blob: 1212b45fb575d6dd0b8b2b92e6b63bb66f16adc1 [file] [log] [blame]
//===- llvm/unittest/ADT/APFloat.cpp - APFloat unit tests ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
#include "gtest/gtest.h"
#include <cmath>
#include <ostream>
#include <string>
#include <tuple>
using namespace llvm;
static double convertToDoubleFromString(const char *Str) {
llvm::APFloat F(0.0);
F.convertFromString(Str, llvm::APFloat::rmNearestTiesToEven);
return F.convertToDouble();
}
static std::string convertToString(double d, unsigned Prec, unsigned Pad,
bool Tr = true) {
llvm::SmallVector<char, 100> Buffer;
llvm::APFloat F(d);
F.toString(Buffer, Prec, Pad, Tr);
return std::string(Buffer.data(), Buffer.size());
}
namespace {
TEST(APFloatTest, isSignaling) {
// We test qNaN, -qNaN, +sNaN, -sNaN with and without payloads. *NOTE* The
// positive/negative distinction is included only since the getQNaN/getSNaN
// API provides the option.
APInt payload = APInt::getOneBitSet(4, 2);
EXPECT_FALSE(APFloat::getQNaN(APFloat::IEEEsingle(), false).isSignaling());
EXPECT_FALSE(APFloat::getQNaN(APFloat::IEEEsingle(), true).isSignaling());
EXPECT_FALSE(APFloat::getQNaN(APFloat::IEEEsingle(), false, &payload).isSignaling());
EXPECT_FALSE(APFloat::getQNaN(APFloat::IEEEsingle(), true, &payload).isSignaling());
EXPECT_TRUE(APFloat::getSNaN(APFloat::IEEEsingle(), false).isSignaling());
EXPECT_TRUE(APFloat::getSNaN(APFloat::IEEEsingle(), true).isSignaling());
EXPECT_TRUE(APFloat::getSNaN(APFloat::IEEEsingle(), false, &payload).isSignaling());
EXPECT_TRUE(APFloat::getSNaN(APFloat::IEEEsingle(), true, &payload).isSignaling());
}
TEST(APFloatTest, next) {
APFloat test(APFloat::IEEEquad(), APFloat::uninitialized);
APFloat expected(APFloat::IEEEquad(), APFloat::uninitialized);
// 1. Test Special Cases Values.
//
// Test all special values for nextUp and nextDown perscribed by IEEE-754R
// 2008. These are:
// 1. +inf
// 2. -inf
// 3. getLargest()
// 4. -getLargest()
// 5. getSmallest()
// 6. -getSmallest()
// 7. qNaN
// 8. sNaN
// 9. +0
// 10. -0
// nextUp(+inf) = +inf.
test = APFloat::getInf(APFloat::IEEEquad(), false);
expected = APFloat::getInf(APFloat::IEEEquad(), false);
EXPECT_EQ(test.next(false), APFloat::opOK);
EXPECT_TRUE(test.isInfinity());
EXPECT_TRUE(!test.isNegative());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextDown(+inf) = -nextUp(-inf) = -(-getLargest()) = getLargest()
test = APFloat::getInf(APFloat::IEEEquad(), false);
expected = APFloat::getLargest(APFloat::IEEEquad(), false);
EXPECT_EQ(test.next(true), APFloat::opOK);
EXPECT_TRUE(!test.isNegative());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextUp(-inf) = -getLargest()
test = APFloat::getInf(APFloat::IEEEquad(), true);
expected = APFloat::getLargest(APFloat::IEEEquad(), true);
EXPECT_EQ(test.next(false), APFloat::opOK);
EXPECT_TRUE(test.isNegative());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextDown(-inf) = -nextUp(+inf) = -(+inf) = -inf.
test = APFloat::getInf(APFloat::IEEEquad(), true);
expected = APFloat::getInf(APFloat::IEEEquad(), true);
EXPECT_EQ(test.next(true), APFloat::opOK);
EXPECT_TRUE(test.isInfinity() && test.isNegative());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextUp(getLargest()) = +inf
test = APFloat::getLargest(APFloat::IEEEquad(), false);
expected = APFloat::getInf(APFloat::IEEEquad(), false);
EXPECT_EQ(test.next(false), APFloat::opOK);
EXPECT_TRUE(test.isInfinity() && !test.isNegative());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextDown(getLargest()) = -nextUp(-getLargest())
// = -(-getLargest() + inc)
// = getLargest() - inc.
test = APFloat::getLargest(APFloat::IEEEquad(), false);
expected = APFloat(APFloat::IEEEquad(),
"0x1.fffffffffffffffffffffffffffep+16383");
EXPECT_EQ(test.next(true), APFloat::opOK);
EXPECT_TRUE(!test.isInfinity() && !test.isNegative());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextUp(-getLargest()) = -getLargest() + inc.
test = APFloat::getLargest(APFloat::IEEEquad(), true);
expected = APFloat(APFloat::IEEEquad(),
"-0x1.fffffffffffffffffffffffffffep+16383");
EXPECT_EQ(test.next(false), APFloat::opOK);
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextDown(-getLargest()) = -nextUp(getLargest()) = -(inf) = -inf.
test = APFloat::getLargest(APFloat::IEEEquad(), true);
expected = APFloat::getInf(APFloat::IEEEquad(), true);
EXPECT_EQ(test.next(true), APFloat::opOK);
EXPECT_TRUE(test.isInfinity() && test.isNegative());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextUp(getSmallest()) = getSmallest() + inc.
test = APFloat(APFloat::IEEEquad(), "0x0.0000000000000000000000000001p-16382");
expected = APFloat(APFloat::IEEEquad(),
"0x0.0000000000000000000000000002p-16382");
EXPECT_EQ(test.next(false), APFloat::opOK);
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextDown(getSmallest()) = -nextUp(-getSmallest()) = -(-0) = +0.
test = APFloat(APFloat::IEEEquad(), "0x0.0000000000000000000000000001p-16382");
expected = APFloat::getZero(APFloat::IEEEquad(), false);
EXPECT_EQ(test.next(true), APFloat::opOK);
EXPECT_TRUE(test.isPosZero());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextUp(-getSmallest()) = -0.
test = APFloat(APFloat::IEEEquad(), "-0x0.0000000000000000000000000001p-16382");
expected = APFloat::getZero(APFloat::IEEEquad(), true);
EXPECT_EQ(test.next(false), APFloat::opOK);
EXPECT_TRUE(test.isNegZero());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextDown(-getSmallest()) = -nextUp(getSmallest()) = -getSmallest() - inc.
test = APFloat(APFloat::IEEEquad(), "-0x0.0000000000000000000000000001p-16382");
expected = APFloat(APFloat::IEEEquad(),
"-0x0.0000000000000000000000000002p-16382");
EXPECT_EQ(test.next(true), APFloat::opOK);
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextUp(qNaN) = qNaN
test = APFloat::getQNaN(APFloat::IEEEquad(), false);
expected = APFloat::getQNaN(APFloat::IEEEquad(), false);
EXPECT_EQ(test.next(false), APFloat::opOK);
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextDown(qNaN) = qNaN
test = APFloat::getQNaN(APFloat::IEEEquad(), false);
expected = APFloat::getQNaN(APFloat::IEEEquad(), false);
EXPECT_EQ(test.next(true), APFloat::opOK);
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextUp(sNaN) = qNaN
test = APFloat::getSNaN(APFloat::IEEEquad(), false);
expected = APFloat::getQNaN(APFloat::IEEEquad(), false);
EXPECT_EQ(test.next(false), APFloat::opInvalidOp);
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextDown(sNaN) = qNaN
test = APFloat::getSNaN(APFloat::IEEEquad(), false);
expected = APFloat::getQNaN(APFloat::IEEEquad(), false);
EXPECT_EQ(test.next(true), APFloat::opInvalidOp);
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextUp(+0) = +getSmallest()
test = APFloat::getZero(APFloat::IEEEquad(), false);
expected = APFloat::getSmallest(APFloat::IEEEquad(), false);
EXPECT_EQ(test.next(false), APFloat::opOK);
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextDown(+0) = -nextUp(-0) = -getSmallest()
test = APFloat::getZero(APFloat::IEEEquad(), false);
expected = APFloat::getSmallest(APFloat::IEEEquad(), true);
EXPECT_EQ(test.next(true), APFloat::opOK);
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextUp(-0) = +getSmallest()
test = APFloat::getZero(APFloat::IEEEquad(), true);
expected = APFloat::getSmallest(APFloat::IEEEquad(), false);
EXPECT_EQ(test.next(false), APFloat::opOK);
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextDown(-0) = -nextUp(0) = -getSmallest()
test = APFloat::getZero(APFloat::IEEEquad(), true);
expected = APFloat::getSmallest(APFloat::IEEEquad(), true);
EXPECT_EQ(test.next(true), APFloat::opOK);
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// 2. Binade Boundary Tests.
// 2a. Test denormal <-> normal binade boundaries.
// * nextUp(+Largest Denormal) -> +Smallest Normal.
// * nextDown(-Largest Denormal) -> -Smallest Normal.
// * nextUp(-Smallest Normal) -> -Largest Denormal.
// * nextDown(+Smallest Normal) -> +Largest Denormal.
// nextUp(+Largest Denormal) -> +Smallest Normal.
test = APFloat(APFloat::IEEEquad(), "0x0.ffffffffffffffffffffffffffffp-16382");
expected = APFloat(APFloat::IEEEquad(),
"0x1.0000000000000000000000000000p-16382");
EXPECT_EQ(test.next(false), APFloat::opOK);
EXPECT_FALSE(test.isDenormal());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextDown(-Largest Denormal) -> -Smallest Normal.
test = APFloat(APFloat::IEEEquad(),
"-0x0.ffffffffffffffffffffffffffffp-16382");
expected = APFloat(APFloat::IEEEquad(),
"-0x1.0000000000000000000000000000p-16382");
EXPECT_EQ(test.next(true), APFloat::opOK);
EXPECT_FALSE(test.isDenormal());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextUp(-Smallest Normal) -> -LargestDenormal.
test = APFloat(APFloat::IEEEquad(),
"-0x1.0000000000000000000000000000p-16382");
expected = APFloat(APFloat::IEEEquad(),
"-0x0.ffffffffffffffffffffffffffffp-16382");
EXPECT_EQ(test.next(false), APFloat::opOK);
EXPECT_TRUE(test.isDenormal());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextDown(+Smallest Normal) -> +Largest Denormal.
test = APFloat(APFloat::IEEEquad(),
"+0x1.0000000000000000000000000000p-16382");
expected = APFloat(APFloat::IEEEquad(),
"+0x0.ffffffffffffffffffffffffffffp-16382");
EXPECT_EQ(test.next(true), APFloat::opOK);
EXPECT_TRUE(test.isDenormal());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// 2b. Test normal <-> normal binade boundaries.
// * nextUp(-Normal Binade Boundary) -> -Normal Binade Boundary + 1.
// * nextDown(+Normal Binade Boundary) -> +Normal Binade Boundary - 1.
// * nextUp(+Normal Binade Boundary - 1) -> +Normal Binade Boundary.
// * nextDown(-Normal Binade Boundary + 1) -> -Normal Binade Boundary.
// nextUp(-Normal Binade Boundary) -> -Normal Binade Boundary + 1.
test = APFloat(APFloat::IEEEquad(), "-0x1p+1");
expected = APFloat(APFloat::IEEEquad(),
"-0x1.ffffffffffffffffffffffffffffp+0");
EXPECT_EQ(test.next(false), APFloat::opOK);
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextDown(+Normal Binade Boundary) -> +Normal Binade Boundary - 1.
test = APFloat(APFloat::IEEEquad(), "0x1p+1");
expected = APFloat(APFloat::IEEEquad(), "0x1.ffffffffffffffffffffffffffffp+0");
EXPECT_EQ(test.next(true), APFloat::opOK);
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextUp(+Normal Binade Boundary - 1) -> +Normal Binade Boundary.
test = APFloat(APFloat::IEEEquad(), "0x1.ffffffffffffffffffffffffffffp+0");
expected = APFloat(APFloat::IEEEquad(), "0x1p+1");
EXPECT_EQ(test.next(false), APFloat::opOK);
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextDown(-Normal Binade Boundary + 1) -> -Normal Binade Boundary.
test = APFloat(APFloat::IEEEquad(), "-0x1.ffffffffffffffffffffffffffffp+0");
expected = APFloat(APFloat::IEEEquad(), "-0x1p+1");
EXPECT_EQ(test.next(true), APFloat::opOK);
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// 2c. Test using next at binade boundaries with a direction away from the
// binade boundary. Away from denormal <-> normal boundaries.
//
// This is to make sure that even though we are at a binade boundary, since
// we are rounding away, we do not trigger the binade boundary code. Thus we
// test:
// * nextUp(-Largest Denormal) -> -Largest Denormal + inc.
// * nextDown(+Largest Denormal) -> +Largest Denormal - inc.
// * nextUp(+Smallest Normal) -> +Smallest Normal + inc.
// * nextDown(-Smallest Normal) -> -Smallest Normal - inc.
// nextUp(-Largest Denormal) -> -Largest Denormal + inc.
test = APFloat(APFloat::IEEEquad(), "-0x0.ffffffffffffffffffffffffffffp-16382");
expected = APFloat(APFloat::IEEEquad(),
"-0x0.fffffffffffffffffffffffffffep-16382");
EXPECT_EQ(test.next(false), APFloat::opOK);
EXPECT_TRUE(test.isDenormal());
EXPECT_TRUE(test.isNegative());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextDown(+Largest Denormal) -> +Largest Denormal - inc.
test = APFloat(APFloat::IEEEquad(), "0x0.ffffffffffffffffffffffffffffp-16382");
expected = APFloat(APFloat::IEEEquad(),
"0x0.fffffffffffffffffffffffffffep-16382");
EXPECT_EQ(test.next(true), APFloat::opOK);
EXPECT_TRUE(test.isDenormal());
EXPECT_TRUE(!test.isNegative());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextUp(+Smallest Normal) -> +Smallest Normal + inc.
test = APFloat(APFloat::IEEEquad(), "0x1.0000000000000000000000000000p-16382");
expected = APFloat(APFloat::IEEEquad(),
"0x1.0000000000000000000000000001p-16382");
EXPECT_EQ(test.next(false), APFloat::opOK);
EXPECT_TRUE(!test.isDenormal());
EXPECT_TRUE(!test.isNegative());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextDown(-Smallest Normal) -> -Smallest Normal - inc.
test = APFloat(APFloat::IEEEquad(), "-0x1.0000000000000000000000000000p-16382");
expected = APFloat(APFloat::IEEEquad(),
"-0x1.0000000000000000000000000001p-16382");
EXPECT_EQ(test.next(true), APFloat::opOK);
EXPECT_TRUE(!test.isDenormal());
EXPECT_TRUE(test.isNegative());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// 2d. Test values which cause our exponent to go to min exponent. This
// is to ensure that guards in the code to check for min exponent
// trigger properly.
// * nextUp(-0x1p-16381) -> -0x1.ffffffffffffffffffffffffffffp-16382
// * nextDown(-0x1.ffffffffffffffffffffffffffffp-16382) ->
// -0x1p-16381
// * nextUp(0x1.ffffffffffffffffffffffffffffp-16382) -> 0x1p-16382
// * nextDown(0x1p-16382) -> 0x1.ffffffffffffffffffffffffffffp-16382
// nextUp(-0x1p-16381) -> -0x1.ffffffffffffffffffffffffffffp-16382
test = APFloat(APFloat::IEEEquad(), "-0x1p-16381");
expected = APFloat(APFloat::IEEEquad(),
"-0x1.ffffffffffffffffffffffffffffp-16382");
EXPECT_EQ(test.next(false), APFloat::opOK);
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextDown(-0x1.ffffffffffffffffffffffffffffp-16382) ->
// -0x1p-16381
test = APFloat(APFloat::IEEEquad(), "-0x1.ffffffffffffffffffffffffffffp-16382");
expected = APFloat(APFloat::IEEEquad(), "-0x1p-16381");
EXPECT_EQ(test.next(true), APFloat::opOK);
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextUp(0x1.ffffffffffffffffffffffffffffp-16382) -> 0x1p-16381
test = APFloat(APFloat::IEEEquad(), "0x1.ffffffffffffffffffffffffffffp-16382");
expected = APFloat(APFloat::IEEEquad(), "0x1p-16381");
EXPECT_EQ(test.next(false), APFloat::opOK);
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextDown(0x1p-16381) -> 0x1.ffffffffffffffffffffffffffffp-16382
test = APFloat(APFloat::IEEEquad(), "0x1p-16381");
expected = APFloat(APFloat::IEEEquad(),
"0x1.ffffffffffffffffffffffffffffp-16382");
EXPECT_EQ(test.next(true), APFloat::opOK);
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// 3. Now we test both denormal/normal computation which will not cause us
// to go across binade boundaries. Specifically we test:
// * nextUp(+Denormal) -> +Denormal.
// * nextDown(+Denormal) -> +Denormal.
// * nextUp(-Denormal) -> -Denormal.
// * nextDown(-Denormal) -> -Denormal.
// * nextUp(+Normal) -> +Normal.
// * nextDown(+Normal) -> +Normal.
// * nextUp(-Normal) -> -Normal.
// * nextDown(-Normal) -> -Normal.
// nextUp(+Denormal) -> +Denormal.
test = APFloat(APFloat::IEEEquad(),
"0x0.ffffffffffffffffffffffff000cp-16382");
expected = APFloat(APFloat::IEEEquad(),
"0x0.ffffffffffffffffffffffff000dp-16382");
EXPECT_EQ(test.next(false), APFloat::opOK);
EXPECT_TRUE(test.isDenormal());
EXPECT_TRUE(!test.isNegative());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextDown(+Denormal) -> +Denormal.
test = APFloat(APFloat::IEEEquad(),
"0x0.ffffffffffffffffffffffff000cp-16382");
expected = APFloat(APFloat::IEEEquad(),
"0x0.ffffffffffffffffffffffff000bp-16382");
EXPECT_EQ(test.next(true), APFloat::opOK);
EXPECT_TRUE(test.isDenormal());
EXPECT_TRUE(!test.isNegative());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextUp(-Denormal) -> -Denormal.
test = APFloat(APFloat::IEEEquad(),
"-0x0.ffffffffffffffffffffffff000cp-16382");
expected = APFloat(APFloat::IEEEquad(),
"-0x0.ffffffffffffffffffffffff000bp-16382");
EXPECT_EQ(test.next(false), APFloat::opOK);
EXPECT_TRUE(test.isDenormal());
EXPECT_TRUE(test.isNegative());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextDown(-Denormal) -> -Denormal
test = APFloat(APFloat::IEEEquad(),
"-0x0.ffffffffffffffffffffffff000cp-16382");
expected = APFloat(APFloat::IEEEquad(),
"-0x0.ffffffffffffffffffffffff000dp-16382");
EXPECT_EQ(test.next(true), APFloat::opOK);
EXPECT_TRUE(test.isDenormal());
EXPECT_TRUE(test.isNegative());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextUp(+Normal) -> +Normal.
test = APFloat(APFloat::IEEEquad(),
"0x1.ffffffffffffffffffffffff000cp-16000");
expected = APFloat(APFloat::IEEEquad(),
"0x1.ffffffffffffffffffffffff000dp-16000");
EXPECT_EQ(test.next(false), APFloat::opOK);
EXPECT_TRUE(!test.isDenormal());
EXPECT_TRUE(!test.isNegative());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextDown(+Normal) -> +Normal.
test = APFloat(APFloat::IEEEquad(),
"0x1.ffffffffffffffffffffffff000cp-16000");
expected = APFloat(APFloat::IEEEquad(),
"0x1.ffffffffffffffffffffffff000bp-16000");
EXPECT_EQ(test.next(true), APFloat::opOK);
EXPECT_TRUE(!test.isDenormal());
EXPECT_TRUE(!test.isNegative());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextUp(-Normal) -> -Normal.
test = APFloat(APFloat::IEEEquad(),
"-0x1.ffffffffffffffffffffffff000cp-16000");
expected = APFloat(APFloat::IEEEquad(),
"-0x1.ffffffffffffffffffffffff000bp-16000");
EXPECT_EQ(test.next(false), APFloat::opOK);
EXPECT_TRUE(!test.isDenormal());
EXPECT_TRUE(test.isNegative());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
// nextDown(-Normal) -> -Normal.
test = APFloat(APFloat::IEEEquad(),
"-0x1.ffffffffffffffffffffffff000cp-16000");
expected = APFloat(APFloat::IEEEquad(),
"-0x1.ffffffffffffffffffffffff000dp-16000");
EXPECT_EQ(test.next(true), APFloat::opOK);
EXPECT_TRUE(!test.isDenormal());
EXPECT_TRUE(test.isNegative());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
}
TEST(APFloatTest, FMA) {
APFloat::roundingMode rdmd = APFloat::rmNearestTiesToEven;
{
APFloat f1(14.5f);
APFloat f2(-14.5f);
APFloat f3(225.0f);
f1.fusedMultiplyAdd(f2, f3, APFloat::rmNearestTiesToEven);
EXPECT_EQ(14.75f, f1.convertToFloat());
}
{
APFloat Val2(2.0f);
APFloat f1((float)1.17549435e-38F);
APFloat f2((float)1.17549435e-38F);
f1.divide(Val2, rdmd);
f2.divide(Val2, rdmd);
APFloat f3(12.0f);
f1.fusedMultiplyAdd(f2, f3, APFloat::rmNearestTiesToEven);
EXPECT_EQ(12.0f, f1.convertToFloat());
}
// Test for correct zero sign when answer is exactly zero.
// fma(1.0, -1.0, 1.0) -> +ve 0.
{
APFloat f1(1.0);
APFloat f2(-1.0);
APFloat f3(1.0);
f1.fusedMultiplyAdd(f2, f3, APFloat::rmNearestTiesToEven);
EXPECT_TRUE(!f1.isNegative() && f1.isZero());
}
// Test for correct zero sign when answer is exactly zero and rounding towards
// negative.
// fma(1.0, -1.0, 1.0) -> +ve 0.
