| //===- subzero/src/IceOperand.h - High-level operands -----------*- C++ -*-===// |
| // |
| // The Subzero Code Generator |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// \brief Declares the Operand class and its target-independent subclasses. |
| /// |
| /// The main classes are Variable, which represents an LLVM variable that is |
| /// either register- or stack-allocated, and the Constant hierarchy, which |
| /// represents integer, floating-point, and/or symbolic constants. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef SUBZERO_SRC_ICEOPERAND_H |
| #define SUBZERO_SRC_ICEOPERAND_H |
| |
| #include "IceCfg.h" |
| #include "IceDefs.h" |
| #include "IceGlobalContext.h" |
| #include "IceStringPool.h" |
| #include "IceTypes.h" |
| |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Format.h" |
| |
| #include <limits> |
| #include <type_traits> |
| |
| namespace Ice { |
| |
| class Operand { |
| Operand() = delete; |
| Operand(const Operand &) = delete; |
| Operand &operator=(const Operand &) = delete; |
| |
| public: |
| static constexpr size_t MaxTargetKinds = 10; |
| enum OperandKind { |
| kConst_Base, |
| kConstInteger32, |
| kConstInteger64, |
| kConstFloat, |
| kConstDouble, |
| kConstRelocatable, |
| kConstUndef, |
| kConst_Target, // leave space for target-specific constant kinds |
| kConst_Max = kConst_Target + MaxTargetKinds, |
| kVariable, |
| kVariable64On32, |
| kVariableVecOn32, |
| kVariableBoolean, |
| kVariable_Target, // leave space for target-specific variable kinds |
| kVariable_Max = kVariable_Target + MaxTargetKinds, |
| // Target-specific operand classes use kTarget as the starting point for |
| // their Kind enum space. Note that the value-spaces are shared across |
| // targets. To avoid confusion over the definition of shared values, an |
| // object specific to one target should never be passed to a different |
| // target. |
| kTarget, |
| kTarget_Max = std::numeric_limits<uint8_t>::max(), |
| }; |
| static_assert(kTarget <= kTarget_Max, "Must not be above max."); |
| OperandKind getKind() const { return Kind; } |
| Type getType() const { return Ty; } |
| |
| /// Every Operand keeps an array of the Variables referenced in the operand. |
| /// This is so that the liveness operations can get quick access to the |
| /// variables of interest, without having to dig so far into the operand. |
| SizeT getNumVars() const { return NumVars; } |
| Variable *getVar(SizeT I) const { |
| assert(I < getNumVars()); |
| return Vars[I]; |
| } |
| virtual void emit(const Cfg *Func) const = 0; |
| |
| /// \name Dumping functions. |
| /// @{ |
| |
| /// The dump(Func,Str) implementation must be sure to handle the situation |
| /// where Func==nullptr. |
| virtual void dump(const Cfg *Func, Ostream &Str) const = 0; |
| void dump(const Cfg *Func) const { |
| if (!BuildDefs::dump()) |
| return; |
| assert(Func); |
| dump(Func, Func->getContext()->getStrDump()); |
| } |
| void dump(Ostream &Str) const { |
| if (BuildDefs::dump()) |
| dump(nullptr, Str); |
| } |
| /// @} |
| |
| virtual ~Operand() = default; |
| |
| virtual Variable *asBoolean() { return nullptr; } |
| |
| virtual SizeT hashValue() const { |
| llvm::report_fatal_error("Tried to hash unsupported operand type : " + |
| std::to_string(Kind)); |
| return 0; |
| } |
| |
| inline void *getExternalData() const { return externalData; } |
| inline void setExternalData(void *data) { externalData = data; } |
| |
| protected: |
| Operand(OperandKind Kind, Type Ty) : Ty(Ty), Kind(Kind) { |
| // It is undefined behavior to have a larger value in the enum |
| assert(Kind <= kTarget_Max); |
| } |
| |
| const Type Ty; |
| const OperandKind Kind; |
| /// Vars and NumVars are initialized by the derived class. |
| SizeT NumVars = 0; |
| Variable **Vars = nullptr; |
| |
| /// External data can be set by an optimizer to compute and retain any |
| /// information related to the current operand. All the memory used to |
| /// store this information must be managed by the optimizer. |
| void *externalData = nullptr; |
| }; |
| |
| template <class StreamType> |
| inline StreamType &operator<<(StreamType &Str, const Operand &Op) { |
| Op.dump(Str); |
| return Str; |
| } |
| |
| /// Constant is the abstract base class for constants. All constants are |
| /// allocated from a global arena and are pooled. |
| class Constant : public Operand { |
| Constant() = delete; |
| Constant(const Constant &) = delete; |
| Constant &operator=(const Constant &) = delete; |
| |
| public: |
| // Declare the lookup counter to take minimal space in a non-DUMP build. |
| using CounterType = |
| std::conditional<BuildDefs::dump(), uint64_t, uint8_t>::type; |
| void emit(const Cfg *Func) const override { emit(Func->getTarget()); } |
| virtual void emit(TargetLowering *Target) const = 0; |
| |
| static bool classof(const Operand *Operand) { |
| OperandKind Kind = Operand->getKind(); |
| return Kind >= kConst_Base && Kind <= kConst_Max; |
| } |
| |
| const GlobalString getLabelName() const { return LabelName; } |
| |
| /// Judge if this given immediate should be randomized or pooled By default |
| /// should return false, only constant integers should truly go through this |
| /// method. |
| virtual bool shouldBeRandomizedOrPooled() const { return false; } |
| |
| bool getShouldBePooled() const { return ShouldBePooled; } |
| |
| // This should be thread-safe because the constant pool lock is acquired |
| // before the method is invoked. |
| void updateLookupCount() { |
| if (!BuildDefs::dump()) |
| return; |
| ++LookupCount; |
