blob: f9f3c8f6f2836799b4d3792d672e7a6262a2d56d [file] [log] [blame]
// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "QuadRasterizer.hpp"
#include "Primitive.hpp"
#include "Renderer.hpp"
#include "Pipeline/Constants.hpp"
#include "System/Debug.hpp"
#include "System/Math.hpp"
#include "Vulkan/VkDevice.hpp"
namespace sw {
QuadRasterizer::QuadRasterizer(const PixelProcessor::State &state, const SpirvShader *spirvShader)
: state(state)
, spirvShader{ spirvShader }
{
}
QuadRasterizer::~QuadRasterizer()
{
}
void QuadRasterizer::generate()
{
constants = device + OFFSET(vk::Device, constants);
occlusion = 0;
Do
{
Int yMin = *Pointer<Int>(primitive + OFFSET(Primitive, yMin));
Int yMax = *Pointer<Int>(primitive + OFFSET(Primitive, yMax));
Int cluster2 = cluster + cluster;
yMin += clusterCount * 2 - 2 - cluster2;
yMin &= -clusterCount * 2;
yMin += cluster2;
If(yMin < yMax)
{
rasterize(yMin, yMax);
}
primitive += sizeof(Primitive) * state.multiSampleCount;
count--;
}
Until(count == 0);
if(state.occlusionEnabled)
{
UInt clusterOcclusion = *Pointer<UInt>(data + OFFSET(DrawData, occlusion) + 4 * cluster);
clusterOcclusion += occlusion;
*Pointer<UInt>(data + OFFSET(DrawData, occlusion) + 4 * cluster) = clusterOcclusion;
}
Return();
}
void QuadRasterizer::rasterize(Int &yMin, Int &yMax)
{
Pointer<Byte> cBuffer[MAX_COLOR_BUFFERS];
Pointer<Byte> zBuffer;
Pointer<Byte> sBuffer;
Int clusterCountLog2 = 31 - Ctlz(UInt(clusterCount), false);
for(int index = 0; index < MAX_COLOR_BUFFERS; index++)
{
if(state.colorWriteActive(index))
{
cBuffer[index] = *Pointer<Pointer<Byte>>(data + OFFSET(DrawData, colorBuffer[index])) + yMin * *Pointer<Int>(data + OFFSET(DrawData, colorPitchB[index]));
}
}
if(state.depthTestActive || state.depthBoundsTestActive)
{
zBuffer = *Pointer<Pointer<Byte>>(data + OFFSET(DrawData, depthBuffer)) + yMin * *Pointer<Int>(data + OFFSET(DrawData, depthPitchB));
}
if(state.stencilActive)
{
sBuffer = *Pointer<Pointer<Byte>>(data + OFFSET(DrawData, stencilBuffer)) + yMin * *Pointer<Int>(data + OFFSET(DrawData, stencilPitchB));
}
Int y = yMin;
Do
{
Int x0a = Int(*Pointer<Short>(primitive + OFFSET(Primitive, outline->left) + (y + 0) * sizeof(Primitive::Span)));
Int x0b = Int(*Pointer<Short>(primitive + OFFSET(Primitive, outline->left) + (y + 1) * sizeof(Primitive::Span)));
Int x0 = Min(x0a, x0b);
for(unsigned int q = 1; q < state.multiSampleCount; q++)
{
x0a = Int(*Pointer<Short>(primitive + q * sizeof(Primitive) + OFFSET(Primitive, outline->left) + (y + 0) * sizeof(Primitive::Span)));
x0b = Int(*Pointer<Short>(primitive + q * sizeof(Primitive) + OFFSET(Primitive, outline->left) + (y + 1) * sizeof(Primitive::Span)));
x0 = Min(x0, Min(x0a, x0b));
}
x0 &= 0xFFFFFFFE;
Int x1a = Int(*Pointer<Short>(primitive + OFFSET(Primitive, outline->right) + (y + 0) * sizeof(Primitive::Span)));
Int x1b = Int(*Pointer<Short>(primitive + OFFSET(Primitive, outline->right) + (y + 1) * sizeof(Primitive::Span)));
Int x1 = Max(x1a, x1b);
for(unsigned int q = 1; q < state.multiSampleCount; q++)
{
x1a = Int(*Pointer<Short>(primitive + q * sizeof(Primitive) + OFFSET(Primitive, outline->right) + (y + 0) * sizeof(Primitive::Span)));
x1b = Int(*Pointer<Short>(primitive + q * sizeof(Primitive) + OFFSET(Primitive, outline->right) + (y + 1) * sizeof(Primitive::Span)));
x1 = Max(x1, Max(x1a, x1b));
}
// Compute the y coordinate of each fragment in the SIMD group.
const auto yMorton = SIMD::Float([](int i) { return float(compactEvenBits(i >> 1)); }); // 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3, ...
