| //===- MicrosoftDemangle.cpp ----------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is dual licensed under the MIT and the University of Illinois Open |
| // Source Licenses. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a demangler for MSVC-style mangled symbols. |
| // |
| // This file has no dependencies on the rest of LLVM so that it can be |
| // easily reused in other programs such as libcxxabi. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Demangle/Demangle.h" |
| |
| #include "Compiler.h" |
| #include "StringView.h" |
| #include "Utility.h" |
| |
| #include <cctype> |
| #include <tuple> |
| |
| // This memory allocator is extremely fast, but it doesn't call dtors |
| // for allocated objects. That means you can't use STL containers |
| // (such as std::vector) with this allocator. But it pays off -- |
| // the demangler is 3x faster with this allocator compared to one with |
| // STL containers. |
| namespace { |
| constexpr size_t AllocUnit = 4096; |
| |
| class ArenaAllocator { |
| struct AllocatorNode { |
| uint8_t *Buf = nullptr; |
| size_t Used = 0; |
| size_t Capacity = 0; |
| AllocatorNode *Next = nullptr; |
| }; |
| |
| void addNode(size_t Capacity) { |
| AllocatorNode *NewHead = new AllocatorNode; |
| NewHead->Buf = new uint8_t[Capacity]; |
| NewHead->Next = Head; |
| NewHead->Capacity = Capacity; |
| Head = NewHead; |
| NewHead->Used = 0; |
| } |
| |
| public: |
| ArenaAllocator() { addNode(AllocUnit); } |
| |
| ~ArenaAllocator() { |
| while (Head) { |
| assert(Head->Buf); |
| delete[] Head->Buf; |
| AllocatorNode *Next = Head->Next; |
| delete Head; |
| Head = Next; |
| } |
| } |
| |
| char *allocUnalignedBuffer(size_t Length) { |
| uint8_t *Buf = Head->Buf + Head->Used; |
| |
| Head->Used += Length; |
| if (Head->Used > Head->Capacity) { |
| // It's possible we need a buffer which is larger than our default unit |
| // size, so we need to be careful to add a node with capacity that is at |
| // least as large as what we need. |
| addNode(std::max(AllocUnit, Length)); |
| Head->Used = Length; |
| Buf = Head->Buf; |
| } |
| |
| return reinterpret_cast<char *>(Buf); |
| } |
| |
| template <typename T, typename... Args> T *alloc(Args &&... ConstructorArgs) { |
| |
| size_t Size = sizeof(T); |
| assert(Head && Head->Buf); |
| |
| size_t P = (size_t)Head->Buf + Head->Used; |
| uintptr_t AlignedP = |
| (((size_t)P + alignof(T) - 1) & ~(size_t)(alignof(T) - 1)); |
| uint8_t *PP = (uint8_t *)AlignedP; |
| size_t Adjustment = AlignedP - P; |
| |
| Head->Used += Size + Adjustment; |
| if (Head->Used < Head->Capacity) |
| return new (PP) T(std::forward<Args>(ConstructorArgs)...); |
| |
| addNode(AllocUnit); |
| Head->Used = Size; |
| return new (Head->Buf) T(std::forward<Args>(ConstructorArgs)...); |
| } |
| |
| private: |
| AllocatorNode *Head = nullptr; |
| }; |
| } // namespace |
| |
| static bool startsWithDigit(StringView S) { |
| return !S.empty() && std::isdigit(S.front()); |
| } |
| |
| // Writes a space if the last token does not end with a punctuation. |
| static void outputSpaceIfNecessary(OutputStream &OS) { |
| if (OS.empty()) |
| return; |
| |
| char C = OS.back(); |
| if (isalnum(C) || C == '>') |
| OS << " "; |
| } |
| |
| // Storage classes |
| enum Qualifiers : uint8_t { |
| Q_None = 0, |
| Q_Const = 1 << 0, |
| Q_Volatile = 1 << 1, |
| Q_Far = 1 << 2, |
| Q_Huge = 1 << 3, |
| Q_Unaligned = 1 << 4, |
| Q_Restrict = 1 << 5, |
| Q_Pointer64 = 1 << 6 |
| }; |
| |
| enum class StorageClass : uint8_t { |
| None, |
| PrivateStatic, |
| ProtectedStatic, |
| PublicStatic, |
| Global, |
| FunctionLocalStatic |
| }; |
| |
| enum class QualifierMangleMode { Drop, Mangle, Result }; |
| |
| enum class PointerAffinity { Pointer, Reference, RValueReference }; |
| |
| // Calling conventions |
| enum class CallingConv : uint8_t { |
| None, |
| Cdecl, |
| Pascal, |
| Thiscall, |
| Stdcall, |
| Fastcall, |
| Clrcall, |
| Eabi, |
| Vectorcall, |
| Regcall, |
| }; |
| |
| enum class ReferenceKind : uint8_t { None, LValueRef, RValueRef }; |
| |
| // Types |
| enum class PrimTy : uint8_t { |
| Unknown, |
| None, |
| Function, |
| Ptr, |
| MemberPtr, |
| Array, |
| |
| Struct, |
| Union, |
| Class, |
| Enum, |
| |
| Void, |
| Bool, |
| Char, |
| Schar, |
| Uchar, |
| Char16, |
| Char32, |
| Short, |
| Ushort, |
| Int, |
| Uint, |
| Long, |
| Ulong, |
| Int64, |
| Uint64, |
| Wchar, |
| Float, |
| Double, |
| Ldouble, |
| Nullptr |
| }; |
| |
| // Function classes |
| enum FuncClass : uint8_t { |
| Public = 1 << 0, |
| Protected = 1 << 1, |
| Private = 1 << 2, |
| Global = 1 << 3, |
| Static = 1 << 4, |
| Virtual = 1 << 5, |
| Far = 1 << 6, |
| }; |
| |
| namespace { |
| |
| struct Type; |
| struct Name; |
| |
| struct FunctionParams { |
| bool IsVariadic = false; |
| |
| Type *Current = nullptr; |
| |
| FunctionParams *Next = nullptr; |
| }; |
| |
| struct TemplateParams { |
| bool IsTemplateTemplate = false; |
| bool IsAliasTemplate = false; |
| |
| // Type can be null if this is a template template parameter. In that case |
| // only Name will be valid. |
| Type *ParamType = nullptr; |
| |
| // Name can be valid if this is a template template parameter (see above) or |
| // this is a function declaration (e.g. foo<&SomeFunc>). In the latter case |
| // Name contains the name of the function and Type contains the signature. |
| Name *ParamName = nullptr; |
| |
| TemplateParams *Next = nullptr; |
| }; |
| |
| // The type class. Mangled symbols are first parsed and converted to |
| // this type and then converted to string. |
| struct Type { |
| virtual ~Type() {} |
| |
| virtual Type *clone(ArenaAllocator &Arena) const; |
| |
| // Write the "first half" of a given type. This is a static functions to |
| // give the code a chance to do processing that is common to a subset of |
| // subclasses |
| static void outputPre(OutputStream &OS, Type &Ty); |
| |
| // Write the "second half" of a given type. This is a static functions to |
| // give the code a chance to do processing that is common to a subset of |
| // subclasses |
| static void outputPost(OutputStream &OS, Type &Ty); |
| |
| virtual void outputPre(OutputStream &OS); |
| virtual void outputPost(OutputStream &OS); |
| |
| // Primitive type such as Int. |
| PrimTy Prim = PrimTy::Unknown; |
| |
| Qualifiers Quals = Q_None; |
| StorageClass Storage = StorageClass::None; // storage class |
| }; |
| |
| // Represents an identifier which may be a template. |
| struct Name { |
| // Name read from an MangledName string. |
| StringView Str; |
| |
| // Overloaded operators are represented as special BackReferences in mangled |
| // symbols. If this is an operator name, "op" has an operator name (e.g. |
| // ">>"). Otherwise, empty. |
| StringView Operator; |
| |
| // Template parameters. Null if not a template. |
| TemplateParams *TParams = nullptr; |
| |
| // Nested BackReferences (e.g. "A::B::C") are represented as a linked list. |
| Name *Next = nullptr; |
| }; |
| |
| struct PointerType : public Type { |
| Type *clone(ArenaAllocator &Arena) const override; |
