| //===- LazyCallGraphTest.cpp - Unit tests for the lazy CG analysis --------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/LazyCallGraph.h" |
| #include "llvm/AsmParser/Parser.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/SourceMgr.h" |
| #include "gtest/gtest.h" |
| #include <memory> |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| std::unique_ptr<Module> parseAssembly(LLVMContext &Context, |
| const char *Assembly) { |
| SMDiagnostic Error; |
| std::unique_ptr<Module> M = parseAssemblyString(Assembly, Error, Context); |
| |
| std::string ErrMsg; |
| raw_string_ostream OS(ErrMsg); |
| Error.print("", OS); |
| |
| // A failure here means that the test itself is buggy. |
| if (!M) |
| report_fatal_error(OS.str().c_str()); |
| |
| return M; |
| } |
| |
| /* |
| IR forming a call graph with a diamond of triangle-shaped SCCs: |
| |
| d1 |
| / \ |
| d3--d2 |
| / \ |
| b1 c1 |
| / \ / \ |
| b3--b2 c3--c2 |
| \ / |
| a1 |
| / \ |
| a3--a2 |
| |
| All call edges go up between SCCs, and clockwise around the SCC. |
| */ |
| static const char DiamondOfTriangles[] = |
| "define void @a1() {\n" |
| "entry:\n" |
| " call void @a2()\n" |
| " call void @b2()\n" |
| " call void @c3()\n" |
| " ret void\n" |
| "}\n" |
| "define void @a2() {\n" |
| "entry:\n" |
| " call void @a3()\n" |
| " ret void\n" |
| "}\n" |
| "define void @a3() {\n" |
| "entry:\n" |
| " call void @a1()\n" |
| " ret void\n" |
| "}\n" |
| "define void @b1() {\n" |
| "entry:\n" |
| " call void @b2()\n" |
| " call void @d3()\n" |
| " ret void\n" |
| "}\n" |
| "define void @b2() {\n" |
| "entry:\n" |
| " call void @b3()\n" |
| " ret void\n" |
| "}\n" |
| "define void @b3() {\n" |
| "entry:\n" |
| " call void @b1()\n" |
| " ret void\n" |
| "}\n" |
| "define void @c1() {\n" |
| "entry:\n" |
| " call void @c2()\n" |
| " call void @d2()\n" |
| " ret void\n" |
| "}\n" |
| "define void @c2() {\n" |
| "entry:\n" |
| " call void @c3()\n" |
| " ret void\n" |
| "}\n" |
| "define void @c3() {\n" |
| "entry:\n" |
| " call void @c1()\n" |
| " ret void\n" |
| "}\n" |
| "define void @d1() {\n" |
| "entry:\n" |
| " call void @d2()\n" |
| " ret void\n" |
| "}\n" |
| "define void @d2() {\n" |
| "entry:\n" |
| " call void @d3()\n" |
| " ret void\n" |
| "}\n" |
| "define void @d3() {\n" |
| "entry:\n" |
| " call void @d1()\n" |
| " ret void\n" |
| "}\n"; |
| |
| /* |
| IR forming a reference graph with a diamond of triangle-shaped RefSCCs |
| |
| d1 |
| / \ |
| d3--d2 |
| / \ |
| b1 c1 |
| / \ / \ |
| b3--b2 c3--c2 |
| \ / |
| a1 |
| / \ |
| a3--a2 |
| |
| All call edges go up between RefSCCs, and clockwise around the RefSCC. |
| */ |
| static const char DiamondOfTrianglesRefGraph[] = |
| "define void @a1() {\n" |
| "entry:\n" |
| " %a = alloca void ()*\n" |
| " store void ()* @a2, void ()** %a\n" |
| " store void ()* @b2, void ()** %a\n" |
| " store void ()* @c3, void ()** %a\n" |
| " ret void\n" |
| "}\n" |
| "define void @a2() {\n" |
| "entry:\n" |
| " %a = alloca void ()*\n" |
| " store void ()* @a3, void ()** %a\n" |
| " ret void\n" |
| "}\n" |
| "define void @a3() {\n" |
| "entry:\n" |
| " %a = alloca void ()*\n" |
| " store void ()* @a1, void ()** %a\n" |
| " ret void\n" |
| "}\n" |
| "define void @b1() {\n" |
| "entry:\n" |
| " %a = alloca void ()*\n" |
| " store void ()* @b2, void ()** %a\n" |
| " store void ()* @d3, void ()** %a\n" |
| " ret void\n" |
| "}\n" |
| "define void @b2() {\n" |
| "entry:\n" |
| " %a = alloca void ()*\n" |
| " store void ()* @b3, void ()** %a\n" |
| " ret void\n" |
| "}\n" |
| "define void @b3() {\n" |
| "entry:\n" |
| " %a = alloca void ()*\n" |
| " store void ()* @b1, void ()** %a\n" |
| " ret void\n" |
| "}\n" |
| "define void @c1() {\n" |
| "entry:\n" |
| " %a = alloca void ()*\n" |
| " store void ()* @c2, void ()** %a\n" |
| " store void ()* @d2, void ()** %a\n" |
| " ret void\n" |
| "}\n" |
| "define void @c2() {\n" |
| "entry:\n" |
| " %a = alloca void ()*\n" |
| " store void ()* @c3, void ()** %a\n" |
| " ret void\n" |
| "}\n" |
| "define void @c3() {\n" |
| "entry:\n" |
| " %a = alloca void ()*\n" |
| " store void ()* @c1, void ()** %a\n" |
| " ret void\n" |
| "}\n" |
| "define void @d1() {\n" |
| "entry:\n" |
| " %a = alloca void ()*\n" |
| " store void ()* @d2, void ()** %a\n" |
| " ret void\n" |
| "}\n" |
| "define void @d2() {\n" |
| "entry:\n" |
| " %a = alloca void ()*\n" |
| " store void ()* @d3, void ()** %a\n" |
| " ret void\n" |
| "}\n" |
| "define void @d3() {\n" |
| "entry:\n" |
| " %a = alloca void ()*\n" |
| " store void ()* @d1, void ()** %a\n" |
| " ret void\n" |
| "}\n"; |
| |
| static LazyCallGraph buildCG(Module &M) { |
| TargetLibraryInfoImpl TLII(Triple(M.getTargetTriple())); |
| TargetLibraryInfo TLI(TLII); |
| LazyCallGraph CG(M, TLI); |
| return CG; |
| } |
| |
| TEST(LazyCallGraphTest, BasicGraphFormation) { |
| LLVMContext Context; |
| std::unique_ptr<Module> M = parseAssembly(Context, DiamondOfTriangles); |
| LazyCallGraph CG = buildCG(*M); |
| |
| // The order of the entry nodes should be stable w.r.t. the source order of |
| // the IR, and everything in our module is an entry node, so just directly |
| // build variables for each node. |
| auto I = CG.begin(); |
| LazyCallGraph::Node &A1 = (I++)->getNode(); |
| EXPECT_EQ("a1", A1.getFunction().getName()); |
| LazyCallGraph::Node &A2 = (I++)->getNode(); |
| EXPECT_EQ("a2", A2.getFunction().getName()); |
| LazyCallGraph::Node &A3 = (I++)->getNode(); |
| EXPECT_EQ("a3", A3.getFunction().getName()); |
| LazyCallGraph::Node &B1 = (I++)->getNode(); |
| EXPECT_EQ("b1", B1.getFunction().getName()); |
| LazyCallGraph::Node &B2 = (I++)->getNode(); |
| EXPECT_EQ("b2", B2.getFunction().getName()); |
| LazyCallGraph::Node &B3 = (I++)->getNode(); |
| EXPECT_EQ("b3", B3.getFunction().getName()); |
| LazyCallGraph::Node &C1 = (I++)->getNode(); |
| EXPECT_EQ("c1", C1.getFunction().getName()); |
| LazyCallGraph::Node &C2 = (I++)->getNode(); |
| EXPECT_EQ("c2", C2.getFunction().getName()); |
| LazyCallGraph::Node &C3 = (I++)->getNode(); |
| EXPECT_EQ("c3", C3.getFunction().getName()); |
| LazyCallGraph::Node &D1 = (I++)->getNode(); |
| EXPECT_EQ("d1", D1.getFunction().getName()); |
| LazyCallGraph::Node &D2 = (I++)->getNode(); |
| EXPECT_EQ("d2", D2.getFunction().getName()); |
| LazyCallGraph::Node &D3 = (I++)->getNode(); |
| EXPECT_EQ("d3", D3.getFunction().getName()); |
| EXPECT_EQ(CG.end(), I); |
| |
| // Build vectors and sort them for the rest of the assertions to make them |
| // independent of order. |
| std::vector<std::string> Nodes; |
| |
| for (LazyCallGraph::Edge &E : A1.populate()) |
| Nodes.push_back(E.getFunction().getName()); |
| llvm::sort(Nodes.begin(), Nodes.end()); |
| EXPECT_EQ("a2", Nodes[0]); |
| EXPECT_EQ("b2", Nodes[1]); |
| EXPECT_EQ("c3", Nodes[2]); |
| Nodes.clear(); |
| |
| A2.populate(); |
| EXPECT_EQ(A2->end(), std::next(A2->begin())); |
| EXPECT_EQ("a3", A2->begin()->getFunction().getName()); |
| A3.populate(); |
| EXPECT_EQ(A3->end(), std::next(A3->begin())); |
| EXPECT_EQ("a1", A3->begin()->getFunction().getName()); |
| |
| for (LazyCallGraph::Edge &E : B1.populate()) |
| Nodes.push_back(E.getFunction().getName()); |
| llvm::sort(Nodes.begin(), Nodes.end()); |
| EXPECT_EQ("b2", Nodes[0]); |
| EXPECT_EQ("d3", Nodes[1]); |
| Nodes.clear(); |
| |
| B2.populate(); |
| EXPECT_EQ(B2->end(), std::next(B2->begin())); |
| EXPECT_EQ("b3", B2->begin()->getFunction().getName()); |
| B3.populate(); |
| EXPECT_EQ(B3->end(), std::next(B3->begin())); |
| EXPECT_EQ("b1", B3->begin()->getFunction().getName()); |
| |
| for (LazyCallGraph::Edge &E : C1.populate()) |
| Nodes.push_back(E.getFunction().getName()); |
| llvm::sort(Nodes.begin(), Nodes.end()); |
| EXPECT_EQ("c2", Nodes[0]); |
| EXPECT_EQ("d2", Nodes[1]); |
| Nodes.clear(); |
| |
| C2.populate(); |
| EXPECT_EQ(C2->end(), std::next(C2->begin())); |
| EXPECT_EQ("c3", C2->begin()->getFunction().getName()); |
| C3.populate(); |
| EXPECT_EQ(C3->end(), std::next(C3->begin())); |
| EXPECT_EQ("c1", C3->begin()->getFunction().getName()); |
| |
| D1.populate(); |
| EXPECT_EQ(D1->end(), std::next(D1->begin())); |
| EXPECT_EQ("d2", D1->begin()->getFunction().getName()); |
| D2.populate(); |
| EXPECT_EQ(D2->end(), std::next(D2->begin())); |
| EXPECT_EQ("d3", D2->begin()->getFunction().getName()); |
| D3.populate(); |
| EXPECT_EQ(D3->end(), std::next(D3->begin())); |
| EXPECT_EQ("d1", D3->begin()->getFunction().getName()); |
| |
| // Now lets look at the RefSCCs and SCCs. |
| CG.buildRefSCCs(); |
| auto J = CG.postorder_ref_scc_begin(); |
| |
| LazyCallGraph::RefSCC &D = *J++; |
| ASSERT_EQ(1, D.size()); |
| for (LazyCallGraph::Node &N : *D.begin()) |
| Nodes.push_back(N.getFunction().getName()); |
| llvm::sort(Nodes.begin(), Nodes.end()); |
| EXPECT_EQ(3u, Nodes.size()); |
| EXPECT_EQ("d1", Nodes[0]); |
| EXPECT_EQ("d2", Nodes[1]); |
| EXPECT_EQ("d3", Nodes[2]); |
| Nodes.clear(); |
| EXPECT_FALSE(D.isParentOf(D)); |
| EXPECT_FALSE(D.isChildOf(D)); |
| EXPECT_FALSE(D.isAncestorOf(D)); |
| EXPECT_FALSE(D.isDescendantOf(D)); |
| EXPECT_EQ(&D, &*CG.postorder_ref_scc_begin()); |
| |
| LazyCallGraph::RefSCC &C = *J++; |