| } |
| CounterType getLookupCount() const { return LookupCount; } |
| SizeT hashValue() const override { return 0; } |
| |
| protected: |
| Constant(OperandKind Kind, Type Ty) : Operand(Kind, Ty) { |
| Vars = nullptr; |
| NumVars = 0; |
| } |
| /// Set the ShouldBePooled field to the proper value after the object is fully |
| /// initialized. |
| void initShouldBePooled(); |
| GlobalString LabelName; |
| /// Whether we should pool this constant. Usually Float/Double and pooled |
| /// Integers should be flagged true. Ideally this field would be const, but |
| /// it needs to be initialized only after the subclass is fully constructed. |
| bool ShouldBePooled = false; |
| /// Note: If ShouldBePooled is ever removed from the base class, we will want |
| /// to completely disable LookupCount in a non-DUMP build to save space. |
| CounterType LookupCount = 0; |
| }; |
| |
| /// ConstantPrimitive<> wraps a primitive type. |
| template <typename T, Operand::OperandKind K> |
| class ConstantPrimitive : public Constant { |
| ConstantPrimitive() = delete; |
| ConstantPrimitive(const ConstantPrimitive &) = delete; |
| ConstantPrimitive &operator=(const ConstantPrimitive &) = delete; |
| |
| public: |
| using PrimType = T; |
| |
| static ConstantPrimitive *create(GlobalContext *Ctx, Type Ty, |
| PrimType Value) { |
| auto *Const = |
| new (Ctx->allocate<ConstantPrimitive>()) ConstantPrimitive(Ty, Value); |
| Const->initShouldBePooled(); |
| if (Const->getShouldBePooled()) |
| Const->initName(Ctx); |
| return Const; |
| } |
| PrimType getValue() const { return Value; } |
| using Constant::emit; |
| void emit(TargetLowering *Target) const final; |
| using Constant::dump; |
| void dump(const Cfg *, Ostream &Str) const override { |
| if (BuildDefs::dump()) |
| Str << getValue(); |
| } |
| |
| static bool classof(const Operand *Operand) { |
| return Operand->getKind() == K; |
| } |
| |
| SizeT hashValue() const override { return std::hash<PrimType>()(Value); } |
| |
| virtual bool shouldBeRandomizedOrPooled() const override { return false; } |
| |
| private: |
| ConstantPrimitive(Type Ty, PrimType Value) : Constant(K, Ty), Value(Value) {} |
| |
| void initName(GlobalContext *Ctx) { |
| std::string Buffer; |
| llvm::raw_string_ostream Str(Buffer); |
| constexpr bool IsCompact = !BuildDefs::dump(); |
| if (IsCompact) { |
| switch (getType()) { |
| case IceType_f32: |
| Str << "$F"; |
| break; |
| case IceType_f64: |
| Str << "$D"; |
| break; |
| default: |
| // For constant pooling diversification |
| Str << ".L$" << getType() << "$"; |
| break; |
| } |
| } else { |
| Str << ".L$" << getType() << "$"; |
| } |
| // Print hex characters byte by byte, starting from the most significant |
| // byte. NOTE: This ordering assumes Subzero runs on a little-endian |
| // platform. That means the possibility of different label names depending |
| // on the endian-ness of the platform where Subzero runs. |
| for (unsigned i = 0; i < sizeof(Value); ++i) { |
| constexpr unsigned HexWidthChars = 2; |
| unsigned Offset = sizeof(Value) - 1 - i; |
| Str << llvm::format_hex_no_prefix( |
| *(Offset + (const unsigned char *)&Value), HexWidthChars); |
| } |
| // For a floating-point value in DecorateAsm mode, also append the value in |
| // human-readable sprintf form, changing '+' to 'p' and '-' to 'm' to |
| // maintain valid asm labels. |
| if (BuildDefs::dump() && std::is_floating_point<PrimType>::value && |
| getFlags().getDecorateAsm()) { |
| char Buf[30]; |
| snprintf(Buf, llvm::array_lengthof(Buf), "$%g", (double)Value); |
| for (unsigned i = 0; i < llvm::array_lengthof(Buf) && Buf[i]; ++i) { |
| if (Buf[i] == '-') |
| Buf[i] = 'm'; |
| else if (Buf[i] == '+') |
| Buf[i] = 'p'; |
| } |
| Str << Buf; |
| } |
| LabelName = GlobalString::createWithString(Ctx, Str.str()); |
| } |
| |
| const PrimType Value; |
| }; |
| |
| using ConstantInteger32 = ConstantPrimitive<int32_t, Operand::kConstInteger32>; |
| using ConstantInteger64 = ConstantPrimitive<int64_t, Operand::kConstInteger64>; |
| using ConstantFloat = ConstantPrimitive<float, Operand::kConstFloat>; |
| using ConstantDouble = ConstantPrimitive<double, Operand::kConstDouble>; |
| |
| template <> |
| inline void ConstantInteger32::dump(const Cfg *, Ostream &Str) const { |
| if (!BuildDefs::dump()) |
| return; |
| if (getType() == IceType_i1) |
| Str << (getValue() ? "true" : "false"); |
| else |
| Str << static_cast<int32_t>(getValue()); |
| } |
| |
| // =========== Immediate Randomization and Pooling routines ============== |
| // Specialization of the template member function for ConstantInteger32 |
| // TODO(stichnot): try to move this specialization into a target-specific file. |
| template <> inline bool ConstantInteger32::shouldBeRandomizedOrPooled() const { |
| uint32_t Threshold = getFlags().getRandomizeAndPoolImmediatesThreshold(); |
| if (getFlags().getRandomizeAndPoolImmediatesOption() == RPI_None) |
| return false; |
| if (getType() != IceType_i32 && getType() != IceType_i16 && |
| getType() != IceType_i8) |
| return false; |
| // The Following checks if the signed representation of Value is between |
| // -Threshold/2 and +Threshold/2 |
| bool largerThanThreshold = Threshold / 2 + Value >= Threshold; |
| return largerThanThreshold; |
| } |
| |
| template <> |
| inline void ConstantInteger64::dump(const Cfg *, Ostream &Str) const { |
| if (!BuildDefs::dump()) |
| return; |
| assert(getType() == IceType_i64); |
| Str << static_cast<int64_t>(getValue()); |
| } |
| |
| /// RelocOffset allows symbolic references in ConstantRelocatables' offsets, |