| void outputPre(OutputStream &OS) override; |
| void outputPost(OutputStream &OS) override; |
| |
| PointerAffinity Affinity; |
| |
| // Represents a type X in "a pointer to X", "a reference to X", |
| // "an array of X", or "a function returning X". |
| Type *Pointee = nullptr; |
| }; |
| |
| struct MemberPointerType : public Type { |
| Type *clone(ArenaAllocator &Arena) const override; |
| void outputPre(OutputStream &OS) override; |
| void outputPost(OutputStream &OS) override; |
| |
| Name *MemberName = nullptr; |
| |
| // Represents a type X in "a pointer to X", "a reference to X", |
| // "an array of X", or "a function returning X". |
| Type *Pointee = nullptr; |
| }; |
| |
| struct FunctionType : public Type { |
| Type *clone(ArenaAllocator &Arena) const override; |
| void outputPre(OutputStream &OS) override; |
| void outputPost(OutputStream &OS) override; |
| |
| // True if this FunctionType instance is the Pointee of a PointerType or |
| // MemberPointerType. |
| bool IsFunctionPointer = false; |
| |
| Type *ReturnType = nullptr; |
| // If this is a reference, the type of reference. |
| ReferenceKind RefKind; |
| |
| CallingConv CallConvention; |
| FuncClass FunctionClass; |
| |
| FunctionParams Params; |
| }; |
| |
| struct UdtType : public Type { |
| Type *clone(ArenaAllocator &Arena) const override; |
| void outputPre(OutputStream &OS) override; |
| |
| Name *UdtName = nullptr; |
| }; |
| |
| struct ArrayType : public Type { |
| Type *clone(ArenaAllocator &Arena) const override; |
| void outputPre(OutputStream &OS) override; |
| void outputPost(OutputStream &OS) override; |
| |
| // Either NextDimension or ElementType will be valid. |
| ArrayType *NextDimension = nullptr; |
| uint32_t ArrayDimension = 0; |
| |
| Type *ElementType = nullptr; |
| }; |
| |
| } // namespace |
| |
| static bool isMemberPointer(StringView MangledName) { |
| switch (MangledName.popFront()) { |
| case '$': |
| // This is probably an rvalue reference (e.g. $$Q), and you cannot have an |
| // rvalue reference to a member. |
| return false; |
| case 'A': |
| // 'A' indicates a reference, and you cannot have a reference to a member |
| // function or member. |
| return false; |
| case 'P': |
| case 'Q': |
| case 'R': |
| case 'S': |
| // These 4 values indicate some kind of pointer, but we still don't know |
| // what. |
| break; |
| default: |
| assert(false && "Ty is not a pointer type!"); |
| } |
| |
| // If it starts with a number, then 6 indicates a non-member function |
| // pointer, and 8 indicates a member function pointer. |
| if (startsWithDigit(MangledName)) { |
| assert(MangledName[0] == '6' || MangledName[0] == '8'); |
| return (MangledName[0] == '8'); |
| } |
| |
| // Remove ext qualifiers since those can appear on either type and are |
| // therefore not indicative. |
| MangledName.consumeFront('E'); // 64-bit |
| MangledName.consumeFront('I'); // restrict |
| MangledName.consumeFront('F'); // unaligned |
| |
| assert(!MangledName.empty()); |
| |
| // The next value should be either ABCD (non-member) or QRST (member). |
| switch (MangledName.front()) { |
| case 'A': |
| case 'B': |
| case 'C': |
| case 'D': |
| return false; |
| case 'Q': |
| case 'R': |
| case 'S': |
| case 'T': |
| return true; |
| default: |
| assert(false); |
| } |
| return false; |
| } |
| |
| static void outputCallingConvention(OutputStream &OS, CallingConv CC) { |
| outputSpaceIfNecessary(OS); |
| |
| switch (CC) { |
| case CallingConv::Cdecl: |
| OS << "__cdecl"; |
| break; |
| case CallingConv::Fastcall: |
| OS << "__fastcall"; |
| break; |
| case CallingConv::Pascal: |
| OS << "__pascal"; |
| break; |
| case CallingConv::Regcall: |
| OS << "__regcall"; |
| break; |
| case CallingConv::Stdcall: |
| OS << "__stdcall"; |
| break; |
| case CallingConv::Thiscall: |
| OS << "__thiscall"; |
| break; |
| case CallingConv::Eabi: |
| OS << "__eabi"; |
| break; |
| case CallingConv::Vectorcall: |
| OS << "__vectorcall"; |
| break; |
| case CallingConv::Clrcall: |
| OS << "__clrcall"; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static bool startsWithLocalScopePattern(StringView S) { |
| if (!S.consumeFront('?')) |
| return false; |
| if (S.size() < 2) |
| return false; |
| |
| size_t End = S.find('?'); |
| if (End == StringView::npos) |
| return false; |
| StringView Candidate = S.substr(0, End); |
| if (Candidate.empty()) |
| return false; |
| |
| // \?[0-9]\? |
| // ?@? is the discriminator 0. |
| if (Candidate.size() == 1) |
| return Candidate[0] == '@' || (Candidate[0] >= '0' && Candidate[0] <= '9'); |
| |
| // If it's not 0-9, then it's an encoded number terminated with an @ |
| if (Candidate.back() != '@') |
| return false; |
| Candidate = Candidate.dropBack(); |
| |
| // An encoded number starts with B-P and all subsequent digits are in A-P. |
| // Note that the reason the first digit cannot be A is two fold. First, it |
| // would create an ambiguity with ?A which delimits the beginning of an |
| // anonymous namespace. Second, A represents 0, and you don't start a multi |
| // digit number with a leading 0. Presumably the anonymous namespace |
| // ambiguity is also why single digit encoded numbers use 0-9 rather than A-J. |
| if (Candidate[0] < 'B' || Candidate[0] > 'P') |
| return false; |
| Candidate = Candidate.dropFront(); |
| while (!Candidate.empty()) { |
| if (Candidate[0] < 'A' || Candidate[0] > 'P') |
| return false; |
| Candidate = Candidate.dropFront(); |
| } |
| |
| return true; |
| } |
| |
| static void outputName(OutputStream &OS, const Name *TheName); |
| |
| // Write a function or template parameter list. |
| static void outputParameterList(OutputStream &OS, |
| const FunctionParams &Params) { |
| if (!Params.Current) { |
| OS << "void"; |
| return; |
| } |
| |
| const FunctionParams *Head = &Params; |
| while (Head) { |
| Type::outputPre(OS, *Head->Current); |
| Type::outputPost(OS, *Head->Current); |
| |
| Head = Head->Next; |
| |
| if (Head) |
| OS << ", "; |
| } |
| } |
| |
| static void outputParameterList(OutputStream &OS, |
| const TemplateParams &Params) { |
| if (!Params.ParamType && !Params.ParamName) { |
| OS << "<>"; |
| return; |
| } |
| |
| OS << "<"; |
| const TemplateParams *Head = &Params; |
| while (Head) { |
| // Type can be null if this is a template template parameter, |
| // and Name can be null if this is a simple type. |
| |
| if (Head->ParamType && Head->ParamName) { |
| // Function pointer. |
| OS << "&"; |
| Type::outputPre(OS, *Head->ParamType); |
| outputName(OS, Head->ParamName); |
| Type::outputPost(OS, *Head->ParamType); |
| } else if (Head->ParamType) { |
| // simple type. |
| Type::outputPre(OS, *Head->ParamType); |
| Type::outputPost(OS, *Head->ParamType); |
| } else { |
| // Template alias. |
| outputName(OS, Head->ParamName); |
| } |
| |
| Head = Head->Next; |
| |
| if (Head) |
| OS << ", "; |
| } |
| OS << ">"; |
| } |
| |
| static void outputName(OutputStream &OS, const Name *TheName) { |
| if (!TheName) |
| return; |
| |
| outputSpaceIfNecessary(OS); |
| |
| const Name *Previous = nullptr; |