{
APFloat f1(1.0);
APFloat f2(-1.0);
APFloat f3(1.0);
f1.fusedMultiplyAdd(f2, f3, APFloat::rmTowardNegative);
EXPECT_TRUE(f1.isNegative() && f1.isZero());
}
// Test for correct (in this case -ve) sign when adding like signed zeros.
// Test fma(0.0, -0.0, -0.0) -> -ve 0.
{
APFloat f1(0.0);
APFloat f2(-0.0);
APFloat f3(-0.0);
f1.fusedMultiplyAdd(f2, f3, APFloat::rmNearestTiesToEven);
EXPECT_TRUE(f1.isNegative() && f1.isZero());
}
// Test -ve sign preservation when small negative results underflow.
{
APFloat f1(APFloat::IEEEdouble(), "-0x1p-1074");
APFloat f2(APFloat::IEEEdouble(), "+0x1p-1074");
APFloat f3(0.0);
f1.fusedMultiplyAdd(f2, f3, APFloat::rmNearestTiesToEven);
EXPECT_TRUE(f1.isNegative() && f1.isZero());
}
// Test x87 extended precision case from http://llvm.org/PR20728.
{
APFloat M1(APFloat::x87DoubleExtended(), 1.0);
APFloat M2(APFloat::x87DoubleExtended(), 1.0);
APFloat A(APFloat::x87DoubleExtended(), 3.0);
bool losesInfo = false;
M1.fusedMultiplyAdd(M1, A, APFloat::rmNearestTiesToEven);
M1.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo);
EXPECT_FALSE(losesInfo);
EXPECT_EQ(4.0f, M1.convertToFloat());
}
}
TEST(APFloatTest, MinNum) {
APFloat f1(1.0);
APFloat f2(2.0);
APFloat nan = APFloat::getNaN(APFloat::IEEEdouble());
EXPECT_EQ(1.0, minnum(f1, f2).convertToDouble());
EXPECT_EQ(1.0, minnum(f2, f1).convertToDouble());
EXPECT_EQ(1.0, minnum(f1, nan).convertToDouble());
EXPECT_EQ(1.0, minnum(nan, f1).convertToDouble());
}
TEST(APFloatTest, MaxNum) {
APFloat f1(1.0);
APFloat f2(2.0);
APFloat nan = APFloat::getNaN(APFloat::IEEEdouble());
EXPECT_EQ(2.0, maxnum(f1, f2).convertToDouble());
EXPECT_EQ(2.0, maxnum(f2, f1).convertToDouble());
EXPECT_EQ(1.0, maxnum(f1, nan).convertToDouble());
EXPECT_EQ(1.0, maxnum(nan, f1).convertToDouble());
}
TEST(APFloatTest, Denormal) {
APFloat::roundingMode rdmd = APFloat::rmNearestTiesToEven;
// Test single precision
{
const char *MinNormalStr = "1.17549435082228750797e-38";
EXPECT_FALSE(APFloat(APFloat::IEEEsingle(), MinNormalStr).isDenormal());
EXPECT_FALSE(APFloat(APFloat::IEEEsingle(), 0.0).isDenormal());
APFloat Val2(APFloat::IEEEsingle(), 2.0e0);
APFloat T(APFloat::IEEEsingle(), MinNormalStr);
T.divide(Val2, rdmd);
EXPECT_TRUE(T.isDenormal());
}
// Test double precision
{
const char *MinNormalStr = "2.22507385850720138309e-308";
EXPECT_FALSE(APFloat(APFloat::IEEEdouble(), MinNormalStr).isDenormal());
EXPECT_FALSE(APFloat(APFloat::IEEEdouble(), 0.0).isDenormal());
APFloat Val2(APFloat::IEEEdouble(), 2.0e0);
APFloat T(APFloat::IEEEdouble(), MinNormalStr);
T.divide(Val2, rdmd);
EXPECT_TRUE(T.isDenormal());
}
// Test Intel double-ext
{
const char *MinNormalStr = "3.36210314311209350626e-4932";
EXPECT_FALSE(APFloat(APFloat::x87DoubleExtended(), MinNormalStr).isDenormal());
EXPECT_FALSE(APFloat(APFloat::x87DoubleExtended(), 0.0).isDenormal());
APFloat Val2(APFloat::x87DoubleExtended(), 2.0e0);
APFloat T(APFloat::x87DoubleExtended(), MinNormalStr);
T.divide(Val2, rdmd);
EXPECT_TRUE(T.isDenormal());
}
// Test quadruple precision
{
const char *MinNormalStr = "3.36210314311209350626267781732175260e-4932";
EXPECT_FALSE(APFloat(APFloat::IEEEquad(), MinNormalStr).isDenormal());
EXPECT_FALSE(APFloat(APFloat::IEEEquad(), 0.0).isDenormal());
APFloat Val2(APFloat::IEEEquad(), 2.0e0);
APFloat T(APFloat::IEEEquad(), MinNormalStr);
T.divide(Val2, rdmd);
EXPECT_TRUE(T.isDenormal());
}
}
TEST(APFloatTest, Zero) {
EXPECT_EQ(0.0f, APFloat(0.0f).convertToFloat());
EXPECT_EQ(-0.0f, APFloat(-0.0f).convertToFloat());
EXPECT_TRUE(APFloat(-0.0f).isNegative());
EXPECT_EQ(0.0, APFloat(0.0).convertToDouble());
EXPECT_EQ(-0.0, APFloat(-0.0).convertToDouble());
EXPECT_TRUE(APFloat(-0.0).isNegative());
}
TEST(APFloatTest, DecimalStringsWithoutNullTerminators) {
// Make sure that we can parse strings without null terminators.
// rdar://14323230.
APFloat Val(APFloat::IEEEdouble());
Val.convertFromString(StringRef("0.00", 3),
llvm::APFloat::rmNearestTiesToEven);
EXPECT_EQ(Val.convertToDouble(), 0.0);
Val.convertFromString(StringRef("0.01", 3),
llvm::APFloat::rmNearestTiesToEven);
EXPECT_EQ(Val.convertToDouble(), 0.0);
Val.convertFromString(StringRef("0.09", 3),
llvm::APFloat::rmNearestTiesToEven);
EXPECT_EQ(Val.convertToDouble(), 0.0);
Val.convertFromString(StringRef("0.095", 4),
llvm::APFloat::rmNearestTiesToEven);
EXPECT_EQ(Val.convertToDouble(), 0.09);
Val.convertFromString(StringRef("0.00e+3", 7),
llvm::APFloat::rmNearestTiesToEven);
EXPECT_EQ(Val.convertToDouble(), 0.00);
Val.convertFromString(StringRef("0e+3", 4),
llvm::APFloat::rmNearestTiesToEven);
EXPECT_EQ(Val.convertToDouble(), 0.00);
}
TEST(APFloatTest, fromZeroDecimalString) {
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0.").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0.").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0.").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), ".0").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+.0").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-.0").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0.0").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0.0").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0.0").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "00000.").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+00000.").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-00000.").convertToDouble());
EXPECT_EQ(0.0, APFloat(APFloat::IEEEdouble(), ".00000").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+.00000").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-.00000").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0000.00000").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0000.00000").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0000.00000").convertToDouble());
}
TEST(APFloatTest, fromZeroDecimalSingleExponentString) {
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0e1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0e1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0e1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0e+1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0e+1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0e+1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0e-1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0e-1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0e-1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0.e1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0.e1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0.e1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0.e+1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0.e+1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0.e+1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0.e-1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0.e-1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0.e-1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), ".0e1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+.0e1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-.0e1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), ".0e+1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+.0e+1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-.0e+1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), ".0e-1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+.0e-1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-.0e-1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0.0e1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0.0e1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0.0e1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0.0e+1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0.0e+1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0.0e+1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0.0e-1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0.0e-1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0.0e-1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "000.0000e1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+000.0000e+1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-000.0000e+1").convertToDouble());
}
TEST(APFloatTest, fromZeroDecimalLargeExponentString) {
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0e1234").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0e1234").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0e1234").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0e+1234").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0e+1234").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0e+1234").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0e-1234").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0e-1234").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0e-1234").convertToDouble());
EXPECT_EQ(0.0, APFloat(APFloat::IEEEdouble(), "000.0000e1234").convertToDouble());
EXPECT_EQ(0.0, APFloat(APFloat::IEEEdouble(), "000.0000e-1234").convertToDouble());
EXPECT_EQ(0.0, APFloat(APFloat::IEEEdouble(), StringRef("0e1234" "\0" "2", 6)).convertToDouble());
}
TEST(APFloatTest, fromZeroHexadecimalString) {
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0p1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x0p1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x0p1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0p+1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x0p+1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x0p+1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0p-1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x0p-1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x0p-1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0.p1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x0.p1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x0.p1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0.p+1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x0.p+1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x0.p+1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0.p-1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x0.p-1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x0.p-1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x.0p1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x.0p1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x.0p1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x.0p+1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x.0p+1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x.0p+1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x.0p-1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x.0p-1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x.0p-1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0.0p1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x0.0p1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x0.0p1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0.0p+1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x0.0p+1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x0.0p+1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0.0p-1").convertToDouble());
EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x0.0p-1").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x0.0p-1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x00000.p1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0000.00000p1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x.00000p1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0.p1").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0p1234").convertToDouble());
EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x0p1234").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x00000.p1234").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0000.00000p1234").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x.00000p1234").convertToDouble());
EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0.p1234").convertToDouble());
}
TEST(APFloatTest, fromDecimalString) {
EXPECT_EQ(1.0, APFloat(APFloat::IEEEdouble(), "1").convertToDouble());
EXPECT_EQ(2.0, APFloat(APFloat::IEEEdouble(), "2.").convertToDouble());
EXPECT_EQ(0.5, APFloat(APFloat::IEEEdouble(), ".5").convertToDouble());
EXPECT_EQ(1.0, APFloat(APFloat::IEEEdouble(), "1.0").convertToDouble());
EXPECT_EQ(-2.0, APFloat(APFloat::IEEEdouble(), "-2").convertToDouble());
EXPECT_EQ(-4.0, APFloat(APFloat::IEEEdouble(), "-4.").convertToDouble());
EXPECT_EQ(-0.5, APFloat(APFloat::IEEEdouble(), "-.5").convertToDouble());
EXPECT_EQ(-1.5, APFloat(APFloat::IEEEdouble(), "-1.5").convertToDouble());
EXPECT_EQ(1.25e12, APFloat(APFloat::IEEEdouble(), "1.25e12").convertToDouble());
EXPECT_EQ(1.25e+12, APFloat(APFloat::IEEEdouble(), "1.25e+12").convertToDouble());
EXPECT_EQ(1.25e-12, APFloat(APFloat::IEEEdouble(), "1.25e-12").convertToDouble());
EXPECT_EQ(1024.0, APFloat(APFloat::IEEEdouble(), "1024.").convertToDouble());
EXPECT_EQ(1024.05, APFloat(APFloat::IEEEdouble(), "1024.05000").convertToDouble());
EXPECT_EQ(0.05, APFloat(APFloat::IEEEdouble(), ".05000").convertToDouble());
EXPECT_EQ(2.0, APFloat(APFloat::IEEEdouble(), "2.").convertToDouble());
EXPECT_EQ(2.0e2, APFloat(APFloat::IEEEdouble(), "2.e2").convertToDouble());
EXPECT_EQ(2.0e+2, APFloat(APFloat::IEEEdouble(), "2.e+2").convertToDouble());
EXPECT_EQ(2.0e-2, APFloat(APFloat::IEEEdouble(), "2.e-2").convertToDouble());
EXPECT_EQ(2.05e2, APFloat(APFloat::IEEEdouble(), "002.05000e2").convertToDouble());
EXPECT_EQ(2.05e+2, APFloat(APFloat::IEEEdouble(), "002.05000e+2").convertToDouble());
EXPECT_EQ(2.05e-2, APFloat(APFloat::IEEEdouble(), "002.05000e-2").convertToDouble());
EXPECT_EQ(2.05e12, APFloat(APFloat::IEEEdouble(), "002.05000e12").convertToDouble());
EXPECT_EQ(2.05e+12, APFloat(APFloat::IEEEdouble(), "002.05000e+12").convertToDouble());
EXPECT_EQ(2.05e-12, APFloat(APFloat::IEEEdouble(), "002.05000e-12").convertToDouble());
// These are "carefully selected" to overflow the fast log-base
// calculations in APFloat.cpp
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "99e99999").isInfinity());
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "-99e99999").isInfinity());
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "1e-99999").isPosZero());
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "-1e-99999").isNegZero());
EXPECT_EQ(2.71828, convertToDoubleFromString("2.71828"));
}
TEST(APFloatTest, fromToStringSpecials) {
auto expects = [] (const char *first, const char *second) {
std::string roundtrip = convertToString(convertToDoubleFromString(second), 0, 3);
EXPECT_STREQ(first, roundtrip.c_str());
};
expects("+Inf", "+Inf");
expects("+Inf", "INFINITY");
expects("+Inf", "inf");
expects("-Inf", "-Inf");
expects("-Inf", "-INFINITY");
expects("-Inf", "-inf");
expects("NaN", "NaN");
expects("NaN", "nan");
expects("NaN", "-NaN");
expects("NaN", "-nan");
}
TEST(APFloatTest, fromHexadecimalString) {
EXPECT_EQ( 1.0, APFloat(APFloat::IEEEdouble(), "0x1p0").convertToDouble());
EXPECT_EQ(+1.0, APFloat(APFloat::IEEEdouble(), "+0x1p0").convertToDouble());
EXPECT_EQ(-1.0, APFloat(APFloat::IEEEdouble(), "-0x1p0").convertToDouble());
EXPECT_EQ( 1.0, APFloat(APFloat::IEEEdouble(), "0x1p+0").convertToDouble());
EXPECT_EQ(+1.0, APFloat(APFloat::IEEEdouble(), "+0x1p+0").convertToDouble());
EXPECT_EQ(-1.0, APFloat(APFloat::IEEEdouble(), "-0x1p+0").convertToDouble());
EXPECT_EQ( 1.0, APFloat(APFloat::IEEEdouble(), "0x1p-0").convertToDouble());
EXPECT_EQ(+1.0, APFloat(APFloat::IEEEdouble(), "+0x1p-0").convertToDouble());
EXPECT_EQ(-1.0, APFloat(APFloat::IEEEdouble(), "-0x1p-0").convertToDouble());
EXPECT_EQ( 2.0, APFloat(APFloat::IEEEdouble(), "0x1p1").convertToDouble());
EXPECT_EQ(+2.0, APFloat(APFloat::IEEEdouble(), "+0x1p1").convertToDouble());
EXPECT_EQ(-2.0, APFloat(APFloat::IEEEdouble(), "-0x1p1").convertToDouble());
EXPECT_EQ( 2.0, APFloat(APFloat::IEEEdouble(), "0x1p+1").convertToDouble());
EXPECT_EQ(+2.0, APFloat(APFloat::IEEEdouble(), "+0x1p+1").convertToDouble());
EXPECT_EQ(-2.0, APFloat(APFloat::IEEEdouble(), "-0x1p+1").convertToDouble());
EXPECT_EQ( 0.5, APFloat(APFloat::IEEEdouble(), "0x1p-1").convertToDouble());
EXPECT_EQ(+0.5, APFloat(APFloat::IEEEdouble(), "+0x1p-1").convertToDouble());
EXPECT_EQ(-0.5, APFloat(APFloat::IEEEdouble(), "-0x1p-1").convertToDouble());
EXPECT_EQ( 3.0, APFloat(APFloat::IEEEdouble(), "0x1.8p1").convertToDouble());
EXPECT_EQ(+3.0, APFloat(APFloat::IEEEdouble(), "+0x1.8p1").convertToDouble());
EXPECT_EQ(-3.0, APFloat(APFloat::IEEEdouble(), "-0x1.8p1").convertToDouble());
EXPECT_EQ( 3.0, APFloat(APFloat::IEEEdouble(), "0x1.8p+1").convertToDouble());
EXPECT_EQ(+3.0, APFloat(APFloat::IEEEdouble(), "+0x1.8p+1").convertToDouble());
EXPECT_EQ(-3.0, APFloat(APFloat::IEEEdouble(), "-0x1.8p+1").convertToDouble());
EXPECT_EQ( 0.75, APFloat(APFloat::IEEEdouble(), "0x1.8p-1").convertToDouble());
EXPECT_EQ(+0.75, APFloat(APFloat::IEEEdouble(), "+0x1.8p-1").convertToDouble());
EXPECT_EQ(-0.75, APFloat(APFloat::IEEEdouble(), "-0x1.8p-1").convertToDouble());
EXPECT_EQ( 8192.0, APFloat(APFloat::IEEEdouble(), "0x1000.000p1").convertToDouble());
EXPECT_EQ(+8192.0, APFloat(APFloat::IEEEdouble(), "+0x1000.000p1").convertToDouble());
EXPECT_EQ(-8192.0, APFloat(APFloat::IEEEdouble(), "-0x1000.000p1").convertToDouble());
EXPECT_EQ( 8192.0, APFloat(APFloat::IEEEdouble(), "0x1000.000p+1").convertToDouble());
EXPECT_EQ(+8192.0, APFloat(APFloat::IEEEdouble(), "+0x1000.000p+1").convertToDouble());
EXPECT_EQ(-8192.0, APFloat(APFloat::IEEEdouble(), "-0x1000.000p+1").convertToDouble());
EXPECT_EQ( 2048.0, APFloat(APFloat::IEEEdouble(), "0x1000.000p-1").convertToDouble());
EXPECT_EQ(+2048.0, APFloat(APFloat::IEEEdouble(), "+0x1000.000p-1").convertToDouble());
EXPECT_EQ(-2048.0, APFloat(APFloat::IEEEdouble(), "-0x1000.000p-1").convertToDouble());
EXPECT_EQ( 8192.0, APFloat(APFloat::IEEEdouble(), "0x1000p1").convertToDouble());
EXPECT_EQ(+8192.0, APFloat(APFloat::IEEEdouble(), "+0x1000p1").convertToDouble());
EXPECT_EQ(-8192.0, APFloat(APFloat::IEEEdouble(), "-0x1000p1").convertToDouble());
EXPECT_EQ( 8192.0, APFloat(APFloat::IEEEdouble(), "0x1000p+1").convertToDouble());
EXPECT_EQ(+8192.0, APFloat(APFloat::IEEEdouble(), "+0x1000p+1").convertToDouble());
EXPECT_EQ(-8192.0, APFloat(APFloat::IEEEdouble(), "-0x1000p+1").convertToDouble());
EXPECT_EQ( 2048.0, APFloat(APFloat::IEEEdouble(), "0x1000p-1").convertToDouble());
EXPECT_EQ(+2048.0, APFloat(APFloat::IEEEdouble(), "+0x1000p-1").convertToDouble());
EXPECT_EQ(-2048.0, APFloat(APFloat::IEEEdouble(), "-0x1000p-1").convertToDouble());
EXPECT_EQ( 16384.0, APFloat(APFloat::IEEEdouble(), "0x10p10").convertToDouble());
EXPECT_EQ(+16384.0, APFloat(APFloat::IEEEdouble(), "+0x10p10").convertToDouble());
EXPECT_EQ(-16384.0, APFloat(APFloat::IEEEdouble(), "-0x10p10").convertToDouble());
EXPECT_EQ( 16384.0, APFloat(APFloat::IEEEdouble(), "0x10p+10").convertToDouble());
EXPECT_EQ(+16384.0, APFloat(APFloat::IEEEdouble(), "+0x10p+10").convertToDouble());
EXPECT_EQ(-16384.0, APFloat(APFloat::IEEEdouble(), "-0x10p+10").convertToDouble());
EXPECT_EQ( 0.015625, APFloat(APFloat::IEEEdouble(), "0x10p-10").convertToDouble());
EXPECT_EQ(+0.015625, APFloat(APFloat::IEEEdouble(), "+0x10p-10").convertToDouble());
EXPECT_EQ(-0.015625, APFloat(APFloat::IEEEdouble(), "-0x10p-10").convertToDouble());
EXPECT_EQ(1.0625, APFloat(APFloat::IEEEdouble(), "0x1.1p0").convertToDouble());
EXPECT_EQ(1.0, APFloat(APFloat::IEEEdouble(), "0x1p0").convertToDouble());
EXPECT_EQ(convertToDoubleFromString("0x1p-150"),
convertToDoubleFromString("+0x800000000000000001.p-221"));
EXPECT_EQ(2251799813685248.5,
convertToDoubleFromString("0x80000000000004000000.010p-28"));
}
TEST(APFloatTest, toString) {
ASSERT_EQ("10", convertToString(10.0, 6, 3));
ASSERT_EQ("1.0E+1", convertToString(10.0, 6, 0));
ASSERT_EQ("10100", convertToString(1.01E+4, 5, 2));
ASSERT_EQ("1.01E+4", convertToString(1.01E+4, 4, 2));
ASSERT_EQ("1.01E+4", convertToString(1.01E+4, 5, 1));
ASSERT_EQ("0.0101", convertToString(1.01E-2, 5, 2));
ASSERT_EQ("0.0101", convertToString(1.01E-2, 4, 2));
ASSERT_EQ("1.01E-2", convertToString(1.01E-2, 5, 1));
ASSERT_EQ("0.78539816339744828", convertToString(0.78539816339744830961, 0, 3));
ASSERT_EQ("4.9406564584124654E-324", convertToString(4.9406564584124654e-324, 0, 3));
ASSERT_EQ("873.18340000000001", convertToString(873.1834, 0, 1));
ASSERT_EQ("8.7318340000000001E+2", convertToString(873.1834, 0, 0));
ASSERT_EQ("1.7976931348623157E+308", convertToString(1.7976931348623157E+308, 0, 0));
ASSERT_EQ("10", convertToString(10.0, 6, 3, false));
ASSERT_EQ("1.000000e+01", convertToString(10.0, 6, 0, false));
ASSERT_EQ("10100", convertToString(1.01E+4, 5, 2, false));
ASSERT_EQ("1.0100e+04", convertToString(1.01E+4, 4, 2, false));
ASSERT_EQ("1.01000e+04", convertToString(1.01E+4, 5, 1, false));
ASSERT_EQ("0.0101", convertToString(1.01E-2, 5, 2, false));
ASSERT_EQ("0.0101", convertToString(1.01E-2, 4, 2, false));
ASSERT_EQ("1.01000e-02", convertToString(1.01E-2, 5, 1, false));
ASSERT_EQ("0.78539816339744828",
convertToString(0.78539816339744830961, 0, 3, false));
ASSERT_EQ("4.94065645841246540e-324",
convertToString(4.9406564584124654e-324, 0, 3, false));
ASSERT_EQ("873.18340000000001", convertToString(873.1834, 0, 1, false));
ASSERT_EQ("8.73183400000000010e+02", convertToString(873.1834, 0, 0, false));
ASSERT_EQ("1.79769313486231570e+308",
convertToString(1.7976931348623157E+308, 0, 0, false));
{
SmallString<64> Str;
APFloat UnnormalZero(APFloat::x87DoubleExtended(), APInt(80, {0, 1}));
UnnormalZero.toString(Str);
ASSERT_EQ("NaN", Str);
}
}
TEST(APFloatTest, toInteger) {
bool isExact = false;
APSInt result(5, /*isUnsigned=*/true);
EXPECT_EQ(APFloat::opOK,
APFloat(APFloat::IEEEdouble(), "10")
.convertToInteger(result, APFloat::rmTowardZero, &isExact));
EXPECT_TRUE(isExact);
EXPECT_EQ(APSInt(APInt(5, 10), true), result);
EXPECT_EQ(APFloat::opInvalidOp,
APFloat(APFloat::IEEEdouble(), "-10")
.convertToInteger(result, APFloat::rmTowardZero, &isExact));
EXPECT_FALSE(isExact);
EXPECT_EQ(APSInt::getMinValue(5, true), result);
EXPECT_EQ(APFloat::opInvalidOp,
APFloat(APFloat::IEEEdouble(), "32")
.convertToInteger(result, APFloat::rmTowardZero, &isExact));
EXPECT_FALSE(isExact);
EXPECT_EQ(APSInt::getMaxValue(5, true), result);
EXPECT_EQ(APFloat::opInexact,
APFloat(APFloat::IEEEdouble(), "7.9")