| /// e.g., 8 + LabelOffset, where label offset is the location (code or data) |
| /// of a Label that is only determinable during ELF emission. |
| class RelocOffset final { |
| RelocOffset(const RelocOffset &) = delete; |
| RelocOffset &operator=(const RelocOffset &) = delete; |
| |
| public: |
| template <typename T> static RelocOffset *create(T *AllocOwner) { |
| return new (AllocOwner->template allocate<RelocOffset>()) RelocOffset(); |
| } |
| |
| static RelocOffset *create(GlobalContext *Ctx, RelocOffsetT Value) { |
| return new (Ctx->allocate<RelocOffset>()) RelocOffset(Value); |
| } |
| |
| void setSubtract(bool Value) { Subtract = Value; } |
| bool hasOffset() const { return HasOffset; } |
| |
| RelocOffsetT getOffset() const { |
| assert(HasOffset); |
| return Offset; |
| } |
| |
| void setOffset(const RelocOffsetT Value) { |
| assert(!HasOffset); |
| if (Subtract) { |
| assert(Value != std::numeric_limits<RelocOffsetT>::lowest()); |
| Offset = -Value; |
| } else { |
| Offset = Value; |
| } |
| HasOffset = true; |
| } |
| |
| private: |
| RelocOffset() = default; |
| explicit RelocOffset(RelocOffsetT Offset) { setOffset(Offset); } |
| |
| bool Subtract = false; |
| bool HasOffset = false; |
| RelocOffsetT Offset; |
| }; |
| |
| /// RelocatableTuple bundles the parameters that are used to construct an |
| /// ConstantRelocatable. It is done this way so that ConstantRelocatable can fit |
| /// into the global constant pool template mechanism. |
| class RelocatableTuple { |
| RelocatableTuple() = delete; |
| RelocatableTuple &operator=(const RelocatableTuple &) = delete; |
| |
| public: |
| RelocatableTuple(const RelocOffsetT Offset, |
| const RelocOffsetArray &OffsetExpr, GlobalString Name) |
| : Offset(Offset), OffsetExpr(OffsetExpr), Name(Name) {} |
| |
| RelocatableTuple(const RelocOffsetT Offset, |
| const RelocOffsetArray &OffsetExpr, GlobalString Name, |
| const std::string &EmitString) |
| : Offset(Offset), OffsetExpr(OffsetExpr), Name(Name), |
| EmitString(EmitString) {} |
| |
| RelocatableTuple(const RelocatableTuple &) = default; |
| |
| const RelocOffsetT Offset; |
| const RelocOffsetArray OffsetExpr; |
| const GlobalString Name; |
| const std::string EmitString; |
| }; |
| |
| bool operator==(const RelocatableTuple &A, const RelocatableTuple &B); |
| |
| /// ConstantRelocatable represents a symbolic constant combined with a fixed |
| /// offset. |
| class ConstantRelocatable : public Constant { |
| ConstantRelocatable() = delete; |
| ConstantRelocatable(const ConstantRelocatable &) = delete; |
| ConstantRelocatable &operator=(const ConstantRelocatable &) = delete; |
| |
| public: |
| template <typename T> |
| static ConstantRelocatable *create(T *AllocOwner, Type Ty, |
| const RelocatableTuple &Tuple) { |
| return new (AllocOwner->template allocate<ConstantRelocatable>()) |
| ConstantRelocatable(Ty, Tuple.Offset, Tuple.OffsetExpr, Tuple.Name, |
| Tuple.EmitString); |
| } |
| |
| RelocOffsetT getOffset() const { |
| RelocOffsetT Ret = Offset; |
| for (const auto *const OffsetReloc : OffsetExpr) { |
| Ret += OffsetReloc->getOffset(); |
| } |
| return Ret; |
| } |
| |
| const std::string &getEmitString() const { return EmitString; } |
| |
| GlobalString getName() const { return Name; } |
| using Constant::emit; |
| void emit(TargetLowering *Target) const final; |
| void emitWithoutPrefix(const TargetLowering *Target, |
| const char *Suffix = "") const; |
| using Constant::dump; |
| void dump(const Cfg *Func, Ostream &Str) const override; |
| |
| static bool classof(const Operand *Operand) { |
| OperandKind Kind = Operand->getKind(); |
| return Kind == kConstRelocatable; |
| } |
| |
| private: |
| ConstantRelocatable(Type Ty, const RelocOffsetT Offset, |
| const RelocOffsetArray &OffsetExpr, GlobalString Name, |
| const std::string &EmitString) |
| : Constant(kConstRelocatable, Ty), Offset(Offset), OffsetExpr(OffsetExpr), |
| Name(Name), EmitString(EmitString) {} |
| |
| const RelocOffsetT Offset; /// fixed, known offset to add |
| const RelocOffsetArray OffsetExpr; /// fixed, unknown offset to add |
| const GlobalString Name; /// optional for debug/dump |
| const std::string EmitString; /// optional for textual emission |
| }; |
| |
| /// ConstantUndef represents an unspecified bit pattern. Although it is legal to |
| /// lower ConstantUndef to any value, backends should try to make code |
| /// generation deterministic by lowering ConstantUndefs to 0. |
| class ConstantUndef : public Constant { |
| ConstantUndef() = delete; |
| ConstantUndef(const ConstantUndef &) = delete; |
| ConstantUndef &operator=(const ConstantUndef &) = delete; |
| |
| public: |
| static ConstantUndef *create(GlobalContext *Ctx, Type Ty) { |
| return new (Ctx->allocate<ConstantUndef>()) ConstantUndef(Ty); |
| } |
| |
| using Constant::emit; |
| void emit(TargetLowering *Target) const final; |
| using Constant::dump; |
| void dump(const Cfg *, Ostream &Str) const override { |
| if (BuildDefs::dump()) |
| Str << "undef"; |
| } |
| |
| static bool classof(const Operand *Operand) { |
| return Operand->getKind() == kConstUndef; |
| } |
| |
| private: |
| ConstantUndef(Type Ty) : Constant(kConstUndef, Ty) {} |
| }; |
| |
| /// RegNumT is for holding target-specific register numbers, plus the sentinel |
| /// value if no register is assigned. Its public ctor allows direct use of enum |
| /// values, such as RegNumT(Reg_eax), but not things like RegNumT(Reg_eax+1). |
| /// This is to try to prevent inappropriate assumptions about enum ordering. If |