| // Print out namespaces or outer class BackReferences. |
| for (; TheName->Next; TheName = TheName->Next) { |
| Previous = TheName; |
| OS << TheName->Str; |
| if (TheName->TParams) |
| outputParameterList(OS, *TheName->TParams); |
| OS << "::"; |
| } |
| |
| // Print out a regular name. |
| if (TheName->Operator.empty()) { |
| OS << TheName->Str; |
| if (TheName->TParams) |
| outputParameterList(OS, *TheName->TParams); |
| return; |
| } |
| |
| // Print out ctor or dtor. |
| if (TheName->Operator == "dtor") |
| OS << "~"; |
| |
| if (TheName->Operator == "ctor" || TheName->Operator == "dtor") { |
| OS << Previous->Str; |
| if (Previous->TParams) |
| outputParameterList(OS, *Previous->TParams); |
| return; |
| } |
| |
| // Print out an overloaded operator. |
| if (!TheName->Str.empty()) |
| OS << TheName->Str << "::"; |
| OS << "operator" << TheName->Operator; |
| } |
| |
| namespace { |
| |
| Type *Type::clone(ArenaAllocator &Arena) const { |
| return Arena.alloc<Type>(*this); |
| } |
| |
| // Write the "first half" of a given type. |
| void Type::outputPre(OutputStream &OS, Type &Ty) { |
| // Function types require custom handling of const and static so we |
| // handle them separately. All other types use the same decoration |
| // for these modifiers, so handle them here in common code. |
| if (Ty.Prim == PrimTy::Function) { |
| Ty.outputPre(OS); |
| return; |
| } |
| |
| switch (Ty.Storage) { |
| case StorageClass::PrivateStatic: |
| case StorageClass::PublicStatic: |
| case StorageClass::ProtectedStatic: |
| OS << "static "; |
| default: |
| break; |
| } |
| Ty.outputPre(OS); |
| |
| if (Ty.Quals & Q_Const) { |
| outputSpaceIfNecessary(OS); |
| OS << "const"; |
| } |
| |
| if (Ty.Quals & Q_Volatile) { |
| outputSpaceIfNecessary(OS); |
| OS << "volatile"; |
| } |
| |
| if (Ty.Quals & Q_Restrict) { |
| outputSpaceIfNecessary(OS); |
| OS << "__restrict"; |
| } |
| } |
| |
| // Write the "second half" of a given type. |
| void Type::outputPost(OutputStream &OS, Type &Ty) { Ty.outputPost(OS); } |
| |
| void Type::outputPre(OutputStream &OS) { |
| switch (Prim) { |
| case PrimTy::Void: |
| OS << "void"; |
| break; |
| case PrimTy::Bool: |
| OS << "bool"; |
| break; |
| case PrimTy::Char: |
| OS << "char"; |
| break; |
| case PrimTy::Schar: |
| OS << "signed char"; |
| break; |
| case PrimTy::Uchar: |
| OS << "unsigned char"; |
| break; |
| case PrimTy::Char16: |
| OS << "char16_t"; |
| break; |
| case PrimTy::Char32: |
| OS << "char32_t"; |
| break; |
| case PrimTy::Short: |
| OS << "short"; |
| break; |
| case PrimTy::Ushort: |
| OS << "unsigned short"; |
| break; |
| case PrimTy::Int: |
| OS << "int"; |
| break; |
| case PrimTy::Uint: |
| OS << "unsigned int"; |
| break; |
| case PrimTy::Long: |
| OS << "long"; |
| break; |
| case PrimTy::Ulong: |
| OS << "unsigned long"; |
| break; |
| case PrimTy::Int64: |
| OS << "__int64"; |
| break; |
| case PrimTy::Uint64: |
| OS << "unsigned __int64"; |
| break; |
| case PrimTy::Wchar: |
| OS << "wchar_t"; |
| break; |
| case PrimTy::Float: |
| OS << "float"; |
| break; |
| case PrimTy::Double: |
| OS << "double"; |
| break; |
| case PrimTy::Ldouble: |
| OS << "long double"; |
| break; |
| case PrimTy::Nullptr: |
| OS << "std::nullptr_t"; |
| break; |
| default: |
| assert(false && "Invalid primitive type!"); |
| } |
| } |
| void Type::outputPost(OutputStream &OS) {} |
| |
| Type *PointerType::clone(ArenaAllocator &Arena) const { |
| return Arena.alloc<PointerType>(*this); |
| } |
| |
| static void outputPointerIndicator(OutputStream &OS, PointerAffinity Affinity, |
| const Name *MemberName, |
| const Type *Pointee) { |
| // "[]" and "()" (for function parameters) take precedence over "*", |
| // so "int *x(int)" means "x is a function returning int *". We need |
| // parentheses to supercede the default precedence. (e.g. we want to |
| // emit something like "int (*x)(int)".) |
| if (Pointee->Prim == PrimTy::Function || Pointee->Prim == PrimTy::Array) { |
| OS << "("; |
| if (Pointee->Prim == PrimTy::Function) { |
| const FunctionType *FTy = static_cast<const FunctionType *>(Pointee); |
| assert(FTy->IsFunctionPointer); |
| outputCallingConvention(OS, FTy->CallConvention); |
| OS << " "; |
| } |
| } |
| |
| if (MemberName) { |
| outputName(OS, MemberName); |
| OS << "::"; |
| } |
| |
| if (Affinity == PointerAffinity::Pointer) |
| OS << "*"; |
| else if (Affinity == PointerAffinity::Reference) |
| OS << "&"; |
| else |
| OS << "&&"; |
| } |
| |
| void PointerType::outputPre(OutputStream &OS) { |
| Type::outputPre(OS, *Pointee); |
| |
| outputSpaceIfNecessary(OS); |
| |
| if (Quals & Q_Unaligned) |
| OS << "__unaligned "; |
| |
| outputPointerIndicator(OS, Affinity, nullptr, Pointee); |
| |
| // FIXME: We should output this, but it requires updating lots of tests. |
| // if (Ty.Quals & Q_Pointer64) |
| // OS << " __ptr64"; |
| } |
| |
| void PointerType::outputPost(OutputStream &OS) { |
| if (Pointee->Prim == PrimTy::Function || Pointee->Prim == PrimTy::Array) |
| OS << ")"; |
| |
| Type::outputPost(OS, *Pointee); |
| } |
| |
| Type *MemberPointerType::clone(ArenaAllocator &Arena) const { |
| return Arena.alloc<MemberPointerType>(*this); |
| } |
| |
| void MemberPointerType::outputPre(OutputStream &OS) { |
| Type::outputPre(OS, *Pointee); |
| |
| outputSpaceIfNecessary(OS); |
| |
| outputPointerIndicator(OS, PointerAffinity::Pointer, MemberName, Pointee); |
| |
| // FIXME: We should output this, but it requires updating lots of tests. |
| // if (Ty.Quals & Q_Pointer64) |
| // OS << " __ptr64"; |
| if (Quals & Q_Restrict) |
| OS << " __restrict"; |
| } |
| |
| void MemberPointerType::outputPost(OutputStream &OS) { |
| if (Pointee->Prim == PrimTy::Function || Pointee->Prim == PrimTy::Array) |
| OS << ")"; |
| |
| Type::outputPost(OS, *Pointee); |
| } |
| |
| Type *FunctionType::clone(ArenaAllocator &Arena) const { |
| return Arena.alloc<FunctionType>(*this); |
| } |
| |
| void FunctionType::outputPre(OutputStream &OS) { |
| if (!(FunctionClass & Global)) { |
| if (FunctionClass & Static) |
| OS << "static "; |
| } |
| |
| if (ReturnType) { |
| Type::outputPre(OS, *ReturnType); |
| OS << " "; |
| } |
| |
| // Function pointers print the calling convention as void (__cdecl *)(params) |
| // rather than void __cdecl (*)(params). So we need to let the PointerType |
| // class handle this. |
| if (!IsFunctionPointer) |
| outputCallingConvention(OS, CallConvention); |
| } |
| |
| void FunctionType::outputPost(OutputStream &OS) { |
| OS << "("; |
| outputParameterList(OS, Params); |
| OS << ")"; |
| if (Quals & Q_Const) |
| OS << " const"; |
| if (Quals & Q_Volatile) |
| OS << " volatile"; |
| if (Quals & Q_Restrict) |
| OS << " __restrict"; |
| if (Quals & Q_Unaligned) |
| OS << " __unaligned"; |
| |
| if (RefKind == ReferenceKind::LValueRef) |
| OS << " &"; |
| else if (RefKind == ReferenceKind::RValueRef) |
| OS << " &&"; |
| |
| if (ReturnType) |
| Type::outputPost(OS, *ReturnType); |
| return; |
| } |
| |
| Type *UdtType::clone(ArenaAllocator &Arena) const { |
| return Arena.alloc<UdtType>(*this); |
