| //==-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ ---===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines an instruction selector for the SystemZ target. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SystemZ.h" |
| #include "SystemZTargetMachine.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/Constants.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| namespace { |
| /// SystemZRRIAddressMode - This corresponds to rriaddr, but uses SDValue's |
| /// instead of register numbers for the leaves of the matched tree. |
| struct SystemZRRIAddressMode { |
| enum { |
| RegBase, |
| FrameIndexBase |
| } BaseType; |
| |
| struct { // This is really a union, discriminated by BaseType! |
| SDValue Reg; |
| int FrameIndex; |
| } Base; |
| |
| SDValue IndexReg; |
| int64_t Disp; |
| bool isRI; |
| |
| SystemZRRIAddressMode(bool RI = false) |
| : BaseType(RegBase), IndexReg(), Disp(0), isRI(RI) { |
| } |
| |
| void dump() { |
| errs() << "SystemZRRIAddressMode " << this << '\n'; |
| if (BaseType == RegBase) { |
| errs() << "Base.Reg "; |
| if (Base.Reg.getNode() != 0) |
| Base.Reg.getNode()->dump(); |
| else |
| errs() << "nul"; |
| errs() << '\n'; |
| } else { |
| errs() << " Base.FrameIndex " << Base.FrameIndex << '\n'; |
| } |
| if (!isRI) { |
| errs() << "IndexReg "; |
| if (IndexReg.getNode() != 0) IndexReg.getNode()->dump(); |
| else errs() << "nul"; |
| } |
| errs() << " Disp " << Disp << '\n'; |
| } |
| }; |
| } |
| |
| /// SystemZDAGToDAGISel - SystemZ specific code to select SystemZ machine |
| /// instructions for SelectionDAG operations. |
| /// |
| namespace { |
| class SystemZDAGToDAGISel : public SelectionDAGISel { |
| const SystemZTargetLowering &Lowering; |
| const SystemZSubtarget &Subtarget; |
| |
| void getAddressOperandsRI(const SystemZRRIAddressMode &AM, |
| SDValue &Base, SDValue &Disp); |
| void getAddressOperands(const SystemZRRIAddressMode &AM, |
| SDValue &Base, SDValue &Disp, |
| SDValue &Index); |
| |
| public: |
| SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel) |
| : SelectionDAGISel(TM, OptLevel), |
| Lowering(*TM.getTargetLowering()), |
| Subtarget(*TM.getSubtargetImpl()) { } |
| |
| virtual const char *getPassName() const { |
| return "SystemZ DAG->DAG Pattern Instruction Selection"; |
| } |
| |
| /// getI8Imm - Return a target constant with the specified value, of type |
| /// i8. |
| inline SDValue getI8Imm(uint64_t Imm) { |
| return CurDAG->getTargetConstant(Imm, MVT::i8); |
| } |
| |
| /// getI16Imm - Return a target constant with the specified value, of type |
| /// i16. |
| inline SDValue getI16Imm(uint64_t Imm) { |
| return CurDAG->getTargetConstant(Imm, MVT::i16); |
| } |
| |
| /// getI32Imm - Return a target constant with the specified value, of type |
| /// i32. |
| inline SDValue getI32Imm(uint64_t Imm) { |
| return CurDAG->getTargetConstant(Imm, MVT::i32); |
| } |
| |
| // Include the pieces autogenerated from the target description. |
| #include "SystemZGenDAGISel.inc" |
| |
| private: |
| bool SelectAddrRI12Only(SDValue& Addr, |
| SDValue &Base, SDValue &Disp); |
| bool SelectAddrRI12(SDValue& Addr, |
| SDValue &Base, SDValue &Disp, |
| bool is12BitOnly = false); |
| bool SelectAddrRI(SDValue& Addr, SDValue &Base, SDValue &Disp); |
| bool SelectAddrRRI12(SDValue Addr, |
| SDValue &Base, SDValue &Disp, SDValue &Index); |
| bool SelectAddrRRI20(SDValue Addr, |
| SDValue &Base, SDValue &Disp, SDValue &Index); |
| bool SelectLAAddr(SDValue Addr, |
| SDValue &Base, SDValue &Disp, SDValue &Index); |
| |
| SDNode *Select(SDNode *Node); |
| |
| bool TryFoldLoad(SDNode *P, SDValue N, |