| /// needed, the fromInt() method can be used, such as when a RegNumT is based |
| /// on a bitvector index. |
| class RegNumT { |
| public: |
| using BaseType = uint32_t; |
| RegNumT() = default; |
| RegNumT(const RegNumT &) = default; |
| template <typename AnyEnum> |
| RegNumT(AnyEnum Value, |
| typename std::enable_if<std::is_enum<AnyEnum>::value, int>::type = 0) |
| : Value(Value) { |
| validate(Value); |
| } |
| RegNumT &operator=(const RegNumT &) = default; |
| operator unsigned() const { return Value; } |
| /// Asserts that the register is valid, i.e. not NoRegisterValue. Note that |
| /// the ctor already does the target-specific limit check. |
| void assertIsValid() const { assert(Value != NoRegisterValue); } |
| static RegNumT fromInt(BaseType Value) { return RegNumT(Value); } |
| /// Marks cases that inappropriately add/subtract RegNumT values, and |
| /// therefore need to be fixed because they make assumptions about register |
| /// enum value ordering. TODO(stichnot): Remove fixme() as soon as all |
| /// current uses are fixed/removed. |
| static RegNumT fixme(BaseType Value) { return RegNumT(Value); } |
| /// The target's staticInit() method should call setLimit() to register the |
| /// upper bound of allowable values. |
| static void setLimit(BaseType Value) { |
| // Make sure it's only called once. |
| assert(Limit == 0); |
| assert(Value != 0); |
| Limit = Value; |
| } |
| // Define NoRegisterValue as an enum value so that it can be used as an |
| // argument for the public ctor if desired. |
| enum : BaseType { NoRegisterValue = std::numeric_limits<BaseType>::max() }; |
| |
| bool hasValue() const { return Value != NoRegisterValue; } |
| bool hasNoValue() const { return !hasValue(); } |
| |
| private: |
| BaseType Value = NoRegisterValue; |
| static BaseType Limit; |
| /// Private ctor called only by fromInt() and fixme(). |
| RegNumT(BaseType Value) : Value(Value) { validate(Value); } |
| /// The ctor calls this to validate against the target-supplied limit. |
| static void validate(BaseType Value) { |
| (void)Value; |
| assert(Value == NoRegisterValue || Value < Limit); |
| } |
| /// Disallow operators that inappropriately make assumptions about register |
| /// enum value ordering. |
| bool operator<(const RegNumT &) = delete; |
| bool operator<=(const RegNumT &) = delete; |
| bool operator>(const RegNumT &) = delete; |
| bool operator>=(const RegNumT &) = delete; |
| }; |
| |
| /// RegNumBVIter wraps SmallBitVector so that instead of this pattern: |
| /// |
| /// for (int i = V.find_first(); i != -1; i = V.find_next(i)) { |
| /// RegNumT RegNum = RegNumT::fromInt(i); |
| /// ... |
| /// } |
| /// |
| /// this cleaner pattern can be used: |
| /// |
| /// for (RegNumT RegNum : RegNumBVIter(V)) { |
| /// ... |
| /// } |
| template <class B> class RegNumBVIterImpl { |
| using T = B; |
| static constexpr int Sentinel = -1; |
| RegNumBVIterImpl() = delete; |
| |
| public: |
| class Iterator { |
| Iterator() = delete; |
| Iterator &operator=(const Iterator &) = delete; |
| |
| public: |
| explicit Iterator(const T &V) : V(V), Current(V.find_first()) {} |
| Iterator(const T &V, int Value) : V(V), Current(Value) {} |
| Iterator(const Iterator &) = default; |
| RegNumT operator*() { |
| assert(Current != Sentinel); |
| return RegNumT::fromInt(Current); |
| } |
| Iterator &operator++() { |
| assert(Current != Sentinel); |
| Current = V.find_next(Current); |
| return *this; |
| } |
| bool operator!=(Iterator &Other) { return Current != Other.Current; } |
| |
| private: |
| const T &V; |
| int Current; |
| }; |
| |
| RegNumBVIterImpl(const RegNumBVIterImpl &) = default; |
| RegNumBVIterImpl &operator=(const RegNumBVIterImpl &) = delete; |
| explicit RegNumBVIterImpl(const T &V) : V(V) {} |
| Iterator begin() { return Iterator(V); } |
| Iterator end() { return Iterator(V, Sentinel); } |
| |
| private: |
| const T &V; |
| }; |
| |
| template <class B> RegNumBVIterImpl<B> RegNumBVIter(const B &BV) { |
| return RegNumBVIterImpl<B>(BV); |
| } |
| |
| /// RegWeight is a wrapper for a uint32_t weight value, with a special value |
| /// that represents infinite weight, and an addWeight() method that ensures that |
| /// W+infinity=infinity. |
| class RegWeight { |
| public: |
| using BaseType = uint32_t; |
| RegWeight() = default; |
| explicit RegWeight(BaseType Weight) : Weight(Weight) {} |
| RegWeight(const RegWeight &) = default; |
| RegWeight &operator=(const RegWeight &) = default; |
| constexpr static BaseType Inf = ~0; /// Force regalloc to give a register |
| constexpr static BaseType Zero = 0; /// Force regalloc NOT to give a register |
| constexpr static BaseType Max = Inf - 1; /// Max natural weight. |
| void addWeight(BaseType Delta) { |
| if (Delta == Inf) |
| Weight = Inf; |
| else if (Weight != Inf) |
| if (Utils::add_overflow(Weight, Delta, &Weight) || Weight == Inf) |
| Weight = Max; |
| } |
| void addWeight(const RegWeight &Other) { addWeight(Other.Weight); } |
| void setWeight(BaseType Val) { Weight = Val; } |
| BaseType getWeight() const { return Weight; } |
| |
| private: |
| BaseType Weight = 0; |
| }; |
| Ostream &operator<<(Ostream &Str, const RegWeight &W); |
| bool operator<(const RegWeight &A, const RegWeight &B); |
| bool operator<=(const RegWeight &A, const RegWeight &B); |
| bool operator==(const RegWeight &A, const RegWeight &B); |
| |
| /// LiveRange is a set of instruction number intervals representing a variable's |
| /// live range. Generally there is one interval per basic block where the |