| ASSERT_EQ(1, C.size()); |
| for (LazyCallGraph::Node &N : *C.begin()) |
| Nodes.push_back(N.getFunction().getName()); |
| llvm::sort(Nodes.begin(), Nodes.end()); |
| EXPECT_EQ(3u, Nodes.size()); |
| EXPECT_EQ("c1", Nodes[0]); |
| EXPECT_EQ("c2", Nodes[1]); |
| EXPECT_EQ("c3", Nodes[2]); |
| Nodes.clear(); |
| EXPECT_TRUE(C.isParentOf(D)); |
| EXPECT_FALSE(C.isChildOf(D)); |
| EXPECT_TRUE(C.isAncestorOf(D)); |
| EXPECT_FALSE(C.isDescendantOf(D)); |
| EXPECT_EQ(&C, &*std::next(CG.postorder_ref_scc_begin())); |
| |
| LazyCallGraph::RefSCC &B = *J++; |
| ASSERT_EQ(1, B.size()); |
| for (LazyCallGraph::Node &N : *B.begin()) |
| Nodes.push_back(N.getFunction().getName()); |
| llvm::sort(Nodes.begin(), Nodes.end()); |
| EXPECT_EQ(3u, Nodes.size()); |
| EXPECT_EQ("b1", Nodes[0]); |
| EXPECT_EQ("b2", Nodes[1]); |
| EXPECT_EQ("b3", Nodes[2]); |
| Nodes.clear(); |
| EXPECT_TRUE(B.isParentOf(D)); |
| EXPECT_FALSE(B.isChildOf(D)); |
| EXPECT_TRUE(B.isAncestorOf(D)); |
| EXPECT_FALSE(B.isDescendantOf(D)); |
| EXPECT_FALSE(B.isAncestorOf(C)); |
| EXPECT_FALSE(C.isAncestorOf(B)); |
| EXPECT_EQ(&B, &*std::next(CG.postorder_ref_scc_begin(), 2)); |
| |
| LazyCallGraph::RefSCC &A = *J++; |
| ASSERT_EQ(1, A.size()); |
| for (LazyCallGraph::Node &N : *A.begin()) |
| Nodes.push_back(N.getFunction().getName()); |
| llvm::sort(Nodes.begin(), Nodes.end()); |
| EXPECT_EQ(3u, Nodes.size()); |
| EXPECT_EQ("a1", Nodes[0]); |
| EXPECT_EQ("a2", Nodes[1]); |
| EXPECT_EQ("a3", Nodes[2]); |
| Nodes.clear(); |
| EXPECT_TRUE(A.isParentOf(B)); |
| EXPECT_TRUE(A.isParentOf(C)); |
| EXPECT_FALSE(A.isParentOf(D)); |
| EXPECT_TRUE(A.isAncestorOf(B)); |
| EXPECT_TRUE(A.isAncestorOf(C)); |
| EXPECT_TRUE(A.isAncestorOf(D)); |
| EXPECT_EQ(&A, &*std::next(CG.postorder_ref_scc_begin(), 3)); |
| |
| EXPECT_EQ(CG.postorder_ref_scc_end(), J); |
| EXPECT_EQ(J, std::next(CG.postorder_ref_scc_begin(), 4)); |
| } |
| |
| static Function &lookupFunction(Module &M, StringRef Name) { |
| for (Function &F : M) |
| if (F.getName() == Name) |
| return F; |
| report_fatal_error("Couldn't find function!"); |
| } |
| |
| TEST(LazyCallGraphTest, BasicGraphMutation) { |
| LLVMContext Context; |
| std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n" |
| "entry:\n" |
| " call void @b()\n" |
| " call void @c()\n" |
| " ret void\n" |
| "}\n" |
| "define void @b() {\n" |
| "entry:\n" |
| " ret void\n" |
| "}\n" |
| "define void @c() {\n" |
| "entry:\n" |
| " ret void\n" |
| "}\n"); |
| LazyCallGraph CG = buildCG(*M); |
| |
| LazyCallGraph::Node &A = CG.get(lookupFunction(*M, "a")); |
| LazyCallGraph::Node &B = CG.get(lookupFunction(*M, "b")); |
| A.populate(); |
| EXPECT_EQ(2, std::distance(A->begin(), A->end())); |
| B.populate(); |
| EXPECT_EQ(0, std::distance(B->begin(), B->end())); |
| |
| LazyCallGraph::Node &C = CG.get(lookupFunction(*M, "c")); |
| C.populate(); |
| CG.insertEdge(B, C, LazyCallGraph::Edge::Call); |
| EXPECT_EQ(1, std::distance(B->begin(), B->end())); |
| EXPECT_EQ(0, std::distance(C->begin(), C->end())); |
| |
| CG.insertEdge(C, B, LazyCallGraph::Edge::Call); |
| EXPECT_EQ(1, std::distance(C->begin(), C->end())); |
| EXPECT_EQ(&B, &C->begin()->getNode()); |
| |
| CG.insertEdge(C, C, LazyCallGraph::Edge::Call); |
| EXPECT_EQ(2, std::distance(C->begin(), C->end())); |
| EXPECT_EQ(&B, &C->begin()->getNode()); |
| EXPECT_EQ(&C, &std::next(C->begin())->getNode()); |
| |
| CG.removeEdge(C, B); |
| EXPECT_EQ(1, std::distance(C->begin(), C->end())); |
| EXPECT_EQ(&C, &C->begin()->getNode()); |
| |
| CG.removeEdge(C, C); |
| EXPECT_EQ(0, std::distance(C->begin(), C->end())); |
| |
| CG.removeEdge(B, C); |
| EXPECT_EQ(0, std::distance(B->begin(), B->end())); |
| } |
| |
| TEST(LazyCallGraphTest, InnerSCCFormation) { |
| LLVMContext Context; |
| std::unique_ptr<Module> M = parseAssembly(Context, DiamondOfTriangles); |
| LazyCallGraph CG = buildCG(*M); |
| |
| // Now mutate the graph to connect every node into a single RefSCC to ensure |
| // that our inner SCC formation handles the rest. |
| LazyCallGraph::Node &D1 = CG.get(lookupFunction(*M, "d1")); |
| LazyCallGraph::Node &A1 = CG.get(lookupFunction(*M, "a1")); |
| A1.populate(); |
| D1.populate(); |
| CG.insertEdge(D1, A1, LazyCallGraph::Edge::Ref); |
| |
| // Build vectors and sort them for the rest of the assertions to make them |
| // independent of order. |
| std::vector<std::string> Nodes; |
| |
| // We should build a single RefSCC for the entire graph. |
| CG.buildRefSCCs(); |
| auto I = CG.postorder_ref_scc_begin(); |
| LazyCallGraph::RefSCC &RC = *I++; |
| EXPECT_EQ(CG.postorder_ref_scc_end(), I); |
| |
| // Now walk the four SCCs which should be in post-order. |
| auto J = RC.begin(); |
| LazyCallGraph::SCC &D = *J++; |
| for (LazyCallGraph::Node &N : D) |
| Nodes.push_back(N.getFunction().getName()); |
| llvm::sort(Nodes.begin(), Nodes.end()); |
| EXPECT_EQ(3u, Nodes.size()); |
| EXPECT_EQ("d1", Nodes[0]); |
| EXPECT_EQ("d2", Nodes[1]); |
| EXPECT_EQ("d3", Nodes[2]); |
| Nodes.clear(); |
| |
| LazyCallGraph::SCC &B = *J++; |
| for (LazyCallGraph::Node &N : B) |
| Nodes.push_back(N.getFunction().getName()); |
| llvm::sort(Nodes.begin(), Nodes.end()); |
| EXPECT_EQ(3u, Nodes.size()); |
| EXPECT_EQ("b1", Nodes[0]); |
| EXPECT_EQ("b2", Nodes[1]); |
| EXPECT_EQ("b3", Nodes[2]); |
| Nodes.clear(); |
| |
| LazyCallGraph::SCC &C = *J++; |
| for (LazyCallGraph::Node &N : C) |
| Nodes.push_back(N.getFunction().getName()); |
| llvm::sort(Nodes.begin(), Nodes.end()); |
| EXPECT_EQ(3u, Nodes.size()); |
| EXPECT_EQ("c1", Nodes[0]); |
| EXPECT_EQ("c2", Nodes[1]); |
| EXPECT_EQ("c3", Nodes[2]); |
| Nodes.clear(); |
| |
| LazyCallGraph::SCC &A = *J++; |
| for (LazyCallGraph::Node &N : A) |
| Nodes.push_back(N.getFunction().getName()); |
| llvm::sort(Nodes.begin(), Nodes.end()); |
| EXPECT_EQ(3u, Nodes.size()); |
| EXPECT_EQ("a1", Nodes[0]); |
| EXPECT_EQ("a2", Nodes[1]); |
| EXPECT_EQ("a3", Nodes[2]); |
| Nodes.clear(); |
| |
| EXPECT_EQ(RC.end(), J); |
| } |
| |
| TEST(LazyCallGraphTest, MultiArmSCC) { |
| LLVMContext Context; |
| // Two interlocking cycles. The really useful thing about this SCC is that it |
| // will require Tarjan's DFS to backtrack and finish processing all of the |
| // children of each node in the SCC. Since this involves call edges, both |
| // Tarjan implementations will have to successfully navigate the structure. |
| std::unique_ptr<Module> M = parseAssembly(Context, "define void @f1() {\n" |
| "entry:\n" |
| " call void @f2()\n" |
| " call void @f4()\n" |
| " ret void\n" |
| "}\n" |
| "define void @f2() {\n" |
| "entry:\n" |
| " call void @f3()\n" |
| " ret void\n" |
| "}\n" |
| "define void @f3() {\n" |
| "entry:\n" |
| " call void @f1()\n" |
| " ret void\n" |
| "}\n" |
| "define void @f4() {\n" |
| "entry:\n" |
| " call void @f5()\n" |
| " ret void\n" |
| "}\n" |
| "define void @f5() {\n" |
| "entry:\n" |
| " call void @f1()\n" |
| " ret void\n" |
| "}\n"); |
| LazyCallGraph CG = buildCG(*M); |
| |
| // Force the graph to be fully expanded. |
| CG.buildRefSCCs(); |
| auto I = CG.postorder_ref_scc_begin(); |
| LazyCallGraph::RefSCC &RC = *I++; |
| EXPECT_EQ(CG.postorder_ref_scc_end(), I); |
| |
| LazyCallGraph::Node &N1 = *CG.lookup(lookupFunction(*M, "f1")); |
| LazyCallGraph::Node &N2 = *CG.lookup(lookupFunction(*M, "f2")); |
| LazyCallGraph::Node &N3 = *CG.lookup(lookupFunction(*M, "f3")); |
| LazyCallGraph::Node &N4 = *CG.lookup(lookupFunction(*M, "f4")); |
| LazyCallGraph::Node &N5 = *CG.lookup(lookupFunction(*M, "f4")); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(N1)); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(N2)); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(N3)); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(N4)); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(N5)); |
| |
| ASSERT_EQ(1, RC.size()); |
| |
| LazyCallGraph::SCC &C = *RC.begin(); |
| EXPECT_EQ(&C, CG.lookupSCC(N1)); |
| EXPECT_EQ(&C, CG.lookupSCC(N2)); |
| EXPECT_EQ(&C, CG.lookupSCC(N3)); |
| EXPECT_EQ(&C, CG.lookupSCC(N4)); |
| EXPECT_EQ(&C, CG.lookupSCC(N5)); |
| } |
| |
| TEST(LazyCallGraphTest, OutgoingEdgeMutation) { |
| LLVMContext Context; |
| std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n" |
| "entry:\n" |
| " call void @b()\n" |
| " call void @c()\n" |
| " ret void\n" |
| "}\n" |
| "define void @b() {\n" |
| "entry:\n" |
| " call void @d()\n" |
| " ret void\n" |
| "}\n" |
| "define void @c() {\n" |
| "entry:\n" |
| " call void @d()\n" |
| " ret void\n" |
| "}\n" |
| "define void @d() {\n" |
| "entry:\n" |
| " ret void\n" |
| "}\n"); |
| LazyCallGraph CG = buildCG(*M); |
| |
| // Force the graph to be fully expanded. |
| CG.buildRefSCCs(); |
| for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) |
| dbgs() << "Formed RefSCC: " << RC << "\n"; |
| |
| LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); |
| LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); |
| LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); |
| LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d")); |
| LazyCallGraph::SCC &AC = *CG.lookupSCC(A); |
| LazyCallGraph::SCC &BC = *CG.lookupSCC(B); |