| SDValue &Base, SDValue &Disp, SDValue &Index); |
| |
| bool MatchAddress(SDValue N, SystemZRRIAddressMode &AM, |
| bool is12Bit, unsigned Depth = 0); |
| bool MatchAddressBase(SDValue N, SystemZRRIAddressMode &AM); |
| }; |
| } // end anonymous namespace |
| |
| /// createSystemZISelDag - This pass converts a legalized DAG into a |
| /// SystemZ-specific DAG, ready for instruction scheduling. |
| /// |
| FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM, |
| CodeGenOpt::Level OptLevel) { |
| return new SystemZDAGToDAGISel(TM, OptLevel); |
| } |
| |
| /// isImmSExt20 - This method tests to see if the node is either a 32-bit |
| /// or 64-bit immediate, and if the value can be accurately represented as a |
| /// sign extension from a 20-bit value. If so, this returns true and the |
| /// immediate. |
| static bool isImmSExt20(int64_t Val, int64_t &Imm) { |
| if (Val >= -524288 && Val <= 524287) { |
| Imm = Val; |
| return true; |
| } |
| return false; |
| } |
| |
| /// isImmZExt12 - This method tests to see if the node is either a 32-bit |
| /// or 64-bit immediate, and if the value can be accurately represented as a |
| /// zero extension from a 12-bit value. If so, this returns true and the |
| /// immediate. |
| static bool isImmZExt12(int64_t Val, int64_t &Imm) { |
| if (Val >= 0 && Val <= 0xFFF) { |
| Imm = Val; |
| return true; |
| } |
| return false; |
| } |
| |
| /// MatchAddress - Add the specified node to the specified addressing mode, |
| /// returning true if it cannot be done. This just pattern matches for the |
| /// addressing mode. |
| bool SystemZDAGToDAGISel::MatchAddress(SDValue N, SystemZRRIAddressMode &AM, |
| bool is12Bit, unsigned Depth) { |
| DebugLoc dl = N.getDebugLoc(); |
| DEBUG(errs() << "MatchAddress: "; AM.dump()); |
| // Limit recursion. |
| if (Depth > 5) |
| return MatchAddressBase(N, AM); |
| |
| // FIXME: We can perform better here. If we have something like |
| // (shift (add A, imm), N), we can try to reassociate stuff and fold shift of |
| // imm into addressing mode. |
| switch (N.getOpcode()) { |
| default: break; |
| case ISD::Constant: { |
| int64_t Val = cast<ConstantSDNode>(N)->getSExtValue(); |
| int64_t Imm = 0; |
| bool Match = (is12Bit ? |
| isImmZExt12(AM.Disp + Val, Imm) : |
| isImmSExt20(AM.Disp + Val, Imm)); |
| if (Match) { |
| AM.Disp = Imm; |
| return false; |
| } |
| break; |
| } |
| |
| case ISD::FrameIndex: |
| if (AM.BaseType == SystemZRRIAddressMode::RegBase && |
| AM.Base.Reg.getNode() == 0) { |
| AM.BaseType = SystemZRRIAddressMode::FrameIndexBase; |
| AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex(); |
| return false; |
| } |
| break; |
| |
| case ISD::SUB: { |
| // Given A-B, if A can be completely folded into the address and |
| // the index field with the index field unused, use -B as the index. |
| // This is a win if a has multiple parts that can be folded into |
| // the address. Also, this saves a mov if the base register has |
| // other uses, since it avoids a two-address sub instruction, however |
| // it costs an additional mov if the index register has other uses. |
| |
| // Test if the LHS of the sub can be folded. |
| SystemZRRIAddressMode Backup = AM; |
| if (MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1)) { |
| AM = Backup; |
| break; |
| } |
| // Test if the index field is free for use. |
| if (AM.IndexReg.getNode() || AM.isRI) { |
| AM = Backup; |
| break; |
| } |
| |
| // If the base is a register with multiple uses, this transformation may |
| // save a mov. Otherwise it's probably better not to do it. |
