| //===- STLExtrasTest.cpp - Unit tests for STL extras ----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/STLExtras.h" |
| #include "gtest/gtest.h" |
| |
| #include <list> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| int f(rank<0>) { return 0; } |
| int f(rank<1>) { return 1; } |
| int f(rank<2>) { return 2; } |
| int f(rank<4>) { return 4; } |
| |
| TEST(STLExtrasTest, Rank) { |
| // We shouldn't get ambiguities and should select the overload of the same |
| // rank as the argument. |
| EXPECT_EQ(0, f(rank<0>())); |
| EXPECT_EQ(1, f(rank<1>())); |
| EXPECT_EQ(2, f(rank<2>())); |
| |
| // This overload is missing so we end up back at 2. |
| EXPECT_EQ(2, f(rank<3>())); |
| |
| // But going past 3 should work fine. |
| EXPECT_EQ(4, f(rank<4>())); |
| |
| // And we can even go higher and just fall back to the last overload. |
| EXPECT_EQ(4, f(rank<5>())); |
| EXPECT_EQ(4, f(rank<6>())); |
| } |
| |
| TEST(STLExtrasTest, EnumerateLValue) { |
| // Test that a simple LValue can be enumerated and gives correct results with |
| // multiple types, including the empty container. |
| std::vector<char> foo = {'a', 'b', 'c'}; |
| typedef std::pair<std::size_t, char> CharPairType; |
| std::vector<CharPairType> CharResults; |
| |
| for (auto X : llvm::enumerate(foo)) { |
| CharResults.emplace_back(X.index(), X.value()); |
| } |
| ASSERT_EQ(3u, CharResults.size()); |
| EXPECT_EQ(CharPairType(0u, 'a'), CharResults[0]); |
| EXPECT_EQ(CharPairType(1u, 'b'), CharResults[1]); |
| EXPECT_EQ(CharPairType(2u, 'c'), CharResults[2]); |
| |
| // Test a const range of a different type. |
| typedef std::pair<std::size_t, int> IntPairType; |
| std::vector<IntPairType> IntResults; |
| const std::vector<int> bar = {1, 2, 3}; |
| for (auto X : llvm::enumerate(bar)) { |
| IntResults.emplace_back(X.index(), X.value()); |
| } |
| ASSERT_EQ(3u, IntResults.size()); |
| EXPECT_EQ(IntPairType(0u, 1), IntResults[0]); |
| EXPECT_EQ(IntPairType(1u, 2), IntResults[1]); |
| EXPECT_EQ(IntPairType(2u, 3), IntResults[2]); |
| |
| // Test an empty range. |
| IntResults.clear(); |
| const std::vector<int> baz{}; |
| for (auto X : llvm::enumerate(baz)) { |
| IntResults.emplace_back(X.index(), X.value()); |
| } |
| EXPECT_TRUE(IntResults.empty()); |
| } |
| |
| TEST(STLExtrasTest, EnumerateModifyLValue) { |
| // Test that you can modify the underlying entries of an lvalue range through |
| // the enumeration iterator. |
| std::vector<char> foo = {'a', 'b', 'c'}; |
| |
| for (auto X : llvm::enumerate(foo)) { |
| ++X.value(); |
| } |
| EXPECT_EQ('b', foo[0]); |
| EXPECT_EQ('c', foo[1]); |
| EXPECT_EQ('d', foo[2]); |
| } |
| |
| TEST(STLExtrasTest, EnumerateRValueRef) { |
| // Test that an rvalue can be enumerated. |
| typedef std::pair<std::size_t, int> PairType; |
| std::vector<PairType> Results; |
| |
| auto Enumerator = llvm::enumerate(std::vector<int>{1, 2, 3}); |
| |
| for (auto X : llvm::enumerate(std::vector<int>{1, 2, 3})) { |
| Results.emplace_back(X.index(), X.value()); |
| } |
| |
| ASSERT_EQ(3u, Results.size()); |
| EXPECT_EQ(PairType(0u, 1), Results[0]); |
| EXPECT_EQ(PairType(1u, 2), Results[1]); |
| EXPECT_EQ(PairType(2u, 3), Results[2]); |
| } |
| |
| TEST(STLExtrasTest, EnumerateModifyRValue) { |
| // Test that when enumerating an rvalue, modification still works (even if |
| // this isn't terribly useful, it at least shows that we haven't snuck an |
| // extra const in there somewhere. |
| typedef std::pair<std::size_t, char> PairType; |
| std::vector<PairType> Results; |
| |
| for (auto X : llvm::enumerate(std::vector<char>{'1', '2', '3'})) { |