| } |
| |
| void UdtType::outputPre(OutputStream &OS) { |
| switch (Prim) { |
| case PrimTy::Class: |
| OS << "class "; |
| break; |
| case PrimTy::Struct: |
| OS << "struct "; |
| break; |
| case PrimTy::Union: |
| OS << "union "; |
| break; |
| case PrimTy::Enum: |
| OS << "enum "; |
| break; |
| default: |
| assert(false && "Not a udt type!"); |
| } |
| |
| outputName(OS, UdtName); |
| } |
| |
| Type *ArrayType::clone(ArenaAllocator &Arena) const { |
| return Arena.alloc<ArrayType>(*this); |
| } |
| |
| void ArrayType::outputPre(OutputStream &OS) { |
| Type::outputPre(OS, *ElementType); |
| } |
| |
| void ArrayType::outputPost(OutputStream &OS) { |
| if (ArrayDimension > 0) |
| OS << "[" << ArrayDimension << "]"; |
| if (NextDimension) |
| Type::outputPost(OS, *NextDimension); |
| else if (ElementType) |
| Type::outputPost(OS, *ElementType); |
| } |
| |
| struct Symbol { |
| Name *SymbolName = nullptr; |
| Type *SymbolType = nullptr; |
| }; |
| |
| } // namespace |
| |
| namespace { |
| |
| // Demangler class takes the main role in demangling symbols. |
| // It has a set of functions to parse mangled symbols into Type instances. |
| // It also has a set of functions to cnovert Type instances to strings. |
| class Demangler { |
| public: |
| Demangler() = default; |
| |
| // You are supposed to call parse() first and then check if error is true. If |
| // it is false, call output() to write the formatted name to the given stream. |
| Symbol *parse(StringView &MangledName); |
| void output(const Symbol *S, OutputStream &OS); |
| |
| // True if an error occurred. |
| bool Error = false; |
| |
| private: |
| Type *demangleVariableEncoding(StringView &MangledName); |
| Type *demangleFunctionEncoding(StringView &MangledName); |
| |
| Qualifiers demanglePointerExtQualifiers(StringView &MangledName); |
| |
| // Parser functions. This is a recursive-descent parser. |
| Type *demangleType(StringView &MangledName, QualifierMangleMode QMM); |
| Type *demangleBasicType(StringView &MangledName); |
| UdtType *demangleClassType(StringView &MangledName); |
| PointerType *demanglePointerType(StringView &MangledName); |
| MemberPointerType *demangleMemberPointerType(StringView &MangledName); |
| FunctionType *demangleFunctionType(StringView &MangledName, bool HasThisQuals, |
| bool IsFunctionPointer); |
| |
| ArrayType *demangleArrayType(StringView &MangledName); |
| |
| TemplateParams *demangleTemplateParameterList(StringView &MangledName); |
| FunctionParams demangleFunctionParameterList(StringView &MangledName); |
| |
| int demangleNumber(StringView &MangledName); |
| |
| void memorizeString(StringView s); |
| |
| /// Allocate a copy of \p Borrowed into memory that we own. |
| StringView copyString(StringView Borrowed); |
| |
| Name *demangleFullyQualifiedTypeName(StringView &MangledName); |
| Name *demangleFullyQualifiedSymbolName(StringView &MangledName); |
| |
| Name *demangleUnqualifiedTypeName(StringView &MangledName); |
| Name *demangleUnqualifiedSymbolName(StringView &MangledName); |
| |
| Name *demangleNameScopeChain(StringView &MangledName, Name *UnqualifiedName); |
| Name *demangleNameScopePiece(StringView &MangledName); |
| |
| Name *demangleBackRefName(StringView &MangledName); |
| Name *demangleClassTemplateName(StringView &MangledName); |
| Name *demangleOperatorName(StringView &MangledName); |
| Name *demangleSimpleName(StringView &MangledName, bool Memorize); |
| Name *demangleAnonymousNamespaceName(StringView &MangledName); |
| Name *demangleLocallyScopedNamePiece(StringView &MangledName); |
| |
| StringView demangleSimpleString(StringView &MangledName, bool Memorize); |
| |
| FuncClass demangleFunctionClass(StringView &MangledName); |
| CallingConv demangleCallingConvention(StringView &MangledName); |
| StorageClass demangleVariableStorageClass(StringView &MangledName); |
| ReferenceKind demangleReferenceKind(StringView &MangledName); |
| void demangleThrowSpecification(StringView &MangledName); |
| |
| std::pair<Qualifiers, bool> demangleQualifiers(StringView &MangledName); |
| |
| // Memory allocator. |
| ArenaAllocator Arena; |
| |
| // A single type uses one global back-ref table for all function params. |
| // This means back-refs can even go "into" other types. Examples: |
| // |
| // // Second int* is a back-ref to first. |
| // void foo(int *, int*); |
| // |
| // // Second int* is not a back-ref to first (first is not a function param). |
| // int* foo(int*); |
| // |
| // // Second int* is a back-ref to first (ALL function types share the same |
| // // back-ref map. |
| // using F = void(*)(int*); |
| // F G(int *); |
| Type *FunctionParamBackRefs[10]; |
| size_t FunctionParamBackRefCount = 0; |
| |
| // The first 10 BackReferences in a mangled name can be back-referenced by |
| // special name @[0-9]. This is a storage for the first 10 BackReferences. |
| StringView BackReferences[10]; |
| size_t BackRefCount = 0; |
| }; |
| } // namespace |
| |
| StringView Demangler::copyString(StringView Borrowed) { |
| char *Stable = Arena.allocUnalignedBuffer(Borrowed.size() + 1); |
| std::strcpy(Stable, Borrowed.begin()); |
| |
| return {Stable, Borrowed.size()}; |
| } |
| |
| // Parser entry point. |
| Symbol *Demangler::parse(StringView &MangledName) { |
| Symbol *S = Arena.alloc<Symbol>(); |
| |
| // MSVC-style mangled symbols must start with '?'. |
| if (!MangledName.consumeFront("?")) { |
| S->SymbolName = Arena.alloc<Name>(); |
| S->SymbolName->Str = MangledName; |
| S->SymbolType = Arena.alloc<Type>(); |
| S->SymbolType->Prim = PrimTy::Unknown; |
| return S; |
| } |
| |
| // What follows is a main symbol name. This may include |
| // namespaces or class BackReferences. |
| S->SymbolName = demangleFullyQualifiedSymbolName(MangledName); |
| |
| // Read a variable. |
| S->SymbolType = startsWithDigit(MangledName) |
| ? demangleVariableEncoding(MangledName) |
| : demangleFunctionEncoding(MangledName); |
| |
| return S; |
| } |
| |
| // <type-encoding> ::= <storage-class> <variable-type> |
| // <storage-class> ::= 0 # private static member |
| // ::= 1 # protected static member |
| // ::= 2 # public static member |
| // ::= 3 # global |
| // ::= 4 # static local |
| |
| Type *Demangler::demangleVariableEncoding(StringView &MangledName) { |
| StorageClass SC = demangleVariableStorageClass(MangledName); |
| |
| Type *Ty = demangleType(MangledName, QualifierMangleMode::Drop); |
| |
| Ty->Storage = SC; |
| |
| // <variable-type> ::= <type> <cvr-qualifiers> |
| // ::= <type> <pointee-cvr-qualifiers> # pointers, references |
| switch (Ty->Prim) { |
| case PrimTy::Ptr: |
| case PrimTy::MemberPtr: { |
| Qualifiers ExtraChildQuals = Q_None; |
| Ty->Quals = |
| Qualifiers(Ty->Quals | demanglePointerExtQualifiers(MangledName)); |
| |
| bool IsMember = false; |
| std::tie(ExtraChildQuals, IsMember) = demangleQualifiers(MangledName); |
| |
| if (Ty->Prim == PrimTy::MemberPtr) { |
| assert(IsMember); |
| Name *BackRefName = demangleFullyQualifiedTypeName(MangledName); |
| (void)BackRefName; |