.convertToInteger(result, APFloat::rmTowardZero, &isExact));
EXPECT_FALSE(isExact);
EXPECT_EQ(APSInt(APInt(5, 7), true), result);
result.setIsUnsigned(false);
EXPECT_EQ(APFloat::opOK,
APFloat(APFloat::IEEEdouble(), "-10")
.convertToInteger(result, APFloat::rmTowardZero, &isExact));
EXPECT_TRUE(isExact);
EXPECT_EQ(APSInt(APInt(5, -10, true), false), result);
EXPECT_EQ(APFloat::opInvalidOp,
APFloat(APFloat::IEEEdouble(), "-17")
.convertToInteger(result, APFloat::rmTowardZero, &isExact));
EXPECT_FALSE(isExact);
EXPECT_EQ(APSInt::getMinValue(5, false), result);
EXPECT_EQ(APFloat::opInvalidOp,
APFloat(APFloat::IEEEdouble(), "16")
.convertToInteger(result, APFloat::rmTowardZero, &isExact));
EXPECT_FALSE(isExact);
EXPECT_EQ(APSInt::getMaxValue(5, false), result);
}
static APInt nanbits(const fltSemantics &Sem,
bool SNaN, bool Negative, uint64_t fill) {
APInt apfill(64, fill);
if (SNaN)
return APFloat::getSNaN(Sem, Negative, &apfill).bitcastToAPInt();
else
return APFloat::getQNaN(Sem, Negative, &apfill).bitcastToAPInt();
}
TEST(APFloatTest, makeNaN) {
ASSERT_EQ(0x7fc00000, nanbits(APFloat::IEEEsingle(), false, false, 0));
ASSERT_EQ(0xffc00000, nanbits(APFloat::IEEEsingle(), false, true, 0));
ASSERT_EQ(0x7fc0ae72, nanbits(APFloat::IEEEsingle(), false, false, 0xae72));
ASSERT_EQ(0x7fffae72, nanbits(APFloat::IEEEsingle(), false, false, 0xffffae72));
ASSERT_EQ(0x7fa00000, nanbits(APFloat::IEEEsingle(), true, false, 0));
ASSERT_EQ(0xffa00000, nanbits(APFloat::IEEEsingle(), true, true, 0));
ASSERT_EQ(0x7f80ae72, nanbits(APFloat::IEEEsingle(), true, false, 0xae72));
ASSERT_EQ(0x7fbfae72, nanbits(APFloat::IEEEsingle(), true, false, 0xffffae72));
ASSERT_EQ(0x7ff8000000000000ULL, nanbits(APFloat::IEEEdouble(), false, false, 0));
ASSERT_EQ(0xfff8000000000000ULL, nanbits(APFloat::IEEEdouble(), false, true, 0));
ASSERT_EQ(0x7ff800000000ae72ULL, nanbits(APFloat::IEEEdouble(), false, false, 0xae72));
ASSERT_EQ(0x7fffffffffffae72ULL, nanbits(APFloat::IEEEdouble(), false, false, 0xffffffffffffae72ULL));
ASSERT_EQ(0x7ff4000000000000ULL, nanbits(APFloat::IEEEdouble(), true, false, 0));
ASSERT_EQ(0xfff4000000000000ULL, nanbits(APFloat::IEEEdouble(), true, true, 0));
ASSERT_EQ(0x7ff000000000ae72ULL, nanbits(APFloat::IEEEdouble(), true, false, 0xae72));
ASSERT_EQ(0x7ff7ffffffffae72ULL, nanbits(APFloat::IEEEdouble(), true, false, 0xffffffffffffae72ULL));
}
#ifdef GTEST_HAS_DEATH_TEST
#ifndef NDEBUG
TEST(APFloatTest, SemanticsDeath) {
EXPECT_DEATH(APFloat(APFloat::IEEEsingle(), 0.0f).convertToDouble(), "Float semantics are not IEEEdouble");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), 0.0 ).convertToFloat(), "Float semantics are not IEEEsingle");
}
TEST(APFloatTest, StringDecimalDeath) {
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), ""), "Invalid string length");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+"), "String has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-"), "String has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), StringRef("\0", 1)), "Invalid character in significand");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), StringRef("1\0", 2)), "Invalid character in significand");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), StringRef("1" "\0" "2", 3)), "Invalid character in significand");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), StringRef("1" "\0" "2e1", 5)), "Invalid character in significand");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), StringRef("1e\0", 3)), "Invalid character in exponent");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), StringRef("1e1\0", 4)), "Invalid character in exponent");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), StringRef("1e1" "\0" "2", 5)), "Invalid character in exponent");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "1.0f"), "Invalid character in significand");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), ".."), "String contains multiple dots");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "..0"), "String contains multiple dots");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "1.0.0"), "String contains multiple dots");
}
TEST(APFloatTest, StringDecimalSignificandDeath) {
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "."), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+."), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-."), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "e"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+e"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-e"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "e1"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+e1"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-e1"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), ".e1"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+.e1"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-.e1"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), ".e"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+.e"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-.e"), "Significand has no digits");
}
TEST(APFloatTest, StringDecimalExponentDeath) {
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "1e"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+1e"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-1e"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "1.e"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+1.e"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-1.e"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), ".1e"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+.1e"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-.1e"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "1.1e"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+1.1e"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-1.1e"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "1e+"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "1e-"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), ".1e"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), ".1e+"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), ".1e-"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "1.0e"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "1.0e+"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "1.0e-"), "Exponent has no digits");
}
TEST(APFloatTest, StringHexadecimalDeath) {
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x"), "Invalid string");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0x"), "Invalid string");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0x"), "Invalid string");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x0"), "Hex strings require an exponent");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0x0"), "Hex strings require an exponent");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0x0"), "Hex strings require an exponent");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x0."), "Hex strings require an exponent");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0x0."), "Hex strings require an exponent");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0x0."), "Hex strings require an exponent");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x.0"), "Hex strings require an exponent");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0x.0"), "Hex strings require an exponent");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0x.0"), "Hex strings require an exponent");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x0.0"), "Hex strings require an exponent");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0x0.0"), "Hex strings require an exponent");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0x0.0"), "Hex strings require an exponent");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), StringRef("0x\0", 3)), "Invalid character in significand");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), StringRef("0x1\0", 4)), "Invalid character in significand");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), StringRef("0x1" "\0" "2", 5)), "Invalid character in significand");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), StringRef("0x1" "\0" "2p1", 7)), "Invalid character in significand");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), StringRef("0x1p\0", 5)), "Invalid character in exponent");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), StringRef("0x1p1\0", 6)), "Invalid character in exponent");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), StringRef("0x1p1" "\0" "2", 7)), "Invalid character in exponent");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x1p0f"), "Invalid character in exponent");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x..p1"), "String contains multiple dots");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x..0p1"), "String contains multiple dots");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x1.0.0p1"), "String contains multiple dots");
}
TEST(APFloatTest, StringHexadecimalSignificandDeath) {
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x."), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0x."), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0x."), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0xp"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0xp"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0xp"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0xp+"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0xp+"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0xp+"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0xp-"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0xp-"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0xp-"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x.p"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0x.p"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0x.p"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x.p+"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0x.p+"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0x.p+"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x.p-"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0x.p-"), "Significand has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0x.p-"), "Significand has no digits");
}
TEST(APFloatTest, StringHexadecimalExponentDeath) {
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x1p"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0x1p"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0x1p"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x1p+"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0x1p+"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0x1p+"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x1p-"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0x1p-"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0x1p-"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x1.p"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0x1.p"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0x1.p"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x1.p+"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0x1.p+"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0x1.p+"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x1.p-"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0x1.p-"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0x1.p-"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x.1p"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0x.1p"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0x.1p"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x.1p+"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0x.1p+"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0x.1p+"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x.1p-"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0x.1p-"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0x.1p-"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x1.1p"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0x1.1p"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0x1.1p"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x1.1p+"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0x1.1p+"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0x1.1p+"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "0x1.1p-"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "+0x1.1p-"), "Exponent has no digits");
EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), "-0x1.1p-"), "Exponent has no digits");
}
#endif
#endif
TEST(APFloatTest, exactInverse) {
APFloat inv(0.0f);
// Trivial operation.
EXPECT_TRUE(APFloat(2.0).getExactInverse(&inv));
EXPECT_TRUE(inv.bitwiseIsEqual(APFloat(0.5)));
EXPECT_TRUE(APFloat(2.0f).getExactInverse(&inv));
EXPECT_TRUE(inv.bitwiseIsEqual(APFloat(0.5f)));
EXPECT_TRUE(APFloat(APFloat::IEEEquad(), "2.0").getExactInverse(&inv));
EXPECT_TRUE(inv.bitwiseIsEqual(APFloat(APFloat::IEEEquad(), "0.5")));
EXPECT_TRUE(APFloat(APFloat::PPCDoubleDouble(), "2.0").getExactInverse(&inv));
EXPECT_TRUE(inv.bitwiseIsEqual(APFloat(APFloat::PPCDoubleDouble(), "0.5")));
EXPECT_TRUE(APFloat(APFloat::x87DoubleExtended(), "2.0").getExactInverse(&inv));
EXPECT_TRUE(inv.bitwiseIsEqual(APFloat(APFloat::x87DoubleExtended(), "0.5")));
// FLT_MIN
EXPECT_TRUE(APFloat(1.17549435e-38f).getExactInverse(&inv));
EXPECT_TRUE(inv.bitwiseIsEqual(APFloat(8.5070592e+37f)));
// Large float, inverse is a denormal.
EXPECT_FALSE(APFloat(1.7014118e38f).getExactInverse(nullptr));
// Zero
EXPECT_FALSE(APFloat(0.0).getExactInverse(nullptr));
// Denormalized float
EXPECT_FALSE(APFloat(1.40129846e-45f).getExactInverse(nullptr));
}
TEST(APFloatTest, roundToIntegral) {
APFloat T(-0.5), S(3.14), R(APFloat::getLargest(APFloat::IEEEdouble())), P(0.0);
P = T;
P.roundToIntegral(APFloat::rmTowardZero);
EXPECT_EQ(-0.0, P.convertToDouble());
P = T;
P.roundToIntegral(APFloat::rmTowardNegative);
EXPECT_EQ(-1.0, P.convertToDouble());
P = T;
P.roundToIntegral(APFloat::rmTowardPositive);
EXPECT_EQ(-0.0, P.convertToDouble());
P = T;
P.roundToIntegral(APFloat::rmNearestTiesToEven);
EXPECT_EQ(-0.0, P.convertToDouble());
P = S;
P.roundToIntegral(APFloat::rmTowardZero);
EXPECT_EQ(3.0, P.convertToDouble());
P = S;
P.roundToIntegral(APFloat::rmTowardNegative);
EXPECT_EQ(3.0, P.convertToDouble());
P = S;
P.roundToIntegral(APFloat::rmTowardPositive);
EXPECT_EQ(4.0, P.convertToDouble());
P = S;
P.roundToIntegral(APFloat::rmNearestTiesToEven);
EXPECT_EQ(3.0, P.convertToDouble());
P = R;
P.roundToIntegral(APFloat::rmTowardZero);
EXPECT_EQ(R.convertToDouble(), P.convertToDouble());
P = R;
P.roundToIntegral(APFloat::rmTowardNegative);
EXPECT_EQ(R.convertToDouble(), P.convertToDouble());
P = R;
P.roundToIntegral(APFloat::rmTowardPositive);
EXPECT_EQ(R.convertToDouble(), P.convertToDouble());
P = R;
P.roundToIntegral(APFloat::rmNearestTiesToEven);
EXPECT_EQ(R.convertToDouble(), P.convertToDouble());
P = APFloat::getZero(APFloat::IEEEdouble());
P.roundToIntegral(APFloat::rmTowardZero);
EXPECT_EQ(0.0, P.convertToDouble());
P = APFloat::getZero(APFloat::IEEEdouble(), true);
P.roundToIntegral(APFloat::rmTowardZero);
EXPECT_EQ(-0.0, P.convertToDouble());
P = APFloat::getNaN(APFloat::IEEEdouble());
P.roundToIntegral(APFloat::rmTowardZero);
EXPECT_TRUE(std::isnan(P.convertToDouble()));
P = APFloat::getInf(APFloat::IEEEdouble());
P.roundToIntegral(APFloat::rmTowardZero);
EXPECT_TRUE(std::isinf(P.convertToDouble()) && P.convertToDouble() > 0.0);
P = APFloat::getInf(APFloat::IEEEdouble(), true);
P.roundToIntegral(APFloat::rmTowardZero);
EXPECT_TRUE(std::isinf(P.convertToDouble()) && P.convertToDouble() < 0.0);
}
TEST(APFloatTest, isInteger) {
APFloat T(-0.0);
EXPECT_TRUE(T.isInteger());
T = APFloat(3.14159);
EXPECT_FALSE(T.isInteger());
T = APFloat::getNaN(APFloat::IEEEdouble());
EXPECT_FALSE(T.isInteger());
T = APFloat::getInf(APFloat::IEEEdouble());
EXPECT_FALSE(T.isInteger());
T = APFloat::getInf(APFloat::IEEEdouble(), true);
EXPECT_FALSE(T.isInteger());
T = APFloat::getLargest(APFloat::IEEEdouble());
EXPECT_TRUE(T.isInteger());
}
TEST(DoubleAPFloatTest, isInteger) {
APFloat F1(-0.0);
APFloat F2(-0.0);
llvm::detail::DoubleAPFloat T(APFloat::PPCDoubleDouble(), std::move(F1),
std::move(F2));
EXPECT_TRUE(T.isInteger());
APFloat F3(3.14159);
APFloat F4(-0.0);
llvm::detail::DoubleAPFloat T2(APFloat::PPCDoubleDouble(), std::move(F3),
std::move(F4));
EXPECT_FALSE(T2.isInteger());
APFloat F5(-0.0);
APFloat F6(3.14159);
llvm::detail::DoubleAPFloat T3(APFloat::PPCDoubleDouble(), std::move(F5),
std::move(F6));
EXPECT_FALSE(T3.isInteger());
}
TEST(APFloatTest, getLargest) {
EXPECT_EQ(3.402823466e+38f, APFloat::getLargest(APFloat::IEEEsingle()).convertToFloat());
EXPECT_EQ(1.7976931348623158e+308, APFloat::getLargest(APFloat::IEEEdouble()).convertToDouble());
}
TEST(APFloatTest, getSmallest) {
APFloat test = APFloat::getSmallest(APFloat::IEEEsingle(), false);
APFloat expected = APFloat(APFloat::IEEEsingle(), "0x0.000002p-126");
EXPECT_FALSE(test.isNegative());
EXPECT_TRUE(test.isFiniteNonZero());
EXPECT_TRUE(test.isDenormal());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
test = APFloat::getSmallest(APFloat::IEEEsingle(), true);
expected = APFloat(APFloat::IEEEsingle(), "-0x0.000002p-126");
EXPECT_TRUE(test.isNegative());
EXPECT_TRUE(test.isFiniteNonZero());
EXPECT_TRUE(test.isDenormal());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
test = APFloat::getSmallest(APFloat::IEEEquad(), false);
expected = APFloat(APFloat::IEEEquad(), "0x0.0000000000000000000000000001p-16382");
EXPECT_FALSE(test.isNegative());
EXPECT_TRUE(test.isFiniteNonZero());
EXPECT_TRUE(test.isDenormal());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
test = APFloat::getSmallest(APFloat::IEEEquad(), true);
expected = APFloat(APFloat::IEEEquad(), "-0x0.0000000000000000000000000001p-16382");
EXPECT_TRUE(test.isNegative());
EXPECT_TRUE(test.isFiniteNonZero());
EXPECT_TRUE(test.isDenormal());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
}
TEST(APFloatTest, getSmallestNormalized) {
APFloat test = APFloat::getSmallestNormalized(APFloat::IEEEsingle(), false);
APFloat expected = APFloat(APFloat::IEEEsingle(), "0x1p-126");
EXPECT_FALSE(test.isNegative());
EXPECT_TRUE(test.isFiniteNonZero());
EXPECT_FALSE(test.isDenormal());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
test = APFloat::getSmallestNormalized(APFloat::IEEEsingle(), true);
expected = APFloat(APFloat::IEEEsingle(), "-0x1p-126");
EXPECT_TRUE(test.isNegative());
EXPECT_TRUE(test.isFiniteNonZero());
EXPECT_FALSE(test.isDenormal());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
test = APFloat::getSmallestNormalized(APFloat::IEEEquad(), false);
expected = APFloat(APFloat::IEEEquad(), "0x1p-16382");
EXPECT_FALSE(test.isNegative());
EXPECT_TRUE(test.isFiniteNonZero());
EXPECT_FALSE(test.isDenormal());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
test = APFloat::getSmallestNormalized(APFloat::IEEEquad(), true);
expected = APFloat(APFloat::IEEEquad(), "-0x1p-16382");
EXPECT_TRUE(test.isNegative());
EXPECT_TRUE(test.isFiniteNonZero());
EXPECT_FALSE(test.isDenormal());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
}
TEST(APFloatTest, getZero) {
struct {
const fltSemantics *semantics;
const bool sign;
const unsigned long long bitPattern[2];
const unsigned bitPatternLength;
} const GetZeroTest[] = {
{ &APFloat::IEEEhalf(), false, {0, 0}, 1},
{ &APFloat::IEEEhalf(), true, {0x8000ULL, 0}, 1},
{ &APFloat::IEEEsingle(), false, {0, 0}, 1},
{ &APFloat::IEEEsingle(), true, {0x80000000ULL, 0}, 1},
{ &APFloat::IEEEdouble(), false, {0, 0}, 1},
{ &APFloat::IEEEdouble(), true, {0x8000000000000000ULL, 0}, 1},
{ &APFloat::IEEEquad(), false, {0, 0}, 2},
{ &APFloat::IEEEquad(), true, {0, 0x8000000000000000ULL}, 2},
{ &APFloat::PPCDoubleDouble(), false, {0, 0}, 2},
{ &APFloat::PPCDoubleDouble(), true, {0x8000000000000000ULL, 0}, 2},
{ &APFloat::x87DoubleExtended(), false, {0, 0}, 2},
{ &APFloat::x87DoubleExtended(), true, {0, 0x8000ULL}, 2},
};
const unsigned NumGetZeroTests = 12;
for (unsigned i = 0; i < NumGetZeroTests; ++i) {
APFloat test = APFloat::getZero(*GetZeroTest[i].semantics,
GetZeroTest[i].sign);
const char *pattern = GetZeroTest[i].sign? "-0x0p+0" : "0x0p+0";
APFloat expected = APFloat(*GetZeroTest[i].semantics,
pattern);
EXPECT_TRUE(test.isZero());
EXPECT_TRUE(GetZeroTest[i].sign? test.isNegative() : !test.isNegative());
EXPECT_TRUE(test.bitwiseIsEqual(expected));
for (unsigned j = 0, je = GetZeroTest[i].bitPatternLength; j < je; ++j) {
EXPECT_EQ(GetZeroTest[i].bitPattern[j],
test.bitcastToAPInt().getRawData()[j]);
}
}
}
TEST(APFloatTest, copySign) {
EXPECT_TRUE(APFloat(-42.0).bitwiseIsEqual(
APFloat::copySign(APFloat(42.0), APFloat(-1.0))));
EXPECT_TRUE(APFloat(42.0).bitwiseIsEqual(
APFloat::copySign(APFloat(-42.0), APFloat(1.0))));
EXPECT_TRUE(APFloat(-42.0).bitwiseIsEqual(
APFloat::copySign(APFloat(-42.0), APFloat(-1.0))));
EXPECT_TRUE(APFloat(42.0).bitwiseIsEqual(
APFloat::copySign(APFloat(42.0), APFloat(1.0))));
}
TEST(APFloatTest, convert) {
bool losesInfo;
APFloat test(APFloat::IEEEdouble(), "1.0");
test.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo);
EXPECT_EQ(1.0f, test.convertToFloat());
EXPECT_FALSE(losesInfo);
test = APFloat(APFloat::x87DoubleExtended(), "0x1p-53");
test.add(APFloat(APFloat::x87DoubleExtended(), "1.0"), APFloat::rmNearestTiesToEven);
test.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo);
EXPECT_EQ(1.0, test.convertToDouble());
EXPECT_TRUE(losesInfo);
test = APFloat(APFloat::IEEEquad(), "0x1p-53");
test.add(APFloat(APFloat::IEEEquad(), "1.0"), APFloat::rmNearestTiesToEven);
test.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo);
EXPECT_EQ(1.0, test.convertToDouble());
EXPECT_TRUE(losesInfo);
test = APFloat(APFloat::x87DoubleExtended(), "0xf.fffffffp+28");
test.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo);
EXPECT_EQ(4294967295.0, test.convertToDouble());
EXPECT_FALSE(losesInfo);
test = APFloat::getSNaN(APFloat::IEEEsingle());
APFloat X87SNaN = APFloat::getSNaN(APFloat::x87DoubleExtended());
test.convert(APFloat::x87DoubleExtended(), APFloat::rmNearestTiesToEven,
&losesInfo);
EXPECT_TRUE(test.bitwiseIsEqual(X87SNaN));
EXPECT_FALSE(losesInfo);