| if (AM.BaseType == SystemZRRIAddressMode::RegBase && |
| (!AM.Base.Reg.getNode() || AM.Base.Reg.getNode()->hasOneUse())) { |
| AM = Backup; |
| break; |
| } |
| |
| // Ok, the transformation is legal and appears profitable. Go for it. |
| SDValue RHS = N.getNode()->getOperand(1); |
| SDValue Zero = CurDAG->getConstant(0, N.getValueType()); |
| SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS); |
| AM.IndexReg = Neg; |
| |
| // Insert the new nodes into the topological ordering. |
| if (Zero.getNode()->getNodeId() == -1 || |
| Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) { |
| CurDAG->RepositionNode(N.getNode(), Zero.getNode()); |
| Zero.getNode()->setNodeId(N.getNode()->getNodeId()); |
| } |
| if (Neg.getNode()->getNodeId() == -1 || |
| Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) { |
| CurDAG->RepositionNode(N.getNode(), Neg.getNode()); |
| Neg.getNode()->setNodeId(N.getNode()->getNodeId()); |
| } |
| return false; |
| } |
| |
| case ISD::ADD: { |
| SystemZRRIAddressMode Backup = AM; |
| if (!MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1) && |
| !MatchAddress(N.getNode()->getOperand(1), AM, is12Bit, Depth+1)) |
| return false; |
| AM = Backup; |
| if (!MatchAddress(N.getNode()->getOperand(1), AM, is12Bit, Depth+1) && |
| !MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1)) |
| return false; |
| AM = Backup; |
| |
| // If we couldn't fold both operands into the address at the same time, |
| // see if we can just put each operand into a register and fold at least |
| // the add. |
| if (!AM.isRI && |
| AM.BaseType == SystemZRRIAddressMode::RegBase && |
| !AM.Base.Reg.getNode() && !AM.IndexReg.getNode()) { |
| AM.Base.Reg = N.getNode()->getOperand(0); |
| AM.IndexReg = N.getNode()->getOperand(1); |
| return false; |
| } |
| break; |
| } |
| |
| case ISD::OR: |
| // Handle "X | C" as "X + C" iff X is known to have C bits clear. |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| SystemZRRIAddressMode Backup = AM; |
| int64_t Offset = CN->getSExtValue(); |
| int64_t Imm = 0; |
| bool MatchOffset = (is12Bit ? |
| isImmZExt12(AM.Disp + Offset, Imm) : |
| isImmSExt20(AM.Disp + Offset, Imm)); |
| // The resultant disp must fit in 12 or 20-bits. |
| if (MatchOffset && |
| // LHS should be an addr mode. |
| !MatchAddress(N.getOperand(0), AM, is12Bit, Depth+1) && |
| // Check to see if the LHS & C is zero. |
| CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) { |
| AM.Disp = Imm; |
| return false; |
| } |
| AM = Backup; |
| } |
| break; |
| } |
| |
| return MatchAddressBase(N, AM); |
| } |
| |
| /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the |
| /// specified addressing mode without any further recursion. |
| bool SystemZDAGToDAGISel::MatchAddressBase(SDValue N, |
| SystemZRRIAddressMode &AM) { |
| // Is the base register already occupied? |
| if (AM.BaseType != SystemZRRIAddressMode::RegBase || AM.Base.Reg.getNode()) { |
| // If so, check to see if the index register is set. |
| if (AM.IndexReg.getNode() == 0 && !AM.isRI) { |
| AM.IndexReg = N; |
| return false; |
| } |
| |
| // Otherwise, we cannot select it. |
| return true; |
| } |
| |
| // Default, generate it as a register. |
| AM.BaseType = SystemZRRIAddressMode::RegBase; |
| AM.Base.Reg = N; |
| return false; |
| } |
| |
| void SystemZDAGToDAGISel::getAddressOperandsRI(const SystemZRRIAddressMode &AM, |
| SDValue &Base, SDValue &Disp) { |
| if (AM.BaseType == SystemZRRIAddressMode::RegBase) |
| Base = AM.Base.Reg; |
| else |
| Base = CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()); |
| Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i64); |