| MemberPointerType *MPTy = static_cast<MemberPointerType *>(Ty); |
| MPTy->Pointee->Quals = Qualifiers(MPTy->Pointee->Quals | ExtraChildQuals); |
| } else { |
| PointerType *PTy = static_cast<PointerType *>(Ty); |
| PTy->Pointee->Quals = Qualifiers(PTy->Pointee->Quals | ExtraChildQuals); |
| } |
| |
| break; |
| } |
| default: |
| Ty->Quals = demangleQualifiers(MangledName).first; |
| break; |
| } |
| |
| return Ty; |
| } |
| |
| // Sometimes numbers are encoded in mangled symbols. For example, |
| // "int (*x)[20]" is a valid C type (x is a pointer to an array of |
| // length 20), so we need some way to embed numbers as part of symbols. |
| // This function parses it. |
| // |
| // <number> ::= [?] <non-negative integer> |
| // |
| // <non-negative integer> ::= <decimal digit> # when 1 <= Number <= 10 |
| // ::= <hex digit>+ @ # when Numbrer == 0 or >= 10 |
| // |
| // <hex-digit> ::= [A-P] # A = 0, B = 1, ... |
| int Demangler::demangleNumber(StringView &MangledName) { |
| bool neg = MangledName.consumeFront("?"); |
| |
| if (startsWithDigit(MangledName)) { |
| int32_t Ret = MangledName[0] - '0' + 1; |
| MangledName = MangledName.dropFront(1); |
| return neg ? -Ret : Ret; |
| } |
| |
| int Ret = 0; |
| for (size_t i = 0; i < MangledName.size(); ++i) { |
| char C = MangledName[i]; |
| if (C == '@') { |
| MangledName = MangledName.dropFront(i + 1); |
| return neg ? -Ret : Ret; |
| } |
| if ('A' <= C && C <= 'P') { |
| Ret = (Ret << 4) + (C - 'A'); |
| continue; |
| } |
| break; |
| } |
| |
| Error = true; |
| return 0; |
| } |
| |
| // First 10 strings can be referenced by special BackReferences ?0, ?1, ..., ?9. |
| // Memorize it. |
| void Demangler::memorizeString(StringView S) { |
| if (BackRefCount >= sizeof(BackReferences) / sizeof(*BackReferences)) |
| return; |
| for (size_t i = 0; i < BackRefCount; ++i) |
| if (S == BackReferences[i]) |
| return; |
| BackReferences[BackRefCount++] = S; |
| } |
| |
| Name *Demangler::demangleBackRefName(StringView &MangledName) { |
| assert(startsWithDigit(MangledName)); |
| |
| size_t I = MangledName[0] - '0'; |
| if (I >= BackRefCount) { |
| Error = true; |
| return nullptr; |
| } |
| |
| MangledName = MangledName.dropFront(); |
| Name *Node = Arena.alloc<Name>(); |
| Node->Str = BackReferences[I]; |
| return Node; |
| } |
| |
| Name *Demangler::demangleClassTemplateName(StringView &MangledName) { |
| assert(MangledName.startsWith("?$")); |
| MangledName.consumeFront("?$"); |
| |
| Name *Node = demangleSimpleName(MangledName, false); |
| Node->TParams = demangleTemplateParameterList(MangledName); |
| |
| // Render this class template name into a string buffer so that we can |
| // memorize it for the purpose of back-referencing. |
| OutputStream OS = OutputStream::create(nullptr, nullptr, 1024); |
| outputName(OS, Node); |
| OS << '\0'; |
| char *Name = OS.getBuffer(); |
| |
| StringView Owned = copyString(Name); |
| memorizeString(Owned); |
| std::free(Name); |
| |
| return Node; |
| } |
| |
| Name *Demangler::demangleOperatorName(StringView &MangledName) { |
| assert(MangledName.startsWith('?')); |
| MangledName.consumeFront('?'); |
| |
| auto NameString = [this, &MangledName]() -> StringView { |
| switch (MangledName.popFront()) { |
| case '0': |
| return "ctor"; |
| case '1': |
| return "dtor"; |
| case '2': |
| return " new"; |
| case '3': |
| return " delete"; |
| case '4': |
| return "="; |
| case '5': |
| return ">>"; |
| case '6': |
| return "<<"; |
| case '7': |
| return "!"; |
| case '8': |
| return "=="; |
| case '9': |
| return "!="; |
| case 'A': |
| return "[]"; |
| case 'C': |
| return "->"; |
| case 'D': |
| return "*"; |
| case 'E': |
| return "++"; |
| case 'F': |
| return "--"; |
| case 'G': |
| return "-"; |
| case 'H': |
| return "+"; |
| case 'I': |
| return "&"; |
| case 'J': |
| return "->*"; |
| case 'K': |
| return "/"; |
| case 'L': |
| return "%"; |
| case 'M': |
| return "<"; |
| case 'N': |
| return "<="; |
| case 'O': |
| return ">"; |
| case 'P': |
| return ">="; |
| case 'Q': |
| return ","; |
| case 'R': |
| return "()"; |
| case 'S': |
| return "~"; |
| case 'T': |
| return "^"; |
| case 'U': |
| return "|"; |
| case 'V': |
| return "&&"; |
| case 'W': |
| return "||"; |
| case 'X': |
| return "*="; |
| case 'Y': |
| return "+="; |
| case 'Z': |
| return "-="; |
| case '_': { |
| if (MangledName.empty()) |
| break; |
| |
| switch (MangledName.popFront()) { |
| case '0': |
| return "/="; |
| case '1': |
| return "%="; |
| case '2': |
| return ">>="; |
| case '3': |
| return "<<="; |
| case '4': |
| return "&="; |
| case '5': |
| return "|="; |
| case '6': |
| return "^="; |
| case 'U': |
| return " new[]"; |
| case 'V': |
| return " delete[]"; |
| case '_': |
| if (MangledName.consumeFront("L")) |
| return " co_await"; |
| if (MangledName.consumeFront("K")) { |
| size_t EndPos = MangledName.find('@'); |
| if (EndPos == StringView::npos) |
| break; |
| StringView OpName = demangleSimpleString(MangledName, false); |
| size_t FullSize = OpName.size() + 3; // <space>""OpName |
| char *Buffer = Arena.allocUnalignedBuffer(FullSize); |
| Buffer[0] = ' '; |
| Buffer[1] = '"'; |
| Buffer[2] = '"'; |
| std::memcpy(Buffer + 3, OpName.begin(), OpName.size()); |
| return {Buffer, FullSize}; |
| } |
| } |
| } |
| } |
| Error = true; |
| return ""; |
| }; |
| |
| Name *Node = Arena.alloc<Name>(); |
| Node->Operator = NameString(); |
| return Node; |
| } |
| |
| Name *Demangler::demangleSimpleName(StringView &MangledName, bool Memorize) { |
| StringView S = demangleSimpleString(MangledName, Memorize); |
| if (Error) |
| return nullptr; |
| |
| Name *Node = Arena.alloc<Name>(); |
| Node->Str = S; |
| return Node; |
| } |
| |
| StringView Demangler::demangleSimpleString(StringView &MangledName, |
| bool Memorize) { |
| StringView S; |
| for (size_t i = 0; i < MangledName.size(); ++i) { |
| if (MangledName[i] != '@') |
| continue; |
| S = MangledName.substr(0, i); |
| MangledName = MangledName.dropFront(i + 1); |
| |
| if (Memorize) |
| memorizeString(S); |
| return S; |
| } |
| |
| Error = true; |
| return {}; |
| } |
| |
| Name *Demangler::demangleAnonymousNamespaceName(StringView &MangledName) { |
| assert(MangledName.startsWith("?A")); |
| MangledName.consumeFront("?A"); |
| |
| Name *Node = Arena.alloc<Name>(); |
| Node->Str = "`anonymous namespace'"; |
| if (MangledName.consumeFront('@')) |
| return Node; |
| |
| Error = true; |
| return nullptr; |
| } |
| |
| Name *Demangler::demangleLocallyScopedNamePiece(StringView &MangledName) { |
| assert(startsWithLocalScopePattern(MangledName)); |
| |
| Name *Node = Arena.alloc<Name>(); |
| MangledName.consumeFront('?'); |
| int ScopeIdentifier = demangleNumber(MangledName); |
| |
| // One ? to terminate the number |
| MangledName.consumeFront('?'); |
| |
| assert(!Error); |
| Symbol *Scope = parse(MangledName); |
| if (Error) |
| return nullptr; |
| |
| // Render the parent symbol's name into a buffer. |
| OutputStream OS = OutputStream::create(nullptr, nullptr, 1024); |
| OS << '`'; |
| output(Scope, OS); |
| OS << '\''; |
| OS << "::`" << ScopeIdentifier << "'"; |