yFragment = SIMD::Float(Float(y)) + yMorton - SIMD::Float(*Pointer<Float>(primitive + OFFSET(Primitive, y0)));
if(interpolateZ())
{
for(unsigned int q = 0; q < state.multiSampleCount; q++)
{
SIMD::Float y = yFragment;
if(state.enableMultiSampling)
{
y += SIMD::Float(*Pointer<Float>(constants + OFFSET(Constants, SampleLocationsY) + q * sizeof(float)));
}
Dz[q] = SIMD::Float(*Pointer<Float>(primitive + OFFSET(Primitive, z.C))) + y * SIMD::Float(*Pointer<Float>(primitive + OFFSET(Primitive, z.B)));
}
}
If(x0 < x1)
{
if(interpolateW())
{
Dw = SIMD::Float(*Pointer<Float>(primitive + OFFSET(Primitive, w.C))) + yFragment * SIMD::Float(*Pointer<Float>(primitive + OFFSET(Primitive, w.B)));
}
if(spirvShader)
{
int packedInterpolant = 0;
for(int interfaceInterpolant = 0; interfaceInterpolant < MAX_INTERFACE_COMPONENTS; interfaceInterpolant++)
{
if(spirvShader->inputs[interfaceInterpolant].Type != SpirvShader::ATTRIBTYPE_UNUSED)
{
Dv[interfaceInterpolant] = *Pointer<Float>(primitive + OFFSET(Primitive, V[packedInterpolant].C));
if(!spirvShader->inputs[interfaceInterpolant].Flat)
{
Dv[interfaceInterpolant] +=
yFragment * SIMD::Float(*Pointer<Float>(primitive + OFFSET(Primitive, V[packedInterpolant].B)));
}
packedInterpolant++;
}
}
for(unsigned int i = 0; i < state.numClipDistances; i++)
{
DclipDistance[i] = SIMD::Float(*Pointer<Float>(primitive + OFFSET(Primitive, clipDistance[i].C))) +
yFragment * SIMD::Float(*Pointer<Float>(primitive + OFFSET(Primitive, clipDistance[i].B)));
}
for(unsigned int i = 0; i < state.numCullDistances; i++)
{
DcullDistance[i] = SIMD::Float(*Pointer<Float>(primitive + OFFSET(Primitive, cullDistance[i].C))) +
yFragment * SIMD::Float(*Pointer<Float>(primitive + OFFSET(Primitive, cullDistance[i].B)));
}
}
Short4 xLeft[4];
Short4 xRight[4];
for(unsigned int q = 0; q < state.multiSampleCount; q++)
{
xLeft[q] = *Pointer<Short4>(primitive + q * sizeof(Primitive) + OFFSET(Primitive, outline) + y * sizeof(Primitive::Span));
xRight[q] = xLeft[q];
xLeft[q] = Swizzle(xLeft[q], 0x0022) - Short4(1, 2, 1, 2);
xRight[q] = Swizzle(xRight[q], 0x1133) - Short4(0, 1, 0, 1);
}
For(Int x = x0, x < x1, x += 2)
{
Short4 xxxx = Short4(x);
Int cMask[4];
for(unsigned int q = 0; q < state.multiSampleCount; q++)
{
if(state.multiSampleMask & (1 << q))
{
unsigned int i = state.enableMultiSampling ? q : 0;
Short4 mask = CmpGT(xxxx, xLeft[i]) & CmpGT(xRight[i], xxxx);
cMask[q] = SignMask(PackSigned(mask, mask)) & 0x0000000F;
}
}
quad(cBuffer, zBuffer, sBuffer, cMask, x, y);
}
}
for(int index = 0; index < MAX_COLOR_BUFFERS; index++)
{
if(state.colorWriteActive(index))
{
cBuffer[index] += *Pointer<Int>(data + OFFSET(DrawData, colorPitchB[index])) << (1 + clusterCountLog2); // FIXME: Precompute
}
}
if(state.depthTestActive || state.depthBoundsTestActive)
{
zBuffer += *Pointer<Int>(data + OFFSET(DrawData, depthPitchB)) << (1 + clusterCountLog2); // FIXME: Precompute
}
if(state.stencilActive)
{
sBuffer += *Pointer<Int>(data + OFFSET(DrawData, stencilPitchB)) << (1 + clusterCountLog2); // FIXME: Precompute
}
y += 2 * clusterCount;
}
Until(y >= yMax);
}
SIMD::Float QuadRasterizer::interpolate(SIMD::Float &x, SIMD::Float &D, SIMD::Float &rhw, Pointer<Byte> planeEquation, bool flat, bool perspective)
{
if(flat)
{
return D;
}
SIMD::Float interpolant = mulAdd(x, SIMD::Float(*Pointer<Float>(planeEquation + OFFSET(PlaneEquation, A))), D);
if(perspective)
{
interpolant *= rhw;
}
return interpolant;
}
bool QuadRasterizer::interpolateZ() const
{
return state.depthTestActive || (spirvShader && spirvShader->hasBuiltinInput(spv::BuiltInFragCoord));
}
bool QuadRasterizer::interpolateW() const
{
// Note: could optimize cases where there is a fragment shader but it has no
// perspective-correct inputs, but that's vanishingly rare.
return spirvShader != nullptr;
}
} // namespace sw