| /// variable is live, but adjacent intervals get coalesced into a single |
| /// interval. |
| class LiveRange { |
| public: |
| using RangeElementType = std::pair<InstNumberT, InstNumberT>; |
| /// RangeType is arena-allocated from the Cfg's allocator. |
| using RangeType = CfgVector<RangeElementType>; |
| LiveRange() = default; |
| /// Special constructor for building a kill set. The advantage is that we can |
| /// reserve the right amount of space in advance. |
| explicit LiveRange(const CfgVector<InstNumberT> &Kills) { |
| Range.reserve(Kills.size()); |
| for (InstNumberT I : Kills) |
| addSegment(I, I); |
| } |
| LiveRange(const LiveRange &) = default; |
| LiveRange &operator=(const LiveRange &) = default; |
| |
| void reset() { |
| Range.clear(); |
| untrim(); |
| } |
| void addSegment(InstNumberT Start, InstNumberT End, CfgNode *Node = nullptr); |
| void addSegment(RangeElementType Segment, CfgNode *Node = nullptr) { |
| addSegment(Segment.first, Segment.second, Node); |
| } |
| |
| bool endsBefore(const LiveRange &Other) const; |
| bool overlaps(const LiveRange &Other, bool UseTrimmed = false) const; |
| bool overlapsInst(InstNumberT OtherBegin, bool UseTrimmed = false) const; |
| bool containsValue(InstNumberT Value, bool IsDest) const; |
| bool isEmpty() const { return Range.empty(); } |
| InstNumberT getStart() const { |
| return Range.empty() ? -1 : Range.begin()->first; |
| } |
| InstNumberT getEnd() const { |
| return Range.empty() ? -1 : Range.rbegin()->second; |
| } |
| |
| void untrim() { TrimmedBegin = Range.begin(); } |
| void trim(InstNumberT Lower); |
| |
| void dump(Ostream &Str) const; |
| |
| SizeT getNumSegments() const { return Range.size(); } |
| |
| const RangeType &getSegments() const { return Range; } |
| CfgNode *getNodeForSegment(InstNumberT Begin) { |
| auto Iter = NodeMap.find(Begin); |
| assert(Iter != NodeMap.end()); |
| return Iter->second; |
| } |
| |
| private: |
| RangeType Range; |
| CfgUnorderedMap<InstNumberT, CfgNode *> NodeMap; |
| /// TrimmedBegin is an optimization for the overlaps() computation. Since the |
| /// linear-scan algorithm always calls it as overlaps(Cur) and Cur advances |
| /// monotonically according to live range start, we can optimize overlaps() by |
| /// ignoring all segments that end before the start of Cur's range. The |
| /// linear-scan code enables this by calling trim() on the ranges of interest |
| /// as Cur advances. Note that linear-scan also has to initialize TrimmedBegin |
| /// at the beginning by calling untrim(). |
| RangeType::const_iterator TrimmedBegin; |
| }; |
| |
| Ostream &operator<<(Ostream &Str, const LiveRange &L); |
| |
| /// Variable represents an operand that is register-allocated or |
| /// stack-allocated. If it is register-allocated, it will ultimately have a |
| /// valid RegNum field. |
| class Variable : public Operand { |
| Variable() = delete; |
| Variable(const Variable &) = delete; |
| Variable &operator=(const Variable &) = delete; |
| |
| enum RegRequirement : uint8_t { |
| RR_MayHaveRegister, |
| RR_MustHaveRegister, |
| RR_MustNotHaveRegister, |
| }; |
| |
| public: |
| static Variable *create(Cfg *Func, Type Ty, SizeT Index) { |
| return new (Func->allocate<Variable>()) |
| Variable(Func, kVariable, Ty, Index); |
| } |
| |
| SizeT getIndex() const { return Number; } |
| std::string getName() const { |
| if (Name.hasStdString()) |
| return Name.toString(); |
| return "__" + std::to_string(getIndex()); |
| } |
| virtual void setName(const Cfg *Func, const std::string &NewName) { |
| if (NewName.empty()) |
| return; |
| Name = VariableString::createWithString(Func, NewName); |
| } |
| |
| bool getIsArg() const { return IsArgument; } |
| virtual void setIsArg(bool Val = true) { IsArgument = Val; } |
| bool getIsImplicitArg() const { return IsImplicitArgument; } |
| void setIsImplicitArg(bool Val = true) { IsImplicitArgument = Val; } |
| |
| void setIgnoreLiveness() { IgnoreLiveness = true; } |
| bool getIgnoreLiveness() const { |
| return IgnoreLiveness || IsRematerializable; |
| } |
| |
| /// Returns true if the variable either has a definite stack offset, or has |
| /// the UndeterminedStackOffset such that it is guaranteed to have a definite |
| /// stack offset at emission time. |
| bool hasStackOffset() const { return StackOffset != InvalidStackOffset; } |
| /// Returns true if the variable has a stack offset that is known at this |
| /// time. |
| bool hasKnownStackOffset() const { |
| return StackOffset != InvalidStackOffset && |
| StackOffset != UndeterminedStackOffset; |
| } |
| int32_t getStackOffset() const { |
| assert(hasKnownStackOffset()); |
| return StackOffset; |
| } |
| void setStackOffset(int32_t Offset) { StackOffset = Offset; } |
| /// Set a "placeholder" stack offset before its actual offset has been |
| /// determined. |
| void setHasStackOffset() { |
| if (!hasStackOffset()) |
| StackOffset = UndeterminedStackOffset; |
| } |
| /// Returns the variable's stack offset in symbolic form, to improve |
| /// readability in DecorateAsm mode. |
| std::string getSymbolicStackOffset() const { |
| if (!BuildDefs::dump()) |
| return ""; |
| return ".L$lv$" + getName(); |
| } |
| |
| bool hasReg() const { return getRegNum().hasValue(); } |
| RegNumT getRegNum() const { return RegNum; } |
| void setRegNum(RegNumT NewRegNum) { |
| // Regnum shouldn't be set more than once. |
| assert(!hasReg() || RegNum == NewRegNum); |
| RegNum = NewRegNum; |
| } |
| bool hasRegTmp() const { return getRegNumTmp().hasValue(); } |
| RegNumT getRegNumTmp() const { return RegNumTmp; } |
