |
| return any_of(SCEVPreds, |
| [N](const SCEVPredicate *I) { return I->implies(N); }); |
| } |
| |
| const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } |
| |
| void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { |
| for (auto Pred : Preds) |
| Pred->print(OS, Depth); |
| } |
| |
| void SCEVUnionPredicate::add(const SCEVPredicate *N) { |
| if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { |
| for (auto Pred : Set->Preds) |
| add(Pred); |
| return; |
| } |
| |
| if (implies(N)) |
| return; |
| |
| const SCEV *Key = N->getExpr(); |
| assert(Key && "Only SCEVUnionPredicate doesn't have an " |
| " associated expression!"); |
| |
| SCEVToPreds[Key].push_back(N); |
| Preds.push_back(N); |
| } |
| |
| PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, |
| Loop &L) |
| : SE(SE), L(L) {} |
| |
| const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { |
| const SCEV *Expr = SE.getSCEV(V); |
| RewriteEntry &Entry = RewriteMap[Expr]; |
| |
| // If we already have an entry and the version matches, return it. |
| if (Entry.second && Generation == Entry.first) |
| return Entry.second; |
| |
| // We found an entry but it's stale. Rewrite the stale entry |
| // according to the current predicate. |
| if (Entry.second) |
| Expr = Entry.second; |
| |
| const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); |
| Entry = {Generation, NewSCEV}; |
| |
| return NewSCEV; |
| } |
| |
| const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { |
| if (!BackedgeCount) { |
| SCEVUnionPredicate BackedgePred; |
| BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); |
| addPredicate(BackedgePred); |
| } |
| return BackedgeCount; |
| } |
| |
| void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { |
| if (Preds.implies(&Pred)) |
| return; |
| Preds.add(&Pred); |
| updateGeneration(); |
| } |
| |
| const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { |
| return Preds; |
| } |
| |
| void PredicatedScalarEvolution::updateGeneration() { |
| // If the generation number wrapped recompute everything. |
| if (++Generation == 0) { |
| for (auto &II : RewriteMap) { |
| const SCEV *Rewritten = II.second.second; |
| II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; |
| } |
| } |
| } |
| |
| void PredicatedScalarEvolution::setNoOverflow( |
| Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { |
| const SCEV *Expr = getSCEV(V); |
| const auto *AR = cast<SCEVAddRecExpr>(Expr); |
| |
| auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); |
| |
| // Clear the statically implied flags. |
| Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); |
| addPredicate(*SE.getWrapPredicate(AR, Flags)); |
| |
| auto II = FlagsMap.insert({V, Flags}); |
| if (!II.second) |
| II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); |
| } |
| |
| bool PredicatedScalarEvolution::hasNoOverflow( |
| Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { |
| const SCEV *Expr = getSCEV(V); |
| const auto *AR = cast<SCEVAddRecExpr>(Expr); |
| |
| Flags = SCEVWrapPredicate::clearFlags( |
| Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); |
| |
| auto II = FlagsMap.find(V); |
| |
| if (II != FlagsMap.end()) |
| Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); |
| |
| return Flags == SCEVWrapPredicate::IncrementAnyWrap; |
| } |
| |
| const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { |
| const SCEV *Expr = this->getSCEV(V); |
| SmallPtrSet<const SCEVPredicate *, 4> NewPreds; |
| auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); |
| |
| if (!New) |
| return nullptr; |
| |
| for (auto *P : NewPreds) |
| Preds.add(P); |
| |
| updateGeneration(); |
| RewriteMap[SE.getSCEV(V)] = {Generation, New}; |
| return New; |
| } |
| |
| PredicatedScalarEvolution::PredicatedScalarEvolution( |
| const PredicatedScalarEvolution &Init) |
| : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), |
| Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { |
| for (auto I : Init.FlagsMap) |
| FlagsMap.insert(I); |
| } |
| |
| void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { |
| // For each block. |
| for (auto *BB : L.getBlocks()) |
| for (auto &I : *BB) { |
| if (!SE.isSCEVable(I.getType())) |
| continue; |
| |
| auto *Expr = SE.getSCEV(&I); |
| auto II = RewriteMap.find(Expr); |
| |
| if (II == RewriteMap.end()) |
| continue; |
| |
| // Don't print things that are not interesting. |
| if (II->second.second == Expr) |
| continue; |
| |
| OS.indent(Depth) << "[PSE]" << I << ":\n"; |
| OS.indent(Depth + 2) << *Expr << "\n"; |
| OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; |
| } |
| } |
| |
| // Match the mathematical pattern A - (A / B) * B, where A and B can be |
| // arbitrary expressions. |
| // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is |
| // 4, A / B becomes X / 8). |
| bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, |
| const SCEV *&RHS) { |
| const auto *Add = dyn_cast<SCEVAddExpr>(Expr); |
| if (Add == nullptr || Add->getNumOperands() != 2) |
| return false; |
| |
| const SCEV *A = Add->getOperand(1); |
| const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); |
| |
| if (Mul == nullptr) |
| return false; |
| |
| const auto MatchURemWithDivisor = [&](const SCEV *B) { |
| // (SomeExpr + (-(SomeExpr / B) * B)). |
| if (Expr == getURemExpr(A, B)) { |
| LHS = A; |
| RHS = B; |
| return true; |
| } |
| return false; |
| }; |
| |
| // (SomeExpr + (-1 * (SomeExpr / B) * B)). |
| if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) |
| return MatchURemWithDivisor(Mul->getOperand(1)) || |
| MatchURemWithDivisor(Mul->getOperand(2)); |
| |
| // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). |
| if (Mul->getNumOperands() == 2) |
| return MatchURemWithDivisor(Mul->getOperand(1)) || |
| MatchURemWithDivisor(Mul->getOperand(0)) || |
| MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || |
| MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); |
| return false; |
| } |