| LazyCallGraph::SCC &CC = *CG.lookupSCC(C); |
| LazyCallGraph::SCC &DC = *CG.lookupSCC(D); |
| LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A); |
| LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B); |
| LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C); |
| LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D); |
| EXPECT_TRUE(ARC.isParentOf(BRC)); |
| EXPECT_TRUE(AC.isParentOf(BC)); |
| EXPECT_TRUE(ARC.isParentOf(CRC)); |
| EXPECT_TRUE(AC.isParentOf(CC)); |
| EXPECT_FALSE(ARC.isParentOf(DRC)); |
| EXPECT_FALSE(AC.isParentOf(DC)); |
| EXPECT_TRUE(ARC.isAncestorOf(DRC)); |
| EXPECT_TRUE(AC.isAncestorOf(DC)); |
| EXPECT_FALSE(DRC.isChildOf(ARC)); |
| EXPECT_FALSE(DC.isChildOf(AC)); |
| EXPECT_TRUE(DRC.isDescendantOf(ARC)); |
| EXPECT_TRUE(DC.isDescendantOf(AC)); |
| EXPECT_TRUE(DRC.isChildOf(BRC)); |
| EXPECT_TRUE(DC.isChildOf(BC)); |
| EXPECT_TRUE(DRC.isChildOf(CRC)); |
| EXPECT_TRUE(DC.isChildOf(CC)); |
| |
| EXPECT_EQ(2, std::distance(A->begin(), A->end())); |
| ARC.insertOutgoingEdge(A, D, LazyCallGraph::Edge::Call); |
| EXPECT_EQ(3, std::distance(A->begin(), A->end())); |
| const LazyCallGraph::Edge &NewE = (*A)[D]; |
| EXPECT_TRUE(NewE); |
| EXPECT_TRUE(NewE.isCall()); |
| EXPECT_EQ(&D, &NewE.getNode()); |
| |
| // Only the parent and child tests sholud have changed. The rest of the graph |
| // remains the same. |
| EXPECT_TRUE(ARC.isParentOf(DRC)); |
| EXPECT_TRUE(AC.isParentOf(DC)); |
| EXPECT_TRUE(ARC.isAncestorOf(DRC)); |
| EXPECT_TRUE(AC.isAncestorOf(DC)); |
| EXPECT_TRUE(DRC.isChildOf(ARC)); |
| EXPECT_TRUE(DC.isChildOf(AC)); |
| EXPECT_TRUE(DRC.isDescendantOf(ARC)); |
| EXPECT_TRUE(DC.isDescendantOf(AC)); |
| EXPECT_EQ(&AC, CG.lookupSCC(A)); |
| EXPECT_EQ(&BC, CG.lookupSCC(B)); |
| EXPECT_EQ(&CC, CG.lookupSCC(C)); |
| EXPECT_EQ(&DC, CG.lookupSCC(D)); |
| EXPECT_EQ(&ARC, CG.lookupRefSCC(A)); |
| EXPECT_EQ(&BRC, CG.lookupRefSCC(B)); |
| EXPECT_EQ(&CRC, CG.lookupRefSCC(C)); |
| EXPECT_EQ(&DRC, CG.lookupRefSCC(D)); |
| |
| ARC.switchOutgoingEdgeToRef(A, D); |
| EXPECT_FALSE(NewE.isCall()); |
| |
| // Verify the reference graph remains the same but the SCC graph is updated. |
| EXPECT_TRUE(ARC.isParentOf(DRC)); |
| EXPECT_FALSE(AC.isParentOf(DC)); |
| EXPECT_TRUE(ARC.isAncestorOf(DRC)); |
| EXPECT_TRUE(AC.isAncestorOf(DC)); |
| EXPECT_TRUE(DRC.isChildOf(ARC)); |
| EXPECT_FALSE(DC.isChildOf(AC)); |
| EXPECT_TRUE(DRC.isDescendantOf(ARC)); |
| EXPECT_TRUE(DC.isDescendantOf(AC)); |
| EXPECT_EQ(&AC, CG.lookupSCC(A)); |
| EXPECT_EQ(&BC, CG.lookupSCC(B)); |
| EXPECT_EQ(&CC, CG.lookupSCC(C)); |
| EXPECT_EQ(&DC, CG.lookupSCC(D)); |
| EXPECT_EQ(&ARC, CG.lookupRefSCC(A)); |
| EXPECT_EQ(&BRC, CG.lookupRefSCC(B)); |
| EXPECT_EQ(&CRC, CG.lookupRefSCC(C)); |
| EXPECT_EQ(&DRC, CG.lookupRefSCC(D)); |
| |
| ARC.switchOutgoingEdgeToCall(A, D); |
| EXPECT_TRUE(NewE.isCall()); |
| |
| // Verify the reference graph remains the same but the SCC graph is updated. |
| EXPECT_TRUE(ARC.isParentOf(DRC)); |
| EXPECT_TRUE(AC.isParentOf(DC)); |
| EXPECT_TRUE(ARC.isAncestorOf(DRC)); |
| EXPECT_TRUE(AC.isAncestorOf(DC)); |
| EXPECT_TRUE(DRC.isChildOf(ARC)); |
| EXPECT_TRUE(DC.isChildOf(AC)); |
| EXPECT_TRUE(DRC.isDescendantOf(ARC)); |
| EXPECT_TRUE(DC.isDescendantOf(AC)); |
| EXPECT_EQ(&AC, CG.lookupSCC(A)); |
| EXPECT_EQ(&BC, CG.lookupSCC(B)); |
| EXPECT_EQ(&CC, CG.lookupSCC(C)); |
| EXPECT_EQ(&DC, CG.lookupSCC(D)); |
| EXPECT_EQ(&ARC, CG.lookupRefSCC(A)); |
| EXPECT_EQ(&BRC, CG.lookupRefSCC(B)); |
| EXPECT_EQ(&CRC, CG.lookupRefSCC(C)); |
| EXPECT_EQ(&DRC, CG.lookupRefSCC(D)); |
| |
| ARC.removeOutgoingEdge(A, D); |
| EXPECT_EQ(2, std::distance(A->begin(), A->end())); |
| |
| // Now the parent and child tests fail again but the rest remains the same. |
| EXPECT_FALSE(ARC.isParentOf(DRC)); |
| EXPECT_FALSE(AC.isParentOf(DC)); |
| EXPECT_TRUE(ARC.isAncestorOf(DRC)); |
| EXPECT_TRUE(AC.isAncestorOf(DC)); |
| EXPECT_FALSE(DRC.isChildOf(ARC)); |
| EXPECT_FALSE(DC.isChildOf(AC)); |
| EXPECT_TRUE(DRC.isDescendantOf(ARC)); |
| EXPECT_TRUE(DC.isDescendantOf(AC)); |
| EXPECT_EQ(&AC, CG.lookupSCC(A)); |
| EXPECT_EQ(&BC, CG.lookupSCC(B)); |
| EXPECT_EQ(&CC, CG.lookupSCC(C)); |
| EXPECT_EQ(&DC, CG.lookupSCC(D)); |
| EXPECT_EQ(&ARC, CG.lookupRefSCC(A)); |
| EXPECT_EQ(&BRC, CG.lookupRefSCC(B)); |
| EXPECT_EQ(&CRC, CG.lookupRefSCC(C)); |
| EXPECT_EQ(&DRC, CG.lookupRefSCC(D)); |
| } |
| |
| TEST(LazyCallGraphTest, IncomingEdgeInsertion) { |
| LLVMContext Context; |
| // We want to ensure we can add edges even across complex diamond graphs, so |
| // we use the diamond of triangles graph defined above. The ascii diagram is |
| // repeated here for easy reference. |
| // |
| // d1 | |
| // / \ | |
| // d3--d2 | |
| // / \ | |
| // b1 c1 | |
| // / \ / \ | |
| // b3--b2 c3--c2 | |
| // \ / | |
| // a1 | |
| // / \ | |
| // a3--a2 | |
| // |
| std::unique_ptr<Module> M = parseAssembly(Context, DiamondOfTriangles); |
| LazyCallGraph CG = buildCG(*M); |
| |
| // Force the graph to be fully expanded. |
| CG.buildRefSCCs(); |
| for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) |
| dbgs() << "Formed RefSCC: " << RC << "\n"; |
| |
| LazyCallGraph::Node &A1 = *CG.lookup(lookupFunction(*M, "a1")); |
| LazyCallGraph::Node &A2 = *CG.lookup(lookupFunction(*M, "a2")); |
| LazyCallGraph::Node &A3 = *CG.lookup(lookupFunction(*M, "a3")); |
| LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1")); |
| LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2")); |
| LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3")); |
| LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1")); |
| LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2")); |
| LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3")); |
| LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1")); |
| LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2")); |
| LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3")); |
| LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A1); |
| LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B1); |
| LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C1); |
| LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D1); |
| ASSERT_EQ(&ARC, CG.lookupRefSCC(A2)); |
| ASSERT_EQ(&ARC, CG.lookupRefSCC(A3)); |
| ASSERT_EQ(&BRC, CG.lookupRefSCC(B2)); |
| ASSERT_EQ(&BRC, CG.lookupRefSCC(B3)); |
| ASSERT_EQ(&CRC, CG.lookupRefSCC(C2)); |
| ASSERT_EQ(&CRC, CG.lookupRefSCC(C3)); |
| ASSERT_EQ(&DRC, CG.lookupRefSCC(D2)); |
| ASSERT_EQ(&DRC, CG.lookupRefSCC(D3)); |
| ASSERT_EQ(1, std::distance(D2->begin(), D2->end())); |
| |
| // Add an edge to make the graph: |
| // |
| // d1 | |
| // / \ | |
| // d3--d2---. | |
| // / \ | | |
| // b1 c1 | | |
| // / \ / \ / | |
| // b3--b2 c3--c2 | |
| // \ / | |
| // a1 | |
| // / \ | |
| // a3--a2 | |
| auto MergedRCs = CRC.insertIncomingRefEdge(D2, C2); |
| // Make sure we connected the nodes. |
| for (LazyCallGraph::Edge E : *D2) { |
| if (&E.getNode() == &D3) |
| continue; |
| EXPECT_EQ(&C2, &E.getNode()); |
| } |
| // And marked the D ref-SCC as no longer valid. |
| EXPECT_EQ(1u, MergedRCs.size()); |
| EXPECT_EQ(&DRC, MergedRCs[0]); |
| |
| // Make sure we have the correct nodes in the SCC sets. |
| EXPECT_EQ(&ARC, CG.lookupRefSCC(A1)); |
| EXPECT_EQ(&ARC, CG.lookupRefSCC(A2)); |
| EXPECT_EQ(&ARC, CG.lookupRefSCC(A3)); |
| EXPECT_EQ(&BRC, CG.lookupRefSCC(B1)); |
| EXPECT_EQ(&BRC, CG.lookupRefSCC(B2)); |
| EXPECT_EQ(&BRC, CG.lookupRefSCC(B3)); |
| EXPECT_EQ(&CRC, CG.lookupRefSCC(C1)); |
| EXPECT_EQ(&CRC, CG.lookupRefSCC(C2)); |
| EXPECT_EQ(&CRC, CG.lookupRefSCC(C3)); |
| EXPECT_EQ(&CRC, CG.lookupRefSCC(D1)); |
| EXPECT_EQ(&CRC, CG.lookupRefSCC(D2)); |
| EXPECT_EQ(&CRC, CG.lookupRefSCC(D3)); |
| |
| // And that ancestry tests have been updated. |
| EXPECT_TRUE(ARC.isParentOf(CRC)); |
| EXPECT_TRUE(BRC.isParentOf(CRC)); |
| |
| // And verify the post-order walk reflects the updated structure. |
| auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end(); |
| ASSERT_NE(I, E); |
| EXPECT_EQ(&CRC, &*I) << "Actual RefSCC: " << *I; |
| ASSERT_NE(++I, E); |
| EXPECT_EQ(&BRC, &*I) << "Actual RefSCC: " << *I; |
| ASSERT_NE(++I, E); |
| EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I; |
| EXPECT_EQ(++I, E); |
| } |
| |
| TEST(LazyCallGraphTest, IncomingEdgeInsertionRefGraph) { |
| LLVMContext Context; |
| // Another variation of the above test but with all the edges switched to |
| // references rather than calls. |
| std::unique_ptr<Module> M = |
| parseAssembly(Context, DiamondOfTrianglesRefGraph); |
| LazyCallGraph CG = buildCG(*M); |
| |
| // Force the graph to be fully expanded. |
| CG.buildRefSCCs(); |
| for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) |
| dbgs() << "Formed RefSCC: " << RC << "\n"; |
| |
| LazyCallGraph::Node &A1 = *CG.lookup(lookupFunction(*M, "a1")); |
| LazyCallGraph::Node &A2 = *CG.lookup(lookupFunction(*M, "a2")); |
| LazyCallGraph::Node &A3 = *CG.lookup(lookupFunction(*M, "a3")); |
| LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1")); |
| LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2")); |
| LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3")); |
| LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1")); |
| LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2")); |
| LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3")); |
| LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1")); |
| LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2")); |
| LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3")); |
| LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A1); |
| LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B1); |
| LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C1); |
| LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D1); |
| ASSERT_EQ(&ARC, CG.lookupRefSCC(A2)); |
| ASSERT_EQ(&ARC, CG.lookupRefSCC(A3)); |
| ASSERT_EQ(&BRC, CG.lookupRefSCC(B2)); |
| ASSERT_EQ(&BRC, CG.lookupRefSCC(B3)); |
| ASSERT_EQ(&CRC, CG.lookupRefSCC(C2)); |
| ASSERT_EQ(&CRC, CG.lookupRefSCC(C3)); |
| ASSERT_EQ(&DRC, CG.lookupRefSCC(D2)); |
| ASSERT_EQ(&DRC, CG.lookupRefSCC(D3)); |
| ASSERT_EQ(1, std::distance(D2->begin(), D2->end())); |
| |
| // Add an edge to make the graph: |
| // |
| // d1 | |
| // / \ | |
| // d3--d2---. | |
| // / \ | | |
| // b1 c1 | | |
| // / \ / \ / | |
| // b3--b2 c3--c2 | |
| // \ / | |
| // a1 | |
| // / \ | |
| // a3--a2 | |
| auto MergedRCs = CRC.insertIncomingRefEdge(D2, C2); |
| // Make sure we connected the nodes. |
| for (LazyCallGraph::Edge E : *D2) { |
| if (&E.getNode() == &D3) |
| continue; |
| EXPECT_EQ(&C2, &E.getNode()); |
| } |
| // And marked the D ref-SCC as no longer valid. |
| EXPECT_EQ(1u, MergedRCs.size()); |
| EXPECT_EQ(&DRC, MergedRCs[0]); |
| |
| // Make sure we have the correct nodes in the SCC sets. |
| EXPECT_EQ(&ARC, CG.lookupRefSCC(A1)); |
| EXPECT_EQ(&ARC, CG.lookupRefSCC(A2)); |
| EXPECT_EQ(&ARC, CG.lookupRefSCC(A3)); |
| EXPECT_EQ(&BRC, CG.lookupRefSCC(B1)); |
| EXPECT_EQ(&BRC, CG.lookupRefSCC(B2)); |
| EXPECT_EQ(&BRC, CG.lookupRefSCC(B3)); |
| EXPECT_EQ(&CRC, CG.lookupRefSCC(C1)); |
| EXPECT_EQ(&CRC, CG.lookupRefSCC(C2)); |
| EXPECT_EQ(&CRC, CG.lookupRefSCC(C3)); |
| EXPECT_EQ(&CRC, CG.lookupRefSCC(D1)); |
| EXPECT_EQ(&CRC, CG.lookupRefSCC(D2)); |
| EXPECT_EQ(&CRC, CG.lookupRefSCC(D3)); |
| |
| // And that ancestry tests have been updated. |
| EXPECT_TRUE(ARC.isParentOf(CRC)); |
| EXPECT_TRUE(BRC.isParentOf(CRC)); |
| |
| // And verify the post-order walk reflects the updated structure. |
| auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end(); |
| ASSERT_NE(I, E); |
| EXPECT_EQ(&CRC, &*I) << "Actual RefSCC: " << *I; |
| ASSERT_NE(++I, E); |
| EXPECT_EQ(&BRC, &*I) << "Actual RefSCC: " << *I; |
| ASSERT_NE(++I, E); |
| EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I; |
| EXPECT_EQ(++I, E); |
| } |
| |
| TEST(LazyCallGraphTest, IncomingEdgeInsertionLargeCallCycle) { |
| LLVMContext Context; |
| std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n" |
| "entry:\n" |
| " call void @b()\n" |
| " ret void\n" |
| "}\n" |
| "define void @b() {\n" |
| "entry:\n" |
| " call void @c()\n" |
| " ret void\n" |
| "}\n" |
| "define void @c() {\n" |
| "entry:\n" |
| " call void @d()\n" |
| " ret void\n" |
| "}\n" |
| "define void @d() {\n" |
| "entry:\n" |
| " ret void\n" |
| "}\n"); |
| LazyCallGraph CG = buildCG(*M); |
| |
| // Force the graph to be fully expanded. |
| CG.buildRefSCCs(); |
| for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) |
| dbgs() << "Formed RefSCC: " << RC << "\n"; |
| |
| LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); |
| LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); |
| LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); |
| LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d")); |
| LazyCallGraph::SCC &AC = *CG.lookupSCC(A); |
| LazyCallGraph::SCC &BC = *CG.lookupSCC(B); |
| LazyCallGraph::SCC &CC = *CG.lookupSCC(C); |
| LazyCallGraph::SCC &DC = *CG.lookupSCC(D); |
| LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A); |
| LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B); |
| LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C); |
| LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D); |
| |
| // Connect the top to the bottom forming a large RefSCC made up mostly of calls. |
| auto MergedRCs = ARC.insertIncomingRefEdge(D, A); |
| // Make sure we connected the nodes. |
| EXPECT_NE(D->begin(), D->end()); |
| EXPECT_EQ(&A, &D->begin()->getNode()); |
| |
| // Check that we have the dead RCs, but ignore the order. |
| EXPECT_EQ(3u, MergedRCs.size()); |
| EXPECT_NE(find(MergedRCs, &BRC), MergedRCs.end()); |
| EXPECT_NE(find(MergedRCs, &CRC), MergedRCs.end()); |
| EXPECT_NE(find(MergedRCs, &DRC), MergedRCs.end()); |
| |
| // Make sure the nodes point to the right place now. |
| EXPECT_EQ(&ARC, CG.lookupRefSCC(A)); |
| EXPECT_EQ(&ARC, CG.lookupRefSCC(B)); |
| EXPECT_EQ(&ARC, CG.lookupRefSCC(C)); |
| EXPECT_EQ(&ARC, CG.lookupRefSCC(D)); |
| |
| // Check that the SCCs are in postorder. |
| EXPECT_EQ(4, ARC.size()); |
| EXPECT_EQ(&DC, &ARC[0]); |
| EXPECT_EQ(&CC, &ARC[1]); |
| EXPECT_EQ(&BC, &ARC[2]); |
| EXPECT_EQ(&AC, &ARC[3]); |
| |
| // And verify the post-order walk reflects the updated structure. |
| auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end(); |
| ASSERT_NE(I, E); |
| EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I; |
| EXPECT_EQ(++I, E); |
| } |
| |
| TEST(LazyCallGraphTest, IncomingEdgeInsertionLargeRefCycle) { |
| LLVMContext Context; |
| std::unique_ptr<Module> M = |
| parseAssembly(Context, "define void @a() {\n" |
| "entry:\n" |
| " %p = alloca void ()*\n" |
| " store void ()* @b, void ()** %p\n" |
| " ret void\n" |
| "}\n" |
| "define void @b() {\n" |
| "entry:\n" |
| " %p = alloca void ()*\n" |
| " store void ()* @c, void ()** %p\n" |
| " ret void\n" |
| "}\n" |
| "define void @c() {\n" |
| "entry:\n" |
| " %p = alloca void ()*\n" |
| " store void ()* @d, void ()** %p\n" |
| " ret void\n" |
| "}\n" |
| "define void @d() {\n" |
| "entry:\n" |
| " ret void\n" |
| "}\n"); |
| LazyCallGraph CG = buildCG(*M); |
| |
| // Force the graph to be fully expanded. |
| CG.buildRefSCCs(); |
| for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) |
| dbgs() << "Formed RefSCC: " << RC << "\n"; |
| |
| LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); |
| LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); |
| LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); |
| LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d")); |
| LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A); |
| LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B); |
| LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C); |
| LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D); |
| |
| // Connect the top to the bottom forming a large RefSCC made up just of |
| // references. |
| auto MergedRCs = ARC.insertIncomingRefEdge(D, A); |
| // Make sure we connected the nodes. |
| EXPECT_NE(D->begin(), D->end()); |
| EXPECT_EQ(&A, &D->begin()->getNode()); |
| |
| // Check that we have the dead RCs, but ignore the order. |
| EXPECT_EQ(3u, MergedRCs.size()); |
| EXPECT_NE(find(MergedRCs, &BRC), MergedRCs.end()); |
| EXPECT_NE(find(MergedRCs, &CRC), MergedRCs.end()); |
| EXPECT_NE(find(MergedRCs, &DRC), MergedRCs.end()); |
| |
| // Make sure the nodes point to the right place now. |
| EXPECT_EQ(&ARC, CG.lookupRefSCC(A)); |
| EXPECT_EQ(&ARC, CG.lookupRefSCC(B)); |
| EXPECT_EQ(&ARC, CG.lookupRefSCC(C)); |
| EXPECT_EQ(&ARC, CG.lookupRefSCC(D)); |
| |
| // And verify the post-order walk reflects the updated structure. |
| auto I = CG.postorder_ref_scc_begin(), End = CG.postorder_ref_scc_end(); |
| ASSERT_NE(I, End); |
| EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I; |
| EXPECT_EQ(++I, End); |
| } |
| |
| TEST(LazyCallGraphTest, InlineAndDeleteFunction) { |
| LLVMContext Context; |
| // We want to ensure we can delete nodes from relatively complex graphs and |
| // so use the diamond of triangles graph defined above. |
| // |
| // The ascii diagram is repeated here for easy reference. |
| // |
| // d1 | |
| // / \ | |
| // d3--d2 | |
| // / \ | |
| // b1 c1 | |
| // / \ / \ | |
| // b3--b2 c3--c2 | |
| // \ / | |
| // a1 | |
| // / \ | |
| // a3--a2 | |
| // |
| std::unique_ptr<Module> M = parseAssembly(Context, DiamondOfTriangles); |
| LazyCallGraph CG = buildCG(*M); |
| |
| // Force the graph to be fully expanded. |
| CG.buildRefSCCs(); |
| for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) |
| dbgs() << "Formed RefSCC: " << RC << "\n"; |
| |
| LazyCallGraph::Node &A1 = *CG.lookup(lookupFunction(*M, "a1")); |
| LazyCallGraph::Node &A2 = *CG.lookup(lookupFunction(*M, "a2")); |
| LazyCallGraph::Node &A3 = *CG.lookup(lookupFunction(*M, "a3")); |
| LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1")); |
| LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2")); |
| LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3")); |
| LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1")); |
| LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2")); |
| LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3")); |
| LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1")); |
| LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2")); |
| LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3")); |
| LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A1); |
| LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B1); |
| LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C1); |
| LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D1); |
| ASSERT_EQ(&ARC, CG.lookupRefSCC(A2)); |
| ASSERT_EQ(&ARC, CG.lookupRefSCC(A3)); |
| ASSERT_EQ(&BRC, CG.lookupRefSCC(B2)); |
| ASSERT_EQ(&BRC, CG.lookupRefSCC(B3)); |
| ASSERT_EQ(&CRC, CG.lookupRefSCC(C2)); |
| ASSERT_EQ(&CRC, CG.lookupRefSCC(C3)); |
| ASSERT_EQ(&DRC, CG.lookupRefSCC(D2)); |
| ASSERT_EQ(&DRC, CG.lookupRefSCC(D3)); |
| ASSERT_EQ(1, std::distance(D2->begin(), D2->end())); |
| |
| // Delete d2 from the graph, as if it had been inlined. |
| // |
| // d1 | |
| // / / | |
| // d3--. | |
| // / \ | |
| // b1 c1 | |
| // / \ / \ | |
| // b3--b2 c3--c2 | |
| // \ / | |
| // a1 | |
| // / \ | |
| // a3--a2 | |
| |
| Function &D2F = D2.getFunction(); |
| CallInst *C1Call = nullptr, *D1Call = nullptr; |
| for (User *U : D2F.users()) { |
| CallInst *CI = dyn_cast<CallInst>(U); |
| ASSERT_TRUE(CI) << "Expected a call: " << *U; |
| if (CI->getParent()->getParent() == &C1.getFunction()) { |
| ASSERT_EQ(nullptr, C1Call) << "Found too many C1 calls: " << *CI; |
| C1Call = CI; |
| } else if (CI->getParent()->getParent() == &D1.getFunction()) { |
| ASSERT_EQ(nullptr, D1Call) << "Found too many D1 calls: " << *CI; |
| D1Call = CI; |
| } else { |
| FAIL() << "Found an unexpected call instruction: " << *CI; |
| } |
| } |
| ASSERT_NE(C1Call, nullptr); |
| ASSERT_NE(D1Call, nullptr); |
| ASSERT_EQ(&D2F, C1Call->getCalledFunction()); |
| ASSERT_EQ(&D2F, D1Call->getCalledFunction()); |
| C1Call->setCalledFunction(&D3.getFunction()); |
| D1Call->setCalledFunction(&D3.getFunction()); |
| ASSERT_EQ(0u, D2F.getNumUses()); |
| |
| // Insert new edges first. |
| CRC.insertTrivialCallEdge(C1, D3); |
| DRC.insertTrivialCallEdge(D1, D3); |
| |
| // Then remove the old ones. |
| LazyCallGraph::SCC &DC = *CG.lookupSCC(D2); |
| auto NewCs = DRC.switchInternalEdgeToRef(D1, D2); |
| EXPECT_EQ(&DC, CG.lookupSCC(D2)); |
| EXPECT_EQ(NewCs.end(), std::next(NewCs.begin())); |
| LazyCallGraph::SCC &NewDC = *NewCs.begin(); |
| EXPECT_EQ(&NewDC, CG.lookupSCC(D1)); |
| EXPECT_EQ(&NewDC, CG.lookupSCC(D3)); |
| auto NewRCs = DRC.removeInternalRefEdge(D1, {&D2}); |
| ASSERT_EQ(2u, NewRCs.size()); |
| LazyCallGraph::RefSCC &NewDRC = *NewRCs[0]; |
| EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D1)); |
| EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D3)); |
| LazyCallGraph::RefSCC &D2RC = *NewRCs[1]; |
| EXPECT_EQ(&D2RC, CG.lookupRefSCC(D2)); |
| EXPECT_FALSE(NewDRC.isParentOf(D2RC)); |
| EXPECT_TRUE(CRC.isParentOf(D2RC)); |
| EXPECT_TRUE(CRC.isParentOf(NewDRC)); |
| EXPECT_TRUE(D2RC.isParentOf(NewDRC)); |
| CRC.removeOutgoingEdge(C1, D2); |
| EXPECT_FALSE(CRC.isParentOf(D2RC)); |
| EXPECT_TRUE(CRC.isParentOf(NewDRC)); |
| EXPECT_TRUE(D2RC.isParentOf(NewDRC)); |
| |
| // Now that we've updated the call graph, D2 is dead, so remove it. |
| CG.removeDeadFunction(D2F); |
| |
| // Check that the graph still looks the same. |
| EXPECT_EQ(&ARC, CG.lookupRefSCC(A1)); |
| EXPECT_EQ(&ARC, CG.lookupRefSCC(A2)); |
| EXPECT_EQ(&ARC, CG.lookupRefSCC(A3)); |
| EXPECT_EQ(&BRC, CG.lookupRefSCC(B1)); |
| EXPECT_EQ(&BRC, CG.lookupRefSCC(B2)); |
| EXPECT_EQ(&BRC, CG.lookupRefSCC(B3)); |
| EXPECT_EQ(&CRC, CG.lookupRefSCC(C1)); |
| EXPECT_EQ(&CRC, CG.lookupRefSCC(C2)); |
| EXPECT_EQ(&CRC, CG.lookupRefSCC(C3)); |
| EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D1)); |
| EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D3)); |
| EXPECT_TRUE(CRC.isParentOf(NewDRC)); |
| |
| // Verify the post-order walk hasn't changed. |
| auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end(); |
| ASSERT_NE(I, E); |
| EXPECT_EQ(&NewDRC, &*I) << "Actual RefSCC: " << *I; |
| ASSERT_NE(++I, E); |
| EXPECT_EQ(&CRC, &*I) << "Actual RefSCC: " << *I; |
| ASSERT_NE(++I, E); |
| EXPECT_EQ(&BRC, &*I) << "Actual RefSCC: " << *I; |
| ASSERT_NE(++I, E); |
| EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I; |
| EXPECT_EQ(++I, E); |
| } |
| |
| TEST(LazyCallGraphTest, InternalEdgeMutation) { |
| LLVMContext Context; |
| std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n" |
| "entry:\n" |
| " call void @b()\n" |
| " ret void\n" |
| "}\n" |
| "define void @b() {\n" |
| "entry:\n" |
| " call void @c()\n" |
| " ret void\n" |
| "}\n" |
| "define void @c() {\n" |
| "entry:\n" |
| " call void @a()\n" |
| " ret void\n" |
| "}\n"); |
| LazyCallGraph CG = buildCG(*M); |
| |
| // Force the graph to be fully expanded. |
| CG.buildRefSCCs(); |
| auto I = CG.postorder_ref_scc_begin(); |
| LazyCallGraph::RefSCC &RC = *I++; |
| EXPECT_EQ(CG.postorder_ref_scc_end(), I); |
| |
| LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); |
| LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); |
| LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(A)); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(B)); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(C)); |
| EXPECT_EQ(1, RC.size()); |
| EXPECT_EQ(&*RC.begin(), CG.lookupSCC(A)); |
| EXPECT_EQ(&*RC.begin(), CG.lookupSCC(B)); |
| EXPECT_EQ(&*RC.begin(), CG.lookupSCC(C)); |
| |
| // Insert an edge from 'a' to 'c'. Nothing changes about the graph. |
| RC.insertInternalRefEdge(A, C); |
| EXPECT_EQ(2, std::distance(A->begin(), A->end())); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(A)); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(B)); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(C)); |
| EXPECT_EQ(1, RC.size()); |
| EXPECT_EQ(&*RC.begin(), CG.lookupSCC(A)); |
| EXPECT_EQ(&*RC.begin(), CG.lookupSCC(B)); |
| EXPECT_EQ(&*RC.begin(), CG.lookupSCC(C)); |
| |
| // Switch the call edge from 'b' to 'c' to a ref edge. This will break the |
| // call cycle and cause us to form more SCCs. The RefSCC will remain the same |
| // though. |
| auto NewCs = RC.switchInternalEdgeToRef(B, C); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(A)); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(B)); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(C)); |
| auto J = RC.begin(); |
| // The SCCs must be in *post-order* which means successors before |
| // predecessors. At this point we have call edges from C to A and from A to |
| // B. The only valid postorder is B, A, C. |
| EXPECT_EQ(&*J++, CG.lookupSCC(B)); |
| EXPECT_EQ(&*J++, CG.lookupSCC(A)); |
| EXPECT_EQ(&*J++, CG.lookupSCC(C)); |
| EXPECT_EQ(RC.end(), J); |
| // And the returned range must be the slice of this sequence containing new |
| // SCCs. |
| EXPECT_EQ(RC.begin(), NewCs.begin()); |
| EXPECT_EQ(std::prev(RC.end()), NewCs.end()); |
| |
| // Test turning the ref edge from A to C into a call edge. This will form an |
| // SCC out of A and C. Since we previously had a call edge from C to A, the |
| // C SCC should be preserved and have A merged into it while the A SCC should |
| // be invalidated. |
| LazyCallGraph::SCC &AC = *CG.lookupSCC(A); |
| LazyCallGraph::SCC &CC = *CG.lookupSCC(C); |
| EXPECT_TRUE(RC.switchInternalEdgeToCall(A, C, [&](ArrayRef<LazyCallGraph::SCC *> MergedCs) { |
| ASSERT_EQ(1u, MergedCs.size()); |
| EXPECT_EQ(&AC, MergedCs[0]); |
| })); |
| EXPECT_EQ(2, CC.size()); |
| EXPECT_EQ(&CC, CG.lookupSCC(A)); |
| EXPECT_EQ(&CC, CG.lookupSCC(C)); |
| J = RC.begin(); |
| EXPECT_EQ(&*J++, CG.lookupSCC(B)); |
| EXPECT_EQ(&*J++, CG.lookupSCC(C)); |
| EXPECT_EQ(RC.end(), J); |
| } |
| |
| TEST(LazyCallGraphTest, InternalEdgeRemoval) { |
| LLVMContext Context; |
| // A nice fully connected (including self-edges) RefSCC. |
| std::unique_ptr<Module> M = parseAssembly( |
| Context, "define void @a(i8** %ptr) {\n" |
| "entry:\n" |
| " store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n" |
| " store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" |
| " store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" |
| " ret void\n" |
| "}\n" |
| "define void @b(i8** %ptr) {\n" |
| "entry:\n" |
| " store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n" |
| " store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" |
| " store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" |
| " ret void\n" |
| "}\n" |
| "define void @c(i8** %ptr) {\n" |
| "entry:\n" |
| " store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n" |
| " store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" |
| " store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" |
| " ret void\n" |
| "}\n"); |
| LazyCallGraph CG = buildCG(*M); |
| |
| // Force the graph to be fully expanded. |
| CG.buildRefSCCs(); |
| auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end(); |
| LazyCallGraph::RefSCC &RC = *I; |
| EXPECT_EQ(E, std::next(I)); |
| |
| LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); |
| LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); |
| LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(A)); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(B)); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(C)); |