test = APFloat::getQNaN(APFloat::IEEEsingle());
APFloat X87QNaN = APFloat::getQNaN(APFloat::x87DoubleExtended());
test.convert(APFloat::x87DoubleExtended(), APFloat::rmNearestTiesToEven,
&losesInfo);
EXPECT_TRUE(test.bitwiseIsEqual(X87QNaN));
EXPECT_FALSE(losesInfo);
test = APFloat::getSNaN(APFloat::x87DoubleExtended());
test.convert(APFloat::x87DoubleExtended(), APFloat::rmNearestTiesToEven,
&losesInfo);
EXPECT_TRUE(test.bitwiseIsEqual(X87SNaN));
EXPECT_FALSE(losesInfo);
test = APFloat::getQNaN(APFloat::x87DoubleExtended());
test.convert(APFloat::x87DoubleExtended(), APFloat::rmNearestTiesToEven,
&losesInfo);
EXPECT_TRUE(test.bitwiseIsEqual(X87QNaN));
EXPECT_FALSE(losesInfo);
}
TEST(APFloatTest, PPCDoubleDouble) {
APFloat test(APFloat::PPCDoubleDouble(), "1.0");
EXPECT_EQ(0x3ff0000000000000ull, test.bitcastToAPInt().getRawData()[0]);
EXPECT_EQ(0x0000000000000000ull, test.bitcastToAPInt().getRawData()[1]);
// LDBL_MAX
test = APFloat(APFloat::PPCDoubleDouble(), "1.79769313486231580793728971405301e+308");
EXPECT_EQ(0x7fefffffffffffffull, test.bitcastToAPInt().getRawData()[0]);
EXPECT_EQ(0x7c8ffffffffffffeull, test.bitcastToAPInt().getRawData()[1]);
// LDBL_MIN
test = APFloat(APFloat::PPCDoubleDouble(), "2.00416836000897277799610805135016e-292");
EXPECT_EQ(0x0360000000000000ull, test.bitcastToAPInt().getRawData()[0]);
EXPECT_EQ(0x0000000000000000ull, test.bitcastToAPInt().getRawData()[1]);
// PR30869
{
auto Result = APFloat(APFloat::PPCDoubleDouble(), "1.0") +
APFloat(APFloat::PPCDoubleDouble(), "1.0");
EXPECT_EQ(&APFloat::PPCDoubleDouble(), &Result.getSemantics());
Result = APFloat(APFloat::PPCDoubleDouble(), "1.0") -
APFloat(APFloat::PPCDoubleDouble(), "1.0");
EXPECT_EQ(&APFloat::PPCDoubleDouble(), &Result.getSemantics());
Result = APFloat(APFloat::PPCDoubleDouble(), "1.0") *
APFloat(APFloat::PPCDoubleDouble(), "1.0");
EXPECT_EQ(&APFloat::PPCDoubleDouble(), &Result.getSemantics());
Result = APFloat(APFloat::PPCDoubleDouble(), "1.0") /
APFloat(APFloat::PPCDoubleDouble(), "1.0");
EXPECT_EQ(&APFloat::PPCDoubleDouble(), &Result.getSemantics());
int Exp;
Result = frexp(APFloat(APFloat::PPCDoubleDouble(), "1.0"), Exp,
APFloat::rmNearestTiesToEven);
EXPECT_EQ(&APFloat::PPCDoubleDouble(), &Result.getSemantics());
Result = scalbn(APFloat(APFloat::PPCDoubleDouble(), "1.0"), 1,
APFloat::rmNearestTiesToEven);
EXPECT_EQ(&APFloat::PPCDoubleDouble(), &Result.getSemantics());
}
}
TEST(APFloatTest, isNegative) {
APFloat t(APFloat::IEEEsingle(), "0x1p+0");
EXPECT_FALSE(t.isNegative());
t = APFloat(APFloat::IEEEsingle(), "-0x1p+0");
EXPECT_TRUE(t.isNegative());
EXPECT_FALSE(APFloat::getInf(APFloat::IEEEsingle(), false).isNegative());
EXPECT_TRUE(APFloat::getInf(APFloat::IEEEsingle(), true).isNegative());
EXPECT_FALSE(APFloat::getZero(APFloat::IEEEsingle(), false).isNegative());
EXPECT_TRUE(APFloat::getZero(APFloat::IEEEsingle(), true).isNegative());
EXPECT_FALSE(APFloat::getNaN(APFloat::IEEEsingle(), false).isNegative());
EXPECT_TRUE(APFloat::getNaN(APFloat::IEEEsingle(), true).isNegative());
EXPECT_FALSE(APFloat::getSNaN(APFloat::IEEEsingle(), false).isNegative());
EXPECT_TRUE(APFloat::getSNaN(APFloat::IEEEsingle(), true).isNegative());
}
TEST(APFloatTest, isNormal) {
APFloat t(APFloat::IEEEsingle(), "0x1p+0");
EXPECT_TRUE(t.isNormal());
EXPECT_FALSE(APFloat::getInf(APFloat::IEEEsingle(), false).isNormal());
EXPECT_FALSE(APFloat::getZero(APFloat::IEEEsingle(), false).isNormal());
EXPECT_FALSE(APFloat::getNaN(APFloat::IEEEsingle(), false).isNormal());
EXPECT_FALSE(APFloat::getSNaN(APFloat::IEEEsingle(), false).isNormal());
EXPECT_FALSE(APFloat(APFloat::IEEEsingle(), "0x1p-149").isNormal());
}
TEST(APFloatTest, isFinite) {
APFloat t(APFloat::IEEEsingle(), "0x1p+0");
EXPECT_TRUE(t.isFinite());
EXPECT_FALSE(APFloat::getInf(APFloat::IEEEsingle(), false).isFinite());
EXPECT_TRUE(APFloat::getZero(APFloat::IEEEsingle(), false).isFinite());
EXPECT_FALSE(APFloat::getNaN(APFloat::IEEEsingle(), false).isFinite());
EXPECT_FALSE(APFloat::getSNaN(APFloat::IEEEsingle(), false).isFinite());
EXPECT_TRUE(APFloat(APFloat::IEEEsingle(), "0x1p-149").isFinite());
}
TEST(APFloatTest, isInfinity) {
APFloat t(APFloat::IEEEsingle(), "0x1p+0");
EXPECT_FALSE(t.isInfinity());
EXPECT_TRUE(APFloat::getInf(APFloat::IEEEsingle(), false).isInfinity());
EXPECT_FALSE(APFloat::getZero(APFloat::IEEEsingle(), false).isInfinity());
EXPECT_FALSE(APFloat::getNaN(APFloat::IEEEsingle(), false).isInfinity());
EXPECT_FALSE(APFloat::getSNaN(APFloat::IEEEsingle(), false).isInfinity());
EXPECT_FALSE(APFloat(APFloat::IEEEsingle(), "0x1p-149").isInfinity());
}
TEST(APFloatTest, isNaN) {
APFloat t(APFloat::IEEEsingle(), "0x1p+0");
EXPECT_FALSE(t.isNaN());
EXPECT_FALSE(APFloat::getInf(APFloat::IEEEsingle(), false).isNaN());
EXPECT_FALSE(APFloat::getZero(APFloat::IEEEsingle(), false).isNaN());
EXPECT_TRUE(APFloat::getNaN(APFloat::IEEEsingle(), false).isNaN());
EXPECT_TRUE(APFloat::getSNaN(APFloat::IEEEsingle(), false).isNaN());
EXPECT_FALSE(APFloat(APFloat::IEEEsingle(), "0x1p-149").isNaN());
}
TEST(APFloatTest, isFiniteNonZero) {
// Test positive/negative normal value.
EXPECT_TRUE(APFloat(APFloat::IEEEsingle(), "0x1p+0").isFiniteNonZero());
EXPECT_TRUE(APFloat(APFloat::IEEEsingle(), "-0x1p+0").isFiniteNonZero());
// Test positive/negative denormal value.
EXPECT_TRUE(APFloat(APFloat::IEEEsingle(), "0x1p-149").isFiniteNonZero());
EXPECT_TRUE(APFloat(APFloat::IEEEsingle(), "-0x1p-149").isFiniteNonZero());
// Test +/- Infinity.
EXPECT_FALSE(APFloat::getInf(APFloat::IEEEsingle(), false).isFiniteNonZero());
EXPECT_FALSE(APFloat::getInf(APFloat::IEEEsingle(), true).isFiniteNonZero());
// Test +/- Zero.
EXPECT_FALSE(APFloat::getZero(APFloat::IEEEsingle(), false).isFiniteNonZero());
EXPECT_FALSE(APFloat::getZero(APFloat::IEEEsingle(), true).isFiniteNonZero());
// Test +/- qNaN. +/- dont mean anything with qNaN but paranoia can't hurt in
// this instance.
EXPECT_FALSE(APFloat::getNaN(APFloat::IEEEsingle(), false).isFiniteNonZero());
EXPECT_FALSE(APFloat::getNaN(APFloat::IEEEsingle(), true).isFiniteNonZero());
// Test +/- sNaN. +/- dont mean anything with sNaN but paranoia can't hurt in
// this instance.
EXPECT_FALSE(APFloat::getSNaN(APFloat::IEEEsingle(), false).isFiniteNonZero());
EXPECT_FALSE(APFloat::getSNaN(APFloat::IEEEsingle(), true).isFiniteNonZero());
}
TEST(APFloatTest, add) {
// Test Special Cases against each other and normal values.
// TODOS/NOTES:
// 1. Since we perform only default exception handling all operations with
// signaling NaNs should have a result that is a quiet NaN. Currently they
// return sNaN.
APFloat PInf = APFloat::getInf(APFloat::IEEEsingle(), false);
APFloat MInf = APFloat::getInf(APFloat::IEEEsingle(), true);
APFloat PZero = APFloat::getZero(APFloat::IEEEsingle(), false);
APFloat MZero = APFloat::getZero(APFloat::IEEEsingle(), true);
APFloat QNaN = APFloat::getNaN(APFloat::IEEEsingle(), false);
APFloat SNaN = APFloat::getSNaN(APFloat::IEEEsingle(), false);
APFloat PNormalValue = APFloat(APFloat::IEEEsingle(), "0x1p+0");
APFloat MNormalValue = APFloat(APFloat::IEEEsingle(), "-0x1p+0");
APFloat PLargestValue = APFloat::getLargest(APFloat::IEEEsingle(), false);
APFloat MLargestValue = APFloat::getLargest(APFloat::IEEEsingle(), true);
APFloat PSmallestValue = APFloat::getSmallest(APFloat::IEEEsingle(), false);
APFloat MSmallestValue = APFloat::getSmallest(APFloat::IEEEsingle(), true);
APFloat PSmallestNormalized =
APFloat::getSmallestNormalized(APFloat::IEEEsingle(), false);
APFloat MSmallestNormalized =
APFloat::getSmallestNormalized(APFloat::IEEEsingle(), true);
const int OverflowStatus = APFloat::opOverflow | APFloat::opInexact;
const unsigned NumTests = 169;
struct {
APFloat x;
APFloat y;
const char *result;
int status;
int category;
} SpecialCaseTests[NumTests] = {
{ PInf, PInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, MInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ PInf, PZero, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, MZero, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PInf, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PInf, PNormalValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, MNormalValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, PLargestValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, MLargestValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, PSmallestValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, MSmallestValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, PSmallestNormalized, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, MSmallestNormalized, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, PInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ MInf, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, PZero, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, MZero, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MInf, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MInf, PNormalValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, MNormalValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, PLargestValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, MLargestValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, PSmallestValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, MSmallestValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, PSmallestNormalized, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, MSmallestNormalized, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PZero, PInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PZero, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PZero, PZero, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PZero, MZero, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PZero, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PZero, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PZero, PNormalValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ PZero, MNormalValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ PZero, PLargestValue, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ PZero, MLargestValue, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ PZero, PSmallestValue, "0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ PZero, MSmallestValue, "-0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ PZero, PSmallestNormalized, "0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ PZero, MSmallestNormalized, "-0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ MZero, PInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MZero, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MZero, PZero, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, MZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MZero, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MZero, PNormalValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ MZero, MNormalValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ MZero, PLargestValue, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ MZero, MLargestValue, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ MZero, PSmallestValue, "0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ MZero, MSmallestValue, "-0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ MZero, PSmallestNormalized, "0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ MZero, MSmallestNormalized, "-0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ QNaN, PInf, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MInf, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, PZero, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MZero, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ QNaN, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ QNaN, PNormalValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MNormalValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, PLargestValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MLargestValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, PSmallestValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MSmallestValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, PSmallestNormalized, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MSmallestNormalized, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ SNaN, PInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, PZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, QNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, PNormalValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MNormalValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, PLargestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MLargestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, PSmallestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MSmallestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, PSmallestNormalized, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MSmallestNormalized, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PNormalValue, PInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PNormalValue, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PNormalValue, PZero, "0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ PNormalValue, MZero, "0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ PNormalValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PNormalValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PNormalValue, PNormalValue, "0x1p+1", APFloat::opOK, APFloat::fcNormal },
{ PNormalValue, MNormalValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PNormalValue, PLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PNormalValue, MLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PNormalValue, PSmallestValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ PNormalValue, MSmallestValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ PNormalValue, PSmallestNormalized, "0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ PNormalValue, MSmallestNormalized, "0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ MNormalValue, PInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MNormalValue, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MNormalValue, PZero, "-0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ MNormalValue, MZero, "-0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ MNormalValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MNormalValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MNormalValue, PNormalValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MNormalValue, MNormalValue, "-0x1p+1", APFloat::opOK, APFloat::fcNormal },
{ MNormalValue, PLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MNormalValue, MLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MNormalValue, PSmallestValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ MNormalValue, MSmallestValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ MNormalValue, PSmallestNormalized, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ MNormalValue, MSmallestNormalized, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ PLargestValue, PInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PLargestValue, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PLargestValue, PZero, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ PLargestValue, MZero, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ PLargestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PLargestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PLargestValue, PNormalValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PLargestValue, MNormalValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PLargestValue, PLargestValue, "inf", OverflowStatus, APFloat::fcInfinity },
{ PLargestValue, MLargestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PLargestValue, PSmallestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PLargestValue, MSmallestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PLargestValue, PSmallestNormalized, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PLargestValue, MSmallestNormalized, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MLargestValue, PInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MLargestValue, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MLargestValue, PZero, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ MLargestValue, MZero, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ MLargestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MLargestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MLargestValue, PNormalValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MLargestValue, MNormalValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MLargestValue, PLargestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MLargestValue, MLargestValue, "-inf", OverflowStatus, APFloat::fcInfinity },
{ MLargestValue, PSmallestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MLargestValue, MSmallestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MLargestValue, PSmallestNormalized, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MLargestValue, MSmallestNormalized, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PSmallestValue, PInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PSmallestValue, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PSmallestValue, PZero, "0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ PSmallestValue, MZero, "0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ PSmallestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PSmallestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PSmallestValue, PNormalValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ PSmallestValue, MNormalValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ PSmallestValue, PLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PSmallestValue, MLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PSmallestValue, PSmallestValue, "0x1p-148", APFloat::opOK, APFloat::fcNormal },
{ PSmallestValue, MSmallestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PSmallestValue, PSmallestNormalized, "0x1.000002p-126", APFloat::opOK, APFloat::fcNormal },
{ PSmallestValue, MSmallestNormalized, "-0x1.fffffcp-127", APFloat::opOK, APFloat::fcNormal },
{ MSmallestValue, PInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MSmallestValue, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MSmallestValue, PZero, "-0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ MSmallestValue, MZero, "-0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ MSmallestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MSmallestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MSmallestValue, PNormalValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ MSmallestValue, MNormalValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ MSmallestValue, PLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MSmallestValue, MLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MSmallestValue, PSmallestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MSmallestValue, MSmallestValue, "-0x1p-148", APFloat::opOK, APFloat::fcNormal },
{ MSmallestValue, PSmallestNormalized, "0x1.fffffcp-127", APFloat::opOK, APFloat::fcNormal },
{ MSmallestValue, MSmallestNormalized, "-0x1.000002p-126", APFloat::opOK, APFloat::fcNormal },
{ PSmallestNormalized, PInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PSmallestNormalized, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PSmallestNormalized, PZero, "0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ PSmallestNormalized, MZero, "0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ PSmallestNormalized, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PSmallestNormalized, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PSmallestNormalized, PNormalValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ PSmallestNormalized, MNormalValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ PSmallestNormalized, PLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PSmallestNormalized, MLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PSmallestNormalized, PSmallestValue, "0x1.000002p-126", APFloat::opOK, APFloat::fcNormal },
{ PSmallestNormalized, MSmallestValue, "0x1.fffffcp-127", APFloat::opOK, APFloat::fcNormal },
{ PSmallestNormalized, PSmallestNormalized, "0x1p-125", APFloat::opOK, APFloat::fcNormal },
{ PSmallestNormalized, MSmallestNormalized, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MSmallestNormalized, PInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MSmallestNormalized, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MSmallestNormalized, PZero, "-0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ MSmallestNormalized, MZero, "-0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ MSmallestNormalized, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MSmallestNormalized, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MSmallestNormalized, PNormalValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ MSmallestNormalized, MNormalValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ MSmallestNormalized, PLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MSmallestNormalized, MLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MSmallestNormalized, PSmallestValue, "-0x1.fffffcp-127", APFloat::opOK, APFloat::fcNormal },
{ MSmallestNormalized, MSmallestValue, "-0x1.000002p-126", APFloat::opOK, APFloat::fcNormal },
{ MSmallestNormalized, PSmallestNormalized, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MSmallestNormalized, MSmallestNormalized, "-0x1p-125", APFloat::opOK, APFloat::fcNormal }
};
for (size_t i = 0; i < NumTests; ++i) {
APFloat x(SpecialCaseTests[i].x);
APFloat y(SpecialCaseTests[i].y);
APFloat::opStatus status = x.add(y, APFloat::rmNearestTiesToEven);
APFloat result(APFloat::IEEEsingle(), SpecialCaseTests[i].result);
EXPECT_TRUE(result.bitwiseIsEqual(x));
EXPECT_TRUE((int)status == SpecialCaseTests[i].status);
EXPECT_TRUE((int)x.getCategory() == SpecialCaseTests[i].category);
}
}
TEST(APFloatTest, subtract) {
// Test Special Cases against each other and normal values.
// TODOS/NOTES:
// 1. Since we perform only default exception handling all operations with
// signaling NaNs should have a result that is a quiet NaN. Currently they
// return sNaN.