| } |
| |
| void SystemZDAGToDAGISel::getAddressOperands(const SystemZRRIAddressMode &AM, |
| SDValue &Base, SDValue &Disp, |
| SDValue &Index) { |
| getAddressOperandsRI(AM, Base, Disp); |
| Index = AM.IndexReg; |
| } |
| |
| /// Returns true if the address can be represented by a base register plus |
| /// an unsigned 12-bit displacement [r+imm]. |
| bool SystemZDAGToDAGISel::SelectAddrRI12Only(SDValue &Addr, |
| SDValue &Base, SDValue &Disp) { |
| return SelectAddrRI12(Addr, Base, Disp, /*is12BitOnly*/true); |
| } |
| |
| bool SystemZDAGToDAGISel::SelectAddrRI12(SDValue &Addr, |
| SDValue &Base, SDValue &Disp, |
| bool is12BitOnly) { |
| SystemZRRIAddressMode AM20(/*isRI*/true), AM12(/*isRI*/true); |
| bool Done = false; |
| |
| if (!Addr.hasOneUse()) { |
| unsigned Opcode = Addr.getOpcode(); |
| if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) { |
| // If we are able to fold N into addressing mode, then we'll allow it even |
| // if N has multiple uses. In general, addressing computation is used as |
| // addresses by all of its uses. But watch out for CopyToReg uses, that |
| // means the address computation is liveout. It will be computed by a LA |
| // so we want to avoid computing the address twice. |
| for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), |
| UE = Addr.getNode()->use_end(); UI != UE; ++UI) { |
| if (UI->getOpcode() == ISD::CopyToReg) { |
| MatchAddressBase(Addr, AM12); |
| Done = true; |
| break; |
| } |
| } |
| } |
| } |
| if (!Done && MatchAddress(Addr, AM12, /* is12Bit */ true)) |
| return false; |
| |
| // Check, whether we can match stuff using 20-bit displacements |
| if (!Done && !is12BitOnly && |
| !MatchAddress(Addr, AM20, /* is12Bit */ false)) |
| if (AM12.Disp == 0 && AM20.Disp != 0) |
| return false; |
| |
| DEBUG(errs() << "MatchAddress (final): "; AM12.dump()); |
| |
| EVT VT = Addr.getValueType(); |
| if (AM12.BaseType == SystemZRRIAddressMode::RegBase) { |
| if (!AM12.Base.Reg.getNode()) |
| AM12.Base.Reg = CurDAG->getRegister(0, VT); |
| } |
| |
| assert(AM12.IndexReg.getNode() == 0 && "Invalid reg-imm address mode!"); |
| |
| getAddressOperandsRI(AM12, Base, Disp); |
| |
| return true; |
| } |
| |
| /// Returns true if the address can be represented by a base register plus |
| /// a signed 20-bit displacement [r+imm]. |
| bool SystemZDAGToDAGISel::SelectAddrRI(SDValue& Addr, |
| SDValue &Base, SDValue &Disp) { |
| SystemZRRIAddressMode AM(/*isRI*/true); |
| bool Done = false; |
| |
| if (!Addr.hasOneUse()) { |
| unsigned Opcode = Addr.getOpcode(); |
| if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) { |
| // If we are able to fold N into addressing mode, then we'll allow it even |
| // if N has multiple uses. In general, addressing computation is used as |
| // addresses by all of its uses. But watch out for CopyToReg uses, that |
| // means the address computation is liveout. It will be computed by a LA |
| // so we want to avoid computing the address twice. |
| for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), |
| UE = Addr.getNode()->use_end(); UI != UE; ++UI) { |
| if (UI->getOpcode() == ISD::CopyToReg) { |
| MatchAddressBase(Addr, AM); |
| Done = true; |
| break; |
| } |
| } |
| } |
| } |
| if (!Done && MatchAddress(Addr, AM, /* is12Bit */ false)) |
| return false; |
| |
| DEBUG(errs() << "MatchAddress (final): "; AM.dump()); |
| |
| EVT VT = Addr.getValueType(); |
| if (AM.BaseType == SystemZRRIAddressMode::RegBase) { |
| if (!AM.Base.Reg.getNode()) |
| AM.Base.Reg = CurDAG->getRegister(0, VT); |
| } |
| |
| assert(AM.IndexReg.getNode() == 0 && "Invalid reg-imm address mode!"); |