| |
| // Remove the edge from b -> a, which should leave the 3 functions still in |
| // a single connected component because of a -> b -> c -> a. |
| SmallVector<LazyCallGraph::RefSCC *, 1> NewRCs = |
| RC.removeInternalRefEdge(B, {&A}); |
| EXPECT_EQ(0u, NewRCs.size()); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(A)); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(B)); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(C)); |
| auto J = CG.postorder_ref_scc_begin(); |
| EXPECT_EQ(I, J); |
| EXPECT_EQ(&RC, &*J); |
| EXPECT_EQ(E, std::next(J)); |
| |
| // Increment I before we actually mutate the structure so that it remains |
| // a valid iterator. |
| ++I; |
| |
| // Remove the edge from c -> a, which should leave 'a' in the original RefSCC |
| // and form a new RefSCC for 'b' and 'c'. |
| NewRCs = RC.removeInternalRefEdge(C, {&A}); |
| ASSERT_EQ(2u, NewRCs.size()); |
| LazyCallGraph::RefSCC &BCRC = *NewRCs[0]; |
| LazyCallGraph::RefSCC &ARC = *NewRCs[1]; |
| EXPECT_EQ(&ARC, CG.lookupRefSCC(A)); |
| EXPECT_EQ(1, std::distance(ARC.begin(), ARC.end())); |
| EXPECT_EQ(&BCRC, CG.lookupRefSCC(B)); |
| EXPECT_EQ(&BCRC, CG.lookupRefSCC(C)); |
| J = CG.postorder_ref_scc_begin(); |
| EXPECT_NE(I, J); |
| EXPECT_EQ(&BCRC, &*J); |
| ++J; |
| EXPECT_NE(I, J); |
| EXPECT_EQ(&ARC, &*J); |
| ++J; |
| EXPECT_EQ(I, J); |
| EXPECT_EQ(E, J); |
| } |
| |
| TEST(LazyCallGraphTest, InternalMultiEdgeRemoval) { |
| LLVMContext Context; |
| // A nice fully connected (including self-edges) RefSCC. |
| std::unique_ptr<Module> M = parseAssembly( |
| Context, "define void @a(i8** %ptr) {\n" |
| "entry:\n" |
| " store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n" |
| " store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" |
| " store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" |
| " ret void\n" |
| "}\n" |
| "define void @b(i8** %ptr) {\n" |
| "entry:\n" |
| " store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n" |
| " store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" |
| " store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" |
| " ret void\n" |
| "}\n" |
| "define void @c(i8** %ptr) {\n" |
| "entry:\n" |
| " store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n" |
| " store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" |
| " store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" |
| " ret void\n" |
| "}\n"); |
| LazyCallGraph CG = buildCG(*M); |
| |
| // Force the graph to be fully expanded. |
| CG.buildRefSCCs(); |
| auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end(); |
| LazyCallGraph::RefSCC &RC = *I; |
| EXPECT_EQ(E, std::next(I)); |
| |
| LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); |
| LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); |
| LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(A)); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(B)); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(C)); |
| |
| // Increment I before we actually mutate the structure so that it remains |
| // a valid iterator. |
| ++I; |
| |
| // Remove the edges from b -> a and b -> c, leaving b in its own RefSCC. |
| SmallVector<LazyCallGraph::RefSCC *, 1> NewRCs = |
| RC.removeInternalRefEdge(B, {&A, &C}); |
| |
| ASSERT_EQ(2u, NewRCs.size()); |
| LazyCallGraph::RefSCC &BRC = *NewRCs[0]; |
| LazyCallGraph::RefSCC &ACRC = *NewRCs[1]; |
| EXPECT_EQ(&BRC, CG.lookupRefSCC(B)); |
| EXPECT_EQ(1, std::distance(BRC.begin(), BRC.end())); |
| EXPECT_EQ(&ACRC, CG.lookupRefSCC(A)); |
| EXPECT_EQ(&ACRC, CG.lookupRefSCC(C)); |
| auto J = CG.postorder_ref_scc_begin(); |
| EXPECT_NE(I, J); |
| EXPECT_EQ(&BRC, &*J); |
| ++J; |
| EXPECT_NE(I, J); |
| EXPECT_EQ(&ACRC, &*J); |
| ++J; |
| EXPECT_EQ(I, J); |
| EXPECT_EQ(E, J); |
| } |
| |
| TEST(LazyCallGraphTest, InternalNoOpEdgeRemoval) { |
| LLVMContext Context; |
| // A graph with a single cycle formed both from call and reference edges |
| // which makes the reference edges trivial to delete. The graph looks like: |
| // |
| // Reference edges: a -> b -> c -> a |
| // Call edges: a -> c -> b -> a |
| std::unique_ptr<Module> M = parseAssembly( |
| Context, "define void @a(i8** %ptr) {\n" |
| "entry:\n" |
| " call void @b(i8** %ptr)\n" |
| " store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" |
| " ret void\n" |
| "}\n" |
| "define void @b(i8** %ptr) {\n" |
| "entry:\n" |
| " store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n" |
| " call void @c(i8** %ptr)\n" |
| " ret void\n" |
| "}\n" |
| "define void @c(i8** %ptr) {\n" |
| "entry:\n" |
| " call void @a(i8** %ptr)\n" |
| " store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" |
| " ret void\n" |
| "}\n"); |
| LazyCallGraph CG = buildCG(*M); |
| |
| // Force the graph to be fully expanded. |
| CG.buildRefSCCs(); |
| auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end(); |
| LazyCallGraph::RefSCC &RC = *I; |
| EXPECT_EQ(E, std::next(I)); |
| |
| LazyCallGraph::SCC &C = *RC.begin(); |
| EXPECT_EQ(RC.end(), std::next(RC.begin())); |
| |
| LazyCallGraph::Node &AN = *CG.lookup(lookupFunction(*M, "a")); |
| LazyCallGraph::Node &BN = *CG.lookup(lookupFunction(*M, "b")); |
| LazyCallGraph::Node &CN = *CG.lookup(lookupFunction(*M, "c")); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(AN)); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(BN)); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(CN)); |
| EXPECT_EQ(&C, CG.lookupSCC(AN)); |
| EXPECT_EQ(&C, CG.lookupSCC(BN)); |
| EXPECT_EQ(&C, CG.lookupSCC(CN)); |
| |
| // Remove the edge from a -> c which doesn't change anything. |
| SmallVector<LazyCallGraph::RefSCC *, 1> NewRCs = |
| RC.removeInternalRefEdge(AN, {&CN}); |
| EXPECT_EQ(0u, NewRCs.size()); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(AN)); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(BN)); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(CN)); |
| EXPECT_EQ(&C, CG.lookupSCC(AN)); |
| EXPECT_EQ(&C, CG.lookupSCC(BN)); |
| EXPECT_EQ(&C, CG.lookupSCC(CN)); |
| auto J = CG.postorder_ref_scc_begin(); |
| EXPECT_EQ(I, J); |
| EXPECT_EQ(&RC, &*J); |
| EXPECT_EQ(E, std::next(J)); |
| |
| // Remove the edge from b -> a and c -> b; again this doesn't change |
| // anything. |
| NewRCs = RC.removeInternalRefEdge(BN, {&AN}); |
| NewRCs = RC.removeInternalRefEdge(CN, {&BN}); |
| EXPECT_EQ(0u, NewRCs.size()); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(AN)); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(BN)); |
| EXPECT_EQ(&RC, CG.lookupRefSCC(CN)); |
| EXPECT_EQ(&C, CG.lookupSCC(AN)); |
| EXPECT_EQ(&C, CG.lookupSCC(BN)); |
| EXPECT_EQ(&C, CG.lookupSCC(CN)); |
| J = CG.postorder_ref_scc_begin(); |
| EXPECT_EQ(I, J); |
| EXPECT_EQ(&RC, &*J); |
| EXPECT_EQ(E, std::next(J)); |
| } |
| |
| TEST(LazyCallGraphTest, InternalCallEdgeToRef) { |
| LLVMContext Context; |
| // A nice fully connected (including self-edges) SCC (and RefSCC) |
| std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n" |
| "entry:\n" |
| " call void @a()\n" |
| " call void @b()\n" |
| " call void @c()\n" |
| " ret void\n" |
| "}\n" |
| "define void @b() {\n" |
| "entry:\n" |
| " call void @a()\n" |
| " call void @b()\n" |
| " call void @c()\n" |
| " ret void\n" |
| "}\n" |
| "define void @c() {\n" |
| "entry:\n" |
| " call void @a()\n" |
| " call void @b()\n" |
| " call void @c()\n" |
| " ret void\n" |
| "}\n"); |
| LazyCallGraph CG = buildCG(*M); |
| |
| // Force the graph to be fully expanded. |
| CG.buildRefSCCs(); |
| auto I = CG.postorder_ref_scc_begin(); |
| LazyCallGraph::RefSCC &RC = *I++; |
| EXPECT_EQ(CG.postorder_ref_scc_end(), I); |
| |
| EXPECT_EQ(1, RC.size()); |
| LazyCallGraph::SCC &AC = *RC.begin(); |
| |
| LazyCallGraph::Node &AN = *CG.lookup(lookupFunction(*M, "a")); |
| LazyCallGraph::Node &BN = *CG.lookup(lookupFunction(*M, "b")); |
| LazyCallGraph::Node &CN = *CG.lookup(lookupFunction(*M, "c")); |
| EXPECT_EQ(&AC, CG.lookupSCC(AN)); |
| EXPECT_EQ(&AC, CG.lookupSCC(BN)); |
| EXPECT_EQ(&AC, CG.lookupSCC(CN)); |
| |
| // Remove the call edge from b -> a to a ref edge, which should leave the |
| // 3 functions still in a single connected component because of a -> b -> |
| // c -> a. |
| auto NewCs = RC.switchInternalEdgeToRef(BN, AN); |
| EXPECT_EQ(NewCs.begin(), NewCs.end()); |
| EXPECT_EQ(1, RC.size()); |
| EXPECT_EQ(&AC, CG.lookupSCC(AN)); |
| EXPECT_EQ(&AC, CG.lookupSCC(BN)); |
| EXPECT_EQ(&AC, CG.lookupSCC(CN)); |
| |
| // Remove the edge from c -> a, which should leave 'a' in the original SCC |
| // and form a new SCC for 'b' and 'c'. |
| NewCs = RC.switchInternalEdgeToRef(CN, AN); |
| EXPECT_EQ(1, std::distance(NewCs.begin(), NewCs.end())); |
| EXPECT_EQ(2, RC.size()); |
| EXPECT_EQ(&AC, CG.lookupSCC(AN)); |
| LazyCallGraph::SCC &BC = *CG.lookupSCC(BN); |
| EXPECT_NE(&BC, &AC); |
| EXPECT_EQ(&BC, CG.lookupSCC(CN)); |
| auto J = RC.find(AC); |
| EXPECT_EQ(&AC, &*J); |
| --J; |
| EXPECT_EQ(&BC, &*J); |
| EXPECT_EQ(RC.begin(), J); |
| EXPECT_EQ(J, NewCs.begin()); |
| |
| // Remove the edge from c -> b, which should leave 'b' in the original SCC |