| OS << '\0'; |
| char *Result = OS.getBuffer(); |
| Node->Str = copyString(Result); |
| std::free(Result); |
| return Node; |
| } |
| |
| // Parses a type name in the form of A@B@C@@ which represents C::B::A. |
| Name *Demangler::demangleFullyQualifiedTypeName(StringView &MangledName) { |
| Name *TypeName = demangleUnqualifiedTypeName(MangledName); |
| assert(TypeName); |
| |
| Name *QualName = demangleNameScopeChain(MangledName, TypeName); |
| assert(QualName); |
| return QualName; |
| } |
| |
| // Parses a symbol name in the form of A@B@C@@ which represents C::B::A. |
| // Symbol names have slightly different rules regarding what can appear |
| // so we separate out the implementations for flexibility. |
| Name *Demangler::demangleFullyQualifiedSymbolName(StringView &MangledName) { |
| Name *SymbolName = demangleUnqualifiedSymbolName(MangledName); |
| assert(SymbolName); |
| |
| Name *QualName = demangleNameScopeChain(MangledName, SymbolName); |
| assert(QualName); |
| return QualName; |
| } |
| |
| Name *Demangler::demangleUnqualifiedTypeName(StringView &MangledName) { |
| // An inner-most name can be a back-reference, because a fully-qualified name |
| // (e.g. Scope + Inner) can contain other fully qualified names inside of |
| // them (for example template parameters), and these nested parameters can |
| // refer to previously mangled types. |
| if (startsWithDigit(MangledName)) |
| return demangleBackRefName(MangledName); |
| |
| if (MangledName.startsWith("?$")) |
| return demangleClassTemplateName(MangledName); |
| |
| return demangleSimpleName(MangledName, true); |
| } |
| |
| Name *Demangler::demangleUnqualifiedSymbolName(StringView &MangledName) { |
| if (startsWithDigit(MangledName)) |
| return demangleBackRefName(MangledName); |
| if (MangledName.startsWith("?$")) |
| return demangleClassTemplateName(MangledName); |
| if (MangledName.startsWith('?')) |
| return demangleOperatorName(MangledName); |
| return demangleSimpleName(MangledName, true); |
| } |
| |
| Name *Demangler::demangleNameScopePiece(StringView &MangledName) { |
| if (startsWithDigit(MangledName)) |
| return demangleBackRefName(MangledName); |
| |
| if (MangledName.startsWith("?$")) |
| return demangleClassTemplateName(MangledName); |
| |
| if (MangledName.startsWith("?A")) |
| return demangleAnonymousNamespaceName(MangledName); |
| |
| if (startsWithLocalScopePattern(MangledName)) |
| return demangleLocallyScopedNamePiece(MangledName); |
| |
| return demangleSimpleName(MangledName, true); |
| } |
| |
| Name *Demangler::demangleNameScopeChain(StringView &MangledName, |
| Name *UnqualifiedName) { |
| Name *Head = UnqualifiedName; |
| |
| while (!MangledName.consumeFront("@")) { |
| if (MangledName.empty()) { |
| Error = true; |
| return nullptr; |
| } |
| |
| assert(!Error); |
| Name *Elem = demangleNameScopePiece(MangledName); |
| if (Error) |
| return nullptr; |
| |
| Elem->Next = Head; |
| Head = Elem; |
| } |
| return Head; |
| } |
| |
| FuncClass Demangler::demangleFunctionClass(StringView &MangledName) { |
| SwapAndRestore<StringView> RestoreOnError(MangledName, MangledName); |
| RestoreOnError.shouldRestore(false); |
| |
| switch (MangledName.popFront()) { |
| case 'A': |
| return Private; |
| case 'B': |
| return FuncClass(Private | Far); |
| case 'C': |
| return FuncClass(Private | Static); |
| case 'D': |
| return FuncClass(Private | Static); |
| case 'E': |
| return FuncClass(Private | Virtual); |
| case 'F': |
| return FuncClass(Private | Virtual); |
| case 'I': |
| return Protected; |
| case 'J': |
| return FuncClass(Protected | Far); |
| case 'K': |
| return FuncClass(Protected | Static); |
| case 'L': |
| return FuncClass(Protected | Static | Far); |
| case 'M': |
| return FuncClass(Protected | Virtual); |
| case 'N': |
| return FuncClass(Protected | Virtual | Far); |
| case 'Q': |
| return Public; |
| case 'R': |
| return FuncClass(Public | Far); |
| case 'S': |
| return FuncClass(Public | Static); |
| case 'T': |
| return FuncClass(Public | Static | Far); |
| case 'U': |
| return FuncClass(Public | Virtual); |
| case 'V': |
| return FuncClass(Public | Virtual | Far); |
| case 'Y': |
| return Global; |
| case 'Z': |
| return FuncClass(Global | Far); |
| } |
| |
| Error = true; |
| RestoreOnError.shouldRestore(true); |
| return Public; |
| } |
| |
| CallingConv Demangler::demangleCallingConvention(StringView &MangledName) { |
| switch (MangledName.popFront()) { |
| case 'A': |
| case 'B': |
| return CallingConv::Cdecl; |
| case 'C': |
| case 'D': |
| return CallingConv::Pascal; |
| case 'E': |
| case 'F': |
| return CallingConv::Thiscall; |
| case 'G': |
| case 'H': |
| return CallingConv::Stdcall; |
| case 'I': |
| case 'J': |
| return CallingConv::Fastcall; |
| case 'M': |
| case 'N': |
| return CallingConv::Clrcall; |
| case 'O': |
| case 'P': |
| return CallingConv::Eabi; |
| case 'Q': |
| return CallingConv::Vectorcall; |
| } |
| |
| return CallingConv::None; |
| } |
| |
| StorageClass Demangler::demangleVariableStorageClass(StringView &MangledName) { |
| assert(std::isdigit(MangledName.front())); |
| |
| switch (MangledName.popFront()) { |
| case '0': |
| return StorageClass::PrivateStatic; |
| case '1': |
| return StorageClass::ProtectedStatic; |
| case '2': |
| return StorageClass::PublicStatic; |
| case '3': |
| return StorageClass::Global; |
| case '4': |
| return StorageClass::FunctionLocalStatic; |
| } |
| Error = true; |
| return StorageClass::None; |
| } |
| |
| std::pair<Qualifiers, bool> |
| Demangler::demangleQualifiers(StringView &MangledName) { |
| |
| switch (MangledName.popFront()) { |
| // Member qualifiers |
| case 'Q': |
| return std::make_pair(Q_None, true); |
| case 'R': |
| return std::make_pair(Q_Const, true); |
| case 'S': |
| return std::make_pair(Q_Volatile, true); |
| case 'T': |
| return std::make_pair(Qualifiers(Q_Const | Q_Volatile), true); |
| // Non-Member qualifiers |
| case 'A': |
| return std::make_pair(Q_None, false); |
| case 'B': |
| return std::make_pair(Q_Const, false); |
| case 'C': |
| return std::make_pair(Q_Volatile, false); |
| case 'D': |
| return std::make_pair(Qualifiers(Q_Const | Q_Volatile), false); |
| } |
| Error = true; |
| return std::make_pair(Q_None, false); |
| } |
| |
| static bool isTagType(StringView S) { |
| switch (S.front()) { |
| case 'T': // union |
| case 'U': // struct |
| case 'V': // class |
| case 'W': // enum |
| return true; |
| } |
| return false; |
| } |
| |
| static bool isPointerType(StringView S) { |
| if (S.startsWith("$$Q")) // foo && |
| return true; |
| |
| switch (S.front()) { |
| case 'A': // foo & |
| case 'P': // foo * |
| case 'Q': // foo *const |
| case 'R': // foo *volatile |
| case 'S': // foo *const volatile |
| return true; |
| } |
| return false; |
| } |
| |
| static bool isArrayType(StringView S) { return S[0] == 'Y'; } |
| |
| static bool isFunctionType(StringView S) { |
| return S.startsWith("$$A8@@") || S.startsWith("$$A6"); |
| } |
| |
| // <variable-type> ::= <type> <cvr-qualifiers> |
| // ::= <type> <pointee-cvr-qualifiers> # pointers, references |