| void setRegNumTmp(RegNumT NewRegNum) { RegNumTmp = NewRegNum; } |
| |
| RegWeight getWeight(const Cfg *Func) const; |
| |
| void setMustHaveReg() { RegRequirement = RR_MustHaveRegister; } |
| bool mustHaveReg() const { return RegRequirement == RR_MustHaveRegister; } |
| void setMustNotHaveReg() { RegRequirement = RR_MustNotHaveRegister; } |
| bool mustNotHaveReg() const { |
| return RegRequirement == RR_MustNotHaveRegister; |
| } |
| bool mayHaveReg() const { return RegRequirement == RR_MayHaveRegister; } |
| void setRematerializable(RegNumT NewRegNum, int32_t NewOffset) { |
| IsRematerializable = true; |
| setRegNum(NewRegNum); |
| setStackOffset(NewOffset); |
| setMustHaveReg(); |
| } |
| bool isRematerializable() const { return IsRematerializable; } |
| |
| void setRegClass(uint8_t RC) { RegisterClass = static_cast<RegClass>(RC); } |
| RegClass getRegClass() const { return RegisterClass; } |
| |
| LiveRange &getLiveRange() { return Live; } |
| const LiveRange &getLiveRange() const { return Live; } |
| void setLiveRange(const LiveRange &Range) { Live = Range; } |
| void resetLiveRange() { Live.reset(); } |
| void addLiveRange(InstNumberT Start, InstNumberT End, |
| CfgNode *Node = nullptr) { |
| assert(!getIgnoreLiveness()); |
| Live.addSegment(Start, End, Node); |
| } |
| void trimLiveRange(InstNumberT Start) { Live.trim(Start); } |
| void untrimLiveRange() { Live.untrim(); } |
| bool rangeEndsBefore(const Variable *Other) const { |
| return Live.endsBefore(Other->Live); |
| } |
| bool rangeOverlaps(const Variable *Other) const { |
| constexpr bool UseTrimmed = true; |
| return Live.overlaps(Other->Live, UseTrimmed); |
| } |
| bool rangeOverlapsStart(const Variable *Other) const { |
| constexpr bool UseTrimmed = true; |
| return Live.overlapsInst(Other->Live.getStart(), UseTrimmed); |
| } |
| |
| /// Creates a temporary copy of the variable with a different type. Used |
| /// primarily for syntactic correctness of textual assembly emission. Note |
| /// that only basic information is copied, in particular not IsArgument, |
| /// IsImplicitArgument, IgnoreLiveness, RegNumTmp, Live, LoVar, HiVar, |
| /// VarsReal. If NewRegNum.hasValue(), then that register assignment is made |
| /// instead of copying the existing assignment. |
| const Variable *asType(const Cfg *Func, Type Ty, RegNumT NewRegNum) const; |
| |
| void emit(const Cfg *Func) const override; |
| using Operand::dump; |
| void dump(const Cfg *Func, Ostream &Str) const override; |
| |
| /// Return reg num of base register, if different from stack/frame register. |
| virtual RegNumT getBaseRegNum() const { return RegNumT(); } |
| |
| /// Access the LinkedTo field. |
| void setLinkedTo(Variable *Var) { LinkedTo = Var; } |
| Variable *getLinkedTo() const { return LinkedTo; } |
| /// Follow the LinkedTo chain up to the furthest ancestor. |
| Variable *getLinkedToRoot() const { |
| Variable *Root = LinkedTo; |
| if (Root == nullptr) |
| return nullptr; |
| while (Root->LinkedTo != nullptr) |
| Root = Root->LinkedTo; |
| return Root; |
| } |
| /// Follow the LinkedTo chain up to the furthest stack-allocated ancestor. |
| /// This is only certain to be accurate after register allocation and stack |
| /// slot assignment have completed. |
| Variable *getLinkedToStackRoot() const { |
| Variable *FurthestStackVar = nullptr; |
| for (Variable *Root = LinkedTo; Root != nullptr; Root = Root->LinkedTo) { |
| if (!Root->hasReg() && Root->hasStackOffset()) { |
| FurthestStackVar = Root; |
| } |
| } |
| return FurthestStackVar; |
| } |
| |
| static bool classof(const Operand *Operand) { |
| OperandKind Kind = Operand->getKind(); |
| return Kind >= kVariable && Kind <= kVariable_Max; |
| } |
| |
| SizeT hashValue() const override { return std::hash<SizeT>()(getIndex()); } |
| |
| inline void *getExternalData() const { return externalData; } |
| inline void setExternalData(void *data) { externalData = data; } |
| |
| protected: |
| Variable(const Cfg *Func, OperandKind K, Type Ty, SizeT Index) |
| : Operand(K, Ty), Number(Index), |
| Name(VariableString::createWithoutString(Func)), |
| RegisterClass(static_cast<RegClass>(Ty)) { |
| Vars = VarsReal; |
| Vars[0] = this; |
| NumVars = 1; |
| } |
| /// Number is unique across all variables, and is used as a (bit)vector index |
| /// for liveness analysis. |
| const SizeT Number; |
| VariableString Name; |
| bool IsArgument = false; |
| bool IsImplicitArgument = false; |
| /// IgnoreLiveness means that the variable should be ignored when constructing |
| /// and validating live ranges. This is usually reserved for the stack |
| /// pointer and other physical registers specifically referenced by name. |
| bool IgnoreLiveness = false; |
| // If IsRematerializable, RegNum keeps track of which register (stack or frame |
| // pointer), and StackOffset is the known offset from that register. |
| bool IsRematerializable = false; |
| RegRequirement RegRequirement = RR_MayHaveRegister; |
| RegClass RegisterClass; |
| /// RegNum is the allocated register, (as long as RegNum.hasValue() is true). |
| RegNumT RegNum; |
| /// RegNumTmp is the tentative assignment during register allocation. |
| RegNumT RegNumTmp; |
| static constexpr int32_t InvalidStackOffset = |
| std::numeric_limits<int32_t>::min(); |
| static constexpr int32_t UndeterminedStackOffset = |
| 1 + std::numeric_limits<int32_t>::min(); |
| /// StackOffset is the canonical location on stack (only if |
| /// RegNum.hasNoValue() || IsArgument). |
| int32_t StackOffset = InvalidStackOffset; |
| LiveRange Live; |