| // and form a new SCC for 'c'. It shouldn't change 'a's SCC. |
| NewCs = RC.switchInternalEdgeToRef(CN, BN); |
| EXPECT_EQ(1, std::distance(NewCs.begin(), NewCs.end())); |
| EXPECT_EQ(3, RC.size()); |
| EXPECT_EQ(&AC, CG.lookupSCC(AN)); |
| EXPECT_EQ(&BC, CG.lookupSCC(BN)); |
| LazyCallGraph::SCC &CC = *CG.lookupSCC(CN); |
| EXPECT_NE(&CC, &AC); |
| EXPECT_NE(&CC, &BC); |
| J = RC.find(AC); |
| EXPECT_EQ(&AC, &*J); |
| --J; |
| EXPECT_EQ(&BC, &*J); |
| --J; |
| EXPECT_EQ(&CC, &*J); |
| EXPECT_EQ(RC.begin(), J); |
| EXPECT_EQ(J, NewCs.begin()); |
| } |
| |
| TEST(LazyCallGraphTest, InternalRefEdgeToCall) { |
| LLVMContext Context; |
| // Basic tests for making a ref edge a call. This hits the basics of the |
| // process only. |
| std::unique_ptr<Module> M = |
| parseAssembly(Context, "define void @a() {\n" |
| "entry:\n" |
| " call void @b()\n" |
| " call void @c()\n" |
| " store void()* @d, void()** undef\n" |
| " ret void\n" |
| "}\n" |
| "define void @b() {\n" |
| "entry:\n" |
| " store void()* @c, void()** undef\n" |
| " call void @d()\n" |
| " ret void\n" |
| "}\n" |
| "define void @c() {\n" |
| "entry:\n" |
| " store void()* @b, void()** undef\n" |
| " call void @d()\n" |
| " ret void\n" |
| "}\n" |
| "define void @d() {\n" |
| "entry:\n" |
| " store void()* @a, void()** undef\n" |
| " ret void\n" |
| "}\n"); |
| LazyCallGraph CG = buildCG(*M); |
| |
| // Force the graph to be fully expanded. |
| CG.buildRefSCCs(); |
| auto I = CG.postorder_ref_scc_begin(); |
| LazyCallGraph::RefSCC &RC = *I++; |
| EXPECT_EQ(CG.postorder_ref_scc_end(), I); |
| |
| LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); |
| LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); |
| LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); |
| LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d")); |
| LazyCallGraph::SCC &AC = *CG.lookupSCC(A); |
| LazyCallGraph::SCC &BC = *CG.lookupSCC(B); |
| LazyCallGraph::SCC &CC = *CG.lookupSCC(C); |
| LazyCallGraph::SCC &DC = *CG.lookupSCC(D); |
| |
| // Check the initial post-order. Note that B and C could be flipped here (and |
| // in our mutation) without changing the nature of this test. |
| ASSERT_EQ(4, RC.size()); |
| EXPECT_EQ(&DC, &RC[0]); |
| EXPECT_EQ(&BC, &RC[1]); |
| EXPECT_EQ(&CC, &RC[2]); |
| EXPECT_EQ(&AC, &RC[3]); |
| |
| // Switch the ref edge from A -> D to a call edge. This should have no |
| // effect as it is already in postorder and no new cycles are formed. |
| EXPECT_FALSE(RC.switchInternalEdgeToCall(A, D)); |
| ASSERT_EQ(4, RC.size()); |
| EXPECT_EQ(&DC, &RC[0]); |
| EXPECT_EQ(&BC, &RC[1]); |
| EXPECT_EQ(&CC, &RC[2]); |
| EXPECT_EQ(&AC, &RC[3]); |
| |
| // Switch B -> C to a call edge. This doesn't form any new cycles but does |
| // require reordering the SCCs. |
| EXPECT_FALSE(RC.switchInternalEdgeToCall(B, C)); |
| ASSERT_EQ(4, RC.size()); |
| EXPECT_EQ(&DC, &RC[0]); |
| EXPECT_EQ(&CC, &RC[1]); |
| EXPECT_EQ(&BC, &RC[2]); |
| EXPECT_EQ(&AC, &RC[3]); |
| |
| // Switch C -> B to a call edge. This forms a cycle and forces merging SCCs. |
| EXPECT_TRUE(RC.switchInternalEdgeToCall(C, B, [&](ArrayRef<LazyCallGraph::SCC *> MergedCs) { |
| ASSERT_EQ(1u, MergedCs.size()); |
| EXPECT_EQ(&CC, MergedCs[0]); |
| })); |
| ASSERT_EQ(3, RC.size()); |
| EXPECT_EQ(&DC, &RC[0]); |
| EXPECT_EQ(&BC, &RC[1]); |
| EXPECT_EQ(&AC, &RC[2]); |
| EXPECT_EQ(2, BC.size()); |
| EXPECT_EQ(&BC, CG.lookupSCC(B)); |
| EXPECT_EQ(&BC, CG.lookupSCC(C)); |
| } |
| |
| TEST(LazyCallGraphTest, InternalRefEdgeToCallNoCycleInterleaved) { |
| LLVMContext Context; |
| // Test for having a post-order prior to changing a ref edge to a call edge |
| // with SCCs connecting to the source and connecting to the target, but not |
| // connecting to both, interleaved between the source and target. This |
| // ensures we correctly partition the range rather than simply moving one or |
| // the other. |
| std::unique_ptr<Module> M = |
| parseAssembly(Context, "define void @a() {\n" |
| "entry:\n" |
| " call void @b1()\n" |
| " call void @c1()\n" |
| " ret void\n" |
| "}\n" |
| "define void @b1() {\n" |
| "entry:\n" |
| " call void @c1()\n" |
| " call void @b2()\n" |
| " ret void\n" |
| "}\n" |
| "define void @c1() {\n" |
| "entry:\n" |
| " call void @b2()\n" |
| " call void @c2()\n" |
| " ret void\n" |
| "}\n" |
| "define void @b2() {\n" |
| "entry:\n" |
| " call void @c2()\n" |
| " call void @b3()\n" |
| " ret void\n" |
| "}\n" |
| "define void @c2() {\n" |
| "entry:\n" |
| " call void @b3()\n" |
| " call void @c3()\n" |
| " ret void\n" |
| "}\n" |
| "define void @b3() {\n" |
| "entry:\n" |
| " call void @c3()\n" |
| " call void @d()\n" |
| " ret void\n" |
| "}\n" |
| "define void @c3() {\n" |
| "entry:\n" |
| " store void()* @b1, void()** undef\n" |
| " call void @d()\n" |
| " ret void\n" |
| "}\n" |
| "define void @d() {\n" |
| "entry:\n" |
| " store void()* @a, void()** undef\n" |
| " ret void\n" |
| "}\n"); |
| LazyCallGraph CG = buildCG(*M); |
| |
| // Force the graph to be fully expanded. |
| CG.buildRefSCCs(); |
| auto I = CG.postorder_ref_scc_begin(); |
| LazyCallGraph::RefSCC &RC = *I++; |
| EXPECT_EQ(CG.postorder_ref_scc_end(), I); |
| |
| LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); |
| LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1")); |
| LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2")); |
| LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3")); |
| LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1")); |
| LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2")); |
| LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3")); |
| LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d")); |
| LazyCallGraph::SCC &AC = *CG.lookupSCC(A); |
| LazyCallGraph::SCC &B1C = *CG.lookupSCC(B1); |
| LazyCallGraph::SCC &B2C = *CG.lookupSCC(B2); |
| LazyCallGraph::SCC &B3C = *CG.lookupSCC(B3); |
| LazyCallGraph::SCC &C1C = *CG.lookupSCC(C1); |
| LazyCallGraph::SCC &C2C = *CG.lookupSCC(C2); |
| LazyCallGraph::SCC &C3C = *CG.lookupSCC(C3); |
| LazyCallGraph::SCC &DC = *CG.lookupSCC(D); |
| |
| // Several call edges are initially present to force a particual post-order. |
| // Remove them now, leaving an interleaved post-order pattern. |
| RC.switchTrivialInternalEdgeToRef(B3, C3); |
| RC.switchTrivialInternalEdgeToRef(C2, B3); |
| RC.switchTrivialInternalEdgeToRef(B2, C2); |
| RC.switchTrivialInternalEdgeToRef(C1, B2); |
| RC.switchTrivialInternalEdgeToRef(B1, C1); |
| |
| // Check the initial post-order. We ensure this order with the extra edges |
| // that are nuked above. |
| ASSERT_EQ(8, RC.size()); |
| EXPECT_EQ(&DC, &RC[0]); |
| EXPECT_EQ(&C3C, &RC[1]); |
| EXPECT_EQ(&B3C, &RC[2]); |
| EXPECT_EQ(&C2C, &RC[3]); |
| EXPECT_EQ(&B2C, &RC[4]); |
| EXPECT_EQ(&C1C, &RC[5]); |
| EXPECT_EQ(&B1C, &RC[6]); |
| EXPECT_EQ(&AC, &RC[7]); |
| |
| // Switch C3 -> B1 to a call edge. This doesn't form any new cycles but does |
| // require reordering the SCCs in the face of tricky internal node |
| // structures. |
| EXPECT_FALSE(RC.switchInternalEdgeToCall(C3, B1)); |
| ASSERT_EQ(8, RC.size()); |
| EXPECT_EQ(&DC, &RC[0]); |
| EXPECT_EQ(&B3C, &RC[1]); |
| EXPECT_EQ(&B2C, &RC[2]); |
| EXPECT_EQ(&B1C, &RC[3]); |
| EXPECT_EQ(&C3C, &RC[4]); |
| EXPECT_EQ(&C2C, &RC[5]); |
| EXPECT_EQ(&C1C, &RC[6]); |
| EXPECT_EQ(&AC, &RC[7]); |
| } |
| |
| TEST(LazyCallGraphTest, InternalRefEdgeToCallBothPartitionAndMerge) { |
| LLVMContext Context; |
| // Test for having a postorder where between the source and target are all |
| // three kinds of other SCCs: |
| // 1) One connected to the target only that have to be shifted below the |
| // source. |
| // 2) One connected to the source only that have to be shifted below the |
| // target. |
| // 3) One connected to both source and target that has to remain and get |
| // merged away. |
| // |
| // To achieve this we construct a heavily connected graph to force |
| // a particular post-order. Then we remove the forcing edges and connect |
| // a cycle. |
| // |
| // Diagram for the graph we want on the left and the graph we use to force |
| // the ordering on the right. Edges ponit down or right. |
| // |
| // A | A | |
| // / \ | / \ | |
| // B E | B \ | |
| // |\ | | |\ | | |
| // | D | | C-D-E | |
| // | \| | | \| | |
| // C F | \ F | |
| // \ / | \ / | |
| // G | G | |
| // |
| // And we form a cycle by connecting F to B. |
| std::unique_ptr<Module> M = |
| parseAssembly(Context, "define void @a() {\n" |
| "entry:\n" |
| " call void @b()\n" |
| " call void @e()\n" |
| " ret void\n" |
| "}\n" |
| "define void @b() {\n" |
| "entry:\n" |
| " call void @c()\n" |
| " call void @d()\n" |
| " ret void\n" |
| "}\n" |
| "define void @c() {\n" |
| "entry:\n" |
| " call void @d()\n" |
| " call void @g()\n" |
| " ret void\n" |
| "}\n" |
| "define void @d() {\n" |
| "entry:\n" |
| " call void @e()\n" |
| " call void @f()\n" |
| " ret void\n" |
| "}\n" |
| "define void @e() {\n" |
| "entry:\n" |
| " call void @f()\n" |
| " ret void\n" |
| "}\n" |
| "define void @f() {\n" |
| "entry:\n" |
| " store void()* @b, void()** undef\n" |
| " call void @g()\n" |