APFloat PInf = APFloat::getInf(APFloat::IEEEsingle(), false);
APFloat MInf = APFloat::getInf(APFloat::IEEEsingle(), true);
APFloat PZero = APFloat::getZero(APFloat::IEEEsingle(), false);
APFloat MZero = APFloat::getZero(APFloat::IEEEsingle(), true);
APFloat QNaN = APFloat::getNaN(APFloat::IEEEsingle(), false);
APFloat SNaN = APFloat::getSNaN(APFloat::IEEEsingle(), false);
APFloat PNormalValue = APFloat(APFloat::IEEEsingle(), "0x1p+0");
APFloat MNormalValue = APFloat(APFloat::IEEEsingle(), "-0x1p+0");
APFloat PLargestValue = APFloat::getLargest(APFloat::IEEEsingle(), false);
APFloat MLargestValue = APFloat::getLargest(APFloat::IEEEsingle(), true);
APFloat PSmallestValue = APFloat::getSmallest(APFloat::IEEEsingle(), false);
APFloat MSmallestValue = APFloat::getSmallest(APFloat::IEEEsingle(), true);
APFloat PSmallestNormalized =
APFloat::getSmallestNormalized(APFloat::IEEEsingle(), false);
APFloat MSmallestNormalized =
APFloat::getSmallestNormalized(APFloat::IEEEsingle(), true);
const int OverflowStatus = APFloat::opOverflow | APFloat::opInexact;
const unsigned NumTests = 169;
struct {
APFloat x;
APFloat y;
const char *result;
int status;
int category;
} SpecialCaseTests[NumTests] = {
{ PInf, PInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ PInf, MInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, PZero, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, MZero, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PInf, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PInf, PNormalValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, MNormalValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, PLargestValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, MLargestValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, PSmallestValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, MSmallestValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, PSmallestNormalized, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, MSmallestNormalized, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, MInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ MInf, PZero, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, MZero, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MInf, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MInf, PNormalValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, MNormalValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, PLargestValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, MLargestValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, PSmallestValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, MSmallestValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, PSmallestNormalized, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, MSmallestNormalized, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PZero, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PZero, MInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PZero, PZero, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PZero, MZero, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PZero, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PZero, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PZero, PNormalValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ PZero, MNormalValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ PZero, PLargestValue, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ PZero, MLargestValue, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ PZero, PSmallestValue, "-0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ PZero, MSmallestValue, "0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ PZero, PSmallestNormalized, "-0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ PZero, MSmallestNormalized, "0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ MZero, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MZero, MInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MZero, PZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, MZero, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MZero, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MZero, PNormalValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ MZero, MNormalValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ MZero, PLargestValue, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ MZero, MLargestValue, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ MZero, PSmallestValue, "-0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ MZero, MSmallestValue, "0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ MZero, PSmallestNormalized, "-0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ MZero, MSmallestNormalized, "0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ QNaN, PInf, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MInf, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, PZero, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MZero, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ QNaN, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ QNaN, PNormalValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MNormalValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, PLargestValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MLargestValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, PSmallestValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MSmallestValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, PSmallestNormalized, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MSmallestNormalized, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ SNaN, PInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, PZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, QNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, PNormalValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MNormalValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, PLargestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MLargestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, PSmallestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MSmallestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, PSmallestNormalized, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MSmallestNormalized, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PNormalValue, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PNormalValue, MInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PNormalValue, PZero, "0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ PNormalValue, MZero, "0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ PNormalValue, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PNormalValue, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PNormalValue, PNormalValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PNormalValue, MNormalValue, "0x1p+1", APFloat::opOK, APFloat::fcNormal },
{ PNormalValue, PLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PNormalValue, MLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PNormalValue, PSmallestValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ PNormalValue, MSmallestValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ PNormalValue, PSmallestNormalized, "0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ PNormalValue, MSmallestNormalized, "0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ MNormalValue, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MNormalValue, MInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MNormalValue, PZero, "-0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ MNormalValue, MZero, "-0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ MNormalValue, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MNormalValue, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MNormalValue, PNormalValue, "-0x1p+1", APFloat::opOK, APFloat::fcNormal },
{ MNormalValue, MNormalValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MNormalValue, PLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MNormalValue, MLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MNormalValue, PSmallestValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ MNormalValue, MSmallestValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ MNormalValue, PSmallestNormalized, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ MNormalValue, MSmallestNormalized, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ PLargestValue, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PLargestValue, MInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PLargestValue, PZero, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ PLargestValue, MZero, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ PLargestValue, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PLargestValue, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PLargestValue, PNormalValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PLargestValue, MNormalValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PLargestValue, PLargestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PLargestValue, MLargestValue, "inf", OverflowStatus, APFloat::fcInfinity },
{ PLargestValue, PSmallestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PLargestValue, MSmallestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PLargestValue, PSmallestNormalized, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PLargestValue, MSmallestNormalized, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MLargestValue, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MLargestValue, MInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MLargestValue, PZero, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ MLargestValue, MZero, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ MLargestValue, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MLargestValue, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MLargestValue, PNormalValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MLargestValue, MNormalValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MLargestValue, PLargestValue, "-inf", OverflowStatus, APFloat::fcInfinity },
{ MLargestValue, MLargestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MLargestValue, PSmallestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MLargestValue, MSmallestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MLargestValue, PSmallestNormalized, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MLargestValue, MSmallestNormalized, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PSmallestValue, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PSmallestValue, MInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PSmallestValue, PZero, "0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ PSmallestValue, MZero, "0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ PSmallestValue, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PSmallestValue, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PSmallestValue, PNormalValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ PSmallestValue, MNormalValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ PSmallestValue, PLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PSmallestValue, MLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PSmallestValue, PSmallestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PSmallestValue, MSmallestValue, "0x1p-148", APFloat::opOK, APFloat::fcNormal },
{ PSmallestValue, PSmallestNormalized, "-0x1.fffffcp-127", APFloat::opOK, APFloat::fcNormal },
{ PSmallestValue, MSmallestNormalized, "0x1.000002p-126", APFloat::opOK, APFloat::fcNormal },
{ MSmallestValue, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MSmallestValue, MInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MSmallestValue, PZero, "-0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ MSmallestValue, MZero, "-0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ MSmallestValue, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MSmallestValue, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MSmallestValue, PNormalValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ MSmallestValue, MNormalValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ MSmallestValue, PLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MSmallestValue, MLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MSmallestValue, PSmallestValue, "-0x1p-148", APFloat::opOK, APFloat::fcNormal },
{ MSmallestValue, MSmallestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MSmallestValue, PSmallestNormalized, "-0x1.000002p-126", APFloat::opOK, APFloat::fcNormal },
{ MSmallestValue, MSmallestNormalized, "0x1.fffffcp-127", APFloat::opOK, APFloat::fcNormal },
{ PSmallestNormalized, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PSmallestNormalized, MInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PSmallestNormalized, PZero, "0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ PSmallestNormalized, MZero, "0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ PSmallestNormalized, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PSmallestNormalized, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PSmallestNormalized, PNormalValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ PSmallestNormalized, MNormalValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ PSmallestNormalized, PLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PSmallestNormalized, MLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ PSmallestNormalized, PSmallestValue, "0x1.fffffcp-127", APFloat::opOK, APFloat::fcNormal },
{ PSmallestNormalized, MSmallestValue, "0x1.000002p-126", APFloat::opOK, APFloat::fcNormal },
{ PSmallestNormalized, PSmallestNormalized, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PSmallestNormalized, MSmallestNormalized, "0x1p-125", APFloat::opOK, APFloat::fcNormal },
{ MSmallestNormalized, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MSmallestNormalized, MInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MSmallestNormalized, PZero, "-0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ MSmallestNormalized, MZero, "-0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ MSmallestNormalized, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MSmallestNormalized, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MSmallestNormalized, PNormalValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ MSmallestNormalized, MNormalValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal },
{ MSmallestNormalized, PLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MSmallestNormalized, MLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal },
{ MSmallestNormalized, PSmallestValue, "-0x1.000002p-126", APFloat::opOK, APFloat::fcNormal },
{ MSmallestNormalized, MSmallestValue, "-0x1.fffffcp-127", APFloat::opOK, APFloat::fcNormal },
{ MSmallestNormalized, PSmallestNormalized, "-0x1p-125", APFloat::opOK, APFloat::fcNormal },
{ MSmallestNormalized, MSmallestNormalized, "0x0p+0", APFloat::opOK, APFloat::fcZero }
};
for (size_t i = 0; i < NumTests; ++i) {
APFloat x(SpecialCaseTests[i].x);
APFloat y(SpecialCaseTests[i].y);
APFloat::opStatus status = x.subtract(y, APFloat::rmNearestTiesToEven);
APFloat result(APFloat::IEEEsingle(), SpecialCaseTests[i].result);
EXPECT_TRUE(result.bitwiseIsEqual(x));
EXPECT_TRUE((int)status == SpecialCaseTests[i].status);
EXPECT_TRUE((int)x.getCategory() == SpecialCaseTests[i].category);
}
}
TEST(APFloatTest, multiply) {
// Test Special Cases against each other and normal values.
// TODOS/NOTES:
// 1. Since we perform only default exception handling all operations with
// signaling NaNs should have a result that is a quiet NaN. Currently they
// return sNaN.
APFloat PInf = APFloat::getInf(APFloat::IEEEsingle(), false);
APFloat MInf = APFloat::getInf(APFloat::IEEEsingle(), true);
APFloat PZero = APFloat::getZero(APFloat::IEEEsingle(), false);
APFloat MZero = APFloat::getZero(APFloat::IEEEsingle(), true);
APFloat QNaN = APFloat::getNaN(APFloat::IEEEsingle(), false);
APFloat SNaN = APFloat::getSNaN(APFloat::IEEEsingle(), false);
APFloat PNormalValue = APFloat(APFloat::IEEEsingle(), "0x1p+0");
APFloat MNormalValue = APFloat(APFloat::IEEEsingle(), "-0x1p+0");
APFloat PLargestValue = APFloat::getLargest(APFloat::IEEEsingle(), false);
APFloat MLargestValue = APFloat::getLargest(APFloat::IEEEsingle(), true);
APFloat PSmallestValue = APFloat::getSmallest(APFloat::IEEEsingle(), false);
APFloat MSmallestValue = APFloat::getSmallest(APFloat::IEEEsingle(), true);
APFloat PSmallestNormalized =
APFloat::getSmallestNormalized(APFloat::IEEEsingle(), false);
APFloat MSmallestNormalized =
APFloat::getSmallestNormalized(APFloat::IEEEsingle(), true);
const int OverflowStatus = APFloat::opOverflow | APFloat::opInexact;
const int UnderflowStatus = APFloat::opUnderflow | APFloat::opInexact;
const unsigned NumTests = 169;
struct {
APFloat x;
APFloat y;
const char *result;
int status;
int category;
} SpecialCaseTests[NumTests] = {
{ PInf, PInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, PZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ PInf, MZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ PInf, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PInf, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PInf, PNormalValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, MNormalValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, PLargestValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, MLargestValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, PSmallestValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, MSmallestValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, PSmallestNormalized, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, MSmallestNormalized, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, MInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, PZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ MInf, MZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ MInf, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MInf, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MInf, PNormalValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, MNormalValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, PLargestValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, MLargestValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, PSmallestValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, MSmallestValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, PSmallestNormalized, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, MSmallestNormalized, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PZero, PInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ PZero, MInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ PZero, PZero, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PZero, MZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PZero, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PZero, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PZero, PNormalValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PZero, MNormalValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PZero, PLargestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PZero, MLargestValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PZero, PSmallestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PZero, MSmallestValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PZero, PSmallestNormalized, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PZero, MSmallestNormalized, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, PInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ MZero, MInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ MZero, PZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, MZero, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MZero, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MZero, PNormalValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, MNormalValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, PLargestValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, MLargestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, PSmallestValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, MSmallestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, PSmallestNormalized, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, MSmallestNormalized, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ QNaN, PInf, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MInf, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, PZero, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MZero, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ QNaN, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ QNaN, PNormalValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MNormalValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, PLargestValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MLargestValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, PSmallestValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MSmallestValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, PSmallestNormalized, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MSmallestNormalized, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ SNaN, PInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, PZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, QNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, PNormalValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MNormalValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, PLargestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MLargestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, PSmallestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MSmallestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, PSmallestNormalized, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MSmallestNormalized, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PNormalValue, PInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PNormalValue, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PNormalValue, PZero, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PNormalValue, MZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PNormalValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PNormalValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PNormalValue, PNormalValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ PNormalValue, MNormalValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ PNormalValue, PLargestValue, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ PNormalValue, MLargestValue, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ PNormalValue, PSmallestValue, "0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ PNormalValue, MSmallestValue, "-0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ PNormalValue, PSmallestNormalized, "0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ PNormalValue, MSmallestNormalized, "-0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ MNormalValue, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MNormalValue, MInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MNormalValue, PZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MNormalValue, MZero, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MNormalValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MNormalValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MNormalValue, PNormalValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ MNormalValue, MNormalValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ MNormalValue, PLargestValue, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ MNormalValue, MLargestValue, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ MNormalValue, PSmallestValue, "-0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ MNormalValue, MSmallestValue, "0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ MNormalValue, PSmallestNormalized, "-0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ MNormalValue, MSmallestNormalized, "0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ PLargestValue, PInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PLargestValue, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PLargestValue, PZero, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PLargestValue, MZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PLargestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PLargestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PLargestValue, PNormalValue, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ PLargestValue, MNormalValue, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ PLargestValue, PLargestValue, "inf", OverflowStatus, APFloat::fcInfinity },
{ PLargestValue, MLargestValue, "-inf", OverflowStatus, APFloat::fcInfinity },
{ PLargestValue, PSmallestValue, "0x1.fffffep-22", APFloat::opOK, APFloat::fcNormal },
{ PLargestValue, MSmallestValue, "-0x1.fffffep-22", APFloat::opOK, APFloat::fcNormal },
{ PLargestValue, PSmallestNormalized, "0x1.fffffep+1", APFloat::opOK, APFloat::fcNormal },
{ PLargestValue, MSmallestNormalized, "-0x1.fffffep+1", APFloat::opOK, APFloat::fcNormal },
{ MLargestValue, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MLargestValue, MInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MLargestValue, PZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MLargestValue, MZero, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MLargestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MLargestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MLargestValue, PNormalValue, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ MLargestValue, MNormalValue, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ MLargestValue, PLargestValue, "-inf", OverflowStatus, APFloat::fcInfinity },
{ MLargestValue, MLargestValue, "inf", OverflowStatus, APFloat::fcInfinity },
{ MLargestValue, PSmallestValue, "-0x1.fffffep-22", APFloat::opOK, APFloat::fcNormal },
{ MLargestValue, MSmallestValue, "0x1.fffffep-22", APFloat::opOK, APFloat::fcNormal },
{ MLargestValue, PSmallestNormalized, "-0x1.fffffep+1", APFloat::opOK, APFloat::fcNormal },
{ MLargestValue, MSmallestNormalized, "0x1.fffffep+1", APFloat::opOK, APFloat::fcNormal },
{ PSmallestValue, PInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PSmallestValue, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PSmallestValue, PZero, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PSmallestValue, MZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PSmallestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PSmallestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PSmallestValue, PNormalValue, "0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ PSmallestValue, MNormalValue, "-0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ PSmallestValue, PLargestValue, "0x1.fffffep-22", APFloat::opOK, APFloat::fcNormal },
{ PSmallestValue, MLargestValue, "-0x1.fffffep-22", APFloat::opOK, APFloat::fcNormal },
{ PSmallestValue, PSmallestValue, "0x0p+0", UnderflowStatus, APFloat::fcZero },
{ PSmallestValue, MSmallestValue, "-0x0p+0", UnderflowStatus, APFloat::fcZero },
{ PSmallestValue, PSmallestNormalized, "0x0p+0", UnderflowStatus, APFloat::fcZero },
{ PSmallestValue, MSmallestNormalized, "-0x0p+0", UnderflowStatus, APFloat::fcZero },
{ MSmallestValue, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MSmallestValue, MInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MSmallestValue, PZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MSmallestValue, MZero, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MSmallestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MSmallestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MSmallestValue, PNormalValue, "-0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ MSmallestValue, MNormalValue, "0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ MSmallestValue, PLargestValue, "-0x1.fffffep-22", APFloat::opOK, APFloat::fcNormal },
{ MSmallestValue, MLargestValue, "0x1.fffffep-22", APFloat::opOK, APFloat::fcNormal },
{ MSmallestValue, PSmallestValue, "-0x0p+0", UnderflowStatus, APFloat::fcZero },
{ MSmallestValue, MSmallestValue, "0x0p+0", UnderflowStatus, APFloat::fcZero },
{ MSmallestValue, PSmallestNormalized, "-0x0p+0", UnderflowStatus, APFloat::fcZero },
{ MSmallestValue, MSmallestNormalized, "0x0p+0", UnderflowStatus, APFloat::fcZero },
{ PSmallestNormalized, PInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PSmallestNormalized, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PSmallestNormalized, PZero, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PSmallestNormalized, MZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PSmallestNormalized, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PSmallestNormalized, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PSmallestNormalized, PNormalValue, "0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ PSmallestNormalized, MNormalValue, "-0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ PSmallestNormalized, PLargestValue, "0x1.fffffep+1", APFloat::opOK, APFloat::fcNormal },
{ PSmallestNormalized, MLargestValue, "-0x1.fffffep+1", APFloat::opOK, APFloat::fcNormal },
{ PSmallestNormalized, PSmallestValue, "0x0p+0", UnderflowStatus, APFloat::fcZero },
{ PSmallestNormalized, MSmallestValue, "-0x0p+0", UnderflowStatus, APFloat::fcZero },
{ PSmallestNormalized, PSmallestNormalized, "0x0p+0", UnderflowStatus, APFloat::fcZero },
{ PSmallestNormalized, MSmallestNormalized, "-0x0p+0", UnderflowStatus, APFloat::fcZero },
{ MSmallestNormalized, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MSmallestNormalized, MInf, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MSmallestNormalized, PZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MSmallestNormalized, MZero, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MSmallestNormalized, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MSmallestNormalized, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MSmallestNormalized, PNormalValue, "-0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ MSmallestNormalized, MNormalValue, "0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ MSmallestNormalized, PLargestValue, "-0x1.fffffep+1", APFloat::opOK, APFloat::fcNormal },
{ MSmallestNormalized, MLargestValue, "0x1.fffffep+1", APFloat::opOK, APFloat::fcNormal },
{ MSmallestNormalized, PSmallestValue, "-0x0p+0", UnderflowStatus, APFloat::fcZero },
{ MSmallestNormalized, MSmallestValue, "0x0p+0", UnderflowStatus, APFloat::fcZero },
{ MSmallestNormalized, PSmallestNormalized, "-0x0p+0", UnderflowStatus, APFloat::fcZero },
{ MSmallestNormalized, MSmallestNormalized, "0x0p+0", UnderflowStatus, APFloat::fcZero }
};
for (size_t i = 0; i < NumTests; ++i) {
APFloat x(SpecialCaseTests[i].x);
APFloat y(SpecialCaseTests[i].y);
APFloat::opStatus status = x.multiply(y, APFloat::rmNearestTiesToEven);
APFloat result(APFloat::IEEEsingle(), SpecialCaseTests[i].result);
EXPECT_TRUE(result.bitwiseIsEqual(x));
EXPECT_TRUE((int)status == SpecialCaseTests[i].status);
EXPECT_TRUE((int)x.getCategory() == SpecialCaseTests[i].category);
}
}
TEST(APFloatTest, divide) {
// Test Special Cases against each other and normal values.
// TODOS/NOTES:
// 1. Since we perform only default exception handling all operations with
// signaling NaNs should have a result that is a quiet NaN. Currently they
// return sNaN.