| /// VarsReal (and Operand::Vars) are set up such that Vars[0] == this. |
| Variable *VarsReal[1]; |
| /// This Variable may be "linked" to another Variable, such that if neither |
| /// Variable gets a register, they are guaranteed to share a stack location. |
| Variable *LinkedTo = nullptr; |
| /// External data can be set by an optimizer to compute and retain any |
| /// information related to the current variable. All the memory used to |
| /// store this information must be managed by the optimizer. |
| void *externalData = nullptr; |
| }; |
| |
| // Variable64On32 represents a 64-bit variable on a 32-bit architecture. In |
| // this situation the variable must be split into a low and a high word. |
| class Variable64On32 : public Variable { |
| Variable64On32() = delete; |
| Variable64On32(const Variable64On32 &) = delete; |
| Variable64On32 &operator=(const Variable64On32 &) = delete; |
| |
| public: |
| static Variable64On32 *create(Cfg *Func, Type Ty, SizeT Index) { |
| return new (Func->allocate<Variable64On32>()) |
| Variable64On32(Func, kVariable64On32, Ty, Index); |
| } |
| |
| void setName(const Cfg *Func, const std::string &NewName) override { |
| Variable::setName(Func, NewName); |
| if (LoVar && HiVar) { |
| LoVar->setName(Func, getName() + "__lo"); |
| HiVar->setName(Func, getName() + "__hi"); |
| } |
| } |
| |
| void setIsArg(bool Val = true) override { |
| Variable::setIsArg(Val); |
| if (LoVar && HiVar) { |
| LoVar->setIsArg(Val); |
| HiVar->setIsArg(Val); |
| } |
| } |
| |
| Variable *getLo() const { |
| assert(LoVar != nullptr); |
| return LoVar; |
| } |
| Variable *getHi() const { |
| assert(HiVar != nullptr); |
| return HiVar; |
| } |
| |
| void initHiLo(Cfg *Func) { |
| assert(LoVar == nullptr); |
| assert(HiVar == nullptr); |
| LoVar = Func->makeVariable(IceType_i32); |
| HiVar = Func->makeVariable(IceType_i32); |
| LoVar->setIsArg(getIsArg()); |
| HiVar->setIsArg(getIsArg()); |
| if (BuildDefs::dump()) { |
| LoVar->setName(Func, getName() + "__lo"); |
| HiVar->setName(Func, getName() + "__hi"); |
| } |
| } |
| |
| static bool classof(const Operand *Operand) { |
| OperandKind Kind = Operand->getKind(); |
| return Kind == kVariable64On32; |
| } |
| |
| protected: |
| Variable64On32(const Cfg *Func, OperandKind K, Type Ty, SizeT Index) |
| : Variable(Func, K, Ty, Index) { |
| assert(typeWidthInBytes(Ty) == 8); |
| } |
| |
| Variable *LoVar = nullptr; |
| Variable *HiVar = nullptr; |
| }; |
| |
| // VariableVecOn32 represents a 128-bit vector variable on a 32-bit |
| // architecture. In this case the variable must be split into 4 containers. |
| class VariableVecOn32 : public Variable { |
| VariableVecOn32() = delete; |
| VariableVecOn32(const VariableVecOn32 &) = delete; |
| VariableVecOn32 &operator=(const VariableVecOn32 &) = delete; |
| |
| public: |
| static VariableVecOn32 *create(Cfg *Func, Type Ty, SizeT Index) { |
| return new (Func->allocate<VariableVecOn32>()) |
| VariableVecOn32(Func, kVariableVecOn32, Ty, Index); |
| } |
| |
| void setName(const Cfg *Func, const std::string &NewName) override { |
| Variable::setName(Func, NewName); |
| if (!Containers.empty()) { |
| for (SizeT i = 0; i < ContainersPerVector; ++i) { |
| Containers[i]->setName(Func, getName() + "__cont" + std::to_string(i)); |
| } |
| } |
| } |
| |
| void setIsArg(bool Val = true) override { |
| Variable::setIsArg(Val); |
| for (Variable *Var : Containers) { |
| Var->setIsArg(getIsArg()); |
| } |
| } |
| |
| const VarList &getContainers() const { return Containers; } |
| |
| void initVecElement(Cfg *Func) { |
| for (SizeT i = 0; i < ContainersPerVector; ++i) { |
| Variable *Var = Func->makeVariable(IceType_i32); |
| Var->setIsArg(getIsArg()); |
| if (BuildDefs::dump()) { |
| Var->setName(Func, getName() + "__cont" + std::to_string(i)); |
| } |
| Containers.push_back(Var); |
| } |
| } |
| |
| static bool classof(const Operand *Operand) { |
| OperandKind Kind = Operand->getKind(); |
| return Kind == kVariableVecOn32; |
| } |
| |
| // A 128-bit vector value is mapped onto 4 32-bit register values. |
| static constexpr SizeT ContainersPerVector = 4; |
| |
| protected: |
| VariableVecOn32(const Cfg *Func, OperandKind K, Type Ty, SizeT Index) |
| : Variable(Func, K, Ty, Index) { |
| assert(typeWidthInBytes(Ty) == |
| ContainersPerVector * typeWidthInBytes(IceType_i32)); |
| } |
| |
| VarList Containers; |
| }; |
| |
| enum MetadataKind { |
| VMK_Uses, /// Track only uses, not defs |
| VMK_SingleDefs, /// Track uses+defs, but only record single def |
| VMK_All /// Track uses+defs, including full def list |
| }; |
| using InstDefList = CfgVector<const Inst *>; |
| |
| /// VariableTracking tracks the metadata for a single variable. It is |
| /// only meant to be used internally by VariablesMetadata. |
| class VariableTracking { |
| public: |
| enum MultiDefState { |
| // TODO(stichnot): Consider using just a simple counter. |
| MDS_Unknown, |
| MDS_SingleDef, |
| MDS_MultiDefSingleBlock, |
| MDS_MultiDefMultiBlock |
| }; |
| enum MultiBlockState { |
| MBS_Unknown, // Not yet initialized, so be conservative |
| MBS_NoUses, // Known to have no uses |
| MBS_SingleBlock, // All uses in are in a single block |
| MBS_MultiBlock // Several uses across several blocks |
| }; |
| VariableTracking() = default; |
| VariableTracking(const VariableTracking &) = default; |
| VariableTracking &operator=(const VariableTracking &) = default; |
| VariableTracking(MultiBlockState MultiBlock) : MultiBlock(MultiBlock) {} |
| MultiDefState getMultiDef() const { return MultiDef; } |