| " ret void\n" |
| "}\n" |
| "define void @g() {\n" |
| "entry:\n" |
| " store void()* @a, void()** undef\n" |
| " ret void\n" |
| "}\n"); |
| LazyCallGraph CG = buildCG(*M); |
| |
| // Force the graph to be fully expanded. |
| CG.buildRefSCCs(); |
| auto I = CG.postorder_ref_scc_begin(); |
| LazyCallGraph::RefSCC &RC = *I++; |
| EXPECT_EQ(CG.postorder_ref_scc_end(), I); |
| |
| LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); |
| LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); |
| LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); |
| LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d")); |
| LazyCallGraph::Node &E = *CG.lookup(lookupFunction(*M, "e")); |
| LazyCallGraph::Node &F = *CG.lookup(lookupFunction(*M, "f")); |
| LazyCallGraph::Node &G = *CG.lookup(lookupFunction(*M, "g")); |
| LazyCallGraph::SCC &AC = *CG.lookupSCC(A); |
| LazyCallGraph::SCC &BC = *CG.lookupSCC(B); |
| LazyCallGraph::SCC &CC = *CG.lookupSCC(C); |
| LazyCallGraph::SCC &DC = *CG.lookupSCC(D); |
| LazyCallGraph::SCC &EC = *CG.lookupSCC(E); |
| LazyCallGraph::SCC &FC = *CG.lookupSCC(F); |
| LazyCallGraph::SCC &GC = *CG.lookupSCC(G); |
| |
| // Remove the extra edges that were used to force a particular post-order. |
| RC.switchTrivialInternalEdgeToRef(C, D); |
| RC.switchTrivialInternalEdgeToRef(D, E); |
| |
| // Check the initial post-order. We ensure this order with the extra edges |
| // that are nuked above. |
| ASSERT_EQ(7, RC.size()); |
| EXPECT_EQ(&GC, &RC[0]); |
| EXPECT_EQ(&FC, &RC[1]); |
| EXPECT_EQ(&EC, &RC[2]); |
| EXPECT_EQ(&DC, &RC[3]); |
| EXPECT_EQ(&CC, &RC[4]); |
| EXPECT_EQ(&BC, &RC[5]); |
| EXPECT_EQ(&AC, &RC[6]); |
| |
| // Switch F -> B to a call edge. This merges B, D, and F into a single SCC, |
| // and has to place the C and E SCCs on either side of it: |
| // A A | |
| // / \ / \ | |
| // B E | E | |
| // |\ | \ / | |
| // | D | -> B | |
| // | \| / \ | |
| // C F C | | |
| // \ / \ / | |
| // G G | |
| EXPECT_TRUE(RC.switchInternalEdgeToCall( |
| F, B, [&](ArrayRef<LazyCallGraph::SCC *> MergedCs) { |
| ASSERT_EQ(2u, MergedCs.size()); |
| EXPECT_EQ(&FC, MergedCs[0]); |
| EXPECT_EQ(&DC, MergedCs[1]); |
| })); |
| EXPECT_EQ(3, BC.size()); |
| |
| // And make sure the postorder was updated. |
| ASSERT_EQ(5, RC.size()); |
| EXPECT_EQ(&GC, &RC[0]); |
| EXPECT_EQ(&CC, &RC[1]); |
| EXPECT_EQ(&BC, &RC[2]); |
| EXPECT_EQ(&EC, &RC[3]); |
| EXPECT_EQ(&AC, &RC[4]); |
| } |
| |
| // Test for IR containing constants using blockaddress constant expressions. |
| // These are truly unique constructs: constant expressions with non-constant |
| // operands. |
| TEST(LazyCallGraphTest, HandleBlockAddress) { |
| LLVMContext Context; |
| std::unique_ptr<Module> M = |
| parseAssembly(Context, "define void @f() {\n" |
| "entry:\n" |
| " ret void\n" |
| "bb:\n" |
| " unreachable\n" |
| "}\n" |
| "define void @g(i8** %ptr) {\n" |
| "entry:\n" |
| " store i8* blockaddress(@f, %bb), i8** %ptr\n" |
| " ret void\n" |
| "}\n"); |
| LazyCallGraph CG = buildCG(*M); |
| |
| CG.buildRefSCCs(); |
| auto I = CG.postorder_ref_scc_begin(); |
| LazyCallGraph::RefSCC &FRC = *I++; |
| LazyCallGraph::RefSCC &GRC = *I++; |
| EXPECT_EQ(CG.postorder_ref_scc_end(), I); |
| |
| LazyCallGraph::Node &F = *CG.lookup(lookupFunction(*M, "f")); |
| LazyCallGraph::Node &G = *CG.lookup(lookupFunction(*M, "g")); |
| EXPECT_EQ(&FRC, CG.lookupRefSCC(F)); |
| EXPECT_EQ(&GRC, CG.lookupRefSCC(G)); |
| EXPECT_TRUE(GRC.isParentOf(FRC)); |
| } |
| |
| TEST(LazyCallGraphTest, ReplaceNodeFunction) { |
| LLVMContext Context; |
| // A graph with several different kinds of edges pointing at a particular |
| // function. |
| std::unique_ptr<Module> M = |
| parseAssembly(Context, |
| "define void @a(i8** %ptr) {\n" |
| "entry:\n" |
| " store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n" |
| " ret void\n" |
| "}\n" |
| "define void @b(i8** %ptr) {\n" |
| "entry:\n" |
| " store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n" |
| " store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n" |
| " call void @d(i8** %ptr)" |
| " ret void\n" |
| "}\n" |
| "define void @c(i8** %ptr) {\n" |
| "entry:\n" |
| " call void @d(i8** %ptr)" |
| " call void @d(i8** %ptr)" |
| " store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n" |
| " ret void\n" |
| "}\n" |
| "define void @d(i8** %ptr) {\n" |
| "entry:\n" |
| " store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" |
| " call void @c(i8** %ptr)" |
| " call void @d(i8** %ptr)" |
| " store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n" |
| " ret void\n" |
| "}\n"); |
| LazyCallGraph CG = buildCG(*M); |
| |
| // Force the graph to be fully expanded. |
| CG.buildRefSCCs(); |
| auto I = CG.postorder_ref_scc_begin(); |
| LazyCallGraph::RefSCC &RC1 = *I++; |
| LazyCallGraph::RefSCC &RC2 = *I++; |
| EXPECT_EQ(CG.postorder_ref_scc_end(), I); |
| |
| ASSERT_EQ(2, RC1.size()); |
| LazyCallGraph::SCC &C1 = RC1[0]; |
| LazyCallGraph::SCC &C2 = RC1[1]; |
| |
| LazyCallGraph::Node &AN = *CG.lookup(lookupFunction(*M, "a")); |
| LazyCallGraph::Node &BN = *CG.lookup(lookupFunction(*M, "b")); |
| LazyCallGraph::Node &CN = *CG.lookup(lookupFunction(*M, "c")); |
| LazyCallGraph::Node &DN = *CG.lookup(lookupFunction(*M, "d")); |
| EXPECT_EQ(&C1, CG.lookupSCC(DN)); |
| EXPECT_EQ(&C1, CG.lookupSCC(CN)); |
| EXPECT_EQ(&C2, CG.lookupSCC(BN)); |
| EXPECT_EQ(&RC1, CG.lookupRefSCC(DN)); |
| EXPECT_EQ(&RC1, CG.lookupRefSCC(CN)); |
| EXPECT_EQ(&RC1, CG.lookupRefSCC(BN)); |
| EXPECT_EQ(&RC2, CG.lookupRefSCC(AN)); |
| |
| // Now we need to build a new function 'e' with the same signature as 'd'. |
| Function &D = DN.getFunction(); |
| Function &E = *Function::Create(D.getFunctionType(), D.getLinkage(), "e"); |
| D.getParent()->getFunctionList().insert(D.getIterator(), &E); |
| |
| // Change each use of 'd' to use 'e'. This is particularly easy as they have |
| // the same type. |
| D.replaceAllUsesWith(&E); |
| |
| // Splice the body of the old function into the new one. |
| E.getBasicBlockList().splice(E.begin(), D.getBasicBlockList()); |
| // And fix up the one argument. |
| D.arg_begin()->replaceAllUsesWith(&*E.arg_begin()); |
| E.arg_begin()->takeName(&*D.arg_begin()); |
| |
| // Now replace the function in the graph. |
| RC1.replaceNodeFunction(DN, E); |
| |
| EXPECT_EQ(&E, &DN.getFunction()); |
| EXPECT_EQ(&DN, &(*CN)[DN].getNode()); |
| EXPECT_EQ(&DN, &(*BN)[DN].getNode()); |
| } |
| |
| TEST(LazyCallGraphTest, RemoveFunctionWithSpurriousRef) { |
| LLVMContext Context; |
| // A graph with a couple of RefSCCs. |
| std::unique_ptr<Module> M = |
| parseAssembly(Context, |
| "define void @a(i8** %ptr) {\n" |
| "entry:\n" |
| " store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n" |
| " ret void\n" |
| "}\n" |
| "define void @b(i8** %ptr) {\n" |
| "entry:\n" |
| " store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" |
| " ret void\n" |
| "}\n" |
| "define void @c(i8** %ptr) {\n" |
| "entry:\n" |
| " call void @d(i8** %ptr)" |
| " ret void\n" |
| "}\n" |
| "define void @d(i8** %ptr) {\n" |
| "entry:\n" |
| " call void @c(i8** %ptr)" |
| " store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" |
| " ret void\n" |
| "}\n" |
| "define void @dead() {\n" |
| "entry:\n" |
| " ret void\n" |
| "}\n"); |
| LazyCallGraph CG = buildCG(*M); |
| |
| // Insert spurious ref edges. |
| LazyCallGraph::Node &AN = CG.get(lookupFunction(*M, "a")); |
| LazyCallGraph::Node &BN = CG.get(lookupFunction(*M, "b")); |
| LazyCallGraph::Node &CN = CG.get(lookupFunction(*M, "c")); |
| LazyCallGraph::Node &DN = CG.get(lookupFunction(*M, "d")); |
| LazyCallGraph::Node &DeadN = CG.get(lookupFunction(*M, "dead")); |
| AN.populate(); |
| BN.populate(); |
| CN.populate(); |
| DN.populate(); |
| DeadN.populate(); |
| CG.insertEdge(AN, DeadN, LazyCallGraph::Edge::Ref); |
| CG.insertEdge(BN, DeadN, LazyCallGraph::Edge::Ref); |
| CG.insertEdge(CN, DeadN, LazyCallGraph::Edge::Ref); |
| CG.insertEdge(DN, DeadN, LazyCallGraph::Edge::Ref); |
| |
| // Force the graph to be fully expanded. |
| CG.buildRefSCCs(); |
| auto I = CG.postorder_ref_scc_begin(); |
| LazyCallGraph::RefSCC &DeadRC = *I++; |
| LazyCallGraph::RefSCC &RC1 = *I++; |
| LazyCallGraph::RefSCC &RC2 = *I++; |
| EXPECT_EQ(CG.postorder_ref_scc_end(), I); |
| |
| ASSERT_EQ(2, RC1.size()); |
| LazyCallGraph::SCC &C1 = RC1[0]; |
| LazyCallGraph::SCC &C2 = RC1[1]; |
| |
| EXPECT_EQ(&DeadRC, CG.lookupRefSCC(DeadN)); |
| EXPECT_EQ(&C1, CG.lookupSCC(DN)); |
| EXPECT_EQ(&C1, CG.lookupSCC(CN)); |
| EXPECT_EQ(&C2, CG.lookupSCC(BN)); |
| EXPECT_EQ(&RC1, CG.lookupRefSCC(DN)); |
| EXPECT_EQ(&RC1, CG.lookupRefSCC(CN)); |
| EXPECT_EQ(&RC1, CG.lookupRefSCC(BN)); |
| EXPECT_EQ(&RC2, CG.lookupRefSCC(AN)); |
| |
| // Now delete 'dead'. There are no uses of this function but there are |
| // spurious references. |
| CG.removeDeadFunction(DeadN.getFunction()); |
| |
| // The only observable change should be that the RefSCC is gone from the |
| // postorder sequence. |
| I = CG.postorder_ref_scc_begin(); |
| EXPECT_EQ(&RC1, &*I++); |
| EXPECT_EQ(&RC2, &*I++); |
| EXPECT_EQ(CG.postorder_ref_scc_end(), I); |
| } |
| } |