APFloat PInf = APFloat::getInf(APFloat::IEEEsingle(), false);
APFloat MInf = APFloat::getInf(APFloat::IEEEsingle(), true);
APFloat PZero = APFloat::getZero(APFloat::IEEEsingle(), false);
APFloat MZero = APFloat::getZero(APFloat::IEEEsingle(), true);
APFloat QNaN = APFloat::getNaN(APFloat::IEEEsingle(), false);
APFloat SNaN = APFloat::getSNaN(APFloat::IEEEsingle(), false);
APFloat PNormalValue = APFloat(APFloat::IEEEsingle(), "0x1p+0");
APFloat MNormalValue = APFloat(APFloat::IEEEsingle(), "-0x1p+0");
APFloat PLargestValue = APFloat::getLargest(APFloat::IEEEsingle(), false);
APFloat MLargestValue = APFloat::getLargest(APFloat::IEEEsingle(), true);
APFloat PSmallestValue = APFloat::getSmallest(APFloat::IEEEsingle(), false);
APFloat MSmallestValue = APFloat::getSmallest(APFloat::IEEEsingle(), true);
APFloat PSmallestNormalized =
APFloat::getSmallestNormalized(APFloat::IEEEsingle(), false);
APFloat MSmallestNormalized =
APFloat::getSmallestNormalized(APFloat::IEEEsingle(), true);
const int OverflowStatus = APFloat::opOverflow | APFloat::opInexact;
const int UnderflowStatus = APFloat::opUnderflow | APFloat::opInexact;
const unsigned NumTests = 169;
struct {
APFloat x;
APFloat y;
const char *result;
int status;
int category;
} SpecialCaseTests[NumTests] = {
{ PInf, PInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ PInf, MInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ PInf, PZero, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, MZero, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PInf, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PInf, PNormalValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, MNormalValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, PLargestValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, MLargestValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, PSmallestValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, MSmallestValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, PSmallestNormalized, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PInf, MSmallestNormalized, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, PInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ MInf, MInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ MInf, PZero, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, MZero, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MInf, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MInf, PNormalValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, MNormalValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, PLargestValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, MLargestValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, PSmallestValue, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, MSmallestValue, "inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, PSmallestNormalized, "-inf", APFloat::opOK, APFloat::fcInfinity },
{ MInf, MSmallestNormalized, "inf", APFloat::opOK, APFloat::fcInfinity },
{ PZero, PInf, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PZero, MInf, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PZero, PZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ PZero, MZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ PZero, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PZero, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PZero, PNormalValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PZero, MNormalValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PZero, PLargestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PZero, MLargestValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PZero, PSmallestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PZero, MSmallestValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PZero, PSmallestNormalized, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PZero, MSmallestNormalized, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, PInf, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, MInf, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, PZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ MZero, MZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ MZero, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MZero, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MZero, PNormalValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, MNormalValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, PLargestValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, MLargestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, PSmallestValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, MSmallestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, PSmallestNormalized, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MZero, MSmallestNormalized, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ QNaN, PInf, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MInf, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, PZero, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MZero, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ QNaN, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ QNaN, PNormalValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MNormalValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, PLargestValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MLargestValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, PSmallestValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MSmallestValue, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, PSmallestNormalized, "nan", APFloat::opOK, APFloat::fcNaN },
{ QNaN, MSmallestNormalized, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ SNaN, PInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, PZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, QNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, PNormalValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MNormalValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, PLargestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MLargestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, PSmallestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MSmallestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, PSmallestNormalized, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
{ SNaN, MSmallestNormalized, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PNormalValue, PInf, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PNormalValue, MInf, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PNormalValue, PZero, "inf", APFloat::opDivByZero, APFloat::fcInfinity },
{ PNormalValue, MZero, "-inf", APFloat::opDivByZero, APFloat::fcInfinity },
{ PNormalValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PNormalValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PNormalValue, PNormalValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ PNormalValue, MNormalValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ PNormalValue, PLargestValue, "0x1p-128", UnderflowStatus, APFloat::fcNormal },
{ PNormalValue, MLargestValue, "-0x1p-128", UnderflowStatus, APFloat::fcNormal },
{ PNormalValue, PSmallestValue, "inf", OverflowStatus, APFloat::fcInfinity },
{ PNormalValue, MSmallestValue, "-inf", OverflowStatus, APFloat::fcInfinity },
{ PNormalValue, PSmallestNormalized, "0x1p+126", APFloat::opOK, APFloat::fcNormal },
{ PNormalValue, MSmallestNormalized, "-0x1p+126", APFloat::opOK, APFloat::fcNormal },
{ MNormalValue, PInf, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MNormalValue, MInf, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MNormalValue, PZero, "-inf", APFloat::opDivByZero, APFloat::fcInfinity },
{ MNormalValue, MZero, "inf", APFloat::opDivByZero, APFloat::fcInfinity },
{ MNormalValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MNormalValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MNormalValue, PNormalValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ MNormalValue, MNormalValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ MNormalValue, PLargestValue, "-0x1p-128", UnderflowStatus, APFloat::fcNormal },
{ MNormalValue, MLargestValue, "0x1p-128", UnderflowStatus, APFloat::fcNormal },
{ MNormalValue, PSmallestValue, "-inf", OverflowStatus, APFloat::fcInfinity },
{ MNormalValue, MSmallestValue, "inf", OverflowStatus, APFloat::fcInfinity },
{ MNormalValue, PSmallestNormalized, "-0x1p+126", APFloat::opOK, APFloat::fcNormal },
{ MNormalValue, MSmallestNormalized, "0x1p+126", APFloat::opOK, APFloat::fcNormal },
{ PLargestValue, PInf, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PLargestValue, MInf, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PLargestValue, PZero, "inf", APFloat::opDivByZero, APFloat::fcInfinity },
{ PLargestValue, MZero, "-inf", APFloat::opDivByZero, APFloat::fcInfinity },
{ PLargestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PLargestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PLargestValue, PNormalValue, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ PLargestValue, MNormalValue, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ PLargestValue, PLargestValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ PLargestValue, MLargestValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ PLargestValue, PSmallestValue, "inf", OverflowStatus, APFloat::fcInfinity },
{ PLargestValue, MSmallestValue, "-inf", OverflowStatus, APFloat::fcInfinity },
{ PLargestValue, PSmallestNormalized, "inf", OverflowStatus, APFloat::fcInfinity },
{ PLargestValue, MSmallestNormalized, "-inf", OverflowStatus, APFloat::fcInfinity },
{ MLargestValue, PInf, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MLargestValue, MInf, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MLargestValue, PZero, "-inf", APFloat::opDivByZero, APFloat::fcInfinity },
{ MLargestValue, MZero, "inf", APFloat::opDivByZero, APFloat::fcInfinity },
{ MLargestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MLargestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MLargestValue, PNormalValue, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ MLargestValue, MNormalValue, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal },
{ MLargestValue, PLargestValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ MLargestValue, MLargestValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ MLargestValue, PSmallestValue, "-inf", OverflowStatus, APFloat::fcInfinity },
{ MLargestValue, MSmallestValue, "inf", OverflowStatus, APFloat::fcInfinity },
{ MLargestValue, PSmallestNormalized, "-inf", OverflowStatus, APFloat::fcInfinity },
{ MLargestValue, MSmallestNormalized, "inf", OverflowStatus, APFloat::fcInfinity },
{ PSmallestValue, PInf, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PSmallestValue, MInf, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PSmallestValue, PZero, "inf", APFloat::opDivByZero, APFloat::fcInfinity },
{ PSmallestValue, MZero, "-inf", APFloat::opDivByZero, APFloat::fcInfinity },
{ PSmallestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PSmallestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PSmallestValue, PNormalValue, "0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ PSmallestValue, MNormalValue, "-0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ PSmallestValue, PLargestValue, "0x0p+0", UnderflowStatus, APFloat::fcZero },
{ PSmallestValue, MLargestValue, "-0x0p+0", UnderflowStatus, APFloat::fcZero },
{ PSmallestValue, PSmallestValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ PSmallestValue, MSmallestValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ PSmallestValue, PSmallestNormalized, "0x1p-23", APFloat::opOK, APFloat::fcNormal },
{ PSmallestValue, MSmallestNormalized, "-0x1p-23", APFloat::opOK, APFloat::fcNormal },
{ MSmallestValue, PInf, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MSmallestValue, MInf, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MSmallestValue, PZero, "-inf", APFloat::opDivByZero, APFloat::fcInfinity },
{ MSmallestValue, MZero, "inf", APFloat::opDivByZero, APFloat::fcInfinity },
{ MSmallestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MSmallestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MSmallestValue, PNormalValue, "-0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ MSmallestValue, MNormalValue, "0x1p-149", APFloat::opOK, APFloat::fcNormal },
{ MSmallestValue, PLargestValue, "-0x0p+0", UnderflowStatus, APFloat::fcZero },
{ MSmallestValue, MLargestValue, "0x0p+0", UnderflowStatus, APFloat::fcZero },
{ MSmallestValue, PSmallestValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ MSmallestValue, MSmallestValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ MSmallestValue, PSmallestNormalized, "-0x1p-23", APFloat::opOK, APFloat::fcNormal },
{ MSmallestValue, MSmallestNormalized, "0x1p-23", APFloat::opOK, APFloat::fcNormal },
{ PSmallestNormalized, PInf, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PSmallestNormalized, MInf, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ PSmallestNormalized, PZero, "inf", APFloat::opDivByZero, APFloat::fcInfinity },
{ PSmallestNormalized, MZero, "-inf", APFloat::opDivByZero, APFloat::fcInfinity },
{ PSmallestNormalized, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ PSmallestNormalized, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ PSmallestNormalized, PNormalValue, "0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ PSmallestNormalized, MNormalValue, "-0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ PSmallestNormalized, PLargestValue, "0x0p+0", UnderflowStatus, APFloat::fcZero },
{ PSmallestNormalized, MLargestValue, "-0x0p+0", UnderflowStatus, APFloat::fcZero },
{ PSmallestNormalized, PSmallestValue, "0x1p+23", APFloat::opOK, APFloat::fcNormal },
{ PSmallestNormalized, MSmallestValue, "-0x1p+23", APFloat::opOK, APFloat::fcNormal },
{ PSmallestNormalized, PSmallestNormalized, "0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ PSmallestNormalized, MSmallestNormalized, "-0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ MSmallestNormalized, PInf, "-0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MSmallestNormalized, MInf, "0x0p+0", APFloat::opOK, APFloat::fcZero },
{ MSmallestNormalized, PZero, "-inf", APFloat::opDivByZero, APFloat::fcInfinity },
{ MSmallestNormalized, MZero, "inf", APFloat::opDivByZero, APFloat::fcInfinity },
{ MSmallestNormalized, QNaN, "nan", APFloat::opOK, APFloat::fcNaN },
#if 0
// See Note 1.
{ MSmallestNormalized, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN },
#endif
{ MSmallestNormalized, PNormalValue, "-0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ MSmallestNormalized, MNormalValue, "0x1p-126", APFloat::opOK, APFloat::fcNormal },
{ MSmallestNormalized, PLargestValue, "-0x0p+0", UnderflowStatus, APFloat::fcZero },
{ MSmallestNormalized, MLargestValue, "0x0p+0", UnderflowStatus, APFloat::fcZero },
{ MSmallestNormalized, PSmallestValue, "-0x1p+23", APFloat::opOK, APFloat::fcNormal },
{ MSmallestNormalized, MSmallestValue, "0x1p+23", APFloat::opOK, APFloat::fcNormal },
{ MSmallestNormalized, PSmallestNormalized, "-0x1p+0", APFloat::opOK, APFloat::fcNormal },
{ MSmallestNormalized, MSmallestNormalized, "0x1p+0", APFloat::opOK, APFloat::fcNormal },
};
for (size_t i = 0; i < NumTests; ++i) {
APFloat x(SpecialCaseTests[i].x);
APFloat y(SpecialCaseTests[i].y);
APFloat::opStatus status = x.divide(y, APFloat::rmNearestTiesToEven);
APFloat result(APFloat::IEEEsingle(), SpecialCaseTests[i].result);
EXPECT_TRUE(result.bitwiseIsEqual(x));
EXPECT_TRUE((int)status == SpecialCaseTests[i].status);
EXPECT_TRUE((int)x.getCategory() == SpecialCaseTests[i].category);
}
}
TEST(APFloatTest, operatorOverloads) {
// This is mostly testing that these operator overloads compile.
APFloat One = APFloat(APFloat::IEEEsingle(), "0x1p+0");
APFloat Two = APFloat(APFloat::IEEEsingle(), "0x2p+0");
EXPECT_TRUE(Two.bitwiseIsEqual(One + One));
EXPECT_TRUE(One.bitwiseIsEqual(Two - One));
EXPECT_TRUE(Two.bitwiseIsEqual(One * Two));
EXPECT_TRUE(One.bitwiseIsEqual(Two / Two));
}
TEST(APFloatTest, abs) {
APFloat PInf = APFloat::getInf(APFloat::IEEEsingle(), false);
APFloat MInf = APFloat::getInf(APFloat::IEEEsingle(), true);
APFloat PZero = APFloat::getZero(APFloat::IEEEsingle(), false);
APFloat MZero = APFloat::getZero(APFloat::IEEEsingle(), true);
APFloat PQNaN = APFloat::getNaN(APFloat::IEEEsingle(), false);
APFloat MQNaN = APFloat::getNaN(APFloat::IEEEsingle(), true);
APFloat PSNaN = APFloat::getSNaN(APFloat::IEEEsingle(), false);
APFloat MSNaN = APFloat::getSNaN(APFloat::IEEEsingle(), true);
APFloat PNormalValue = APFloat(APFloat::IEEEsingle(), "0x1p+0");
APFloat MNormalValue = APFloat(APFloat::IEEEsingle(), "-0x1p+0");
APFloat PLargestValue = APFloat::getLargest(APFloat::IEEEsingle(), false);
APFloat MLargestValue = APFloat::getLargest(APFloat::IEEEsingle(), true);
APFloat PSmallestValue = APFloat::getSmallest(APFloat::IEEEsingle(), false);
APFloat MSmallestValue = APFloat::getSmallest(APFloat::IEEEsingle(), true);
APFloat PSmallestNormalized =
APFloat::getSmallestNormalized(APFloat::IEEEsingle(), false);
APFloat MSmallestNormalized =
APFloat::getSmallestNormalized(APFloat::IEEEsingle(), true);
EXPECT_TRUE(PInf.bitwiseIsEqual(abs(PInf)));
EXPECT_TRUE(PInf.bitwiseIsEqual(abs(MInf)));
EXPECT_TRUE(PZero.bitwiseIsEqual(abs(PZero)));
EXPECT_TRUE(PZero.bitwiseIsEqual(abs(MZero)));
EXPECT_TRUE(PQNaN.bitwiseIsEqual(abs(PQNaN)));
EXPECT_TRUE(PQNaN.bitwiseIsEqual(abs(MQNaN)));
EXPECT_TRUE(PSNaN.bitwiseIsEqual(abs(PSNaN)));
EXPECT_TRUE(PSNaN.bitwiseIsEqual(abs(MSNaN)));
EXPECT_TRUE(PNormalValue.bitwiseIsEqual(abs(PNormalValue)));
EXPECT_TRUE(PNormalValue.bitwiseIsEqual(abs(MNormalValue)));
EXPECT_TRUE(PLargestValue.bitwiseIsEqual(abs(PLargestValue)));
EXPECT_TRUE(PLargestValue.bitwiseIsEqual(abs(MLargestValue)));
EXPECT_TRUE(PSmallestValue.bitwiseIsEqual(abs(PSmallestValue)));
EXPECT_TRUE(PSmallestValue.bitwiseIsEqual(abs(MSmallestValue)));
EXPECT_TRUE(PSmallestNormalized.bitwiseIsEqual(abs(PSmallestNormalized)));
EXPECT_TRUE(PSmallestNormalized.bitwiseIsEqual(abs(MSmallestNormalized)));
}
TEST(APFloatTest, neg) {
APFloat One = APFloat(APFloat::IEEEsingle(), "1.0");
APFloat NegOne = APFloat(APFloat::IEEEsingle(), "-1.0");
APFloat Zero = APFloat::getZero(APFloat::IEEEsingle(), false);
APFloat NegZero = APFloat::getZero(APFloat::IEEEsingle(), true);
APFloat Inf = APFloat::getInf(APFloat::IEEEsingle(), false);
APFloat NegInf = APFloat::getInf(APFloat::IEEEsingle(), true);
APFloat QNaN = APFloat::getNaN(APFloat::IEEEsingle(), false);
APFloat NegQNaN = APFloat::getNaN(APFloat::IEEEsingle(), true);
EXPECT_TRUE(NegOne.bitwiseIsEqual(neg(One)));
EXPECT_TRUE(One.bitwiseIsEqual(neg(NegOne)));
EXPECT_TRUE(NegZero.bitwiseIsEqual(neg(Zero)));
EXPECT_TRUE(Zero.bitwiseIsEqual(neg(NegZero)));
EXPECT_TRUE(NegInf.bitwiseIsEqual(neg(Inf)));
EXPECT_TRUE(Inf.bitwiseIsEqual(neg(NegInf)));
EXPECT_TRUE(NegInf.bitwiseIsEqual(neg(Inf)));
EXPECT_TRUE(Inf.bitwiseIsEqual(neg(NegInf)));
EXPECT_TRUE(NegQNaN.bitwiseIsEqual(neg(QNaN)));
EXPECT_TRUE(QNaN.bitwiseIsEqual(neg(NegQNaN)));
}
TEST(APFloatTest, ilogb) {
EXPECT_EQ(-1074, ilogb(APFloat::getSmallest(APFloat::IEEEdouble(), false)));
EXPECT_EQ(-1074, ilogb(APFloat::getSmallest(APFloat::IEEEdouble(), true)));
EXPECT_EQ(-1023, ilogb(APFloat(APFloat::IEEEdouble(), "0x1.ffffffffffffep-1024")));
EXPECT_EQ(-1023, ilogb(APFloat(APFloat::IEEEdouble(), "0x1.ffffffffffffep-1023")));
EXPECT_EQ(-1023, ilogb(APFloat(APFloat::IEEEdouble(), "-0x1.ffffffffffffep-1023")));
EXPECT_EQ(-51, ilogb(APFloat(APFloat::IEEEdouble(), "0x1p-51")));
EXPECT_EQ(-1023, ilogb(APFloat(APFloat::IEEEdouble(), "0x1.c60f120d9f87cp-1023")));
EXPECT_EQ(-2, ilogb(APFloat(APFloat::IEEEdouble(), "0x0.ffffp-1")));
EXPECT_EQ(-1023, ilogb(APFloat(APFloat::IEEEdouble(), "0x1.fffep-1023")));
EXPECT_EQ(1023, ilogb(APFloat::getLargest(APFloat::IEEEdouble(), false)));
EXPECT_EQ(1023, ilogb(APFloat::getLargest(APFloat::IEEEdouble(), true)));
EXPECT_EQ(0, ilogb(APFloat(APFloat::IEEEsingle(), "0x1p+0")));
EXPECT_EQ(0, ilogb(APFloat(APFloat::IEEEsingle(), "-0x1p+0")));
EXPECT_EQ(42, ilogb(APFloat(APFloat::IEEEsingle(), "0x1p+42")));
EXPECT_EQ(-42, ilogb(APFloat(APFloat::IEEEsingle(), "0x1p-42")));
EXPECT_EQ(APFloat::IEK_Inf,
ilogb(APFloat::getInf(APFloat::IEEEsingle(), false)));
EXPECT_EQ(APFloat::IEK_Inf,
ilogb(APFloat::getInf(APFloat::IEEEsingle(), true)));
EXPECT_EQ(APFloat::IEK_Zero,
ilogb(APFloat::getZero(APFloat::IEEEsingle(), false)));
EXPECT_EQ(APFloat::IEK_Zero,
ilogb(APFloat::getZero(APFloat::IEEEsingle(), true)));
EXPECT_EQ(APFloat::IEK_NaN,
ilogb(APFloat::getNaN(APFloat::IEEEsingle(), false)));
EXPECT_EQ(APFloat::IEK_NaN,
ilogb(APFloat::getSNaN(APFloat::IEEEsingle(), false)));
EXPECT_EQ(127, ilogb(APFloat::getLargest(APFloat::IEEEsingle(), false)));
EXPECT_EQ(127, ilogb(APFloat::getLargest(APFloat::IEEEsingle(), true)));
EXPECT_EQ(-149, ilogb(APFloat::getSmallest(APFloat::IEEEsingle(), false)));
EXPECT_EQ(-149, ilogb(APFloat::getSmallest(APFloat::IEEEsingle(), true)));
EXPECT_EQ(-126,
ilogb(APFloat::getSmallestNormalized(APFloat::IEEEsingle(), false)));
EXPECT_EQ(-126,
ilogb(APFloat::getSmallestNormalized(APFloat::IEEEsingle(), true)));
}
TEST(APFloatTest, scalbn) {
const APFloat::roundingMode RM = APFloat::rmNearestTiesToEven;
EXPECT_TRUE(
APFloat(APFloat::IEEEsingle(), "0x1p+0")
.bitwiseIsEqual(scalbn(APFloat(APFloat::IEEEsingle(), "0x1p+0"), 0, RM)));
EXPECT_TRUE(
APFloat(APFloat::IEEEsingle(), "0x1p+42")
.bitwiseIsEqual(scalbn(APFloat(APFloat::IEEEsingle(), "0x1p+0"), 42, RM)));
EXPECT_TRUE(
APFloat(APFloat::IEEEsingle(), "0x1p-42")
.bitwiseIsEqual(scalbn(APFloat(APFloat::IEEEsingle(), "0x1p+0"), -42, RM)));
APFloat PInf = APFloat::getInf(APFloat::IEEEsingle(), false);
APFloat MInf = APFloat::getInf(APFloat::IEEEsingle(), true);
APFloat PZero = APFloat::getZero(APFloat::IEEEsingle(), false);
APFloat MZero = APFloat::getZero(APFloat::IEEEsingle(), true);
APFloat QPNaN = APFloat::getNaN(APFloat::IEEEsingle(), false);
APFloat QMNaN = APFloat::getNaN(APFloat::IEEEsingle(), true);
APFloat SNaN = APFloat::getSNaN(APFloat::IEEEsingle(), false);
EXPECT_TRUE(PInf.bitwiseIsEqual(scalbn(PInf, 0, RM)));
EXPECT_TRUE(MInf.bitwiseIsEqual(scalbn(MInf, 0, RM)));
EXPECT_TRUE(PZero.bitwiseIsEqual(scalbn(PZero, 0, RM)));
EXPECT_TRUE(MZero.bitwiseIsEqual(scalbn(MZero, 0, RM)));
EXPECT_TRUE(QPNaN.bitwiseIsEqual(scalbn(QPNaN, 0, RM)));
EXPECT_TRUE(QMNaN.bitwiseIsEqual(scalbn(QMNaN, 0, RM)));
EXPECT_FALSE(scalbn(SNaN, 0, RM).isSignaling());
APFloat ScalbnSNaN = scalbn(SNaN, 1, RM);
EXPECT_TRUE(ScalbnSNaN.isNaN() && !ScalbnSNaN.isSignaling());
// Make sure highest bit of payload is preserved.
const APInt Payload(64, (UINT64_C(1) << 50) |
(UINT64_C(1) << 49) |
(UINT64_C(1234) << 32) |
1);
APFloat SNaNWithPayload = APFloat::getSNaN(APFloat::IEEEdouble(), false,
&Payload);
APFloat QuietPayload = scalbn(SNaNWithPayload, 1, RM);
EXPECT_TRUE(QuietPayload.isNaN() && !QuietPayload.isSignaling());
EXPECT_EQ(Payload, QuietPayload.bitcastToAPInt().getLoBits(51));
EXPECT_TRUE(PInf.bitwiseIsEqual(
scalbn(APFloat(APFloat::IEEEsingle(), "0x1p+0"), 128, RM)));
EXPECT_TRUE(MInf.bitwiseIsEqual(
scalbn(APFloat(APFloat::IEEEsingle(), "-0x1p+0"), 128, RM)));
EXPECT_TRUE(PInf.bitwiseIsEqual(
scalbn(APFloat(APFloat::IEEEsingle(), "0x1p+127"), 1, RM)));
EXPECT_TRUE(PZero.bitwiseIsEqual(
scalbn(APFloat(APFloat::IEEEsingle(), "0x1p-127"), -127, RM)));
EXPECT_TRUE(MZero.bitwiseIsEqual(
scalbn(APFloat(APFloat::IEEEsingle(), "-0x1p-127"), -127, RM)));
EXPECT_TRUE(APFloat(APFloat::IEEEsingle(), "-0x1p-149").bitwiseIsEqual(
scalbn(APFloat(APFloat::IEEEsingle(), "-0x1p-127"), -22, RM)));
EXPECT_TRUE(PZero.bitwiseIsEqual(
scalbn(APFloat(APFloat::IEEEsingle(), "0x1p-126"), -24, RM)));
APFloat SmallestF64 = APFloat::getSmallest(APFloat::IEEEdouble(), false);
APFloat NegSmallestF64 = APFloat::getSmallest(APFloat::IEEEdouble(), true);
APFloat LargestF64 = APFloat::getLargest(APFloat::IEEEdouble(), false);
APFloat NegLargestF64 = APFloat::getLargest(APFloat::IEEEdouble(), true);
APFloat SmallestNormalizedF64
= APFloat::getSmallestNormalized(APFloat::IEEEdouble(), false);
APFloat NegSmallestNormalizedF64
= APFloat::getSmallestNormalized(APFloat::IEEEdouble(), true);
APFloat LargestDenormalF64(APFloat::IEEEdouble(), "0x1.ffffffffffffep-1023");
APFloat NegLargestDenormalF64(APFloat::IEEEdouble(), "-0x1.ffffffffffffep-1023");
EXPECT_TRUE(SmallestF64.bitwiseIsEqual(
scalbn(APFloat(APFloat::IEEEdouble(), "0x1p-1074"), 0, RM)));
EXPECT_TRUE(NegSmallestF64.bitwiseIsEqual(
scalbn(APFloat(APFloat::IEEEdouble(), "-0x1p-1074"), 0, RM)));
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1p+1023")
.bitwiseIsEqual(scalbn(SmallestF64, 2097, RM)));
EXPECT_TRUE(scalbn(SmallestF64, -2097, RM).isPosZero());
EXPECT_TRUE(scalbn(SmallestF64, -2098, RM).isPosZero());
EXPECT_TRUE(scalbn(SmallestF64, -2099, RM).isPosZero());
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1p+1022")
.bitwiseIsEqual(scalbn(SmallestF64, 2096, RM)));
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1p+1023")
.bitwiseIsEqual(scalbn(SmallestF64, 2097, RM)));
EXPECT_TRUE(scalbn(SmallestF64, 2098, RM).isInfinity());
EXPECT_TRUE(scalbn(SmallestF64, 2099, RM).isInfinity());
// Test for integer overflows when adding to exponent.