| ++X.value(); |
| Results.emplace_back(X.index(), X.value()); |
| } |
| |
| ASSERT_EQ(3u, Results.size()); |
| EXPECT_EQ(PairType(0u, '2'), Results[0]); |
| EXPECT_EQ(PairType(1u, '3'), Results[1]); |
| EXPECT_EQ(PairType(2u, '4'), Results[2]); |
| } |
| |
| template <bool B> struct CanMove {}; |
| template <> struct CanMove<false> { |
| CanMove(CanMove &&) = delete; |
| |
| CanMove() = default; |
| CanMove(const CanMove &) = default; |
| }; |
| |
| template <bool B> struct CanCopy {}; |
| template <> struct CanCopy<false> { |
| CanCopy(const CanCopy &) = delete; |
| |
| CanCopy() = default; |
| CanCopy(CanCopy &&) = default; |
| }; |
| |
| template <bool Moveable, bool Copyable> |
| struct Range : CanMove<Moveable>, CanCopy<Copyable> { |
| explicit Range(int &C, int &M, int &D) : C(C), M(M), D(D) {} |
| Range(const Range &R) : CanCopy<Copyable>(R), C(R.C), M(R.M), D(R.D) { ++C; } |
| Range(Range &&R) : CanMove<Moveable>(std::move(R)), C(R.C), M(R.M), D(R.D) { |
| ++M; |
| } |
| ~Range() { ++D; } |
| |
| int &C; |
| int &M; |
| int &D; |
| |
| int *begin() { return nullptr; } |
| int *end() { return nullptr; } |
| }; |
| |
| TEST(STLExtrasTest, EnumerateLifetimeSemantics) { |
| // Test that when enumerating lvalues and rvalues, there are no surprise |
| // copies or moves. |
| |
| // With an rvalue, it should not be destroyed until the end of the scope. |
| int Copies = 0; |
| int Moves = 0; |
| int Destructors = 0; |
| { |
| auto E1 = enumerate(Range<true, false>(Copies, Moves, Destructors)); |
| // Doesn't compile. rvalue ranges must be moveable. |
| // auto E2 = enumerate(Range<false, true>(Copies, Moves, Destructors)); |
| EXPECT_EQ(0, Copies); |
| EXPECT_EQ(1, Moves); |
| EXPECT_EQ(1, Destructors); |
| } |
| EXPECT_EQ(0, Copies); |
| EXPECT_EQ(1, Moves); |
| EXPECT_EQ(2, Destructors); |
| |
| Copies = Moves = Destructors = 0; |
| // With an lvalue, it should not be destroyed even after the end of the scope. |
| // lvalue ranges need be neither copyable nor moveable. |
| Range<false, false> R(Copies, Moves, Destructors); |
| { |
| auto Enumerator = enumerate(R); |
| (void)Enumerator; |
| EXPECT_EQ(0, Copies); |
| EXPECT_EQ(0, Moves); |
| EXPECT_EQ(0, Destructors); |
| } |
| EXPECT_EQ(0, Copies); |
| EXPECT_EQ(0, Moves); |
| EXPECT_EQ(0, Destructors); |
| } |
| |
| TEST(STLExtrasTest, ApplyTuple) { |
| auto T = std::make_tuple(1, 3, 7); |
| auto U = llvm::apply_tuple( |
| [](int A, int B, int C) { return std::make_tuple(A - B, B - C, C - A); }, |
| T); |
| |
| EXPECT_EQ(-2, std::get<0>(U)); |
| EXPECT_EQ(-4, std::get<1>(U)); |
| EXPECT_EQ(6, std::get<2>(U)); |
| |
| auto V = llvm::apply_tuple( |
| [](int A, int B, int C) { |
| return std::make_tuple(std::make_pair(A, char('A' + A)), |
| std::make_pair(B, char('A' + B)), |
| std::make_pair(C, char('A' + C))); |
| }, |
| T); |
| |
| EXPECT_EQ(std::make_pair(1, 'B'), std::get<0>(V)); |
| EXPECT_EQ(std::make_pair(3, 'D'), std::get<1>(V)); |
| EXPECT_EQ(std::make_pair(7, 'H'), std::get<2>(V)); |
| } |
| |
| class apply_variadic { |
| static int apply_one(int X) { return X + 1; } |
| static char apply_one(char C) { return C + 1; } |
| static StringRef apply_one(StringRef S) { return S.drop_back(); } |
| |
| public: |
| template <typename... Ts> |
| auto operator()(Ts &&... Items) |
| -> decltype(std::make_tuple(apply_one(Items)...)) { |
| return std::make_tuple(apply_one(Items)...); |
| } |
| }; |
| |
| TEST(STLExtrasTest, ApplyTupleVariadic) { |
| auto Items = std::make_tuple(1, llvm::StringRef("Test"), 'X'); |
| auto Values = apply_tuple(apply_variadic(), Items); |