| |
| getAddressOperandsRI(AM, Base, Disp); |
| |
| return true; |
| } |
| |
| /// Returns true if the address can be represented by a base register plus |
| /// index register plus an unsigned 12-bit displacement [base + idx + imm]. |
| bool SystemZDAGToDAGISel::SelectAddrRRI12(SDValue Addr, |
| SDValue &Base, SDValue &Disp, SDValue &Index) { |
| SystemZRRIAddressMode AM20, AM12; |
| bool Done = false; |
| |
| if (!Addr.hasOneUse()) { |
| unsigned Opcode = Addr.getOpcode(); |
| if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) { |
| // If we are able to fold N into addressing mode, then we'll allow it even |
| // if N has multiple uses. In general, addressing computation is used as |
| // addresses by all of its uses. But watch out for CopyToReg uses, that |
| // means the address computation is liveout. It will be computed by a LA |
| // so we want to avoid computing the address twice. |
| for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), |
| UE = Addr.getNode()->use_end(); UI != UE; ++UI) { |
| if (UI->getOpcode() == ISD::CopyToReg) { |
| MatchAddressBase(Addr, AM12); |
| Done = true; |
| break; |
| } |
| } |
| } |
| } |
| if (!Done && MatchAddress(Addr, AM12, /* is12Bit */ true)) |
| return false; |
| |
| // Check, whether we can match stuff using 20-bit displacements |
| if (!Done && !MatchAddress(Addr, AM20, /* is12Bit */ false)) |
| if (AM12.Disp == 0 && AM20.Disp != 0) |
| return false; |
| |
| DEBUG(errs() << "MatchAddress (final): "; AM12.dump()); |
| |
| EVT VT = Addr.getValueType(); |
| if (AM12.BaseType == SystemZRRIAddressMode::RegBase) { |
| if (!AM12.Base.Reg.getNode()) |
| AM12.Base.Reg = CurDAG->getRegister(0, VT); |
| } |
| |
| if (!AM12.IndexReg.getNode()) |
| AM12.IndexReg = CurDAG->getRegister(0, VT); |
| |
| getAddressOperands(AM12, Base, Disp, Index); |
| |
| return true; |
| } |
| |
| /// Returns true if the address can be represented by a base register plus |
| /// index register plus a signed 20-bit displacement [base + idx + imm]. |
| bool SystemZDAGToDAGISel::SelectAddrRRI20(SDValue Addr, |
| SDValue &Base, SDValue &Disp, SDValue &Index) { |
| SystemZRRIAddressMode AM; |
| bool Done = false; |
| |
| if (!Addr.hasOneUse()) { |
| unsigned Opcode = Addr.getOpcode(); |
| if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) { |
| // If we are able to fold N into addressing mode, then we'll allow it even |
| // if N has multiple uses. In general, addressing computation is used as |
| // addresses by all of its uses. But watch out for CopyToReg uses, that |
| // means the address computation is liveout. It will be computed by a LA |
| // so we want to avoid computing the address twice. |
| for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), |
| UE = Addr.getNode()->use_end(); UI != UE; ++UI) { |
| if (UI->getOpcode() == ISD::CopyToReg) { |
| MatchAddressBase(Addr, AM); |
| Done = true; |
| break; |
| } |
| } |
| } |
| } |
| if (!Done && MatchAddress(Addr, AM, /* is12Bit */ false)) |
| return false; |
| |
| DEBUG(errs() << "MatchAddress (final): "; AM.dump()); |
| |
| EVT VT = Addr.getValueType(); |
| if (AM.BaseType == SystemZRRIAddressMode::RegBase) { |
| if (!AM.Base.Reg.getNode()) |
| AM.Base.Reg = CurDAG->getRegister(0, VT); |
| } |
| |
| if (!AM.IndexReg.getNode()) |
| AM.IndexReg = CurDAG->getRegister(0, VT); |
| |
| getAddressOperands(AM, Base, Disp, Index); |
| |
| return true; |
| } |
| |
| /// SelectLAAddr - it calls SelectAddr and determines if the maximal addressing |
| /// mode it matches can be cost effectively emitted as an LA/LAY instruction. |