EXPECT_TRUE(scalbn(SmallestF64, -INT_MAX, RM).isPosZero());
EXPECT_TRUE(scalbn(LargestF64, INT_MAX, RM).isInfinity());
EXPECT_TRUE(LargestDenormalF64
.bitwiseIsEqual(scalbn(LargestDenormalF64, 0, RM)));
EXPECT_TRUE(NegLargestDenormalF64
.bitwiseIsEqual(scalbn(NegLargestDenormalF64, 0, RM)));
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.ffffffffffffep-1022")
.bitwiseIsEqual(scalbn(LargestDenormalF64, 1, RM)));
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "-0x1.ffffffffffffep-1021")
.bitwiseIsEqual(scalbn(NegLargestDenormalF64, 2, RM)));
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.ffffffffffffep+1")
.bitwiseIsEqual(scalbn(LargestDenormalF64, 1024, RM)));
EXPECT_TRUE(scalbn(LargestDenormalF64, -1023, RM).isPosZero());
EXPECT_TRUE(scalbn(LargestDenormalF64, -1024, RM).isPosZero());
EXPECT_TRUE(scalbn(LargestDenormalF64, -2048, RM).isPosZero());
EXPECT_TRUE(scalbn(LargestDenormalF64, 2047, RM).isInfinity());
EXPECT_TRUE(scalbn(LargestDenormalF64, 2098, RM).isInfinity());
EXPECT_TRUE(scalbn(LargestDenormalF64, 2099, RM).isInfinity());
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.ffffffffffffep-2")
.bitwiseIsEqual(scalbn(LargestDenormalF64, 1021, RM)));
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.ffffffffffffep-1")
.bitwiseIsEqual(scalbn(LargestDenormalF64, 1022, RM)));
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.ffffffffffffep+0")
.bitwiseIsEqual(scalbn(LargestDenormalF64, 1023, RM)));
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.ffffffffffffep+1023")
.bitwiseIsEqual(scalbn(LargestDenormalF64, 2046, RM)));
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1p+974")
.bitwiseIsEqual(scalbn(SmallestF64, 2048, RM)));
APFloat RandomDenormalF64(APFloat::IEEEdouble(), "0x1.c60f120d9f87cp+51");
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.c60f120d9f87cp-972")
.bitwiseIsEqual(scalbn(RandomDenormalF64, -1023, RM)));
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.c60f120d9f87cp-1")
.bitwiseIsEqual(scalbn(RandomDenormalF64, -52, RM)));
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.c60f120d9f87cp-2")
.bitwiseIsEqual(scalbn(RandomDenormalF64, -53, RM)));
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.c60f120d9f87cp+0")
.bitwiseIsEqual(scalbn(RandomDenormalF64, -51, RM)));
EXPECT_TRUE(scalbn(RandomDenormalF64, -2097, RM).isPosZero());
EXPECT_TRUE(scalbn(RandomDenormalF64, -2090, RM).isPosZero());
EXPECT_TRUE(
APFloat(APFloat::IEEEdouble(), "-0x1p-1073")
.bitwiseIsEqual(scalbn(NegLargestF64, -2097, RM)));
EXPECT_TRUE(
APFloat(APFloat::IEEEdouble(), "-0x1p-1024")
.bitwiseIsEqual(scalbn(NegLargestF64, -2048, RM)));
EXPECT_TRUE(
APFloat(APFloat::IEEEdouble(), "0x1p-1073")
.bitwiseIsEqual(scalbn(LargestF64, -2097, RM)));
EXPECT_TRUE(
APFloat(APFloat::IEEEdouble(), "0x1p-1074")
.bitwiseIsEqual(scalbn(LargestF64, -2098, RM)));
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "-0x1p-1074")
.bitwiseIsEqual(scalbn(NegLargestF64, -2098, RM)));
EXPECT_TRUE(scalbn(NegLargestF64, -2099, RM).isNegZero());
EXPECT_TRUE(scalbn(LargestF64, 1, RM).isInfinity());
EXPECT_TRUE(
APFloat(APFloat::IEEEdouble(), "0x1p+0")
.bitwiseIsEqual(scalbn(APFloat(APFloat::IEEEdouble(), "0x1p+52"), -52, RM)));
EXPECT_TRUE(
APFloat(APFloat::IEEEdouble(), "0x1p-103")
.bitwiseIsEqual(scalbn(APFloat(APFloat::IEEEdouble(), "0x1p-51"), -52, RM)));
}
TEST(APFloatTest, frexp) {
const APFloat::roundingMode RM = APFloat::rmNearestTiesToEven;
APFloat PZero = APFloat::getZero(APFloat::IEEEdouble(), false);
APFloat MZero = APFloat::getZero(APFloat::IEEEdouble(), true);
APFloat One(1.0);
APFloat MOne(-1.0);
APFloat Two(2.0);
APFloat MTwo(-2.0);
APFloat LargestDenormal(APFloat::IEEEdouble(), "0x1.ffffffffffffep-1023");
APFloat NegLargestDenormal(APFloat::IEEEdouble(), "-0x1.ffffffffffffep-1023");
APFloat Smallest = APFloat::getSmallest(APFloat::IEEEdouble(), false);
APFloat NegSmallest = APFloat::getSmallest(APFloat::IEEEdouble(), true);
APFloat Largest = APFloat::getLargest(APFloat::IEEEdouble(), false);
APFloat NegLargest = APFloat::getLargest(APFloat::IEEEdouble(), true);
APFloat PInf = APFloat::getInf(APFloat::IEEEdouble(), false);
APFloat MInf = APFloat::getInf(APFloat::IEEEdouble(), true);
APFloat QPNaN = APFloat::getNaN(APFloat::IEEEdouble(), false);
APFloat QMNaN = APFloat::getNaN(APFloat::IEEEdouble(), true);
APFloat SNaN = APFloat::getSNaN(APFloat::IEEEdouble(), false);
// Make sure highest bit of payload is preserved.
const APInt Payload(64, (UINT64_C(1) << 50) |
(UINT64_C(1) << 49) |
(UINT64_C(1234) << 32) |
1);
APFloat SNaNWithPayload = APFloat::getSNaN(APFloat::IEEEdouble(), false,
&Payload);
APFloat SmallestNormalized
= APFloat::getSmallestNormalized(APFloat::IEEEdouble(), false);
APFloat NegSmallestNormalized
= APFloat::getSmallestNormalized(APFloat::IEEEdouble(), true);
int Exp;
APFloat Frac(APFloat::IEEEdouble());
Frac = frexp(PZero, Exp, RM);
EXPECT_EQ(0, Exp);
EXPECT_TRUE(Frac.isPosZero());
Frac = frexp(MZero, Exp, RM);
EXPECT_EQ(0, Exp);
EXPECT_TRUE(Frac.isNegZero());
Frac = frexp(One, Exp, RM);
EXPECT_EQ(1, Exp);
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1p-1").bitwiseIsEqual(Frac));
Frac = frexp(MOne, Exp, RM);
EXPECT_EQ(1, Exp);
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "-0x1p-1").bitwiseIsEqual(Frac));
Frac = frexp(LargestDenormal, Exp, RM);
EXPECT_EQ(-1022, Exp);
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.ffffffffffffep-1").bitwiseIsEqual(Frac));
Frac = frexp(NegLargestDenormal, Exp, RM);
EXPECT_EQ(-1022, Exp);
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "-0x1.ffffffffffffep-1").bitwiseIsEqual(Frac));
Frac = frexp(Smallest, Exp, RM);
EXPECT_EQ(-1073, Exp);
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1p-1").bitwiseIsEqual(Frac));
Frac = frexp(NegSmallest, Exp, RM);
EXPECT_EQ(-1073, Exp);
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "-0x1p-1").bitwiseIsEqual(Frac));
Frac = frexp(Largest, Exp, RM);
EXPECT_EQ(1024, Exp);
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.fffffffffffffp-1").bitwiseIsEqual(Frac));
Frac = frexp(NegLargest, Exp, RM);
EXPECT_EQ(1024, Exp);
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "-0x1.fffffffffffffp-1").bitwiseIsEqual(Frac));
Frac = frexp(PInf, Exp, RM);
EXPECT_EQ(INT_MAX, Exp);
EXPECT_TRUE(Frac.isInfinity() && !Frac.isNegative());
Frac = frexp(MInf, Exp, RM);
EXPECT_EQ(INT_MAX, Exp);
EXPECT_TRUE(Frac.isInfinity() && Frac.isNegative());
Frac = frexp(QPNaN, Exp, RM);
EXPECT_EQ(INT_MIN, Exp);
EXPECT_TRUE(Frac.isNaN());
Frac = frexp(QMNaN, Exp, RM);
EXPECT_EQ(INT_MIN, Exp);
EXPECT_TRUE(Frac.isNaN());
Frac = frexp(SNaN, Exp, RM);
EXPECT_EQ(INT_MIN, Exp);
EXPECT_TRUE(Frac.isNaN() && !Frac.isSignaling());
Frac = frexp(SNaNWithPayload, Exp, RM);
EXPECT_EQ(INT_MIN, Exp);
EXPECT_TRUE(Frac.isNaN() && !Frac.isSignaling());
EXPECT_EQ(Payload, Frac.bitcastToAPInt().getLoBits(51));
Frac = frexp(APFloat(APFloat::IEEEdouble(), "0x0.ffffp-1"), Exp, RM);
EXPECT_EQ(-1, Exp);
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.fffep-1").bitwiseIsEqual(Frac));
Frac = frexp(APFloat(APFloat::IEEEdouble(), "0x1p-51"), Exp, RM);
EXPECT_EQ(-50, Exp);
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1p-1").bitwiseIsEqual(Frac));
Frac = frexp(APFloat(APFloat::IEEEdouble(), "0x1.c60f120d9f87cp+51"), Exp, RM);
EXPECT_EQ(52, Exp);
EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.c60f120d9f87cp-1").bitwiseIsEqual(Frac));
}
TEST(APFloatTest, mod) {
{
APFloat f1(APFloat::IEEEdouble(), "1.5");
APFloat f2(APFloat::IEEEdouble(), "1.0");
APFloat expected(APFloat::IEEEdouble(), "0.5");
EXPECT_EQ(f1.mod(f2), APFloat::opOK);
EXPECT_TRUE(f1.bitwiseIsEqual(expected));
}
{
APFloat f1(APFloat::IEEEdouble(), "0.5");
APFloat f2(APFloat::IEEEdouble(), "1.0");
APFloat expected(APFloat::IEEEdouble(), "0.5");
EXPECT_EQ(f1.mod(f2), APFloat::opOK);
EXPECT_TRUE(f1.bitwiseIsEqual(expected));
}
{
APFloat f1(APFloat::IEEEdouble(), "0x1.3333333333333p-2"); // 0.3
APFloat f2(APFloat::IEEEdouble(), "0x1.47ae147ae147bp-7"); // 0.01
APFloat expected(APFloat::IEEEdouble(),
"0x1.47ae147ae1471p-7"); // 0.009999999999999983
EXPECT_EQ(f1.mod(f2), APFloat::opOK);
EXPECT_TRUE(f1.bitwiseIsEqual(expected));
}
{
APFloat f1(APFloat::IEEEdouble(), "0x1p64"); // 1.8446744073709552e19
APFloat f2(APFloat::IEEEdouble(), "1.5");
APFloat expected(APFloat::IEEEdouble(), "1.0");
EXPECT_EQ(f1.mod(f2), APFloat::opOK);
EXPECT_TRUE(f1.bitwiseIsEqual(expected));
}
{
APFloat f1(APFloat::IEEEdouble(), "0x1p1000");
APFloat f2(APFloat::IEEEdouble(), "0x1p-1000");
APFloat expected(APFloat::IEEEdouble(), "0.0");
EXPECT_EQ(f1.mod(f2), APFloat::opOK);
EXPECT_TRUE(f1.bitwiseIsEqual(expected));
}
{
APFloat f1(APFloat::IEEEdouble(), "0.0");
APFloat f2(APFloat::IEEEdouble(), "1.0");
APFloat expected(APFloat::IEEEdouble(), "0.0");
EXPECT_EQ(f1.mod(f2), APFloat::opOK);
EXPECT_TRUE(f1.bitwiseIsEqual(expected));
}
{
APFloat f1(APFloat::IEEEdouble(), "1.0");
APFloat f2(APFloat::IEEEdouble(), "0.0");
EXPECT_EQ(f1.mod(f2), APFloat::opInvalidOp);
EXPECT_TRUE(f1.isNaN());
}
{
APFloat f1(APFloat::IEEEdouble(), "0.0");
APFloat f2(APFloat::IEEEdouble(), "0.0");
EXPECT_EQ(f1.mod(f2), APFloat::opInvalidOp);
EXPECT_TRUE(f1.isNaN());
}
{
APFloat f1 = APFloat::getInf(APFloat::IEEEdouble(), false);
APFloat f2(APFloat::IEEEdouble(), "1.0");
EXPECT_EQ(f1.mod(f2), APFloat::opInvalidOp);
EXPECT_TRUE(f1.isNaN());
}
{
APFloat f1(APFloat::IEEEdouble(), "-4.0");
APFloat f2(APFloat::IEEEdouble(), "-2.0");
APFloat expected(APFloat::IEEEdouble(), "-0.0");
EXPECT_EQ(f1.mod(f2), APFloat::opOK);
EXPECT_TRUE(f1.bitwiseIsEqual(expected));
}
{
APFloat f1(APFloat::IEEEdouble(), "-4.0");
APFloat f2(APFloat::IEEEdouble(), "2.0");
APFloat expected(APFloat::IEEEdouble(), "-0.0");
EXPECT_EQ(f1.mod(f2), APFloat::opOK);
EXPECT_TRUE(f1.bitwiseIsEqual(expected));
}
}
TEST(APFloatTest, PPCDoubleDoubleAddSpecial) {
using DataType = std::tuple<uint64_t, uint64_t, uint64_t, uint64_t,
APFloat::fltCategory, APFloat::roundingMode>;
DataType Data[] = {
// (1 + 0) + (-1 + 0) = fcZero
std::make_tuple(0x3ff0000000000000ull, 0, 0xbff0000000000000ull, 0,
APFloat::fcZero, APFloat::rmNearestTiesToEven),
// LDBL_MAX + (1.1 >> (1023 - 106) + 0)) = fcInfinity
std::make_tuple(0x7fefffffffffffffull, 0x7c8ffffffffffffeull,
0x7948000000000000ull, 0ull, APFloat::fcInfinity,
APFloat::rmNearestTiesToEven),
// TODO: change the 4th 0x75effffffffffffe to 0x75efffffffffffff when
// semPPCDoubleDoubleLegacy is gone.
// LDBL_MAX + (1.011111... >> (1023 - 106) + (1.1111111...0 >> (1023 -
// 160))) = fcNormal
std::make_tuple(0x7fefffffffffffffull, 0x7c8ffffffffffffeull,
0x7947ffffffffffffull, 0x75effffffffffffeull,
APFloat::fcNormal, APFloat::rmNearestTiesToEven),
// LDBL_MAX + (1.1 >> (1023 - 106) + 0)) = fcInfinity
std::make_tuple(0x7fefffffffffffffull, 0x7c8ffffffffffffeull,
0x7fefffffffffffffull, 0x7c8ffffffffffffeull,
APFloat::fcInfinity, APFloat::rmNearestTiesToEven),
// NaN + (1 + 0) = fcNaN
std::make_tuple(0x7ff8000000000000ull, 0, 0x3ff0000000000000ull, 0,
APFloat::fcNaN, APFloat::rmNearestTiesToEven),
};
for (auto Tp : Data) {
uint64_t Op1[2], Op2[2];
APFloat::fltCategory Expected;
APFloat::roundingMode RM;
std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected, RM) = Tp;
{
APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1));
APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2));
A1.add(A2, RM);
EXPECT_EQ(Expected, A1.getCategory())
<< formatv("({0:x} + {1:x}) + ({2:x} + {3:x})", Op1[0], Op1[1],
Op2[0], Op2[1])
.str();
}
{
APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1));
APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2));
A2.add(A1, RM);
EXPECT_EQ(Expected, A2.getCategory())
<< formatv("({0:x} + {1:x}) + ({2:x} + {3:x})", Op2[0], Op2[1],
Op1[0], Op1[1])
.str();
}
}
}
TEST(APFloatTest, PPCDoubleDoubleAdd) {
using DataType = std::tuple<uint64_t, uint64_t, uint64_t, uint64_t, uint64_t,
uint64_t, APFloat::roundingMode>;
DataType Data[] = {
// (1 + 0) + (1e-105 + 0) = (1 + 1e-105)
std::make_tuple(0x3ff0000000000000ull, 0, 0x3960000000000000ull, 0,
0x3ff0000000000000ull, 0x3960000000000000ull,
APFloat::rmNearestTiesToEven),
// (1 + 0) + (1e-106 + 0) = (1 + 1e-106)
std::make_tuple(0x3ff0000000000000ull, 0, 0x3950000000000000ull, 0,
0x3ff0000000000000ull, 0x3950000000000000ull,
APFloat::rmNearestTiesToEven),
// (1 + 1e-106) + (1e-106 + 0) = (1 + 1e-105)
std::make_tuple(0x3ff0000000000000ull, 0x3950000000000000ull,
0x3950000000000000ull, 0, 0x3ff0000000000000ull,
0x3960000000000000ull, APFloat::rmNearestTiesToEven),
// (1 + 0) + (epsilon + 0) = (1 + epsilon)
std::make_tuple(0x3ff0000000000000ull, 0, 0x0000000000000001ull, 0,
0x3ff0000000000000ull, 0x0000000000000001ull,
APFloat::rmNearestTiesToEven),
// TODO: change 0xf950000000000000 to 0xf940000000000000, when
// semPPCDoubleDoubleLegacy is gone.
// (DBL_MAX - 1 << (1023 - 105)) + (1 << (1023 - 53) + 0) = DBL_MAX +
// 1.11111... << (1023 - 52)
std::make_tuple(0x7fefffffffffffffull, 0xf950000000000000ull,
0x7c90000000000000ull, 0, 0x7fefffffffffffffull,
0x7c8ffffffffffffeull, APFloat::rmNearestTiesToEven),
// TODO: change 0xf950000000000000 to 0xf940000000000000, when
// semPPCDoubleDoubleLegacy is gone.