| |
| EXPECT_EQ(2, std::get<0>(Values)); |
| EXPECT_EQ("Tes", std::get<1>(Values)); |
| EXPECT_EQ('Y', std::get<2>(Values)); |
| } |
| |
| TEST(STLExtrasTest, CountAdaptor) { |
| std::vector<int> v; |
| |
| v.push_back(1); |
| v.push_back(2); |
| v.push_back(1); |
| v.push_back(4); |
| v.push_back(3); |
| v.push_back(2); |
| v.push_back(1); |
| |
| EXPECT_EQ(3, count(v, 1)); |
| EXPECT_EQ(2, count(v, 2)); |
| EXPECT_EQ(1, count(v, 3)); |
| EXPECT_EQ(1, count(v, 4)); |
| } |
| |
| TEST(STLExtrasTest, for_each) { |
| std::vector<int> v{0, 1, 2, 3, 4}; |
| int count = 0; |
| |
| llvm::for_each(v, [&count](int) { ++count; }); |
| EXPECT_EQ(5, count); |
| } |
| |
| TEST(STLExtrasTest, ToVector) { |
| std::vector<char> v = {'a', 'b', 'c'}; |
| auto Enumerated = to_vector<4>(enumerate(v)); |
| ASSERT_EQ(3u, Enumerated.size()); |
| for (size_t I = 0; I < v.size(); ++I) { |
| EXPECT_EQ(I, Enumerated[I].index()); |
| EXPECT_EQ(v[I], Enumerated[I].value()); |
| } |
| } |
| |
| TEST(STLExtrasTest, ConcatRange) { |
| std::vector<int> Expected = {1, 2, 3, 4, 5, 6, 7, 8}; |
| std::vector<int> Test; |
| |
| std::vector<int> V1234 = {1, 2, 3, 4}; |
| std::list<int> L56 = {5, 6}; |
| SmallVector<int, 2> SV78 = {7, 8}; |
| |
| // Use concat across different sized ranges of different types with different |
| // iterators. |
| for (int &i : concat<int>(V1234, L56, SV78)) |
| Test.push_back(i); |
| EXPECT_EQ(Expected, Test); |
| |
| // Use concat between a temporary, an L-value, and an R-value to make sure |
| // complex lifetimes work well. |
| Test.clear(); |
| for (int &i : concat<int>(std::vector<int>(V1234), L56, std::move(SV78))) |
| Test.push_back(i); |
| EXPECT_EQ(Expected, Test); |
| } |
| |
| TEST(STLExtrasTest, PartitionAdaptor) { |
| std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8}; |
| |
| auto I = partition(V, [](int i) { return i % 2 == 0; }); |
| ASSERT_EQ(V.begin() + 4, I); |
| |
| // Sort the two halves as partition may have messed with the order. |
| llvm::sort(V.begin(), I); |
| llvm::sort(I, V.end()); |
| |
| EXPECT_EQ(2, V[0]); |
| EXPECT_EQ(4, V[1]); |
| EXPECT_EQ(6, V[2]); |
| EXPECT_EQ(8, V[3]); |
| EXPECT_EQ(1, V[4]); |
| EXPECT_EQ(3, V[5]); |
| EXPECT_EQ(5, V[6]); |
| EXPECT_EQ(7, V[7]); |
| } |
| |
| TEST(STLExtrasTest, EraseIf) { |
| std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8}; |
| |
| erase_if(V, [](int i) { return i % 2 == 0; }); |
| EXPECT_EQ(4u, V.size()); |
| EXPECT_EQ(1, V[0]); |
| EXPECT_EQ(3, V[1]); |
| EXPECT_EQ(5, V[2]); |
| EXPECT_EQ(7, V[3]); |
| } |
| |
| namespace some_namespace { |
| struct some_struct { |
| std::vector<int> data; |
| std::string swap_val; |
| }; |
| |
| std::vector<int>::const_iterator begin(const some_struct &s) { |
| return s.data.begin(); |
| } |
| |
| std::vector<int>::const_iterator end(const some_struct &s) { |
| return s.data.end(); |
| } |
| |
| void swap(some_struct &lhs, some_struct &rhs) { |
| // make swap visible as non-adl swap would even seem to |
| // work with std::swap which defaults to moving |
| lhs.swap_val = "lhs"; |
| rhs.swap_val = "rhs"; |
| } |
| } // namespace some_namespace |
| |
| TEST(STLExtrasTest, ADLTest) { |
| some_namespace::some_struct s{{1, 2, 3, 4, 5}, ""}; |
| some_namespace::some_struct s2{{2, 4, 6, 8, 10}, ""}; |
| |
| EXPECT_EQ(*adl_begin(s), 1); |
| EXPECT_EQ(*(adl_end(s) - 1), 5); |
| |
| adl_swap(s, s2); |
| EXPECT_EQ(s.swap_val, "lhs"); |
| EXPECT_EQ(s2.swap_val, "rhs"); |
| |
| int count = 0; |
| llvm::for_each(s, [&count](int) { ++count; }); |
| EXPECT_EQ(5, count); |
| } |
| |
| } // namespace |