| bool SystemZDAGToDAGISel::SelectLAAddr(SDValue Addr, |
| SDValue &Base, SDValue &Disp, SDValue &Index) { |
| SystemZRRIAddressMode AM; |
| |
| if (MatchAddress(Addr, AM, false)) |
| return false; |
| |
| EVT VT = Addr.getValueType(); |
| unsigned Complexity = 0; |
| if (AM.BaseType == SystemZRRIAddressMode::RegBase) |
| if (AM.Base.Reg.getNode()) |
| Complexity = 1; |
| else |
| AM.Base.Reg = CurDAG->getRegister(0, VT); |
| else if (AM.BaseType == SystemZRRIAddressMode::FrameIndexBase) |
| Complexity = 4; |
| |
| if (AM.IndexReg.getNode()) |
| Complexity += 1; |
| else |
| AM.IndexReg = CurDAG->getRegister(0, VT); |
| |
| if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode())) |
| Complexity += 1; |
| |
| if (Complexity > 2) { |
| getAddressOperands(AM, Base, Disp, Index); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool SystemZDAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N, |
| SDValue &Base, SDValue &Disp, SDValue &Index) { |
| if (ISD::isNON_EXTLoad(N.getNode()) && |
| IsLegalToFold(N, P, P, OptLevel)) |
| return SelectAddrRRI20(N.getOperand(1), Base, Disp, Index); |
| return false; |
| } |
| |
| SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) { |
| EVT NVT = Node->getValueType(0); |
| DebugLoc dl = Node->getDebugLoc(); |
| unsigned Opcode = Node->getOpcode(); |
| |
| // Dump information about the Node being selected |
| DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n"); |
| |
| // If we have a custom node, we already have selected! |
| if (Node->isMachineOpcode()) { |
| DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n"); |
| return NULL; // Already selected. |
| } |
| |
| switch (Opcode) { |
| default: break; |
| case ISD::SDIVREM: { |
| unsigned Opc, MOpc; |
| SDValue N0 = Node->getOperand(0); |
| SDValue N1 = Node->getOperand(1); |
| |
| EVT ResVT; |
| bool is32Bit = false; |
| switch (NVT.getSimpleVT().SimpleTy) { |
| default: assert(0 && "Unsupported VT!"); |
| case MVT::i32: |
| Opc = SystemZ::SDIVREM32r; MOpc = SystemZ::SDIVREM32m; |
| ResVT = MVT::v2i64; |
| is32Bit = true; |
| break; |
| case MVT::i64: |
| Opc = SystemZ::SDIVREM64r; MOpc = SystemZ::SDIVREM64m; |
| ResVT = MVT::v2i64; |
| break; |
| } |
| |
| SDValue Tmp0, Tmp1, Tmp2; |
| bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2); |
| |
| // Prepare the dividend |
| SDNode *Dividend; |
| if (is32Bit) |
| Dividend = CurDAG->getMachineNode(SystemZ::MOVSX64rr32, dl, MVT::i64, N0); |
| else |
| Dividend = N0.getNode(); |
| |
| // Insert prepared dividend into suitable 'subreg' |
| SDNode *Tmp = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, |
| dl, ResVT); |
| Dividend = |
| CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl, ResVT, |
| SDValue(Tmp, 0), SDValue(Dividend, 0), |
| CurDAG->getTargetConstant(SystemZ::subreg_odd, MVT::i32)); |
| |
| SDNode *Result; |
| SDValue DivVal = SDValue(Dividend, 0); |
| if (foldedLoad) { |
| SDValue Ops[] = { DivVal, Tmp0, Tmp1, Tmp2, N1.getOperand(0) }; |
| Result = CurDAG->getMachineNode(MOpc, dl, ResVT, MVT::Other, |
| Ops, array_lengthof(Ops)); |
| // Update the chain. |
| ReplaceUses(N1.getValue(1), SDValue(Result, 1)); |
| } else { |
| Result = CurDAG->getMachineNode(Opc, dl, ResVT, SDValue(Dividend, 0), N1); |
| } |
| |
| // Copy the division (odd subreg) result, if it is needed. |
| if (!SDValue(Node, 0).use_empty()) { |
| unsigned SubRegIdx = (is32Bit ? |
| SystemZ::subreg_odd32 : SystemZ::subreg_odd); |
| SDNode *Div = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, |
| dl, NVT, |
| SDValue(Result, 0), |
| CurDAG->getTargetConstant(SubRegIdx, |
| MVT::i32)); |
| |