// (1 << (1023 - 53) + 0) + (DBL_MAX - 1 << (1023 - 105)) = DBL_MAX +
// 1.11111... << (1023 - 52)
std::make_tuple(0x7c90000000000000ull, 0, 0x7fefffffffffffffull,
0xf950000000000000ull, 0x7fefffffffffffffull,
0x7c8ffffffffffffeull, APFloat::rmNearestTiesToEven),
};
for (auto Tp : Data) {
uint64_t Op1[2], Op2[2], Expected[2];
APFloat::roundingMode RM;
std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected[0], Expected[1], RM) = Tp;
{
APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1));
APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2));
A1.add(A2, RM);
EXPECT_EQ(Expected[0], A1.bitcastToAPInt().getRawData()[0])
<< formatv("({0:x} + {1:x}) + ({2:x} + {3:x})", Op1[0], Op1[1],
Op2[0], Op2[1])
.str();
EXPECT_EQ(Expected[1], A1.bitcastToAPInt().getRawData()[1])
<< formatv("({0:x} + {1:x}) + ({2:x} + {3:x})", Op1[0], Op1[1],
Op2[0], Op2[1])
.str();
}
{
APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1));
APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2));
A2.add(A1, RM);
EXPECT_EQ(Expected[0], A2.bitcastToAPInt().getRawData()[0])
<< formatv("({0:x} + {1:x}) + ({2:x} + {3:x})", Op2[0], Op2[1],
Op1[0], Op1[1])
.str();
EXPECT_EQ(Expected[1], A2.bitcastToAPInt().getRawData()[1])
<< formatv("({0:x} + {1:x}) + ({2:x} + {3:x})", Op2[0], Op2[1],
Op1[0], Op1[1])
.str();
}
}
}
TEST(APFloatTest, PPCDoubleDoubleSubtract) {
using DataType = std::tuple<uint64_t, uint64_t, uint64_t, uint64_t, uint64_t,
uint64_t, APFloat::roundingMode>;
DataType Data[] = {
// (1 + 0) - (-1e-105 + 0) = (1 + 1e-105)
std::make_tuple(0x3ff0000000000000ull, 0, 0xb960000000000000ull, 0,
0x3ff0000000000000ull, 0x3960000000000000ull,
APFloat::rmNearestTiesToEven),
// (1 + 0) - (-1e-106 + 0) = (1 + 1e-106)
std::make_tuple(0x3ff0000000000000ull, 0, 0xb950000000000000ull, 0,
0x3ff0000000000000ull, 0x3950000000000000ull,
APFloat::rmNearestTiesToEven),
};
for (auto Tp : Data) {
uint64_t Op1[2], Op2[2], Expected[2];
APFloat::roundingMode RM;
std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected[0], Expected[1], RM) = Tp;
APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1));
APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2));
A1.subtract(A2, RM);
EXPECT_EQ(Expected[0], A1.bitcastToAPInt().getRawData()[0])
<< formatv("({0:x} + {1:x}) - ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0],
Op2[1])
.str();
EXPECT_EQ(Expected[1], A1.bitcastToAPInt().getRawData()[1])
<< formatv("({0:x} + {1:x}) - ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0],
Op2[1])
.str();
}
}
TEST(APFloatTest, PPCDoubleDoubleMultiplySpecial) {
using DataType = std::tuple<uint64_t, uint64_t, uint64_t, uint64_t,
APFloat::fltCategory, APFloat::roundingMode>;
DataType Data[] = {
// fcNaN * fcNaN = fcNaN
std::make_tuple(0x7ff8000000000000ull, 0, 0x7ff8000000000000ull, 0,
APFloat::fcNaN, APFloat::rmNearestTiesToEven),
// fcNaN * fcZero = fcNaN
std::make_tuple(0x7ff8000000000000ull, 0, 0, 0, APFloat::fcNaN,
APFloat::rmNearestTiesToEven),
// fcNaN * fcInfinity = fcNaN
std::make_tuple(0x7ff8000000000000ull, 0, 0x7ff0000000000000ull, 0,
APFloat::fcNaN, APFloat::rmNearestTiesToEven),
// fcNaN * fcNormal = fcNaN
std::make_tuple(0x7ff8000000000000ull, 0, 0x3ff0000000000000ull, 0,
APFloat::fcNaN, APFloat::rmNearestTiesToEven),
// fcInfinity * fcInfinity = fcInfinity
std::make_tuple(0x7ff0000000000000ull, 0, 0x7ff0000000000000ull, 0,
APFloat::fcInfinity, APFloat::rmNearestTiesToEven),
// fcInfinity * fcZero = fcNaN
std::make_tuple(0x7ff0000000000000ull, 0, 0, 0, APFloat::fcNaN,
APFloat::rmNearestTiesToEven),
// fcInfinity * fcNormal = fcInfinity
std::make_tuple(0x7ff0000000000000ull, 0, 0x3ff0000000000000ull, 0,
APFloat::fcInfinity, APFloat::rmNearestTiesToEven),
// fcZero * fcZero = fcZero
std::make_tuple(0, 0, 0, 0, APFloat::fcZero,
APFloat::rmNearestTiesToEven),
// fcZero * fcNormal = fcZero
std::make_tuple(0, 0, 0x3ff0000000000000ull, 0, APFloat::fcZero,
APFloat::rmNearestTiesToEven),
};
for (auto Tp : Data) {
uint64_t Op1[2], Op2[2];
APFloat::fltCategory Expected;
APFloat::roundingMode RM;
std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected, RM) = Tp;
{
APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1));
APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2));
A1.multiply(A2, RM);
EXPECT_EQ(Expected, A1.getCategory())
<< formatv("({0:x} + {1:x}) * ({2:x} + {3:x})", Op1[0], Op1[1],
Op2[0], Op2[1])
.str();
}
{
APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1));
APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2));
A2.multiply(A1, RM);
EXPECT_EQ(Expected, A2.getCategory())
<< formatv("({0:x} + {1:x}) * ({2:x} + {3:x})", Op2[0], Op2[1],
Op1[0], Op1[1])
.str();
}
}
}
TEST(APFloatTest, PPCDoubleDoubleMultiply) {
using DataType = std::tuple<uint64_t, uint64_t, uint64_t, uint64_t, uint64_t,
uint64_t, APFloat::roundingMode>;
DataType Data[] = {
// 1/3 * 3 = 1.0
std::make_tuple(0x3fd5555555555555ull, 0x3c75555555555556ull,
0x4008000000000000ull, 0, 0x3ff0000000000000ull, 0,
APFloat::rmNearestTiesToEven),
// (1 + epsilon) * (1 + 0) = fcZero
std::make_tuple(0x3ff0000000000000ull, 0x0000000000000001ull,
0x3ff0000000000000ull, 0, 0x3ff0000000000000ull,
0x0000000000000001ull, APFloat::rmNearestTiesToEven),
// (1 + epsilon) * (1 + epsilon) = 1 + 2 * epsilon
std::make_tuple(0x3ff0000000000000ull, 0x0000000000000001ull,
0x3ff0000000000000ull, 0x0000000000000001ull,
0x3ff0000000000000ull, 0x0000000000000002ull,
APFloat::rmNearestTiesToEven),
// -(1 + epsilon) * (1 + epsilon) = -1
std::make_tuple(0xbff0000000000000ull, 0x0000000000000001ull,
0x3ff0000000000000ull, 0x0000000000000001ull,
0xbff0000000000000ull, 0, APFloat::rmNearestTiesToEven),
// (0.5 + 0) * (1 + 2 * epsilon) = 0.5 + epsilon
std::make_tuple(0x3fe0000000000000ull, 0, 0x3ff0000000000000ull,
0x0000000000000002ull, 0x3fe0000000000000ull,
0x0000000000000001ull, APFloat::rmNearestTiesToEven),
// (0.5 + 0) * (1 + epsilon) = 0.5
std::make_tuple(0x3fe0000000000000ull, 0, 0x3ff0000000000000ull,
0x0000000000000001ull, 0x3fe0000000000000ull, 0,
APFloat::rmNearestTiesToEven),
// __LDBL_MAX__ * (1 + 1 << 106) = inf
std::make_tuple(0x7fefffffffffffffull, 0x7c8ffffffffffffeull,
0x3ff0000000000000ull, 0x3950000000000000ull,
0x7ff0000000000000ull, 0, APFloat::rmNearestTiesToEven),
// __LDBL_MAX__ * (1 + 1 << 107) > __LDBL_MAX__, but not inf, yes =_=|||
std::make_tuple(0x7fefffffffffffffull, 0x7c8ffffffffffffeull,
0x3ff0000000000000ull, 0x3940000000000000ull,
0x7fefffffffffffffull, 0x7c8fffffffffffffull,
APFloat::rmNearestTiesToEven),
// __LDBL_MAX__ * (1 + 1 << 108) = __LDBL_MAX__
std::make_tuple(0x7fefffffffffffffull, 0x7c8ffffffffffffeull,
0x3ff0000000000000ull, 0x3930000000000000ull,
0x7fefffffffffffffull, 0x7c8ffffffffffffeull,
APFloat::rmNearestTiesToEven),
};
for (auto Tp : Data) {
uint64_t Op1[2], Op2[2], Expected[2];
APFloat::roundingMode RM;
std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected[0], Expected[1], RM) = Tp;
{
APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1));
APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2));
A1.multiply(A2, RM);
EXPECT_EQ(Expected[0], A1.bitcastToAPInt().getRawData()[0])
<< formatv("({0:x} + {1:x}) * ({2:x} + {3:x})", Op1[0], Op1[1],
Op2[0], Op2[1])
.str();
EXPECT_EQ(Expected[1], A1.bitcastToAPInt().getRawData()[1])
<< formatv("({0:x} + {1:x}) * ({2:x} + {3:x})", Op1[0], Op1[1],
Op2[0], Op2[1])
.str();
}
{
APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1));
APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2));
A2.multiply(A1, RM);
EXPECT_EQ(Expected[0], A2.bitcastToAPInt().getRawData()[0])
<< formatv("({0:x} + {1:x}) * ({2:x} + {3:x})", Op2[0], Op2[1],
Op1[0], Op1[1])
.str();
EXPECT_EQ(Expected[1], A2.bitcastToAPInt().getRawData()[1])
<< formatv("({0:x} + {1:x}) * ({2:x} + {3:x})", Op2[0], Op2[1],
Op1[0], Op1[1])
.str();
}
}
}
TEST(APFloatTest, PPCDoubleDoubleDivide) {
using DataType = std::tuple<uint64_t, uint64_t, uint64_t, uint64_t, uint64_t,
uint64_t, APFloat::roundingMode>;
// TODO: Only a sanity check for now. Add more edge cases when the
// double-double algorithm is implemented.
DataType Data[] = {
// 1 / 3 = 1/3
std::make_tuple(0x3ff0000000000000ull, 0, 0x4008000000000000ull, 0,
0x3fd5555555555555ull, 0x3c75555555555556ull,
APFloat::rmNearestTiesToEven),
};
for (auto Tp : Data) {
uint64_t Op1[2], Op2[2], Expected[2];
APFloat::roundingMode RM;
std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected[0], Expected[1], RM) = Tp;
APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1));
APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2));
A1.divide(A2, RM);
EXPECT_EQ(Expected[0], A1.bitcastToAPInt().getRawData()[0])
<< formatv("({0:x} + {1:x}) / ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0],
Op2[1])
.str();
EXPECT_EQ(Expected[1], A1.bitcastToAPInt().getRawData()[1])
<< formatv("({0:x} + {1:x}) / ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0],
Op2[1])
.str();
}
}
TEST(APFloatTest, PPCDoubleDoubleRemainder) {
using DataType =
std::tuple<uint64_t, uint64_t, uint64_t, uint64_t, uint64_t, uint64_t>;
DataType Data[] = {
// remainder(3.0 + 3.0 << 53, 1.25 + 1.25 << 53) = (0.5 + 0.5 << 53)
std::make_tuple(0x4008000000000000ull, 0x3cb8000000000000ull,
0x3ff4000000000000ull, 0x3ca4000000000000ull,
0x3fe0000000000000ull, 0x3c90000000000000ull),
// remainder(3.0 + 3.0 << 53, 1.75 + 1.75 << 53) = (-0.5 - 0.5 << 53)
std::make_tuple(0x4008000000000000ull, 0x3cb8000000000000ull,
0x3ffc000000000000ull, 0x3cac000000000000ull,
0xbfe0000000000000ull, 0xbc90000000000000ull),
};
for (auto Tp : Data) {
uint64_t Op1[2], Op2[2], Expected[2];
std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected[0], Expected[1]) = Tp;
APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1));
APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2));
A1.remainder(A2);
EXPECT_EQ(Expected[0], A1.bitcastToAPInt().getRawData()[0])
<< formatv("remainder({0:x} + {1:x}), ({2:x} + {3:x}))", Op1[0], Op1[1],
Op2[0], Op2[1])
.str();
EXPECT_EQ(Expected[1], A1.bitcastToAPInt().getRawData()[1])
<< formatv("remainder(({0:x} + {1:x}), ({2:x} + {3:x}))", Op1[0],
Op1[1], Op2[0], Op2[1])
.str();
}
}
TEST(APFloatTest, PPCDoubleDoubleMod) {
using DataType =
std::tuple<uint64_t, uint64_t, uint64_t, uint64_t, uint64_t, uint64_t>;
DataType Data[] = {
// mod(3.0 + 3.0 << 53, 1.25 + 1.25 << 53) = (0.5 + 0.5 << 53)
std::make_tuple(0x4008000000000000ull, 0x3cb8000000000000ull,
0x3ff4000000000000ull, 0x3ca4000000000000ull,
0x3fe0000000000000ull, 0x3c90000000000000ull),
// mod(3.0 + 3.0 << 53, 1.75 + 1.75 << 53) = (1.25 + 1.25 << 53)
// 0xbc98000000000000 doesn't seem right, but it's what we currently have.
// TODO: investigate
std::make_tuple(0x4008000000000000ull, 0x3cb8000000000000ull,
0x3ffc000000000000ull, 0x3cac000000000000ull,
0x3ff4000000000001ull, 0xbc98000000000000ull),
};
for (auto Tp : Data) {
uint64_t Op1[2], Op2[2], Expected[2];
std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected[0], Expected[1]) = Tp;
APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1));
APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2));
A1.mod(A2);
EXPECT_EQ(Expected[0], A1.bitcastToAPInt().getRawData()[0])
<< formatv("fmod(({0:x} + {1:x}), ({2:x} + {3:x}))", Op1[0], Op1[1],
Op2[0], Op2[1])
.str();
EXPECT_EQ(Expected[1], A1.bitcastToAPInt().getRawData()[1])
<< formatv("fmod(({0:x} + {1:x}), ({2:x} + {3:x}))", Op1[0], Op1[1],
Op2[0], Op2[1])
.str();
}
}
TEST(APFloatTest, PPCDoubleDoubleFMA) {
// Sanity check for now.
APFloat A(APFloat::PPCDoubleDouble(), "2");
A.fusedMultiplyAdd(APFloat(APFloat::PPCDoubleDouble(), "3"),
APFloat(APFloat::PPCDoubleDouble(), "4"),
APFloat::rmNearestTiesToEven);
EXPECT_EQ(APFloat::cmpEqual,
APFloat(APFloat::PPCDoubleDouble(), "10").compare(A));
}
TEST(APFloatTest, PPCDoubleDoubleRoundToIntegral) {
{
APFloat A(APFloat::PPCDoubleDouble(), "1.5");
A.roundToIntegral(APFloat::rmNearestTiesToEven);
EXPECT_EQ(APFloat::cmpEqual,
APFloat(APFloat::PPCDoubleDouble(), "2").compare(A));
}
{
APFloat A(APFloat::PPCDoubleDouble(), "2.5");
A.roundToIntegral(APFloat::rmNearestTiesToEven);
EXPECT_EQ(APFloat::cmpEqual,
APFloat(APFloat::PPCDoubleDouble(), "2").compare(A));
}
}
TEST(APFloatTest, PPCDoubleDoubleCompare) {
using DataType =
std::tuple<uint64_t, uint64_t, uint64_t, uint64_t, APFloat::cmpResult>;
DataType Data[] = {
// (1 + 0) = (1 + 0)
std::make_tuple(0x3ff0000000000000ull, 0, 0x3ff0000000000000ull, 0,
APFloat::cmpEqual),
// (1 + 0) < (1.00...1 + 0)
std::make_tuple(0x3ff0000000000000ull, 0, 0x3ff0000000000001ull, 0,
APFloat::cmpLessThan),
// (1.00...1 + 0) > (1 + 0)
std::make_tuple(0x3ff0000000000001ull, 0, 0x3ff0000000000000ull, 0,
APFloat::cmpGreaterThan),
// (1 + 0) < (1 + epsilon)
std::make_tuple(0x3ff0000000000000ull, 0, 0x3ff0000000000001ull,
0x0000000000000001ull, APFloat::cmpLessThan),
// NaN != NaN
std::make_tuple(0x7ff8000000000000ull, 0, 0x7ff8000000000000ull, 0,
APFloat::cmpUnordered),
// (1 + 0) != NaN
std::make_tuple(0x3ff0000000000000ull, 0, 0x7ff8000000000000ull, 0,
APFloat::cmpUnordered),
// Inf = Inf
std::make_tuple(0x7ff0000000000000ull, 0, 0x7ff0000000000000ull, 0,
APFloat::cmpEqual),
};
for (auto Tp : Data) {
uint64_t Op1[2], Op2[2];
APFloat::cmpResult Expected;
std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected) = Tp;
APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1));
APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2));
EXPECT_EQ(Expected, A1.compare(A2))
<< formatv("compare(({0:x} + {1:x}), ({2:x} + {3:x}))", Op1[0], Op1[1],
Op2[0], Op2[1])
.str();
}
}
TEST(APFloatTest, PPCDoubleDoubleBitwiseIsEqual) {
using DataType = std::tuple<uint64_t, uint64_t, uint64_t, uint64_t, bool>;
DataType Data[] = {
// (1 + 0) = (1 + 0)
std::make_tuple(0x3ff0000000000000ull, 0, 0x3ff0000000000000ull, 0, true),
// (1 + 0) != (1.00...1 + 0)
std::make_tuple(0x3ff0000000000000ull, 0, 0x3ff0000000000001ull, 0,
false),
// NaN = NaN
std::make_tuple(0x7ff8000000000000ull, 0, 0x7ff8000000000000ull, 0, true),
// NaN != NaN with a different bit pattern
std::make_tuple(0x7ff8000000000000ull, 0, 0x7ff8000000000000ull,
0x3ff0000000000000ull, false),
// Inf = Inf
std::make_tuple(0x7ff0000000000000ull, 0, 0x7ff0000000000000ull, 0, true),
};
for (auto Tp : Data) {
uint64_t Op1[2], Op2[2];
bool Expected;
std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected) = Tp;
APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1));
APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2));
EXPECT_EQ(Expected, A1.bitwiseIsEqual(A2))
<< formatv("({0:x} + {1:x}) = ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0],
Op2[1])
.str();
}
}
TEST(APFloatTest, PPCDoubleDoubleHashValue) {
uint64_t Data1[] = {0x3ff0000000000001ull, 0x0000000000000001ull};
uint64_t Data2[] = {0x3ff0000000000001ull, 0};
// The hash values are *hopefully* different.
EXPECT_NE(
hash_value(APFloat(APFloat::PPCDoubleDouble(), APInt(128, 2, Data1))),
hash_value(APFloat(APFloat::PPCDoubleDouble(), APInt(128, 2, Data2))));
}
TEST(APFloatTest, PPCDoubleDoubleChangeSign) {
uint64_t Data[] = {
0x400f000000000000ull, 0xbcb0000000000000ull,
};
APFloat Float(APFloat::PPCDoubleDouble(), APInt(128, 2, Data));
{
APFloat Actual =
APFloat::copySign(Float, APFloat(APFloat::IEEEdouble(), "1"));
EXPECT_EQ(0x400f000000000000ull, Actual.bitcastToAPInt().getRawData()[0]);
EXPECT_EQ(0xbcb0000000000000ull, Actual.bitcastToAPInt().getRawData()[1]);
}
{
APFloat Actual =
APFloat::copySign(Float, APFloat(APFloat::IEEEdouble(), "-1"));
EXPECT_EQ(0xc00f000000000000ull, Actual.bitcastToAPInt().getRawData()[0]);
EXPECT_EQ(0x3cb0000000000000ull, Actual.bitcastToAPInt().getRawData()[1]);
}
}
TEST(APFloatTest, PPCDoubleDoubleFactories) {
{
uint64_t Data[] = {
0, 0,
};
EXPECT_EQ(APInt(128, 2, Data),
APFloat::getZero(APFloat::PPCDoubleDouble()).bitcastToAPInt());
}
{
uint64_t Data[] = {
0x7fefffffffffffffull, 0x7c8ffffffffffffeull,
};
EXPECT_EQ(APInt(128, 2, Data),
APFloat::getLargest(APFloat::PPCDoubleDouble()).bitcastToAPInt());
}
{
uint64_t Data[] = {
0x0000000000000001ull, 0,
};
EXPECT_EQ(
APInt(128, 2, Data),
APFloat::getSmallest(APFloat::PPCDoubleDouble()).bitcastToAPInt());
}
{
uint64_t Data[] = {0x0360000000000000ull, 0};
EXPECT_EQ(APInt(128, 2, Data),
APFloat::getSmallestNormalized(APFloat::PPCDoubleDouble())
.bitcastToAPInt());
}
{
uint64_t Data[] = {
0x8000000000000000ull, 0x0000000000000000ull,
};
EXPECT_EQ(
APInt(128, 2, Data),
APFloat::getZero(APFloat::PPCDoubleDouble(), true).bitcastToAPInt());
}
{
uint64_t Data[] = {
0xffefffffffffffffull, 0xfc8ffffffffffffeull,
};
EXPECT_EQ(
APInt(128, 2, Data),
APFloat::getLargest(APFloat::PPCDoubleDouble(), true).bitcastToAPInt());
}
{
uint64_t Data[] = {
0x8000000000000001ull, 0x0000000000000000ull,
};
EXPECT_EQ(APInt(128, 2, Data),
APFloat::getSmallest(APFloat::PPCDoubleDouble(), true)
.bitcastToAPInt());
}
{
uint64_t Data[] = {
0x8360000000000000ull, 0x0000000000000000ull,
};
EXPECT_EQ(APInt(128, 2, Data),
APFloat::getSmallestNormalized(APFloat::PPCDoubleDouble(), true)
.bitcastToAPInt());
}
EXPECT_TRUE(APFloat::getSmallest(APFloat::PPCDoubleDouble()).isSmallest());
EXPECT_TRUE(APFloat::getLargest(APFloat::PPCDoubleDouble()).isLargest());
}
TEST(APFloatTest, PPCDoubleDoubleIsDenormal) {
EXPECT_TRUE(APFloat::getSmallest(APFloat::PPCDoubleDouble()).isDenormal());
EXPECT_FALSE(APFloat::getLargest(APFloat::PPCDoubleDouble()).isDenormal());
EXPECT_FALSE(
APFloat::getSmallestNormalized(APFloat::PPCDoubleDouble()).isDenormal());
{
// (4 + 3) is not normalized
uint64_t Data[] = {
0x4010000000000000ull, 0x4008000000000000ull,
};
EXPECT_TRUE(
APFloat(APFloat::PPCDoubleDouble(), APInt(128, 2, Data)).isDenormal());
}
}
TEST(APFloatTest, PPCDoubleDoubleScalbn) {
// 3.0 + 3.0 << 53
uint64_t Input[] = {
0x4008000000000000ull, 0x3cb8000000000000ull,
};
APFloat Result =
scalbn(APFloat(APFloat::PPCDoubleDouble(), APInt(128, 2, Input)), 1,
APFloat::rmNearestTiesToEven);
// 6.0 + 6.0 << 53
EXPECT_EQ(0x4018000000000000ull, Result.bitcastToAPInt().getRawData()[0]);
EXPECT_EQ(0x3cc8000000000000ull, Result.bitcastToAPInt().getRawData()[1]);
}
TEST(APFloatTest, PPCDoubleDoubleFrexp) {
// 3.0 + 3.0 << 53
uint64_t Input[] = {
0x4008000000000000ull, 0x3cb8000000000000ull,
};
int Exp;
// 0.75 + 0.75 << 53
APFloat Result =
frexp(APFloat(APFloat::PPCDoubleDouble(), APInt(128, 2, Input)), Exp,
APFloat::rmNearestTiesToEven);
EXPECT_EQ(2, Exp);
EXPECT_EQ(0x3fe8000000000000ull, Result.bitcastToAPInt().getRawData()[0]);
EXPECT_EQ(0x3c98000000000000ull, Result.bitcastToAPInt().getRawData()[1]);
}
}