| MultiBlockState getMultiBlock() const { return MultiBlock; } |
| const Inst *getFirstDefinitionSingleBlock() const; |
| const Inst *getSingleDefinition() const; |
| const Inst *getFirstDefinition() const; |
| const InstDefList &getLatterDefinitions() const { return Definitions; } |
| CfgNode *getNode() const { return SingleUseNode; } |
| RegWeight getUseWeight() const { return UseWeight; } |
| void markUse(MetadataKind TrackingKind, const Inst *Instr, CfgNode *Node, |
| bool IsImplicit); |
| void markDef(MetadataKind TrackingKind, const Inst *Instr, CfgNode *Node); |
| |
| private: |
| MultiDefState MultiDef = MDS_Unknown; |
| MultiBlockState MultiBlock = MBS_Unknown; |
| CfgNode *SingleUseNode = nullptr; |
| CfgNode *SingleDefNode = nullptr; |
| /// All definitions of the variable are collected in Definitions[] (except for |
| /// the earliest definition), in increasing order of instruction number. |
| InstDefList Definitions; /// Only used if Kind==VMK_All |
| const Inst *FirstOrSingleDefinition = nullptr; |
| RegWeight UseWeight; |
| }; |
| |
| /// VariablesMetadata analyzes and summarizes the metadata for the complete set |
| /// of Variables. |
| class VariablesMetadata { |
| VariablesMetadata() = delete; |
| VariablesMetadata(const VariablesMetadata &) = delete; |
| VariablesMetadata &operator=(const VariablesMetadata &) = delete; |
| |
| public: |
| explicit VariablesMetadata(const Cfg *Func) : Func(Func) {} |
| /// Initialize the state by traversing all instructions/variables in the CFG. |
| void init(MetadataKind TrackingKind); |
| /// Add a single node. This is called by init(), and can be called |
| /// incrementally from elsewhere, e.g. after edge-splitting. |
| void addNode(CfgNode *Node); |
| MetadataKind getKind() const { return Kind; } |
| /// Returns whether the given Variable is tracked in this object. It should |
| /// only return false if changes were made to the CFG after running init(), in |
| /// which case the state is stale and the results shouldn't be trusted (but it |
| /// may be OK e.g. for dumping). |
| bool isTracked(const Variable *Var) const { |
| return Var->getIndex() < Metadata.size(); |
| } |
| |
| /// Returns whether the given Variable has multiple definitions. |
| bool isMultiDef(const Variable *Var) const; |
| /// Returns the first definition instruction of the given Variable. This is |
| /// only valid for variables whose definitions are all within the same block, |
| /// e.g. T after the lowered sequence "T=B; T+=C; A=T", for which |
| /// getFirstDefinitionSingleBlock(T) would return the "T=B" instruction. For |
| /// variables with definitions span multiple blocks, nullptr is returned. |
| const Inst *getFirstDefinitionSingleBlock(const Variable *Var) const; |
| /// Returns the definition instruction of the given Variable, when the |
| /// variable has exactly one definition. Otherwise, nullptr is returned. |
| const Inst *getSingleDefinition(const Variable *Var) const; |
| /// getFirstDefinition() and getLatterDefinitions() are used together to |
| /// return the complete set of instructions that define the given Variable, |
| /// regardless of whether the definitions are within the same block (in |
| /// contrast to getFirstDefinitionSingleBlock). |
| const Inst *getFirstDefinition(const Variable *Var) const; |
| const InstDefList &getLatterDefinitions(const Variable *Var) const; |
| |
| /// Returns whether the given Variable is live across multiple blocks. Mainly, |
| /// this is used to partition Variables into single-block versus multi-block |
| /// sets for leveraging sparsity in liveness analysis, and for implementing |
| /// simple stack slot coalescing. As a special case, function arguments are |
| /// always considered multi-block because they are live coming into the entry |
| /// block. |
| bool isMultiBlock(const Variable *Var) const; |
| bool isSingleBlock(const Variable *Var) const; |
| /// Returns the node that the given Variable is used in, assuming |
| /// isMultiBlock() returns false. Otherwise, nullptr is returned. |
| CfgNode *getLocalUseNode(const Variable *Var) const; |
| |
| /// Returns the total use weight computed as the sum of uses multiplied by a |
| /// loop nest depth factor for each use. |
| RegWeight getUseWeight(const Variable *Var) const; |
| |
| private: |
| const Cfg *Func; |
| MetadataKind Kind; |
| CfgVector<VariableTracking> Metadata; |
| static const InstDefList *NoDefinitions; |
| }; |
| |
| /// BooleanVariable represents a variable that was the zero-extended result of a |
| /// comparison. It maintains a pointer to its original i1 source so that the |
| /// WASM frontend can avoid adding needless comparisons. |
| class BooleanVariable : public Variable { |
| BooleanVariable() = delete; |
| BooleanVariable(const BooleanVariable &) = delete; |
| BooleanVariable &operator=(const BooleanVariable &) = delete; |
| |
| BooleanVariable(const Cfg *Func, OperandKind K, Type Ty, SizeT Index) |
| : Variable(Func, K, Ty, Index) {} |
| |
| public: |
| static BooleanVariable *create(Cfg *Func, Type Ty, SizeT Index) { |
| return new (Func->allocate<BooleanVariable>()) |
| BooleanVariable(Func, kVariable, Ty, Index); |
| } |
| |
| virtual Variable *asBoolean() { return BoolSource; } |
| |
| void setBoolSource(Variable *Src) { BoolSource = Src; } |
| |
| static bool classof(const Operand *Operand) { |
| return Operand->getKind() == kVariableBoolean; |
| } |
| |
| private: |
| Variable *BoolSource = nullptr; |
| }; |
| |
| } // end of namespace Ice |
| |
| #endif // SUBZERO_SRC_ICEOPERAND_H |