| ReplaceUses(SDValue(Node, 0), SDValue(Div, 0)); |
| DEBUG(errs() << "=> "; Result->dump(CurDAG); errs() << "\n"); |
| } |
| |
| // Copy the remainder (even subreg) result, if it is needed. |
| if (!SDValue(Node, 1).use_empty()) { |
| unsigned SubRegIdx = (is32Bit ? |
| SystemZ::subreg_32bit : SystemZ::subreg_even); |
| SDNode *Rem = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, |
| dl, NVT, |
| SDValue(Result, 0), |
| CurDAG->getTargetConstant(SubRegIdx, |
| MVT::i32)); |
| |
| ReplaceUses(SDValue(Node, 1), SDValue(Rem, 0)); |
| DEBUG(errs() << "=> "; Result->dump(CurDAG); errs() << "\n"); |
| } |
| |
| return NULL; |
| } |
| case ISD::UDIVREM: { |
| unsigned Opc, MOpc, ClrOpc; |
| SDValue N0 = Node->getOperand(0); |
| SDValue N1 = Node->getOperand(1); |
| EVT ResVT; |
| |
| bool is32Bit = false; |
| switch (NVT.getSimpleVT().SimpleTy) { |
| default: assert(0 && "Unsupported VT!"); |
| case MVT::i32: |
| Opc = SystemZ::UDIVREM32r; MOpc = SystemZ::UDIVREM32m; |
| ClrOpc = SystemZ::MOV64Pr0_even; |
| ResVT = MVT::v2i32; |
| is32Bit = true; |
| break; |
| case MVT::i64: |
| Opc = SystemZ::UDIVREM64r; MOpc = SystemZ::UDIVREM64m; |
| ClrOpc = SystemZ::MOV128r0_even; |
| ResVT = MVT::v2i64; |
| break; |
| } |
| |
| SDValue Tmp0, Tmp1, Tmp2; |
| bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2); |
| |
| // Prepare the dividend |
| SDNode *Dividend = N0.getNode(); |
| |
| // Insert prepared dividend into suitable 'subreg' |
| SDNode *Tmp = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, |
| dl, ResVT); |
| { |
| unsigned SubRegIdx = (is32Bit ? |
| SystemZ::subreg_odd32 : SystemZ::subreg_odd); |
| Dividend = |
| CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl, ResVT, |
| SDValue(Tmp, 0), SDValue(Dividend, 0), |
| CurDAG->getTargetConstant(SubRegIdx, MVT::i32)); |
| } |
| |
| // Zero out even subreg |
| Dividend = CurDAG->getMachineNode(ClrOpc, dl, ResVT, SDValue(Dividend, 0)); |
| |
| SDValue DivVal = SDValue(Dividend, 0); |
| SDNode *Result; |
| if (foldedLoad) { |
| SDValue Ops[] = { DivVal, Tmp0, Tmp1, Tmp2, N1.getOperand(0) }; |
| Result = CurDAG->getMachineNode(MOpc, dl, ResVT, MVT::Other, |
| Ops, array_lengthof(Ops)); |
| // Update the chain. |
| ReplaceUses(N1.getValue(1), SDValue(Result, 1)); |
| } else { |
| Result = CurDAG->getMachineNode(Opc, dl, ResVT, DivVal, N1); |
| } |
| |
| // Copy the division (odd subreg) result, if it is needed. |
| if (!SDValue(Node, 0).use_empty()) { |
| unsigned SubRegIdx = (is32Bit ? |
| SystemZ::subreg_odd32 : SystemZ::subreg_odd); |
| SDNode *Div = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, |
| dl, NVT, |
| SDValue(Result, 0), |
| CurDAG->getTargetConstant(SubRegIdx, |
| MVT::i32)); |
| ReplaceUses(SDValue(Node, 0), SDValue(Div, 0)); |
| DEBUG(errs() << "=> "; Result->dump(CurDAG); errs() << "\n"); |
| } |
| |
| // Copy the remainder (even subreg) result, if it is needed. |
| if (!SDValue(Node, 1).use_empty()) { |
| unsigned SubRegIdx = (is32Bit ? |
| SystemZ::subreg_32bit : SystemZ::subreg_even); |
| SDNode *Rem = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, |
| dl, NVT, |
| SDValue(Result, 0), |
| CurDAG->getTargetConstant(SubRegIdx, |
| MVT::i32)); |
| ReplaceUses(SDValue(Node, 1), SDValue(Rem, 0)); |
| DEBUG(errs() << "=> "; Result->dump(CurDAG); errs() << "\n"); |
| } |
| |
| return NULL; |
| } |
| } |
| |
| // Select the default instruction |
| SDNode *ResNode = SelectCode(Node); |
| |
| DEBUG(errs() << "=> "; |
| if (ResNode == NULL || ResNode == Node) |
| Node->dump(CurDAG); |
| else |
| ResNode->dump(CurDAG); |
| errs() << "\n"; |
| ); |
| return ResNode; |
| } |