| Type *Demangler::demangleType(StringView &MangledName, |
| QualifierMangleMode QMM) { |
| Qualifiers Quals = Q_None; |
| bool IsMember = false; |
| bool IsMemberKnown = false; |
| if (QMM == QualifierMangleMode::Mangle) { |
| std::tie(Quals, IsMember) = demangleQualifiers(MangledName); |
| IsMemberKnown = true; |
| } else if (QMM == QualifierMangleMode::Result) { |
| if (MangledName.consumeFront('?')) { |
| std::tie(Quals, IsMember) = demangleQualifiers(MangledName); |
| IsMemberKnown = true; |
| } |
| } |
| |
| Type *Ty = nullptr; |
| if (isTagType(MangledName)) |
| Ty = demangleClassType(MangledName); |
| else if (isPointerType(MangledName)) { |
| if (!IsMemberKnown) |
| IsMember = isMemberPointer(MangledName); |
| |
| if (IsMember) |
| Ty = demangleMemberPointerType(MangledName); |
| else |
| Ty = demanglePointerType(MangledName); |
| } else if (isArrayType(MangledName)) |
| Ty = demangleArrayType(MangledName); |
| else if (isFunctionType(MangledName)) { |
| if (MangledName.consumeFront("$$A8@@")) |
| Ty = demangleFunctionType(MangledName, true, false); |
| else { |
| assert(MangledName.startsWith("$$A6")); |
| MangledName.consumeFront("$$A6"); |
| Ty = demangleFunctionType(MangledName, false, false); |
| } |
| } else { |
| Ty = demangleBasicType(MangledName); |
| assert(Ty && !Error); |
| if (!Ty || Error) |
| return Ty; |
| } |
| |
| Ty->Quals = Qualifiers(Ty->Quals | Quals); |
| return Ty; |
| } |
| |
| ReferenceKind Demangler::demangleReferenceKind(StringView &MangledName) { |
| if (MangledName.consumeFront('G')) |
| return ReferenceKind::LValueRef; |
| else if (MangledName.consumeFront('H')) |
| return ReferenceKind::RValueRef; |
| return ReferenceKind::None; |
| } |
| |
| void Demangler::demangleThrowSpecification(StringView &MangledName) { |
| if (MangledName.consumeFront('Z')) |
| return; |
| |
| Error = true; |
| } |
| |
| FunctionType *Demangler::demangleFunctionType(StringView &MangledName, |
| bool HasThisQuals, |
| bool IsFunctionPointer) { |
| FunctionType *FTy = Arena.alloc<FunctionType>(); |
| FTy->Prim = PrimTy::Function; |
| FTy->IsFunctionPointer = IsFunctionPointer; |
| |
| if (HasThisQuals) { |
| FTy->Quals = demanglePointerExtQualifiers(MangledName); |
| FTy->RefKind = demangleReferenceKind(MangledName); |
| FTy->Quals = Qualifiers(FTy->Quals | demangleQualifiers(MangledName).first); |
| } |
| |
| // Fields that appear on both member and non-member functions. |
| FTy->CallConvention = demangleCallingConvention(MangledName); |
| |
| // <return-type> ::= <type> |
| // ::= @ # structors (they have no declared return type) |
| bool IsStructor = MangledName.consumeFront('@'); |
| if (!IsStructor) |
| FTy->ReturnType = demangleType(MangledName, QualifierMangleMode::Result); |
| |
| FTy->Params = demangleFunctionParameterList(MangledName); |
| |
| demangleThrowSpecification(MangledName); |
| |
| return FTy; |
| } |
| |
| Type *Demangler::demangleFunctionEncoding(StringView &MangledName) { |
| FuncClass FC = demangleFunctionClass(MangledName); |
| |
| bool HasThisQuals = !(FC & (Global | Static)); |
| FunctionType *FTy = demangleFunctionType(MangledName, HasThisQuals, false); |
| FTy->FunctionClass = FC; |
| |
| return FTy; |
| } |
| |
| // Reads a primitive type. |
| Type *Demangler::demangleBasicType(StringView &MangledName) { |
| Type *Ty = Arena.alloc<Type>(); |
| |
| if (MangledName.consumeFront("$$T")) { |
| Ty->Prim = PrimTy::Nullptr; |
| return Ty; |
| } |
| |
| switch (MangledName.popFront()) { |
| case 'X': |
| Ty->Prim = PrimTy::Void; |
| break; |
| case 'D': |
| Ty->Prim = PrimTy::Char; |
| break; |
| case 'C': |
| Ty->Prim = PrimTy::Schar; |
| break; |
| case 'E': |
| Ty->Prim = PrimTy::Uchar; |
| break; |
| case 'F': |
| Ty->Prim = PrimTy::Short; |
| break; |
| case 'G': |
| Ty->Prim = PrimTy::Ushort; |
| break; |
| case 'H': |
| Ty->Prim = PrimTy::Int; |
| break; |
| case 'I': |
| Ty->Prim = PrimTy::Uint; |
| break; |
| case 'J': |
| Ty->Prim = PrimTy::Long; |
| break; |
| case 'K': |
| Ty->Prim = PrimTy::Ulong; |
| break; |
| case 'M': |
| Ty->Prim = PrimTy::Float; |
| break; |
| case 'N': |
| Ty->Prim = PrimTy::Double; |
| break; |
| case 'O': |
| Ty->Prim = PrimTy::Ldouble; |
| break; |
| case '_': { |
| if (MangledName.empty()) { |
| Error = true; |
| return nullptr; |
| } |
| switch (MangledName.popFront()) { |
| case 'N': |
| Ty->Prim = PrimTy::Bool; |
| break; |
| case 'J': |
| Ty->Prim = PrimTy::Int64; |
| break; |
| case 'K': |
| Ty->Prim = PrimTy::Uint64; |
| break; |
| case 'W': |
| Ty->Prim = PrimTy::Wchar; |
| break; |
| case 'S': |
| Ty->Prim = PrimTy::Char16; |
| break; |
| case 'U': |
| Ty->Prim = PrimTy::Char32; |
| break; |
| default: |
| Error = true; |
| return nullptr; |
| } |
| break; |
| } |
| default: |
| Error = true; |
| return nullptr; |
| } |
| return Ty; |
| } |
| |
| UdtType *Demangler::demangleClassType(StringView &MangledName) { |
| UdtType *UTy = Arena.alloc<UdtType>(); |
| |
| switch (MangledName.popFront()) { |
| case 'T': |
| UTy->Prim = PrimTy::Union; |
| break; |
| case 'U': |
| UTy->Prim = PrimTy::Struct; |
| break; |
| case 'V': |
| UTy->Prim = PrimTy::Class; |
| break; |
| case 'W': |
| if (MangledName.popFront() != '4') { |
| Error = true; |
| return nullptr; |
| } |
| UTy->Prim = PrimTy::Enum; |
| break; |
| default: |
| assert(false); |
| } |
| |
| UTy->UdtName = demangleFullyQualifiedTypeName(MangledName); |
| return UTy; |
| } |
| |
| static std::pair<Qualifiers, PointerAffinity> |
| demanglePointerCVQualifiers(StringView &MangledName) { |
| if (MangledName.consumeFront("$$Q")) |
| return std::make_pair(Q_None, PointerAffinity::RValueReference); |
| |
| switch (MangledName.popFront()) { |
| case 'A': |
| return std::make_pair(Q_None, PointerAffinity::Reference); |
| case 'P': |
| return std::make_pair(Q_None, PointerAffinity::Pointer); |
| case 'Q': |
| return std::make_pair(Q_Const, PointerAffinity::Pointer); |
| case 'R': |
| return std::make_pair(Q_Volatile, PointerAffinity::Pointer); |
| case 'S': |
| return std::make_pair(Qualifiers(Q_Const | Q_Volatile), |
| PointerAffinity::Pointer); |
| default: |
| assert(false && "Ty is not a pointer type!"); |
| } |
| return std::make_pair(Q_None, PointerAffinity::Pointer); |
| } |
| |
| // <pointer-type> ::= E? <pointer-cvr-qualifiers> <ext-qualifiers> <type> |
| // # the E is required for 64-bit non-static pointers |
| PointerType *Demangler::demanglePointerType(StringView &MangledName) { |
| PointerType *Pointer = Arena.alloc<PointerType>(); |
| |
| std::tie(Pointer->Quals, Pointer->Affinity) = |
| demanglePointerCVQualifiers(MangledName); |
| |
| Pointer->Prim = PrimTy::Ptr; |
| if (MangledName.consumeFront("6")) { |
| Pointer->Pointee = demangleFunctionType(MangledName, false, true); |
| return Pointer; |
| } |
| |
| Qualifiers ExtQuals = demanglePointerExtQualifiers(MangledName); |
| Pointer->Quals = Qualifiers(Pointer->Quals | ExtQuals); |
| |
| Pointer->Pointee = demangleType(MangledName, QualifierMangleMode::Mangle); |
| return Pointer; |
| } |
| |
| MemberPointerType * |
| Demangler::demangleMemberPointerType(StringView &MangledName) { |
| MemberPointerType *Pointer = Arena.alloc<MemberPointerType>(); |
| Pointer->Prim = PrimTy::MemberPtr; |
| |
| PointerAffinity Affinity; |
| std::tie(Pointer->Quals, Affinity) = demanglePointerCVQualifiers(MangledName); |
| assert(Affinity == PointerAffinity::Pointer); |
| |
| Qualifiers ExtQuals = demanglePointerExtQualifiers(MangledName); |
| Pointer->Quals = Qualifiers(Pointer->Quals | ExtQuals); |
| |
| if (MangledName.consumeFront("8")) { |
| Pointer->MemberName = demangleFullyQualifiedSymbolName(MangledName); |
| Pointer->Pointee = demangleFunctionType(MangledName, true, true); |
| } else { |
| Qualifiers PointeeQuals = Q_None; |
| bool IsMember = false; |
| std::tie(PointeeQuals, IsMember) = demangleQualifiers(MangledName); |
| assert(IsMember); |
| Pointer->MemberName = demangleFullyQualifiedSymbolName(MangledName); |
| |
| Pointer->Pointee = demangleType(MangledName, QualifierMangleMode::Drop); |
| Pointer->Pointee->Quals = PointeeQuals; |
| } |
| |
| return Pointer; |
| } |
| |
| Qualifiers Demangler::demanglePointerExtQualifiers(StringView &MangledName) { |
| Qualifiers Quals = Q_None; |
| if (MangledName.consumeFront('E')) |
| Quals = Qualifiers(Quals | Q_Pointer64); |
| if (MangledName.consumeFront('I')) |
| Quals = Qualifiers(Quals | Q_Restrict); |
| if (MangledName.consumeFront('F')) |
| Quals = Qualifiers(Quals | Q_Unaligned); |
| |
| return Quals; |
| } |
| |
| ArrayType *Demangler::demangleArrayType(StringView &MangledName) { |
| assert(MangledName.front() == 'Y'); |
| MangledName.popFront(); |
| |
| int Dimension = demangleNumber(MangledName); |
| if (Dimension <= 0) { |
| Error = true; |
| return nullptr; |
| } |
| |
| ArrayType *ATy = Arena.alloc<ArrayType>(); |
| ArrayType *Dim = ATy; |
| for (int I = 0; I < Dimension; ++I) { |
| Dim->Prim = PrimTy::Array; |
| Dim->ArrayDimension = demangleNumber(MangledName); |
| Dim->NextDimension = Arena.alloc<ArrayType>(); |
| Dim = Dim->NextDimension; |
| } |
| |
| if (MangledName.consumeFront("$$C")) { |
| if (MangledName.consumeFront("B")) |
| ATy->Quals = Q_Const; |
| else if (MangledName.consumeFront("C") || MangledName.consumeFront("D")) |
| ATy->Quals = Qualifiers(Q_Const | Q_Volatile); |
| else if (!MangledName.consumeFront("A")) |
| Error = true; |
| } |
| |
| ATy->ElementType = demangleType(MangledName, QualifierMangleMode::Drop); |
| Dim->ElementType = ATy->ElementType; |
| return ATy; |
| } |
| |
| // Reads a function or a template parameters. |
| FunctionParams |
| Demangler::demangleFunctionParameterList(StringView &MangledName) { |
| // Empty parameter list. |
| if (MangledName.consumeFront('X')) |
| return {}; |
| |
| FunctionParams *Head; |
| FunctionParams **Current = &Head; |
| while (!Error && !MangledName.startsWith('@') && |
| !MangledName.startsWith('Z')) { |
| |
| if (startsWithDigit(MangledName)) { |
| size_t N = MangledName[0] - '0'; |
| if (N >= FunctionParamBackRefCount) { |
| Error = true; |
| return {}; |
| } |
| MangledName = MangledName.dropFront(); |
| |
| *Current = Arena.alloc<FunctionParams>(); |
| (*Current)->Current = FunctionParamBackRefs[N]->clone(Arena); |
| Current = &(*Current)->Next; |
| continue; |
| } |
| |
| size_t OldSize = MangledName.size(); |
| |
| *Current = Arena.alloc<FunctionParams>(); |
| (*Current)->Current = demangleType(MangledName, QualifierMangleMode::Drop); |
| |
| size_t CharsConsumed = OldSize - MangledName.size(); |
| assert(CharsConsumed != 0); |
| |
| // Single-letter types are ignored for backreferences because memorizing |
| // them doesn't save anything. |
| if (FunctionParamBackRefCount <= 9 && CharsConsumed > 1) |
| FunctionParamBackRefs[FunctionParamBackRefCount++] = (*Current)->Current; |
| |
| Current = &(*Current)->Next; |
| } |
| |
| if (Error) |
| return {}; |
| |
| // A non-empty parameter list is terminated by either 'Z' (variadic) parameter |
| // list or '@' (non variadic). Careful not to consume "@Z", as in that case |
| // the following Z could be a throw specifier. |
| if (MangledName.consumeFront('@')) |
| return *Head; |
| |
| if (MangledName.consumeFront('Z')) { |
| Head->IsVariadic = true; |
| return *Head; |
| } |
| |
| Error = true; |
| return {}; |
| } |
| |
| TemplateParams * |
| Demangler::demangleTemplateParameterList(StringView &MangledName) { |
| TemplateParams *Head; |
| TemplateParams **Current = &Head; |
| while (!Error && !MangledName.startsWith('@')) { |
| // Template parameter lists don't participate in back-referencing. |
| *Current = Arena.alloc<TemplateParams>(); |
| |
| // Empty parameter pack. |
| if (MangledName.consumeFront("$S") || MangledName.consumeFront("$$V") || |
| MangledName.consumeFront("$$$V")) { |
| if (!MangledName.startsWith('@')) |
| Error = true; |
| continue; |
| } |
| |
| if (MangledName.consumeFront("$$Y")) { |
| (*Current)->IsTemplateTemplate = true; |
| (*Current)->IsAliasTemplate = true; |
| (*Current)->ParamName = demangleFullyQualifiedTypeName(MangledName); |
| } else if (MangledName.consumeFront("$1?")) { |
| (*Current)->ParamName = demangleFullyQualifiedSymbolName(MangledName); |
| (*Current)->ParamType = demangleFunctionEncoding(MangledName); |
| } else { |
| (*Current)->ParamType = |
| demangleType(MangledName, QualifierMangleMode::Drop); |
| } |
| |
| Current = &(*Current)->Next; |
| } |
| |
| if (Error) |
| return {}; |
| |
| // Template parameter lists cannot be variadic, so it can only be terminated |
| // by @. |
| if (MangledName.consumeFront('@')) |
| return Head; |
| Error = true; |
| return {}; |
| } |
| |
| void Demangler::output(const Symbol *S, OutputStream &OS) { |
| // Converts an AST to a string. |
| // |
| // Converting an AST representing a C++ type to a string is tricky due |
| // to the bad grammar of the C++ declaration inherited from C. You have |
| // to construct a string from inside to outside. For example, if a type |
| // X is a pointer to a function returning int, the order you create a |
| // string becomes something like this: |
| // |
| // (1) X is a pointer: *X |
| // (2) (1) is a function returning int: int (*X)() |
| // |
| // So you cannot construct a result just by appending strings to a result. |
| // |
| // To deal with this, we split the function into two. outputPre() writes |
| // the "first half" of type declaration, and outputPost() writes the |
| // "second half". For example, outputPre() writes a return type for a |
| // function and outputPost() writes an parameter list. |
| Type::outputPre(OS, *S->SymbolType); |
| outputName(OS, S->SymbolName); |
| Type::outputPost(OS, *S->SymbolType); |
| } |
| |
| char *llvm::microsoftDemangle(const char *MangledName, char *Buf, size_t *N, |
| int *Status) { |
| Demangler D; |
| StringView Name{MangledName}; |
| Symbol *S = D.parse(Name); |
| |
| if (D.Error) |
| *Status = llvm::demangle_invalid_mangled_name; |
| else |
| *Status = llvm::demangle_success; |
| |
| OutputStream OS = OutputStream::create(Buf, N, 1024); |
| D.output(S, OS); |
| OS << '\0'; |
| return OS.getBuffer(); |
| } |